WO2019189460A1 - Motor unit - Google Patents

Motor unit Download PDF

Info

Publication number
WO2019189460A1
WO2019189460A1 PCT/JP2019/013357 JP2019013357W WO2019189460A1 WO 2019189460 A1 WO2019189460 A1 WO 2019189460A1 JP 2019013357 W JP2019013357 W JP 2019013357W WO 2019189460 A1 WO2019189460 A1 WO 2019189460A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
oil passage
motor
shaft
generator
Prior art date
Application number
PCT/JP2019/013357
Other languages
French (fr)
Japanese (ja)
Inventor
山口 康夫
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201980022640.3A priority Critical patent/CN111918785B/en
Publication of WO2019189460A1 publication Critical patent/WO2019189460A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • B60K6/405Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a motor unit.
  • the power train of a hybrid vehicle is configured by connecting an engine to a motor unit having a traveling motor, a generator for power generation, and a transmission mechanism for transmitting power.
  • a motor unit having a traveling motor, a generator for power generation, and a transmission mechanism for transmitting power.
  • the motor and the generator generate heat and become high temperature.
  • Patent Document 1 describes a structure in which a motor and a generator are cooled by a common cooling device.
  • One aspect of the present invention is to provide a motor unit capable of simultaneously cooling the motor and the generator and simplifying the overall structure.
  • One aspect of the motor unit of the present invention is a motor unit connected to an engine, and includes a generator having a first shaft that rotates around a first rotation shaft by the power of the engine, and a second rotation A motor having a second shaft that rotates about an axis; a transmission mechanism that transmits force between the engine, the generator, and the motor; and outputs the power of the engine and the motor to the outside; and the generator And a housing having a housing portion for housing the motor, oil accumulated in a lower region of the housing portion, a first pump portion located inside the housing portion and driven by rotation of the first shaft, Is provided.
  • the generator includes a first rotor having the first shaft, and a first stator surrounding the first rotor from a radially outer side of the first rotating shaft.
  • the motor includes a second rotor having the second shaft, and a second stator that surrounds the second rotor from a radially outer side of the second rotating shaft.
  • the accommodating portion is provided with an oil passage for circulating the oil.
  • a cooler for cooling the oil passing through the oil passage is provided in the passage of the oil passage.
  • the oil passage includes a first oil passage.
  • the first oil passage is connected to a first suction oil passage connected from the lower region of the housing portion to the first pump portion, and a discharge port of the first pump portion, along the first rotation axis.
  • a first in-shaft oil passage extending through the first shaft and a first in-diameter oil extending radially outward from the first in-shaft oil passage and supplying oil to the first stator.
  • a motor supply oil passage that extends from the discharge port of the first pump unit toward the motor and supplies oil to the motor.
  • a motor unit capable of simultaneously cooling a motor and a generator and simplifying the entire structure is provided.
  • FIG. 1 is a conceptual diagram of a power train having a motor unit according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view of a motor unit according to an embodiment.
  • FIG. 3 is a cross-sectional view of a generator according to an embodiment.
  • FIG. 4 is a cross-sectional view of a motor according to an embodiment.
  • Drawing 5 is a figure which looked at the 2nd pump part of one embodiment from the other side in the direction of an axis.
  • FIG. 3 is a cross-sectional view illustrating a part of the motor according to the embodiment.
  • the direction of gravity is defined and described based on the positional relationship when the motor unit 8 is mounted on a vehicle located on a horizontal road surface.
  • “extending along the axial direction” means not only extending in the axial direction (that is, the direction parallel to the X axis) but also tilting in a range of less than 45 ° with respect to the axial direction. This includes cases extending in the other direction.
  • “extending along the axis” means extending in the axial direction around a predetermined axis.
  • extending in the radial direction means strictly in the range of less than 45 ° with respect to the radial direction in addition to the case of extending in the radial direction, that is, the direction perpendicular to the axial direction. Including the case of extending in an inclined direction.
