WO2019189556A1 - Fluorinated monomer, fluorinated polymer, curable composition, and production method for pattern - Google Patents

Fluorinated monomer, fluorinated polymer, curable composition, and production method for pattern Download PDF

Info

Publication number
WO2019189556A1
WO2019189556A1 PCT/JP2019/013542 JP2019013542W WO2019189556A1 WO 2019189556 A1 WO2019189556 A1 WO 2019189556A1 JP 2019013542 W JP2019013542 W JP 2019013542W WO 2019189556 A1 WO2019189556 A1 WO 2019189556A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
mold
meth
fluorine
acrylate
Prior art date
Application number
PCT/JP2019/013542
Other languages
French (fr)
Japanese (ja)
Inventor
増渕 毅
実恵子 菊池
宮澤 覚
毅 小川
佑介 田中
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to JP2020509310A priority Critical patent/JP7277797B2/en
Publication of WO2019189556A1 publication Critical patent/WO2019189556A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • C08F220/24Esters containing halogen containing perhaloalkyl radicals

Definitions

  • the present invention relates to a novel fluorine-containing monomer, a fluorine-containing polymer polymerized or copolymerized using the fluorine-containing monomer, and a curable composition containing a polymerization initiator and the fluorine-containing monomer.
  • the present invention relates to an imprint that forms a pattern using the curable composition.
  • Imprinting is one of the fine processing methods required for manufacturing semiconductor integrated circuits. Imprint is a state in which a mold having a fine concavo-convex pattern is pressed against a curable composition applied to a substrate, the curable composition is cured by light, heat, etc. This is a method for producing “a member in which a cured film having a fine concavo-convex pattern shape is arranged on a substrate” by transferring to the curable composition.
  • active research is being conducted on curable compositions used in imprinting.
  • nanoimprinting the formation of a nano-sized (1 nm or more and 100 nm or less) uneven pattern is particularly called nanoimprinting.
  • Patent Document 1 discloses a photocurable composition suitable for optical nanoimprint technology and a pattern forming method using the same. That is, it is stated that when a specific compound among monomers having a plurality of acryloyl groups is used as the polymerizable compound constituting the photocurable composition, an excellent fine pattern can be formed by nanoimprinting. Specifically, among radically polymerizable compounds having a plurality of acryloyl groups in the molecule, for example, neopentyl glycol diacrylate, 1,6-hexanediol diacrylate, 1,10-decanediol diacrylate, trimethylolpropane triacrylate.
  • acrylate can be suitably used as one component of the polymerizable compound for the application.
  • they When they are in contact with the mold, they can be polymerized to form a cured film having a high strength by irradiation with ultraviolet light, and have good mold release properties in the subsequent mold release process. It is disclosed that an excellent fine pattern can be formed through an etching process.
  • Patent Document 2 specifies the number of particles having a particle size of 0.07 ⁇ m or more that are present in a liquid material for nanoimprinting (typically, the curable composition for pattern formation disclosed in Patent Document 1). It is disclosed that, when the number is less than the number, damage and defects of the pattern are significantly suppressed in nanoimprinting, and a decrease in the yield of the nanoimprinting process can be significantly suppressed.
  • Non-Patent Document 1 describes nano-imprint technology in general, and in particular, in nano-imprint, the filling rate of a curable composition into a mold in a mold contact process (cured in a fine uneven portion of the mold). It is described that there is a strong demand for an improvement in the rate at which the composition is filled.
  • the “curable composition containing a radically polymerizable compound having a plurality of acryloyl groups (acrylic sites) in one molecule” disclosed in Patent Documents 1 and 2 is excellent as a nanoimprint material. By using it, in a nanoimprint, a fine uneven
  • the filling speed of the curable composition into the mold is also an important factor.
  • the time required for filling can greatly affect the working efficiency during nanoimprinting.
  • Patent Document 1 neopentyl glycol diacrylate shown below is particularly preferably used.
  • the “viscosity of the cured composition” is only one of the factors that determine the “filling rate into the mold”. Specifically, in nanoimprint, it is known that the filling speed is proportional to the reciprocal of the number of capillaries (Ca) (Non-patent Document 1).
  • An object of the present invention is to provide an imprint material having a small capillary number (Ca).
  • the number of capillaries (Ca) is derived from the following formula (i). (Ca: number of capillaries, ⁇ : surface tension, ⁇ 1 : mold contact angle, ⁇ 2 : substrate contact angle, ⁇ : viscosity, V: mold lowering speed, L and h 0 : apparatus constants depending on the imprint apparatus. )
  • the capillary number (Ca) is proportional to the viscosity ( ⁇ ) and inversely proportional to the surface tension ( ⁇ ). Mold contact angle ( ⁇ 1 ) and substrate contact angle ( ⁇ 2 ) are also important factors. As the number of capillaries (Ca) decreases, the filling rate increases.
  • the fluorine-containing monomer has the same basic skeleton as that of the neopentyl glycol diacrylate, and a trifluoromethyl group (— The main difference is that two CF 3 ) are introduced.
  • the number of capillaries (Ca) of the fluorine-containing monomer represented by the formula (1) was found to be significantly smaller than that of neopentyl diacrylate, and the filling rate of the mold irregularities was significantly high.
  • the fluorine-containing monomer represented by the formula (1) can be efficiently obtained by using a diol represented by the formula (2) which is easily available as a starting material and subjecting it to (meth) acrylation. Can be manufactured (described later).
  • the present inventor uses a curable composition containing the fluorine-containing monomer as a component, and a method for producing a “member having a cured film having a pattern shape on a substrate” (hereinafter referred to as a pattern forming method). Found).
  • the present invention includes the following inventions.
  • invention 2 A curable composition comprising the fluorine-containing monomer of Invention 1 and a polymerization initiator.
  • invention 4 The manufacturing method of the member with a pattern which arranged the cured film which has a pattern shape on a board
  • Arrangement step a step of arranging the curable composition of Invention 2 or Invention 3 on a substrate.
  • Mold contact step a step of bringing a mold having a pattern shape into contact with the curable composition disposed on the substrate.
  • Curing step a step of curing the curable composition in contact with the mold with light or heat to form a cured film.
  • Mold release step a step of separating the mold from the cured film to obtain the patterned member.
  • the condensable gas in the mold contact step is 1,1,1,3,3-pentafluoropropane (HFC-245fa), trans-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (E) ), Cis-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (Z)), trans-1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), or cis The method for producing a patterned member according to invention 5, comprising at least one of -1,3,3,3-tetrafluoropropene (HFO-1234ze (Z)).
  • the fluorine-containing monomer of Invention 1 is homopolymerized, or one or more kinds of single monomers selected from the group consisting of the fluorine-containing monomer and acrylic acid ester, methacrylic acid ester, styrene compound, and olefin.
  • invention 8 A step of homopolymerizing the fluorine-containing monomer of the invention 1, or Including the step of copolymerizing the fluorine-containing monomer and one or more monomers selected from the group consisting of acrylic acid esters, methacrylic acid esters, styrene compounds, and olefins. A method for producing a fluoropolymer.
  • a fluorine-containing monomer of the formula (1) is provided. Moreover, according to the present invention, it is possible to provide a curable composition containing the fluorine-containing monomer of the formula (1) having a small capillary number (Ca) as a constituent component. This curable composition is presumed to have a high filling rate into the mold in imprinting. Furthermore, the present invention provides a pattern forming method in imprinting (“manufacturing method of a member with a pattern in which a cured film having a pattern shape is arranged on a substrate”) using the curable composition.
  • (meth) acryl means acrylic and methacryl.
  • (Meth) acrylate means acrylate and methacrylate.
  • (Meth) acryloyl means acryloyl and methacryloyl.
  • EO represents ethylene oxide, and the EO-modified compound means having at least one ethyleneoxy group.
  • PO represents propylene oxide, and the PO-modified compound means having at least one propyleneoxy group.
  • fluorine-containing monomer represented by Formula (1) One aspect of the present invention is a fluorine-containing monomer represented by Formula (1).
  • R 1 and R 2 are each independently a hydrogen atom or a methyl group.
  • the fluorine-containing monomer is one of the following three types. "Fluorine-containing monomer in which R 1 and R 2 are both hydrogen atoms" "Fluorine-containing monomer in which R 1 and R 2 are both methyl groups" "Fluorine-containing monomer in which either R 1 or R 2 is a hydrogen atom and the other is a methyl group"
  • any of these three types of fluorine-containing monomers can be preferably used.
  • the object of the present invention can be achieved by using only one type, but two or more of these three types of fluorine-containing monomers may be used in combination as a mixture.
  • the fluorine-containing monomer represented by Formula (1) is a novel compound.
  • the synthesis method is shown below. Preferred synthesis methods include a “first method” and a “second method”, both of which use a diol represented by the formula (2) (which is an easily available fluorine-containing compound) as a raw material. It is subjected to (meth) acrylation reaction.
  • the first method is represented by the formula (4) by first reacting the diol represented by the formula (2) with a (meth) acrylic anhydride represented by the formula (3).
  • a second step of obtaining the object to be expressed see the following formula.
  • the anhydride represented by the formula (3) is used as the (meth) acrylate for the diol represented by the formula (2), the mono (meth) acrylic acid represented by the formula (4)
  • the reaction tends to stop when the ester is formed, and the second (meth) acrylic moiety is difficult to be introduced (first step).
  • the (meth) acrylic acid halide represented by the formula (6) is reacted as the second step.
  • a second meta (acrylic) moiety is introduced and the target of formula (1) is obtained with high selectivity.
  • either one of R 1 and R 2 is a hydrogen atom and the other is a methyl group. It is particularly suitable for synthesizing a “fluorinated monomer”.
  • R 1 and R 2 are the same type of group “fluorinated monomer in which R 1 and R 2 are both hydrogen atoms”, “fluorinated monomer in which both R 1 and R 2 are methyl groups.
  • the ⁇ mer '' can be synthesized by the first method, but it is advantageous because the following second method can be synthesized in a single reaction step rather than synthesize through a two-step reaction. There are many cases.
  • Second Method the diol represented by the formula (2) is reacted with the (meth) acrylic acid halide represented by the formula (6) and the formula (7) to obtain the formula (1).
  • Comprising a reaction (third step) for synthesizing the desired product see formula below).
  • the second method is a method in which only one kind of (meth) acrylic acid halide is reacted with a diol of the formula (2) to obtain R as an object of the formula (1).
  • the first method requires two reaction steps, the second method allows the target product to be synthesized in a single reaction step). If R 2 is equal to R 1 , the reaction of the second method can also be expressed as:
  • the implementation is not hindered.
  • “The compounds of formula (6) and formula (7) are mixed at a molar ratio of 1: 1, for example, and reacted simultaneously with the compound of formula (2)”, “After first subjecting the acrylate halide to the reaction, Next, subject the methacrylic acid halide to the reaction ", “First, methacrylic acid halide is subjected to reaction, and then acrylic acid halide is subjected to reaction”, Any of these methods can be adopted.
  • the diol represented by the formula (2) and the (meth) acrylic anhydride represented by the formula (3) are reacted to produce the (meth) acrylic ester represented by the formula (4). It is a process.
  • the method for producing the diol represented by the formula (2) and the first step are disclosed in Japanese Patent No. 4667035. For example, 1,1,1-trifluoro-2- (trifluoromethyl) pent-4-en-2-ol is reacted with concentrated sulfuric acid and then contacted with water to hydrolyze 1,1 -Bis (trifluoromethyl) butane-1,3-diol (diol represented by the formula (2)) is obtained.
  • the amount of (meth) acrylic anhydride represented by formula (3) is usually 0.5 mol or more and 5.0 mol or less with respect to 1.0 mol of diol represented by formula (2), 0.7 mol or more and 3.0 mol or less are preferable, and 1.0 mol or more and 2.0 mol or less are more preferable. If the amount of (meth) acrylic anhydride is less than 0.5 mol with respect to 1.0 mol of diol, the conversion rate of the reaction and the yield of the target product are not sufficient, and if it exceeds 5.0 mol, the reaction is involved. Not (meth) acrylic anhydride increases, which is not economically preferable from the time of disposal.
  • additives can be added to accelerate the reaction.
  • Additives used can include organic sulfonic acids or Lewis acids.
  • the organic sulfonic acid include methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, benzenesulfonic acid, and trifluoromethanesulfonic acid.
  • the Lewis acid include BF 3 , BCl 2 and anhydrous hydrogen fluoride. Preferred are methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, benzenesulfonic acid, and trifluoromethanesulfonic acid.
  • the amount of the additive used in this reaction is 0.01 mol or more and 2.0 mol or less with respect to 1.0 mol of the diol represented by the formula (2) of the substrate.
  • the amount is preferably 8 mol or less, more preferably 0.05 mol or more and 1.5 mol or less. If the amount of the additive is less than 0.01 mol with respect to 1.0 mol of the diol, the conversion rate of the reaction and the yield of the target product are both decreased, and if it exceeds 2.0 mol, the amount of the additive not involved in the reaction is decreased. Since it increases, it is not economically preferable.
  • the reaction temperature is usually 80 ° C. or higher and 200 ° C. or lower, preferably 100 ° C. or higher and 180 ° C. or lower, more preferably 120 ° C. or higher and 160 ° C. or lower when no additive is added. To do. In this case, if it is less than 80 ° C., the reaction rate is extremely slow, and if it exceeds 200 ° C., the raw acid anhydride or product ester may be polymerized, which is not preferable.
  • adding an additive it is 0 degreeC or more and 80 degrees C or less normally, Preferably it is 10 degreeC or more and 70 degrees C or less, More preferably, it implements at 20 degrees C or more and 60 degrees C or less.
  • additives such as methane sulfonic acid, ethane sulfonic acid, p-toluene sulfonic acid, benzene sulfonic acid, trifluoromethane sulfonic acid are coexisted in the system, and the reaction is carried out in a temperature range of 20 ° C. or higher and 60 ° C. or lower. This is a particularly preferred embodiment of this step.
  • This reaction proceeds even without solvent, but it is preferable to use a solvent in consideration of the uniformity of the reaction and the operability after the reaction.
  • a solvent in consideration of the uniformity of the reaction and the operability after the reaction.
  • An aromatic compound, an ether solvent, and a halogen-type solvent can be mentioned.
  • the aromatic compound include benzene, toluene, xylene, or mesitylene.
  • ether solvents include diethyl ether, methyl-t-butyl ether, diisopropyl ether, and tetrahydrofuran.
  • the halogen solvent include methylene chloride, chloroform, and carbon tetrachloride. These may be used alone or in combination.
  • the amount of the solvent used in this reaction is usually from 0.1 g to 100 g, preferably from 0.5 g to 50 g, preferably from 1.0 g to 20 g, based on 1 g of the diol represented by the formula (2). Is more preferable. If the amount of the solvent is less than 0.1 g with respect to 1 g of the diol, the merit of using the solvent cannot be sufficiently extracted. If it exceeds 100 g, it is not economically preferable from the viewpoint of productivity.
  • the amount of the (meth) acrylic acid halide represented by the formula (6) to be reacted with the ester represented by the formula (4) is not particularly limited, but 1 mol of the ester represented by the formula (4) Is preferably 0.1 mol or more and 50 mol or less, more preferably 0.5 mol or more and 10 mol or less, and particularly preferably 0.8 mol or more and 1.5 mol or less.
  • the reaction proceeds without the use of a solvent, but it is easier to control the use.
  • the solvent that can be used is only required to dissolve the reaction reagent, and examples thereof include tetrahydrofuran, diethyl ether, diisopropyl ether, dichloroethane, and toluene. These solvents may be used alone or in combination of two or more.
  • the reaction temperature is not particularly limited and is preferably ⁇ 78 ° C. or higher and 100 ° C. or lower, more preferably ⁇ 20 ° C. or higher and 50 ° C. or lower, and further preferably ⁇ 10 ° C. or higher and 30 ° C. or lower.
  • the reaction is preferably carried out with stirring.
  • the reaction time depends on the reaction temperature, it is preferably 1 minute or more and 100 hours or less, more preferably 30 minutes or more and 50 hours or less, and particularly preferably 1 hour or more and 24 hours or less.
  • the end point of the reaction is preferably the time when the (meth) acrylic acid ester represented by the formula (4) as the raw material is consumed.
  • a base examples include pyridine, triethylamine, and diisopropylethylamine.
  • the amount of these bases to be used is not particularly limited, but is preferably 0.1 mol or more and 50 mol or less with respect to 1 mol of the (meth) acrylic acid ester represented by the formula (4). Preferably they are 0.5 mol or more and 10 mol or less, Especially preferably, they are 0.8 mol or more and 1.5 mol or less.
  • the fluorine-containing monomer represented by the formula (1) can be obtained by extraction, washing, distillation or column chromatography. Further, the obtained fluorine-containing monomer can be purified by precision distillation or the like.
  • the diol represented by the formula (2) and the (meth) acrylic acid halide represented by the formula (6) or (7) are reacted, and the fluorine-containing single monomer represented by the formula (1) It is a process of manufacturing a body.
  • the halogen (X) of the (meth) acrylic acid halide include F, Cl, Br, and I, and Cl is particularly preferable.
  • the amount of (meth) acrylic acid halide used is not particularly limited, but is preferably 0.1 mol or more and 50 mol or less, and more preferably, with respect to 1 mol of the diol represented by the formula (2). Is 1.5 mol or more and 10 mol or less, and particularly preferably 1.8 mol or more and 3 mol or less.
  • the reaction proceeds without the use of a solvent, but it is easier to control the use.
  • the solvent examples include tetrahydrofuran, diethyl ether, diisopropyl ether, dichloroethane, and toluene. These solvents may be used alone or in combination of two or more.
  • the reaction temperature is not particularly limited and is preferably ⁇ 78 ° C. or higher and 100 ° C. or lower, more preferably ⁇ 20 ° C. or higher and 50 ° C. or lower, and particularly preferably ⁇ 10 ° C. or higher and 30 ° C. or lower.
  • the reaction is preferably carried out with stirring.
  • reaction time depends on the reaction temperature, it is preferably 1 minute or more and 100 hours or less, more preferably 30 minutes or more and 50 hours or less, and particularly preferably 1 hour or more and 24 hours or less. It is preferable to use an analytical instrument such as gas chromatography (GC) and set the end point of the reaction to the time when the diol represented by the formula (2) as the raw material is consumed.
  • GC gas chromatography
  • a base examples include pyridine, triethylamine, and diisopropylethylamine.
  • the amount of these bases to be used is not particularly limited, but is preferably 0.1 mol or more and 50 mol or less, more preferably 1.5 mol, with respect to 1 mol of the diol represented by the formula (2).
  • the amount is from 1 mol to 10 mol, particularly preferably from 1.8 mol to 3 mol.
  • the fluorine-containing monomer represented by the formula (1) can be obtained by extraction, washing, distillation or column chromatography. Moreover, it can refine
  • the polymerization may be carried out in the presence of a polymerization inhibitor for the purpose of preventing the reaction product or product from being polymerized, and it is usually preferable.
  • polymerization inhibitors to be used include hydroquinone, methoquinone, 2,5-di-t-butylhydroquinone, 1,2,4-trihydroxybenzene, 2,5-bistetramethylbutylhydroquinone, leucoquinizarin, phenothiazine, Tetraethylthiuram disulfide, 1,1-diphenyl-2-picrylhydrazyl, or 1,1-diphenyl-2-picrylhydrazine, manufactured by Seiko Chemical Co., Ltd., trade names, Nonflex F, Nonflex H, Nonflex DCD Non-flex MBP, Ozonon 35, Fuji Film Wako Pure Chemical Industries, Ltd., Q-1300, Q-1301 can be exemplified.
  • curable composition containing the said fluorine-containing monomer as a structural component is a curable composition containing the fluorine-containing monomer represented by Formula (1), and a polymerization initiator. It is.
  • the curable composition further comprises, as an optional component, a polymerizable compound other than the fluorine-containing monomer represented by the above formula (1) (sometimes referred to as “other polymerizable compound” in this specification), an increase Sensitizers, surfactants, solvents, and various additives can be included.
  • the polymerizable compound is a generic term for “the fluorine-containing monomer represented by the formula (1)” and “other polymerizable compounds” as described above.
  • the polymerizable compound is the main component of the curable composition for imprints.
  • the content of the polymerizable compound in the curable composition is usually 50% by mass or more, and typically 80% by mass or more.
  • a curable composition contains a solvent, it is not prevented that there is little content of a polymeric compound from this.
  • the fluorine-containing monomer represented by the formula (1) exhibits sufficient fluidity even without a solvent and can sufficiently fill the uneven portion of the mold, the solvent is not an essential component. If it does so, it is one of the especially preferable aspects that the content of the polymeric compound which occupies for the whole curable composition is 90 mass% or more.
  • a fluorine-containing monomer represented by the formula (1) may be used alone (see Example 1 in this specification).
  • “other polymerizable compounds” can be used in combination with the fluorine-containing monomer represented by the formula (1), and in that case, a cured film having even higher mechanical strength may be obtained.
  • the “other polymerizable compounds” are not particularly limited as long as they are radically polymerizable compounds, but are preferably compounds having one or more acryloyl groups or methacryloyl groups, that is, (meth) acrylic compounds.
  • the proportion of the “compound” mass is preferably 90% or more.
  • the monofunctional monomer that is a compound having one acryloyl group or methacryloyl group in its structure acts only for polymerization, and is a polyfunctional monomer that is a compound having two or more. Performs cross-linking.
  • the physical properties such as hardness of the cured product obtained can be adjusted by the ratio of these monomers. In order to obtain hardness in the cured film, it is preferable to perform crosslinking with a polyfunctional monomer.
  • the proportion of the fluorine-containing monomer of the formula (1) is usually 10% or more, 30 % Or more is preferable.
  • the proportion of the fluorine-containing monomer of the formula (1) is usually 10% or more, 30 % Or more is preferable.
  • the filling property of the curable composition is improved by the contribution. Therefore, even when a smaller amount of the fluorine-containing monomer represented by the formula (1) is contained, it is not excluded from the scope of the present invention.
  • monofunctional (meth) acrylic compounds having one acryloyl group or methacryloyl group include, for example, phenoxyethyl (meth) acrylate, phenoxy-2-methylethyl (meth) acrylate, phenoxy Ethoxyethyl (meth) acrylate, 3-phenoxy-2-hydroxypropyl (meth) acrylate, 2-phenylphenoxyethyl (meth) acrylate, 4-phenylphenoxyethyl (meth) acrylate, 3- (2-phenylphenyl) -2 -Hydroxypropyl (meth) acrylate, (meth) acrylate of EO-modified p-cumylphenol, 2-bromophenoxyethyl (meth) acrylate, 2,4-dibromophenoxyethyl (meth) acrylate, 2,4,6-tri Lomophenoxyethyl (meth) acryl
  • acrylic compounds Commercial products corresponding to these monofunctional (meth) acrylic compounds include trade names, Aronix M101, M102, M110, M111, M113, M117, M5700, TO-1317, M120, M150, M156 (above, Toagosei Co., Ltd.) Manufactured), MEDOL10, MIBDOL10, CHDOL10, MMDOL30, MEDOL30, MIBDOL30, CHDOL30, LA, IBXA, 2-MTA, HPA, Viscoat # 150, # 155, # 158, # 190, # 192, # 193, # 220, # 2000, # 2100, # 2150 (above Osaka Organic Chemical Co., Ltd.), light acrylate BO-A, EC-A, DMP-A, THF-A, HOP-A, HOA-MPE, HOA-MPL, PO -A, P-200A, NP 4EA, NP-8EA, epoxy ester M-600A (above, Ky
  • polyfunctional (meth) acrylic compounds having two or more acryloyl groups or methacryloyl groups include trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and EO modification.
  • the polymerization initiator includes a photopolymerization initiator and a thermal polymerization initiator.
  • the photopolymerization initiator is a substance that generates reactive species that cause a polymerization reaction of the polymerizable compound by light stimulation. Specific examples include a photo radical generator that generates radicals by light stimulation.
  • Photoradical generators are polymerization initiators that generate radicals by light (infrared rays, visible rays, ultraviolet rays, far ultraviolet rays, charged particle beams such as X-rays, electron beams, etc., radiation). Used for radically polymerizable compounds.
  • photoradical generator examples include 2,4,5-triarylimidazole dimer which may have a substituent, benzophenone derivative, aromatic ketone derivative, quinones, benzoin ether derivative, benzyl derivative, acridine derivative, N -Phenylglycine derivatives, acetophenone derivatives, benzoin derivatives, thioxanthone derivatives, other photoradical generators, and commercial products thereof. Each is illustrated below.
  • the following photo radical generators may be used alone or in combination of two or more.
  • ⁇ 2,4,5-triarylimidazole dimer optionally having substituent> 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4 , 5-diphenylimidazole dimer, or 2- (o- or p-methoxyphenyl) -4,5-diphenylimidazole dimer ⁇ benzophenone derivative> Benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), N, N′-tetraethyl-4,4′diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, 4-chlorobenzophenone 4,4′-dimethoxybenzophenone or 4,4′-diamino
  • the thermal polymerization initiator is a substance that generates reactive species that cause a polymerization reaction of the polymerizable compound by thermal stimulation. Specific examples include thermal radical generators that generate radicals upon thermal stimulation.
  • thermal radical generator examples include azo compounds and organic peroxides.
  • one polymerization initiator may be used alone, or two or more polymerization initiators may be used in combination.
  • a photopolymerization initiator is used as the initiator
  • a thermal polymerization initiator is used as the initiator.
  • the polymerization initiator contained in the curable composition of this invention Preferably, 0.01 mass% or more and 10 mass with respect to the mass (total mass) of a curable composition % Or less. More preferably, they are 0.1 mass% or more and 7 mass% or less, Especially preferably, they are 1 mass% or more and 5 mass% or less. Within this range, both the curing rate of the curable composition and the strength (resin strength) of the film (cured film) are excellent.
  • the curable composition of the present invention may contain additional additive components in addition to the above-described components within a range not impairing the effects of the invention according to various purposes.
  • additional additive components include surfactants, sensitizers, hydrogen donors, antioxidants, solvents, and polymer components.
  • the photocurable composition preferably contains a sensitizer. This will be described below.
  • sensitizer By including a sensitizer, there is a tendency that the polymerization reaction is accelerated and the reaction conversion rate is improved.
  • the sensitizer include a hydrogen donor or a sensitizing dye.
  • the content of the sensitizer is preferably 10% by mass or less with respect to the mass of the polymerizable compound. More preferably, it is 0.1 mass% or more and 5 mass% or less.
  • the content of the sensitizer is 0.1% by mass or more, the polymerization promoting effect can be expressed more effectively.
  • content of a sensitizer is 10 mass% or less, there exists a tendency for solubility and storage stability to be excellent.
  • a hydrogen donor is a compound in which hydrogen is donated to an initiation radical generated from a polymerization initiator or a radical at a polymerization growth terminal, and the hydrogen donor itself generates a radical. If the polymerization initiator is a photoradical generator, the polymerization rate may be improved.
  • Examples of the hydrogen donor include amine compounds and mercapto compounds. Examples of these compounds acting as hydrogen donors are shown below, but are not limited thereto.
  • 4,4′-bis (dialkylamino) benzophenone include 4,4′-bis (diethylamino
  • sensitizing dye is a compound that is excited by absorbing light of a specific wavelength and acts on a photopolymerization initiator.
  • the action here means energy transfer or electron transfer from the excited state sensitizing dye to the photopolymerization initiator. If the photopolymerization initiator is a photoradical generator, the addition of a sensitizer may improve the polymerization rate.
  • Sensitizing dyes include anthracene derivatives, anthraquinone derivatives, pyrene derivatives, perylene derivatives, carbazole derivatives, benzophenone derivatives, thioxanthone derivatives, xanthone derivatives, coumarin derivatives, phenothiazine derivatives, camphorquinone derivatives, acridine dyes, thiopyrylium salt dyes, merocyanine Dyes, quinoline dyes, styrylquinoline dyes, ketocoumarin dyes, thioxanthene dyes, xanthene dyes, oxonol dyes, cyanine dyes, rhodamine dyes, or pyrylium salt dyes. It is not limited to.
  • the sensitizing dyes may be used alone or in combination of two or more.
  • the curable composition of the present invention may contain a polymer component.
  • the polymer component used herein include the above 3-1.
  • the (meth) acrylic polymer (for example, polymethyl methacrylate) and the vinyl polymer (for example, polystyrene) which contain the repeating unit derived from the polymeric compound as described in the paragraph of (5) as a structural unit are contained.
  • the polymer component may be a copolymer.
  • curable composition Temporarily when compounding curable composition
  • a curable composition by mixing and dissolving a polymerization initiator and a polymerizable compound, it is carried out under a predetermined temperature condition. From workability etc., Preferably, they are 0 degreeC or more and 100 degrees C or less, More preferably, they are 10 degreeC or more and 50 degrees C or less.
  • the curable composition of the present invention removes impurities such as particles as much as possible in order to prevent inadvertent irregularities in the photocured product due to particles mixed in the curable composition and pattern defects. It is preferable. Specifically, after mixing each component contained in the curable composition, it is preferable to filter with a filter having a pore size of 0.001 ⁇ m or more and 5.0 ⁇ m or less, for example. When performing filtration using a filter, it is more preferable to carry out in multiple stages or repeat many times. Moreover, you may filter the filtered liquid again. As a filter used for filtration, filters made of polyethylene resin, polypropylene resin, fluororesin, nylon resin, etc. can be used, but are not particularly limited.
  • the concentration of metal impurities contained in the composition is preferably 10 ppm or less, and more preferably 100 ppb or less.
  • Pattern Forming Method is a method for producing a “patterned member in which a cured film having a pattern shape is arranged on a substrate” (D) by imprinting using the above-described curable composition (hereinafter referred to as “patterned member”).
  • patterned member a “patterned member in which a cured film having a pattern shape is arranged on a substrate” (D) by imprinting using the above-described curable composition (hereinafter referred to as “patterned member”).
  • Arrangement step A step of arranging the above-mentioned curable composition on a substrate to obtain “a member in which the curable composition is arranged on the substrate” (A).
  • Mold contact step A mold having a pattern shape is brought into contact with the curable composition in (A), and “a substrate / pattern composition having a curable composition / mold joined in this order” (B ).
  • Curing step The curable composition in (B) is cured by light or heat to form a cured film, and “a member in which a substrate / patterned cured film / mold is joined in this order” (C) Obtaining step.
  • Mold release step a step of separating the mold from (C) to obtain the patterned member (D).
  • the imprint includes a light imprint that is cured by light and a heat imprint that is cured by heat.
  • the imprint is a method for producing “a member in which a cured film having a concavo-convex pattern shape of preferably 1 nm or more and 100 ⁇ m or less is arranged on a substrate”.
  • nanoimprint is a method for producing “a member provided with a cured film having a concavo-convex pattern shape of 1 nm or more and 100 nm or less”.
  • the pattern formation method of this invention can be used suitably for nanoimprint.
  • the “pattern forming method” is referred to here as “a member in which a cured film having a pattern shape is arranged on a substrate” described in [Invention 4] in imprinting (D). And includes the four steps of “arrangement step”, “die contact step”, “curing step”, and “mold release step” as essential.
  • FIG. 1 is a schematic cross-sectional view showing an example of an embodiment in the pattern forming method of the present invention.
  • the pattern forming method shown in FIG. 1 includes the following steps. [1] Step of arranging a curable composition on a substrate (arrangement step, FIG. 1 (a)) [2] A step of bringing the mold into contact with the curable composition (mold contact step, FIGS. 1 (b1) and (b2)) [3] Step of producing a cured film by curing the curable composition with light or heat (curing step, FIG. 1 (c)) [4] Step of separating the mold from the cured film (mold release step, FIG. 1 (d)) Through the steps shown in [1] to [4] above, the cured product 5 and the electronic component (electronic device) or optical component having the cured product 5 can be obtained from the curable composition 1.
  • Step [1] (arrangement step; FIG. 1A) First, the curable composition 1 is placed (applied) on the substrate 2 to form a coating film (FIG. 1A).
  • the curable composition here is the curable composition of the present invention.
  • a silicon wafer is usually used, but is not limited thereto.
  • semiconductor device substrates such as aluminum, titanium-tungsten alloy, aluminum-silicon alloy, aluminum-copper-silicon alloy, silicon oxide, or silicon nitride can be used.
  • the substrate to be used is a substrate that has improved adhesion to the curable composition by surface treatment such as silane coupling treatment, silazane treatment, or organic thin film formation. It may be used as
  • Examples of a method for disposing the curable composition of the present invention on a substrate to be processed include, for example, an inkjet method, a dip coating method, an air knife coating method, a curtain coating method, a wire barcode method, a gravure coating method, and an extrusion coating method. , Spin coating method, slit scanning method and the like.
  • the film thickness of a to-be-shaped transfer layer (coating film) changes with uses to be used, it is 0.01 micrometer or more and 100 micrometers or less, for example.
  • Step [2] die contact step; FIG. 1 (b1), (b2)
  • the process (a mold contact process, FIG. 1 (b1), (b2)) which makes a mold contact the coating film which consists of the curable composition 1 formed at the front process (arrangement
  • a coating film (part) 4 is formed on the uneven portion of the fine pattern formed on the mold 3. Is filled (FIG. 1 (b2)).
  • the mold 3 used in the mold contact process is made of a light transmissive material when the next process (curing process) is a photocuring process using light.
  • the constituent material of the mold 3 include optically transparent resins such as glass, quartz, PMMA, and polycarbonate resins, transparent metal vapor-deposited films, flexible films such as polydimethylsiloxane, photocured films, and metal films. Can do.
  • a light transparent resin is used as a constituent material of the mold 3
  • Quartz is particularly preferred because of its low thermal expansion coefficient.
  • the curing step is a thermosetting step, there is no limitation on the transparency of the material, and the above-described materials can be used as the constituent material of the mold 3.
  • the mold 3 may be subjected to a surface treatment before this step (die contact step) in order to improve the peelability between the cured product 5 and the surface of the mold 3.
  • the surface treatment method include a method of forming a release agent layer by applying a release agent to the surface of the mold.
  • a mold release agent applied to the mold surface a silicon mold release agent, a fluorine mold release agent, a polyethylene mold release agent, a polypropylene mold release agent, a paraffin mold release agent, a montan mold release agent Or carnauba release agents.
  • a commercially available coating mold release agent such as trade name OPTOOL DSX manufactured by Daikin Industries, Ltd. can also be used.
  • a mold release agent may be used individually by 1 type, and may be used in combination of 2 or more types.
  • a fluorine-type mold release agent is particularly preferable.
  • the pressure applied to the curable composition 1 is not particularly limited, but is usually 0.1 MPa or more. , 100 MPa or less. Among them, it is preferably 0.1 MPa or more and 50 MPa or less, more preferably 0.1 MPa or more and 30 MPa or less, and further preferably 0.1 MPa or more and 20 MPa or less.
  • the time for bringing the mold 3 into contact with the photocurable composition 1 in this step is not particularly limited, but is usually 0.1 seconds or more and 600 seconds or less, and is 0.1 seconds or more and 300 seconds or less. It is preferably 0.1 seconds or more and 180 seconds or less, and particularly preferably 0.1 seconds or more and 120 seconds or less.
  • the environment in which this step is performed includes an air atmosphere, a reduced pressure atmosphere, and an inert gas atmosphere.
  • an air atmosphere a reduced pressure atmosphere
  • an inert gas atmosphere there is no restriction
  • inert gas When this step is performed in an inert gas atmosphere, specific examples of the inert gas used include nitrogen, carbon dioxide, helium, argon, various chlorofluorocarbons, and mixed gases thereof. When used for nanoimprinting, helium is preferred.
  • the condensable gas refers to a gas that satisfies the following requirements (i) and (ii).
  • the gas that is condensed and liquefied by the capillary pressure generated by the pressure at the time of filling is liquefied. Since bubbles are less likely to be generated, the filling property is excellent.
  • the condensable gas (at least a part thereof) may be dissolved in the curable composition.
  • the boiling point of the condensable gas is not particularly limited as long as it is equal to or lower than the environmental temperature of this step, but a gas having a low boiling point in the range of 5 ° C. or higher and 50 ° C. or lower from the environmental temperature is preferable. If it exists in this range, the filling property of the curable composition 1 to the fine pattern uneven
  • the vapor pressure of the gas containing the condensable gas is not particularly limited as long as it is equal to or lower than the mold pressure at the time of imprinting in this step, but is preferably 0.1 MPa or more and 0.4 MPa or less. If it exists in this range, the filling property of the curable composition 1 to the fine pattern uneven
  • the vapor pressure at the ambient temperature is larger than 0.4 MPa, there is a tendency that the effect of eliminating the bubbles cannot be sufficiently obtained.
  • the vapor pressure at ambient temperature is less than 0.1 MPa, pressure reduction is required, and the apparatus tends to be complicated.
  • the environmental temperature during this step is not particularly limited, but is preferably 20 ° C or higher and 50 ° C or lower.
  • condensable gases include chlorofluorocarbons (CFC), fluorocarbons (FC), hydrochlorofluoroolefins (HCFO), hydrofluoroolefins (HFO), hydrofluoroethers (HFE), and other fluorocarbons. To do.
  • Chlorofluorocarbon Chlorofluoromethane
  • FC Fluorocarbon
  • HCFO Hydrochlorofluoroolefin
  • Trans-1-chloro-3,3,3-trifluoropropene HCFO-1233zd (E)
  • cis-1-chloro-3,3,3-trifluoropropene HCFO-1233zd (Z)
  • trans- 1,2-dichloro-3,3,3-trifluoropropene HCFO-1223xd (E)
  • cis-1,2-dichloro-3,3,3-trifluoropropene HCFO-1223xd (Z)
  • 1,1-dichloro-3,3,3-trifluoropropene HCFO-1223za
  • 1,1,2-trichloro-3,3,3-trifluoropropene HCFO-1213xa
  • trans-1-chloro- 1,3,3,3-tetrafluoropropene HCFO
  • the filling property of the curable composition 1 to the fine pattern irregularities of the mold 3 is excellent. It is preferable to use the compounds exemplified in.
  • Condensable gas may be used alone or in combination of two or more. These condensable gases may be used by mixing with non-condensable gases such as air, nitrogen, carbon dioxide, helium, and argon.
  • non-condensable gases such as air, nitrogen, carbon dioxide, helium, and argon.
  • helium is preferable from the viewpoint of filling properties. When helium is used, even if it is used as a mixed gas formed by mixing a condensable gas and a non-condensable gas (helium), the filling property is excellent because helium penetrates the mold.
  • Step [3] (Curing step; FIG. 1 (c))
  • the coating film is cured. Specifically, the coating film 4 is irradiated with light through the mold 3 (FIG. 1C), or the coating film 4 is heated. In the curing step, the cured film 5 is formed by curing the coating film 4 with light or heat.
  • the light applied to the curable composition 1 constituting the coating film 4 is selected according to the sensitivity wavelength of the curable composition 1, and specifically, 150 nm to It is preferable to select and use ultraviolet light having a wavelength of about 400 nm, X-rays, electron beams or the like as appropriate.
  • the light (irradiation light 6) applied to the curable composition 1 is particularly preferably ultraviolet light.
  • Examples of the light source that emits ultraviolet light include a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a low pressure mercury lamp, a deep-UV lamp, a carbon arc lamp, a chemical lamp, a metal halide lamp, a xenon lamp, a KrF excimer laser, an ArF excimer laser, or F. 2 excimer laser and the like, and an ultrahigh pressure mercury lamp is particularly preferable.
  • the number of light sources used may be one or plural.
  • photocuring and thermal curing is not limited, and includes cases where thermal curing is performed after photocuring, photocuring is performed after thermal curing, and photocuring and thermal curing are performed simultaneously.
  • the heating atmosphere and the heating temperature are not particularly limited.
  • the curable composition 1 can be heated in the range of 40 ° C. or higher and 200 ° C. or lower under an inert atmosphere or under reduced pressure.
  • a hot plate, oven, furnace, etc. can be used.
  • Step [4] (Release step; FIG. 1 (d)) Next, the mold 3 is separated from the cured film 5, and a process of forming a cured film having a predetermined pattern shape on the substrate 2 (mold release process, FIG. 1D) is performed. This step is a step of peeling the mold 3 from the cured film 5, and a reverse pattern of the fine pattern formed on the mold 3 in the previous step (curing step) is obtained as the pattern of the cured film 5.
  • the method of separating the cured film 5 and the mold 3 is not particularly limited as long as a part of the cured film 5 is not physically damaged when being separated, and various conditions are not particularly limited.
  • the substrate 2 substrate to be processed
  • the mold 3 may be moved away from the substrate 2 to be separated, or the mold 3 may be fixed and the substrate 2 moved away from the mold to be separated.
  • both of them may be peeled by pulling in the opposite direction.
  • a cured film having a desired concavo-convex pattern shape (inverted pattern shape of the concavo-convex shape of the mold 3) can be obtained by a series of steps (manufacturing process) from the steps [1] to [4] described above.
  • the obtained cured film can also be used, for example, as an optical member (including a case where it is used as one member of an optical member) such as a Fresnel lens or a diffraction grating. In such a case, it can be set as the optical member which has the board
  • the curable composition of the present invention has a high filling rate and is therefore highly productive and is excellent for imprinting. In particular, it is excellent for nanoimprinting for forming a nano-sized (1 nm or more, 100 nm or less) pattern.
  • the surface tension of the diacrylate (1) was measured by the hanging drop method. The measurement was performed 10 times using an automatic contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., model DMs-601), and the average value of the 10 measured values was defined as the surface tension.
  • Viscosity The viscosity of diacrylate (1) at 30 ° C. was measured using a Canon-Fenske viscometer (manufactured by Shibata Kagaku Co., Ltd., model SO-5X18).
  • the contact angle between the diacrylate (1) and the substrate was measured using the automatic contact angle meter. Each measurement was performed five times, and the average value of the five measurements was taken as the contact angle.
  • the substrates used in this measurement are as follows. In the following description, the mold contact angle is the contact angle between the mold and diacrylate (1), and the substrate contact angle is the contact angle between the substrate on which diacrylate (1) is applied and diacrylate (1). It is. (3-1) Mold Contact Angle Measurement Substrate A quartz substrate having a release layer formed on the surface with a release agent (product name: OPTOOL HD-1100, manufactured by Daikin Industries, Ltd.) was used. (3-2) Substrate Contact Angle Measurement Substrate A silicon wafer having an adhesion layer formed on the surface with a primer (manufactured by Microresist Technology, Germany, product name mr-APS1) was used.
  • the surface tension is 25.5 mN / m
  • the viscosity is 2.7 mPa ⁇ s
  • the mold contact angle is 51.6 °
  • the substrate contact angle is 11.5 °. Met.
  • the fluorine-containing monomer represented by the formula (1) of the present invention described in Example 1 has a small capillary number (Ca).
  • Example 2 in which the content of diacrylate (1) in the curable composition is a small amount (45 parts by weight) compared to Example 1, the number of capillaries (Ca) is higher than that in Comparative Example 2. Is significantly smaller.
  • FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a method for manufacturing a member with a pattern (pattern forming method) according to the present invention.
  • the fluorine-containing monomer represented by the general formula (1) obtained by the present invention a fluorine-containing polymer polymerized or copolymerized using the same, and a curability containing a polymerization initiator and the fluorine-containing monomer Since the composition has a property of high filling speed, it can be used as a sealing material for semiconductors, an underfill material, a sealing material for organic EL elements or organic EL displays, and a bank material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

