WO2019189599A1 - Rotor, motor, and electric power steering device - Google Patents

Rotor, motor, and electric power steering device Download PDF

Info

Publication number
WO2019189599A1
WO2019189599A1 PCT/JP2019/013646 JP2019013646W WO2019189599A1 WO 2019189599 A1 WO2019189599 A1 WO 2019189599A1 JP 2019013646 W JP2019013646 W JP 2019013646W WO 2019189599 A1 WO2019189599 A1 WO 2019189599A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial direction
magnet fixing
magnet
rotor
ridge
Prior art date
Application number
PCT/JP2019/013646
Other languages
French (fr)
Japanese (ja)
Inventor
明 一円
秀幸 金城
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2020510992A priority Critical patent/JPWO2019189599A1/en
Priority to CN201980022220.5A priority patent/CN111903039A/en
Publication of WO2019189599A1 publication Critical patent/WO2019189599A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a rotor, a motor, and an electric power steering device.
  • the motor rotor includes a rotor core that rotates together with the shaft, and a plurality of magnets provided in the circumferential direction of the rotor core.
  • Such cogging torque generated in the motor leads to an increase in vibration and noise of the motor. For this reason, it is desired to suppress the occurrence of cogging torque in the motor.
  • International Publication No. 2011/114574 describes reducing the cogging torque by inclining (skewing) the magnet of the rotor core with respect to the axial direction.
  • the motor as described above has a problem that it takes time to assemble the rotor and productivity is lowered.
  • an object of the present invention is to provide a rotor, a motor, and an electric power steering device that can suppress cogging torque and simplify assembly.
  • One aspect of the rotor of the present invention includes a shaft extending along a central axis, a rotor core made of a magnetic material and fixed to the shaft, and a plurality of magnets fixed to the rotor core.
  • the rotor core has a plurality of magnet fixing surfaces arranged in the radial direction facing the radially outer side.
  • the magnets are respectively fixed to the plurality of magnet fixing surfaces.
  • At least one of the plurality of magnet fixing surfaces is positioned on one side in the circumferential direction of the magnet fixed to the magnet fixing surface, and protrudes radially outward from the magnet fixing surface. Ridges are provided.
  • the at least one magnet fixing surface of the plurality of magnet fixing surfaces is located on the other circumferential side of the magnet fixed to the magnet fixing surface, and protrudes radially outward from the magnet fixing surface. Ridges are provided.
  • the first ridge portion extends along the axial direction from the end portion on one axial side of the magnet fixing surface to the middle in the axial direction.
  • the second ridge extends along the axial direction from the other axial end of the magnet fixing surface to the middle of the axial direction.
  • the first and second ridges are made of a magnetic material.
  • one aspect of the motor of the present invention includes the above-described rotor and a stator that faces the rotor with a gap in the radial direction.
  • one aspect of the electric power steering apparatus of the present invention includes the above-described motor.
  • cogging torque can be suppressed and assembly can be simplified.
  • FIG. 1 is a cross-sectional view of a motor according to an embodiment.
  • FIG. 2 is a partial perspective view of a rotor according to an embodiment.
  • FIG. 3 is a cross-sectional view of the rotor taken along line III-III in FIG. 4 is a cross-sectional view of the rotor taken along line IV-IV in FIG.
  • FIG. 5 is a graph showing a waveform of cogging torque of the motor according to the embodiment.
  • FIG. 6 is a cross-sectional view of the rotor of the first modification.
  • FIG. 7 is a cross-sectional view of the rotor of the first modification.
  • FIG. 8 is a partial perspective view of the rotor of the second modification.
  • FIG. 9 is a graph showing a cogging torque waveform of a motor including the rotor of the second modification.
  • FIG. 10 is a schematic diagram illustrating an electric power steering apparatus according to an embodiment.
  • the Z-axis direction as shown in each figure is a vertical direction in which the positive side is the upper side and the negative side is the lower side.
  • a central axis J shown as appropriate in each drawing is an imaginary line parallel to the Z-axis direction and extending in the vertical direction.
  • the axial direction of the central axis J that is, the direction parallel to the vertical direction
  • the radial direction around the central axis J is simply referred to as “radial direction”.
  • the circumferential direction centered on is simply referred to as the “circumferential direction”.
  • the circumferential direction is appropriately indicated by an arrow ⁇ .
  • the positive side in the Z-axis direction in the axial direction is referred to as “upper side”
  • the negative side in the Z-axis direction in the axial direction is referred to as “lower side”.
  • the upper side corresponds to one side in the axial direction
  • the lower side corresponds to the other side in the axial direction.
  • the side proceeding counterclockwise when viewed from the upper side to the lower side in the circumferential direction that is, the side proceeding in the direction of the arrow ⁇
  • the side proceeding clockwise when viewed from the upper side to the lower side in the circumferential direction that is, the side proceeding in the direction opposite to the direction of the arrow ⁇ is referred to as “the other side in the circumferential direction”.
  • the vertical direction, the upper side, and the lower side are simply names for explaining the arrangement relationship of each part, and the actual arrangement relationship is an arrangement relationship other than the arrangement relationship indicated by these names. May be.
  • FIG. 1 is a cross-sectional view of the motor 10 of the present embodiment.
  • the motor 10 according to the present embodiment includes a rotor 20, a stator 30, a bearing holder 12, a housing 11, and a pair of bearings 15 and 16.
  • the rotor 20 rotates around the central axis J.
  • the housing 11 has a cylindrical shape having a bottom.
  • the housing 11 accommodates the rotor 20, the stator 30, the bearing holder 12, and a pair of bearings 15 and 15 inside.
  • the bearing holder 12 is located above the stator 30.
  • the bearing holder 12 is supported on the inner peripheral surface of the housing 11.
  • the pair of bearings 15 and 16 are arranged at an interval in the axial direction.
  • the pair of bearings 15 and 16 support the shaft 21 of the rotor 20.
  • one bearing 15 is supported by the bearing holder 12, and the other bearing 16 is supported by the housing 11.
  • the stator 30 has an annular shape centered on the central axis J.
  • the stator 30 faces the rotor 20 with a gap in the radial direction.
  • the stator 30 includes a stator core 31, an insulator 30Z, and a plurality of coils 30C.
  • the stator core 31 has an annular shape centered on the central axis J.
  • the stator core 31 surrounds the rotor 20 on the radially outer side of the rotor 20.
  • the stator core 31 is configured, for example, by laminating a plurality of electromagnetic steel plates in the axial direction.
  • the stator core 31 has a substantially annular core back 31a and a plurality of teeth 31b.
  • the core back 31a has an annular shape centered on the central axis J.
  • the outer peripheral surface of the core back 31 a is fixed to the inner peripheral surface of the housing 11.
  • the teeth 31b extend radially inward from the radially inner side surface of the core back 31a.
  • the plurality of teeth 31b are arranged at equal intervals along the circumferential direction.
  • the insulator 30Z is attached to the stator core 31.
  • the insulator 30Z covers the teeth 31b.
  • the material of the insulator 30Z is an insulating material such as a resin.
  • the coil 30C is attached to the stator core 31.
  • the coil 30C is configured by winding a conductive wire around the teeth 31b via the insulator 30Z.
  • the rotor 20 includes a shaft 21 having a central axis J, a rotor core 22, and a plurality of magnets 23.
  • the shaft 21 extends in the vertical direction along the central axis J.
  • the shaft 21 has a cylindrical shape extending in the axial direction.
  • the shaft 21 is supported by a plurality of bearings 15 and 16 so as to be rotatable around the central axis J.
  • the shaft 21 is not limited to the cylindrical shape, and may be a cylindrical shape, for example.
  • FIG. 2 is a partial perspective view of the rotor 20.
  • FIG. 3 is a cross-sectional view of the rotor 20 taken along line III-III in FIG. 4 is a cross-sectional view of the rotor 20 taken along line IV-IV in FIG.
  • the outer shape of the rotor core 22 is polygonal when viewed from the axial direction.
  • the outer shape of the rotor core 22 is a substantially octagonal shape.
  • the rotor core 22 is made of a magnetic material. More specifically, the rotor core 22 is made of a ferromagnetic material.
  • the rotor core 22 is composed of a plurality of electromagnetic steel plates 22A and 22B stacked in the axial direction.
  • the rotor core 22 is provided with a central hole 22h located in the center in plan view. The central hole 22h penetrates along the axial direction.
  • the shaft 21 is press-fitted into the central hole 22h. Thereby, the rotor core 22 is fixed to the outer peripheral surface of the shaft 21.
  • the rotor core 22 may be indirectly fixed to the shaft 21 via a resin member or the like.
  • the rotor core 22 is provided with a plurality of holes 22b penetrating along the axial direction and arranged at equal intervals along the circumferential direction.
  • the hole 22b has a circular shape in plan view.
  • the rotor core 22 is provided with eight holes 22b. Each hole 22b is arranged on the inner side in the radial direction of one magnet 23 described later. According to this embodiment, the rotor core 22 is thinned by the hole 22b, and the weight of the rotor core 22 and the material cost can be reduced.
  • a plurality of magnet fixing surfaces 22a and a plurality of groove portions 22c are provided on the outer periphery of the rotor core 22 facing the radially outer side. In other words, the rotor core 22 has a plurality of magnet fixing surfaces 22a arranged in the circumferential direction facing the radially outer side.
  • the groove 22c is located between the magnet fixing surfaces 22a adjacent to each other along the circumferential direction.
  • the groove portion 22 c is recessed from the radially outer surface of the rotor core 22 to the radially inner side.
  • the groove part 22c opens to the radial direction outer side.
  • the groove 22c extends along the axial direction.
  • the groove portion 22 c extends over the entire axial length of the radially outer surface of the rotor core 22.
  • the groove portion 22c has a groove width that decreases toward the outside in the radial direction. That is, the groove 22c has a wedge shape when viewed from the axial direction.
  • the magnet fixing surface 22a has a planar shape extending in a direction perpendicular to the radial direction.
  • the magnet fixing surface 22a may be a curved surface.
  • the magnet fixing surface 22 a extends in the axial direction on the radially outer surface of the rotor core 22.
  • the magnet fixing surface 22 a is disposed on the radially outer side surface of the rotor core 22 over the entire axial direction.
  • the length dimension in the axial direction of the magnet fixing surface 22a is larger than the length dimension in the circumferential direction.
  • the rotor core 22 of the present embodiment has eight magnet fixing surfaces 22a.
  • a magnet 23 is fixed to each of the plurality of magnet fixing surfaces 22a. That is, the rotor core 22 holds the magnet 23 on the magnet fixing surface 22a.
  • the magnet 23 and the magnet fixing surface 22a may be indirectly fixed via a resin member or the like.
  • the magnet 23 may be fixed to the magnet fixing surface 22a by covering the magnet 23 from the outside in the radial direction with resin.
  • the magnet 23 is a permanent magnet.
  • the plurality of magnets 23 are fixed to different magnet fixing surfaces 22a. That is, the magnet 23 is fixed to the rotor core 22.
  • the plurality of magnets 23 are arranged along the circumferential direction, with the magnetic poles facing outward in the radial direction being alternated along the circumferential direction.
  • the magnet 23 extends with a uniform cross section along the axial direction.
  • the magnet 23 has an outer surface 23a facing outward in the radial direction, an inner surface 23b facing inward in the radial direction, and a pair of peripheral side surfaces (end surfaces) 23c facing in the circumferential direction.
  • the outer surface 23a extends in an arc shape centered on the central axis J.
  • the inner side surface 23b is a flat surface extending in a direction perpendicular to the radial direction.
  • the inner side surface 23b faces the magnet fixing surface 22a.
  • the peripheral side surface 23c is a plane orthogonal to the inner side surface 23b.
  • the peripheral side surface 23c connects the inner side surface 23b and the outer side surface 23a.
  • the circumferential side surfaces 23c of the magnets 23 adjacent to each other in the circumferential direction face each other in the circumferential direction.
  • the magnet 23 covers the entire axial direction of the magnet fixing surface 22a. Moreover, the magnet 23 is arrange
  • the magnet fixing surface 22a is provided with a pair of exposed portions 22aa that the magnet 23 does not contact in the circumferential direction.
  • the pair of exposed portions 22aa extends in the axial direction along a pair of circumferential edges of the magnet fixing surface 22a.
  • the rotor core 22 has an upper ridge (first ridge) 24 and a lower ridge (second ridge) 25.
  • the upper ridge 24 and the lower ridge 25 are made of a magnetic material. More specifically, the upper ridge portion 24 and the lower ridge portion 25 are made of a ferromagnetic material. In the present embodiment, the upper ridge portion 24 and the lower ridge portion 25 are part of the rotor core 22.
  • the upper ridge portion 24 and the lower ridge portion 25 are configured as part of the electromagnetic steel plates 22 ⁇ / b> A and 22 ⁇ / b> B constituting the rotor core 22.
  • the upper and lower ridges 24 and 25 and the rotor core 22 may be separate members.
  • the upper ridge portion 24 is provided on at least one magnet fixing surface 22a among the plurality of magnet fixing surfaces 22a.
  • the lower ridge portion 25 is provided on at least one magnet fixing surface 22a among the plurality of magnet fixing surfaces 22a.
  • the upper ridge portion 24 and the lower ridge portion 25 are provided on different magnet fixing surfaces 22a.
  • the magnet fixing surface 22a provided with the upper ridges 24 and the magnet fixing surface 22a provided with the lower ridges 25 are adjacent to each other in the circumferential direction.
  • the upper ridge portion 24 and the lower ridge portion 25 may be provided on the same magnet fixing surface 22a.
