WO2019189313A1 - Rotor, motor, and electric power steering device - Google Patents

Rotor, motor, and electric power steering device Download PDF

Info

Publication number
WO2019189313A1
WO2019189313A1 PCT/JP2019/013098 JP2019013098W WO2019189313A1 WO 2019189313 A1 WO2019189313 A1 WO 2019189313A1 JP 2019013098 W JP2019013098 W JP 2019013098W WO 2019189313 A1 WO2019189313 A1 WO 2019189313A1
Authority
WO
WIPO (PCT)
Prior art keywords
recess
rotor
rotor core
circumferential direction
circumferential
Prior art date
Application number
PCT/JP2019/013098
Other languages
French (fr)
Japanese (ja)
Inventor
児玉 光生
明 一円
秀幸 金城
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2020509165A priority Critical patent/JP7275436B2/en
Priority to CN201980022271.8A priority patent/CN111919361B/en
Publication of WO2019189313A1 publication Critical patent/WO2019189313A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a rotor, a motor, and an electric power steering device.
  • a configuration is known in which the rotor is skewed for the purpose of reducing the cogging torque.
  • International Publication No. 2011/114574 describes a configuration in which a continuous skew is applied to a ring magnet of a rotor.
  • a step skew may be applied to the rotor by dividing the magnet in the axial direction and shifting the magnetic pole in the circumferential direction.
  • it is necessary to shift the plurality of magnets in the circumferential direction which may be troublesome.
  • labor for manufacturing the rotor increases.
  • an object of the present invention is to provide a rotor having a structure capable of reducing cogging torque and suppressing an increase in manufacturing effort. Another object is to provide a motor including such a rotor. Another object is to provide an electric power steering apparatus including such a motor.
  • One aspect of the rotor of the present invention includes a shaft having a central axis, a rotor core fixed to the shaft, and a magnet portion provided on a radially outer surface of the rotor core.
  • the rotor core has a plurality of recesses that are recessed radially inward from the radially outer surface of the rotor core and that face the magnet portion in the radial direction.
  • the plurality of recesses include, as the recesses, a first recess and a second recess that are arranged so as to be shifted in the circumferential direction at different positions in the axial direction.
  • One aspect of the motor of the present invention includes the above-described rotor and a stator facing the rotor with a gap in the radial direction.
  • One aspect of the electric power steering apparatus of the present invention includes the motor described above.
  • the cogging torque in the rotor can be reduced, and an increase in labor for manufacturing the rotor can be suppressed. Further, since the cogging torque in the rotor is reduced, vibration and noise of the motor and the electric power steering device can be suppressed.
  • FIG. 1 is a cross-sectional view showing the motor of the first embodiment.
  • FIG. 2 is a perspective view showing a part of the rotor core of the first embodiment.
  • FIG. 3 is a view showing a part of the rotor according to the first embodiment, and is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 4 is a graph showing an example of a cogging torque waveform in the motor of the first embodiment.
  • FIG. 5 is a perspective view showing a part of a rotor core that is a modification of the first embodiment.
  • FIG. 6 is a perspective view showing a part of the rotor core of the second embodiment.
  • FIG. 7 is a cross-sectional view showing a part of the rotor of the second embodiment.
  • FIG. 1 is a cross-sectional view showing the motor of the first embodiment.
  • FIG. 2 is a perspective view showing a part of the rotor core of the first embodiment.
  • FIG. 3 is a view
  • FIG. 8 is a graph showing an example of a cogging torque waveform in the motor of the second embodiment.
  • FIG. 9 is a graph showing an example of a motor torque waveform in the motor of the second embodiment.
  • FIG. 10 is a schematic diagram showing a schematic configuration of the electric power steering apparatus of the present embodiment.
  • the Z-axis direction shown in each figure as appropriate is the vertical direction with the positive side on the top and the negative side on the bottom.
  • a central axis J shown as appropriate in each drawing is an imaginary line extending in a direction parallel to the vertical direction.
  • the axial direction of the central axis J that is, the direction parallel to the vertical direction
  • the radial direction around the central axis J is simply referred to as “radial direction”.
  • the circumferential direction centered on is simply referred to as the “circumferential direction”.
  • the circumferential direction is appropriately indicated by an arrow ⁇ .
  • the side that proceeds counterclockwise when viewed from the upper side to the lower side in the circumferential direction, that is, the side that proceeds in the direction of the arrow ⁇ is called “one side in the circumferential direction”.
  • the side proceeding clockwise when viewed from the upper side to the lower side in the circumferential direction, that is, the side proceeding in the direction opposite to the direction of the arrow ⁇ is referred to as “the other side in the circumferential direction”.
  • the upper side corresponds to one side in the axial direction.
  • the vertical direction, the upper side, and the lower side are simply names for explaining the relative positional relationship of each part, and the actual layout relationship is a layout relationship other than the layout relationship indicated by these names. May be.
  • the motor 10 of the present embodiment includes a rotor 20, a stator 30, a housing 11, a plurality of bearings 15 and 16, and a bearing holder 40.
  • the rotor 20 includes a shaft 21 having a central axis J, a rotor core 22, and a plurality of magnet portions 23.
  • the shaft 21 extends in the vertical direction along the central axis J.
  • the shaft 21 has a cylindrical shape extending in the axial direction.
  • the shaft 21 is supported by a plurality of bearings 15 and 16 so as to be rotatable around the central axis J.
  • the plurality of bearings 15, 16 are arranged at intervals in the axial direction and are supported by the housing 11.
  • the bearing 15 is held by the bearing holder 40 and supported by the housing 11 through the bearing holder 40.
  • the housing 11 is cylindrical.
  • the shaft 21 is fixed to the rotor core 22 by press-fitting or bonding. That is, the rotor core 22 is fixed to the shaft 21.
  • the shaft 21 may be fixed to the rotor core 22 via a resin member or the like. That is, the shaft 21 is fixed directly or indirectly to the rotor core 22.
  • the shaft 21 is not limited to the cylindrical shape, and may be a cylindrical shape, for example.
  • the rotor core 22 is a magnetic member.
  • the rotor core 22 is, for example, a laminated steel plate configured by laminating a plurality of electromagnetic steel plates in the axial direction.
  • the rotor core 22 is cylindrical. As shown in FIGS. 2 and 3, the rotor core 22 has a polygonal outer shape when viewed from the axial direction.
  • the radially outer surface of the rotor core 22 has a plurality of flat portions 22a arranged in the circumferential direction.
  • the outer shape of the rotor core 22 is an octagonal shape.
  • the outer surface in the radial direction of the rotor core 22 has eight flat portions 22a arranged in the circumferential direction.
  • the planar portion 22a has a planar shape extending in a direction perpendicular to the radial direction.
  • the flat portion 22 a extends in the axial direction on the radially outer surface of the rotor core 22.
  • the flat portion 22 a is disposed on the radially outer surface of the rotor core 22 over the entire axial direction.
  • the axial length of the planar portion 22a is larger than the circumferential length of the planar portion 22a.
  • the flat portion 22a has a rectangular shape when viewed from the outside in the radial direction.
  • the rotor core 22 has a through hole 22h, a hole 22b, and a groove 22c.
  • the through hole 22 h is disposed at the center of the rotor core 22.
  • the through hole 22h penetrates the rotor core 22 in the axial direction. As shown in FIG. 1, the shaft 21 is inserted into the through hole 22h.
  • the hole 22b penetrates the rotor core 22 in the axial direction.
  • a plurality of holes 22 b are arranged in the rotor core 22 at intervals in the circumferential direction.
  • the holes 22b are arranged in the rotor core 22 at equal intervals in the circumferential direction.
  • the plurality of hole portions 22b are respectively located on the inner side in the radial direction of each plane portion 22a.
  • the hole 22b has a circular shape. According to this embodiment, the rotor core 22 is thinned by the hole 22b, and the weight of the rotor core 22 and the material cost can be reduced.
  • the groove 22c is recessed from the radially outer surface of the rotor core 22 radially inward and extends in the axial direction.
  • the groove portion 22c is disposed on the radially outer surface of the rotor core 22 over the entire length in the axial direction.
  • the groove portion 22c is disposed between a pair of planar portions 22a adjacent to each other in the circumferential direction on the radially outer surface of the rotor core 22 and opens radially outward.
  • a plurality of the groove portions 22c are arranged in the rotor core 22 at intervals in the circumferential direction. Although illustration is omitted, the groove portions 22 c are arranged in the rotor core 22 at equal intervals in the circumferential direction.
  • the groove portion 22c has a groove width that decreases as it extends radially outward. When viewed from the axial direction, the groove 22c has a wedge shape.
  • the rotor core 22 further has a plurality of recesses 24.
  • the plurality of recesses 24 are recessed radially inward from the radially outer surface of the rotor core 22.
  • the plurality of recesses 24 are recessed radially inward from the planar portion 22a.
  • the plurality of recesses 24 face the magnet part 23 in the radial direction.
  • the plurality of recesses 24 include a first recess 24 a, a second recess 24 b, and a third recess 24 c as the recesses 24.
  • first recesses 24a, second recesses 24b, and third recesses 24c are provided along the circumferential direction.
  • the 1st recessed part 24a, the 2nd recessed part 24b, and the 3rd recessed part 24c are provided for every plane part 22a, respectively. That is, in the present embodiment, eight first recesses 24a, second recesses 24b, and third recesses 24c are provided.
  • the first recess 24a, the second recess 24b, and the third recess 24c have a rectangular shape when viewed from the outside in the radial direction.
  • 1st recessed part 24a, 2nd recessed part 24b, and 3rd recessed part 24c are mutually shifted
  • the 1st recessed part 24a is located in the edge part of the circumferential direction other side among the lower parts of the plane part 22a.
  • the first recess 24 a opens on the lower surface of the rotor core 22.
  • the second recess 24b is located above the first recess 24a and on one side in the circumferential direction from the first recess 24a.
  • the 2nd recessed part 24b is located in the center part of the circumferential direction among the center parts of the axial direction of the plane part 22a.
  • the end portion on the other circumferential side of the second recess 24b is located at substantially the same position in the circumferential direction as the end portion on the one circumferential side of the first recess 24a.
  • the lower end of the second recess 24b is located at substantially the same position in the axial direction as the upper end of the first recess 24a.
  • the third recess 24c is located on the upper side of the second recess 24b and on the one side in the circumferential direction of the second recess 24b.
  • the 3rd recessed part 24c is located in the edge part of the circumferential direction one side among the upper part of the plane part 22a.
  • the third recess 24 c opens on the upper surface of the rotor core 22.
  • the end portion on the other circumferential side of the third recess 24c is located at substantially the same position in the circumferential direction as the end portion on the one circumferential side of the second recess 24b.
  • the lower end of the third recess 24c is located at substantially the same position in the axial direction as the upper end of the second recess 24b.
  • the first concave portion 24a, the second concave portion 24b, and the third concave portion 24c are arranged along the diagonal line of the rectangular planar portion 22a in each planar portion 22a.
  • the 1st recessed part 24a and the 3rd recessed part 24c are arrange
  • the first concave portion 24a and the third concave portion 24c are arranged at positions that are point-symmetric about the second concave portion 24b.
  • the shape of the first recess 24a and the shape of the third recess 24c are the same.
  • the circumferential dimension of the second recess 24b is larger than the circumferential dimension of the first recess 24a and the circumferential dimension of the third recess 24c.
  • the axial dimension of the first recess 24a, the axial dimension of the second recess 24b, and the axial dimension of the third recess 24c are the same.
  • the interior of the first recess 24a, the interior of the second recess 24b, and the interior of the third recess 24c are separated from each other.
  • the concave portion 24 is filled with an adhesive 28.
  • the adhesive 28 contacts the bottom surface of the recess 24 and the radially inner side surface of the magnet portion 23 to fix the rotor core 22 and the magnet portion 23. Thereby, the fixing strength of the magnet part 23 with respect to the rotor core 22 can be improved.
  • a portion of the rotor core 22 that has the same axial position as the first recess 24a is referred to as a first portion 27a.
  • a portion of the rotor core 22 that has the same axial position as the second recess 24b is referred to as a second portion 27b.
  • a portion of the rotor core 22 having the same axial position as the third recess 24c is referred to as a third portion 27c.
  • the first portion 27a, the second portion 27b, and the third portion 27c are arranged in this order from the lower side to the upper side. Arranged side by side.
  • the first portion 27 a is a lower portion of the rotor core 22.
  • the second portion 27 b is a central portion in the axial direction of the rotor core 22.
  • the third portion 27 c is an upper portion of the rotor core 22.
  • the magnet part 23 is a permanent magnet, for example.
  • the magnet portion 23 has a columnar shape extending in the axial direction.
  • the cross-sectional shape orthogonal to the axial direction of the magnet part 23 is a substantially square shape long in the circumferential direction.
  • the radially inner surface of the magnet part 23 is a flat surface orthogonal to the radial direction.
  • the radially outer surface of the magnet part 23 is a curved surface that is convex outward in the radial direction when viewed from the axial direction.
  • the magnet part 23 is provided on the radially outer surface of the rotor core 22.
  • the magnet part 23 is provided for every plane part 22a. That is, in the present embodiment, for example, eight magnet portions 23 are provided. Although illustration is omitted, the plurality of magnet parts 23 are arranged at equal intervals over the entire circumference in the circumferential direction.
  • Each magnet portion 23 provided for each flat portion 22a is a single separate member.
  • Each of the magnet parts 23 is fixed such that the radially inner side surface is in contact with the flat part 22a.
  • the circumferential dimension on the radially inner side surface of the magnet part 23 is smaller than the circumferential dimension of the flat part 22a.
  • the axial dimension of the magnet part 23 is the same as the axial dimension of the plane part 22a.
  • Each magnet part 23 opposes the some recessed part 24 provided for every plane part 22a in radial direction.
  • each magnet part 23 opposes the 1st recessed part 24a, the 2nd recessed part 24b, and the 3rd recessed part 24c which were each provided in each plane part 22a in radial direction.
  • the radially inner side surface of the magnet part 23 closes the radially outer opening of each recess 24.
  • FIG. 4 is a graph showing an example of the waveform of the cogging torque CT in the motor 10 of the present embodiment.
  • the horizontal axis indicates the circumferential rotation angle ⁇
  • the vertical axis indicates the cogging torque CT. 4
  • the cogging torque CT1 generated in the first portion 27a, the cogging torque CT2 generated in the second portion 27b, the cogging torque CT3 generated in the third portion 27c, and the cogging torque CTta generated in the entire rotor 20 are shown.
  • the cogging torque CTta generated in the entire rotor 20 is a value obtained by adding the cogging torque CT1, the cogging torque CT2, and the cogging torque CT3.
  • the cogging torques CT1, CT2 and CT3 generated in each part are out of phase with each other. This is considered to be because the concave portions 24 that are shifted in the circumferential direction are provided in the respective portions. Specifically, in the first portion 27a, a first recess 24a is provided on the other circumferential side. Therefore, the circumferential center of the magnetic flux density distribution in the magnetic flux that exits radially outward from the magnet portion 23 or the magnetic flux that enters the magnet portion 23 from the radially outer side is shifted to one side in the circumferential direction from the circumferential center of the flat portion 22a. In the following description, “the magnetic flux density distribution in the magnetic flux that exits radially outward from the magnet portion 23 or the magnetic flux that enters the magnet portion 23 from the radially outer side” is simply referred to as “magnetic flux density distribution”.
  • a second recess 24b is provided at the center in the circumferential direction of the flat portion 22a. Therefore, the circumferential center of the magnetic flux density distribution coincides with the circumferential center of the flat portion 22a.
  • the 3rd recessed part 24c is provided in the circumferential direction one side. Therefore, the circumferential center of the magnetic flux density distribution is shifted to the other circumferential side from the circumferential center of the flat portion 22a.
  • the plurality of recesses 24 that are shifted from each other in the circumferential direction at different positions in the axial direction are provided on the radially outer surface of the rotor core 22, thereby generating the entire rotor 20.
  • the cogging torque CTta can be reduced. Therefore, there is no need to skew the rotor 20. Therefore, the cogging torque CTta generated in the entire rotor 20 can be reduced, and an increase in labor for manufacturing the rotor 20 can be suppressed.
  • the magnet part 23 and each recessed part 24 are provided for every plane part 22a. Therefore, the cogging torque CT can be reduced in each plane portion 22a, and the cogging torque CTta generated in the entire rotor 20 can be further reduced.
  • the magnet part 23 provided for every plane part 22a is a single member, respectively, and opposes the some recessed part 24 provided for every plane part 22a in radial direction. Therefore, the number of the magnet parts 23 can be reduced compared with the case where the magnet parts 23 are divided in the axial direction and skewed. Thereby, it can suppress that the number of parts of the rotor 20 increases, and can suppress further that the effort which manufactures the rotor 20 increases.
  • the cogging torque CT can be reduced by providing the recess 24, it is not necessary to divide the magnet part 23, and it is not necessary to make the magnet part 23 magnetized obliquely. Therefore, it is possible to easily manufacture the magnet part 23 and attach the magnet part 23 to the rotor core 22.
  • the first concave portion 24a, the second concave portion 24b, and the third concave portion 24c whose circumferential positions are sequentially shifted from the other circumferential side to the one circumferential side are provided as the concave portion 24. Therefore, the center in the circumferential direction of the magnetic flux density distribution can be gradually changed along the axial direction, and the cogging torque CTta can be more preferably reduced.
  • the magnetic flux density of the magnetic flux passing through the portions on both sides in the circumferential direction of the second concave portion 24b is larger than the magnetic flux density of the magnetic flux passing through the second concave portion 24b.
  • the part of the circumferential direction both sides of the 2nd recessed part 24b is connected with the part of the circumferential direction one side of the 1st recessed part 24a, and the part of the circumferential direction other side of the 3rd recessed part 24c, respectively.
  • the magnetic flux density passing through the portion on one side in the circumferential direction of the second recess 24b can easily bring the magnetic flux density distribution in the portion on one side in the circumferential direction of the first recess 24a toward the one side in the circumferential direction.
  • the magnetic flux density passing through the other circumferential portion of the second recess 24b tends to bring the magnetic flux density distribution in the other circumferential portion of the third recess 24c toward the other circumferential side.
  • the circumferential direction center of magnetic flux density distribution can be suitably shifted in the circumferential direction. Therefore, the phase of the cogging torque CT in each part can be suitably shifted, and the cogging torque CTta of the entire rotor 20 can be further reduced.
  • the first recess 24a and the third recess 24c are arranged at positions that are symmetric with respect to the second recess 24b. Therefore, it is easy to shift the circumferential center of the magnetic flux density distribution in the first portion 27a, the second portion 27b, and the third portion 27c at equal intervals in the circumferential direction. Thereby, cogging torque CTta can be reduced more suitably. It is easy to make the shape of the first portion 27a and the shape of the third portion 27c symmetrical to each other in the axial direction.
  • the first portion 27a and the third portion 27c can be made by inverting and using the same shape of the electromagnetic steel plates in the axial direction. Therefore, the cost for producing the rotor core 22 can be reduced.
  • the circumferential dimension of the second recess 24b is larger than the circumferential dimension of the first recess 24a and the circumferential dimension of the third recess 24c. Therefore, in the flat portion 22a of the second portion 27b, the portions on both sides in the circumferential direction of the second recess 24b can be arranged further apart in the circumferential direction. Thereby, the magnetic flux density distribution in the part of the circumferential direction one side of the 1st recessed part 24a can be more easily brought to the circumferential direction one side with the magnetic flux which passes through the part of the circumferential direction one side of the 2nd recessed part 24b.
  • the magnetic flux density passing through the other circumferential part of the second recess 24b makes it easier to bring the magnetic flux density distribution in the other circumferential part of the third recess 24c closer to the other circumferential side.
  • the circumferential direction center of magnetic flux density distribution can be shifted to the circumferential direction more suitably. Therefore, the cogging torque CTta of the entire rotor 20 can be further reduced.