The present invention provides a curable composition that is suitable for performing imprinting and has a high filling rate into a micro-mold in imprinting technology. The curable composition according to the present invention contains a polymerization initiator and a fluorinated monomer represented by formula (1) (R1 and R2 each independently represent a hydrogen atom or a methyl group). The fluorinated monomer represented by formula (1) can be used to form a homopolymer, or can be mixed with another polymerizable monomer to form a copolymer. Therefore, as the polymerizable monomer contained in the curable composition, the fluorinated monomer may be used alone, or a mixture of various polymerizable monomers can also be used.

Description

含フッ素単量体、含フッ素重合体、硬化性組成物およびパターンの製造方法Fluorine-containing monomer, fluorine-containing polymer, curable composition, and pattern production method
 本発明は、新規な含フッ素単量体と、該含フッ素単量体を用いて重合または共重合した含フッ素重合体、さらに、重合開始剤と前記含フッ素単量体を含む硬化性組成物に関する。また特に、前記硬化性組成物を用いてパターンを形成するインプリントに関する。 The present invention relates to a novel fluorine-containing monomer, a fluorine-containing polymer polymerized or copolymerized using the fluorine-containing monomer, and a curable composition containing a polymerization initiator and the fluorine-containing monomer. About. In particular, the present invention relates to an imprint that forms a pattern using the curable composition.
 半導体集積回路等の製造に必要とされる微細加工法の1つとしてインプリントが挙げられる。インプリントとは、微細な凹凸パターンが形成されたモールドを、基板に塗布した硬化性組成物に押し付けた状態で、光、熱等で硬化性組成物を硬化し、モールドの凹凸パターンを基板上の硬化性組成物に転写することで、「基板上に、微細な凹凸パターン形状を有する硬化膜を配した部材」を製造する方法である。現在、インプリントで用いられる硬化性組成物について盛んに研究が行われている。 Imprinting is one of the fine processing methods required for manufacturing semiconductor integrated circuits. Imprint is a state in which a mold having a fine concavo-convex pattern is pressed against a curable composition applied to a substrate, the curable composition is cured by light, heat, etc. This is a method for producing “a member in which a cured film having a fine concavo-convex pattern shape is arranged on a substrate” by transferring to the curable composition. Currently, active research is being conducted on curable compositions used in imprinting.
 インプリントにおいて、ナノサイズ(1nm以上、100nm以下)の凹凸パターンの形成は、特にナノインプリントと呼ばれる。 In imprinting, the formation of a nano-sized (1 nm or more and 100 nm or less) uneven pattern is particularly called nanoimprinting.
 例えば、特許文献1には、光ナノインプリント技術に適した光硬化性組成物と、それを用いたパターン形成方法が開示されている。すなわち、光硬化性組成物を構成する重合性化合物として、アクリロイル基を複数個有するモノマーのうちで特定のものを用いると、ナノインプリントによって優れた微細パターンが形成できると述べられている。具体的には、アクリロイル基が分子内に複数存在するラジカル重合性化合物のうち例えば、ネオペンチルグリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,10-デカンジオールジアクリレート、トリメチロールプロパントリアクリレートが、当該用途の重合性化合物の一成分として好適に使用できるとされている。それらはモールドに接触させた状態で、紫外光を照射することによって、重合を起こして強度の大きい硬化膜を形成できる上、続けて行うモールドからの離型工程における離型性もよく、その後のエッチング工程を経て優れた微細パターンを形成できる旨が、開示されている。 For example, Patent Document 1 discloses a photocurable composition suitable for optical nanoimprint technology and a pattern forming method using the same. That is, it is stated that when a specific compound among monomers having a plurality of acryloyl groups is used as the polymerizable compound constituting the photocurable composition, an excellent fine pattern can be formed by nanoimprinting. Specifically, among radically polymerizable compounds having a plurality of acryloyl groups in the molecule, for example, neopentyl glycol diacrylate, 1,6-hexanediol diacrylate, 1,10-decanediol diacrylate, trimethylolpropane triacrylate. It is said that acrylate can be suitably used as one component of the polymerizable compound for the application. When they are in contact with the mold, they can be polymerized to form a cured film having a high strength by irradiation with ultraviolet light, and have good mold release properties in the subsequent mold release process. It is disclosed that an excellent fine pattern can be formed through an etching process.
 特許文献2には、ナノインプリント用液体材料(典型的には、特許文献1で開示されているパターン形成用硬化性組成物)中に存在する、粒径が0.07μm以上のパーティクルの個数が特定の数未満であると、ナノインプリントにおいてパターンの破損や欠陥が大幅に抑制され、ナノインプリントプロセスの歩留まりの低下を有意に抑制できることが、開示されている。 Patent Document 2 specifies the number of particles having a particle size of 0.07 μm or more that are present in a liquid material for nanoimprinting (typically, the curable composition for pattern formation disclosed in Patent Document 1). It is disclosed that, when the number is less than the number, damage and defects of the pattern are significantly suppressed in nanoimprinting, and a decrease in the yield of the nanoimprinting process can be significantly suppressed.
 一方、非特許文献1には、ナノインプリント技術の全般について記載されており、特に、ナノインプリントにおいて、型接触工程における、硬化性組成物のモールドへの充填速度(モールドの微細な凹凸部の中に硬化性組成物が充填されていく速度をいう)の向上も強く求められている旨が記載されている。 On the other hand, Non-Patent Document 1 describes nano-imprint technology in general, and in particular, in nano-imprint, the filling rate of a curable composition into a mold in a mold contact process (cured in a fine uneven portion of the mold). It is described that there is a strong demand for an improvement in the rate at which the composition is filled.
特開2016-162862号公報Japanese Unexamined Patent Publication No. 2016-162862 特開2016-164977号公報JP 2016-164977 A
 上記特許文献1、2で開示されている「アクリロイル基(アクリル部位)を1分子内に複数個有するラジカル重合性化合物を含有する硬化性組成物」はナノインプリント材料として優れたものであり、これらを用いることで、ナノインプリントにおいて、欠陥を抑制しつつ、微細な凹凸パターンを作製できる。 The “curable composition containing a radically polymerizable compound having a plurality of acryloyl groups (acrylic sites) in one molecule” disclosed in Patent Documents 1 and 2 is excellent as a nanoimprint material. By using it, in a nanoimprint, a fine uneven | corrugated pattern can be produced, suppressing a defect.
 一方、ナノインプリント技術においては、「硬化性組成物のモールドへの充填速度」も重要な要素である。すなわち、モールドの凹凸パターンを硬化性組成物の膜の上に良好に転写するためには、該硬化性組成物がモールドの微細な凹凸部に隙間なく充填された後に硬化を行うことが必要であり、充填に要する時間が、ナノインプリント時の作業効率に大きく影響し得る。 On the other hand, in the nanoimprint technology, “the filling speed of the curable composition into the mold” is also an important factor. In other words, in order to successfully transfer the uneven pattern of the mold onto the film of the curable composition, it is necessary to perform curing after the curable composition is filled in the fine uneven portions of the mold without any gaps. In addition, the time required for filling can greatly affect the working efficiency during nanoimprinting.
 その点、前述の特許文献1では、「溶剤を除く光硬化性組成物の粘度」が、モールドの凹凸部への充填速度に関連があると指摘され、当該、「溶剤を除く光硬化性組成物の粘度」を100mPa・s以下とすることによって、光ナノインプリントを高い生産性で実施することができる旨が述べられている。 In that respect, in the above-mentioned Patent Document 1, it is pointed out that “viscosity of the photocurable composition excluding the solvent” is related to the filling speed of the uneven portion of the mold, and the “photocurable composition excluding the solvent” It is stated that optical nanoimprinting can be carried out with high productivity by setting the “viscosity of the product” to 100 mPa · s or less.
 特許文献1および特許文献2では、以下に示すネオペンチルグリコールジアクリレートが特に好ましく用いられている。
Figure JPOXMLDOC01-appb-C000002
In Patent Document 1 and Patent Document 2, neopentyl glycol diacrylate shown below is particularly preferably used.
Figure JPOXMLDOC01-appb-C000002
 しかしながら、「硬化組成物の粘度」は「モールドへの充填速度」を定める要素の一つに過ぎない。具体的には、ナノインプリントにおいて、充填速度は、キャピラリー数(Ca)の逆数に比例することが知られている(非特許文献1)。 However, the “viscosity of the cured composition” is only one of the factors that determine the “filling rate into the mold”. Specifically, in nanoimprint, it is known that the filling speed is proportional to the reciprocal of the number of capillaries (Ca) (Non-patent Document 1).
 本発明は、キャピラリー数(Ca)の小さい、インプリント用材料を提供することを目的とする。 An object of the present invention is to provide an imprint material having a small capillary number (Ca).
 特許文献1および特許文献2で特に好ましく用いられている、ネオペンチルグリコールジアクリレートについて、本発明者らがキャピラリー数(Ca)を測定したところ、1.57V[L/h02という結果となり、優れた材料ではあるものの、モールドへの充填速度という点においては、なお改善の余地があることが判明した(本明細書の比較例1を参照)。
 なお、キャピラリー数(Ca)とは、下記式(i)により導き出される。
Figure JPOXMLDOC01-appb-C000003
(Ca:キャピラリー数、γ:表面張力、θ1:モールド接触角、θ2:基板接触角、μ:粘度、V:モールドの降下速度、Lおよびh0:インプリント装置に依存する装置定数。)
Regarding neopentyl glycol diacrylate, which is particularly preferably used in Patent Document 1 and Patent Document 2, when the present inventors measured the number of capillaries (Ca), the result was 1.57 V [L / h 0 ] 2. Although it is an excellent material, it has been found that there is still room for improvement in terms of filling speed into the mold (see Comparative Example 1 in this specification).
The number of capillaries (Ca) is derived from the following formula (i).
Figure JPOXMLDOC01-appb-C000003
(Ca: number of capillaries, γ: surface tension, θ 1 : mold contact angle, θ 2 : substrate contact angle, μ: viscosity, V: mold lowering speed, L and h 0 : apparatus constants depending on the imprint apparatus. )
 式(i)が示す様に、キャピラリー数(Ca)は粘度(μ)に比例し、表面張力(γ)に反比例する。モールド接触角(θ1)、基板接触角(θ2)も重要な要素である。キャピラリー数(Ca)が小さくなると、充填速度は大きくなる。 As equation (i) shows, the capillary number (Ca) is proportional to the viscosity (μ) and inversely proportional to the surface tension (γ). Mold contact angle (θ 1 ) and substrate contact angle (θ 2 ) are also important factors. As the number of capillaries (Ca) decreases, the filling rate increases.
 上記事情に鑑み、発明者らが鋭意検討を行った。その結果、式(1)で表される含フッ素単量体と、重合開始剤と、を含む、硬化性組成物によって、前記課題が解決することが見出された。
Figure JPOXMLDOC01-appb-C000004
(R1、R2はそれぞれ独立に水素原子またはメチル基である。)
In view of the above circumstances, the inventors have conducted intensive studies. As a result, it has been found that the above problem can be solved by a curable composition containing a fluorine-containing monomer represented by the formula (1) and a polymerization initiator.
Figure JPOXMLDOC01-appb-C000004
(R 1 and R 2 are each independently a hydrogen atom or a methyl group.)
 本明細書の実施例1に示す通り、当該含フッ素単量体は、前記ネオペンチルグリコールジアクリレートと基本骨格は共通しており、骨格の中心部位(アルキレン基部位)にトリフルオロメチル基(-CF3)を2個導入している点が主な違いである。式(1)で表される含フッ素単量体のキャピラリー数(Ca)は、ネオペンチルジアクリレートに比べて著しく小さく、モールド凹凸部への充填速度が有意に大きい材料であることが判明した。 As shown in Example 1 of the present specification, the fluorine-containing monomer has the same basic skeleton as that of the neopentyl glycol diacrylate, and a trifluoromethyl group (— The main difference is that two CF 3 ) are introduced. The number of capillaries (Ca) of the fluorine-containing monomer represented by the formula (1) was found to be significantly smaller than that of neopentyl diacrylate, and the filling rate of the mold irregularities was significantly high.
 この原因は必ずしも明らかでないが、比較材料のネオペンチルグリコールジアクリレートでは、分子骨格の中央にメチル基側鎖が2つあるものが、本発明の含フッ素単量体は、分子骨格の中央付近に、トリフルオロメチル基(-CF3)側鎖を2つ導入していることから、トリフルオロメチル基が有するフッ素原子の特異的な作用に基づくものと推測される。 The reason for this is not necessarily clear, but in the comparative material neopentyl glycol diacrylate, there are two methyl group side chains in the center of the molecular skeleton, but the fluorine-containing monomer of the present invention is near the center of the molecular skeleton. Since two trifluoromethyl group (—CF 3 ) side chains are introduced, it is presumed to be based on the specific action of the fluorine atom of the trifluoromethyl group.
 なお、キャピラリー数(Ca)の値は、組成に依存して変化するため、インプリントの硬化性組成物として、式(1)の含フッ素単量体以外の単量体を混ぜれば、「硬化性組成物全体としてのCaの値」を微調整することは可能である。 Since the value of the number of capillaries (Ca) varies depending on the composition, if a monomer other than the fluorine-containing monomer of formula (1) is mixed as the curable composition for imprint, It is possible to finely adjust the “Ca value of the entire composition”.
 加えてしかも、式(1)で表される含フッ素単量体は、入手が容易な式(2)で表されるジオールを出発物質とし、これを(メタ)アクリル化することによって、効率よく製造できる(後述)。
Figure JPOXMLDOC01-appb-C000005
In addition, the fluorine-containing monomer represented by the formula (1) can be efficiently obtained by using a diol represented by the formula (2) which is easily available as a starting material and subjecting it to (meth) acrylation. Can be manufactured (described later).
Figure JPOXMLDOC01-appb-C000005
 さらに、本発明者は当該含フッ素単量体を成分とする硬化性組成物を使用する「基板上に、パターン形状を有する硬化膜を配した部材」の製造方法(以下、パターン形成方法と呼ぶことがある)を見出した。 Furthermore, the present inventor uses a curable composition containing the fluorine-containing monomer as a component, and a method for producing a “member having a cured film having a pattern shape on a substrate” (hereinafter referred to as a pattern forming method). Found).
 すなわち本発明は、次の各発明を含む。 That is, the present invention includes the following inventions.
 [発明1]
 下記式(1)で表される含フッ素単量体。
Figure JPOXMLDOC01-appb-C000006
(R1、R2はそれぞれ独立に水素原子またはメチル基である。)
[Invention 1]
A fluorine-containing monomer represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000006
(R 1 and R 2 are each independently a hydrogen atom or a methyl group.)
 [発明2]
 発明1の含フッ素単量体と、重合開始剤と、を含む、硬化性組成物。
[Invention 2]
A curable composition comprising the fluorine-containing monomer of Invention 1 and a polymerization initiator.
 [発明3]
 前記重合開始剤が、光重合開始剤である、発明2の硬化性組成物。
[Invention 3]
The curable composition according to Invention 2, wherein the polymerization initiator is a photopolymerization initiator.
 [発明4]
 次の各工程を含む、基板上にパターン形状を有する硬化膜を配したパターン付き部材の製造方法。
 配置工程:発明2または発明3の硬化性組成物を基板上に配置する工程。
 型接触工程:前記基板上に配置された前記硬化性組成物に対し、パターン形状を有するモールドを接触させる工程。
 硬化工程:前記モールドと接触した状態の前記硬化性組成物を、光または熱により硬化させて硬化膜とする工程。
 離型工程:前記硬化膜から前記モールドを引き離し、前記パターン付き部材を得る工程。
[Invention 4]
The manufacturing method of the member with a pattern which arranged the cured film which has a pattern shape on a board | substrate including the following each process.
Arrangement step: a step of arranging the curable composition of Invention 2 or Invention 3 on a substrate.
Mold contact step: a step of bringing a mold having a pattern shape into contact with the curable composition disposed on the substrate.
Curing step: a step of curing the curable composition in contact with the mold with light or heat to form a cured film.
Mold release step: a step of separating the mold from the cured film to obtain the patterned member.
 [発明5]
 前記型接触工程が、凝縮性ガスを含む気体の雰囲気下で行われる、発明4のパターン付き部材の製造方法。
[Invention 5]
The manufacturing method of the member with a pattern of the invention 4 with which the said type | mold contact process is performed in the gas atmosphere containing a condensable gas.
 [発明6]
 前記型接触工程の凝縮性ガスが1,1,1,3,3-ペンタフルオロプロパン(HFC-245fa)、トランス-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(E))、シス-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(Z))、トランス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、またはシス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))のうち1種類以上を含む、発明5のパターン付き部材の製造方法。
[Invention 6]
The condensable gas in the mold contact step is 1,1,1,3,3-pentafluoropropane (HFC-245fa), trans-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (E) ), Cis-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (Z)), trans-1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), or cis The method for producing a patterned member according to invention 5, comprising at least one of -1,3,3,3-tetrafluoropropene (HFO-1234ze (Z)).
 [発明7]
 発明1の含フッ素単量体を単独重合させてなる、または、該含フッ素単量体と、アクリル酸エステル、メタクリル酸エステル、スチレン系化合物、オレフィンからなる群より選ばれた一種類以上の単量体と、を共重合させてなる含フッ素重合体。
[Invention 7]
The fluorine-containing monomer of Invention 1 is homopolymerized, or one or more kinds of single monomers selected from the group consisting of the fluorine-containing monomer and acrylic acid ester, methacrylic acid ester, styrene compound, and olefin. A fluorine-containing polymer obtained by copolymerizing a monomer.
 [発明8]
 発明1の含フッ素単量体を単独重合する工程、または、
 該含フッ素単量体と、アクリル酸エステル、メタクリル酸エステル、スチレン系化合物、オレフィンからなる群から選ばれた一種類以上の単量体と、を共重合させる工程、を含む、発明7の含フッ素重合体の製造方法。
[Invention 8]
A step of homopolymerizing the fluorine-containing monomer of the invention 1, or
Including the step of copolymerizing the fluorine-containing monomer and one or more monomers selected from the group consisting of acrylic acid esters, methacrylic acid esters, styrene compounds, and olefins. A method for producing a fluoropolymer.
 本発明により、式(1)の含フッ素単量体が提供される。また、本発明により、キャピラリー数(Ca)が小さい式(1)の含フッ素単量体を構成成分として含む硬化性組成物を提供できる。この硬化性組成物は、インプリントにおけるモールドへの充填速度の大きいことが推測される。さらに、本発明により、前記硬化性組成物を用いた、インプリントにおけるパターン形成方法(「基板上にパターン形状を有する硬化膜を配したパターン付き部材」の製造方法)が提供される。 According to the present invention, a fluorine-containing monomer of the formula (1) is provided. Moreover, according to the present invention, it is possible to provide a curable composition containing the fluorine-containing monomer of the formula (1) having a small capillary number (Ca) as a constituent component. This curable composition is presumed to have a high filling rate into the mold in imprinting. Furthermore, the present invention provides a pattern forming method in imprinting (“manufacturing method of a member with a pattern in which a cured film having a pattern shape is arranged on a substrate”) using the curable composition.
 本発明について詳細に説明する。本発明は以下に説明する実施形態に限定されるものではない。当業者の通常の知識に基づいて本発明の趣旨を逸脱しない範囲で以下に説明する実施形態に対して適宜変更、改良等を加えたものも本発明に含まれる。 The present invention will be described in detail. The present invention is not limited to the embodiments described below. Based on the ordinary knowledge of those skilled in the art, the present invention includes those in which the embodiments described below are appropriately modified and improved without departing from the spirit of the present invention.
 本明細書では、次の順で説明を行う。
1.式(1)で表される含フッ素単量体について
2.当該含フッ素単量体の製造方法について
3.当該含フッ素単量体を構成成分として含む硬化性組成物について
4.パターン形成方法について
In this specification, description will be given in the following order.
1. 1. Regarding the fluorine-containing monomer represented by the formula (1) 2. Method for producing the fluorine-containing monomer 3. Curable composition containing the fluorine-containing monomer as a constituent component About pattern formation method
 なお、本明細書において、(メタ)アクリルは、アクリルおよびメタクリルを意味する。(メタ)アクリレートは、アクリレートおよびメタクリレートを意味する。また(メタ)アクリロイルは、アクリロイルおよびメタクリロイルを意味する。またEOは、エチレンオキサイドを示し、EO変性された化合物とは、エチレンオキシ基を少なくとも1つ有することを意味する。またPOはプロピレンオキサイドを示し、PO変性された化合物とは、プロピレンオキシ基を少なくとも1つ有することを意味する。 In addition, in this specification, (meth) acryl means acrylic and methacryl. (Meth) acrylate means acrylate and methacrylate. (Meth) acryloyl means acryloyl and methacryloyl. EO represents ethylene oxide, and the EO-modified compound means having at least one ethyleneoxy group. PO represents propylene oxide, and the PO-modified compound means having at least one propyleneoxy group.
 1.式(1)で表される含フッ素単量体について
 本発明の1つの態様は、式(1)で表される含フッ素単量体である。
Figure JPOXMLDOC01-appb-C000007
 R1とR2はそれぞれ独立に水素原子、またはメチル基である。該含フッ素単量体は、次の3種類のいずれかである。
「R1とR2がともに水素原子である含フッ素単量体」
「R1とR2がともにメチル基である含フッ素単量体」
「R1、R2のどちらか一方が水素原子であって、もう一方がメチル基である含フッ素単量体」
1. About the fluorine-containing monomer represented by Formula (1) One aspect of the present invention is a fluorine-containing monomer represented by Formula (1).
Figure JPOXMLDOC01-appb-C000007
R 1 and R 2 are each independently a hydrogen atom or a methyl group. The fluorine-containing monomer is one of the following three types.
"Fluorine-containing monomer in which R 1 and R 2 are both hydrogen atoms"
"Fluorine-containing monomer in which R 1 and R 2 are both methyl groups"
"Fluorine-containing monomer in which either R 1 or R 2 is a hydrogen atom and the other is a methyl group"
 本発明においては、これら3種類の含フッ素単量体の何れも好ましく用いることができる。これらのうち、1種類のみを用いることで、本発明の目的を達成することができるが、これら3種類の含フッ素単量体のうち2種類以上を混合物として併用してもよい。 In the present invention, any of these three types of fluorine-containing monomers can be preferably used. Of these, the object of the present invention can be achieved by using only one type, but two or more of these three types of fluorine-containing monomers may be used in combination as a mixture.
 2.当該含フッ素単量体の製造方法について
 式(1)で表される含フッ素単量体は新規化合物である。合成方法を以下に示す。好ましい合成方法には「第1の方法」と「第2の方法」があり、いずれも、式(2)で表されるジオール(入手が容易な含フッ素化合物である)を原料とし、これを(メタ)アクリル化反応に付するものである。
2. About the manufacturing method of the said fluorine-containing monomer The fluorine-containing monomer represented by Formula (1) is a novel compound. The synthesis method is shown below. Preferred synthesis methods include a “first method” and a “second method”, both of which use a diol represented by the formula (2) (which is an easily available fluorine-containing compound) as a raw material. It is subjected to (meth) acrylation reaction.
 2-1.第1の方法
 第1の方法は、式(2)で表されるジオールに対し、まず式(3)で表される(メタ)アクリル酸無水物を反応させて、式(4)で表される(メタ)アクリル酸エステルを合成する第1工程と、次いで、該(メタ)アクリル酸エステルを、式(6)で表される(メタ)アクリル酸ハロゲン化物と反応させ、式(1)で表される目的物を得る第2工程と、からなる(下式参照)。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
2-1. First Method The first method is represented by the formula (4) by first reacting the diol represented by the formula (2) with a (meth) acrylic anhydride represented by the formula (3). A first step of synthesizing (meth) acrylic acid ester, and then reacting the (meth) acrylic acid ester with a (meth) acrylic acid halide represented by formula (6) And a second step of obtaining the object to be expressed (see the following formula).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 式(2)で表されるジオールに対し、(メタ)アクリル化剤として式(3)で表される無水物を用いた場合には、式(4)で表されるモノ(メタ)アクリル酸エステルが生成したところで反応が止まる傾向が強く、2個目の(メタ)アクリル部位は導入されにくい(第1工程)。こうして高い選択率で式(4)のモノ(メタ)アクリル酸エステルを得たあとで、第2工程として、今度は式(6)で表される(メタ)アクリル酸ハロゲン化物を反応させると、2つめのメタ(アクリル)部位が導入され、式(1)の目的物が、高い選択率で得られる。 When the anhydride represented by the formula (3) is used as the (meth) acrylate for the diol represented by the formula (2), the mono (meth) acrylic acid represented by the formula (4) The reaction tends to stop when the ester is formed, and the second (meth) acrylic moiety is difficult to be introduced (first step). After obtaining the mono (meth) acrylic acid ester of the formula (4) with high selectivity in this way, the (meth) acrylic acid halide represented by the formula (6) is reacted as the second step. A second meta (acrylic) moiety is introduced and the target of formula (1) is obtained with high selectivity.
 この「第1の方法」は、以上の理由から、式(1)の3種の化合物のうち、「R1、R2のどちらか一方が水素原子であって、もう一方がメチル基である含フッ素単量体」を合成する上で、特に好適である。 In the “first method”, for the above reasons, among the three compounds of the formula (1), either one of R 1 and R 2 is a hydrogen atom and the other is a methyl group. It is particularly suitable for synthesizing a “fluorinated monomer”.