  • FIGS. 3 and 4 four upper ridges 24 and four lower ridges 25 are provided on the rotor core 22, respectively.
  • the magnet fixing surfaces 22a on which the upper ridges 24 are provided are arranged at equal intervals along the circumferential direction.
  • the magnet fixing surfaces 22a on which the lower ridges 25 are provided are arranged at equal intervals along the circumferential direction.
  • the magnet fixing surface 22a provided with the upper ridges 24 and the magnet fixing surface 22a provided with the lower ridges 25 are alternately arranged in the circumferential direction.
  • the upper ridge portion 24 and the lower ridge portion 25 are respectively positioned on the exposed portion 22aa of the magnet fixing surface 22a.
  • Each of the upper ridges 24 and the lower ridges 25 protrudes radially outward from the magnet fixing surface 22a.
  • the upper ridge portion 24 extends along the axial direction from the upper end portion (end portion on one side in the axial direction) of the magnet fixing surface 22a to the middle in the axial direction.
  • the lower ridge portion 25 extends along the axial direction from the lower end portion (end portion on the other side in the axial direction) of the magnet fixing surface 22a to the middle in the axial direction.
  • the upper ridge portion 24 is located on one side in the circumferential direction of the magnet 23 fixed to the magnet fixing surface 22a on which the upper ridge portion 24 is provided.
  • the upper ridge portion 24 contacts the circumferential side surface 23 c on one side in the circumferential direction of the magnet 23.
  • the lower ridge portion 25 is located on the other circumferential side of the magnet 23 fixed to the magnet fixing surface 22a on which the lower ridge portion 25 is provided.
  • the lower ridge portion 25 contacts the circumferential side surface 23 c on the other circumferential side of the magnet 23.
  • the length dimension along the axial direction of the upper ridge portion 24 and the length dimension along the axial direction of the lower ridge portion 25 coincide with each other.
  • the axial position of the lower end portion (end on the other side in the axial direction) of the upper ridge portion 24 and the upper end portion (end portion on the one side in the axial direction) of the lower ridge portion 25 coincide with each other.
  • the upper half (half on one side in the axial direction) of the rotor 20 is the upper side area (first area) A1
  • the lower half (half on the other side in the axial direction) of the rotor 20 is the lower side area. (Second area) A2.
  • the rotor core 22 has an upper ridge portion 24 and no lower ridge portion 25 in the upper region A1. Further, the rotor core 22 does not have the upper ridge portion 24 but has the lower ridge portion 25 in the lower region A2.
  • FIG. 5 is a graph showing a cogging torque waveform of the motor 10 of the present embodiment.
  • FIG. 5 shows the waveform of the cogging torque in the upper region A1 of the rotor 20, the waveform of the cogging torque in the lower region A2, and the waveform of the cogging torque obtained by combining these.
  • the waveform of the cogging torque in the upper region A1 with the waveform of the cogging torque in the lower region A2 they are in opposite phases. That is, according to the present embodiment, an antiphase can be generated in the cogging torque without skewing the magnet 23.
  • the waveform of the cogging torque in the upper region A1 and the waveform of the cogging torque in the lower region A2 cancel each other, and the vibration width of the cogging torque (the maximum value of the combined cogging torque). And the minimum value) can be kept small.
  • An upper ridge portion 24 made of a magnetic material is provided on the magnet fixing surface 22a of the rotor core 22 in the upper region A1.
  • the upper ridge 24 is located on one side of the magnet 23 in the circumferential direction. For this reason, in the upper region A1, it is considered that the magnetic flux of the magnet 23 is pulled by the upper protrusion 24 and biased to one side in the circumferential direction.
  • a lower ridge portion 25 made of a magnetic material is provided on the other circumferential side of the magnet 23.
  • the magnetic flux of the magnet 23 is pulled by the lower protrusion 25 and biased to the other side in the circumferential direction.
  • the center of the magnetic flux generated from the magnet 23 is biased to the opposite side in the circumferential direction, and the same effect as when the magnet 23 is skewed can be obtained. That is, according to the present embodiment, since the cogging torque can be reduced without skewing the magnet 23, the assembly process of the rotor 20 can be simplified.
  • the upper ridge portion 24 contacts the circumferential side surface 23 c on one side in the circumferential direction of the magnet 23.
  • the lower ridge portion 25 contacts the circumferential side surface 23 c on the other circumferential side of the magnet 23.
  • the magnet fixing surface 22a on which the upper ridge portion 24 is provided and the magnet fixing surface 22a on which the lower ridge portion 25 is provided are adjacent to each other in the circumferential direction. For this reason, the center of the magnetic flux of the magnet 23 adjacent to the circumferential direction can be biased to the opposite side of the circumferential direction, and the effect of reducing the cogging torque can be enhanced.
  • the length dimension along the axial direction of the upper ridge portion 24 and the length dimension along the axial direction of the lower ridge portion 25 coincide with each other.
  • the length dimension along the axial direction of the upper region A1 of the rotor 20 and the length dimension along the axial direction of the lower region A2 are the same.
  • the absolute value of the cogging torque in the upper region A1 and the absolute value of the cogging torque in the lower region A2 can be substantially matched with each other.
  • the cogging torque in the upper region A1 and the cogging torque in the lower region A2 cancel each other, and the combined cogging torque is effectively reduced.
  • the number of the upper ridge portions 24 and the number of the lower ridge portions 25 coincide with each other. For this reason, the absolute value of the cogging torque in the upper region A1 and the absolute value of the cogging torque in the lower region A2 can be substantially matched with each other, and the combined cogging torque is effectively reduced.
  • the magnet fixing surfaces 22a on which the upper ridges 24 are provided are arranged at equal intervals along the circumferential direction.
  • the magnet fixing surfaces 22a on which the lower ridges 25 are provided are arranged at equal intervals along the circumferential direction. According to this embodiment, the cogging torque can be effectively reduced by arranging the upper ridge portion 24 and the lower ridge portion 25 in a balanced manner along the circumferential direction.
  • the rotor core 22 is composed of a plurality of electromagnetic steel plates 22A and 22B stacked along the axial direction. Further, the upper ridge portion 24 and the lower ridge portion 25 are part of the electromagnetic steel plates 22A and 22B. In the upper region A1, the rotor core 22 is configured by laminating the first electromagnetic steel plates 22A. In the lower region A2, the rotor core 22 is configured by laminating the second electromagnetic steel plate 22B.
  • the first electromagnetic steel plate 22 ⁇ / b> A includes an upper ridge portion 24.
  • the second electromagnetic steel plate 22B includes a lower ridge portion 25. As shown in FIG.
  • the rotor core 22 is configured using only two types of electromagnetic steel plates (the first electromagnetic steel plate 22A and the second electromagnetic steel plate 22B). Further, the first electromagnetic steel plate 22A and the second electromagnetic steel plate 22B are in the shape of the front and back surfaces. For this reason, 22 A of 1st electromagnetic steel plates can be reversed and used as the 2nd electromagnetic steel plate 22B. That is, the rotor core 22 of the present embodiment can be configured from one type of electromagnetic steel sheet that has been pressed. According to the present embodiment, it is possible to suppress an increase in the types of components constituting the rotor core 22 and to provide the inexpensive rotor 20 and motor 10.
  • FIG. 6 is a cross-sectional view of the rotor 120 of this modification, and corresponds to FIG. 3 of the above-described embodiment.
  • FIG. 7 is a cross-sectional view of the rotor 120 of this modification, and corresponds to FIG. 4 of the above-described embodiment.
  • symbol is attached
  • the rotor 120 of this modification is mainly different from the above-described embodiment in that the upper ridge portions 24 and the lower ridge portions 25 are provided on all the magnet fixing surfaces 22a of the rotor core 122. According to this modification, the same effect as when all the magnets 23 are skewed can be obtained, and the effect of reducing the cogging torque can be further enhanced.
  • FIG. 8 is a partial perspective view of the rotor 220 of this modification.
  • the rotor core 222 includes an upper ridge (first ridge) 224 and a lower ridge (second ridge) 225.
  • the upper ridge portion 224 and the lower ridge portion 225 are made of a magnetic material.
  • the upper ridge portion 224 and the lower ridge portion 225 of the present modification are provided on different magnet fixing surfaces 22a.
  • the magnet fixing surface 22a provided with the upper ridge portion 224 and the magnet fixing surface 22a provided with the lower ridge portion 225 are adjacent to each other in the circumferential direction.
  • the magnet fixing surfaces 22a on which the upper ridges 224 are provided are arranged at equal intervals along the circumferential direction.
  • the magnet fixing surfaces 22a on which the lower ridges 225 are provided are arranged at equal intervals along the circumferential direction.
  • the magnet fixing surface 22a provided with the upper ridges 224 and the magnet fixing surface 22a provided with the lower ridges 225 are alternately arranged in the circumferential direction.
  • the upper ridge portion 224 and the lower ridge portion 225 protrude radially outward from the magnet fixing surface 22a.
  • the upper ridge portion 224 is located on one side in the circumferential direction of the magnet 23 fixed to the magnet fixing surface 22a on which the upper ridge portion 224 is provided.
  • the lower ridge portion 225 is located on the other circumferential side of the magnet 23 fixed to the magnet fixing surface 22a on which the lower ridge portion 225 is provided.
  • the upper ridge 224 extends along the axial direction from the upper end of the magnet fixing surface 22a to the middle in the axial direction.
  • the lower protrusion 225 extends along the axial direction from the lower end of the magnet fixing surface 22a to the middle in the axial direction.
  • the axial position of the lower end portion (end on the other side in the axial direction) of the upper ridge portion 224 is the axial position of the upper end portion (end portion on the one side in the axial direction) of the lower ridge portion 225. Is located on the upper side (one side in the axial direction). That is, the upper ridge portion 224 and the lower ridge portion 225 are disposed with a gap in the axial direction.
  • the length dimension along the axial direction of the upper ridge portion 224 and the length dimension along the axial direction of the lower ridge portion 225 coincide with each other. Further, the distance along the axial direction between the lower end portion (the end portion on the other side in the axial direction) of the upper ridge portion 224 and the upper end portion (end portion on the one side in the axial direction) of the lower ridge portion 225 is the upper side. It corresponds with the length dimension along the axial direction of the protruding line part 224 and the lower protruding line part 225.
  • the rotor 220 is partitioned into three in the vertical direction, the upper region is the upper region (first region) B1, the lower region is the lower region (second region) B2, and the upper region is A region sandwiched between B1 and the lower region B2 is defined as an intermediate region (third region) B3.
  • the rotor core 222 has an upper ridge 224 and no lower ridge 225 in the upper region B1. Further, the rotor core 222 does not have the upper ridge portion 224 but has the lower ridge portion 225 in the lower region B2. Furthermore, the rotor core 222 does not have the upper ridge portion 224 and the lower ridge portion 225 in the intermediate region B3.
  • FIG. 9 is a graph showing the cogging torque waveform of the motor 10 including the rotor 220 of this modification.
  • FIG. 9 shows the cogging torque waveform of the upper region B1 of the rotor 220, the cogging torque waveform of the lower region B2, the cogging torque waveform of the intermediate region B3, and the combined cogging torque waveform. .
  • Intermediate region B3 is a region where the upper ridge portion 224 and the lower ridge portion 225 are not provided.
  • the absolute value of the cogging torque in the intermediate region B3 is slightly larger than the absolute value of the combined cogging torque.
  • the intermediate region B3 is provided in a region that is 1/3 of the entire length of the rotor core 222. Therefore, it is estimated that a cogging torque that is three times the cogging torque of the intermediate region B3 in FIG. 9 is generated in the rotor 220 in which the upper ridge 224 and the lower ridge 225 are not provided over the entire axial length. From this, it can be confirmed that the combined cogging torque can be reduced by providing the upper region B1 and the lower region B2.
  • a gap is provided between the upper ridge 224 and the lower ridge 225 in the axial direction.
  • the axial dimension of the upper ridge 224, the axial dimension of the lower ridge 225, and the axial dimension of the gap coincide with each other.
  • the rotor 220 is provided with an upper region B1, a lower region B2, and an intermediate region B3 having the same axial dimension.
  • the electric power steering apparatus 100 is mounted on a steering mechanism of a vehicle wheel 112.
  • the electric power steering apparatus 100 is an apparatus that reduces the steering force by hydraulic pressure.
  • the electric power steering apparatus 100 of this embodiment includes a motor 10, a steering shaft 114, an oil pump 116, and a control valve 117.
  • the steering shaft 114 transmits the input from the steering 111 to the axle 113 having the wheels 112.
  • the oil pump 116 generates hydraulic pressure in the power cylinder 115 that transmits driving force by hydraulic pressure to the axle 113.
  • the control valve 117 controls the oil of the oil pump 116.
  • the motor 10 is mounted as a drive source for the oil pump 116.
  • the electric power steering apparatus 100 of this embodiment includes the motor 10 of this embodiment. For this reason, the electric power steering apparatus 100 which has an effect similar to the above-mentioned motor 10 is obtained.
  • the motor 10 can be used for various devices such as a pump, a brake, a clutch, a vacuum cleaner, a dryer, a ceiling fan, a washing machine, and a refrigerator.