  • the rotor 20 further includes a resin mold portion 26.
  • the resin mold part 26 covers at least a part of the rotor core 22 and at least a part of the magnet part 23.
  • the resin mold part 26 is located at least partially between the magnet parts 23 adjacent in the circumferential direction.
  • the resin mold part 26 is made by insert molding using the rotor core 22 and the magnet part 23 as insert members.
  • the resin mold part 26 has the anchor part 26a and the movement suppression part 26b.
  • the anchor part 26a is a part provided in each groove part 22c.
  • the anchor part 26a is made by filling the melted resin into the groove part 22c and solidifying it.
  • the anchor part 26a extends in the axial direction.
  • the circumferential width of the anchor portion 26a increases as it goes inward in the radial direction.
  • the movement restraining part 26b is located radially outside the anchor part 26a and is connected to the anchor part 26a.
  • the movement restraining part 26 b is disposed at the radially outer end of the resin mold part 26.
  • the movement suppressing part 26b protrudes toward both sides in the circumferential direction with respect to the anchor part 26a.
  • the movement restraining part 26b has a plate shape whose plate surface faces the radial direction.
  • the movement suppression unit 26b extends in the axial direction.
  • the movement suppressing part 26b is arranged on the outer side in the radial direction of the flat part 22a with a space between the flat part 22a. When viewed from the radial direction, the movement restraining portion 26b and the flat portion 22a are disposed so as to overlap each other.
  • the movement restraining part 26 b contacts the radially outer surface of the magnet part 23.
  • the wedge-shaped groove portion 22 c is provided on the radially outer surface of the rotor core 22.
  • the anchor part 26a can be hooked to the groove part 22c in the radial direction. Therefore, the resin mold portion 26 can be prevented from coming out radially outward with respect to the rotor core 22.
  • the magnet part 23 can be hold
  • the stator 30 has a stator core 31, an insulator 30Z, and a plurality of coils 30C.
  • the stator core 31 has an annular shape centered on the central axis J.
  • the stator core 31 surrounds the rotor 20 on the radially outer side of the rotor 20.
  • the stator core 31 faces the rotor 20 with a gap in the radial direction. That is, the stator 30 faces the rotor 20 with a gap in the radial direction.
  • the stator core 31 is, for example, a laminated steel plate configured by laminating a plurality of electromagnetic steel plates in the axial direction.
  • the stator core 31 has a substantially annular core back 31a and a plurality of teeth 31b.
  • the core back 31a has an annular shape centered on the central axis J.
  • the teeth 31b extend radially inward from the radially inner side surface of the core back 31a.
  • the outer peripheral surface of the core back 31 a is fixed to the inner peripheral surface of the peripheral wall portion of the housing 11.
  • the plurality of teeth 31b are arranged on the radially inner side surface of the core back 31a at intervals in the circumferential direction.
  • the plurality of teeth 31b are arranged at equal intervals in the circumferential direction.
  • the insulator 30Z is attached to the stator core 31.
  • Insulator 30Z has a part which covers teeth 31b.
  • the material of the insulator 30Z is an insulating material such as a resin.
  • the coil 30 ⁇ / b> C is attached to the stator core 31.
  • the plurality of coils 30C are attached to the stator core 31 via the insulator 30Z.
  • the plurality of coils 30 ⁇ / b> C are configured by winding a conductive wire around each tooth 31 b via the insulator 30 ⁇ / b> Z.
  • the shape of the first recess 124a and the shape of the third recess 124c are the same as the shape of the second recess 24b. That is, the shape of the plurality of recesses 124 is the same as each other. According to this configuration, the plurality of recesses 124 can be easily manufactured.
  • the recesses 124 that are displaced in the circumferential direction have the same circumferential position. A portion on one side in the circumferential direction of the first recess 124a and a portion on the other side in the circumferential direction of the second recess 24b overlap each other when viewed in the axial direction.
  • the interior of the first recess 124a and the interior of the second recess 24b are connected to each other.
  • the inside of the second recess 24b and the inside of the third recess 124c are connected to each other. According to this configuration, it is easy to increase the circumferential dimension of each recess 124. Therefore, it is easier to shift the circumferential center of the magnetic flux density distribution in the circumferential direction.
  • the rotor core 222 of this embodiment differs in the shape and arrangement
  • the rotor core 222 has a first portion 227a and a second portion 227b.
  • the first portion 227 a is a lower portion of the rotor core 222.
  • the second portion 227 b is an upper portion of the rotor core 222.
  • the second part 227b is located above the first part 227a.
  • the rotor core 222 includes only the first portion 227a and the second portion 227b.
  • the first portion 227a and the second portion 227b have the same shape and the same dimension in the axial direction, and are stacked with a 45 ° shift in the circumferential direction. Therefore, according to this embodiment, each of the 1st part 227a and the 2nd part 227b can be made by laminating
  • each planar portion 222a is configured by connecting the radially outer surface of the first portion 227a and the radially outer surface of the second portion 227b in the axial direction.
  • the length in the axial direction of the plane portion 222a is smaller than the length in the circumferential direction of the plane portion 222a.
  • each flat surface portion 222a is provided with only one of the first recess 224a and the second recess 224b.
  • the plurality of planar portions 222a include, as the planar portions 222a, a first planar portion 222d provided with the first recess 224a and a second planar portion 222e provided with the second recess 224b. .
  • the first flat surface portions 222d and the second flat surface portions 222e are provided alternately along the circumferential direction.
  • 1st recessed part 224a is provided in the radial direction outer surface of 1st part 227a among the 1st plane parts 222d.
  • the 2nd recessed part 224b is provided in the radial direction outer surface of the 2nd part 227b among the 2nd plane parts 222e.
  • a plurality of first recesses 224a are provided on the radially outer surface of the first portion 227a at intervals from one another along the circumferential direction.
  • a plurality of the second recesses 224b are provided on the radially outer surface of the second portion 227b at intervals from one another along the circumferential direction.
  • the first recesses 224a and the second recesses 224b are alternately provided along the circumferential direction when viewed from the axial direction. That is, when the plurality of recesses 224 are viewed from the axial direction, the recesses 224 adjacent to both sides in the circumferential direction of the first recesses 224a are the second recesses 224b, and the recesses 224 that engage with both sides in the circumferential direction of the second recesses 224b are the first One recess 224a.
  • Each of the 1st recessed part 224a and the 2nd recessed part 224b is a rectangular shape long in the circumferential direction seeing from the radial direction outer side.
  • the first recess 224a opens downward.
  • the 1st recessed part 224a is provided in the whole surface except the edge part of the circumferential direction both sides among the 1st plane parts 222d in the 1st part 227a.
  • the circumferential dimension of the first recess 224a is substantially the same as the circumferential dimension of the magnet part 23 provided on the first flat surface part 222d.
  • the dimension in the circumferential direction of the first recess 224a is slightly smaller than the dimension in the circumferential direction of the magnet part 23 provided on the first flat surface part 222d.
  • the dimension of the first recess 224a in the radial direction is uniform over the entire first recess 224a.
  • the second recess 224b opens upward.
  • the second recess 224 b is provided on the entire surface of the second flat portion 222 e in the second portion 227 b except for the edges on both sides in the circumferential direction.
  • the circumferential dimension of the second recess 224b is substantially the same as the circumferential dimension of the magnet part 23 provided on the second flat surface part 222e.
  • the dimension in the circumferential direction of the second recess 224b is slightly smaller than the dimension in the circumferential direction of the magnet part 23 provided on the second plane part 222e.
  • the dimension in the radial direction of the second recess 224b is uniform over the entire second recess 224b.
  • the circumferential dimension of the first recess 224a and the circumferential dimension of the second recess 224b are the same.
  • the radial dimension of the first recess 224a and the radial dimension of the second recess 224b are the same.
  • the axial dimension of the first recess 224a and the axial dimension of the second recess 224b are the same.
  • the upper end of the first recess 224a and the lower end of the second recess 224b are located at the same position in the axial direction.
  • the inside of the second recess 224b is a gap. Although illustration is omitted, the inside of the first recess 224a is also a gap.
  • FIG. 8 is a graph showing an example of the waveform of the cogging torque CT in the motor of the present embodiment.
  • the horizontal axis represents the circumferential rotation angle ⁇
  • the vertical axis represents the cogging torque CT.
  • FIG. 8 shows the cogging torque CT4 generated in the first portion 227a, the cogging torque CT5 generated in the second portion 227b, and the cogging torque CTtb generated in the entire rotor 220.
  • the cogging torque CTtb generated in the entire rotor 220 is a value obtained by adding the cogging torque CT4 and the cogging torque CT5.
  • FIG. 9 is a graph showing an example of a waveform of the motor torque MT in the motor of the present embodiment.
  • the horizontal axis indicates the circumferential rotation angle ⁇
  • the vertical axis indicates the motor torque MT.
  • FIG. 9 shows motor torque MT4 generated in the first portion 227a, motor torque MT5 generated in the second portion 227b, and motor torque MTt generated in the entire rotor 220.
  • Motor torque MTt generated in the entire rotor 220 corresponds to an average value of motor torque MT4 and motor torque MT5 for each rotation angle ⁇ .
  • the cogging torques CT4 and CT5 generated in each part are out of phase with each other. This is presumably because, as in the first embodiment, each portion is provided with a recess 224 that is shifted in the circumferential direction. As a result, the phases of the cogging torque CT generated in each portion are offset from each other and cancel each other, and the cogging torque CTtb generated in the entire rotor 220 can be reduced. Therefore, there is no need to skew the rotor 220. Therefore, the cogging torque CTtb generated in the entire rotor 220 can be reduced, and an increase in labor for manufacturing the rotor 220 can be suppressed.
  • the first recesses 224a and the second recesses 224b provided at mutually different axial positions are alternately provided along the circumferential direction when viewed from the axial direction. For this reason, the phase of the cogging torque CT4 and the phase of the cogging torque CT5 are likely to be opposite in phase by a half cycle. As a result, the cogging torque CT4 and the cogging torque CT5 are easily offset appropriately, and the cogging torque CTtb generated in the entire rotor 220 can be more suitably reduced.
  • the first flat surface portions 222d provided with the first concave portions 224a and the second flat surface portions 222e provided with the second concave portions 224b are alternately provided along the circumferential direction.
  • the first recess 224a is provided in the first flat portion 222d of the first portion 227a
  • the second recess 224b is provided in the second flat portion 222e of the second portion 227b. Therefore, in the 1st part 227a, the part in which the 1st recessed part 224a was provided, and the part in which the recessed part 224 is not provided are provided alternately along the circumferential direction.
  • the magnetic flux is less likely to pass through the first recess 224a than the rotor core 222, which is a magnetic member. Therefore, in the first flat portion 222d where the first concave portion 224a is provided in the first portion 227a, the gap between the magnet portion 23 and the stator 30 is larger than in the second flat portion 222e where the concave portion 224 is not provided in the first portion 227a. Less magnetic flux passes through. Thereby, in the 1st part 227a, the magnetic flux which passes between the magnet part 23 and the stator 30 increases / decreases for every plane part 222a and the magnet part 23 along the circumferential direction. Therefore, as shown in FIG. 9, the motor torque MT4 in the first portion 227a periodically increases and decreases according to the rotation angle ⁇ .
  • the portion where the second recess 224b is provided and the portion where the recess 224 is not provided are alternately provided along the circumferential direction.
  • the magnetic flux is less likely to pass through the second recess 224b than the rotor core 222, which is a magnetic member. Therefore, similarly to the motor torque MT4 of the first portion 227a described above, the motor torque MT5 of the second portion 227b also periodically increases or decreases according to the rotation angle ⁇ .
  • the first planar portions 222d and the second planar portions 222e are alternately provided along the circumferential direction, and the first concave portions 224a and the second concave portions 224b are alternately provided along the circumferential direction when viewed from the axial direction. It is done. Therefore, a portion where the magnetic flux between the magnet portion 23 and the stator 30 is reduced in the first portion 227a and a portion where the magnetic flux between the magnet portion 23 and the stator 30 is reduced in the second portion 227b are from the axial direction. As seen, they are provided alternately along the circumferential direction.
  • phase of motor torque MT4 and the phase of motor torque MT5 are shifted from each other by a half cycle and are likely to be opposite to each other, and the fluctuation range of motor torque MT4 and the fluctuation range of motor torque MT5 cancel each other. Therefore, the fluctuation range of the motor torque MTt of the entire rotor 220 can be reduced, and the torque ripple can be reduced.
  • the decrease in motor torque MT due to the provision of the recess 224 described above is that the radial distance between the magnet portion 23 and the stator 30 is substantially increased in the portion where the recess 224 is provided. Equivalent to. In other words, according to the present embodiment, the radial distance between the magnet part 23 and the stator 30 can be increased by appropriately providing the recess 224 without changing the radial distance between the magnet part 23 and the stator 30. An effect equivalent to the change can be obtained.
  • the first recess 224a is provided on the entire surface of the first flat portion 222d of the first portion 227a except for the edges on both sides in the circumferential direction. Therefore, in the first portion 227a, the circumferential dimension of the first recess 224a in the first plane portion 222d and the circumferential dimension of the second plane portion 222e where the recess 224 is not provided can be made substantially the same. Thereby, in the waveform of the motor torque MT4 of the first portion 227a, the cycle width in which the motor torque MT4 increases and the cycle width in which the motor torque MT4 decreases can be made substantially the same.
  • the second recess 224b is provided on the entire surface of the second portion 227b excluding the edges on both sides in the circumferential direction of the second flat portion 222e. Therefore, in the second portion 227b, the circumferential dimension of the second recess 224b in the second planar portion 222e and the circumferential dimension of the first planar portion 222d where the recess 224 is not provided can be made substantially the same. Thereby, in the waveform of the motor torque MT5 of the second portion 227b, the cycle width in which the motor torque MT5 increases and the cycle width in which the motor torque MT5 decreases can be made substantially the same. Therefore, when the waveform of the motor torque MT4 and the waveform of the motor torque MT5 are shifted by a half cycle, they are more likely to be in opposite phases, and the torque ripple can be reduced more suitably.
  • the period width in which the cogging torque CT has a positive value and the period width in which the cogging torque CT has a negative value can be made substantially the same. Therefore, when the waveform of the cogging torque CT4 and the waveform of the cogging torque CT5 are shifted by a half cycle, they are more likely to be in opposite phases, and the cogging torque CTtb can be more preferably reduced.
  • the first concave portion 224a is not provided at the edges on both sides in the circumferential direction of the first flat portion 222d in the first portion 227a. Therefore, the magnet part 23 provided in the 1st plane part 222d can be supported from the radial inside by the edge part of the circumferential direction both sides of the 1st recessed part 224a. Thereby, the magnet part 23 can be hold
  • the second concave portion 224b is not provided at the edges on both sides in the circumferential direction of the second flat portion 222e in the second portion 227b. Therefore, the magnet part 23 provided in the 2nd plane part 222e can be supported from the radial inside by the edge part of the circumferential direction both sides of the 2nd recessed part 224b. Thereby, the magnet part 23 can be hold
  • the first portion 227a and the second portion 227b have the same shape and the same dimension in the axial direction, and are stacked while being shifted in the circumferential direction.
  • the waveform and the amplitude of the cogging torque CT in each part are substantially the same.
  • the waveform of cogging torque CT4 and the waveform of cogging torque CT5 become an antiphase, and can reduce cogging torque CTtb more suitably.
  • the waveform of the motor torque MT in each part has substantially the same period and amplitude. As a result, the torque ripple can be reduced more suitably by the motor torque MT4 waveform and the motor torque MT5 waveform being in opposite phases.
  • the present invention is not limited to the above-described embodiment, and other configurations can be adopted.
  • the configuration of the recess is not particularly limited as long as at least one first recess and two second recesses are provided that are shifted in the circumferential direction at different positions in the axial direction.
  • the concave portions arranged at different positions in the axial direction need only be shifted from each other in the axial direction, and some axial positions may be the same.
  • the upper part of the first recesses 24a and 124a and the lower part of the second recess 24b may be located at the same position in the axial direction.
  • the upper part of the second recess 24b and the lower part of the third recesses 24c, 124c may be located at the same position in the axial direction.
  • the third recess 24c may not be provided.
  • the first recess may be provided on the other circumferential side, and the second recess may be provided on the one circumferential side.
  • the second recess 24b may not be provided, and only the first recess 24a and the third recess 24c may be provided.
  • the third recess 24c corresponds to the second recess.
  • a concave portion may not be provided in some of the flat portions. The number of the recessed portions provided for each plane portion may be different.
  • the shape of the plurality of recesses is not particularly limited.
  • the shape of the recess may be a circular shape or a polygonal shape other than a square shape.
  • the inside of the recess may be filled with a nonmagnetic member other than an adhesive or may be a gap.
  • the inside of the recesses 24 and 124 may be a gap.
  • the recess 224 may be filled with a nonmagnetic member such as an adhesive.
  • the rotor core may have any number of steps as long as the first recess and the second recess are provided.
  • the rotor cores 22 and 122 may have a two-stage configuration or a four-stage or more configuration.
  • the rotor core 222 may have three or more stages. In the case of the three-stage configuration in the second embodiment, for example, a portion where the first concave portion is provided in the first flat portion is stacked on the upper side of the second portion 227b, similarly to the first portion 227a.
  • a portion where the first concave portion is provided in the first flat portion on the upper side of the second portion 227b, and the same as the second portion 227b.
  • the portions where the second concave portions are provided in the second plane portion are alternately laminated.
  • the sum of the dimensions in the axial direction of the portion where the first concave portion is provided in the first plane portion and the axial direction of the portion where the second concave portion is provided in the second plane portion By making the sum of the dimensions the same, the cogging torque CT and the motor torque MT in each part can be suitably canceled out, and the cogging torque CT and the torque ripple can be suitably reduced.
  • the magnet part provided in each plane part may be divided into a plurality in the axial direction.
  • the shape of the rotor core is not particularly limited.
  • the rotor core may be cylindrical, for example.
  • the magnet part may be a cylindrical single member.
  • a plurality of recesses may be provided at positions facing each magnetic pole of the magnet unit in the radial direction.
  • the application of the motor of the above-described embodiment is not particularly limited.
  • the motor of the above-described embodiment can be used for various devices such as a pump, a brake, a clutch, a cleaner, a dryer, a ceiling fan, a washing machine, and a refrigerator.
  • a pump a brake
  • a clutch a cleaner
  • a dryer a dryer
  • a ceiling fan a washing machine
  • a refrigerator a refrigerator
  • the electric power steering device 1 is mounted on a steering mechanism of a vehicle wheel.
  • the electric power steering device 1 is a device that reduces the steering force by hydraulic pressure.
  • the electric power steering apparatus 1 of the present embodiment includes a motor 10, a steering shaft 314, an oil pump 316, and a control valve 317.
  • the steering shaft 314 transmits the input from the steering 311 to the axle 313 having the wheels 312.
  • the oil pump 316 generates hydraulic pressure in the power cylinder 315 that transmits the driving force by hydraulic pressure to the axle 313.
  • the control valve 317 controls the oil of the oil pump 316.
  • the motor 10 is mounted as a drive source for the oil pump 316.
  • the electric power steering apparatus 1 includes the motor 10 according to the present embodiment. For this reason, the electric power steering apparatus 1 which has an effect similar to the above-mentioned motor 10 is obtained.
  • the motor mounted on the electric power steering apparatus 1 may be a motor including the rotor core 122 illustrated in FIG. 5 or a motor including the rotor core 222 illustrated in FIG.