 これに対し、R1とR2が同一種類の基である「R1とR2がともに水素原子である含フッ素単量体」、「R1とR2がともにメチル基である含フッ素単量体」を、第1の方法によって合成することもできるが、敢えて二段階の反応を経て合成するよりも、次の第2の方法の方が、単一反応工程で合成できるため、有利なことが多い。 On the other hand, R 1 and R 2 are the same type of group “fluorinated monomer in which R 1 and R 2 are both hydrogen atoms”, “fluorinated monomer in which both R 1 and R 2 are methyl groups. The `` mer '' can be synthesized by the first method, but it is advantageous because the following second method can be synthesized in a single reaction step rather than synthesize through a two-step reaction. There are many cases.
 2-2.第2の方法
 第2の方法は、式(2)で表されるジオールに対し、式(6)と式(7)で表される(メタ)アクリル酸ハロゲン化物を反応させ、式(1)の目的物を合成する反応(第3工程)からなる(下式参照)。
Figure JPOXMLDOC01-appb-C000010
2-2. Second Method In the second method, the diol represented by the formula (2) is reacted with the (meth) acrylic acid halide represented by the formula (6) and the formula (7) to obtain the formula (1). Comprising a reaction (third step) for synthesizing the desired product (see formula below).
Figure JPOXMLDOC01-appb-C000010
 第1の方法のところで述べた通り、第2の方法は、ただ一種類の(メタ)アクリル酸ハロゲン化物を、式(2)のジオールに対して反応させて式(1)の目的物としてR1とR2が同一種類の基である「R1とR2がともに水素原子である含フッ素単量体」および「R1とR2がともにメチル基である含フッ素単量体」を合成するのに好適である。(上記第1の方法が2反応工程を要するのに対し、第2の方法の場合、単一反応工程で目的物を合成できるため)。R2がR1に等しい場合、第2の方法の反応は次のようにも表示できる。
Figure JPOXMLDOC01-appb-C000011
As described in the first method, the second method is a method in which only one kind of (meth) acrylic acid halide is reacted with a diol of the formula (2) to obtain R as an object of the formula (1). Synthesis of “fluorinated monomer in which R 1 and R 2 are both hydrogen atoms” and “fluorinated monomer in which both R 1 and R 2 are methyl groups”, wherein 1 and R 2 are the same type of group It is suitable for doing. (While the first method requires two reaction steps, the second method allows the target product to be synthesized in a single reaction step). If R 2 is equal to R 1 , the reaction of the second method can also be expressed as:
Figure JPOXMLDOC01-appb-C000011
 なお、第2の方法において、式(6)、式(7)の化合物が異種のもの(つまり一方がアクリル酸ハロゲン化物、もう一方がメタクリル酸ハロゲン化物)である場合も、実施は妨げられない。この場合、
 「式(6)、式(7)の化合物を、例えば1:1のモル比で混ぜて、式(2)の化合物と同時に反応させる」、「まずアクリル酸ハロゲン化物を反応に供したのち、次にメタクリル酸ハロゲン化物を反応に供する」、
 「まずメタクリル酸ハロゲン化物を反応に供したのち、次にアクリル酸ハロゲン化物を反応に供する」、
という手法の何れも採ることができる。尤もこの手法を採った場合、単一生成物は得にくく、通常「R1、R2のどちらか一方が水素原子であって、もう一方がメチル基である含フッ素単量体」、「R1とR2がともに水素原子である含フッ素単量体」、「R1とR2がともにメチル基である含フッ素単量体」が混合物の形で得られる。上記した通り、式(1)の目的物としてこのような複数化学種の混合物を用いることも本発明の範疇内であるので、目的物を当該混合物として得たい場合には、「第2の方法」をこのような手法で実施することもできる。その際の化合物の混合の手順等は、当業者の知見に基づき、最適化すればよい。
In the second method, even when the compounds of the formulas (6) and (7) are different (that is, one is an acrylic acid halide and the other is a methacrylic acid halide), the implementation is not hindered. . in this case,
“The compounds of formula (6) and formula (7) are mixed at a molar ratio of 1: 1, for example, and reacted simultaneously with the compound of formula (2)”, “After first subjecting the acrylate halide to the reaction, Next, subject the methacrylic acid halide to the reaction ",
“First, methacrylic acid halide is subjected to reaction, and then acrylic acid halide is subjected to reaction”,
Any of these methods can be adopted. However, when this method is adopted, it is difficult to obtain a single product, and usually “ one of R 1 and R 2 is a hydrogen atom and the other is a methyl group”, “R A “fluorinated monomer in which both 1 and R 2 are hydrogen atoms” and a “fluorinated monomer in which both R 1 and R 2 are methyl groups” are obtained in the form of a mixture. As described above, since it is also within the scope of the present invention to use such a mixture of a plurality of chemical species as the object of the formula (1), when the object is to be obtained as the mixture, the “second method” Can also be implemented in such a manner. The compound mixing procedure and the like at that time may be optimized based on the knowledge of those skilled in the art.
 以下、各工程につき、さらに具体的に説明する The following is a more specific explanation for each process.
 [第1工程]
 第1工程は式(2)で表されるジオールと式(3)で表される(メタ)アクリル酸無水物を反応させ、式(4)で表される(メタ)アクリル酸エステルを製造する工程である。式(2)で表されるジオールの製造方法と、この第1工程は特許第4667035号に開示されている。例えば、1,1,1-トリフルオロ-2-(トリフルオロメチル)ペンタ-4-エン-2-オールを濃硫酸と反応させた後、水と接触させて加水分解することで、1,1-ビス(トリフルオロメチル)ブタン-1,3-ジオール(式(2)で表されるジオール)が得られる。
[First step]
In the first step, the diol represented by the formula (2) and the (meth) acrylic anhydride represented by the formula (3) are reacted to produce the (meth) acrylic ester represented by the formula (4). It is a process. The method for producing the diol represented by the formula (2) and the first step are disclosed in Japanese Patent No. 4667035. For example, 1,1,1-trifluoro-2- (trifluoromethyl) pent-4-en-2-ol is reacted with concentrated sulfuric acid and then contacted with water to hydrolyze 1,1 -Bis (trifluoromethyl) butane-1,3-diol (diol represented by the formula (2)) is obtained.
 式(3)で表される(メタ)アクリル酸無水物の量は、式(2)で表されるジオール1.0モルに対して通常0.5モル以上、5.0モル以下であり、0.7モル以上、3.0モル以下が好ましく、1.0モル以上、2.0モル以下がより好ましい。ジオール1.0モルに対して(メタ)アクリル酸無水物の量が0.5モル未満では反応の転化率、目的物の収率が共に十分でなく、5.0モルを超えると反応に関与しない(メタ)アクリル酸無水物が増加し、廃棄の手間から経済的に好ましくない。 The amount of (meth) acrylic anhydride represented by formula (3) is usually 0.5 mol or more and 5.0 mol or less with respect to 1.0 mol of diol represented by formula (2), 0.7 mol or more and 3.0 mol or less are preferable, and 1.0 mol or more and 2.0 mol or less are more preferable. If the amount of (meth) acrylic anhydride is less than 0.5 mol with respect to 1.0 mol of diol, the conversion rate of the reaction and the yield of the target product are not sufficient, and if it exceeds 5.0 mol, the reaction is involved. Not (meth) acrylic anhydride increases, which is not economically preferable from the time of disposal.
 第1工程において、反応を促進するために添加剤を添加することができる。使用される添加剤としては、有機スルホン酸またはルイス酸を挙げることができる。有機スルホン酸としては、メタンスルホン酸、エタンスルホン酸、p-トルエンスルホン酸、ベンゼンスルホン酸、トリフルオロメタンスルホン酸を例示することができる。ルイス酸としては、BF3、BCl2、無水フッ化水素を例示することができる。好ましくは、メタンスルホン酸、エタンスルホン酸、p-トルエンスルホン酸、ベンゼンスルホン酸、トリフルオロメタンスルホン酸である。本反応に使用する添加剤の量は基質の式(2)で表されるジオール1.0モルに対して0.01モル以上、2.0モル以下であり、0.02モル以上、1.8モル以下が好ましく、0.05モル以上、1.5モル以下がより好ましい。ジオール1.0モルに対して添加剤の量が0.01モル未満では反応の転化率、目的物の収率が共に低下し、2.0モルを超えると反応に関与しない添加剤の量が増加するため経済的に好ましくない。 In the first step, additives can be added to accelerate the reaction. Additives used can include organic sulfonic acids or Lewis acids. Examples of the organic sulfonic acid include methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, benzenesulfonic acid, and trifluoromethanesulfonic acid. Examples of the Lewis acid include BF 3 , BCl 2 and anhydrous hydrogen fluoride. Preferred are methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, benzenesulfonic acid, and trifluoromethanesulfonic acid. The amount of the additive used in this reaction is 0.01 mol or more and 2.0 mol or less with respect to 1.0 mol of the diol represented by the formula (2) of the substrate. The amount is preferably 8 mol or less, more preferably 0.05 mol or more and 1.5 mol or less. If the amount of the additive is less than 0.01 mol with respect to 1.0 mol of the diol, the conversion rate of the reaction and the yield of the target product are both decreased, and if it exceeds 2.0 mol, the amount of the additive not involved in the reaction is decreased. Since it increases, it is not economically preferable.
 本反応を実施する際の反応温度は、添加剤を添加しない場合は通常、80℃以上、200℃以下、好ましくは100℃以上、180℃以下、さらに好ましくは120℃以上、160℃以下で実施する。この場合、80℃未満では反応速度が極めて遅く、200℃を超えると原料の酸無水物もしくは生成物のエステルが重合することがあるため好ましくない。添加剤を添加する場合は、通常0℃以上、80℃以下、好ましくは10℃以上、70℃以下、さらに好ましくは20℃以上、60℃以下で実施する。この場合、0℃未満では反応速度が遅く実用的製造法とはならない。また、80℃を超えると副反応が進行し易くなり、目的物であるエステルの選択率が低下することがあるため好ましくない。本反応においては、添加剤を加えた方が低い温度で十分な反応性が得られ、選択率が向上するので好ましい。すなわち、メタンスルホン酸、エタンスルホン酸、p-トルエンスルホン酸、ベンゼンスルホン酸、トリフルオロメタンスルホン酸等の添加剤を系内に共存させ、20℃以上、60℃以下の温度範囲で、反応を実施することは、本工程の特に好ましい態様である。 When this reaction is performed, the reaction temperature is usually 80 ° C. or higher and 200 ° C. or lower, preferably 100 ° C. or higher and 180 ° C. or lower, more preferably 120 ° C. or higher and 160 ° C. or lower when no additive is added. To do. In this case, if it is less than 80 ° C., the reaction rate is extremely slow, and if it exceeds 200 ° C., the raw acid anhydride or product ester may be polymerized, which is not preferable. When adding an additive, it is 0 degreeC or more and 80 degrees C or less normally, Preferably it is 10 degreeC or more and 70 degrees C or less, More preferably, it implements at 20 degrees C or more and 60 degrees C or less. In this case, if it is less than 0 ° C., the reaction rate is slow and it is not a practical production method. Moreover, when it exceeds 80 degreeC, a side reaction will advance easily and since the selectivity of ester which is a target object may fall, it is unpreferable. In this reaction, it is preferable to add an additive because sufficient reactivity can be obtained at a low temperature and the selectivity is improved. In other words, additives such as methane sulfonic acid, ethane sulfonic acid, p-toluene sulfonic acid, benzene sulfonic acid, trifluoromethane sulfonic acid are coexisted in the system, and the reaction is carried out in a temperature range of 20 ° C. or higher and 60 ° C. or lower. This is a particularly preferred embodiment of this step.
 本反応は、無溶媒でも進行するが反応の均一性、反応後の操作性を考慮すると溶媒を使用するのが好ましい。使用可能な溶媒の種類に特別な制限はないが、芳香族化合物、エーテル系溶媒、ハロゲン系溶媒を挙げることができる。
 芳香族化合物としては、ベンゼン、トルエン、キシレン、またはメシチレンを例示することができる。エーテル系溶媒としては、ジエチルエーテル、メチル-t-ブチルエーテル、ジイソプロピルエーテル、またはテトラヒドロフランを挙げることができる。ハロゲン系溶媒としては、塩化メチレン、クロロホルム、または四塩化炭素を例示することができる。これらは単独で用いても、複数を併用してもよい。
This reaction proceeds even without solvent, but it is preferable to use a solvent in consideration of the uniformity of the reaction and the operability after the reaction. Although there is no special restriction | limiting in the kind of solvent which can be used, An aromatic compound, an ether solvent, and a halogen-type solvent can be mentioned.
Examples of the aromatic compound include benzene, toluene, xylene, or mesitylene. Examples of ether solvents include diethyl ether, methyl-t-butyl ether, diisopropyl ether, and tetrahydrofuran. Examples of the halogen solvent include methylene chloride, chloroform, and carbon tetrachloride. These may be used alone or in combination.
 本反応に使用する溶媒の量は式(2)で表されるジオール1gに対して通常0.1g以上、100g以下であり、0.5g以上、50g以下が好ましく、1.0g以上、20g以下がより好ましい。溶媒量がジオール1gに対して0.1g未満では溶媒を使用するメリットを十分に引き出せない。100gを超えると生産性の観点から経済的に好ましくない。 The amount of the solvent used in this reaction is usually from 0.1 g to 100 g, preferably from 0.5 g to 50 g, preferably from 1.0 g to 20 g, based on 1 g of the diol represented by the formula (2). Is more preferable. If the amount of the solvent is less than 0.1 g with respect to 1 g of the diol, the merit of using the solvent cannot be sufficiently extracted. If it exceeds 100 g, it is not economically preferable from the viewpoint of productivity.
 [第2工程]
 第2工程は式(4)で表される(メタ)アクリル酸エステルと式(6)で表される(メタ)アクリル酸ハロゲン化物を反応させ、式(1)で表される含フッ素単量体を製造する工程である。なお、(6)で表される(メタ)アクリル酸ハロゲン化物のハロゲン(X)としては、それぞれ独立に、F、Cl、Br、Iが挙げられ、Clが特に好ましい。式(4)で表されるエステルと反応させる式(6)で表される(メタ)アクリル酸ハロゲン化物の使用量は特に制限するものではないが、式(4)で表されるエステル1モルに対して、好ましくは0.1モル以上、50モル以下であり、さらに好ましくは0.5モル以上、10モル以下であり、特に好ましくは0.8モル以上、1.5モル以下である。
[Second step]
In the second step, the (meth) acrylic acid ester represented by the formula (4) is reacted with the (meth) acrylic acid halide represented by the formula (6), and the fluorine-containing single monomer represented by the formula (1) It is a process of manufacturing a body. In addition, as halogen (X) of the (meth) acrylic acid halide represented by (6), F, Cl, Br, and I can be mentioned independently, and Cl is particularly preferable. The amount of the (meth) acrylic acid halide represented by the formula (6) to be reacted with the ester represented by the formula (4) is not particularly limited, but 1 mol of the ester represented by the formula (4) Is preferably 0.1 mol or more and 50 mol or less, more preferably 0.5 mol or more and 10 mol or less, and particularly preferably 0.8 mol or more and 1.5 mol or less.
 反応は溶媒を用いなくても進行するが、用いた方が制御することが容易である。用いることのできる溶媒は、反応試剤が溶解できればよく、テトラヒドロフラン、ジエチルエーテル、ジイソプロピルエーテル、ジクロロエタン、トルエンを例示することができる。これらの溶媒は単独で用いてもよく、2種類以上をともに用いてもよい。 The reaction proceeds without the use of a solvent, but it is easier to control the use. The solvent that can be used is only required to dissolve the reaction reagent, and examples thereof include tetrahydrofuran, diethyl ether, diisopropyl ether, dichloroethane, and toluene. These solvents may be used alone or in combination of two or more.
 反応温度は特に制限は無く、好ましくは-78℃以上、100℃以下であり、さらに好ましくは-20℃以上、50℃以下であり、さらに好ましくは-10℃以上、30℃以下である。反応は攪拌しながら行うのが好ましい。 The reaction temperature is not particularly limited and is preferably −78 ° C. or higher and 100 ° C. or lower, more preferably −20 ° C. or higher and 50 ° C. or lower, and further preferably −10 ° C. or higher and 30 ° C. or lower. The reaction is preferably carried out with stirring.
 反応時間は反応温度にも依存するが、好ましくは1分以上、100時間以下であり、さらに好ましくは30分以上、50時間以下であり、特に好ましくは1時間以上、24時間以下である。ガスクロマトグラフィー(GC)等の分析機器を使用し、原料である式(4)で表される(メタ)アクリル酸エステルが消費された時点を反応の終点とすることが好ましい。 Although the reaction time depends on the reaction temperature, it is preferably 1 minute or more and 100 hours or less, more preferably 30 minutes or more and 50 hours or less, and particularly preferably 1 hour or more and 24 hours or less. Using an analytical instrument such as gas chromatography (GC), the end point of the reaction is preferably the time when the (meth) acrylic acid ester represented by the formula (4) as the raw material is consumed.
 本反応においては、塩基を使用することが好ましい。用いることのできる塩基は、ピリジン、トリエチルアミン、ジイソプロピルエチルアミンを例示することができる。これら塩基の使用量は特に制限されるものではないが、式(4)で表される(メタ)アクリル酸エステル1モルに対して、好ましくは0.1モル以上、50モル以下であり、さらに好ましくは0.5モル以上、10モル以下であり、特に好ましくは0.8モル以上、1.5モル以下である。 In this reaction, it is preferable to use a base. Examples of the base that can be used include pyridine, triethylamine, and diisopropylethylamine. The amount of these bases to be used is not particularly limited, but is preferably 0.1 mol or more and 50 mol or less with respect to 1 mol of the (meth) acrylic acid ester represented by the formula (4). Preferably they are 0.5 mol or more and 10 mol or less, Especially preferably, they are 0.8 mol or more and 1.5 mol or less.
 反応終了後、抽出、洗浄、蒸留またはカラムクロマトグラフィにより式(1)で表される含フッ素単量体を得ることができる。また必要により得られた含フッ素単量体を精密蒸留等によって精製することができる。 After completion of the reaction, the fluorine-containing monomer represented by the formula (1) can be obtained by extraction, washing, distillation or column chromatography. Further, the obtained fluorine-containing monomer can be purified by precision distillation or the like.
 [第3工程]
 第3工程は、式(2)で表されるジオールと式(6)または(7)で表される(メタ)アクリル酸ハロゲン化物を反応させ、式(1)で表される含フッ素単量体を製造する工程である。該(メタ)アクリル酸ハロゲン化物のハロゲン(X)としては、F、Cl、Br、Iを挙げることができ、Clが特に好ましい。(メタ)アクリル酸ハロゲン化物の使用量は特に制限するものではないが、式(2)で表されるジオール1モルに対して、好ましくは0.1モル以上、50モル以下であり、さらに好ましくは1.5モル以上、10モル以下であり、特に好ましくは1.8モル以上、3モル以下である。
[Third step]
In the third step, the diol represented by the formula (2) and the (meth) acrylic acid halide represented by the formula (6) or (7) are reacted, and the fluorine-containing single monomer represented by the formula (1) It is a process of manufacturing a body. Examples of the halogen (X) of the (meth) acrylic acid halide include F, Cl, Br, and I, and Cl is particularly preferable. The amount of (meth) acrylic acid halide used is not particularly limited, but is preferably 0.1 mol or more and 50 mol or less, and more preferably, with respect to 1 mol of the diol represented by the formula (2). Is 1.5 mol or more and 10 mol or less, and particularly preferably 1.8 mol or more and 3 mol or less.
 反応は溶媒を用いなくても進行するが、用いた方が制御することが容易である。用いることのできる溶媒としては、テトラヒドロフラン、ジエチルエーテル、ジイソプロピルエーテル、ジクロロエタン、トルエンを例示することができる。これらの溶媒は単独で用いてもよく、2種類以上をともに用いてもよい。 The reaction proceeds without the use of a solvent, but it is easier to control the use. Examples of the solvent that can be used include tetrahydrofuran, diethyl ether, diisopropyl ether, dichloroethane, and toluene. These solvents may be used alone or in combination of two or more.
 反応温度は特に制限は無く、好ましくは-78℃以上、100℃以下であり、さらに好ましくは-20℃以上、50℃以下であり、特に好ましくは-10℃以上、30℃以下である。反応は攪拌しながら行うのが好ましい。 The reaction temperature is not particularly limited and is preferably −78 ° C. or higher and 100 ° C. or lower, more preferably −20 ° C. or higher and 50 ° C. or lower, and particularly preferably −10 ° C. or higher and 30 ° C. or lower. The reaction is preferably carried out with stirring.
 反応時間は反応温度にも依存するが、好ましくは1分以上、100時間以下であり、さらに好ましくは30分以上、50時間以下であり、特に好ましくは1時間以上、24時間以下である。ガスクロマトグラフィー(GC)等の分析機器を使用し、原料である式(2)で表されるジオールが消費された時点を反応の終点とすることが好ましい。 Although the reaction time depends on the reaction temperature, it is preferably 1 minute or more and 100 hours or less, more preferably 30 minutes or more and 50 hours or less, and particularly preferably 1 hour or more and 24 hours or less. It is preferable to use an analytical instrument such as gas chromatography (GC) and set the end point of the reaction to the time when the diol represented by the formula (2) as the raw material is consumed.
 本反応においては、塩基を使用することが好ましい。用いることのできる塩基は、ピリジン、トリエチルアミン、ジイソプロピルエチルアミンを例示することができる。これら塩基の使用量は特に制限されるものではないが、式(2)で表されるジオール1モルに対して、好ましくは0.1モル以上、50モル以下であり、さらに好ましくは1.5モル以上、10モル以下であり、特に好ましくは1.8モル以上、3モル以下である。 In this reaction, it is preferable to use a base. Examples of the base that can be used include pyridine, triethylamine, and diisopropylethylamine. The amount of these bases to be used is not particularly limited, but is preferably 0.1 mol or more and 50 mol or less, more preferably 1.5 mol, with respect to 1 mol of the diol represented by the formula (2). The amount is from 1 mol to 10 mol, particularly preferably from 1.8 mol to 3 mol.
 反応終了後、抽出、洗浄、蒸留またはカラムクロマトグラフィにより式(1)で表される含フッ素単量体を得ることができる。また必要により得られた精密蒸留等によって精製することができる。 After completion of the reaction, the fluorine-containing monomer represented by the formula (1) can be obtained by extraction, washing, distillation or column chromatography. Moreover, it can refine | purify by the precision distillation etc. which were obtained as needed.
 第1工程、第2工程、第3工程いずれにおいても、反応物や生成物が重合することを防止することを目的として重合禁止剤を共存させて行ってもよく、通常はそれが好ましい。使用する重合禁止剤として具体的には、ヒドロキノン、メトキノン、2,5-ジ-t-ブチルヒドロキノン、1,2,4-トリヒドロキシベンゼン、2,5-ビステトラメチルブチルヒドロキノン、ロイコキニザリン、フェノチアジン、テトラエチルチウラム ジスルフィド、1,1-ジフェニル-2-ピクリルヒドラジル、または1,1-ジフェニル-2-ピクリルヒドラジン、精工化学株式会社製、商品名、ノンフレックスF、ノンフレックスH、ノンフレックスDCD、ノンフレックスMBP、オゾノン35、富士フィルム和光純薬株式会社製、Q-1300、Q-1301を例示することができる。上記の重合禁止剤は市販されており、容易に入手可能である。 In any of the first step, the second step, and the third step, the polymerization may be carried out in the presence of a polymerization inhibitor for the purpose of preventing the reaction product or product from being polymerized, and it is usually preferable. Specific examples of polymerization inhibitors to be used include hydroquinone, methoquinone, 2,5-di-t-butylhydroquinone, 1,2,4-trihydroxybenzene, 2,5-bistetramethylbutylhydroquinone, leucoquinizarin, phenothiazine, Tetraethylthiuram disulfide, 1,1-diphenyl-2-picrylhydrazyl, or 1,1-diphenyl-2-picrylhydrazine, manufactured by Seiko Chemical Co., Ltd., trade names, Nonflex F, Nonflex H, Nonflex DCD Non-flex MBP, Ozonon 35, Fuji Film Wako Pure Chemical Industries, Ltd., Q-1300, Q-1301 can be exemplified. The above polymerization inhibitors are commercially available and can be easily obtained.
 3.当該含フッ素単量体を構成成分として含む硬化性組成物について
 本発明の別の態様は、式(1)で表される含フッ素単量体と、重合開始剤と、を含む硬化性組成物である。硬化性組成物は、さらに任意成分として、上記式(1)で表される含フッ素単量体以外の重合性化合物(本明細書において「その他の重合性化合物」と呼ぶことがある)、増感剤、界面活性剤、溶媒、各種添加剤、を含むことができる。
3. About the curable composition containing the said fluorine-containing monomer as a structural component Another aspect of this invention is a curable composition containing the fluorine-containing monomer represented by Formula (1), and a polymerization initiator. It is. The curable composition further comprises, as an optional component, a polymerizable compound other than the fluorine-containing monomer represented by the above formula (1) (sometimes referred to as “other polymerizable compound” in this specification), an increase Sensitizers, surfactants, solvents, and various additives can be included.
 以下、各成分について説明する。なお、説明の都合上、「式(1)で表される含フッ素単量体」と「その他の重合性化合物」はまとめて、「重合性化合物」として説明する。それ以外の任意成分を「その他の添加成分」として説明する。 Hereinafter, each component will be described. For convenience of explanation, “the fluorine-containing monomer represented by the formula (1)” and “other polymerizable compound” are collectively described as “polymerizable compound”. Other optional components will be described as “other additive components”.
 3-1.重合性化合物
 重合性化合物とは、上記の通り、「式(1)で表される含フッ素単量体」と、「その他の重合性化合物」の総称である。重合性化合物は、インプリントの硬化性組成物の主成分である。当該硬化性組成物における重合性化合物の含量は通常50質量%以上であり、典型的には80質量%以上である。硬化性組成物が溶媒を含む場合は、これより重合性化合物の含量が少ないことも妨げられない。しかし、式(1)で表される含フッ素単量体は溶媒がなくとも十分な流動性を示し、モールドの凹凸部への充填は十分可能であるので溶媒は必須成分ではない。そうすると、硬化性組成物全体に占める重合性化合物の含量が90質量%以上であることは、特に好ましい態様の1つである。
3-1. Polymerizable Compound The polymerizable compound is a generic term for “the fluorine-containing monomer represented by the formula (1)” and “other polymerizable compounds” as described above. The polymerizable compound is the main component of the curable composition for imprints. The content of the polymerizable compound in the curable composition is usually 50% by mass or more, and typically 80% by mass or more. When a curable composition contains a solvent, it is not prevented that there is little content of a polymeric compound from this. However, since the fluorine-containing monomer represented by the formula (1) exhibits sufficient fluidity even without a solvent and can sufficiently fill the uneven portion of the mold, the solvent is not an essential component. If it does so, it is one of the especially preferable aspects that the content of the polymeric compound which occupies for the whole curable composition is 90 mass% or more.