Abstract

An embodiment of the rotor of the present invention is provided with a shaft, a rotor core, and a plurality of magnets. The rotor core has a plurality of magnet fixation surfaces arranged along the circumferential direction. At least one magnet fixation surface from among the plurality of magnet fixation surfaces is provided with a first ridge part positioned on one circumferential side of a magnet fixed to the magnet fixation surface. At least one magnet fixation surface from among the plurality of magnet fixation surfaces is provided with a second ridge part positioned on the other circumferential side of a magnet fixed to the magnet fixation surface. The first ridge part extends along the axial direction from an end part, on one side with respect to the axial direction, to approximately the middle, with respect to the axial direction, of the magnet fixation surface. The second ridge part extends along the axial direction from an end part, on the other side with respect to the axial direction, to approximately the middle, with respect to the axial direction, of the magnet fixation surface. The first ridge part and the second ridge part are formed from a magnetic body.

Description

ロータ、モータおよび電動パワーステアリング装置Rotor, motor and electric power steering device
 本発明は、ロータ、モータおよび電動パワーステアリング装置に関する。 The present invention relates to a rotor, a motor, and an electric power steering device.
 モータのロータは、シャフトとともに回転するロータコアと、ロータコアの周方向に複数設けられたマグネットと、を備える。このようなモータに生じるコギングトルクは、モータの振動および騒音の増大に繋がる。このため、モータにおいて、コギングトルクの発生を抑えることが望まれている。例えば国際公開第2011/114574号には、ロータコアのマグネットを軸方向に対して傾斜(スキュー)させることで、コギングトルクを低減することが記載されている。 The motor rotor includes a rotor core that rotates together with the shaft, and a plurality of magnets provided in the circumferential direction of the rotor core. Such cogging torque generated in the motor leads to an increase in vibration and noise of the motor. For this reason, it is desired to suppress the occurrence of cogging torque in the motor. For example, International Publication No. 2011/114574 describes reducing the cogging torque by inclining (skewing) the magnet of the rotor core with respect to the axial direction.
国際公開第2011/114574号International Publication No. 2011/114574
 しかしながら、上記のようなモータにおいては、ロータを組み立てる手間がかかり生産性が低下してしまうという問題があった。 However, the motor as described above has a problem that it takes time to assemble the rotor and productivity is lowered.
 本発明は、上記事情に鑑みて、コギングトルクを抑制するとともに、組み立てを簡素化できるロータ、モータおよび電動パワーステアリング装置を提供することを目的の一つとする。 In view of the above circumstances, an object of the present invention is to provide a rotor, a motor, and an electric power steering device that can suppress cogging torque and simplify assembly.
 本発明のロータの一つの態様は、中心軸に沿って延びるシャフトと、磁性体から構成され前記シャフトに固定されるロータコアと、前記ロータコアに固定される複数のマグネットと、を備える。前記ロータコアは、径方向外側を向き周方向に沿って並ぶ複数のマグネット固定面を有する。複数の前記マグネット固定面には、それぞれ前記マグネットが固定される。複数の前記マグネット固定面のうち少なくとも1つの前記マグネット固定面には、当該マグネット固定面に固定される前記マグネットの周方向一方側に位置し、当該マグネット固定面から径方向外側に突出する第1の凸条部が設けられる。複数の前記マグネット固定面のうち少なくとも1つの前記マグネット固定面には、当該マグネット固定面に固定される前記マグネットの周方向他方側に位置し、当該マグネット固定面から径方向外側に突出する第2の凸条部が設けられる。前記第1の凸条部は、前記マグネット固定面の軸方向一方側の端部から軸方向の中程まで軸方向に沿って延びる。前記第2の凸条部は、前記マグネット固定面の軸方向他方側の端部から軸方向の中程まで軸方向に沿って延びる。前記第1の凸条部および前記第2の凸条部は、磁性体から構成される。 One aspect of the rotor of the present invention includes a shaft extending along a central axis, a rotor core made of a magnetic material and fixed to the shaft, and a plurality of magnets fixed to the rotor core. The rotor core has a plurality of magnet fixing surfaces arranged in the radial direction facing the radially outer side. The magnets are respectively fixed to the plurality of magnet fixing surfaces. At least one of the plurality of magnet fixing surfaces is positioned on one side in the circumferential direction of the magnet fixed to the magnet fixing surface, and protrudes radially outward from the magnet fixing surface. Ridges are provided. The at least one magnet fixing surface of the plurality of magnet fixing surfaces is located on the other circumferential side of the magnet fixed to the magnet fixing surface, and protrudes radially outward from the magnet fixing surface. Ridges are provided. The first ridge portion extends along the axial direction from the end portion on one axial side of the magnet fixing surface to the middle in the axial direction. The second ridge extends along the axial direction from the other axial end of the magnet fixing surface to the middle of the axial direction. The first and second ridges are made of a magnetic material.
 また、本発明のモータの一つの態様は、上述のロータと、前記ロータと径方向に隙間をあけて対向するステータと、を備える。 Also, one aspect of the motor of the present invention includes the above-described rotor and a stator that faces the rotor with a gap in the radial direction.
 また、本発明の電動パワーステアリング装置の一つの態様は、上述のモータを備える。 Moreover, one aspect of the electric power steering apparatus of the present invention includes the above-described motor.
 本発明の一つの態様のロータ、モータおよび電動パワーステアリング装置によれば、コギングトルクを抑制するとともに、組み立てを簡素化できる。 According to the rotor, motor, and electric power steering device of one aspect of the present invention, cogging torque can be suppressed and assembly can be simplified.
図1は、一実施形態のモータの断面図である。FIG. 1 is a cross-sectional view of a motor according to an embodiment. 図2は、一実施形態のロータの部分斜視図である。FIG. 2 is a partial perspective view of a rotor according to an embodiment. 図3は、図2のIII-III線に沿うロータの断面図である。FIG. 3 is a cross-sectional view of the rotor taken along line III-III in FIG. 図4は、図2のIV-IV線に沿うロータの断面図である。4 is a cross-sectional view of the rotor taken along line IV-IV in FIG. 図5は、一実施形態のモータの、コギングトルクの波形を示すグラフである。FIG. 5 is a graph showing a waveform of cogging torque of the motor according to the embodiment. 図6は、変形例1のロータの断面図である。FIG. 6 is a cross-sectional view of the rotor of the first modification. 図7は、変形例1のロータの断面図である。FIG. 7 is a cross-sectional view of the rotor of the first modification. 図8は、変形例2のロータの部分斜視図である。FIG. 8 is a partial perspective view of the rotor of the second modification. 図9は、変形例2のロータを備えるモータの、コギングトルクの波形を示すグラフである。FIG. 9 is a graph showing a cogging torque waveform of a motor including the rotor of the second modification. 図10は、一実施形態の電動パワーステアリング装置を示す模式図である。FIG. 10 is a schematic diagram illustrating an electric power steering apparatus according to an embodiment.
 以下、図面を参照しながら、本発明の実施形態に係るロータ、モータおよび電動パワーステアリング装置について説明する。なお、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。 Hereinafter, a rotor, a motor, and an electric power steering device according to an embodiment of the present invention will be described with reference to the drawings. In the following drawings, in order to make each configuration easy to understand, the actual structure may be different from the scale, number, or the like in each structure.
 各図に適宜示すZ軸方向は、正の側を上側とし、負の側を下側とする上下方向である。各図に適宜示す中心軸Jは、Z軸方向と平行であり、上下方向に延びる仮想線である。以下の説明においては、中心軸Jの軸方向、すなわち上下方向と平行な方向を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向を単に「周方向」と呼ぶ。各図においては、適宜、周方向を矢印θで示す。 The Z-axis direction as shown in each figure is a vertical direction in which the positive side is the upper side and the negative side is the lower side. A central axis J shown as appropriate in each drawing is an imaginary line parallel to the Z-axis direction and extending in the vertical direction. In the following description, the axial direction of the central axis J, that is, the direction parallel to the vertical direction is simply referred to as “axial direction”, and the radial direction around the central axis J is simply referred to as “radial direction”. The circumferential direction centered on is simply referred to as the “circumferential direction”. In each drawing, the circumferential direction is appropriately indicated by an arrow θ.
 また、軸方向におけるZ軸方向の正の側を「上側」と呼び、軸方向におけるZ軸方向の負の側を「下側」と呼ぶ。本実施形態において、上側は、軸方向一方側に相当し、下側は、軸方向他方側に相当する。また、周方向における上側から下側に向かって見て反時計回りに進む側、すなわち矢印θの向きに進む側を「周方向一方側」と呼ぶ。周方向における上側から下側に向かって見て時計回りに進む側、すなわち矢印θの向きと逆に進む側を「周方向他方側」と呼ぶ。 Also, the positive side in the Z-axis direction in the axial direction is referred to as “upper side”, and the negative side in the Z-axis direction in the axial direction is referred to as “lower side”. In the present embodiment, the upper side corresponds to one side in the axial direction, and the lower side corresponds to the other side in the axial direction. Further, the side proceeding counterclockwise when viewed from the upper side to the lower side in the circumferential direction, that is, the side proceeding in the direction of the arrow θ is referred to as “one circumferential side”. The side proceeding clockwise when viewed from the upper side to the lower side in the circumferential direction, that is, the side proceeding in the direction opposite to the direction of the arrow θ is referred to as “the other side in the circumferential direction”.
 なお、上下方向、上側および下側とは、単に各部の配置関係等を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。 The vertical direction, the upper side, and the lower side are simply names for explaining the arrangement relationship of each part, and the actual arrangement relationship is an arrangement relationship other than the arrangement relationship indicated by these names. May be.
 図1は、本実施形態のモータ10の断面図である。本実施形態のモータ10は、ロータ20と、ステータ30と、ベアリングホルダ12と、ハウジング11と、一対のベアリング15,16と、を備える。ロータ20は、中心軸J周りを回転する。 ハウジング11は、底部を有する筒状である。ハウジング11は、内部に、ロータ20、ステータ30、ベアリングホルダ12および一対のベアリング15、15を収容する。ベアリングホルダ12は、ステータ30の上側に位置する。ベアリングホルダ12は、ハウジング11の内周面に支持される。一対のベアリング15,16は、軸方向に互いに間隔をあけて配置される。一対のベアリング15、16は、ロータ20のシャフト21を支持する。一対のベアリング15、16のうち、一方のベアリング15は、ベアリングホルダ12に支持され、他方のベアリング16は、ハウジング11に支持される。 FIG. 1 is a cross-sectional view of the motor 10 of the present embodiment. The motor 10 according to the present embodiment includes a rotor 20, a stator 30, a bearing holder 12, a housing 11, and a pair of bearings 15 and 16. The rotor 20 rotates around the central axis J. The housing 11 has a cylindrical shape having a bottom. The housing 11 accommodates the rotor 20, the stator 30, the bearing holder 12, and a pair of bearings 15 and 15 inside. The bearing holder 12 is located above the stator 30. The bearing holder 12 is supported on the inner peripheral surface of the housing 11. The pair of bearings 15 and 16 are arranged at an interval in the axial direction. The pair of bearings 15 and 16 support the shaft 21 of the rotor 20. Of the pair of bearings 15, 16, one bearing 15 is supported by the bearing holder 12, and the other bearing 16 is supported by the housing 11.
 ステータ30は、中心軸Jを中心とする環状である。ステータ30は、ロータ20と径方向に隙間をあけて対向する。ステータ30は、ステータコア31と、インシュレータ30Zと、複数のコイル30Cと、を有する。 ステータコア31は、中心軸Jを中心とする環状である。ステータコア31は、ロータ20の径方向外側においてロータ20を囲む。ステータコア31は、例えば、複数の電磁鋼板が軸方向に積層されて構成される。 ステータコア31は、略環状のコアバック31aと、複数のティース31bと、を有する。本実施形態では、コアバック31aは、中心軸Jを中心とする円環状である。コアバック31aの外周面は、ハウジング11の内周面に固定される。ティース31bは、コアバック31aの径方向内側面から径方向内側に延びる。複数のティース31bは、周方向に沿って等間隔に並ぶ。 インシュレータ30Zは、ステータコア31に装着される。インシュレータ30Zは、ティース31bを覆う。インシュレータ30Zの材料は、例えば樹脂などの絶縁材料である。 コイル30Cは、ステータコア31に取り付けられる。コイル30Cは、インシュレータ30Zを介してティース31bに導線が巻き回されることで構成される。 ロータ20は、中心軸Jを有するシャフト21と、ロータコア22と、複数のマグネット23と、を備える。 シャフト21は、中心軸Jに沿って上下方向に延びる。本実施形態の例では、シャフト21が、軸方向に延びる円柱状である。シャフト21は、複数のベアリング15,16により、中心軸J回りに回転自在に支持される。シャフト21は、上記円柱状に限らず、例えば筒状でもよい。 The stator 30 has an annular shape centered on the central axis J. The stator 30 faces the rotor 20 with a gap in the radial direction. The stator 30 includes a stator core 31, an insulator 30Z, and a plurality of coils 30C. The stator core 31 has an annular shape centered on the central axis J. The stator core 31 surrounds the rotor 20 on the radially outer side of the rotor 20. The stator core 31 is configured, for example, by laminating a plurality of electromagnetic steel plates in the axial direction. The stator core 31 has a substantially annular core back 31a and a plurality of teeth 31b. In the present embodiment, the core back 31a has an annular shape centered on the central axis J. The outer peripheral surface of the core back 31 a is fixed to the inner peripheral surface of the housing 11. The teeth 31b extend radially inward from the radially inner side surface of the core back 31a. The plurality of teeth 31b are arranged at equal intervals along the circumferential direction. The insulator 30Z is attached to the stator core 31. The insulator 30Z covers the teeth 31b. The material of the insulator 30Z is an insulating material such as a resin. The coil 30C is attached to the stator core 31. The coil 30C is configured by winding a conductive wire around the teeth 31b via the insulator 30Z. The rotor 20 includes a shaft 21 having a central axis J, a rotor core 22, and a plurality of magnets 23. The shaft 21 extends in the vertical direction along the central axis J. In the example of the present embodiment, the shaft 21 has a cylindrical shape extending in the axial direction. The shaft 21 is supported by a plurality of bearings 15 and 16 so as to be rotatable around the central axis J. The shaft 21 is not limited to the cylindrical shape, and may be a cylindrical shape, for example.