Abstract

In one embodiment of the rotor of the present invention, the rotor is provided with: a shaft having a center axis; a rotor core affixed to the shaft; and a magnet section provided on the radially outer surface of the rotor core. The rotor core has a plurality of recesses which are recessed radially inward from the radially outer surface of the rotor core and which radially face the magnet section. The plurality of recesses include a first recess and a second recess, which are arranged at different axial positions so as to be circumferentially offset from each other.

Description

ロータ、モータおよび電動パワーステアリング装置Rotor, motor and electric power steering device
 本発明は、ロータ、モータおよび電動パワーステアリング装置に関する。 The present invention relates to a rotor, a motor, and an electric power steering device.
 コギングトルクの低減を目的として、ロータにスキューを掛ける構成が知られる。例えば、国際公開第2011/114574号には、ロータのリング磁石に連続スキューが掛けられた構成が記載される。 A configuration is known in which the rotor is skewed for the purpose of reducing the cogging torque. For example, International Publication No. 2011/114574 describes a configuration in which a continuous skew is applied to a ring magnet of a rotor.
国際公開第2011/114574号International Publication No. 2011/114574
 しかし、上記のような連続スキューを掛ける場合、リング磁石の着磁を斜めにする必要があり、手間が掛かる場合があった。一方、国際公開第2011/114574号に記載される他の例のように、磁石を軸方向に分割して磁極を周方向にずらすことで、ロータに段スキューを掛けることも考えられる。しかし、この場合、複数の磁石を周方向にずらして取り付ける必要があり、手間が掛かる場合があった。以上のように、ロータにスキューを掛ける場合、ロータを製造する手間が増大する場合があった。 However, when the continuous skew as described above is applied, it is necessary to make the magnet of the ring magnet slanted, which may be troublesome. On the other hand, as in another example described in International Publication No. 2011/114574, a step skew may be applied to the rotor by dividing the magnet in the axial direction and shifting the magnetic pole in the circumferential direction. However, in this case, it is necessary to shift the plurality of magnets in the circumferential direction, which may be troublesome. As described above, when a skew is applied to the rotor, there is a case where labor for manufacturing the rotor increases.
 本発明は、上記事情に鑑みて、コギングトルクを低減でき、かつ、製造する手間が増大することを抑制できる構造を有するロータを提供することを目的の一つとする。また、そのようなロータを備えるモータを提供することを目的の一つとする。また、そのようなモータを備える電動パワーステアリング装置を提供することを目的の一つとする。 In view of the above circumstances, an object of the present invention is to provide a rotor having a structure capable of reducing cogging torque and suppressing an increase in manufacturing effort. Another object is to provide a motor including such a rotor. Another object is to provide an electric power steering apparatus including such a motor.
 本発明のロータの一つの態様は、中心軸を有するシャフトと、前記シャフトと固定されるロータコアと、前記ロータコアの径方向外側面に設けられるマグネット部と、を備える。前記ロータコアは、前記ロータコアの径方向外側面から径方向内側に窪み前記マグネット部と径方向に対向する複数の凹部を有する。前記複数の凹部は、前記凹部として、軸方向の異なる位置において互いに周方向にずれて配置される第1凹部および第2凹部を含む。 One aspect of the rotor of the present invention includes a shaft having a central axis, a rotor core fixed to the shaft, and a magnet portion provided on a radially outer surface of the rotor core. The rotor core has a plurality of recesses that are recessed radially inward from the radially outer surface of the rotor core and that face the magnet portion in the radial direction. The plurality of recesses include, as the recesses, a first recess and a second recess that are arranged so as to be shifted in the circumferential direction at different positions in the axial direction.
 本発明のモータの一つの態様は、上述のロータと、前記ロータと径方向に隙間をあけて対向するステータと、を備える。 One aspect of the motor of the present invention includes the above-described rotor and a stator facing the rotor with a gap in the radial direction.
 本発明の電動パワーステアリング装置の一つの態様は、上述のモータを備える。 One aspect of the electric power steering apparatus of the present invention includes the motor described above.
 本発明の一つの態様によれば、ロータにおけるコギングトルクを低減でき、かつ、ロータを製造する手間が増大することを抑制できる。また、ロータにおけるコギングトルクが低減されるため、モータおよび電動パワーステアリング装置の振動、騒音を抑制することができる。 According to one aspect of the present invention, the cogging torque in the rotor can be reduced, and an increase in labor for manufacturing the rotor can be suppressed. Further, since the cogging torque in the rotor is reduced, vibration and noise of the motor and the electric power steering device can be suppressed.
図1は、第1実施形態のモータを示す断面図である。FIG. 1 is a cross-sectional view showing the motor of the first embodiment. 図2は、第1実施形態のロータコアの一部を示す斜視図である。FIG. 2 is a perspective view showing a part of the rotor core of the first embodiment. 図3は、第1実施形態のロータの一部を示す図であって、図1におけるIII-III断面図である。FIG. 3 is a view showing a part of the rotor according to the first embodiment, and is a cross-sectional view taken along the line III-III in FIG. 図4は、第1実施形態のモータにおけるコギングトルクの波形の一例を示すグラフである。FIG. 4 is a graph showing an example of a cogging torque waveform in the motor of the first embodiment. 図5は、第1実施形態の変形例であるロータコアの一部を示す斜視図である。FIG. 5 is a perspective view showing a part of a rotor core that is a modification of the first embodiment. 図6は、第2実施形態のロータコアの一部を示す斜視図である。FIG. 6 is a perspective view showing a part of the rotor core of the second embodiment. 図7は、第2実施形態のロータの一部を示す断面図である。FIG. 7 is a cross-sectional view showing a part of the rotor of the second embodiment. 図8は、第2実施形態のモータにおけるコギングトルクの波形の一例を示すグラフである。FIG. 8 is a graph showing an example of a cogging torque waveform in the motor of the second embodiment. 図9は、第2実施形態のモータにおけるモータトルクの波形の一例を示すグラフである。FIG. 9 is a graph showing an example of a motor torque waveform in the motor of the second embodiment. 図10は、本実施形態の電動パワーステアリング装置の概略構成を示す模式図である。FIG. 10 is a schematic diagram showing a schematic configuration of the electric power steering apparatus of the present embodiment.
 各図に適宜示すZ軸方向は、正の側を上側とし、負の側を下側とする上下方向とする。また、各図に適宜示す中心軸Jは、上下方向と平行な方向に延びる仮想線である。以下の説明においては、中心軸Jの軸方向、すなわち上下方向と平行な方向を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向を単に「周方向」と呼ぶ。各図においては、適宜、周方向を矢印θで示す。 The Z-axis direction shown in each figure as appropriate is the vertical direction with the positive side on the top and the negative side on the bottom. A central axis J shown as appropriate in each drawing is an imaginary line extending in a direction parallel to the vertical direction. In the following description, the axial direction of the central axis J, that is, the direction parallel to the vertical direction is simply referred to as “axial direction”, and the radial direction around the central axis J is simply referred to as “radial direction”. The circumferential direction centered on is simply referred to as the “circumferential direction”. In each drawing, the circumferential direction is appropriately indicated by an arrow θ.
 周方向における上側から下側に向かって見て反時計回りに進む側、すなわち矢印θの向きに進む側を「周方向一方側」と呼ぶ。周方向における上側から下側に向かって見て時計回りに進む側、すなわち矢印θの向きと逆に進む側を「周方向他方側」と呼ぶ。本実施形態において、上側は、軸方向一方側に相当する。なお、上下方向、上側および下側とは、単に各部の相対位置関係を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。 The side that proceeds counterclockwise when viewed from the upper side to the lower side in the circumferential direction, that is, the side that proceeds in the direction of the arrow θ is called “one side in the circumferential direction”. The side proceeding clockwise when viewed from the upper side to the lower side in the circumferential direction, that is, the side proceeding in the direction opposite to the direction of the arrow θ is referred to as “the other side in the circumferential direction”. In the present embodiment, the upper side corresponds to one side in the axial direction. The vertical direction, the upper side, and the lower side are simply names for explaining the relative positional relationship of each part, and the actual layout relationship is a layout relationship other than the layout relationship indicated by these names. May be.
<第1実施形態>
 図1に示すように、本実施形態のモータ10は、ロータ20と、ステータ30と、ハウジング11と、複数のベアリング15,16と、ベアリングホルダ40と、を備える。ロータ20は、中心軸Jを有するシャフト21と、ロータコア22と、複数のマグネット部23と、を備える。
<First Embodiment>
As shown in FIG. 1, the motor 10 of the present embodiment includes a rotor 20, a stator 30, a housing 11, a plurality of bearings 15 and 16, and a bearing holder 40. The rotor 20 includes a shaft 21 having a central axis J, a rotor core 22, and a plurality of magnet portions 23.
 シャフト21は、中心軸Jに沿って上下方向に延びる。本実施形態の例では、シャフト21が、軸方向に延びる円柱状である。シャフト21は、複数のベアリング15,16により、中心軸J回りに回転自在に支持される。複数のベアリング15,16は、軸方向に互いに間隔をあけて配置され、ハウジング11に支持される。ベアリング15は、ベアリングホルダ40に保持され、ベアリングホルダ40を介してハウジング11に支持される。ハウジング11は、筒状である。 The shaft 21 extends in the vertical direction along the central axis J. In the example of the present embodiment, the shaft 21 has a cylindrical shape extending in the axial direction. The shaft 21 is supported by a plurality of bearings 15 and 16 so as to be rotatable around the central axis J. The plurality of bearings 15, 16 are arranged at intervals in the axial direction and are supported by the housing 11. The bearing 15 is held by the bearing holder 40 and supported by the housing 11 through the bearing holder 40. The housing 11 is cylindrical.
 シャフト21は、ロータコア22に対して、圧入または接着などによって固定される。つまりロータコア22は、シャフト21と固定される。なお、シャフト21は、ロータコア22に対して、樹脂部材などを介して固定されてもよい。すなわち、シャフト21は、ロータコア22と直接または間接的に固定される。シャフト21は、上記円柱状に限らず、例えば筒状でもよい。 The shaft 21 is fixed to the rotor core 22 by press-fitting or bonding. That is, the rotor core 22 is fixed to the shaft 21. The shaft 21 may be fixed to the rotor core 22 via a resin member or the like. That is, the shaft 21 is fixed directly or indirectly to the rotor core 22. The shaft 21 is not limited to the cylindrical shape, and may be a cylindrical shape, for example.
 ロータコア22は、磁性部材である。ロータコア22は、例えば、複数の電磁鋼板が軸方向に積層されて構成される積層鋼板である。ロータコア22は、筒状である。図2および図3に示すように、ロータコア22は、軸方向から見て、外形が多角形状である。ロータコア22の径方向外側面は、周方向に並ぶ複数の平面部22aを有する。図示は省略するが、本実施形態の例では、ロータコア22の外形が、8角形状である。ロータコア22の径方向外側面は、周方向に並ぶ8つの平面部22aを有する。平面部22aは、径方向に垂直な方向に広がる平面状である。平面部22aは、ロータコア22の径方向外側面において、軸方向に延びる。平面部22aは、ロータコア22の径方向外側面に、軸方向全長にわたって配置される。本実施形態の例では、平面部22aの軸方向の長さが、平面部22aの周方向の長さよりも大きい。平面部22aは、径方向外側から見て、矩形状である。 The rotor core 22 is a magnetic member. The rotor core 22 is, for example, a laminated steel plate configured by laminating a plurality of electromagnetic steel plates in the axial direction. The rotor core 22 is cylindrical. As shown in FIGS. 2 and 3, the rotor core 22 has a polygonal outer shape when viewed from the axial direction. The radially outer surface of the rotor core 22 has a plurality of flat portions 22a arranged in the circumferential direction. Although illustration is omitted, in the example of this embodiment, the outer shape of the rotor core 22 is an octagonal shape. The outer surface in the radial direction of the rotor core 22 has eight flat portions 22a arranged in the circumferential direction. The planar portion 22a has a planar shape extending in a direction perpendicular to the radial direction. The flat portion 22 a extends in the axial direction on the radially outer surface of the rotor core 22. The flat portion 22 a is disposed on the radially outer surface of the rotor core 22 over the entire axial direction. In the example of the present embodiment, the axial length of the planar portion 22a is larger than the circumferential length of the planar portion 22a. The flat portion 22a has a rectangular shape when viewed from the outside in the radial direction.
 ロータコア22は、貫通孔22hと、孔部22bと、溝部22cと、を有する。軸方向から見て、貫通孔22hは、ロータコア22の中心部に配置される。貫通孔22hは、ロータコア22を軸方向に貫通する。図1に示すように、貫通孔22hには、シャフト21が挿入される。 The rotor core 22 has a through hole 22h, a hole 22b, and a groove 22c. When viewed from the axial direction, the through hole 22 h is disposed at the center of the rotor core 22. The through hole 22h penetrates the rotor core 22 in the axial direction. As shown in FIG. 1, the shaft 21 is inserted into the through hole 22h.
 孔部22bは、ロータコア22を軸方向に貫通する。図2および図3に示すように、孔部22bは、ロータコア22に周方向に互いに間隔をあけて複数配置される。図示は省略するが、本実施形態の例では、孔部22bが、ロータコア22に周方向に等間隔に配列する。複数の孔部22bは、各平面部22aの径方向内側にそれぞれ位置する。軸方向から見て、孔部22bは、円形状である。本実施形態によれば、孔部22bによりロータコア22を肉抜きして、ロータコア22の軽量化および材料費削減を図ることができる。 The hole 22b penetrates the rotor core 22 in the axial direction. As shown in FIGS. 2 and 3, a plurality of holes 22 b are arranged in the rotor core 22 at intervals in the circumferential direction. Although illustration is omitted, in the example of this embodiment, the holes 22b are arranged in the rotor core 22 at equal intervals in the circumferential direction. The plurality of hole portions 22b are respectively located on the inner side in the radial direction of each plane portion 22a. When viewed from the axial direction, the hole 22b has a circular shape. According to this embodiment, the rotor core 22 is thinned by the hole 22b, and the weight of the rotor core 22 and the material cost can be reduced.
 溝部22cは、ロータコア22の径方向外側面から径方向内側に窪み、軸方向に延びる。溝部22cは、ロータコア22の径方向外側面に、軸方向全長にわたって配置される。溝部22cは、ロータコア22の径方向外側面において、周方向に隣り合う一対の平面部22a同士の間に配置され、径方向外側に開口する。溝部22cは、ロータコア22に周方向に互いに間隔をあけて複数配置される。図示は省略するが、溝部22cは、ロータコア22に周方向に等間隔に配列する。溝部22cは、径方向外側に向かうにしたがい溝幅が小さくなる。軸方向から見て、溝部22cは、くさび形状である。 The groove 22c is recessed from the radially outer surface of the rotor core 22 radially inward and extends in the axial direction. The groove portion 22c is disposed on the radially outer surface of the rotor core 22 over the entire length in the axial direction. The groove portion 22c is disposed between a pair of planar portions 22a adjacent to each other in the circumferential direction on the radially outer surface of the rotor core 22 and opens radially outward. A plurality of the groove portions 22c are arranged in the rotor core 22 at intervals in the circumferential direction. Although illustration is omitted, the groove portions 22 c are arranged in the rotor core 22 at equal intervals in the circumferential direction. The groove portion 22c has a groove width that decreases as it extends radially outward. When viewed from the axial direction, the groove 22c has a wedge shape.
 ロータコア22は、複数の凹部24をさらに有する。複数の凹部24は、ロータコア22の径方向外側面から径方向内側に窪む。本実施形態において複数の凹部24は、平面部22aから径方向内側に窪む。図3に示すように、複数の凹部24は、マグネット部23と径方向に対向する。本実施形態において複数の凹部24は、凹部24として、第1凹部24aと、第2凹部24bと、第3凹部24cと、を含む。 The rotor core 22 further has a plurality of recesses 24. The plurality of recesses 24 are recessed radially inward from the radially outer surface of the rotor core 22. In the present embodiment, the plurality of recesses 24 are recessed radially inward from the planar portion 22a. As shown in FIG. 3, the plurality of recesses 24 face the magnet part 23 in the radial direction. In the present embodiment, the plurality of recesses 24 include a first recess 24 a, a second recess 24 b, and a third recess 24 c as the recesses 24.
 図2に示すように、第1凹部24a、第2凹部24bおよび第3凹部24cは、それぞれ周方向に沿って複数ずつ設けられる。第1凹部24a、第2凹部24bおよび第3凹部24cは、それぞれ平面部22aごとに設けられる。すなわち、本実施形態では、第1凹部24a、第2凹部24bおよび第3凹部24cは、8つずつ設けられる。第1凹部24a、第2凹部24bおよび第3凹部24cは、径方向外側から見て、矩形状である。 As shown in FIG. 2, a plurality of first recesses 24a, second recesses 24b, and third recesses 24c are provided along the circumferential direction. The 1st recessed part 24a, the 2nd recessed part 24b, and the 3rd recessed part 24c are provided for every plane part 22a, respectively. That is, in the present embodiment, eight first recesses 24a, second recesses 24b, and third recesses 24c are provided. The first recess 24a, the second recess 24b, and the third recess 24c have a rectangular shape when viewed from the outside in the radial direction.
 第1凹部24a、第2凹部24bおよび第3凹部24cは、軸方向の異なる位置において互いに周方向にずれて配置される。第1凹部24aは、平面部22aの下側部分のうち周方向他方側の端部に位置する。第1凹部24aは、ロータコア22の下側の面に開口する。 1st recessed part 24a, 2nd recessed part 24b, and 3rd recessed part 24c are mutually shifted | deviated to the circumferential direction in the position where an axial direction differs. The 1st recessed part 24a is located in the edge part of the circumferential direction other side among the lower parts of the plane part 22a. The first recess 24 a opens on the lower surface of the rotor core 22.
 第2凹部24bは、第1凹部24aよりも上側で、かつ、第1凹部24aよりも周方向一方側に位置する。第2凹部24bは、平面部22aの軸方向の中央部分のうち周方向の中央部分に位置する。第2凹部24bの周方向他方側の端部は、第1凹部24aの周方向一方側の端部と周方向においてほぼ同じ位置に位置する。第2凹部24bの下側の端部は、第1凹部24aの上側の端部と軸方向においてほぼ同じ位置に位置する。 The second recess 24b is located above the first recess 24a and on one side in the circumferential direction from the first recess 24a. The 2nd recessed part 24b is located in the center part of the circumferential direction among the center parts of the axial direction of the plane part 22a. The end portion on the other circumferential side of the second recess 24b is located at substantially the same position in the circumferential direction as the end portion on the one circumferential side of the first recess 24a. The lower end of the second recess 24b is located at substantially the same position in the axial direction as the upper end of the first recess 24a.
 第3凹部24cは、第2凹部24bよりも上側で、かつ、第2凹部24bよりも周方向一方側に位置する。第3凹部24cは、平面部22aの上側部分のうち周方向一方側の端部に位置する。第3凹部24cは、ロータコア22の上側の面に開口する。第3凹部24cの周方向他方側の端部は、第2凹部24bの周方向一方側の端部と周方向においてほぼ同じ位置に位置する。第3凹部24cの下側の端部は、第2凹部24bの上側の端部と軸方向においてほぼ同じ位置に位置する。 The third recess 24c is located on the upper side of the second recess 24b and on the one side in the circumferential direction of the second recess 24b. The 3rd recessed part 24c is located in the edge part of the circumferential direction one side among the upper part of the plane part 22a. The third recess 24 c opens on the upper surface of the rotor core 22. The end portion on the other circumferential side of the third recess 24c is located at substantially the same position in the circumferential direction as the end portion on the one circumferential side of the second recess 24b. The lower end of the third recess 24c is located at substantially the same position in the axial direction as the upper end of the second recess 24b.