 重合性化合物としては、式(1)で表される含フッ素単量体を単独で用いてもよい(本明細書の実施例1を参照)。しかし、式(1)で表される含フッ素単量体と共に「その他の重合性化合物」を併用することができ、そうすることでより一層機械的強度に勝る硬化膜が得られることがある。「その他の重合性化合物」は、ラジカル重合性を有する化合物であれば特に限定されないが、アクリロイル基またはメタクリロイル基を1つ以上有する化合物、すなわち(メタ)アクリル化合物であることが好ましい。「式(1)の含フッ素単量体」と「その他の重合性化合物」の総質量に対する、「式(1)の含フッ素単量体」と「その他の重合性化合物中の(メタ)アクリル化合物」質量の占める割合は90%以上であることが好ましい。
 「その他の重合性化合物」において、その構造内にアクリロイル基またはメタクリロイル基を1つ有する化合物である単官能単量体は重合のみの作用をし、2つ以上有する化合物である多官能単量体は架橋を行う。これらの単量体の割合によって得られる硬化物の硬さ等の物性を調整することができる。硬化膜に硬さを得るために、多官能単量体にて架橋を行うことが好ましい。
As the polymerizable compound, a fluorine-containing monomer represented by the formula (1) may be used alone (see Example 1 in this specification). However, “other polymerizable compounds” can be used in combination with the fluorine-containing monomer represented by the formula (1), and in that case, a cured film having even higher mechanical strength may be obtained. The “other polymerizable compounds” are not particularly limited as long as they are radically polymerizable compounds, but are preferably compounds having one or more acryloyl groups or methacryloyl groups, that is, (meth) acrylic compounds. “(Fluorine-containing monomer of formula (1)” and “(meth) acrylic in other polymerizable compounds relative to the total mass of“ fluorine-containing monomer of formula (1) ”and“ other polymerizable compound ” The proportion of the “compound” mass is preferably 90% or more.
In "other polymerizable compounds", the monofunctional monomer that is a compound having one acryloyl group or methacryloyl group in its structure acts only for polymerization, and is a polyfunctional monomer that is a compound having two or more. Performs cross-linking. The physical properties such as hardness of the cured product obtained can be adjusted by the ratio of these monomers. In order to obtain hardness in the cured film, it is preferable to perform crosslinking with a polyfunctional monomer.
 重合性化合物の総質量に対する、式(1)の含フッ素単量体の占める割合の下限は特にないが、式(1)の含フッ素単量体の占める割合は通常10%以上であり、30%以上が好ましい。式(1)の含フッ素単量体の持つ、優れた充填性(充填速度)を重視する場合には、当該割合を60%以上(100%であることも含む)にすることは特に好ましい。一方、式(1)で表される含フッ素単量体の含量がこれらより少量であっても、硬化性組成物の充填性はその寄与の分だけ向上する。従って、これらより少ない量の、式(1)で表される含フッ素単量体が含まれる場合であっても、本発明の範囲から除外されることはない。 There is no particular lower limit of the proportion of the fluorine-containing monomer of the formula (1) to the total mass of the polymerizable compound, but the proportion of the fluorine-containing monomer of the formula (1) is usually 10% or more, 30 % Or more is preferable. When emphasizing the excellent filling property (filling speed) of the fluorine-containing monomer of the formula (1), it is particularly preferable to make the ratio 60% or more (including 100%). On the other hand, even if the content of the fluorine-containing monomer represented by the formula (1) is smaller than these, the filling property of the curable composition is improved by the contribution. Therefore, even when a smaller amount of the fluorine-containing monomer represented by the formula (1) is contained, it is not excluded from the scope of the present invention.
 「その他の重合性化合物」のうち、アクリロイル基またはメタクリロイル基を1つ有する単官能(メタ)アクリル化合物としては、例えば、フェノキシエチル(メタ)アクリレート、フェノキシ-2-メチルエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、3-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-フェニルフェノキシエチル(メタ)アクリレート、4-フェニルフェノキシエチル(メタ)アクリレート、3-(2-フェニルフェニル)-2-ヒドロキシプロピル(メタ)アクリレート、EO変性p-クミルフェノールの(メタ)アクリレート、2-ブロモフェノキシエチル(メタ)アクリレート、2,4-ジブロモフェノキシエチル(メタ)アクリレート、2,4,6-トリブロモフェノキシエチル(メタ)アクリレート、EO変性フェノキシ(メタ)アクリレート、PO変性フェノキシ(メタ)アクリレート、ポリオキシエチレンノニルフェニルエーテル(メタ)アクリレート、イソボルニル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、2-メチル-2-アダマンチル(メタ)アクリレート、2-エチル-2-アダマンチル(メタ)アクリレート、ボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4-ブチルシクロヘキシル(メタ)アクリレート、アクリロイルモルホリン、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2―ヒドロキシブチル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、エトキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ジアセトン(メタ)アクリルアミド、イソブトキシメチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、t-オクチル(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、7-アミノ-3,7-ジメチルオクチル(メタ)アクリレート、N,N-ジエチル(メタ)アクリルアミド、またはN,N-ジメチルアミノプロピル(メタ)アクリルアミドを例示することができるが、これらに限定されるものではない。 Among the “other polymerizable compounds”, monofunctional (meth) acrylic compounds having one acryloyl group or methacryloyl group include, for example, phenoxyethyl (meth) acrylate, phenoxy-2-methylethyl (meth) acrylate, phenoxy Ethoxyethyl (meth) acrylate, 3-phenoxy-2-hydroxypropyl (meth) acrylate, 2-phenylphenoxyethyl (meth) acrylate, 4-phenylphenoxyethyl (meth) acrylate, 3- (2-phenylphenyl) -2 -Hydroxypropyl (meth) acrylate, (meth) acrylate of EO-modified p-cumylphenol, 2-bromophenoxyethyl (meth) acrylate, 2,4-dibromophenoxyethyl (meth) acrylate, 2,4,6-tri Lomophenoxyethyl (meth) acrylate, EO-modified phenoxy (meth) acrylate, PO-modified phenoxy (meth) acrylate, polyoxyethylene nonylphenyl ether (meth) acrylate, isobornyl (meth) acrylate, 1-adamantyl (meth) acrylate, 2 -Methyl-2-adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, bornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (Meth) acrylate, cyclohexyl (meth) acrylate, 4-butylcyclohexyl (meth) acrylate, acryloylmorpholine, 2-hydroxyethyl (meth) acrylate, 2-hydro Cypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate , Isobutyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth) acrylate, dodeci (Meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, benzyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, butoxyethyl (meth) acrylate, ethoxydiethylene glycol (meth) ) Acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, methoxyethylene glycol (meth) acrylate, ethoxyethyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, Diacetone (meth) acrylamide, isobutoxymethyl (meth) acrylamide, N, N-dimethyl (me ) Acrylamide, t-octyl (meth) acrylamide, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 7-amino-3,7-dimethyloctyl (meth) acrylate, N, N-diethyl (meth) acrylamide , Or N, N-dimethylaminopropyl (meth) acrylamide, but is not limited thereto.
 これら単官能(メタ)アクリル化合物に該当する市販品としては、商品名、アロニックスM101、M102,M110、M111、M113、M117、M5700、TO-1317、M120、M150、M156(以上、東亞合成株式会社製)、MEDOL10,MIBDOL10、CHDOL10,MMDOL30、MEDOL30、MIBDOL30,CHDOL30、LA、IBXA、2-MTA、HPA、ビスコート#150、#155、#158、#190、#192、#193、#220、#2000、#2100、#2150(以上、大阪有機化学工業株式会社製)、ライトアクリレートBO-A、EC-A、DMP-A、THF-A、HOP-A、HOA-MPE、HOA-MPL、PO-A、P-200A、NP-4EA、NP-8EA、エポキシエステルM-600A(以上、共栄社化学株式会社製)、KAYARAD TC110S、R-564、R-128H(以上、日本化薬株式会社製)、NKエステルAMP-10G、AMP-20G(以上、新中村化学工業株式会社製)、FA-511A、512A、513A(以上、日立化成株式会社製)、PHE、CEA、PHE-2、PHE-4、BR-31、BR-31M、BR-32(以上、第一工業製薬株式会社製)、VP(BASFジャパン株式会社製)、ACMO、DMAA、DMAPAA(以上、株式会社興人製)を例示することができるが、これらに限定されるものではない。 Commercial products corresponding to these monofunctional (meth) acrylic compounds include trade names, Aronix M101, M102, M110, M111, M113, M117, M5700, TO-1317, M120, M150, M156 (above, Toagosei Co., Ltd.) Manufactured), MEDOL10, MIBDOL10, CHDOL10, MMDOL30, MEDOL30, MIBDOL30, CHDOL30, LA, IBXA, 2-MTA, HPA, Viscoat # 150, # 155, # 158, # 190, # 192, # 193, # 220, # 2000, # 2100, # 2150 (above Osaka Organic Chemical Co., Ltd.), light acrylate BO-A, EC-A, DMP-A, THF-A, HOP-A, HOA-MPE, HOA-MPL, PO -A, P-200A, NP 4EA, NP-8EA, epoxy ester M-600A (above, Kyoeisha Chemical Co., Ltd.), KAYARADARTC110S, R-564, R-128H (above, Nippon Kayaku Co., Ltd.), NK ester AMP-10G, AMP- 20G (above, Shin-Nakamura Chemical Co., Ltd.), FA-511A, 512A, 513A (above, Hitachi Chemical Co., Ltd.), PHE, CEA, PHE-2, PHE-4, BR-31, BR-31M, BR-32 (above, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), VP (made by BASF Japan Ltd.), ACMO, DMAA, DMAPAA (above, manufactured by Kojin Co., Ltd.) can be exemplified, but are not limited thereto. It is not something.
 「その他の重合性化合物」のうち、アクリロイル基またはメタクリロイル基を2つ以上有する多官能(メタ)アクリル化合物としては、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、EO,PO変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコール(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、トリス(アクリロイルオキシ)イソシアヌレート、ビス(ヒドロキシメチル)トリシクロデカンジ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、EO変性2,2-ビス(4-((メタ)アクリロキシ)フェニル)プロパン、PO変性2,2-ビス(4-((メタ)アクリロキシ)フェニル)プロパン、またはEO,PO変性2,2-ビス(4-((メタ)アクリロキシ)フェニル)プロパンを例示することができるが、これらに限定されるものではない。 Among the “other polymerizable compounds”, polyfunctional (meth) acrylic compounds having two or more acryloyl groups or methacryloyl groups include trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and EO modification. Trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri (meth) acrylate, EO, PO-modified trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ethylene Glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol (meth) acrylate, tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate, tris ( Acryloyloxy) isocyanurate, bis (hydroxymethyl) tricyclodecane di (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, EO modified 2,2-bis (4-(( Meth) acryloxy) phenyl) propane, PO-modified 2,2-bis (4-((meth) acryloxy) phenyl) propane, or EO, PO-modified 2,2-bis (4-((meth) acryloxy) phenyl) propane Can be illustrated , But it is not limited thereto.
 多官能(メタ)アクリル化合物に該当する市販品としては、商品名、ユピマーUV SA1002、SA2007(以上、三菱ケミカル株式会社製)、ビスコート#195、#230、#215、#260、#335HP、#295、#300、#360、#700、GPT、3PA(以上、大阪有機化学工業株式会社製)、ライトアクリレート4EG-A、9EG-A、NP-A、DCP-A、BP-4EA、BP-4PA、TMP-A、PE-3A、PE-4A、DPE-6A(以上、共栄社化学株式会社製)、KAYARAD PET-30、TMPTA、R-604、DPHA、DPCA-20、-30、-60、-120、HX-620、D-310、D-330(以上、日本化薬株式会社製)、アロニックスM208、M210、M215、M220、M240、M305、M309、M310、M315、M325、M400(以上、東亞合成株式会社製)、リポキシVR-77、VR-60、VR-90(以上、昭和電工株式会社製)を例示することができるが、これらに限定されるものではない。 Commercially available products corresponding to polyfunctional (meth) acrylic compounds include trade names, Iupimer UV SA1002, SA2007 (above, manufactured by Mitsubishi Chemical Corporation), Biscoat # 195, # 230, # 215, # 260, # 335HP, # 295, # 300, # 360, # 700, GPT, 3PA (above, manufactured by Osaka Organic Chemical Co., Ltd.), Light Acrylate 4EG-A, 9EG-A, NP-A, DCP-A, BP-4EA, BP- 4PA, TMP-A, PE-3A, PE-4A, DPE-6A (manufactured by Kyoeisha Chemical Co., Ltd.), KAYARAD PET-30, TMPTA, R-604, DPHA, DPCA-20, -30, -60, -120, HX-620, D-310, D-330 (Nippon Kayaku Co., Ltd.), Aronix M208, M210 M215, M220, M240, M305, M309, M310, M315, M325, M400 (above, manufactured by Toagosei Co., Ltd.), Lipoxy VR-77, VR-60, VR-90 (above, manufactured by Showa Denko KK) Although it can illustrate, it is not limited to these.
 以上に例示した「その他の重合性化合物」は、一種類を単独で用いてもよいし、二種類以上を組み合わせて用いてもよい。 The “other polymerizable compounds” exemplified above may be used alone or in combination of two or more.
 3-2.重合開始剤
 重合開始剤としては光重合開始剤および熱重合開始剤が含まれる。
3-2. Polymerization initiator The polymerization initiator includes a photopolymerization initiator and a thermal polymerization initiator.
 [光重合開始剤]
 光重合開始剤は、光刺激により、重合性化合物の重合反応を引き起こす反応種を発生させる物質である。具体的には、光刺激によりラジカルが発生する光ラジカル発生剤を挙げることができる。
[Photopolymerization initiator]
The photopolymerization initiator is a substance that generates reactive species that cause a polymerization reaction of the polymerizable compound by light stimulation. Specific examples include a photo radical generator that generates radicals by light stimulation.
 光ラジカル発生剤は、光(赤外線、可視光線、紫外線、遠紫外線、X線、電子線等の荷電粒子線等、放射線)によりラジカルを発生する重合開始剤であり、主に、重合性化合物がラジカル重合性化合物の場合に用いられる。 Photoradical generators are polymerization initiators that generate radicals by light (infrared rays, visible rays, ultraviolet rays, far ultraviolet rays, charged particle beams such as X-rays, electron beams, etc., radiation). Used for radically polymerizable compounds.
 光ラジカル発生剤としては、置換基を有してもよい2,4,5-トリアリールイミダゾール二量体、ベンゾフェノン誘導体、芳香族ケトン誘導体、キノン類、ベンゾインエーテル誘導体、ベンジル誘導体、アクリジン誘導体、N-フェニルグリシン誘導体、アセトフェノン誘導体、ベンゾイン誘導体、チオキサントン誘導体、またはその他光ラジカル発生剤、およびこれらの市販品を挙げることができる。以下に各々を例示する。以下の光ラジカル発生剤は一種類を単独で用いてもよいし、二種類以上を組み合わせて用いてもよい。
 <置換基を有してもよい2,4,5-トリアリールイミダゾール二量体>
 2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、あるいは2-(o-またはp-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体
 <ベンゾフェノン誘導体>
 ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)、N,N’-テトラエチル-4,4’ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、または4,4’-ジアミノベンゾフェノン
 <芳香族ケトン誘導体>
 2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1,2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノ-プロパノン-1-オン
 <キノン類>
 2-エチルアントラキノン、フェナントレンキノン、2-t-ブチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ベンズアントラキノン、2-フェニルアントラキノン、2,3-ジフェニルアントラキノン、1-クロロアントラキノン、2-メチルアントラキノン、1,4-ナフトキノン、9,10-フェナンタラキノン、2-メチル-1,4-ナフトキノン、または2,3-ジメチルアントラキノン
 <ベンゾインエーテル誘導体>
 ベンゾインメチルエーテル、ベンゾインエチルエーテル、またはベンゾインフェニルエーテル
 <ベンゾイン誘導体>
 ベンゾイン、メチルベンゾイン、エチルベンゾイン、またはプロピルベンゾイン
 <ベンジル誘導体>
 ベンジルジメチルケタール
 <アクリジン誘導体>
 9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン
 <N-フェニルグリシン誘導体>
 N-フェニルグリシン
 <アセトフェノン誘導体>
 アセトフェノン、3-メチルアセトフェノン、アセトフェノンベンジルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、または2,2-ジメトキシ-2-フェニルアセトフェノン
 <チオキサントン誘導体>
 チオキサントン、ジエチルチオキサントン、2-イソプロピルチオキサントン、または2-クロロチオキサントン
 <その他光ラジカル発生剤>
 キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、またはビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキシド
 <市販品>
 商品名、Irgacure184、369、651、500、819、907、784、2959、CGI-1700、-1750、-1850、CG24-61、Darocur 1116、1173(以上、チバ・ジャパン株式会社製)、Lucirin TPO、LR8893、LR8970(以上、BASFジャパン株式会社製)、ユベクリルP36(ユーシービージャパン株式会社)等が挙げられるが、これらに限定されない。
Examples of the photoradical generator include 2,4,5-triarylimidazole dimer which may have a substituent, benzophenone derivative, aromatic ketone derivative, quinones, benzoin ether derivative, benzyl derivative, acridine derivative, N -Phenylglycine derivatives, acetophenone derivatives, benzoin derivatives, thioxanthone derivatives, other photoradical generators, and commercial products thereof. Each is illustrated below. The following photo radical generators may be used alone or in combination of two or more.
<2,4,5-triarylimidazole dimer optionally having substituent>
2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4 , 5-diphenylimidazole dimer, or 2- (o- or p-methoxyphenyl) -4,5-diphenylimidazole dimer <benzophenone derivative>
Benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), N, N′-tetraethyl-4,4′diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, 4- chlorobenzophenone 4,4′-dimethoxybenzophenone or 4,4′-diaminobenzophenone <Aromatic ketone derivative>
2-Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one <Quinones>
2-ethylanthraquinone, phenanthrenequinone, 2-t-butylanthraquinone, octamethylanthraquinone, 1,2-benzanthraquinone, 2,3-benzanthraquinone, 2-phenylanthraquinone, 2,3-diphenylanthraquinone, 1-chloroanthraquinone, 2-methylanthraquinone, 1,4-naphthoquinone, 9,10-phenantharaquinone, 2-methyl-1,4-naphthoquinone, or 2,3-dimethylanthraquinone <benzoin ether derivative>
Benzoin methyl ether, benzoin ethyl ether, or benzoin phenyl ether <benzoin derivative>
Benzoin, methylbenzoin, ethylbenzoin, or propylbenzoin <Benzyl derivatives>
Benzyldimethyl ketal <acridine derivative>
9-phenylacridine, 1,7-bis (9,9′-acridinyl) heptane <N-phenylglycine derivative>
N-phenylglycine <acetophenone derivative>
Acetophenone, 3-methylacetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, or 2,2-dimethoxy-2-phenylacetophenone <thioxanthone derivative>
Thioxanthone, diethylthioxanthone, 2-isopropylthioxanthone, or 2-chlorothioxanthone <Other photoradical generator>
Xanthone, fluorenone, benzaldehyde, fluorene, anthraquinone, triphenylamine, carbazole, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropane -1-one, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, or bis- (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide <commercially available product>
Product name, Irgacure 184, 369, 651, 500, 819, 907, 784, 2959, CGI-1700, -1750, -1850, CG24-61, Darocur 1116, 1173 (above, manufactured by Ciba Japan Co., Ltd.), Lucirin TPO , LR8883, LR8970 (above, manufactured by BASF Japan Ltd.), Ubekrill P36 (UCB Japan Ltd.), and the like, but are not limited thereto.
 [熱重合開始剤]
 熱重合開始剤は、熱刺激により、重合性化合物の重合反応を引き起こす反応種を発生させる物質である。具体的には、熱刺激によりラジカルが発生する熱ラジカル発生剤等が挙げられる。
[Thermal polymerization initiator]
The thermal polymerization initiator is a substance that generates reactive species that cause a polymerization reaction of the polymerizable compound by thermal stimulation. Specific examples include thermal radical generators that generate radicals upon thermal stimulation.
 熱ラジカル発生剤としては、アゾ化合物および有機過酸化物を挙げることができる。
 <アゾ化合物>
 アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス-2-メチルブチロニトリル、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)、2,2’-アゾビス(メチルイソブチレート)、または2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロリドを例示することができる。
 <有機過酸化物>
 ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート、t-ブチルハイドロパーオキサイド、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、またはジ-t-ブチルパーオキサイドを例示することができる。
Examples of the thermal radical generator include azo compounds and organic peroxides.
<Azo compound>
Azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (isobutyronitrile), 2,2′-azobis-2-methylbutyronitrile, Examples include 1,1′-azobis (1-cyclohexanecarbonitrile), 2,2′-azobis (methylisobutyrate), or 2,2′-azobis (2-amidinopropane) dihydrochloride.
<Organic peroxide>
Dicumyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate, t-butyl hydroperoxide, benzoyl peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, paramentane hydroperoxide, or di An example is -t-butyl peroxide.
 本発明の硬化性組成物において、含まれる重合開始剤は、一種類を単独で用いてもよいし、二種類以上を併用してもよい。ここで硬化性組成物を硬化する工程が光による場合では、開始剤として光重合開始剤が用いられ、熱による場合では、開始剤として熱重合開始剤が用いられる。これら開始剤のうち、半導体集積回路等の微細構造体となる膜を製造する際には、光重合開始剤を用いることが好ましい。光重合開始剤を用いると、硬化膜の製造プロセスにおいて、加熱や冷却の熱プロセスが不要となり、生産性が優れるからである。 In the curable composition of the present invention, one polymerization initiator may be used alone, or two or more polymerization initiators may be used in combination. Here, in the case where the step of curing the curable composition is based on light, a photopolymerization initiator is used as the initiator, and in the case where it is based on heat, a thermal polymerization initiator is used as the initiator. Among these initiators, it is preferable to use a photopolymerization initiator when manufacturing a film to be a microstructure such as a semiconductor integrated circuit. This is because when a photopolymerization initiator is used, a heat process such as heating or cooling is not required in the process for producing a cured film, and productivity is excellent.
 本発明の硬化性組成物に含まれる重合開始剤の含有量は、特に制限が無いが、好ましくは、硬化性組成物の質量(総質量)に対して、0.01質量%以上、10質量%以下である。より好ましくは0.1質量%以上、7質量%以下であり、特に好ましくは、1質量%以上、5質量%以下である。この範囲であると硬化性組成物の硬化速度と膜(硬化膜)の強度(樹脂強度)が共に優れる。 Although there is no restriction | limiting in particular in content of the polymerization initiator contained in the curable composition of this invention, Preferably, 0.01 mass% or more and 10 mass with respect to the mass (total mass) of a curable composition % Or less. More preferably, they are 0.1 mass% or more and 7 mass% or less, Especially preferably, they are 1 mass% or more and 5 mass% or less. Within this range, both the curing rate of the curable composition and the strength (resin strength) of the film (cured film) are excellent.
 3-3.その他の添加成分
 本発明の硬化性組成物は、前記した成分の他に、種々の目的に応じ、発明の効果を損なわない範囲で、さらなる添加成分を含んでもよい。このような添加成分としては、界面活性剤、増感剤、水素供与体、酸化防止剤、溶媒、ポリマー成分等を挙げることができる。特に、光硬化性組成物が増感剤を含むことが好ましい。以下に説明する。
3-3. Other Additive Components The curable composition of the present invention may contain additional additive components in addition to the above-described components within a range not impairing the effects of the invention according to various purposes. Examples of such additive components include surfactants, sensitizers, hydrogen donors, antioxidants, solvents, and polymer components. In particular, the photocurable composition preferably contains a sensitizer. This will be described below.
 [増感剤]
 増感剤を含むことにより、重合反応促進や反応転化率が向上する傾向がある。増感剤としては、水素供与体または増感色素を挙げることができる。
[Sensitizer]
By including a sensitizer, there is a tendency that the polymerization reaction is accelerated and the reaction conversion rate is improved. Examples of the sensitizer include a hydrogen donor or a sensitizing dye.
 本発明の硬化性組成物に増感剤が含まれる場合、増感剤の含有量は、重合性化合物の質量に対して10質量%以下であることが好ましい。より好ましくは0.1質量%以上、5質量%以下である。ここで増感剤の含有量を0.1質量%以上とすると、重合促進効果をより効果的に発現することができる。また増感剤の含有量を10質量%以下とすると、溶解性や保存安定性が優れる傾向がある。 When the curable composition of the present invention contains a sensitizer, the content of the sensitizer is preferably 10% by mass or less with respect to the mass of the polymerizable compound. More preferably, it is 0.1 mass% or more and 5 mass% or less. Here, when the content of the sensitizer is 0.1% by mass or more, the polymerization promoting effect can be expressed more effectively. Moreover, when content of a sensitizer is 10 mass% or less, there exists a tendency for solubility and storage stability to be excellent.
 [水素供与体]
 水素供与体は、重合開始剤から発生した開始ラジカルや、重合生長末端のラジカルに水素を供与して、水素供与体自身がラジカルを発生する化合物である。重合開始剤が光ラジカル発生剤である場合に添加すると、重合速度が向上する場合がある。
[Hydrogen donor]
A hydrogen donor is a compound in which hydrogen is donated to an initiation radical generated from a polymerization initiator or a radical at a polymerization growth terminal, and the hydrogen donor itself generates a radical. If the polymerization initiator is a photoradical generator, the polymerization rate may be improved.
 水素供与体としてはアミン化合物、メルカプト化合物を挙げることができる。以下に、水素供与体として作用するこれら化合物を例示するがこれらに限定されるものではない。
 <アミン化合物>
 N-ブチルアミン、ジ-n-ブチルアミン、トリ-n-ブチルホスフィン、アリルチオ尿素、s-ベンジルイソチウロニウム-p-トルエンスルフィネート、トリエチルアミン、ジエチルアミノエチルメタクリレート、トリエチレンテトラミン、4,4’-ビス(ジアルキルアミノ)ベンゾフェノン、N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、ペンチル-4-ジメチルアミノベンゾエート、トリエタノールアミン、またはN-フェニルグリシンを例示することができ、4,4’-ビス(ジアルキルアミノ)ベンゾフェノンの具体例としては、4,4’-ビス(ジエチルアミノ)ベンゾフェノンを示すことができる。
 <メルカプト化合物>
 2-メルカプト-N-フェニルベンゾイミダゾール、メルカプトプロピオン酸エステルを例示することができる。
Examples of the hydrogen donor include amine compounds and mercapto compounds. Examples of these compounds acting as hydrogen donors are shown below, but are not limited thereto.
<Amine compound>