 図2は、ロータ20の部分斜視図である。図3は、図2のIII-III線に沿うロータ20の断面図である。図4は、図2のIV-IV線に沿うロータ20の断面図である。 FIG. 2 is a partial perspective view of the rotor 20. FIG. 3 is a cross-sectional view of the rotor 20 taken along line III-III in FIG. 4 is a cross-sectional view of the rotor 20 taken along line IV-IV in FIG.
 図3および図4に示すように、ロータコア22の外形は、軸方向から見て多角形状である。本実施形態の例では、ロータコア22の外形が、略八角形状である。 ロータコア22は、磁性体から構成される。より具体的には、ロータコア22は、強磁性体から構成される。図1に示すように、ロータコア22は、軸方向に沿って積層された複数の電磁鋼板22A、22Bから構成される。 図3および図4に示すように、ロータコア22には、平面視中央に位置する中央孔22hが設けられる。中央孔22hは、軸方向に沿って貫通する。シャフト21は、中央孔22hに圧入される。これにより、ロータコア22は、シャフト21の外周面に固定される。なお、ロータコア22は、シャフト21に対して、樹脂部材などを介して間接的に固定されてもよい。 As shown in FIGS. 3 and 4, the outer shape of the rotor core 22 is polygonal when viewed from the axial direction. In the example of this embodiment, the outer shape of the rotor core 22 is a substantially octagonal shape. The rotor core 22 is made of a magnetic material. More specifically, the rotor core 22 is made of a ferromagnetic material. As shown in FIG. 1, the rotor core 22 is composed of a plurality of electromagnetic steel plates 22A and 22B stacked in the axial direction. As shown in FIGS. 3 and 4, the rotor core 22 is provided with a central hole 22h located in the center in plan view. The central hole 22h penetrates along the axial direction. The shaft 21 is press-fitted into the central hole 22h. Thereby, the rotor core 22 is fixed to the outer peripheral surface of the shaft 21. The rotor core 22 may be indirectly fixed to the shaft 21 via a resin member or the like.
 ロータコア22には、軸方向に沿って貫通し周方向に沿って等間隔に並ぶ複数の孔部22bが設けられる。本実施形態において、孔部22bは、平面視で円形状である。本実施形態において、ロータコア22には、8つの孔部22bが設けられる。それぞれの孔部22bは、後述する1つのマグネット23の径方向内側に配置される。本実施形態によれば、孔部22bによりロータコア22を肉抜きして、ロータコア22の軽量化および材料費削減を図ることができる。 ロータコア22の径方向外側を向く外周には、複数のマグネット固定面22aと、複数の溝部22cとが、設けられる。すなわち、ロータコア22は、径方向外側を向き周方向に沿って並ぶ複数のマグネット固定面22aを有する。 The rotor core 22 is provided with a plurality of holes 22b penetrating along the axial direction and arranged at equal intervals along the circumferential direction. In the present embodiment, the hole 22b has a circular shape in plan view. In the present embodiment, the rotor core 22 is provided with eight holes 22b. Each hole 22b is arranged on the inner side in the radial direction of one magnet 23 described later. According to this embodiment, the rotor core 22 is thinned by the hole 22b, and the weight of the rotor core 22 and the material cost can be reduced. A plurality of magnet fixing surfaces 22a and a plurality of groove portions 22c are provided on the outer periphery of the rotor core 22 facing the radially outer side. In other words, the rotor core 22 has a plurality of magnet fixing surfaces 22a arranged in the circumferential direction facing the radially outer side.
 溝部22cは、周方向に沿って互いに隣り合うマグネット固定面22a同士の間に位置する。溝部22cは、ロータコア22の径方向外側面から径方向内側に窪む。また、溝部22cは、径方向外側に開口する。溝部22cは、軸方向に沿って延びる。溝部22cは、ロータコア22の径方向外側面の軸方向全長に亘って延びる。溝部22cは、径方向外側に向かうにつれて溝幅が小さくなる。すなわち、溝部22cは、軸方向から見てくさび形状である。ロータ20を樹脂モールドする場合、溝部22cの内部には、樹脂が入り込む。この場合、溝部22cがくさび形状であることによって、ロータ20から樹脂部が離脱することを抑制できる。 The groove 22c is located between the magnet fixing surfaces 22a adjacent to each other along the circumferential direction. The groove portion 22 c is recessed from the radially outer surface of the rotor core 22 to the radially inner side. Moreover, the groove part 22c opens to the radial direction outer side. The groove 22c extends along the axial direction. The groove portion 22 c extends over the entire axial length of the radially outer surface of the rotor core 22. The groove portion 22c has a groove width that decreases toward the outside in the radial direction. That is, the groove 22c has a wedge shape when viewed from the axial direction. When the rotor 20 is resin-molded, the resin enters the groove 22c. In this case, it is possible to prevent the resin portion from being detached from the rotor 20 because the groove portion 22c has a wedge shape.
 マグネット固定面22aは、径方向に垂直な方向に広がる平面状である。なお、マグネット固定面22aは、湾曲面であってもよい。マグネット固定面22aは、ロータコア22の径方向外側面において、軸方向に延びる。マグネット固定面22aは、ロータコア22の径方向外側面に、軸方向全長にわたって配置される。本実施形態の例では、マグネット固定面22aの軸方向の長さ寸法は、周方向の長さ寸法よりも大きい。本実施形態のロータコア22は、8つのマグネット固定面22aを有する。 The magnet fixing surface 22a has a planar shape extending in a direction perpendicular to the radial direction. The magnet fixing surface 22a may be a curved surface. The magnet fixing surface 22 a extends in the axial direction on the radially outer surface of the rotor core 22. The magnet fixing surface 22 a is disposed on the radially outer side surface of the rotor core 22 over the entire axial direction. In the example of this embodiment, the length dimension in the axial direction of the magnet fixing surface 22a is larger than the length dimension in the circumferential direction. The rotor core 22 of the present embodiment has eight magnet fixing surfaces 22a.
 複数のマグネット固定面22aには、それぞれマグネット23が固定される。すなわち、ロータコア22は、マグネット固定面22aにおいてマグネット23を保持する。マグネット23とマグネット固定面22aとは、樹脂部材などを介して間接的に固定されてもよい。また、ロータ20が、樹脂モールドされる場合には、樹脂によりマグネット23を径方向外側から覆うことで、マグネット23をマグネット固定面22aに固定してもよい。 A magnet 23 is fixed to each of the plurality of magnet fixing surfaces 22a. That is, the rotor core 22 holds the magnet 23 on the magnet fixing surface 22a. The magnet 23 and the magnet fixing surface 22a may be indirectly fixed via a resin member or the like. When the rotor 20 is resin-molded, the magnet 23 may be fixed to the magnet fixing surface 22a by covering the magnet 23 from the outside in the radial direction with resin.
 マグネット23は、永久磁石である。複数のマグネット23は、それぞれ異なるマグネット固定面22aに固定される。すなわち、マグネット23は、ロータコア22に固定される。複数のマグネット23は、径方向外側を向く磁極を周方向に沿って交互として、周方向に沿って並ぶ。 マグネット23は、軸方向に沿って一様な断面で延びる。マグネット23は、径方向外側を向く外側面23aと、径方向内側を向く内側面23bと、周方向を向く一対の周側面(端面)23cと、を有する。 The magnet 23 is a permanent magnet. The plurality of magnets 23 are fixed to different magnet fixing surfaces 22a. That is, the magnet 23 is fixed to the rotor core 22. The plurality of magnets 23 are arranged along the circumferential direction, with the magnetic poles facing outward in the radial direction being alternated along the circumferential direction. The magnet 23 extends with a uniform cross section along the axial direction. The magnet 23 has an outer surface 23a facing outward in the radial direction, an inner surface 23b facing inward in the radial direction, and a pair of peripheral side surfaces (end surfaces) 23c facing in the circumferential direction.
 外側面23aは、中心軸Jを中心とする円弧状に延びる。内側面23bは、径方向に垂直な方向に広がる平面である。内側面23bは、マグネット固定面22aと対向する。周側面23cは、内側面23bと直交する平面である。周側面23cは、内側面23bと外側面23aとを繋ぐ。周方向に隣り合うマグネット23の周側面23c同士は、周方向に対向する。 マグネット23は、マグネット固定面22aの軸方向全域を覆う。また、マグネット23は、周方向においてマグネット固定面22aの中央に配置される。 The outer surface 23a extends in an arc shape centered on the central axis J. The inner side surface 23b is a flat surface extending in a direction perpendicular to the radial direction. The inner side surface 23b faces the magnet fixing surface 22a. The peripheral side surface 23c is a plane orthogonal to the inner side surface 23b. The peripheral side surface 23c connects the inner side surface 23b and the outer side surface 23a. The circumferential side surfaces 23c of the magnets 23 adjacent to each other in the circumferential direction face each other in the circumferential direction. The magnet 23 covers the entire axial direction of the magnet fixing surface 22a. Moreover, the magnet 23 is arrange | positioned in the center of the magnet fixing surface 22a in the circumferential direction.
 図2に示すように、マグネット固定面22aには、周方向において、マグネット23が接触しない一対の露出部22aaが設けられる。一対の露出部22aaは、マグネット固定面22aの周方向の一対の端縁に沿ってそれぞれ軸方向に延びる。 ロータコア22は、上側凸条部(第1の凸条部)24と下側凸条部(第2の凸条部)25と、を有する。上側凸条部24および下側凸条部25は、磁性体から構成される。より具体的には、上側凸条部24および下側凸条部25は、強磁性体から構成される。本実施形態において、上側凸条部24および下側凸条部25は、ロータコア22の一部である。したがって、上側凸条部24および下側凸条部25は、ロータコア22を構成する電磁鋼板22A、22Bの一部として構成される。なお、上側凸条部24および下側凸条部25と、ロータコア22とは、別部材であってもよい As shown in FIG. 2, the magnet fixing surface 22a is provided with a pair of exposed portions 22aa that the magnet 23 does not contact in the circumferential direction. The pair of exposed portions 22aa extends in the axial direction along a pair of circumferential edges of the magnet fixing surface 22a. The rotor core 22 has an upper ridge (first ridge) 24 and a lower ridge (second ridge) 25. The upper ridge 24 and the lower ridge 25 are made of a magnetic material. More specifically, the upper ridge portion 24 and the lower ridge portion 25 are made of a ferromagnetic material. In the present embodiment, the upper ridge portion 24 and the lower ridge portion 25 are part of the rotor core 22. Therefore, the upper ridge portion 24 and the lower ridge portion 25 are configured as part of the electromagnetic steel plates 22 </ b> A and 22 </ b> B constituting the rotor core 22. The upper and lower ridges 24 and 25 and the rotor core 22 may be separate members.
 上側凸条部24は、複数のマグネット固定面22aのうち少なくとも1つのマグネット固定面22aに設けられる。同様に、下側凸条部25は、複数のマグネット固定面22aのうち少なくとも1つのマグネット固定面22aに設けられる。 本実施形態において、上側凸条部24と下側凸条部25とは、互いに異なるマグネット固定面22aに設けられている。また、上側凸条部24が設けられるマグネット固定面22aと下側凸条部25が設けられるマグネット固定面22aとは、周方向に隣接する。なお、上側凸条部24と下側凸条部25とは、同じマグネット固定面22aに設けられていてもよい。 The upper ridge portion 24 is provided on at least one magnet fixing surface 22a among the plurality of magnet fixing surfaces 22a. Similarly, the lower ridge portion 25 is provided on at least one magnet fixing surface 22a among the plurality of magnet fixing surfaces 22a. In the present embodiment, the upper ridge portion 24 and the lower ridge portion 25 are provided on different magnet fixing surfaces 22a. Moreover, the magnet fixing surface 22a provided with the upper ridges 24 and the magnet fixing surface 22a provided with the lower ridges 25 are adjacent to each other in the circumferential direction. The upper ridge portion 24 and the lower ridge portion 25 may be provided on the same magnet fixing surface 22a.
 図3および図4に示すように、上側凸条部24および下側凸条部25は、それぞれロータコア22に4つずつ設けられる。図3に示すように、上側凸条部24が設けられるマグネット固定面22aは、周方向に沿って等間隔に配置される。図4に示すように、下側凸条部25が設けられるマグネット固定面22aは、周方向に沿って等間隔に配置される。上側凸条部24が設けられるマグネット固定面22aと、下側凸条部25が設けられるマグネット固定面22aとは、周方向に交互に並ぶ。 As shown in FIGS. 3 and 4, four upper ridges 24 and four lower ridges 25 are provided on the rotor core 22, respectively. As shown in FIG. 3, the magnet fixing surfaces 22a on which the upper ridges 24 are provided are arranged at equal intervals along the circumferential direction. As shown in FIG. 4, the magnet fixing surfaces 22a on which the lower ridges 25 are provided are arranged at equal intervals along the circumferential direction. The magnet fixing surface 22a provided with the upper ridges 24 and the magnet fixing surface 22a provided with the lower ridges 25 are alternately arranged in the circumferential direction.
 図2に示すように、上側凸条部24および下側凸条部25は、それぞれマグネット固定面22aの露出部22aaに位置する。上側凸条部24および下側凸条部25は、それぞれマグネット固定面22aから径方向外側に突出する。 上側凸条部24は、マグネット固定面22aの上端部(軸方向一方側の端部)から軸方向の中程まで軸方向に沿って延びる。一方で、下側凸条部25は、マグネット固定面22aの下端部(軸方向他方側の端部)から軸方向の中程まで軸方向に沿って延びる。 As shown in FIG. 2, the upper ridge portion 24 and the lower ridge portion 25 are respectively positioned on the exposed portion 22aa of the magnet fixing surface 22a. Each of the upper ridges 24 and the lower ridges 25 protrudes radially outward from the magnet fixing surface 22a. The upper ridge portion 24 extends along the axial direction from the upper end portion (end portion on one side in the axial direction) of the magnet fixing surface 22a to the middle in the axial direction. On the other hand, the lower ridge portion 25 extends along the axial direction from the lower end portion (end portion on the other side in the axial direction) of the magnet fixing surface 22a to the middle in the axial direction.