 本実施形態において第1凹部24aと第2凹部24bと第3凹部24cとは、各平面部22aにおいて、矩形状の平面部22aの対角線に沿って配置される。第1凹部24aと第3凹部24cとは、平面部22aの角部に配置される。径方向外側から見て、第1凹部24aと第3凹部24cとは、第2凹部24bを中心として点対称となる位置に配置される。本実施形態において第1凹部24aの形状と第3凹部24cの形状とは、互いに同じである。 In the present embodiment, the first concave portion 24a, the second concave portion 24b, and the third concave portion 24c are arranged along the diagonal line of the rectangular planar portion 22a in each planar portion 22a. The 1st recessed part 24a and the 3rd recessed part 24c are arrange | positioned at the corner | angular part of the plane part 22a. When viewed from the outside in the radial direction, the first concave portion 24a and the third concave portion 24c are arranged at positions that are point-symmetric about the second concave portion 24b. In the present embodiment, the shape of the first recess 24a and the shape of the third recess 24c are the same.
 本実施形態において第2凹部24bの周方向の寸法は、第1凹部24aの周方向の寸法および第3凹部24cの周方向の寸法よりも大きい。本実施形態において第1凹部24aの軸方向の寸法と第2凹部24bの軸方向の寸法と第3凹部24cの軸方向の寸法とは、互いに同じである。第1凹部24aの内部と第2凹部24bの内部と第3凹部24cの内部とは、互いに分離される。 In this embodiment, the circumferential dimension of the second recess 24b is larger than the circumferential dimension of the first recess 24a and the circumferential dimension of the third recess 24c. In the present embodiment, the axial dimension of the first recess 24a, the axial dimension of the second recess 24b, and the axial dimension of the third recess 24c are the same. The interior of the first recess 24a, the interior of the second recess 24b, and the interior of the third recess 24c are separated from each other.
 図3に示すように、凹部24には、接着剤28が充填される。接着剤28は、凹部24の底面とマグネット部23の径方向内側面とに接触し、ロータコア22とマグネット部23とを固定する。これにより、ロータコア22に対するマグネット部23の固定強度を向上できる。 As shown in FIG. 3, the concave portion 24 is filled with an adhesive 28. The adhesive 28 contacts the bottom surface of the recess 24 and the radially inner side surface of the magnet portion 23 to fix the rotor core 22 and the magnet portion 23. Thereby, the fixing strength of the magnet part 23 with respect to the rotor core 22 can be improved.
 図2に示すように、ロータコア22のうち軸方向位置が第1凹部24aと同じ部分を、第1部分27aと呼ぶ。ロータコア22のうち軸方向位置が第2凹部24bと同じ部分を第2部分27bと呼ぶ。ロータコア22のうち軸方向位置が第3凹部24cと同じ部分を第3部分27cと呼ぶ、第1部分27aと第2部分27bと第3部分27cとは、下側から上側に向かって、この順に並んで配置される。第1部分27aは、ロータコア22の下側部分である。第2部分27bは、ロータコア22の軸方向における中央部分である。第3部分27cは、ロータコア22の上側部分である。 As shown in FIG. 2, a portion of the rotor core 22 that has the same axial position as the first recess 24a is referred to as a first portion 27a. A portion of the rotor core 22 that has the same axial position as the second recess 24b is referred to as a second portion 27b. A portion of the rotor core 22 having the same axial position as the third recess 24c is referred to as a third portion 27c. The first portion 27a, the second portion 27b, and the third portion 27c are arranged in this order from the lower side to the upper side. Arranged side by side. The first portion 27 a is a lower portion of the rotor core 22. The second portion 27 b is a central portion in the axial direction of the rotor core 22. The third portion 27 c is an upper portion of the rotor core 22.
 本実施形態においてマグネット部23は、例えば、永久磁石である。図1および図3に示すように、マグネット部23は、軸方向に延びる柱状である。図3に示すように、マグネット部23の軸方向と直交する断面形状は、周方向に長い略四角形状である。マグネット部23の径方向内側の面は、径方向と直交する平坦面である。マグネット部23の径方向外側の面は、軸方向から見て径方向外側に凸となる湾曲面である。 In this embodiment, the magnet part 23 is a permanent magnet, for example. As shown in FIGS. 1 and 3, the magnet portion 23 has a columnar shape extending in the axial direction. As shown in FIG. 3, the cross-sectional shape orthogonal to the axial direction of the magnet part 23 is a substantially square shape long in the circumferential direction. The radially inner surface of the magnet part 23 is a flat surface orthogonal to the radial direction. The radially outer surface of the magnet part 23 is a curved surface that is convex outward in the radial direction when viewed from the axial direction.
 マグネット部23は、ロータコア22の径方向外側面に設けられる。本実施形態においてマグネット部23は、平面部22aごとに設けられる。すなわち、本実施形態においてマグネット部23は、例えば、8つ設けられる。図示は省略するが、複数のマグネット部23は、周方向に沿って一周に亘って等間隔に配置される。平面部22aごとに設けられる各マグネット部23は、それぞれ単一の別部材である。 The magnet part 23 is provided on the radially outer surface of the rotor core 22. In this embodiment, the magnet part 23 is provided for every plane part 22a. That is, in the present embodiment, for example, eight magnet portions 23 are provided. Although illustration is omitted, the plurality of magnet parts 23 are arranged at equal intervals over the entire circumference in the circumferential direction. Each magnet portion 23 provided for each flat portion 22a is a single separate member.
 各マグネット部23は、径方向内側面が平面部22aと接触して固定される。マグネット部23の径方向内側面における周方向の寸法は、平面部22aの周方向の寸法よりも小さい。図1に示すように、マグネット部23の軸方向の寸法は、平面部22aの軸方向の寸法と同じである。 Each of the magnet parts 23 is fixed such that the radially inner side surface is in contact with the flat part 22a. The circumferential dimension on the radially inner side surface of the magnet part 23 is smaller than the circumferential dimension of the flat part 22a. As shown in FIG. 1, the axial dimension of the magnet part 23 is the same as the axial dimension of the plane part 22a.
 各マグネット部23は、平面部22aごとに設けられた複数の凹部24と径方向に対向する。本実施形態では、各マグネット部23は、各平面部22aにそれぞれ設けられた第1凹部24a、第2凹部24bおよび第3凹部24cと径方向に対向する。マグネット部23の径方向内側面は、各凹部24の径方向外側の開口を閉塞する。 Each magnet part 23 opposes the some recessed part 24 provided for every plane part 22a in radial direction. In this embodiment, each magnet part 23 opposes the 1st recessed part 24a, the 2nd recessed part 24b, and the 3rd recessed part 24c which were each provided in each plane part 22a in radial direction. The radially inner side surface of the magnet part 23 closes the radially outer opening of each recess 24.
 図4は、本実施形態のモータ10におけるコギングトルクCTの波形の一例を示すグラフである。図4において、横軸は、周方向の回転角φを示し、縦軸は、コギングトルクCTを示す。図4においては、第1部分27aにおいて生じるコギングトルクCT1と、第2部分27bにおいて生じるコギングトルクCT2と、第3部分27cにおいて生じるコギングトルクCT3と、ロータ20全体に生じるコギングトルクCTtaと、を示す。ロータ20全体に生じるコギングトルクCTtaは、コギングトルクCT1とコギングトルクCT2とコギングトルクCT3とを足し合わせた値である。 FIG. 4 is a graph showing an example of the waveform of the cogging torque CT in the motor 10 of the present embodiment. In FIG. 4, the horizontal axis indicates the circumferential rotation angle φ, and the vertical axis indicates the cogging torque CT. 4, the cogging torque CT1 generated in the first portion 27a, the cogging torque CT2 generated in the second portion 27b, the cogging torque CT3 generated in the third portion 27c, and the cogging torque CTta generated in the entire rotor 20 are shown. . The cogging torque CTta generated in the entire rotor 20 is a value obtained by adding the cogging torque CT1, the cogging torque CT2, and the cogging torque CT3.
 図4に示すように、各部分に生じるコギングトルクCT1,CT2,CT3は、互いに位相がずれる。これは、各部分にそれぞれ周方向にずれた凹部24が設けられているためと考えられる。具体的に、第1部分27aにおいては、周方向他方側に第1凹部24aが設けられる。そのため、マグネット部23から径方向外側に出る磁束、またはマグネット部23に径方向外側から入る磁束における磁束密度分布の周方向中心が、平面部22aの周方向中心よりも周方向一方側にずれる。なお、以下の説明においては、「マグネット部23から径方向外側に出る磁束、またはマグネット部23に径方向外側から入る磁束における磁束密度分布」を、単に「磁束密度分布」と呼ぶ。 As shown in FIG. 4, the cogging torques CT1, CT2 and CT3 generated in each part are out of phase with each other. This is considered to be because the concave portions 24 that are shifted in the circumferential direction are provided in the respective portions. Specifically, in the first portion 27a, a first recess 24a is provided on the other circumferential side. Therefore, the circumferential center of the magnetic flux density distribution in the magnetic flux that exits radially outward from the magnet portion 23 or the magnetic flux that enters the magnet portion 23 from the radially outer side is shifted to one side in the circumferential direction from the circumferential center of the flat portion 22a. In the following description, “the magnetic flux density distribution in the magnetic flux that exits radially outward from the magnet portion 23 or the magnetic flux that enters the magnet portion 23 from the radially outer side” is simply referred to as “magnetic flux density distribution”.
 第2部分27bにおいては、平面部22aの周方向の中央に第2凹部24bが設けられる。そのため、磁束密度分布の周方向中心は、平面部22aの周方向中心と一致する。第3部分27cにおいては、周方向一方側に第3凹部24cが設けられている。そのため、磁束密度分布の周方向中心が、平面部22aの周方向中心よりも周方向他方側にずれる。これにより、軸方向位置が互いに異なる第1部分27aと第2部分27bと第3部分27cとの各部分において、磁束密度分布の周方向中心が、互いに周方向にずれて配置される。したがって、各部分に生じるコギングトルクCTの位相が互いにずれて打ち消し合い、ロータ20全体に生じるコギングトルクCTtaを低減できる。 In the second portion 27b, a second recess 24b is provided at the center in the circumferential direction of the flat portion 22a. Therefore, the circumferential center of the magnetic flux density distribution coincides with the circumferential center of the flat portion 22a. In the 3rd part 27c, the 3rd recessed part 24c is provided in the circumferential direction one side. Therefore, the circumferential center of the magnetic flux density distribution is shifted to the other circumferential side from the circumferential center of the flat portion 22a. Thereby, in each part of the 1st part 27a, the 2nd part 27b, and the 3rd part 27c from which an axial direction position mutually differs, the circumferential direction center of magnetic flux density distribution is mutually shifted | deviated and arrange | positioned in the circumferential direction. Therefore, the phases of the cogging torque CT generated in each portion are offset from each other and cancel each other, and the cogging torque CTta generated in the entire rotor 20 can be reduced.
 以上のように、本実施形態によれば、ロータコア22の径方向外側面に、軸方向の異なる位置において互いに周方向にずれて配置される複数の凹部24を設けることで、ロータ20全体に生じるコギングトルクCTtaを低減することができる。そのため、ロータ20にスキューを掛ける必要がない。したがって、ロータ20全体に生じるコギングトルクCTtaを低減でき、かつ、ロータ20を製造する手間が増大することを抑制できる。 As described above, according to the present embodiment, the plurality of recesses 24 that are shifted from each other in the circumferential direction at different positions in the axial direction are provided on the radially outer surface of the rotor core 22, thereby generating the entire rotor 20. The cogging torque CTta can be reduced. Therefore, there is no need to skew the rotor 20. Therefore, the cogging torque CTta generated in the entire rotor 20 can be reduced, and an increase in labor for manufacturing the rotor 20 can be suppressed.
 また、本実施形態によれば、マグネット部23および各凹部24は、平面部22aごとに設けられる。そのため、各平面部22aにおいてコギングトルクCTを低減することができ、ロータ20全体に生じるコギングトルクCTtaをより低減できる。 Moreover, according to this embodiment, the magnet part 23 and each recessed part 24 are provided for every plane part 22a. Therefore, the cogging torque CT can be reduced in each plane portion 22a, and the cogging torque CTta generated in the entire rotor 20 can be further reduced.
 また、本実施形態によれば、平面部22aごとに設けられるマグネット部23は、それぞれ単一の部材であり、平面部22aごとに設けられた複数の凹部24と径方向に対向する。そのため、マグネット部23を軸方向に分割してスキューを掛けるような場合に比べて、マグネット部23の数を少なくできる。これにより、ロータ20の部品点数が増加することを抑制でき、ロータ20を製造する手間が増大することをより抑制できる。 Moreover, according to this embodiment, the magnet part 23 provided for every plane part 22a is a single member, respectively, and opposes the some recessed part 24 provided for every plane part 22a in radial direction. Therefore, the number of the magnet parts 23 can be reduced compared with the case where the magnet parts 23 are divided in the axial direction and skewed. Thereby, it can suppress that the number of parts of the rotor 20 increases, and can suppress further that the effort which manufactures the rotor 20 increases.
 このように、本実施形態では、凹部24を設けることによってコギングトルクCTを低減できるため、マグネット部23を分割する必要がなく、マグネット部23の着磁を斜めにする必要もない。よって、マグネット部23の作製およびマグネット部23のロータコア22への取り付けを容易にできる。 Thus, in this embodiment, since the cogging torque CT can be reduced by providing the recess 24, it is not necessary to divide the magnet part 23, and it is not necessary to make the magnet part 23 magnetized obliquely. Therefore, it is possible to easily manufacture the magnet part 23 and attach the magnet part 23 to the rotor core 22.
 また、本実施形態によれば、凹部24として、周方向位置が周方向他方側から周方向一方側に順にずれる第1凹部24aと第2凹部24bと第3凹部24cとが設けられる。そのため、磁束密度分布の周方向中心を軸方向に沿って緩やかに変化させることができ、より好適にコギングトルクCTtaを低減できる。 Further, according to the present embodiment, the first concave portion 24a, the second concave portion 24b, and the third concave portion 24c whose circumferential positions are sequentially shifted from the other circumferential side to the one circumferential side are provided as the concave portion 24. Therefore, the center in the circumferential direction of the magnetic flux density distribution can be gradually changed along the axial direction, and the cogging torque CTta can be more preferably reduced.
 平面部22aの軸方向の中央部分において、第2凹部24bの周方向両側の部分を通る磁束の磁束密度は、第2凹部24bを通る磁束の磁束密度よりも大きい。そして、第2凹部24bの周方向両側の部分は、第1凹部24aの周方向一方側の部分と、第3凹部24cの周方向他方側の部分と、それぞれ繋がる。そのため、第2凹部24bの周方向一方側の部分を通る磁束によって、第1凹部24aの周方向一方側の部分における磁束密度分布を周方向一方側に寄せやすい。また、第2凹部24bの周方向他方側の部分を通る磁束によって、第3凹部24cの周方向他方側の部分における磁束密度分布を周方向他方側に寄せやすい。これにより、第1部分27aおよび第3部分27cにおいて、磁束密度分布の周方向中心を好適に周方向にずらすことができる。そのため、各部分におけるコギングトルクCTの位相を好適にずらすことができ、ロータ20全体のコギングトルクCTtaをより低減できる。 In the central portion in the axial direction of the flat portion 22a, the magnetic flux density of the magnetic flux passing through the portions on both sides in the circumferential direction of the second concave portion 24b is larger than the magnetic flux density of the magnetic flux passing through the second concave portion 24b. And the part of the circumferential direction both sides of the 2nd recessed part 24b is connected with the part of the circumferential direction one side of the 1st recessed part 24a, and the part of the circumferential direction other side of the 3rd recessed part 24c, respectively. For this reason, the magnetic flux density passing through the portion on one side in the circumferential direction of the second recess 24b can easily bring the magnetic flux density distribution in the portion on one side in the circumferential direction of the first recess 24a toward the one side in the circumferential direction. Further, the magnetic flux density passing through the other circumferential portion of the second recess 24b tends to bring the magnetic flux density distribution in the other circumferential portion of the third recess 24c toward the other circumferential side. Thereby, in the 1st part 27a and the 3rd part 27c, the circumferential direction center of magnetic flux density distribution can be suitably shifted in the circumferential direction. Therefore, the phase of the cogging torque CT in each part can be suitably shifted, and the cogging torque CTta of the entire rotor 20 can be further reduced.
 本実施形態によれば、径方向外側から見て、第1凹部24aと第3凹部24cとは、第2凹部24bを中心として点対称となる位置に配置される。そのため、第1部分27aと第2部分27bと第3部分27cとにおける磁束密度分布の周方向中心を、周方向において等間隔にずらしやすい。これにより、より好適にコギングトルクCTtaを低減できる。第1部分27aの形状と第3部分27cの形状とを軸方向に対称な形状としやすい。そのため、電磁鋼板を積層してロータコア22を作る場合、同じ形状の電磁鋼板を軸方向に反転させて用いることで、第1部分27aと第3部分27cとをそれぞれ作ることができる。したがって、ロータコア22を作製するコストを低減できる。 According to this embodiment, when viewed from the outside in the radial direction, the first recess 24a and the third recess 24c are arranged at positions that are symmetric with respect to the second recess 24b. Therefore, it is easy to shift the circumferential center of the magnetic flux density distribution in the first portion 27a, the second portion 27b, and the third portion 27c at equal intervals in the circumferential direction. Thereby, cogging torque CTta can be reduced more suitably. It is easy to make the shape of the first portion 27a and the shape of the third portion 27c symmetrical to each other in the axial direction. Therefore, when making the rotor core 22 by laminating the electromagnetic steel plates, the first portion 27a and the third portion 27c can be made by inverting and using the same shape of the electromagnetic steel plates in the axial direction. Therefore, the cost for producing the rotor core 22 can be reduced.
 本実施形態によれば、第2凹部24bの周方向の寸法は、第1凹部24aの周方向の寸法および第3凹部24cの周方向の寸法よりも大きい。そのため、第2部分27bの平面部22aにおいて、第2凹部24bの周方向両側の部分をより周方向に離して配置できる。これにより、第2凹部24bの周方向一方側の部分を通る磁束によって、第1凹部24aの周方向一方側の部分における磁束密度分布をより周方向一方側に寄せやすい。第2凹部24bの周方向他方側の部分を通る磁束によって、第3凹部24cの周方向他方側の部分における磁束密度分布をより周方向他方側に寄せやすい。これにより、第1部分27aおよび第3部分27cにおいて、磁束密度分布の周方向中心をより好適に周方向にずらすことができる。そのため、ロータ20全体のコギングトルクCTtaをより低減できる。 According to this embodiment, the circumferential dimension of the second recess 24b is larger than the circumferential dimension of the first recess 24a and the circumferential dimension of the third recess 24c. Therefore, in the flat portion 22a of the second portion 27b, the portions on both sides in the circumferential direction of the second recess 24b can be arranged further apart in the circumferential direction. Thereby, the magnetic flux density distribution in the part of the circumferential direction one side of the 1st recessed part 24a can be more easily brought to the circumferential direction one side with the magnetic flux which passes through the part of the circumferential direction one side of the 2nd recessed part 24b. The magnetic flux density passing through the other circumferential part of the second recess 24b makes it easier to bring the magnetic flux density distribution in the other circumferential part of the third recess 24c closer to the other circumferential side. Thereby, in the 1st part 27a and the 3rd part 27c, the circumferential direction center of magnetic flux density distribution can be shifted to the circumferential direction more suitably. Therefore, the cogging torque CTta of the entire rotor 20 can be further reduced.
 図3に示すように、ロータ20は、樹脂モールド部26をさらに備える。樹脂モールド部26は、ロータコア22の少なくとも一部およびマグネット部23の少なくとも一部を覆う。樹脂モールド部26は、少なくとも一部が周方向に隣り合うマグネット部23同士の間に位置する。樹脂モールド部26は、ロータコア22およびマグネット部23をインサート部材としたインサート成形により作られる。 As shown in FIG. 3, the rotor 20 further includes a resin mold portion 26. The resin mold part 26 covers at least a part of the rotor core 22 and at least a part of the magnet part 23. The resin mold part 26 is located at least partially between the magnet parts 23 adjacent in the circumferential direction. The resin mold part 26 is made by insert molding using the rotor core 22 and the magnet part 23 as insert members.