N-butylamine, di-n-butylamine, tri-n-butylphosphine, allylthiourea, s-benzylisothiouronium-p-toluenesulfinate, triethylamine, diethylaminoethyl methacrylate, triethylenetetramine, 4,4'-bis (Dialkylamino) benzophenone, N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, pentyl-4-dimethylaminobenzoate, triethanolamine, or N-phenylglycine Specific examples of 4,4′-bis (dialkylamino) benzophenone include 4,4′-bis (diethylamino) benzophenone.
<Mercapto compound>
Examples thereof include 2-mercapto-N-phenylbenzimidazole and mercaptopropionic acid ester.
 [増感色素]
 増感色素は、特定の波長の光を吸収することにより励起され、光重合開始剤へ作用する化合物である。ここでいう作用とは、励起状態の増感色素から光重合開始剤へのエネルギー移動または電子移動等である。光重合開始剤が光ラジカル発生剤である場合に増感剤を添加すると、重合速度が向上する場合がある。
[Sensitizing dye]
A sensitizing dye is a compound that is excited by absorbing light of a specific wavelength and acts on a photopolymerization initiator. The action here means energy transfer or electron transfer from the excited state sensitizing dye to the photopolymerization initiator. If the photopolymerization initiator is a photoradical generator, the addition of a sensitizer may improve the polymerization rate.
 増感色素としては、アントラセン誘導体、アントラキノン誘導体、ピレン誘導体、ペリレン誘導体、カルバゾール誘導体、ベンゾフェノン誘導体、チオキサントン誘導体、キサントン誘導体、クマリン誘導体、フェノチアジン誘導体、カンファキノン誘導体、アクリジン系色素、チオピリリウム塩系色素、メロシアニン系色素、キノリン系色素、スチリルキノリン系色素、ケトクマリン系色素、チオキサンテン系色素、キサンテン系色素、オキソノール系色素、シアニン系色素、ローダミン系色素、またはピリリウム塩系色素を挙げることができるが、これらに限定されるものではない。 Sensitizing dyes include anthracene derivatives, anthraquinone derivatives, pyrene derivatives, perylene derivatives, carbazole derivatives, benzophenone derivatives, thioxanthone derivatives, xanthone derivatives, coumarin derivatives, phenothiazine derivatives, camphorquinone derivatives, acridine dyes, thiopyrylium salt dyes, merocyanine Dyes, quinoline dyes, styrylquinoline dyes, ketocoumarin dyes, thioxanthene dyes, xanthene dyes, oxonol dyes, cyanine dyes, rhodamine dyes, or pyrylium salt dyes. It is not limited to.
 増感色素は、一種類を単独で使用してもよいし、二種類以上を併用してもよい。 The sensitizing dyes may be used alone or in combination of two or more.
 [ポリマー成分]
 本発明の硬化性組成物にはポリマー成分を含ませてもよい。ここでいうポリマー成分としては、前記、3-1.の段落に記載の重合性化合物に由来する繰り返し単位を構成単位として含む(メタ)アクリルポリマー(例えば、ポリメタクリル酸メチル)、およびビニルポリマー(例えば、ポリスチレン)が含まれる。尚、ポリマー成分は共重合体でもよい。
[Polymer component]
The curable composition of the present invention may contain a polymer component. Examples of the polymer component used herein include the above 3-1. The (meth) acrylic polymer (for example, polymethyl methacrylate) and the vinyl polymer (for example, polystyrene) which contain the repeating unit derived from the polymeric compound as described in the paragraph of (5) as a structural unit are contained. The polymer component may be a copolymer.
 3-4.硬化性組成物の調製
 [硬化性組成物の配合時の温度]
 重合開始剤、重合性化合物を混合・溶解させることによって硬化性組成物を調製する際には所定の温度条件下で行う。作業性等から、好ましくは、0℃以上、100℃以下であり、より好ましくは、10℃以上、50℃以下である。
3-4. Preparation of curable composition [Temperature when compounding curable composition]
When preparing a curable composition by mixing and dissolving a polymerization initiator and a polymerizable compound, it is carried out under a predetermined temperature condition. From workability etc., Preferably, they are 0 degreeC or more and 100 degrees C or less, More preferably, they are 10 degreeC or more and 50 degrees C or less.
 [硬化性組成物に混入しているパーティクル等の不純物]
 本発明の硬化性組成物は、硬化性組成物に混入したパーティクルによって光硬化物に不用意に凹凸が生じてパターンの欠陥が発生するのを防止するために、できる限りパーティクル等の不純物を取り除くことが好ましい。具体的には、硬化性組成物に含まれる各成分を混合した後、例えば、孔径0.001μm以上、5.0μm以下のフィルタで濾過することが好ましい。フィルタを用いた濾過を行う際には、多段階で行ったり、多数回繰り返したりすることがさらに好ましい。また、濾過した液を再度濾過してもよい。濾過に使用するフィルタとしては、ポリエチレン樹脂製、ポリプロピレン樹脂製、フッ素樹脂製、ナイロン樹脂製等のフィルタを使用することができるが、特に限定されるものではない。
[Impurities such as particles mixed in the curable composition]
The curable composition of the present invention removes impurities such as particles as much as possible in order to prevent inadvertent irregularities in the photocured product due to particles mixed in the curable composition and pattern defects. It is preferable. Specifically, after mixing each component contained in the curable composition, it is preferable to filter with a filter having a pore size of 0.001 μm or more and 5.0 μm or less, for example. When performing filtration using a filter, it is more preferable to carry out in multiple stages or repeat many times. Moreover, you may filter the filtered liquid again. As a filter used for filtration, filters made of polyethylene resin, polypropylene resin, fluororesin, nylon resin, etc. can be used, but are not particularly limited.
 尚、本発明の硬化性組成物を、半導体集積回路を製造するために使用する場合、製品の動作を阻害しないようにするため、組成物中に金属不純物が混入するのを極力避けることが好ましい。このため、本発明の硬化性組成物において、組成物中に含まれる金属不純物の濃度としては、10ppm以下が好ましく、100ppb以下にすることがさらに好ましい。 When the curable composition of the present invention is used for manufacturing a semiconductor integrated circuit, it is preferable to avoid metal impurities from being mixed into the composition as much as possible so as not to hinder the operation of the product. . For this reason, in the curable composition of the present invention, the concentration of metal impurities contained in the composition is preferably 10 ppm or less, and more preferably 100 ppb or less.
 4.パターン形成方法について
 本発明の更に別の態様は、上述の硬化性組成物を用いたインプリントによる「基板上にパターン形状を有する硬化膜を配したパターン付き部材」(D)の製造方法(以下、単に本発明のパターン形成方法ということがある)であり、次の各工程を含む。
 配置工程:上述の硬化性組成物を基板上に配置し、「基板上に硬化性組成物が配置された部材」(A)を得る工程。
 型接触工程:前記(A)における前記硬化性組成物に対し、パターン形状を有するモールドを接触させて、「基板・パターン形状を有する硬化性組成物・モールドがこの順で接合した部材」(B)を得る工程。
 硬化工程:前記(B)中の前記硬化性組成物を、光または熱により硬化させて硬化膜とし、「基板・パターン形状を有する硬化膜・モールドがこの順で接合した部材」(C)を得る工程。
 離型工程:前記(C)から前記モールドを引き離し、前記パターン付き部材(D)を得る工程。
4). About Pattern Forming Method Still another aspect of the present invention is a method for producing a “patterned member in which a cured film having a pattern shape is arranged on a substrate” (D) by imprinting using the above-described curable composition (hereinafter referred to as “patterned member”). , Simply referred to as the pattern forming method of the present invention), and includes the following steps.
Arrangement step: A step of arranging the above-mentioned curable composition on a substrate to obtain “a member in which the curable composition is arranged on the substrate” (A).
Mold contact step: A mold having a pattern shape is brought into contact with the curable composition in (A), and “a substrate / pattern composition having a curable composition / mold joined in this order” (B ).
Curing step: The curable composition in (B) is cured by light or heat to form a cured film, and “a member in which a substrate / patterned cured film / mold is joined in this order” (C) Obtaining step.
Mold release step: a step of separating the mold from (C) to obtain the patterned member (D).
 本発明のパターン形成方法において、インプリントには、光により硬化する光インプリント、および熱により硬化する熱インプリントが含まれる。 In the pattern forming method of the present invention, the imprint includes a light imprint that is cured by light and a heat imprint that is cured by heat.
 本明細書において、インプリントとは「基板上に、好ましくは、1nm以上、100μm以下の凹凸パターン形状を有する硬化膜を配した部材」の製造方法である。その中で、ナノインプリントは、「1nm以上、100nm以下の凹凸パターン形状を有する硬化膜を配した部材」の製造方法である。本発明のパターン形成方法は、ナノインプリントに好適に用いることができる。
 なお、ここで「パターン形成方法」と呼んでいるのは、インプリントにおいては、上述の[発明4]で記載した、「基板上に、パターン形状を有する硬化膜を配した部材」(D)の製造方法、と同義であり、「配置工程」、「型接触工程」、「硬化工程」、「離型工程」の4つの工程を必須のものとして含む。
In this specification, the imprint is a method for producing “a member in which a cured film having a concavo-convex pattern shape of preferably 1 nm or more and 100 μm or less is arranged on a substrate”. Among them, nanoimprint is a method for producing “a member provided with a cured film having a concavo-convex pattern shape of 1 nm or more and 100 nm or less”. The pattern formation method of this invention can be used suitably for nanoimprint.
The “pattern forming method” is referred to here as “a member in which a cured film having a pattern shape is arranged on a substrate” described in [Invention 4] in imprinting (D). And includes the four steps of “arrangement step”, “die contact step”, “curing step”, and “mold release step” as essential.
 以下の説明では、便宜上、「配置工程」、「型接触工程」、「硬化工程」、「離型工程」をそれぞれ工程[1]~[4]とも称する。 In the following description, for the sake of convenience, the “arrangement process”, “mold contact process”, “curing process”, and “release process” are also referred to as processes [1] to [4], respectively.
 図1は、本発明のパターン形成方法における実施形態の例を示す断面模式図である。図1に示されるパターン形成方法は、下記工程を含む。
[1]硬化性組成物を基板上に配置する工程(配置工程、図1(a))
[2]モールドと硬化性組成物とを接触させる工程(型接触工程、図1(b1)、(b2))
[3]硬化性組成物を光または熱により硬化して硬化膜を作製する工程(硬化工程、図1(c))
[4]硬化膜から前記モールドを引き離す工程(離型工程、図1(d))
 以上[1]~[4]に示される工程を経ることで、硬化性組成物1から硬化物5、および硬化物5を有する電子部品(電子デバイス)あるいは光学部品を得ることができる。
FIG. 1 is a schematic cross-sectional view showing an example of an embodiment in the pattern forming method of the present invention. The pattern forming method shown in FIG. 1 includes the following steps.
[1] Step of arranging a curable composition on a substrate (arrangement step, FIG. 1 (a))
[2] A step of bringing the mold into contact with the curable composition (mold contact step, FIGS. 1 (b1) and (b2))
[3] Step of producing a cured film by curing the curable composition with light or heat (curing step, FIG. 1 (c))
[4] Step of separating the mold from the cured film (mold release step, FIG. 1 (d))
Through the steps shown in [1] to [4] above, the cured product 5 and the electronic component (electronic device) or optical component having the cured product 5 can be obtained from the curable composition 1.
 以下、各工程[1]~[4]について説明する。 Hereinafter, each step [1] to [4] will be described.
 4-1.工程[1](配置工程;図1(a))
 まず硬化性組成物1を基板2に配置(塗布)して塗布膜を形成する(図1(a))。ここでいう硬化性組成物とは、本発明の硬化性組成物である。
4-1. Step [1] (arrangement step; FIG. 1A)
First, the curable composition 1 is placed (applied) on the substrate 2 to form a coating film (FIG. 1A). The curable composition here is the curable composition of the present invention.
 基板2に相当する被加工基板としては、通常、シリコンウエハが用いられるが、これに限定されるものではない。シリコンウエハ以外にも、アルミニウム、チタン-タングステン合金、アルミニウム-ケイ素合金、アルミニウム-銅-ケイ素合金、酸化ケイ素、または窒化ケイ素等の半導体デバイス用基板等を挙げることができる。尚、使用される基板(被加工基板)には、シランカップリング処理、シラザン処理、有機薄膜の成膜、等の表面処理により硬化性組成物との密着性を向上させた基板を被加工基板として用いてもよい。 As the substrate to be processed corresponding to the substrate 2, a silicon wafer is usually used, but is not limited thereto. In addition to silicon wafers, semiconductor device substrates such as aluminum, titanium-tungsten alloy, aluminum-silicon alloy, aluminum-copper-silicon alloy, silicon oxide, or silicon nitride can be used. The substrate to be used (substrate to be processed) is a substrate that has improved adhesion to the curable composition by surface treatment such as silane coupling treatment, silazane treatment, or organic thin film formation. It may be used as
 本発明の硬化性組成物を被加工基板上に配置する方法としては、例えば、インクジェット法、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコード法、グラビアコート法、エクストルージョンコート法、スピンコート法、またはスリットスキャン法等を挙げることができる。尚、被形状転写層(塗布膜)の膜厚は、使用する用途によっても異なるが、例えば、0.01μm以上、100μm以下である。 Examples of a method for disposing the curable composition of the present invention on a substrate to be processed include, for example, an inkjet method, a dip coating method, an air knife coating method, a curtain coating method, a wire barcode method, a gravure coating method, and an extrusion coating method. , Spin coating method, slit scanning method and the like. In addition, although the film thickness of a to-be-shaped transfer layer (coating film) changes with uses to be used, it is 0.01 micrometer or more and 100 micrometers or less, for example.
 4-2.工程[2](型接触工程;図1(b1)、(b2))
 次に、前工程(配置工程)で形成された硬化性組成物1からなる塗布膜にモールドを接触させる工程(型接触工程、図1(b1)、(b2))を行う。尚、モールド3は印章と見立てることができるので、この工程は押印工程とも呼ばれる。本工程で、硬化性組成物1(被形状転写層)にモールド3を接触させる(図1(b1))と、モールド3に形成された微細パターンの凹凸部に塗布膜(の一部)4が充填される(図1(b2))。
4-2. Step [2] (die contact step; FIG. 1 (b1), (b2))
Next, the process (a mold contact process, FIG. 1 (b1), (b2)) which makes a mold contact the coating film which consists of the curable composition 1 formed at the front process (arrangement | positioning process) is performed. Since the mold 3 can be regarded as a seal, this process is also called a stamping process. In this step, when the mold 3 is brought into contact with the curable composition 1 (shaped transfer layer) (FIG. 1 (b1)), a coating film (part) 4 is formed on the uneven portion of the fine pattern formed on the mold 3. Is filled (FIG. 1 (b2)).
 型接触工程で使用されるモールド3は、次の工程(硬化工程)が光による光硬化工程である場合、光透過性の材料で構成される。モールド3の構成材料として、具体的には、ガラス、石英、PMMA、ポリカーボネート樹脂等の光透明性樹脂、透明金属蒸着膜、ポリジメチルシロキサン等の柔軟膜、光硬化膜、金属膜等を挙げることができる。ただしモールド3の構成材料として光透明性樹脂を使用する場合は、光硬化性組成物1に溶解しない樹脂を選択する。熱膨張係数が小さいことから、石英であることが特に好ましい。一方、硬化工程が熱硬化工程である場合、材料の透明性に制限は無く、モールド3の構成材料として上述した材料が使用できる。 The mold 3 used in the mold contact process is made of a light transmissive material when the next process (curing process) is a photocuring process using light. Specific examples of the constituent material of the mold 3 include optically transparent resins such as glass, quartz, PMMA, and polycarbonate resins, transparent metal vapor-deposited films, flexible films such as polydimethylsiloxane, photocured films, and metal films. Can do. However, when a light transparent resin is used as a constituent material of the mold 3, a resin that does not dissolve in the photocurable composition 1 is selected. Quartz is particularly preferred because of its low thermal expansion coefficient. On the other hand, when the curing step is a thermosetting step, there is no limitation on the transparency of the material, and the above-described materials can be used as the constituent material of the mold 3.
 モールド3には、硬化物5とモールド3の表面との剥離性を向上させるために、本工程(型接触工程)の前に表面処理を行ってもよい。表面処理の方法としては、モールドの表面に離型剤を塗布して離型剤層を形成する方法が挙げられる。ここで、モールドの表面に塗布する離型剤としては、シリコン系離型剤、フッ素系離型剤、ポリエチレン系離型剤、ポリプロピレン系離型剤、パラフィン系離型剤、モンタン系離型剤、またはカルナバ系離型剤等が挙げられる。例えば、ダイキン工業株式会社製の、商品名オプツールDSX等の市販の塗布型離型剤も用いることができる。尚、離型剤は、一種類を単独で用いてもよいし、二種類以上を併用して用いてもよい。これらの中でも、フッ素系離型剤が特に好ましい。 The mold 3 may be subjected to a surface treatment before this step (die contact step) in order to improve the peelability between the cured product 5 and the surface of the mold 3. Examples of the surface treatment method include a method of forming a release agent layer by applying a release agent to the surface of the mold. Here, as a mold release agent applied to the mold surface, a silicon mold release agent, a fluorine mold release agent, a polyethylene mold release agent, a polypropylene mold release agent, a paraffin mold release agent, a montan mold release agent Or carnauba release agents. For example, a commercially available coating mold release agent such as trade name OPTOOL DSX manufactured by Daikin Industries, Ltd. can also be used. In addition, a mold release agent may be used individually by 1 type, and may be used in combination of 2 or more types. Among these, a fluorine-type mold release agent is particularly preferable.
 型接触工程において、図1(b1)に示されるように、モールド3を硬化性組成物1に接触する際に、硬化性組成物1に加える圧力は特に限定されないが、通常、0.1MPa以上、100MPa以下である。その中でも0.1MPa以上、50MPa以下であることが好ましく、0.1MPa以上、30MPa以下であることがより好ましく、0.1MPa以上、20MPa以下であることがさらに好ましい。 In the mold contact step, as shown in FIG. 1 (b1), when the mold 3 is brought into contact with the curable composition 1, the pressure applied to the curable composition 1 is not particularly limited, but is usually 0.1 MPa or more. , 100 MPa or less. Among them, it is preferably 0.1 MPa or more and 50 MPa or less, more preferably 0.1 MPa or more and 30 MPa or less, and further preferably 0.1 MPa or more and 20 MPa or less.
 また、本工程においてモールド3を光硬化性組成物1に接触させる時間は、特に限定されないが、通常、0.1秒以上、600秒以下であり、0.1秒以上、300秒以下であることが好ましく、0.1秒以上、180秒以下であることがより好ましく、0.1秒以上、120秒以下であることが特に好ましい。 Further, the time for bringing the mold 3 into contact with the photocurable composition 1 in this step is not particularly limited, but is usually 0.1 seconds or more and 600 seconds or less, and is 0.1 seconds or more and 300 seconds or less. It is preferably 0.1 seconds or more and 180 seconds or less, and particularly preferably 0.1 seconds or more and 120 seconds or less.
 本工程を行う環境は、大気雰囲気下、減圧雰囲気下、不活性ガス雰囲気下が挙げられる。ここで本工程を行う際に、雰囲気の圧力については特に制限は無く、例えば1.0133×10-5MPa以上、1.0133MPa以下の範囲で適宜設定が可能である。 The environment in which this step is performed includes an air atmosphere, a reduced pressure atmosphere, and an inert gas atmosphere. Here, when performing this process, there is no restriction | limiting in particular about the pressure of atmosphere, For example, it can set suitably in the range of 1.0133 * 10 < -5 > MPa or more and 1.0133MPa or less.
 [不活性ガス]
 不活性ガス雰囲気下で本工程を行う場合、使用される不活性ガスとして、具体的には、窒素、二酸化炭素、ヘリウム、アルゴン、各種フロンガス等、あるいはこれらの混合ガスが挙げられる。ナノインプリントに用いる場合、ヘリウムが好ましい。
[Inert gas]
When this step is performed in an inert gas atmosphere, specific examples of the inert gas used include nitrogen, carbon dioxide, helium, argon, various chlorofluorocarbons, and mixed gases thereof. When used for nanoimprinting, helium is preferred.
 不活性ガスとしてヘリウムを用いた場合、本工程においてモールド3上に形成された微細パターンの凹凸部に塗布膜4の一部と一緒に雰囲気中の当該不活性ガスが充填されたときに、当該不活性ガスはモールドを透過して抜けることができる。このため、モールド3凹凸部への硬化性組成物1の充填性に優れる。 When helium is used as the inert gas, when the uneven portion of the fine pattern formed on the mold 3 in this step is filled with the inert gas in the atmosphere together with a part of the coating film 4, The inert gas can escape through the mold. For this reason, it is excellent in the filling property of the curable composition 1 to the uneven part of the mold 3.
 [凝縮性ガス]
 また、本工程は、凝縮性ガスを含むガス雰囲気下で行ってもよい。本発明において、凝縮性ガスとは、下記(i)および(ii)の要件を満たすガスをいう。
(i)本工程において硬化性組成物1(被形状転写層)とモールド3が接触する前(図1(b1))の段階では雰囲気中に気体として存在するガス
(ii)硬化性組成物1とモールド3とが接触して、モールド3上に形成された微細パターンの凹部、およびモールドと基板との間隙に塗布膜(の一部)4と一緒に雰囲気中のガスが充填されたときに、充填時の圧力により発生する毛細管圧力で凝縮して液化するガス
 ここで、凝縮性ガス雰囲気下で型接触工程を行うと、モールド3の微細パターンの凹部に充填されたガスが液化することで気泡が発生しにくくなるため、充填性が優れる。尚、凝縮性ガス(の少なくとも一部)は、硬化性組成物中に溶解してもよい。
[Condensable gas]
Moreover, you may perform this process in the gas atmosphere containing a condensable gas. In the present invention, the condensable gas refers to a gas that satisfies the following requirements (i) and (ii).
(I) Gas existing in the atmosphere as a gas at the stage before the curable composition 1 (shaped transfer layer) and the mold 3 are in contact with each other in this step (FIG. 1 (b1)) (ii) curable composition 1 And the mold 3 are in contact with each other, and the gas in the atmosphere is filled together with the coating film (part) 4 into the recesses of the fine pattern formed on the mold 3 and the gap between the mold and the substrate. The gas that is condensed and liquefied by the capillary pressure generated by the pressure at the time of filling. Here, when the mold contact process is performed in a condensable gas atmosphere, the gas filled in the concave portions of the fine pattern of the mold 3 is liquefied. Since bubbles are less likely to be generated, the filling property is excellent. The condensable gas (at least a part thereof) may be dissolved in the curable composition.
 凝縮性ガスの沸点は、本工程の環境温度以下であれば特に制限が無いが、環境温度より5℃以上、50℃以下の範囲で沸点が低いガスが好ましい。この範囲内であれば、モールド3の微細パターン凹凸部への硬化性組成物1の充填性がさらに優れる。 The boiling point of the condensable gas is not particularly limited as long as it is equal to or lower than the environmental temperature of this step, but a gas having a low boiling point in the range of 5 ° C. or higher and 50 ° C. or lower from the environmental temperature is preferable. If it exists in this range, the filling property of the curable composition 1 to the fine pattern uneven | corrugated | grooved part of the mold 3 will be further excellent.
 本工程において、凝縮性ガスを含む気体の蒸気圧は、本工程にて押印するときのモールド圧力以下であれば特に制限が無いが、0.1MPa以上、0.4MPa以下が好ましい。この範囲内であれば、モールド3の微細パターン凹凸部への硬化性組成物1の充填性がさらに優れる。ここで、環境温度での蒸気圧が0.4MPaより大きいと、気泡の消滅効果を十分に得ることができない傾向がある。一方、環境温度での蒸気圧が0.1MPaより小さいと、減圧が必要となり、装置が複雑になる傾向がある。 In this step, the vapor pressure of the gas containing the condensable gas is not particularly limited as long as it is equal to or lower than the mold pressure at the time of imprinting in this step, but is preferably 0.1 MPa or more and 0.4 MPa or less. If it exists in this range, the filling property of the curable composition 1 to the fine pattern uneven | corrugated | grooved part of the mold 3 will be further excellent. Here, when the vapor pressure at the ambient temperature is larger than 0.4 MPa, there is a tendency that the effect of eliminating the bubbles cannot be sufficiently obtained. On the other hand, if the vapor pressure at ambient temperature is less than 0.1 MPa, pressure reduction is required, and the apparatus tends to be complicated.
 本工程を行う際の環境温度は、特に制限が無いが、20℃以上、50℃以下が好ましい。 The environmental temperature during this step is not particularly limited, but is preferably 20 ° C or higher and 50 ° C or lower.
 凝縮性ガスとして、クロロフルオロカーボン(CFC)、フルオロカーボン(FC)、ハイドロクロロフルオロオレフィン(HCFO)、ハイドロフルオロオレフィン(HFO)、ハイドロフルオロエーテル(HFE)等のフロン類を挙げることができ、以下に例示する。
 <クロロフルオロカーボン(CFC)>
 クロロフルオロメタン
 <フルオロカーボン(FC)>
 <ハイドロクロロフルオロオレフィン(HCFO)>
 トランス-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(E))、シス-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(Z))、トランス-1,2-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223xd(E))、シス-1,2-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223xd(Z))、1,1-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223za)、1,1,2-トリクロロ-3,3,3-トリフルオロプロペン(HCFO-1213xa)、トランス-1-クロロ-1,3,3,3-テトラフルオロプロペン(HCFO-1224zb(E))、シス-1-クロロ-1,3,3,3-テトラフルオロプロペン(HCFO-1224zb(Z))
 <ハイドロフルオロオレフィン(HFO)>
 トランス-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz(E))、シス-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz(Z))、トランス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、シス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))
 <ハイドロフルオロカーボン(HFC)>
 1,1,1,3,3-ペンタフルオロプロパン(CHF2CH2CF3、HFC-245fa、PFP)
 <ハイドロフルオロエーテル(HFE)>
 ペンタフルオロエチルメチルエーテル(CF3CF2OCH3、HFE-245mc)、1,1,1,3,3,3-ヘキサフルオロ-2-メトキシプロパン(HFE-356mmz)
Examples of condensable gases include chlorofluorocarbons (CFC), fluorocarbons (FC), hydrochlorofluoroolefins (HCFO), hydrofluoroolefins (HFO), hydrofluoroethers (HFE), and other fluorocarbons. To do.
<Chlorofluorocarbon (CFC)>
Chlorofluoromethane <Fluorocarbon (FC)>
<Hydrochlorofluoroolefin (HCFO)>
Trans-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (E)), cis-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (Z)), trans- 1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd (E)), cis-1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd (Z)), 1,1-dichloro-3,3,3-trifluoropropene (HCFO-1223za), 1,1,2-trichloro-3,3,3-trifluoropropene (HCFO-1213xa), trans-1-chloro- 1,3,3,3-tetrafluoropropene (HCFO-1224zb (E)), cis-1-chloro-1,3,3,3-tetrafluoropropene (HCFO-1224zb (Z))