 上側凸条部24は、上側凸条部24が設けられるマグネット固定面22aに固定されるマグネット23の周方向一方側に位置する。上側凸条部24は、マグネット23の周方向一方側の周側面23cに接触する。一方で、下側凸条部25は、下側凸条部25が設けられるマグネット固定面22aに固定されるマグネット23の周方向他方側に位置する。下側凸条部25は、マグネット23の周方向他方側の周側面23cに接触する。 The upper ridge portion 24 is located on one side in the circumferential direction of the magnet 23 fixed to the magnet fixing surface 22a on which the upper ridge portion 24 is provided. The upper ridge portion 24 contacts the circumferential side surface 23 c on one side in the circumferential direction of the magnet 23. On the other hand, the lower ridge portion 25 is located on the other circumferential side of the magnet 23 fixed to the magnet fixing surface 22a on which the lower ridge portion 25 is provided. The lower ridge portion 25 contacts the circumferential side surface 23 c on the other circumferential side of the magnet 23.
 本実施形態において、上側凸条部24の軸方向に沿う長さ寸法と、下側凸条部25の軸方向に沿う長さ寸法と、は互いに一致する。また、上側凸条部24の下端部(軸方向他方側の端部)の軸方向位置と、下側凸条部25の上端部(軸方向一方側の端部)と、は互いに一致する。 In the present embodiment, the length dimension along the axial direction of the upper ridge portion 24 and the length dimension along the axial direction of the lower ridge portion 25 coincide with each other. The axial position of the lower end portion (end on the other side in the axial direction) of the upper ridge portion 24 and the upper end portion (end portion on the one side in the axial direction) of the lower ridge portion 25 coincide with each other.
 本実施形態において、ロータ20の上半分(軸方向一方側の半分)の領域を上側領域(第1領域)A1とし、ロータ20の下半分(軸方向他方側の半分)の領域を下側領域(第2領域)A2とする。ロータコア22は、上側領域A1において、上側凸条部24を有し、下側凸条部25を有さない。また、ロータコア22は、下側領域A2において、上側凸条部24を有さず、下側凸条部25を有する。 In the present embodiment, the upper half (half on one side in the axial direction) of the rotor 20 is the upper side area (first area) A1, and the lower half (half on the other side in the axial direction) of the rotor 20 is the lower side area. (Second area) A2. The rotor core 22 has an upper ridge portion 24 and no lower ridge portion 25 in the upper region A1. Further, the rotor core 22 does not have the upper ridge portion 24 but has the lower ridge portion 25 in the lower region A2.
 図5は、本実施形態のモータ10の、コギングトルクの波形を示すグラフである。図5では、ロータ20の上側領域A1のコギングトルクの波形と、下側領域A2のコギングトルクの波形と、これらを合成したコギングトルクの波形と、を示す。 上側領域A1のコギングトルクの波形と下側領域A2のコギングトルクの波形とを比較すると、これらは互いに逆位相となっている。すなわち、本実施形態によれば、マグネット23にスキューを掛けることなく、コギングトルクに逆位相を発生させることができる。本実施形態によれば、合成コギングトルクの波形において、上側領域A1のコギングトルクの波形と下側領域A2のコギングトルクの波形とが互いに打ち消し合い、コギングトルクの振動幅(合成コギングトルクの最大値と最小値との差)を小さく抑えることができる。 FIG. 5 is a graph showing a cogging torque waveform of the motor 10 of the present embodiment. FIG. 5 shows the waveform of the cogging torque in the upper region A1 of the rotor 20, the waveform of the cogging torque in the lower region A2, and the waveform of the cogging torque obtained by combining these. When comparing the waveform of the cogging torque in the upper region A1 with the waveform of the cogging torque in the lower region A2, they are in opposite phases. That is, according to the present embodiment, an antiphase can be generated in the cogging torque without skewing the magnet 23. According to this embodiment, in the waveform of the combined cogging torque, the waveform of the cogging torque in the upper region A1 and the waveform of the cogging torque in the lower region A2 cancel each other, and the vibration width of the cogging torque (the maximum value of the combined cogging torque). And the minimum value) can be kept small.
 上側領域A1のロータコア22のマグネット固定面22aには、磁性体からなる上側凸条部24が設けられる。上側凸条部24は、マグネット23の周方向一方側に位置する。このため、上側領域A1において、マグネット23の磁束は、上側凸条部24に引っ張られて周方向一方側に偏ると考えられる。 An upper ridge portion 24 made of a magnetic material is provided on the magnet fixing surface 22a of the rotor core 22 in the upper region A1. The upper ridge 24 is located on one side of the magnet 23 in the circumferential direction. For this reason, in the upper region A1, it is considered that the magnetic flux of the magnet 23 is pulled by the upper protrusion 24 and biased to one side in the circumferential direction.
 一方で、下側領域A2のロータコア22のマグネット固定面22aには、磁性体からなる下側凸条部25が設けられる。下側凸条部25は、マグネット23の周方向他方側に位置する。このため、下側領域A2において、マグネット23の磁束は、下側凸条部25に引っ張られて周方向他方側に偏ると考えられる。 結果的に、上側領域A1と下側領域A2とで、マグネット23から生じる磁束の中心が、周方向反対側に偏り、マグネット23をスキューさせた場合と同様の効果を得ることができる。すなわち、本実施形態によれば、マグネット23をスキューさせることなく、コギングトルクを低減することができるため、ロータ20の組み立て工程を簡素化できる。 On the other hand, on the magnet fixing surface 22a of the rotor core 22 in the lower region A2, a lower ridge portion 25 made of a magnetic material is provided. The lower ridge portion 25 is located on the other circumferential side of the magnet 23. For this reason, in the lower region A2, it is considered that the magnetic flux of the magnet 23 is pulled by the lower protrusion 25 and biased to the other side in the circumferential direction. As a result, in the upper region A1 and the lower region A2, the center of the magnetic flux generated from the magnet 23 is biased to the opposite side in the circumferential direction, and the same effect as when the magnet 23 is skewed can be obtained. That is, according to the present embodiment, since the cogging torque can be reduced without skewing the magnet 23, the assembly process of the rotor 20 can be simplified.
 図2に示すように、本実施形態によれば、上側凸条部24は、マグネット23の周方向一方側の周側面23cに接触する。同様に、下側凸条部25は、マグネット23の周方向他方側の周側面23cに接触する。これにより、上側凸条部24および下側凸条部25によるマグネット23の磁束を周方向一方側又は他方側に偏らせる効果を高めることができる。 本実施形態によれば、上側凸条部24が設けられるマグネット固定面22aと、下側凸条部25が設けられるマグネット固定面22aとが、周方向に隣接する。このため、周方向に隣り合うマグネット23の磁束の中心を、周方向の反対側に偏らせることができ、コギングトルク低減の効果を高めることができる。 As shown in FIG. 2, according to the present embodiment, the upper ridge portion 24 contacts the circumferential side surface 23 c on one side in the circumferential direction of the magnet 23. Similarly, the lower ridge portion 25 contacts the circumferential side surface 23 c on the other circumferential side of the magnet 23. Thereby, the effect which biases the magnetic flux of the magnet 23 by the upper side protruding item | line part 24 and the lower side protruding item | line part 25 to the circumferential direction one side or the other side can be heightened. According to this embodiment, the magnet fixing surface 22a on which the upper ridge portion 24 is provided and the magnet fixing surface 22a on which the lower ridge portion 25 is provided are adjacent to each other in the circumferential direction. For this reason, the center of the magnetic flux of the magnet 23 adjacent to the circumferential direction can be biased to the opposite side of the circumferential direction, and the effect of reducing the cogging torque can be enhanced.
 本実施形態によれば、上側凸条部24の軸方向に沿う長さ寸法と、下側凸条部25の軸方向に沿う長寸法とが、互いに一致する。すなわち、ロータ20の上側領域A1の軸方向に沿う長さ寸法と、下側領域A2の軸方向に沿う長さ寸法とが、互いに一致する。このため、上側領域A1のコギングトルクの絶対値と、下側領域A2のコギングトルクの絶対値と、を互いに略一致させることができる。これにより、上側領域A1のコギングトルクと下側領域A2のコギングトルクとが、互いに打ち消し合い、合成コギングトルクが効果的に低減される。 According to the present embodiment, the length dimension along the axial direction of the upper ridge portion 24 and the length dimension along the axial direction of the lower ridge portion 25 coincide with each other. In other words, the length dimension along the axial direction of the upper region A1 of the rotor 20 and the length dimension along the axial direction of the lower region A2 are the same. For this reason, the absolute value of the cogging torque in the upper region A1 and the absolute value of the cogging torque in the lower region A2 can be substantially matched with each other. As a result, the cogging torque in the upper region A1 and the cogging torque in the lower region A2 cancel each other, and the combined cogging torque is effectively reduced.
 本実施形態によれば、上側凸条部24の数と、下側凸条部25の数とが、互いに一致する。このため、上側領域A1のコギングトルクの絶対値と、下側領域A2のコギングトルクの絶対値と、を互いに略一致させることができ、合成コギングトルクが効果的に低減される。 According to the present embodiment, the number of the upper ridge portions 24 and the number of the lower ridge portions 25 coincide with each other. For this reason, the absolute value of the cogging torque in the upper region A1 and the absolute value of the cogging torque in the lower region A2 can be substantially matched with each other, and the combined cogging torque is effectively reduced.
 図3に示すように、本実施形態によれば、上側凸条部24が設けられるマグネット固定面22aは、周方向に沿って等間隔に配置される。同様に、図4に示すように、下側凸条部25が設けられる前記マグネット固定面22aは、周方向に沿って等間隔に配置される。本実施形態によれば、上側凸条部24および下側凸条部25を周方向に沿ってバランスよく配置させることで、コギングトルクを効果的に低減できる。 As shown in FIG. 3, according to the present embodiment, the magnet fixing surfaces 22a on which the upper ridges 24 are provided are arranged at equal intervals along the circumferential direction. Similarly, as shown in FIG. 4, the magnet fixing surfaces 22a on which the lower ridges 25 are provided are arranged at equal intervals along the circumferential direction. According to this embodiment, the cogging torque can be effectively reduced by arranging the upper ridge portion 24 and the lower ridge portion 25 in a balanced manner along the circumferential direction.
 図1に示すように、本実施形態によれば、ロータコア22は、軸方向に沿って積層された複数の電磁鋼板22A、22Bから構成される。また、上側凸条部24および下側凸条部25は、電磁鋼板22A、22Bの一部である。上側領域A1においてロータコア22は、第1の電磁鋼板22Aを積層して構成される。また、下側領域A2においてロータコア22は、第2の電磁鋼板22Bを積層して構成される。第1の電磁鋼板22Aは、上側凸条部24を含む。第2の電磁鋼板22Bは、下側凸条部25を含む。 図2に示すように、本実施形態によれば、上側凸条部24の下端部の軸方向位置と、下側凸条部25の上端部の軸方向位置とが、互いに一致する。したがって、ロータコア22は、2種類の電磁鋼板(第1の電磁鋼板22Aおよび第2の電磁鋼板22B)のみを用いて構成される。さらに、第1の電磁鋼板22Aと第2の電磁鋼板22Bとは、互いに表裏対象形状である。このため、第2の電磁鋼板22Bとして、第1の電磁鋼板22Aを表裏反転させて用いることができる。すなわち、本実施形態のロータコア22は、プレス加工した1種類の電磁鋼板から構成することができる。本実施形態によれば、ロータコア22を構成する部品の種類が増加することを抑制することができ、安価なロータ20およびモータ10を提供できる。 As shown in FIG. 1, according to the present embodiment, the rotor core 22 is composed of a plurality of electromagnetic steel plates 22A and 22B stacked along the axial direction. Further, the upper ridge portion 24 and the lower ridge portion 25 are part of the electromagnetic steel plates 22A and 22B. In the upper region A1, the rotor core 22 is configured by laminating the first electromagnetic steel plates 22A. In the lower region A2, the rotor core 22 is configured by laminating the second electromagnetic steel plate 22B. The first electromagnetic steel plate 22 </ b> A includes an upper ridge portion 24. The second electromagnetic steel plate 22B includes a lower ridge portion 25. As shown in FIG. 2, according to this embodiment, the axial position of the lower end portion of the upper ridge portion 24 and the axial position of the upper end portion of the lower ridge portion 25 coincide with each other. Therefore, the rotor core 22 is configured using only two types of electromagnetic steel plates (the first electromagnetic steel plate 22A and the second electromagnetic steel plate 22B). Further, the first electromagnetic steel plate 22A and the second electromagnetic steel plate 22B are in the shape of the front and back surfaces. For this reason, 22 A of 1st electromagnetic steel plates can be reversed and used as the 2nd electromagnetic steel plate 22B. That is, the rotor core 22 of the present embodiment can be configured from one type of electromagnetic steel sheet that has been pressed. According to the present embodiment, it is possible to suppress an increase in the types of components constituting the rotor core 22 and to provide the inexpensive rotor 20 and motor 10.
 (変形例1)
 次に、上述のモータ10に採用可能な変形例1のロータ120について、図6および図7を基に説明する。 図6は、本変形例のロータ120の断面図であり、上述の実施形態の図3に対応する。図7は、本変形例のロータ120の断面図であり、上述の実施形態の図4に対応する。なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
(Modification 1)
Next, the rotor 120 of the modification 1 employable for the above-described motor 10 will be described with reference to FIGS. 6 and 7. FIG. 6 is a cross-sectional view of the rotor 120 of this modification, and corresponds to FIG. 3 of the above-described embodiment. FIG. 7 is a cross-sectional view of the rotor 120 of this modification, and corresponds to FIG. 4 of the above-described embodiment. In addition, about the component of the same aspect as the above-mentioned embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 本変形例のロータ120は、上述の実施形態と比較して、ロータコア122の全てのマグネット固定面22aに、上側凸条部24および下側凸条部25が設けられる点が主に異なる。本変形例によれば、全てのマグネット23にスキューを行った場合と同様の効果を得ることができ、コギングトルクの低減の効果を更に高めることができる。 The rotor 120 of this modification is mainly different from the above-described embodiment in that the upper ridge portions 24 and the lower ridge portions 25 are provided on all the magnet fixing surfaces 22a of the rotor core 122. According to this modification, the same effect as when all the magnets 23 are skewed can be obtained, and the effect of reducing the cogging torque can be further enhanced.