 樹脂モールド部26は、アンカー部26aと、移動抑制部26bと、を有する。アンカー部26aは、各溝部22c内に設けられる部分である。アンカー部26aは、溶融した樹脂を溝部22cに充填し固化することにより作られる。アンカー部26aは、軸方向に延びる。アンカー部26aの周方向の幅は、径方向内側へ向かうにしたがい大きくなる。 The resin mold part 26 has the anchor part 26a and the movement suppression part 26b. The anchor part 26a is a part provided in each groove part 22c. The anchor part 26a is made by filling the melted resin into the groove part 22c and solidifying it. The anchor part 26a extends in the axial direction. The circumferential width of the anchor portion 26a increases as it goes inward in the radial direction.
 移動抑制部26bは、アンカー部26aよりも径方向外側に位置して、アンカー部26aと繋がる。移動抑制部26bは、樹脂モールド部26の径方向外側の端部に配置される。移動抑制部26bは、アンカー部26aに対して、周方向の両側に向けてそれぞれ突出する。移動抑制部26bは、板面が径方向を向く板状である。移動抑制部26bは、軸方向に延びる。移動抑制部26bは、平面部22aの径方向外側に、平面部22aとの間に間隔をあけて配置される。径方向から見て、移動抑制部26bと、平面部22aとは、重なって配置される。移動抑制部26bは、マグネット部23の径方向外側面に接触する。 The movement restraining part 26b is located radially outside the anchor part 26a and is connected to the anchor part 26a. The movement restraining part 26 b is disposed at the radially outer end of the resin mold part 26. The movement suppressing part 26b protrudes toward both sides in the circumferential direction with respect to the anchor part 26a. The movement restraining part 26b has a plate shape whose plate surface faces the radial direction. The movement suppression unit 26b extends in the axial direction. The movement suppressing part 26b is arranged on the outer side in the radial direction of the flat part 22a with a space between the flat part 22a. When viewed from the radial direction, the movement restraining portion 26b and the flat portion 22a are disposed so as to overlap each other. The movement restraining part 26 b contacts the radially outer surface of the magnet part 23.
 本実施形態によれば、ロータコア22の径方向外側面に、くさび状の溝部22cが設けられる。これにより、アンカー部26aを溝部22cに対して径方向に引っ掛けることができる。したがって、樹脂モールド部26がロータコア22に対して径方向外側に抜けることを抑制できる。そして、移動抑制部26bにより、マグネット部23を径方向外側から押さえることができる。したがって、樹脂モールド部26によって、マグネット部23がロータコア22から外れることを抑制できる。 According to the present embodiment, the wedge-shaped groove portion 22 c is provided on the radially outer surface of the rotor core 22. Thereby, the anchor part 26a can be hooked to the groove part 22c in the radial direction. Therefore, the resin mold portion 26 can be prevented from coming out radially outward with respect to the rotor core 22. And the magnet part 23 can be hold | suppressed from the radial direction outer side by the movement suppression part 26b. Therefore, the resin mold part 26 can prevent the magnet part 23 from being detached from the rotor core 22.
 図1に示すように、ステータ30は、ステータコア31と、インシュレータ30Zと、複数のコイル30Cと、を有する。ステータコア31は、中心軸Jを中心とする環状である。ステータコア31は、ロータ20の径方向外側においてロータ20を囲む。ステータコア31は、ロータ20と径方向に隙間をあけて対向する。すなわち、ステータ30は、ロータ20と径方向に隙間をあけて対向する。ステータコア31は、例えば、複数の電磁鋼板が軸方向に積層されて構成される積層鋼板である。 As shown in FIG. 1, the stator 30 has a stator core 31, an insulator 30Z, and a plurality of coils 30C. The stator core 31 has an annular shape centered on the central axis J. The stator core 31 surrounds the rotor 20 on the radially outer side of the rotor 20. The stator core 31 faces the rotor 20 with a gap in the radial direction. That is, the stator 30 faces the rotor 20 with a gap in the radial direction. The stator core 31 is, for example, a laminated steel plate configured by laminating a plurality of electromagnetic steel plates in the axial direction.
 ステータコア31は、略環状のコアバック31aと、複数のティース31bと、を有する。図示は省略するが、本実施形態では、コアバック31aは、中心軸Jを中心とする円環状である。ティース31bは、コアバック31aの径方向内側面から径方向内側に延びる。コアバック31aの外周面は、ハウジング11の周壁部の内周面と固定される。複数のティース31bは、コアバック31aの径方向内側面に、周方向に互いに間隔をあけて配置される。図示は省略するが、本実施形態では、複数のティース31bが、周方向に等間隔に配列する。 The stator core 31 has a substantially annular core back 31a and a plurality of teeth 31b. Although illustration is omitted, in the present embodiment, the core back 31a has an annular shape centered on the central axis J. The teeth 31b extend radially inward from the radially inner side surface of the core back 31a. The outer peripheral surface of the core back 31 a is fixed to the inner peripheral surface of the peripheral wall portion of the housing 11. The plurality of teeth 31b are arranged on the radially inner side surface of the core back 31a at intervals in the circumferential direction. Although illustration is omitted, in the present embodiment, the plurality of teeth 31b are arranged at equal intervals in the circumferential direction.
 インシュレータ30Zは、ステータコア31に装着される。インシュレータ30Zは、ティース31bを覆う部分を有する。インシュレータ30Zの材料は、例えば樹脂などの絶縁材料である。コイル30Cは、ステータコア31に取り付けられる。複数のコイル30Cは、インシュレータ30Zを介してステータコア31に装着される。複数のコイル30Cは、インシュレータ30Zを介して各ティース31bに導線が巻き回されることで構成される。 The insulator 30Z is attached to the stator core 31. Insulator 30Z has a part which covers teeth 31b. The material of the insulator 30Z is an insulating material such as a resin. The coil 30 </ b> C is attached to the stator core 31. The plurality of coils 30C are attached to the stator core 31 via the insulator 30Z. The plurality of coils 30 </ b> C are configured by winding a conductive wire around each tooth 31 b via the insulator 30 </ b> Z.
(第1実施形態の変形例)
 図5に示すように、本変形例のロータコア122において、第1凹部124aの形状および第3凹部124cの形状は、第2凹部24bの形状と同じである。すなわち、複数の凹部124の形状は、互いに同じ形状である。この構成によれば、複数の凹部124の作製が容易である。ロータコア122において、周方向にずれて配置される凹部124同士は、周方向位置が同じ部分を有する。第1凹部124aの周方向一方側の部分と第2凹部24bの周方向他方側の部分とは、軸方向から見て、互いに重なる。第2凹部24bの周方向一方側の部分と第3凹部124cの周方向他方側の部分とは、軸方向から見て、互いに重なる。ロータコア122において、第1凹部124aの内部と第2凹部24bの内部とは、互いに繋がる。第2凹部24bの内部と第3凹部124cの内部とは、互いに繋がる。この構成によれば、各凹部124の周方向の寸法をそれぞれ大きくしやすい。そのため、磁束密度分布の周方向中心をより周方向にずらしやすい。
(Modification of the first embodiment)
As shown in FIG. 5, in the rotor core 122 of this modification, the shape of the first recess 124a and the shape of the third recess 124c are the same as the shape of the second recess 24b. That is, the shape of the plurality of recesses 124 is the same as each other. According to this configuration, the plurality of recesses 124 can be easily manufactured. In the rotor core 122, the recesses 124 that are displaced in the circumferential direction have the same circumferential position. A portion on one side in the circumferential direction of the first recess 124a and a portion on the other side in the circumferential direction of the second recess 24b overlap each other when viewed in the axial direction. The portion on the one circumferential side of the second recess 24b and the portion on the other circumferential side of the third recess 124c overlap each other when viewed from the axial direction. In the rotor core 122, the interior of the first recess 124a and the interior of the second recess 24b are connected to each other. The inside of the second recess 24b and the inside of the third recess 124c are connected to each other. According to this configuration, it is easy to increase the circumferential dimension of each recess 124. Therefore, it is easier to shift the circumferential center of the magnetic flux density distribution in the circumferential direction.
<第2実施形態>
 図6に示すように、本実施形態のロータコア222は、第1実施形態に対して、凹部224の形状および配置が異なる。ロータコア222は、第1部分227aと、第2部分227bと、を有する。第1部分227aは、ロータコア222の下側部分である。第2部分227bは、ロータコア222の上側部分である。第2部分227bは、第1部分227aの上側に位置する。本実施形態においてロータコア222は、第1部分227aと第2部分227bとのみから構成される。第1部分227aと第2部分227bとは、形状および軸方向の寸法が互いに同じであり、周方向に45°ずれて積層される。そのため、本実施形態によれば、第1部分227aと第2部分227bとのそれぞれを、同形状の電磁鋼板を同じ枚数積層することで作ることができる。これにより、ロータコア222を構成する電磁鋼板を1種類とすることができ、ロータコア222を製造する手間およびコストを低減できる。
Second Embodiment
As shown in FIG. 6, the rotor core 222 of this embodiment differs in the shape and arrangement | positioning of the recessed part 224 with respect to 1st Embodiment. The rotor core 222 has a first portion 227a and a second portion 227b. The first portion 227 a is a lower portion of the rotor core 222. The second portion 227 b is an upper portion of the rotor core 222. The second part 227b is located above the first part 227a. In the present embodiment, the rotor core 222 includes only the first portion 227a and the second portion 227b. The first portion 227a and the second portion 227b have the same shape and the same dimension in the axial direction, and are stacked with a 45 ° shift in the circumferential direction. Therefore, according to this embodiment, each of the 1st part 227a and the 2nd part 227b can be made by laminating | stacking the same number of electromagnetic steel plates of the same shape. Thereby, the electromagnetic steel plate which comprises the rotor core 222 can be made into 1 type, and the effort and cost which manufacture the rotor core 222 can be reduced.
 本実施形態において各平面部222aは、第1部分227aの径方向外側面と第2部分227bの径方向外側面とが軸方向に繋がって構成される。本実施形態の例では、平面部222aの軸方向の長さが、平面部222aの周方向の長さよりも小さい。本実施形態において各平面部222aには、第1凹部224aと第2凹部224bとのうちのいずれかの凹部224が1つのみ設けられる。すなわち、本実施形態において複数の平面部222aは、平面部222aとして、第1凹部224aが設けられた第1平面部222dと、第2凹部224bが設けられた第2平面部222eと、を含む。第1平面部222dと第2平面部222eとは、周方向に沿って交互に設けられる。 In the present embodiment, each planar portion 222a is configured by connecting the radially outer surface of the first portion 227a and the radially outer surface of the second portion 227b in the axial direction. In the example of the present embodiment, the length in the axial direction of the plane portion 222a is smaller than the length in the circumferential direction of the plane portion 222a. In the present embodiment, each flat surface portion 222a is provided with only one of the first recess 224a and the second recess 224b. That is, in the present embodiment, the plurality of planar portions 222a include, as the planar portions 222a, a first planar portion 222d provided with the first recess 224a and a second planar portion 222e provided with the second recess 224b. . The first flat surface portions 222d and the second flat surface portions 222e are provided alternately along the circumferential direction.
 第1凹部224aは、第1平面部222dのうち第1部分227aの径方向外側面に設けられる。第2凹部224bは、第2平面部222eのうち第2部分227bの径方向外側面に設けられる。これにより、第1凹部224aは、第1部分227aの径方向外側面において、周方向に沿って一周に亘って互いに間隔を空けて複数設けられる。第2凹部224bは、第2部分227bの径方向外側面において、周方向に沿って一周に亘って互いに間隔を空けて複数設けられる。第1凹部224aと第2凹部224bとは、軸方向から見て、周方向に沿って交互に設けられる。すなわち、複数の凹部224を軸方向から見た際において、第1凹部224aの周方向両側に隣り合う凹部224は第2凹部224bであり、第2凹部224bの周方向両側に取り合う凹部224は第1凹部224aである。 1st recessed part 224a is provided in the radial direction outer surface of 1st part 227a among the 1st plane parts 222d. The 2nd recessed part 224b is provided in the radial direction outer surface of the 2nd part 227b among the 2nd plane parts 222e. As a result, a plurality of first recesses 224a are provided on the radially outer surface of the first portion 227a at intervals from one another along the circumferential direction. A plurality of the second recesses 224b are provided on the radially outer surface of the second portion 227b at intervals from one another along the circumferential direction. The first recesses 224a and the second recesses 224b are alternately provided along the circumferential direction when viewed from the axial direction. That is, when the plurality of recesses 224 are viewed from the axial direction, the recesses 224 adjacent to both sides in the circumferential direction of the first recesses 224a are the second recesses 224b, and the recesses 224 that engage with both sides in the circumferential direction of the second recesses 224b are the first One recess 224a.
 第1凹部224aおよび第2凹部224bのそれぞれは、径方向外側から見て、周方向に長い矩形状である。第1凹部224aは、下側に開口する。本実施形態において第1凹部224aは、第1部分227aにおける第1平面部222dのうち周方向両側の縁部を除いた全面に設けられる。図7に示すように、第1凹部224aの周方向の寸法は、第1平面部222dに設けられるマグネット部23の周方向の寸法とほぼ同じである。本実施形態において第1凹部224aの周方向の寸法は、第1平面部222dに設けられるマグネット部23の周方向の寸法よりも僅かに小さい。第1凹部224aの径方向の寸法は、第1凹部224aの全体に亘って均一である。 Each of the 1st recessed part 224a and the 2nd recessed part 224b is a rectangular shape long in the circumferential direction seeing from the radial direction outer side. The first recess 224a opens downward. In this embodiment, the 1st recessed part 224a is provided in the whole surface except the edge part of the circumferential direction both sides among the 1st plane parts 222d in the 1st part 227a. As shown in FIG. 7, the circumferential dimension of the first recess 224a is substantially the same as the circumferential dimension of the magnet part 23 provided on the first flat surface part 222d. In the present embodiment, the dimension in the circumferential direction of the first recess 224a is slightly smaller than the dimension in the circumferential direction of the magnet part 23 provided on the first flat surface part 222d. The dimension of the first recess 224a in the radial direction is uniform over the entire first recess 224a.
 第2凹部224bは、上側に開口する。図6に示すように、本実施形態において第2凹部224bは、第2部分227bにおける第2平面部222eのうち周方向両側の縁部を除いた全面に設けられる。図7に示すように、第2凹部224bの周方向の寸法は、第2平面部222eに設けられるマグネット部23の周方向の寸法とほぼ同じである。本実施形態において第2凹部224bの周方向の寸法は、第2平面部222eに設けられるマグネット部23の周方向の寸法よりも僅かに小さい。第2凹部224bの径方向の寸法は、第2凹部224bの全体に亘って均一である。 The second recess 224b opens upward. As shown in FIG. 6, in the present embodiment, the second recess 224 b is provided on the entire surface of the second flat portion 222 e in the second portion 227 b except for the edges on both sides in the circumferential direction. As shown in FIG. 7, the circumferential dimension of the second recess 224b is substantially the same as the circumferential dimension of the magnet part 23 provided on the second flat surface part 222e. In the present embodiment, the dimension in the circumferential direction of the second recess 224b is slightly smaller than the dimension in the circumferential direction of the magnet part 23 provided on the second plane part 222e. The dimension in the radial direction of the second recess 224b is uniform over the entire second recess 224b.
 第1凹部224aの周方向の寸法と第2凹部224bの周方向の寸法とは、互いに同じである。第1凹部224aの径方向の寸法と第2凹部224bの径方向の寸法とは、互いに同じである。図6に示すように、第1凹部224aの軸方向の寸法と第2凹部224bの軸方向の寸法とは、互いに同じである。第1凹部224aの上側の端部と第2凹部224bの下側の端部とは、軸方向において、互いに同じ位置に位置する。図7に示すように、本実施形態において第2凹部224bの内部は、空隙である。図示は省略するが、第1凹部224aの内部も、空隙である。 The circumferential dimension of the first recess 224a and the circumferential dimension of the second recess 224b are the same. The radial dimension of the first recess 224a and the radial dimension of the second recess 224b are the same. As shown in FIG. 6, the axial dimension of the first recess 224a and the axial dimension of the second recess 224b are the same. The upper end of the first recess 224a and the lower end of the second recess 224b are located at the same position in the axial direction. As shown in FIG. 7, in the present embodiment, the inside of the second recess 224b is a gap. Although illustration is omitted, the inside of the first recess 224a is also a gap.
 図8は、本実施形態のモータにおけるコギングトルクCTの波形の一例を示すグラフである。図8において、横軸は、周方向の回転角φを示し、縦軸は、コギングトルクCTを示す。図8においては、第1部分227aにおいて生じるコギングトルクCT4と、第2部分227bにおいて生じるコギングトルクCT5と、ロータ220全体に生じるコギングトルクCTtbと、を示す。ロータ220全体に生じるコギングトルクCTtbは、コギングトルクCT4とコギングトルクCT5とを足し合わせた値である。 FIG. 8 is a graph showing an example of the waveform of the cogging torque CT in the motor of the present embodiment. In FIG. 8, the horizontal axis represents the circumferential rotation angle φ, and the vertical axis represents the cogging torque CT. FIG. 8 shows the cogging torque CT4 generated in the first portion 227a, the cogging torque CT5 generated in the second portion 227b, and the cogging torque CTtb generated in the entire rotor 220. The cogging torque CTtb generated in the entire rotor 220 is a value obtained by adding the cogging torque CT4 and the cogging torque CT5.
 図9は、本実施形態のモータにおけるモータトルクMTの波形の一例を示すグラフである。図9において、横軸は、周方向の回転角φを示し、縦軸は、モータトルクMTを示す。図9においては、第1部分227aにおいて生じるモータトルクMT4と、第2部分227bにおいて生じるモータトルクMT5と、ロータ220全体に生じるモータトルクMTtと、を示す。ロータ220全体に生じるモータトルクMTtは、回転角φごとにおけるモータトルクMT4とモータトルクMT5との平均値に相当する。 FIG. 9 is a graph showing an example of a waveform of the motor torque MT in the motor of the present embodiment. In FIG. 9, the horizontal axis indicates the circumferential rotation angle φ, and the vertical axis indicates the motor torque MT. FIG. 9 shows motor torque MT4 generated in the first portion 227a, motor torque MT5 generated in the second portion 227b, and motor torque MTt generated in the entire rotor 220. Motor torque MTt generated in the entire rotor 220 corresponds to an average value of motor torque MT4 and motor torque MT5 for each rotation angle φ.
 図8に示すように、各部分に生じるコギングトルクCT4,CT5は、互いに位相がずれる。これは、第1実施形態と同様に、各部分にそれぞれ周方向にずれた凹部224が設けられているためと考えられる。これにより、各部分に生じるコギングトルクCTの位相が互いにずれて打ち消し合い、ロータ220全体に生じるコギングトルクCTtbを低減できる。そのため、ロータ220にスキューを掛ける必要がない。したがって、ロータ220全体に生じるコギングトルクCTtbを低減でき、かつ、ロータ220を製造する手間が増大することを抑制できる。 As shown in FIG. 8, the cogging torques CT4 and CT5 generated in each part are out of phase with each other. This is presumably because, as in the first embodiment, each portion is provided with a recess 224 that is shifted in the circumferential direction. As a result, the phases of the cogging torque CT generated in each portion are offset from each other and cancel each other, and the cogging torque CTtb generated in the entire rotor 220 can be reduced. Therefore, there is no need to skew the rotor 220. Therefore, the cogging torque CTtb generated in the entire rotor 220 can be reduced, and an increase in labor for manufacturing the rotor 220 can be suppressed.
 本実施形態によれば、互いに異なる軸方向位置に設けられた第1凹部224aと第2凹部224bとが、軸方向から見て、周方向に沿って交互に設けられる。そのため、コギングトルクCT4の位相とコギングトルクCT5の位相とが半周期ずれて逆位相となりやすい。これにより、コギングトルクCT4とコギングトルクCT5とが好適に相殺されやすく、ロータ220全体に生じるコギングトルクCTtbをより好適に低減できる。 According to the present embodiment, the first recesses 224a and the second recesses 224b provided at mutually different axial positions are alternately provided along the circumferential direction when viewed from the axial direction. For this reason, the phase of the cogging torque CT4 and the phase of the cogging torque CT5 are likely to be opposite in phase by a half cycle. As a result, the cogging torque CT4 and the cogging torque CT5 are easily offset appropriately, and the cogging torque CTtb generated in the entire rotor 220 can be more suitably reduced.