<Hydrofluoroolefin (HFO)>
Trans-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz (E)), cis-1,1,1,4,4,4-hexafluoro-2-butene ( HFO-1336mzz (Z)), trans-1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), cis-1,3,3,3-tetrafluoropropene (HFO-1234ze (Z)) )
<Hydrofluorocarbon (HFC)>
1,1,1,3,3-pentafluoropropane (CHF 2 CH 2 CF 3 , HFC-245fa, PFP)
<Hydrofluoroether (HFE)>
Pentafluoroethyl methyl ether (CF 3 CF 2 OCH 3 , HFE-245mc), 1,1,1,3,3,3-hexafluoro-2-methoxypropane (HFE-356 mmz)
 これら凝縮性ガスのうち、型接触工程の環境温度が室温(20℃~25℃)程度である場合にモールド3の微細パターン凹凸部への硬化性組成物1の充填性が優れることから、下記に例示する化合物を用いることが好ましい。
・1,1,1,3,3-ペンタフルオロプロパン(23℃での蒸気圧0.14MPa、沸点15℃)
・トリクロロフルオロメタン(23℃での蒸気圧0.1056MPa、沸点24℃)
・トランス-1-クロロ-3,3,3-トリフルオロプロペン(沸点18℃)
・シス-1-クロロ-3,3,3-トリフルオロプロペン(沸点39℃)
・トランス-1,3,3,3-テトラフルオロプロペン(沸点-19℃)
・ペンタフルオロエチルメチルエーテル
 これらのうち、安全性が優れることから、1,1,1,3,3-ペンタフルオロプロパン、トランス-1-クロロ-3,3,3-トリフルオロプロペン、シス-1-クロロ-3,3,3-トリフルオロプロペン、トランス-1,3,3,3-テトラフルオロプロペンが特に好ましい。
Among these condensable gases, when the environmental temperature in the mold contact step is about room temperature (20 ° C. to 25 ° C.), the filling property of the curable composition 1 to the fine pattern irregularities of the mold 3 is excellent. It is preferable to use the compounds exemplified in.
・ 1,1,1,3,3-pentafluoropropane (vapor pressure at 23 ° C: 0.14 MPa, boiling point: 15 ° C)
・ Trichlorofluoromethane (vapor pressure 0.1056 MPa at 23 ° C., boiling point 24 ° C.)
・ Trans-1-chloro-3,3,3-trifluoropropene (boiling point 18 ° C)
・ Cis-1-chloro-3,3,3-trifluoropropene (boiling point 39 ° C.)
・ Trans-1,3,3,3-tetrafluoropropene (boiling point -19 ℃)
・ Pentafluoroethyl methyl ether Among these, 1,1,1,3,3-pentafluoropropane, trans-1-chloro-3,3,3-trifluoropropene, cis-1 -Chloro-3,3,3-trifluoropropene, trans-1,3,3,3-tetrafluoropropene are particularly preferred.
 凝縮性ガスは、一種類を単独で用いてもよいし、二種類以上を混合して用いてもよい。またこれら凝縮性ガスは、空気、窒素、二酸化炭素、ヘリウム、アルゴン等の非凝縮性ガスと混合して用いてもよい。凝縮性ガスと混合する非凝縮性ガスとしては、充填性から、ヘリウムが好ましい。ヘリウムであると、凝縮性ガスと非凝縮性ガス(ヘリウム)とを混合してなる混合気体として使用しても、ヘリウムがモールドを透過するため充填性が優れる。 Condensable gas may be used alone or in combination of two or more. These condensable gases may be used by mixing with non-condensable gases such as air, nitrogen, carbon dioxide, helium, and argon. As the non-condensable gas mixed with the condensable gas, helium is preferable from the viewpoint of filling properties. When helium is used, even if it is used as a mixed gas formed by mixing a condensable gas and a non-condensable gas (helium), the filling property is excellent because helium penetrates the mold.
 これら雰囲気のうち、硬化工程が光硬化工程か熱硬化工程かに拠らず、酸素や水分による硬化反応への影響を防ぐことができることから、減圧雰囲気、不活性ガス雰囲気または凝縮性ガス雰囲気が好ましい。 Among these atmospheres, regardless of whether the curing process is a photocuring process or a thermal curing process, the influence on the curing reaction by oxygen or moisture can be prevented, so that a reduced pressure atmosphere, an inert gas atmosphere or a condensable gas atmosphere preferable.
 4-3.工程[3](硬化工程;図1(c))
 次に、塗布膜を硬化する。具体的には、モールド3を介して塗布膜4に光を照射する(図1(c))、または塗布膜4を加熱する。硬化工程において、塗布膜4を、光または熱によって硬化させることで硬化膜5を形成する。
4-3. Step [3] (Curing step; FIG. 1 (c))
Next, the coating film is cured. Specifically, the coating film 4 is irradiated with light through the mold 3 (FIG. 1C), or the coating film 4 is heated. In the curing step, the cured film 5 is formed by curing the coating film 4 with light or heat.
 [光硬化]
 光によって塗布膜4を硬化させる場合、塗布膜4を構成する硬化性組成物1に照射する光は、硬化性組成物1の感度波長に応じて選択されるが、具体的には、150nm~400nm程度の波長の紫外光、またはX線、電子線等を適宜選択して使用することが好ましい。ここで、光重合開始剤として市販されているものは、紫外光に感度を有する化合物が多い。このことから、硬化性組成物1に照射する光(照射光6)は、紫外光が特に好ましい。ここで紫外光を発する光源としては、例えば、高圧水銀灯、超高圧水銀灯、低圧水銀灯、Deep-UVランプ、炭素アーク灯、ケミカルランプ、メタルハライドランプ、キセノンランプ、KrFエキシマレーザ、ArFエキシマレーザ、またはF2エキシマレーザ等が挙げられるが、超高圧水銀灯が特に好ましい。使用する光源の数は1つでもよいし、複数であってもよい。また、光照射を行う際には、硬化性組成物1の全面に行ってもよく、一部領域にのみ行ってもよい。また、光重合開始剤と熱重合開始剤とを併用する場合、光照射に加えて、加熱硬化をさらに行ってもよい。光硬化と熱硬化の順序は制限されず、光硬化の後に熱硬化を行う場合、熱硬化の後に光硬化を行う場合、光硬化と熱硬化とを同時に行う場合、が含まれる。
[Photocuring]
When the coating film 4 is cured by light, the light applied to the curable composition 1 constituting the coating film 4 is selected according to the sensitivity wavelength of the curable composition 1, and specifically, 150 nm to It is preferable to select and use ultraviolet light having a wavelength of about 400 nm, X-rays, electron beams or the like as appropriate. Here, many commercially available photopolymerization initiators are sensitive to ultraviolet light. For this reason, the light (irradiation light 6) applied to the curable composition 1 is particularly preferably ultraviolet light. Examples of the light source that emits ultraviolet light include a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a low pressure mercury lamp, a deep-UV lamp, a carbon arc lamp, a chemical lamp, a metal halide lamp, a xenon lamp, a KrF excimer laser, an ArF excimer laser, or F. 2 excimer laser and the like, and an ultrahigh pressure mercury lamp is particularly preferable. The number of light sources used may be one or plural. Moreover, when performing light irradiation, you may carry out to the whole surface of the curable composition 1, and may carry out only to a one part area | region. Moreover, when using together a photoinitiator and a thermal-polymerization initiator, in addition to light irradiation, you may further heat-harden. The order of photocuring and thermal curing is not limited, and includes cases where thermal curing is performed after photocuring, photocuring is performed after thermal curing, and photocuring and thermal curing are performed simultaneously.
 [熱硬化]
 熱により硬化する場合、加熱雰囲気および加熱温度等は特に限定されない。例えば、不活性雰囲気下または減圧下では、40℃以上、200℃以下の範囲で硬化性組成物1を加熱することができる。また被形状転写層(塗布膜4)を加熱する際には、ホットプレート、オーブン、ファーネス等を用いることができる。
[Heat curing]
In the case of curing by heat, the heating atmosphere and the heating temperature are not particularly limited. For example, the curable composition 1 can be heated in the range of 40 ° C. or higher and 200 ° C. or lower under an inert atmosphere or under reduced pressure. Moreover, when heating the to-be-shaped transfer layer (coating film 4), a hot plate, oven, furnace, etc. can be used.
 4-4.工程[4](離型工程;図1(d))
 次に硬化膜5からモールド3を離し、基板2上に所定のパターン形状を有する硬化膜を形成する工程(離型工程、図1(d))を行う。本工程は、硬化膜5からモールド3を剥離する工程であり、前の工程(硬化工程)において、モールド3上に形成された微細パターンの反転パターンが、硬化膜5のパターンとして得られる。
4-4. Step [4] (Release step; FIG. 1 (d))
Next, the mold 3 is separated from the cured film 5, and a process of forming a cured film having a predetermined pattern shape on the substrate 2 (mold release process, FIG. 1D) is performed. This step is a step of peeling the mold 3 from the cured film 5, and a reverse pattern of the fine pattern formed on the mold 3 in the previous step (curing step) is obtained as the pattern of the cured film 5.
 硬化膜5とモールド3とを引き離す方法としては、引き離す際に硬化膜5の一部が物理的に破損しなければ特に限定されず、各種条件等も特に限定されない。例えば、基板2(被加工基板)を固定してモールド3を基板2から遠ざかるように移動させて剥離してもよく、モールド3を固定して基板2をモールドから遠ざかるように移動させて剥離してもよく、これらの両方を正反対の方向で引っ張って剥離してもよい。 The method of separating the cured film 5 and the mold 3 is not particularly limited as long as a part of the cured film 5 is not physically damaged when being separated, and various conditions are not particularly limited. For example, the substrate 2 (substrate to be processed) may be fixed and the mold 3 may be moved away from the substrate 2 to be separated, or the mold 3 may be fixed and the substrate 2 moved away from the mold to be separated. Alternatively, both of them may be peeled by pulling in the opposite direction.
 また、凝縮性ガス雰囲気下で型接触工程を行った場合、離型工程にて硬化膜とモールドとを引き離す際に、硬化膜とモールドとが接触する界面の圧力が低下することに伴って凝縮性ガスが気化することで、離型力低減効果を発現する傾向がある。 In addition, when the mold contact process is performed in a condensable gas atmosphere, when the cured film and the mold are separated in the mold release process, condensation occurs as the pressure at the interface between the cured film and the mold decreases. When the property gas is vaporized, the release force reducing effect tends to be exhibited.
 以上説明した工程[1]~[4]までの一連の工程(製造プロセス)によって、所望の凹凸パターン形状(モールド3の凹凸形状の反転パターン形状)を有する硬化膜を得ることができる。得られた硬化膜は、例えば、フレネルレンズや回折格子等の光学部材(光学部材の一部材として用いる場合を含む。)として利用することもできる。このような場合、少なくとも、基板2と、この基板2の上に配置されたパターン形状を有する硬化膜5と、を有する光学部材とすることができる。 A cured film having a desired concavo-convex pattern shape (inverted pattern shape of the concavo-convex shape of the mold 3) can be obtained by a series of steps (manufacturing process) from the steps [1] to [4] described above. The obtained cured film can also be used, for example, as an optical member (including a case where it is used as one member of an optical member) such as a Fresnel lens or a diffraction grating. In such a case, it can be set as the optical member which has the board | substrate 2 and the cured film 5 which has the pattern shape arrange | positioned on this board | substrate 2 at least.
 本発明の硬化性組成物は充填速度が優れるために生産性が高く、インプリント用として優れている。特に、ナノサイズ(1nm以上、100nm以下)のパターンを形成するナノインプリント用として優れる。 The curable composition of the present invention has a high filling rate and is therefore highly productive and is excellent for imprinting. In particular, it is excellent for nanoimprinting for forming a nano-sized (1 nm or more, 100 nm or less) pattern.
 以下に実施例を示して本発明をより具体的に説明するが、本発明はこれらの実施例によって制限されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
 [実施例1]
 [含フッ素単量体の合成](ジアクリレート(1)の合成)
 50mlの反応器にジイソプロピルエーテル6g、トリエチルアミン2.2g(0.022mol、2.5当量)、以下の式(2)に示す1,1-ビス(トリフルオロメチル)ブタン-1,3-ジオール2.0g(0.009mol、1.0当量、合成方法はJournal of Fluorine Chemistry, 128(8), 902-909; 2007に記載)を加え氷浴した。そこにアクリル酸クロライド2.0g(0.022mol、2.5当量)をゆっくりと滴下し、室温にして3時間攪拌した。反応液のろ過を行った後、得られた有機層を飽和塩化アンモニウム水溶液10gで2回洗浄し、溶媒を留去して、減圧蒸留(0.3kPa、バス100℃)により目的とする含フッ素単量体(以下、ジアクリレート(1)と言うことがある)を1.5g(4.49mmol)得た。ジアクリレート1の純度は99.7%、1,1-ビス(トリフルオロメチル)ブタン-1,3-ジオールを基準とした収率は50%であった。
Figure JPOXMLDOC01-appb-C000012
 得られたNMRによる分析結果を以下に示す。
1H NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン);δ=6.48(dd,1H),6.35(dd,1H),6.11(dd,1H),6.04-5.94(m,2H),5.79(dd,1H),5.24(m,1H),3.05(dd,1H),2.63(dd,1H),1.31(d,3H).
19F NMR(測定溶媒:重クロロホルム,基準物質:パーフルオロベンゼン);δ=-73.1(t,3F),-73.2(t,3F).
[Example 1]
[Synthesis of fluorinated monomer] (Synthesis of diacrylate (1))
In a 50 ml reactor, 6 g of diisopropyl ether, 2.2 g (0.022 mol, 2.5 equivalents) of triethylamine, 1,1-bis (trifluoromethyl) butane-1,3-diol 2 represented by the following formula (2) 0.0 g (0.009 mol, 1.0 equivalent, the synthesis method is described in Journal of Fluorine Chemistry, 128 (8), 902-909; 2007) was added and bathed in ice. Thereto, 2.0 g (0.022 mol, 2.5 equivalents) of acrylic acid chloride was slowly added dropwise, and the mixture was stirred at room temperature for 3 hours. After filtration of the reaction solution, the obtained organic layer was washed twice with 10 g of a saturated ammonium chloride aqueous solution, the solvent was distilled off, and the desired fluorine-containing solution was obtained by distillation under reduced pressure (0.3 kPa, bath 100 ° C.). 1.5 g (4.49 mmol) of a monomer (hereinafter sometimes referred to as diacrylate (1)) was obtained. The purity of diacrylate 1 was 99.7%, and the yield based on 1,1-bis (trifluoromethyl) butane-1,3-diol was 50%.
Figure JPOXMLDOC01-appb-C000012
The analysis results obtained by NMR are shown below.
1 H NMR (measurement solvent: deuterated chloroform, reference material: tetramethylsilane); δ = 6.48 (dd, 1H), 6.35 (dd, 1H), 6.11 (dd, 1H), 6.04 -5.94 (m, 2H), 5.79 (dd, 1H), 5.24 (m, 1H), 3.05 (dd, 1H), 2.63 (dd, 1H), 1.31 ( d, 3H).
19 F NMR (measurement solvent: deuterated chloroform, reference material: perfluorobenzene); δ = −73.1 (t, 3F), −73.2 (t, 3F).
 [物性測定]
 得られたジアクリレート(1)について、以下に説明する方法で各物性を測定した。
[Physical property measurement]
About the obtained diacrylate (1), each physical property was measured by the method demonstrated below.
 (1)表面張力
 懸滴法により、ジアクリレート(1)の表面張力を測定した。尚、測定は、自動接触角計(協和界面科学株式会社製、型式DMs-601)を用いて、10回測定を行い、10回の測定値の平均値を表面張力とした。
(1) Surface tension The surface tension of the diacrylate (1) was measured by the hanging drop method. The measurement was performed 10 times using an automatic contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., model DMs-601), and the average value of the 10 measured values was defined as the surface tension.
 (2)粘度
 キャノン・フェンスケ粘度計(柴田科学株式会社製、型式SO-5X18)を用いて、30℃におけるジアクリレート(1)の粘度を測定した。
(2) Viscosity The viscosity of diacrylate (1) at 30 ° C. was measured using a Canon-Fenske viscometer (manufactured by Shibata Kagaku Co., Ltd., model SO-5X18).
 (3)接触角
 前記自動接触角計を用いてジアクリレート(1)と基板との接触角を測定した。それぞれ5回測定を行い、5回の測定値の平均値を接触角とした。
 この測定で使用する基板は以下の通りである。尚、以下の説明において、モールド接触角は、モールドとジアクリレート(1)との接触角であり、基板接触角は、ジアクリレート(1)を塗布する基板とジアクリレート(1)との接触角である。
 (3-1)モールド接触角測定用基板
 離型剤(ダイキン工業株式会社製、品名オプツールHD-1100)による離型層を表面に形成した石英基板を使用した。
 (3-2)基板接触角測定用基板
 プライマー(独国マイクロレジストテクノロジー社製、品名mr-APS1)による密着層を表面に形成したシリコンウエハを使用した。
(3) Contact angle The contact angle between the diacrylate (1) and the substrate was measured using the automatic contact angle meter. Each measurement was performed five times, and the average value of the five measurements was taken as the contact angle.
The substrates used in this measurement are as follows. In the following description, the mold contact angle is the contact angle between the mold and diacrylate (1), and the substrate contact angle is the contact angle between the substrate on which diacrylate (1) is applied and diacrylate (1). It is.
(3-1) Mold Contact Angle Measurement Substrate A quartz substrate having a release layer formed on the surface with a release agent (product name: OPTOOL HD-1100, manufactured by Daikin Industries, Ltd.) was used.
(3-2) Substrate Contact Angle Measurement Substrate A silicon wafer having an adhesion layer formed on the surface with a primer (manufactured by Microresist Technology, Germany, product name mr-APS1) was used.
 ジアクリレート(1)に対する上記測定において、表面張力は25.5mN/mであり、粘度は2.7mPa・sであり、モールド接触角は51.6°であり、基板接触角は11.5°であった。 In the above measurement for diacrylate (1), the surface tension is 25.5 mN / m, the viscosity is 2.7 mPa · s, the mold contact angle is 51.6 °, and the substrate contact angle is 11.5 °. Met.
 [比較例1(ネオペンチルグリコールジアクリレート)]
 実施例1のジアクリレート(1)の場合と同様に、ネオペンチルグリコールジアクリレート(東京化成工業株式会社製)の物性の測定を行った。その結果、表面張力は30.5mN/mであり、粘度は5.1mPa・sであり、モールド接触角は73.5°であり、基板接触角は7.9°であった。
Figure JPOXMLDOC01-appb-C000013
[Comparative Example 1 (Neopentyl glycol diacrylate)]
The physical properties of neopentyl glycol diacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) were measured in the same manner as in the case of diacrylate (1) in Example 1. As a result, the surface tension was 30.5 mN / m, the viscosity was 5.1 mPa · s, the mold contact angle was 73.5 °, and the substrate contact angle was 7.9 °.
Figure JPOXMLDOC01-appb-C000013
 [キャピラリー数(Ca)]
 実施例1のジアクリレート(1)について、Caを算出した。その結果、Caは0.79V(L/h02であった。なお、V、Lおよびh0は装置または測定条件に係る定数であり、実施例および比較例において、一定である。
 また実施例1と同様に、比較例1の単量体について、Caを算出した。その結果、Caは1.57V(L/h02であった。
[Capillary number (Ca)]
For the diacrylate (1) of Example 1, Ca was calculated. As a result, Ca was 0.79 V (L / h 0 ) 2 . V, L, and h 0 are constants related to the apparatus or measurement conditions, and are constant in the examples and comparative examples.
Similarly to Example 1, Ca was calculated for the monomer of Comparative Example 1. As a result, Ca was 1.57 V (L / h 0 ) 2 .
 以上の結果を、下記表1に示す。
Figure JPOXMLDOC01-appb-T000014
The above results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000014
 表1から、実施例1に記載の本発明の式(1)で表される含フッ素単量体は、キャピラリー数(Ca)が小さい。 From Table 1, the fluorine-containing monomer represented by the formula (1) of the present invention described in Example 1 has a small capillary number (Ca).
 [実施例2]
 [硬化性組成物の調製]
 ジアクリレート(1)を45質量部、イソボルニルアクリレートを10質量部、ベンジルアクリレートを40質量部、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシドを4質量部、4,4’-ビス(ジエチルアミノ)ベンゾフェノンを1質量部混合し、硬化性組成物を調製した。
[Example 2]
[Preparation of curable composition]
45 parts by mass of diacrylate (1), 10 parts by mass of isobornyl acrylate, 40 parts by mass of benzyl acrylate, 4 parts by mass of diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, 4,4′-bis 1 part by mass of (diethylamino) benzophenone was mixed to prepare a curable composition.
 [比較例2]
 [硬化性組成物の調製]
 ジアクリレート(1)をネオペンチルグリコールジアクリレートに代えた以外は実施例2と同様に、硬化性組成物を調製した。
[Comparative Example 2]
[Preparation of curable composition]
A curable composition was prepared in the same manner as in Example 2 except that diacrylate (1) was replaced with neopentyl glycol diacrylate.
 [硬化性組成物の物性測定]
 実施例1と同様の方法により、実施例2および比較例2で得られた硬化性組成物の物性測定を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000015
[Measurement of physical properties of curable composition]
The physical properties of the curable compositions obtained in Example 2 and Comparative Example 2 were measured by the same method as in Example 1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000015
 表2から、硬化性組成物中のジアクリレート(1)の含量が、実施例1に比べ少量(45重量部)である実施例2についても、そのキャピラリー数(Ca)は比較例2に比べて有意に小さい。 From Table 2, also in Example 2 in which the content of diacrylate (1) in the curable composition is a small amount (45 parts by weight) compared to Example 1, the number of capillaries (Ca) is higher than that in Comparative Example 2. Is significantly smaller.
 [実施例3]
 [含フッ素重合体-1の合成]
 20mlのナス型フラスコに[実施例1]で得たジアクリレート(1)を1.5g、重合開始剤としてジメチル2,2’-アゾビス(2-メチルプロピオネート)0.1gを仕込み、テトラヒドロフラン7.5gに溶解させた。窒素雰囲気下で撹拌しながら、80℃に加熱し、5時間重合反応を行った。得られた重合液を室温まで冷却した後、n-ヘプタン22.1gを加えて析出した白色粉末を濾過にて採取した。
 採取した白色粉末に、22.1gのn-ヘプタンを加えスラリー状とした後に濾過し、その後エバポレーターにて乾燥し、重合体の白色粉末1.0gを得た。得られた含フッ素重合体-1の1H-NMRを測定したところ、残存モノマーは検出されず、含フッ素重合体-1が合成されていた。
[Example 3]
[Synthesis of Fluoropolymer-1]
A 20 ml eggplant-shaped flask was charged with 1.5 g of the diacrylate (1) obtained in [Example 1] and 0.1 g of dimethyl 2,2′-azobis (2-methylpropionate) as a polymerization initiator. Dissolved in 7.5 g. While stirring in a nitrogen atmosphere, the mixture was heated to 80 ° C. and polymerized for 5 hours. The resulting polymerization solution was cooled to room temperature, 22.1 g of n-heptane was added, and the precipitated white powder was collected by filtration.
22.1 g of n-heptane was added to the collected white powder to form a slurry, followed by filtration, and then drying with an evaporator to obtain 1.0 g of a white powder of polymer. When 1 H-NMR of the obtained fluoropolymer- 1 was measured, no residual monomer was detected, and fluoropolymer-1 was synthesized.
 [実施例4]
 [含フッ素共重合体-2の合成]
 20mlのナス型フラスコに[実施例1]で得たジアクリレート(1)を2.0g、スチレン0.6g、重合開始剤としてジメチル2,2’-アゾビス(2-メチルプロピオネート)0.3gを仕込み、テトラヒドロフラン7.8gに溶解させた。窒素雰囲気下で撹拌しながら、80℃に加熱し、5時間重合反応を行った。得られた重合液を室温まで冷却した後、n-ヘプタン25.4gを加えて析出した白色粉末を濾過にて採取した。
 採取した白色粉末に、16.9gのn-ヘプタンを加えスラリー状とした後に濾過し、その後エバポレーターにて乾燥し、重合体の白色粉末2.2gを得た。得られた重合体を重クロロホルムに浸漬させ、室温にて24時間放置した。得られた抽出液を1H-NMRで測定したところ、各残存モノマーは検出されず、含フッ素共重合体-2が合成されていた。また、共重合体の13C-NMRを測定したところ、ジアクリレート(1)由来の繰り返し単位とスチレン由来の繰り返し単位の含有比はモル%で表して、47:53であった。
[Example 4]
[Synthesis of fluorinated copolymer-2]
In a 20 ml eggplant-shaped flask, 2.0 g of the diacrylate (1) obtained in [Example 1], 0.6 g of styrene, and dimethyl 2,2′-azobis (2-methylpropionate) 0. 3 g was charged and dissolved in 7.8 g of tetrahydrofuran. While stirring in a nitrogen atmosphere, the mixture was heated to 80 ° C. and polymerized for 5 hours. The obtained polymerization solution was cooled to room temperature, 25.4 g of n-heptane was added, and the precipitated white powder was collected by filtration.
16.9 g of n-heptane was added to the collected white powder to form a slurry, followed by filtration and then drying with an evaporator to obtain 2.2 g of a polymer white powder. The obtained polymer was immersed in deuterated chloroform and allowed to stand at room temperature for 24 hours. When the obtained extract was measured by 1 H-NMR, each residual monomer was not detected, and fluorinated copolymer-2 was synthesized. When the 13 C-NMR of the copolymer was measured, the content ratio of the repeating unit derived from diacrylate (1) and the repeating unit derived from styrene was 47:53 expressed in mol%.
 [実施例5]
 [含フッ素共重合体-3の合成]
 モノマーをスチレン0.6gからメチルメタクリレート0.6gに変更した以外は[実施例4]と同様の方法で重合反応および後処理を行い、重合体の白色粉末2.5gを得た。得られた重合体についても、各残存モノマーは検出されず、含フッ素共重合体-3が合成されていた。また、共重合体の13C-NMRを測定したところ、ジアクリレート(1)由来の繰り返し単位とメチルメタクリレート由来の繰り返し単位の含有比はモル%で表して、40:60であった。
[Example 5]
[Synthesis of fluorinated copolymer-3]
Except for changing the monomer from 0.6 g of styrene to 0.6 g of methyl methacrylate, a polymerization reaction and a post-treatment were performed in the same manner as in [Example 4] to obtain 2.5 g of a white powder of polymer. Also in the obtained polymer, each residual monomer was not detected, and fluorinated copolymer-3 was synthesized. When the 13 C-NMR of the copolymer was measured, the content ratio of the repeating unit derived from diacrylate (1) to the repeating unit derived from methyl methacrylate was 40:60 expressed in mol%.
図1は、本発明のパターン付き部材の製造方法(パターン形成方法)における実施形態の例を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a method for manufacturing a member with a pattern (pattern forming method) according to the present invention.
 1: 硬化性組成物
 2: 基板
 3: モールド
 4: 塗布膜
 5: 硬化膜
 6: 照射光
1: Curable composition 2: Substrate 3: Mold 4: Coating film 5: Cured film 6: Irradiation light
 本発明によって得られる一般式(1)で表される含フッ素単量体、それを用いて重合または共重合した含フッ素重合体、さらに、重合開始剤と前記含フッ素単量体を含む硬化性組成物は、充填速度が大きい性質を有することから、半導体用の封止材やアンダーフィル材、有機EL素子や有機ELディスプレイ用の封止材、バンク材として用いることができる。 The fluorine-containing monomer represented by the general formula (1) obtained by the present invention, a fluorine-containing polymer polymerized or copolymerized using the same, and a curability containing a polymerization initiator and the fluorine-containing monomer Since the composition has a property of high filling speed, it can be used as a sealing material for semiconductors, an underfill material, a sealing material for organic EL elements or organic EL displays, and a bank material.