 (変形例2)
 次に、上述のモータ10に採用可能な変形例2のロータ220について、図8および図9を基に説明する。 図8は、本変形例のロータ220の部分斜視図である。 本変形例において、ロータコア222は、上側凸条部(第1の凸条部)224と下側凸条部(第2の凸条部)225と、を有する。上側凸条部224および下側凸条部225は、磁性体から構成される。
(Modification 2)
Next, a rotor 220 according to a second modification that can be employed in the motor 10 described above will be described with reference to FIGS. 8 and 9. FIG. 8 is a partial perspective view of the rotor 220 of this modification. In this modification, the rotor core 222 includes an upper ridge (first ridge) 224 and a lower ridge (second ridge) 225. The upper ridge portion 224 and the lower ridge portion 225 are made of a magnetic material.
 上述の実施形態と同様に、本変形例の上側凸条部224と下側凸条部225とは、互いに異なるマグネット固定面22aに設けられている。また、上側凸条部224が設けられるマグネット固定面22aと下側凸条部225が設けられるマグネット固定面22aとは、周方向に隣接する。上側凸条部224が設けられるマグネット固定面22aは、周方向に沿って等間隔に配置される。下側凸条部225が設けられるマグネット固定面22aは、周方向に沿って等間隔に配置される。上側凸条部224が設けられるマグネット固定面22aと、下側凸条部225が設けられるマグネット固定面22aとは、周方向に交互に並ぶ。 Similarly to the above-described embodiment, the upper ridge portion 224 and the lower ridge portion 225 of the present modification are provided on different magnet fixing surfaces 22a. Further, the magnet fixing surface 22a provided with the upper ridge portion 224 and the magnet fixing surface 22a provided with the lower ridge portion 225 are adjacent to each other in the circumferential direction. The magnet fixing surfaces 22a on which the upper ridges 224 are provided are arranged at equal intervals along the circumferential direction. The magnet fixing surfaces 22a on which the lower ridges 225 are provided are arranged at equal intervals along the circumferential direction. The magnet fixing surface 22a provided with the upper ridges 224 and the magnet fixing surface 22a provided with the lower ridges 225 are alternately arranged in the circumferential direction.
 上側凸条部224および下側凸条部225は、それぞれマグネット固定面22aから径方向外側に突出する。上側凸条部224は、上側凸条部224が設けられるマグネット固定面22aに固定されるマグネット23の周方向一方側に位置する。下側凸条部225は、下側凸条部225が設けられるマグネット固定面22aに固定されるマグネット23の周方向他方側に位置する。 The upper ridge portion 224 and the lower ridge portion 225 protrude radially outward from the magnet fixing surface 22a. The upper ridge portion 224 is located on one side in the circumferential direction of the magnet 23 fixed to the magnet fixing surface 22a on which the upper ridge portion 224 is provided. The lower ridge portion 225 is located on the other circumferential side of the magnet 23 fixed to the magnet fixing surface 22a on which the lower ridge portion 225 is provided.
 上側凸条部224は、マグネット固定面22aの上端部から軸方向の中程まで軸方向に沿って延びる。一方で、下側凸条部225は、マグネット固定面22aの下端部から軸方向の中程まで軸方向に沿って延びる。 本変形例において、上側凸条部224の下端部(軸方向他方側の端部)の軸方向位置は、下側凸条部225の上端部(軸方向一方側の端部)の軸方向位置より、上側(軸方向一方側)に位置する。すなわち、上側凸条部224と下側凸条部225とは、軸方向に隙間を介して配置されている。 The upper ridge 224 extends along the axial direction from the upper end of the magnet fixing surface 22a to the middle in the axial direction. On the other hand, the lower protrusion 225 extends along the axial direction from the lower end of the magnet fixing surface 22a to the middle in the axial direction. In this modification, the axial position of the lower end portion (end on the other side in the axial direction) of the upper ridge portion 224 is the axial position of the upper end portion (end portion on the one side in the axial direction) of the lower ridge portion 225. Is located on the upper side (one side in the axial direction). That is, the upper ridge portion 224 and the lower ridge portion 225 are disposed with a gap in the axial direction.
 本変形例において、上側凸条部224の軸方向に沿う長さ寸法と、下側凸条部225の軸方向に沿う長さ寸法と、は互いに一致する。また、上側凸条部224の下端部(軸方向他方側の端部)と、下側凸条部225の上端部(軸方向一方側の端部)と、の軸方向に沿う距離は、上側凸条部224および下側凸条部225の軸方向に沿う長さ寸法と一致する。 In this modification, the length dimension along the axial direction of the upper ridge portion 224 and the length dimension along the axial direction of the lower ridge portion 225 coincide with each other. Further, the distance along the axial direction between the lower end portion (the end portion on the other side in the axial direction) of the upper ridge portion 224 and the upper end portion (end portion on the one side in the axial direction) of the lower ridge portion 225 is the upper side. It corresponds with the length dimension along the axial direction of the protruding line part 224 and the lower protruding line part 225.
 本変形例において、ロータ220を上下方向に3つに区画して、上側の領域を上側領域(第1領域)B1とし、下側の領域を下側領域(第2領域)B2とし、上側領域B1と下側領域B2とに挟まれる領域を中間領域(第3領域)B3とする。ロータコア222は、上側領域B1において、上側凸条部224を有し、下側凸条部225を有さない。また、ロータコア222は、下側領域B2において、上側凸条部224を有さず、下側凸条部225を有する。さらに、ロータコア222は、中間領域B3において、上側凸条部224および下側凸条部225を有さない。 In this modification, the rotor 220 is partitioned into three in the vertical direction, the upper region is the upper region (first region) B1, the lower region is the lower region (second region) B2, and the upper region is A region sandwiched between B1 and the lower region B2 is defined as an intermediate region (third region) B3. The rotor core 222 has an upper ridge 224 and no lower ridge 225 in the upper region B1. Further, the rotor core 222 does not have the upper ridge portion 224 but has the lower ridge portion 225 in the lower region B2. Furthermore, the rotor core 222 does not have the upper ridge portion 224 and the lower ridge portion 225 in the intermediate region B3.
 図9は、本変形例のロータ220を備えるモータ10の、コギングトルクの波形を示すグラフである。図9では、ロータ220の上側領域B1のコギングトルクの波形と、下側領域B2のコギングトルクの波形と、中間領域B3のコギングトルクの波形と、これらを合成したコギングトルクの波形と、を示す。 FIG. 9 is a graph showing the cogging torque waveform of the motor 10 including the rotor 220 of this modification. FIG. 9 shows the cogging torque waveform of the upper region B1 of the rotor 220, the cogging torque waveform of the lower region B2, the cogging torque waveform of the intermediate region B3, and the combined cogging torque waveform. .
 上側領域B1のコギングトルクの波形と下側領域B2のコギングトルクの波形とを比較すると、これらは互いに逆位相となっている。すなわち、本変形例によれば、マグネット23にスキューを掛けることなく、コギングトルクに逆位相を発生させることができる。このため、上側領域B1のコギングトルクの波形と下側領域B2のコギングトルクの波形とが、互いに打ち消し合い、コギングトルクの振動幅(合成コギングトルクの最大値と最小値との差)を小さく抑えることができる。 When comparing the waveform of the cogging torque in the upper region B1 and the waveform of the cogging torque in the lower region B2, these are in opposite phases. That is, according to this modification, an antiphase can be generated in the cogging torque without skewing the magnet 23. For this reason, the cogging torque waveform in the upper region B1 and the cogging torque waveform in the lower region B2 cancel each other, and the vibration width of the cogging torque (the difference between the maximum value and the minimum value of the combined cogging torque) is kept small. be able to.
 中間領域B3は、上側凸条部224および下側凸条部225が設けられない領域である。中間領域B3のコギングトルクの波形と、合成コギングトルクの波形を比較すると、中間領域B3のコギングトルクの絶対値が、合成コギングトルクの絶対値より若干大きくなっている。中間領域B3は、ロータコア222の全長の1/3の領域に設けられる。したがって、軸方向全長に亘って上側凸条部224および下側凸条部225が設けられないロータ220では、図9の中間領域B3のコギングトルクの3倍のコギングトルクが生じると推測される。このことから、上側領域B1および下側領域B2を設けることで、合成コギングトルクを低減できることが確認できる。 Intermediate region B3 is a region where the upper ridge portion 224 and the lower ridge portion 225 are not provided. When comparing the waveform of the cogging torque in the intermediate region B3 with the waveform of the combined cogging torque, the absolute value of the cogging torque in the intermediate region B3 is slightly larger than the absolute value of the combined cogging torque. The intermediate region B3 is provided in a region that is 1/3 of the entire length of the rotor core 222. Therefore, it is estimated that a cogging torque that is three times the cogging torque of the intermediate region B3 in FIG. 9 is generated in the rotor 220 in which the upper ridge 224 and the lower ridge 225 are not provided over the entire axial length. From this, it can be confirmed that the combined cogging torque can be reduced by providing the upper region B1 and the lower region B2.
 本変形例によれば、軸方向において上側凸条部224と下側凸条部225との間に、隙間が設けられる。また、上側凸条部224の軸方向寸法、下側凸条部225の軸方向寸法並びに、隙間の軸方向寸法が、互いに一致する。これにより、ロータ220には、軸方向寸法が互いに等しい上側領域B1、下側領域B2および中間領域B3が設けられる。結果的にマグネット23を3段にスキューさせた場合と同様の効果を得ることができ、コギングトルクを効果的に低減できる。 According to this modification, a gap is provided between the upper ridge 224 and the lower ridge 225 in the axial direction. In addition, the axial dimension of the upper ridge 224, the axial dimension of the lower ridge 225, and the axial dimension of the gap coincide with each other. As a result, the rotor 220 is provided with an upper region B1, a lower region B2, and an intermediate region B3 having the same axial dimension. As a result, the same effect as when the magnet 23 is skewed in three stages can be obtained, and the cogging torque can be effectively reduced.
 (電動パワーステアリング装置)
 次に、本実施形態(又は各変形例)のモータ10を搭載する装置の一例について説明する。本実施形態においては、モータ10を電動パワーステアリング装置100に搭載した例について説明する。
(Electric power steering device)
Next, an example of an apparatus in which the motor 10 of this embodiment (or each modification) is mounted will be described. In the present embodiment, an example in which the motor 10 is mounted on the electric power steering apparatus 100 will be described.
 図10に示すように、電動パワーステアリング装置100は、自動車の車輪112の操舵機構に搭載される。電動パワーステアリング装置100は、操舵力を油圧により軽減する装置である。本実施形態の電動パワーステアリング装置100は、モータ10と、操舵軸114と、オイルポンプ116と、コントロールバルブ117と、を備える。 As shown in FIG. 10, the electric power steering apparatus 100 is mounted on a steering mechanism of a vehicle wheel 112. The electric power steering apparatus 100 is an apparatus that reduces the steering force by hydraulic pressure. The electric power steering apparatus 100 of this embodiment includes a motor 10, a steering shaft 114, an oil pump 116, and a control valve 117.
 操舵軸114は、ステアリング111からの入力を、車輪112を有する車軸113に伝える。オイルポンプ116は、車軸113に油圧による駆動力を伝えるパワーシリンダ115に油圧を発生させる。コントロールバルブ117は、オイルポンプ116のオイルを制御する。電動パワーステアリング装置100において、モータ10は、オイルポンプ116の駆動源として搭載される。 The steering shaft 114 transmits the input from the steering 111 to the axle 113 having the wheels 112. The oil pump 116 generates hydraulic pressure in the power cylinder 115 that transmits driving force by hydraulic pressure to the axle 113. The control valve 117 controls the oil of the oil pump 116. In the electric power steering apparatus 100, the motor 10 is mounted as a drive source for the oil pump 116.
 本実施形態の電動パワーステアリング装置100は、本実施形態のモータ10を備える。このため、上述のモータ10と同様の効果を奏する電動パワーステアリング装置100が得られる。 The electric power steering apparatus 100 of this embodiment includes the motor 10 of this embodiment. For this reason, the electric power steering apparatus 100 which has an effect similar to the above-mentioned motor 10 is obtained.
 なお、本発明は前述の実施形態に限定されず、例えば下記に説明するように、本発明の趣旨を逸脱しない範囲において構成の変更等が可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and, for example, as described below, the configuration can be changed without departing from the spirit of the present invention.
 前述の実施形態では、モータ10が電動パワーステアリング装置100に搭載される一例を挙げたが、これに限らない。モータ10は、例えば、ポンプ、ブレーキ、クラッチ、掃除機、ドライヤ、シーリングファン、洗濯機および冷蔵庫などの多様な機器に用いることができる。 In the above-described embodiment, an example in which the motor 10 is mounted on the electric power steering apparatus 100 has been described, but this is not a limitation. The motor 10 can be used for various devices such as a pump, a brake, a clutch, a vacuum cleaner, a dryer, a ceiling fan, a washing machine, and a refrigerator.
 その他、本発明の趣旨から逸脱しない範囲において、前述の実施形態、変形例およびなお書き等で説明した各構成(構成要素)を組み合わせてもよく、また、構成の付加、省略、置換、その他の変更が可能である。また本発明は、前述した実施形態によって限定されず、特許請求の範囲によってのみ限定される。 In addition, in the range which does not deviate from the meaning of this invention, you may combine each structure (component) demonstrated by the above-mentioned embodiment, a modification, and a note, etc., addition of a structure, omission, substitution, others It can be changed. Further, the present invention is not limited by the above-described embodiments, but is limited only by the scope of the claims.