 本実施形態によれば、第1凹部224aが設けられた第1平面部222dと第2凹部224bが設けられた第2平面部222eとが、周方向に沿って交互に設けられる。そして、第1凹部224aは、第1部分227aにおける第1平面部222dに設けられ、第2凹部224bは、第2部分227bにおける第2平面部222eに設けられる。そのため、第1部分227aにおいては、第1凹部224aが設けられた部分と、凹部224が設けられない部分とが、周方向に沿って交互に設けられる。ここで、第1凹部224aの内部は、磁性部材であるロータコア222よりも磁束が通りにくい。そのため、第1部分227aにおいて第1凹部224aが設けられる第1平面部222dでは、第1部分227aにおいて凹部224が設けられない第2平面部222eよりも、マグネット部23とステータ30との間を通る磁束が少なくなる。これにより、第1部分227aにおいては、マグネット部23とステータ30との間を通る磁束が、周方向に沿って平面部222aおよびマグネット部23ごとに増減する。したがって、図9に示すように、第1部分227aにおけるモータトルクMT4は、回転角φに応じて周期的に増減する。 According to this embodiment, the first flat surface portions 222d provided with the first concave portions 224a and the second flat surface portions 222e provided with the second concave portions 224b are alternately provided along the circumferential direction. The first recess 224a is provided in the first flat portion 222d of the first portion 227a, and the second recess 224b is provided in the second flat portion 222e of the second portion 227b. Therefore, in the 1st part 227a, the part in which the 1st recessed part 224a was provided, and the part in which the recessed part 224 is not provided are provided alternately along the circumferential direction. Here, the magnetic flux is less likely to pass through the first recess 224a than the rotor core 222, which is a magnetic member. Therefore, in the first flat portion 222d where the first concave portion 224a is provided in the first portion 227a, the gap between the magnet portion 23 and the stator 30 is larger than in the second flat portion 222e where the concave portion 224 is not provided in the first portion 227a. Less magnetic flux passes through. Thereby, in the 1st part 227a, the magnetic flux which passes between the magnet part 23 and the stator 30 increases / decreases for every plane part 222a and the magnet part 23 along the circumferential direction. Therefore, as shown in FIG. 9, the motor torque MT4 in the first portion 227a periodically increases and decreases according to the rotation angle φ.
 一方、第2部分227bにおいては、第2凹部224bが設けられた部分と、凹部224が設けられない部分とが、周方向に沿って交互に設けられる。ここで、第2凹部224bの内部は、第1凹部224aの内部と同様に、磁性部材であるロータコア222よりも磁束が通りにくい。そのため、上述した第1部分227aのモータトルクMT4と同様に、第2部分227bのモータトルクMT5も、回転角φに応じて周期的に増減する。 On the other hand, in the second portion 227b, the portion where the second recess 224b is provided and the portion where the recess 224 is not provided are alternately provided along the circumferential direction. Here, like the inside of the first recess 224a, the magnetic flux is less likely to pass through the second recess 224b than the rotor core 222, which is a magnetic member. Therefore, similarly to the motor torque MT4 of the first portion 227a described above, the motor torque MT5 of the second portion 227b also periodically increases or decreases according to the rotation angle φ.
 第1平面部222dと第2平面部222eとは、周方向に沿って交互に設けられ、第1凹部224aと第2凹部224bとは、軸方向から見て、周方向に沿って交互に設けられる。そのため、第1部分227aにおいてマグネット部23とステータ30との間の磁束が少なくなる部分と、第2部分227bにおいてマグネット部23とステータ30との間の磁束が少なくなる部分とは、軸方向から見て、周方向に沿って交互に設けられる。これにより、モータトルクMT4の位相とモータトルクMT5の位相とは半周期ずれて互いに逆位相となりやすく、モータトルクMT4の変動幅とモータトルクMT5との変動幅が互いに相殺される。よって、ロータ220全体のモータトルクMTtの変動幅を小さくでき、トルクリップルを低減することができる。 The first planar portions 222d and the second planar portions 222e are alternately provided along the circumferential direction, and the first concave portions 224a and the second concave portions 224b are alternately provided along the circumferential direction when viewed from the axial direction. It is done. Therefore, a portion where the magnetic flux between the magnet portion 23 and the stator 30 is reduced in the first portion 227a and a portion where the magnetic flux between the magnet portion 23 and the stator 30 is reduced in the second portion 227b are from the axial direction. As seen, they are provided alternately along the circumferential direction. Thereby, the phase of motor torque MT4 and the phase of motor torque MT5 are shifted from each other by a half cycle and are likely to be opposite to each other, and the fluctuation range of motor torque MT4 and the fluctuation range of motor torque MT5 cancel each other. Therefore, the fluctuation range of the motor torque MTt of the entire rotor 220 can be reduced, and the torque ripple can be reduced.
 なお、上述した凹部224が設けられることによるモータトルクMTの低下は、実質的に、凹部224が設けられた部分においてマグネット部23とステータ30との間の径方向の距離が大きくなったことに相当する。言い換えれば、本実施形態によれば、マグネット部23とステータ30との間の径方向の距離を変えることなく、凹部224を適宜設けることによって、マグネット部23とステータ30との径方向の距離を変えたことと同等の効果を得ることができる。 Note that the decrease in motor torque MT due to the provision of the recess 224 described above is that the radial distance between the magnet portion 23 and the stator 30 is substantially increased in the portion where the recess 224 is provided. Equivalent to. In other words, according to the present embodiment, the radial distance between the magnet part 23 and the stator 30 can be increased by appropriately providing the recess 224 without changing the radial distance between the magnet part 23 and the stator 30. An effect equivalent to the change can be obtained.
 また、本実施形態によれば、第1凹部224aは、第1部分227aにおける第1平面部222dのうち周方向両側の縁部を除いた全面に設けられる。そのため、第1部分227aにおいて、第1平面部222dにおける第1凹部224aの周方向の寸法と、凹部224が設けられない第2平面部222eの周方向の寸法と、をほぼ同じにできる。これにより、第1部分227aのモータトルクMT4の波形において、モータトルクMT4が増加する周期幅とモータトルクMT4が減少する周期幅とをほぼ同じにすることができる。 Further, according to the present embodiment, the first recess 224a is provided on the entire surface of the first flat portion 222d of the first portion 227a except for the edges on both sides in the circumferential direction. Therefore, in the first portion 227a, the circumferential dimension of the first recess 224a in the first plane portion 222d and the circumferential dimension of the second plane portion 222e where the recess 224 is not provided can be made substantially the same. Thereby, in the waveform of the motor torque MT4 of the first portion 227a, the cycle width in which the motor torque MT4 increases and the cycle width in which the motor torque MT4 decreases can be made substantially the same.
 また、第2凹部224bは、第2部分227bにおける第2平面部222eのうち周方向両側の縁部を除いた全面に設けられる。そのため、第2部分227bにおいて、第2平面部222eにおける第2凹部224bの周方向の寸法と、凹部224が設けられない第1平面部222dの周方向の寸法と、をほぼ同じにできる。これにより、第2部分227bのモータトルクMT5の波形において、モータトルクMT5が増加する周期幅とモータトルクMT5が減少する周期幅とをほぼ同じにすることができる。したがって、モータトルクMT4の波形とモータトルクMT5の波形とが半周期ずれることで、より互いに逆位相となりやすく、より好適にトルクリップルを低減できる。 Also, the second recess 224b is provided on the entire surface of the second portion 227b excluding the edges on both sides in the circumferential direction of the second flat portion 222e. Therefore, in the second portion 227b, the circumferential dimension of the second recess 224b in the second planar portion 222e and the circumferential dimension of the first planar portion 222d where the recess 224 is not provided can be made substantially the same. Thereby, in the waveform of the motor torque MT5 of the second portion 227b, the cycle width in which the motor torque MT5 increases and the cycle width in which the motor torque MT5 decreases can be made substantially the same. Therefore, when the waveform of the motor torque MT4 and the waveform of the motor torque MT5 are shifted by a half cycle, they are more likely to be in opposite phases, and the torque ripple can be reduced more suitably.
 また、コギングトルクCT4,CT5の波形において、コギングトルクCTが正の値となる周期幅と、コギングトルクCTが負の値となる周期幅とをほぼ同じにすることができる。そのため、コギングトルクCT4の波形とコギングトルクCT5の波形とが半周期ずれることで、より互いに逆位相となりやすく、より好適にコギングトルクCTtbを低減できる。 Further, in the waveforms of the cogging torques CT4 and CT5, the period width in which the cogging torque CT has a positive value and the period width in which the cogging torque CT has a negative value can be made substantially the same. Therefore, when the waveform of the cogging torque CT4 and the waveform of the cogging torque CT5 are shifted by a half cycle, they are more likely to be in opposite phases, and the cogging torque CTtb can be more preferably reduced.
 また、第1部分227aにおける第1平面部222dのうち周方向両側の縁部には、第1凹部224aが設けられない。そのため、第1平面部222dに設けられるマグネット部23を、第1凹部224aの周方向両側の縁部によって径方向内側から支持することができる。これにより、マグネット部23をより安定して第1平面部222dに保持できる。 In addition, the first concave portion 224a is not provided at the edges on both sides in the circumferential direction of the first flat portion 222d in the first portion 227a. Therefore, the magnet part 23 provided in the 1st plane part 222d can be supported from the radial inside by the edge part of the circumferential direction both sides of the 1st recessed part 224a. Thereby, the magnet part 23 can be hold | maintained to the 1st plane part 222d more stably.
 また、第2部分227bにおける第2平面部222eのうち周方向両側の縁部には、第2凹部224bが設けられない。そのため、第2平面部222eに設けられるマグネット部23を、第2凹部224bの周方向両側の縁部によって径方向内側から支持することができる。これにより、マグネット部23をより安定して第2平面部222eに保持できる。 In addition, the second concave portion 224b is not provided at the edges on both sides in the circumferential direction of the second flat portion 222e in the second portion 227b. Therefore, the magnet part 23 provided in the 2nd plane part 222e can be supported from the radial inside by the edge part of the circumferential direction both sides of the 2nd recessed part 224b. Thereby, the magnet part 23 can be hold | maintained to the 2nd plane part 222e more stably.
 また、本実施形態によれば、第1部分227aと第2部分227bとは、形状および軸方向の寸法が互いに同じであり、周方向にずれて積層される。そのため、各部分におけるコギングトルクCTの波形は、周期および振幅が互いにほぼ同じとなる。これにより、コギングトルクCT4の波形とコギングトルクCT5の波形とが逆位相となることで、より好適にコギングトルクCTtbを低減できる。また、同様に、各部分におけるモータトルクMTの波形は、周期および振幅が互いにほぼ同じとなる。これにより、モータトルクMT4の波形とモータトルクMT5の波形とが逆位相となることで、より好適にトルクリップルを低減できる。 Further, according to the present embodiment, the first portion 227a and the second portion 227b have the same shape and the same dimension in the axial direction, and are stacked while being shifted in the circumferential direction. For this reason, the waveform and the amplitude of the cogging torque CT in each part are substantially the same. Thereby, the waveform of cogging torque CT4 and the waveform of cogging torque CT5 become an antiphase, and can reduce cogging torque CTtb more suitably. Similarly, the waveform of the motor torque MT in each part has substantially the same period and amplitude. As a result, the torque ripple can be reduced more suitably by the motor torque MT4 waveform and the motor torque MT5 waveform being in opposite phases.
 本発明は上述の実施形態に限られず、他の構成を採用することもできる。軸方向の異なる位置において互いに周方向にずれて配置される第1凹部および第2凹部が少なくとも1つずつ設けられるならば、凹部の構成は特に限定されない。軸方向に異なる位置に配置される凹部同士は、互いに軸方向にずれていればよく、一部の軸方向位置が互いに同じであってもよい。例えば、上述した第1実施形態の例では、第1凹部24a,124aの上側の部分と第2凹部24bの下側の部分とが、軸方向において同じ位置に位置してもよい。第2凹部24bの上側の部分と第3凹部24c,124cの下側の部分とが、軸方向において同じ位置に位置してもよい。 The present invention is not limited to the above-described embodiment, and other configurations can be adopted. The configuration of the recess is not particularly limited as long as at least one first recess and two second recesses are provided that are shifted in the circumferential direction at different positions in the axial direction. The concave portions arranged at different positions in the axial direction need only be shifted from each other in the axial direction, and some axial positions may be the same. For example, in the example of the first embodiment described above, the upper part of the first recesses 24a and 124a and the lower part of the second recess 24b may be located at the same position in the axial direction. The upper part of the second recess 24b and the lower part of the third recesses 24c, 124c may be located at the same position in the axial direction.
 また、第1実施形態において、第3凹部24cは、設けられなくてもよい。この場合、例えば、平面部において第1凹部は、周方向他方側に設けられ、第2凹部は、周方向一方側に設けられてもよい。また、例えば、上述した第1実施形態においては、第2凹部24bが設けられず、第1凹部24aと第3凹部24cとのみが設けられてもよい。この場合、例えば、第3凹部24cが、第2凹部に相当する。平面部のうち一部の平面部には、凹部が設けられなくてもよい。平面部ごとに設けられる凹部の数が異なってもよい。 Further, in the first embodiment, the third recess 24c may not be provided. In this case, for example, in the plane portion, the first recess may be provided on the other circumferential side, and the second recess may be provided on the one circumferential side. Further, for example, in the first embodiment described above, the second recess 24b may not be provided, and only the first recess 24a and the third recess 24c may be provided. In this case, for example, the third recess 24c corresponds to the second recess. A concave portion may not be provided in some of the flat portions. The number of the recessed portions provided for each plane portion may be different.
 複数の凹部の形状は、特に限定されない。凹部の形状は、円形状であってもよいし、四角形状以外の多角形状であってもよい。凹部の内部は、接着剤以外の非磁性部材が充填されてもよいし、空隙であってもよい。例えば、第1実施形態においては、凹部24,124の内部は空隙であってもよい。第2実施形態においては、凹部224の内部に接着剤等の非磁性部材が充填されてもよい。 The shape of the plurality of recesses is not particularly limited. The shape of the recess may be a circular shape or a polygonal shape other than a square shape. The inside of the recess may be filled with a nonmagnetic member other than an adhesive or may be a gap. For example, in the first embodiment, the inside of the recesses 24 and 124 may be a gap. In the second embodiment, the recess 224 may be filled with a nonmagnetic member such as an adhesive.
 ロータコアは、第1凹部と第2凹部とが設けられるならば、何段構成であってもよい。例えば、第1実施形態においてロータコア22,122は、2段構成であってもよいし、4段以上の構成であってもよい。例えば、第2実施形態においてロータコア222は、3段以上の構成であってもよい。第2実施形態において3段構成の場合、例えば、第2部分227bの上側に、第1部分227aと同様に第1平面部に第1凹部が設けられる部分が積層される。第2実施形態において4段以上の構成の場合、例えば、第2部分227bの上側に、第1部分227aと同様に第1平面部に第1凹部が設けられる部分と、第2部分227bと同様に第2平面部に第2凹部が設けられる部分とが交互に積層される。第2実施形態において3段以上の構成の場合、第1平面部に第1凹部が設けられる部分の軸方向の寸法の合計と、第2平面部に第2凹部が設けられる部分の軸方向の寸法の合計とを同じとすることで、各部におけるコギングトルクCTとモータトルクMTとを好適に相殺することができ、コギングトルクCTおよびトルクリップルを好適に低減できる。 The rotor core may have any number of steps as long as the first recess and the second recess are provided. For example, in the first embodiment, the rotor cores 22 and 122 may have a two-stage configuration or a four-stage or more configuration. For example, in the second embodiment, the rotor core 222 may have three or more stages. In the case of the three-stage configuration in the second embodiment, for example, a portion where the first concave portion is provided in the first flat portion is stacked on the upper side of the second portion 227b, similarly to the first portion 227a. In the case of the configuration of four or more steps in the second embodiment, for example, a portion where the first concave portion is provided in the first flat portion on the upper side of the second portion 227b, and the same as the second portion 227b. The portions where the second concave portions are provided in the second plane portion are alternately laminated. In the case of the configuration of three or more steps in the second embodiment, the sum of the dimensions in the axial direction of the portion where the first concave portion is provided in the first plane portion and the axial direction of the portion where the second concave portion is provided in the second plane portion By making the sum of the dimensions the same, the cogging torque CT and the motor torque MT in each part can be suitably canceled out, and the cogging torque CT and the torque ripple can be suitably reduced.
 各平面部に設けられるマグネット部は、軸方向に複数に分割されてもよい。ロータコアの形状は、特に限定されない。ロータコアは、例えば、円柱状であってもよい。この場合、マグネット部は、円筒状の単一部材であってもよい。また、この場合、例えば、凹部は、マグネット部の各磁極と径方向に対向する位置に複数ずつ設けられてもよい。 The magnet part provided in each plane part may be divided into a plurality in the axial direction. The shape of the rotor core is not particularly limited. The rotor core may be cylindrical, for example. In this case, the magnet part may be a cylindrical single member. In this case, for example, a plurality of recesses may be provided at positions facing each magnetic pole of the magnet unit in the radial direction.
 上述した実施形態のモータの用途は、特に限定されない。上述した実施形態のモータは、例えば、ポンプ、ブレーキ、クラッチ、掃除機、ドライヤ、シーリングファン、洗濯機および冷蔵庫などの多様な機器に用いることができる。一例として、上述した実施形態のモータ10を電動パワーステアリング装置に搭載した例について説明する。 The application of the motor of the above-described embodiment is not particularly limited. The motor of the above-described embodiment can be used for various devices such as a pump, a brake, a clutch, a cleaner, a dryer, a ceiling fan, a washing machine, and a refrigerator. As an example, an example in which the motor 10 of the above-described embodiment is mounted on an electric power steering apparatus will be described.
 図10に示すように、電動パワーステアリング装置1は、自動車の車輪の操舵機構に搭載される。電動パワーステアリング装置1は、操舵力を油圧により軽減する装置である。本実施形態の電動パワーステアリング装置1は、モータ10と、操舵軸314と、オイルポンプ316と、コントロールバルブ317と、を備える。操舵軸314は、ステアリング311からの入力を、車輪312を有する車軸313に伝える。オイルポンプ316は、車軸313に油圧による駆動力を伝えるパワーシリンダ315に油圧を発生させる。コントロールバルブ317は、オイルポンプ316のオイルを制御する。電動パワーステアリング装置1において、モータ10は、オイルポンプ316の駆動源として搭載される。本実施形態の電動パワーステアリング装置1は、本実施形態のモータ10を備える。このため、上述のモータ10と同様の効果を奏する電動パワーステアリング装置1が得られる。なお、電動パワーステアリング装置1に搭載されるモータは、図5に示すロータコア122を備えるモータであってもよいし、図6に示すロータコア222を備えるモータであってもよい。 As shown in FIG. 10, the electric power steering device 1 is mounted on a steering mechanism of a vehicle wheel. The electric power steering device 1 is a device that reduces the steering force by hydraulic pressure. The electric power steering apparatus 1 of the present embodiment includes a motor 10, a steering shaft 314, an oil pump 316, and a control valve 317. The steering shaft 314 transmits the input from the steering 311 to the axle 313 having the wheels 312. The oil pump 316 generates hydraulic pressure in the power cylinder 315 that transmits the driving force by hydraulic pressure to the axle 313. The control valve 317 controls the oil of the oil pump 316. In the electric power steering apparatus 1, the motor 10 is mounted as a drive source for the oil pump 316. The electric power steering apparatus 1 according to the present embodiment includes the motor 10 according to the present embodiment. For this reason, the electric power steering apparatus 1 which has an effect similar to the above-mentioned motor 10 is obtained. The motor mounted on the electric power steering apparatus 1 may be a motor including the rotor core 122 illustrated in FIG. 5 or a motor including the rotor core 222 illustrated in FIG.
 上記の各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 The above configurations can be appropriately combined within a range that does not contradict each other.