Claims (8)

  1.  式(1)で表される含フッ素単量体。
    Figure JPOXMLDOC01-appb-C000001
    (R1、R2はそれぞれ独立に水素原子またはメチル基である。)
    A fluorine-containing monomer represented by the formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (R 1 and R 2 are each independently a hydrogen atom or a methyl group.)
  2.  請求項1に記載の含フッ素単量体と、重合開始剤と、を含む、硬化性組成物。 A curable composition comprising the fluorine-containing monomer according to claim 1 and a polymerization initiator.
  3.  前記重合開始剤が、光重合開始剤である、請求項2に記載の硬化性組成物。 The curable composition according to claim 2, wherein the polymerization initiator is a photopolymerization initiator.
  4.  次の各工程を含む、基板上にパターン形状を有する硬化膜を配したパターン付き部材の製造方法。
     配置工程:請求項2または請求項3に記載の硬化性組成物を基板上に配置する工程。
     型接触工程:前記基板上に配置された前記硬化性組成物に対し、パターン形状を有するモールドを接触させる工程。
     硬化工程:前記モールドと接触した状態の前記硬化性組成物を、光または熱により硬化させて硬化膜とする工程。
     離型工程:前記硬化膜から前記モールドを引き離し、前記パターン付き部材を得る工程。
    The manufacturing method of the member with a pattern which arranged the cured film which has a pattern shape on a board | substrate including the following each process.
    Arranging step: A step of arranging the curable composition according to claim 2 or 3 on a substrate.
    Mold contact step: a step of bringing a mold having a pattern shape into contact with the curable composition disposed on the substrate.
    Curing step: a step of curing the curable composition in contact with the mold with light or heat to form a cured film.
    Mold release step: a step of separating the mold from the cured film to obtain the patterned member.
  5.  前記型接触工程が、凝縮性ガスを含む気体の雰囲気下で行われる、請求項4に記載のパターン付き部材の製造方法。 The method for producing a member with a pattern according to claim 4, wherein the mold contact step is performed in a gas atmosphere containing a condensable gas.
  6.  前記型接触工程の凝縮性ガスが1,1,1,3,3-ペンタフルオロプロパン(HFC-245fa)、トランス-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(E))、シス-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(Z))、トランス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、シス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))のうち1種類以上を含む、請求項5に記載のパターン付き部材の製造方法。 The condensable gas in the mold contact step is 1,1,1,3,3-pentafluoropropane (HFC-245fa), trans-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (E) ), Cis-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (Z)), trans-1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), cis- The method for producing a patterned member according to claim 5, comprising at least one of 1,3,3,3-tetrafluoropropene (HFO-1234ze (Z)).
  7.  請求項1に記載の含フッ素単量体を単独重合させてなる、または、該含フッ素単量体と、アクリル酸エステル、メタクリル酸エステル、スチレン系化合物、オレフィンからなる群より選ばれた一種類以上の単量体と、を共重合させてなる含フッ素重合体。 The fluorine-containing monomer according to claim 1 is homopolymerized, or one kind selected from the group consisting of the fluorine-containing monomer and an acrylic ester, a methacrylic ester, a styrene compound, and an olefin. A fluorine-containing polymer obtained by copolymerizing the above monomers.
  8.  請求項1に記載の含フッ素単量体を単独重合する工程、または、
     該含フッ素単量体と、アクリル酸エステル、メタクリル酸エステル、スチレン系化合物、オレフィンからなる群から選ばれた一種類以上の単量体と、を共重合させる工程、を含む、請求項7に記載の含フッ素重合体の製造方法。
    A step of homopolymerizing the fluorine-containing monomer according to claim 1, or
    And a step of copolymerizing the fluorine-containing monomer and one or more monomers selected from the group consisting of acrylic acid esters, methacrylic acid esters, styrene compounds, and olefins. A method for producing the fluorine-containing polymer as described.
PCT/JP2019/013542 2018-03-30 2019-03-28 Fluorinated monomer, fluorinated polymer, curable composition, and production method for pattern WO2019189556A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020509310A JP7277797B2 (en) 2018-03-30 2019-03-28 Curable composition and method for producing patterned member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-068470 2018-03-30
JP2018068470 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189556A1 true WO2019189556A1 (en) 2019-10-03