Claims (15)

  1.  中心軸に沿って延びるシャフトと、
     磁性体から構成され前記シャフトに固定されるロータコアと、
     前記ロータコアに固定される複数のマグネットと、を備え、
     前記ロータコアは、径方向外側を向き周方向に沿って並ぶ複数のマグネット固定面を有し、
     複数の前記マグネット固定面には、それぞれ前記マグネットが固定され、
     複数の前記マグネット固定面のうち少なくとも1つの前記マグネット固定面には、当該マグネット固定面に固定される前記マグネットの周方向一方側に位置し、当該マグネット固定面から径方向外側に突出する第1の凸条部が設けられ、
     複数の前記マグネット固定面のうち少なくとも1つの前記マグネット固定面には、当該マグネット固定面に固定される前記マグネットの周方向他方側に位置し、当該マグネット固定面から径方向外側に突出する第2の凸条部が設けられ、
     前記第1の凸条部は、前記マグネット固定面の軸方向一方側の端部から軸方向の中程まで軸方向に沿って延び、 前記第2の凸条部は、前記マグネット固定面の軸方向他方側の端部から軸方向の中程まで軸方向に沿って延び、
     前記第1の凸条部および前記第2の凸条部は、磁性体から構成される、ロータ。
    A shaft extending along the central axis;
    A rotor core made of a magnetic material and fixed to the shaft;
    A plurality of magnets fixed to the rotor core,
    The rotor core has a plurality of magnet fixing surfaces arranged along the circumferential direction facing the radially outer side,
    The magnet is fixed to each of the plurality of magnet fixing surfaces,
    At least one of the plurality of magnet fixing surfaces is positioned on one side in the circumferential direction of the magnet fixed to the magnet fixing surface, and protrudes radially outward from the magnet fixing surface. Ridges are provided,
    The at least one magnet fixing surface of the plurality of magnet fixing surfaces is located on the other circumferential side of the magnet fixed to the magnet fixing surface, and protrudes radially outward from the magnet fixing surface. Ridges are provided,
    The first ridge extends along the axial direction from one axial end of the magnet fixing surface to the middle of the axial direction, and the second ridge is an axis of the magnet fixing surface. Extending along the axial direction from the other end of the direction to the middle of the axial direction,
    The first ridge and the second ridge are rotors made of a magnetic material.
  2.  前記第1の凸条部が設けられる前記マグネット固定面と、前記第2の凸条部が設けられる前記マグネット固定面とが、周方向に隣接する、請求項1に記載のロータ。 The rotor according to claim 1, wherein the magnet fixing surface provided with the first ridges and the magnet fixing surface provided with the second ridges are adjacent in the circumferential direction.
  3.  前記第1の凸条部の数と、前記第2の凸条部の数とが、互いに一致する、請求項1又は2に記載のロータ。 The rotor according to claim 1 or 2, wherein the number of the first ridges and the number of the second ridges coincide with each other.
  4.  前記第1の凸条部が設けられる前記マグネット固定面は、周方向に沿って等間隔に配置され、
     前記第2の凸条部が設けられる前記マグネット固定面は、周方向に沿って等間隔に配置される、請求項1~3の何れか一項に記載のロータ。
    The magnet fixing surface provided with the first ridges is arranged at equal intervals along the circumferential direction,
    The rotor according to any one of claims 1 to 3, wherein the magnet fixing surfaces provided with the second ridges are arranged at equal intervals along a circumferential direction.
  5.  全ての前記マグネット固定面に、前記第1の凸条部および前記第2の凸条部が設けられる、請求項1~4の何れか一項に記載のロータ。 The rotor according to any one of claims 1 to 4, wherein the first protrusions and the second protrusions are provided on all the magnet fixing surfaces.
  6.  前記第1の凸条部の軸方向に沿う長さ寸法と、前記第2の凸条部の軸方向に沿う長さ寸法とが、互いに一致する、請求項1~5の何れか一項に記載のロータ。 The length dimension along the axial direction of the first ridge portion and the length dimension along the axial direction of the second ridge portion coincide with each other, according to any one of claims 1 to 5. The described rotor.
  7.  前記第1の凸条部の軸方向他方側の端部の軸方向位置と、前記第2の凸条部の軸方向一方側の端部とが、互いに一致する、請求項1~6の何れか一項に記載のロータ。 The axial position of the end on the other axial side of the first ridge and the end on the one axial side of the second ridge coincide with each other. The rotor according to claim 1.
  8.  前記第1の凸条部の軸方向他方側の端部の軸方向位置は、前記第2の凸条部の軸方向一方側の端部の軸方向位置より、軸方向一方側に位置する、請求項1~6の何れか一項に記載のロータ。 The axial position of the end on the other side in the axial direction of the first ridge is located on the one side in the axial direction from the axial position of the end on the one side in the axial direction of the second ridge. The rotor according to any one of claims 1 to 6.
  9.  前記第1の凸条部の軸方向他方側の端部と、前記第2の凸条部の軸方向一方側の端部と、の軸方向に沿う距離は、前記第1の凸条部および前記第2の凸条部の軸方向に沿う長さ寸法と一致する、請求項8に記載のロータ。 The distance along the axial direction between the end on the other axial side of the first ridge and the end on the one axial side of the second ridge is the distance between the first ridge and the first ridge The rotor according to claim 8, which coincides with a length dimension along the axial direction of the second ridge portion.
  10.  前記第1の凸条部は、前記マグネットの周方向一方側の端面に接触し、
     前記第2の凸条部は、前記マグネットの周方向他方側の端面に接触する、請求項1~9の何れか一項に記載のロータ。
    The first protrusion is in contact with an end surface on one circumferential side of the magnet,
    The rotor according to any one of claims 1 to 9, wherein the second ridge portion is in contact with an end surface on the other circumferential side of the magnet.
  11.  前記ロータコアは、軸方向に沿って積層された複数の電磁鋼板から構成され、
     前記第1の凸条部および前記第2の凸条部は、前記電磁鋼板の一部である、請求項1~10の何れか一項に記載のロータ。
    The rotor core is composed of a plurality of electromagnetic steel plates laminated along the axial direction,
    The rotor according to any one of claims 1 to 10, wherein the first and second ridges are part of the electromagnetic steel sheet.
  12.  前記ロータコアには、軸方向に沿って貫通し周方向に沿って並ぶ複数の孔部が設けられる、請求項1~11の何れか一項に記載のロータ。 The rotor according to any one of claims 1 to 11, wherein the rotor core is provided with a plurality of holes penetrating along the axial direction and arranged along the circumferential direction.
  13.  前記ロータコアには、周方向に沿って互いに隣り合う前記マグネット固定面同士の間に位置し軸方向に沿って延びる複数の溝部が設けられ、
     前記溝部は、
     前記溝部は、径方向外側に開口し径方向外側に向かうにつれて溝幅が小さくなる、請求項1~12の何れか一項に記載のロータ。
    The rotor core is provided with a plurality of grooves extending between the magnet fixing surfaces adjacent to each other along the circumferential direction and extending along the axial direction,
    The groove is
    The rotor according to any one of claims 1 to 12, wherein the groove portion opens radially outward and the groove width decreases toward the radially outer side.
  14.  請求項1~13の何れか一項に記載のロータと、
     前記ロータと径方向に隙間をあけて対向するステータと、を備える、モータ。
    A rotor according to any one of claims 1 to 13;
    And a stator facing the rotor with a gap in the radial direction.
  15.  請求項14に記載のモータを備える、電動パワーステアリング装置。 An electric power steering apparatus comprising the motor according to claim 14.
PCT/JP2019/013646 2018-03-30 2019-03-28 Rotor, motor, and electric power steering device WO2019189599A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020510992A JPWO2019189599A1 (en) 2018-03-30 2019-03-28 Rotor, motor and electric power steering device
CN201980022220.5A CN111903039A (en) 2018-03-30 2019-03-28 Rotor, motor, and electric power steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-069779 2018-03-30
JP2018069779 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189599A1 true WO2019189599A1 (en) 2019-10-03