Claims (18)

  1.  中心軸を有するシャフトと、
     前記シャフトと固定されるロータコアと、
     前記ロータコアの径方向外側面に設けられるマグネット部と、
     を備え、
     前記ロータコアは、前記ロータコアの径方向外側面から径方向内側に窪み前記マグネット部と径方向に対向する複数の凹部を有し、
     前記複数の凹部は、前記凹部として、軸方向の異なる位置において互いに周方向にずれて配置される第1凹部および第2凹部を含む、ロータ。
    A shaft having a central axis;
    A rotor core fixed to the shaft;
    A magnet portion provided on a radially outer surface of the rotor core;
    With
    The rotor core has a plurality of recesses that are recessed radially inward from the radially outer surface of the rotor core and facing the magnet portion in the radial direction;
    The plurality of concave portions include a first concave portion and a second concave portion, which are arranged as being shifted from each other in the circumferential direction at different positions in the axial direction as the concave portions.
  2.  前記ロータコアは、軸方向から見て、外形が多角形状であり、
     前記ロータコアの径方向外側面は、周方向に並ぶ複数の平面部を有し、
     前記マグネット部、前記第1凹部および前記第2凹部は、前記平面部ごとに設けられる、請求項1に記載のロータ。
    The rotor core has a polygonal outer shape when viewed from the axial direction,
    The radially outer surface of the rotor core has a plurality of flat portions arranged in the circumferential direction,
    The rotor according to claim 1, wherein the magnet portion, the first recess, and the second recess are provided for each of the planar portions.
  3.  前記平面部ごとに設けられる各前記マグネット部は、それぞれ単一の部材であり、前記平面部ごとに設けられた複数の前記凹部と径方向に対向する、請求項2に記載のロータ。 The rotor according to claim 2, wherein each of the magnet portions provided for each of the planar portions is a single member and is opposed to the plurality of concave portions provided for each of the planar portions in a radial direction.
  4.  前記ロータコアは、前記ロータコアの径方向外側面から径方向内側に窪み軸方向に延びる溝部を有し、
     前記溝部は、前記ロータコアの径方向外側面において、周方向に隣り合う一対の前記平面部同士の間に配置されて径方向外側に開口し、径方向外側に向かうにしたがい溝幅が小さくなる、請求項2または3に記載のロータ。
    The rotor core has a groove that extends in the radial direction from the radially outer surface of the rotor core and extends in the axial direction,
    The groove portion is disposed between a pair of the planar portions adjacent in the circumferential direction on the radially outer side surface of the rotor core and opens radially outward, and the groove width decreases toward the radially outer side. The rotor according to claim 2 or 3.
  5.  前記複数の凹部は、前記凹部として、第3凹部をさらに含み、
     前記第3凹部は、前記平面部ごとに設けられ、
     前記第2凹部は、前記第1凹部よりも軸方向一方側で、かつ、前記第1凹部よりも周方向一方側に位置し、
     前記第3凹部は、前記第2凹部よりも軸方向一方側で、かつ、前記第2凹部よりも周方向一方側に位置する、請求項2から4のいずれか一項に記載のロータ。
    The plurality of recesses further include a third recess as the recess,
    The third recess is provided for each of the planar portions,
    The second recess is located on one side in the axial direction from the first recess and on the one side in the circumferential direction from the first recess,
    The rotor according to any one of claims 2 to 4, wherein the third recess is located on one axial side of the second recess and on one circumferential side of the second recess.
  6.  径方向外側から見て、前記第1凹部と前記第3凹部とは、前記第2凹部を中心として点対称となる位置に配置される、請求項5に記載のロータ。 6. The rotor according to claim 5, wherein the first recess and the third recess are arranged in a point-symmetric position with respect to the second recess as viewed from the outside in the radial direction.
  7.  前記第2凹部の周方向の寸法は、前記第1凹部の周方向の寸法および前記第3凹部の周方向の寸法よりも大きい、請求項5または6に記載のロータ。 The rotor according to claim 5 or 6, wherein a circumferential dimension of the second recess is larger than a circumferential dimension of the first recess and a circumferential dimension of the third recess.
  8.  前記第2凹部の内部と前記第3凹部の内部とは、互いに繋がる、請求項5から7のいずれか一項に記載のロータ。 The rotor according to any one of claims 5 to 7, wherein the inside of the second recess and the inside of the third recess are connected to each other.
  9.  前記ロータコアは、
      第1部分と、
      前記第1部分の軸方向一方側に位置する第2部分と、
     を有し、
     前記第1凹部は、前記第1部分の径方向外側面において、周方向に沿って一周に亘って互いに間隔を空けて複数設けられ、
     前記第2凹部は、前記第2部分の径方向外側面において、周方向に沿って一周に亘って互いに間隔を空けて複数設けられ、
     前記第1凹部と前記第2凹部とは、軸方向から見て、周方向に沿って交互に設けられる、請求項1に記載のロータ。
    The rotor core is
    A first part;
    A second portion located on one axial side of the first portion;
    Have
    A plurality of the first recesses are provided on the radially outer surface of the first portion at intervals from one another along the circumferential direction.
    A plurality of the second recesses are provided on the radially outer side surface of the second portion at intervals from one another along the circumferential direction.
    The rotor according to claim 1, wherein the first recesses and the second recesses are alternately provided along a circumferential direction when viewed from the axial direction.
  10.  前記ロータコアは、軸方向から見て、外形が多角形状であり、
     前記ロータコアの径方向外側面は、周方向に並ぶ複数の平面部を有し、
     前記マグネット部は、前記平面部ごとに設けられ、
     前記複数の平面部は、前記平面部として、前記第1部分の径方向外側面に前記第1凹部が設けられた第1平面部と、前記第2部分の径方向外側面に前記第2凹部が設けられた第2平面部と、を含み、
     前記第1平面部と前記第2平面部とは、周方向に沿って交互に設けられる、請求項9に記載のロータ。
    The rotor core has a polygonal outer shape when viewed from the axial direction,
    The radially outer surface of the rotor core has a plurality of flat portions arranged in the circumferential direction,
    The magnet part is provided for each flat part,
    The plurality of flat portions include, as the flat portion, a first flat portion in which the first concave portion is provided on a radially outer surface of the first portion, and a second concave portion on a radially outer surface of the second portion. A second plane portion provided with,
    The rotor according to claim 9, wherein the first planar portion and the second planar portion are alternately provided along a circumferential direction.
  11.  前記第1凹部は、前記第1部分における前記第1平面部のうち周方向両側の縁部を除いた全面に設けられ、
     前記第2凹部は、前記第2部分における前記第2平面部のうち周方向両側の縁部を除いた全面に設けられる、請求項10に記載のロータ。
    The first recess is provided on the entire surface excluding edges on both sides in the circumferential direction of the first flat portion in the first portion,
    11. The rotor according to claim 10, wherein the second recess is provided on the entire surface of the second portion of the second portion excluding edges on both sides in the circumferential direction.
  12.  前記第1部分と前記第2部分とは、形状および軸方向の寸法が互いに同じであり、周方向にずれて積層される、請求項9から11のいずれか一項に記載のロータ。 The rotor according to any one of claims 9 to 11, wherein the first portion and the second portion have the same shape and axial dimensions, and are stacked while being shifted in the circumferential direction.
  13.  前記第1凹部の内部と前記第2凹部の内部とは、互いに繋がる、請求項1から12のいずれか一項に記載のロータ。 The rotor according to any one of claims 1 to 12, wherein the inside of the first recess and the inside of the second recess are connected to each other.
  14.  前記複数の凹部の形状は、互いに同じ形状である、請求項1から13のいずれか一項に記載のロータ。 The rotor according to any one of claims 1 to 13, wherein the plurality of recesses have the same shape.
  15.  前記凹部には、接着剤が充填される、請求項1から14のいずれか一項に記載のロータ。 The rotor according to any one of claims 1 to 14, wherein the concave portion is filled with an adhesive.
  16.  前記ロータコアは、前記ロータコアを軸方向に貫通する孔部を有し、
     前記孔部は、前記ロータコアに周方向に互いに間隔をあけて配置される、請求項1から15のいずれか一項に記載のロータ。
    The rotor core has a hole that penetrates the rotor core in the axial direction;
    The rotor according to any one of claims 1 to 15, wherein the hole portions are arranged in the rotor core at intervals in a circumferential direction.
  17.  請求項1から16のいずれか一項に記載のロータと、
     前記ロータと径方向に隙間をあけて対向するステータと、
     を備える、モータ。
    The rotor according to any one of claims 1 to 16, and
    A stator facing the rotor with a gap in the radial direction;
    Comprising a motor.
  18.  請求項17に記載のモータを備える、電動パワーステアリング装置。 An electric power steering apparatus comprising the motor according to claim 17.
PCT/JP2019/013098 2018-03-30 2019-03-27 Rotor, motor, and electric power steering device WO2019189313A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020509165A JP7275436B2 (en) 2018-03-30 2019-03-27 Rotors, motors and electric power steering devices
CN201980022271.8A CN111919361B (en) 2018-03-30 2019-03-27 Rotor, motor, and electric power steering device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-067714 2018-03-30
JP2018067714 2018-03-30
JP2018-119049 2018-06-22
JP2018119049 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019189313A1 true WO2019189313A1 (en) 2019-10-03