Family

ID=68060103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013542 WO2019189556A1 (en) 2018-03-30 2019-03-28 Fluorinated monomer, fluorinated polymer, curable composition, and production method for pattern

Country Status (2)

Country Link
JP (2) JP7277797B2 (en)
WO (1) WO2019189556A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022235098A1 (en) * 2021-05-06 2022-11-10 주식회사 동진쎄미켐 Photo-curable composition, cured product thereof, and display device comprising same
JP7442138B2 (en) 2020-06-15 2024-03-04 パナソニックIpマネジメント株式会社 How to mount electronic components

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217451A (en) * 1998-02-02 1999-08-10 Nof Corp Fluoro polymer coating film and its production
JP2003040840A (en) * 2001-07-24 2003-02-13 Central Glass Co Ltd Fluorine-containing polymerizable monomer and polymer using the same
JP2009029974A (en) * 2007-07-30 2009-02-12 Shin Etsu Chem Co Ltd Fluorine-containing monomer, fluorine-containing polymer compound, resist material and method for forming pattern
JP2009167258A (en) * 2008-01-11 2009-07-30 Daikin Ind Ltd Polymerizable fluorine monomer, fluorine-containing polymer, and method for forming resist pattern
JP2009191151A (en) * 2008-02-14 2009-08-27 Shin Etsu Chem Co Ltd Polymer compound, resist material, and method for patterning
JP2010001273A (en) * 2008-06-23 2010-01-07 Central Glass Co Ltd Method of preparing fluorine-containing monomer
JP2010134012A (en) * 2008-12-02 2010-06-17 Shin-Etsu Chemical Co Ltd Resist material and pattern forming process
JP2013151592A (en) * 2012-01-24 2013-08-08 Shin-Etsu Chemical Co Ltd Polymerizable tertiary ester compound, polymeric compound, resist material, and patterning method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217451A (en) * 1998-02-02 1999-08-10 Nof Corp Fluoro polymer coating film and its production
JP2003040840A (en) * 2001-07-24 2003-02-13 Central Glass Co Ltd Fluorine-containing polymerizable monomer and polymer using the same
JP2009029974A (en) * 2007-07-30 2009-02-12 Shin Etsu Chem Co Ltd Fluorine-containing monomer, fluorine-containing polymer compound, resist material and method for forming pattern
JP2009167258A (en) * 2008-01-11 2009-07-30 Daikin Ind Ltd Polymerizable fluorine monomer, fluorine-containing polymer, and method for forming resist pattern
JP2009191151A (en) * 2008-02-14 2009-08-27 Shin Etsu Chem Co Ltd Polymer compound, resist material, and method for patterning
JP2010001273A (en) * 2008-06-23 2010-01-07 Central Glass Co Ltd Method of preparing fluorine-containing monomer
JP2010134012A (en) * 2008-12-02 2010-06-17 Shin-Etsu Chemical Co Ltd Resist material and pattern forming process
JP2013151592A (en) * 2012-01-24 2013-08-08 Shin-Etsu Chemical Co Ltd Polymerizable tertiary ester compound, polymeric compound, resist material, and patterning method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7442138B2 (en) 2020-06-15 2024-03-04 パナソニックIpマネジメント株式会社 How to mount electronic components
WO2022235098A1 (en) * 2021-05-06 2022-11-10 주식회사 동진쎄미켐 Photo-curable composition, cured product thereof, and display device comprising same

Also Published As

Publication number Publication date
JPWO2019189556A1 (en) 2021-05-13
JP6860804B2 (en) 2021-04-21
JP2021021081A (en) 2021-02-18
JP7277797B2 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
JP7086841B2 (en) Pattern forming method, processed circuit board manufacturing method, optical component manufacturing method, circuit board manufacturing method, electronic component manufacturing method, imprint mold manufacturing method
JP6806766B2 (en) Pattern forming method, processed circuit board manufacturing method, optical component manufacturing method, circuit board manufacturing method, electronic component manufacturing method, imprint mold manufacturing method
JP6983757B2 (en) Pattern formation method, processed circuit board manufacturing method, optical component manufacturing method, circuit board manufacturing method, electronic component manufacturing method, imprint mold manufacturing method
JP7094878B2 (en) Pattern formation method, processed substrate manufacturing method, optical component manufacturing method, quartz mold replica manufacturing method, semiconductor element manufacturing method
JP6482591B2 (en) Photocurable composition
JP7066674B2 (en) Pattern formation method, imprint pretreatment coating material, and substrate pretreatment method
US10073341B2 (en) Adhesion layer composition, method for forming film by nanoimprinting, methods for manufacturing optical component, circuit board and electronic apparatus
JP6961495B2 (en) Pattern formation method, processed circuit board manufacturing method, optical component manufacturing method, circuit board manufacturing method, electronic component manufacturing method, imprint mold manufacturing method
JP6907293B2 (en) Photocurable composition for imprint, film manufacturing method using this, optical component manufacturing method, circuit board manufacturing method, electronic component manufacturing method
JP6333050B2 (en) Compound, photocurable composition, cured product, method for producing film having pattern shape, method for producing optical component, method for producing circuit board, method for producing electronic component using the same
JP6327948B2 (en) Photocurable composition, cured product, film manufacturing method, optical component manufacturing method, circuit board manufacturing method, and electronic component manufacturing method using the same
WO2018092713A1 (en) Adhesion layer-forming composition and method for producing article
JP7071331B2 (en) Pattern forming methods using optical nanoimprint technology, imprinting equipment, and curable compositions
JP6624808B2 (en) Photocurable composition, method for producing cured product pattern using the same, method for producing optical component, method for producing circuit board
JP2016115921A (en) Adhesion layer formation composition, manufacturing method of adhesion layer, manufacturing method of curable composition pattern, manufacturing method of optical component, manufacturing method of circuit board, manufacturing method of mold for imprinting, and device component
JP6860804B2 (en) Fluorine-containing polymer and method for producing a fluorine-containing polymer
JP6108765B2 (en) Photocurable composition and pattern forming method
US10593547B2 (en) Photocurable composition, and methods using the same for forming cured product pattern and for manufacturing optical component, circuit board and imprinting mold
WO2019208613A1 (en) Curable composition and pattern manufacturing method
JP2016119457A (en) Optical curable composition for imprinting, manufacturing method of curable film, manufacturing method of optical component, manufacturing method of circuit board and manufacturing method of electronic component
JP7077178B2 (en) Pattern formation method
WO2016098314A1 (en) Adhesion layer composition, methods for forming adhesion layer and cured product pattern, and methods for manufacturing optical component, circuit board, imprinting mold and device component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509310

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19774520

Country of ref document: EP

Kind code of ref document: A1