Family

ID=68060150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013646 WO2019189599A1 (en) 2018-03-30 2019-03-28 Rotor, motor, and electric power steering device

Country Status (3)

Country Link
JP (1) JPWO2019189599A1 (en)
CN (1) CN111903039A (en)
WO (1) WO2019189599A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472107A (en) * 2020-03-31 2021-10-01 日本电产株式会社 Motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096925A (en) * 2002-09-02 2004-03-25 Fuji Heavy Ind Ltd Rotor structure of permanent magnet type synchronous motor
JP2015039272A (en) * 2013-08-19 2015-02-26 ファナック株式会社 Motor for reducing cogging torque
WO2015059768A1 (en) * 2013-10-22 2015-04-30 三菱電機株式会社 Rotor for rotary electric machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322446A (en) * 1996-05-31 1997-12-12 Shibaura Eng Works Co Ltd Brushless motor
JP2004023864A (en) * 2002-06-14 2004-01-22 Meidensha Corp Rotor of permanent magnet rotary electric machine
JP2005160131A (en) * 2003-11-20 2005-06-16 Matsushita Electric Ind Co Ltd Rotating motor
JP5025258B2 (en) * 2006-12-27 2012-09-12 本田技研工業株式会社 Rotating electrical machine rotor
JP2010119192A (en) * 2008-11-12 2010-05-27 Yaskawa Electric Corp Permanent-magnet motor
JP5269032B2 (en) * 2010-10-12 2013-08-21 三菱電機株式会社 Synchronous motor rotor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096925A (en) * 2002-09-02 2004-03-25 Fuji Heavy Ind Ltd Rotor structure of permanent magnet type synchronous motor
JP2015039272A (en) * 2013-08-19 2015-02-26 ファナック株式会社 Motor for reducing cogging torque
WO2015059768A1 (en) * 2013-10-22 2015-04-30 三菱電機株式会社 Rotor for rotary electric machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472107A (en) * 2020-03-31 2021-10-01 日本电产株式会社 Motor
CN113472107B (en) * 2020-03-31 2024-04-05 日本电产株式会社 Motor

Also Published As

Publication number Publication date
CN111903039A (en) 2020-11-06
JPWO2019189599A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
JP7131564B2 (en) Rotors, motors and electric power steering devices
JP6640621B2 (en) Motor rotor and brushless motor
US11303172B2 (en) Rotor for rotating electrical machine and rotor core support structure for rotating electrical machine
JP2019126102A (en) Rotor and rotary electric machine
WO2019189599A1 (en) Rotor, motor, and electric power steering device
WO2017212575A1 (en) Permanent magnet motor
WO2019189313A1 (en) Rotor, motor, and electric power steering device
WO2019189728A1 (en) Rotor, motor, and electric power steering device
JP6857514B2 (en) Rotating machine stator
WO2019189729A1 (en) Rotor, motor, and electric power steering device
JP7363783B2 (en) rotor and motor
WO2018131402A1 (en) Permanent magnet embedded rotor and electric motor equipped with same
JP7131563B2 (en) Rotors, motors and electric power steering devices
CN113472168B (en) Motor
WO2019159631A1 (en) Rotor, motor, and electric power steering device
JP2021164262A (en) motor
WO2020004482A1 (en) Stator and motor
JP2021164263A (en) motor
JP2021164264A (en) motor
WO2019069547A1 (en) Rotor, motor, and electric power steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510992

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19777928

Country of ref document: EP

Kind code of ref document: A1