Family

ID=68060066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013098 WO2019189313A1 (en) 2018-03-30 2019-03-27 Rotor, motor, and electric power steering device

Country Status (3)

Country Link
JP (1) JP7275436B2 (en)
CN (1) CN111919361B (en)
WO (1) WO2019189313A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038727A1 (en) * 2020-08-20 2022-02-24 三菱電機株式会社 Rotor of rotating electric machine and rotating electric machine
WO2022244113A1 (en) * 2021-05-18 2022-11-24 三菱電機株式会社 Electric motor, compressor, and refrigeration circuit device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004023864A (en) * 2002-06-14 2004-01-22 Meidensha Corp Rotor of permanent magnet rotary electric machine
JP2004248422A (en) * 2003-02-14 2004-09-02 Moric Co Ltd Field magnet type rotary electric equipment
JP2011015458A (en) * 2009-06-30 2011-01-20 Hitachi Ltd Permanent magnet type rotary electric machine, and elevator device using the same
WO2014174572A1 (en) * 2013-04-22 2014-10-30 三菱電機株式会社 Permanent magnet type motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017005854A (en) * 2015-06-10 2017-01-05 日本電産テクノモータ株式会社 Rotor, motor, and manufacturing method of rotor
JP6536273B2 (en) * 2015-08-10 2019-07-03 日本電産株式会社 Rotor and motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004023864A (en) * 2002-06-14 2004-01-22 Meidensha Corp Rotor of permanent magnet rotary electric machine
JP2004248422A (en) * 2003-02-14 2004-09-02 Moric Co Ltd Field magnet type rotary electric equipment
JP2011015458A (en) * 2009-06-30 2011-01-20 Hitachi Ltd Permanent magnet type rotary electric machine, and elevator device using the same
WO2014174572A1 (en) * 2013-04-22 2014-10-30 三菱電機株式会社 Permanent magnet type motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038727A1 (en) * 2020-08-20 2022-02-24 三菱電機株式会社 Rotor of rotating electric machine and rotating electric machine
JP7351015B2 (en) 2020-08-20 2023-09-26 三菱電機株式会社 Rotor of rotating electrical machine and rotating electrical machine
WO2022244113A1 (en) * 2021-05-18 2022-11-24 三菱電機株式会社 Electric motor, compressor, and refrigeration circuit device

Also Published As

Publication number Publication date
JP7275436B2 (en) 2023-05-18
CN111919361B (en) 2023-06-02
JPWO2019189313A1 (en) 2021-03-25
CN111919361A (en) 2020-11-10

Similar Documents

Publication Publication Date Title
JP7131564B2 (en) Rotors, motors and electric power steering devices
US11165293B2 (en) Rotor and motor
US9806569B2 (en) Hybrid excitation rotating electrical machine
WO2019189313A1 (en) Rotor, motor, and electric power steering device
JP2007336624A (en) Multi-phase claw tooth type permanent magnet motor
JP2011172359A (en) Split rotor and electric motor
JP7235042B2 (en) Rotors, motors and electric power steering devices
CN111064294B (en) Stator core and motor
WO2019189728A1 (en) Rotor, motor, and electric power steering device
JP7131563B2 (en) Rotors, motors and electric power steering devices
WO2019159631A1 (en) Rotor, motor, and electric power steering device
CN113472168B (en) Motor
CN113472110B (en) Motor
WO2023053371A1 (en) Rotor and motor
JP2021164262A (en) motor
WO2019069547A1 (en) Rotor, motor, and electric power steering device
JP2021164263A (en) motor
CN115250020A (en) Electric machine
JP2010017031A (en) Rotor for rotating electric machine
JP2010017027A (en) Rotor for rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509165

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19776002

Country of ref document: EP

Kind code of ref document: A1