  • the Z-axis direction shown in each figure is a vertical direction Z in which the positive side is the upper side and the negative side is the lower side.
  • the vertical direction Z is the vertical direction of each figure.
  • the upper side in the vertical direction is simply referred to as “upper side”
  • the lower side in the vertical direction is simply referred to as “lower side”.
  • FIG. 1 is a conceptual diagram of a power train 1 having a motor unit 8 according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view of the motor unit 8. *
  • the power train 1 is mounted on a vehicle using the motor 2 and the engine 9 as power sources, such as a hybrid vehicle (HEV) and a plug-in hybrid vehicle (PHV).
  • HEV hybrid vehicle
  • PSV plug-in hybrid vehicle
  • EV mode For a vehicle (not shown) on which the powertrain 1 is mounted, three types of travel modes are prepared: EV mode, series mode, and parallel mode. These travel modes are alternatively selected by an electronic control unit (not shown) according to the vehicle state, the travel state, the driver's requested output, and the like. *
  • the powertrain 1 has a motor unit 8 and an engine 9.
  • the motor unit 8 is connected to the engine 9.
  • the motor unit 8 includes a motor 2, a generator 3, a transmission mechanism (transaxle) 4, a housing 10, an oil O, a first pump unit 340, a second pump unit 40, and a cooler 5. . *
  • the housing 10 includes a housing portion 19 that houses the motor 2, the generator 3, the transmission mechanism 4, the first pump portion 340, and the second pump portion 40.
  • oil O is stored in the accommodating portion 19.
  • the oil O is stored in the lower region of the storage unit 19.
  • the “lower region” of a predetermined space includes a portion located below the center in the vertical direction of the corresponding space.
  • the accommodating portion 19 includes a motor chamber 19A that accommodates the motor 2, a generator chamber 19B that accommodates the generator 3, and a gear chamber 19C that accommodates the transmission mechanism 4.
  • the motor chamber 19A, the generator chamber 19B, and the gear chamber 19C are partitioned from each other by partition walls (first partition wall 18A and second partition wall 18B). That is, the housing is provided with a first partition (partition) 18A and a second partition 18B.
  • the oil O in the accommodating portion 19 circulates in the motor chamber 19A and the generator chamber 19B. That is, in this embodiment, the oil O does not flow into the gear chamber 19C. Note that gear lubrication oil may be separately stored in the gear chamber 19C.
  • the generator room 19B is located below the motor room 19A. That is, the generator room 19 ⁇ / b> B is located on the lowermost side in the housing portion 19.
  • the oil in the accommodating part 19 is stored in the lower region of the generator room 19B.
  • the lower region of the accommodating portion 19 means the lower region of the generator room 19B.
  • the liquid level height of the oil O accumulated in the lower region of the generator chamber 19B changes vertically as the oil O circulates.
  • the lower limit height of the liquid level of the oil O accumulated in the lower region of the generator chamber 19 ⁇ / b> B is located above the lower end portion of the first stator 330 of the generator 3. Accordingly, the first stator 330 can be cooled by the oil O accumulated in the lower region of the generator chamber 19B.
  • the upper limit height of the liquid level of the oil O accumulated in the lower region of the generator chamber 19 ⁇ / b> B is located below the lower end portion of the first rotor 320 of the generator 3. Thereby, it can suppress that the oil O which accumulates in the lower area
  • the motor chamber 19A and the generator chamber 19B are disposed adjacent to each other in the vertical direction.
  • the motor chamber 19A is disposed above the generator chamber 19B.
  • the motor chamber 19A and the generator chamber 19B are partitioned by the first partition wall 18A.
  • the first partition wall 18A is provided with an oil introduction port 18a penetrating in the vertical direction.
  • the motor chamber 19A and the gear chamber 19C are disposed adjacent to each other in the horizontal direction.
  • the motor chamber 19A and the gear chamber 19C are partitioned by the second partition wall 18B. *
  • the accommodating portion 19 is provided with an oil passage 90 through which the oil O is circulated.
  • the oil passage 90 includes a first oil passage 91 and a second oil passage 95.
  • a cooler 5 for cooling the oil O passing through the oil passage 90 is provided in the oil passage 90. *
  • the cooler 5 is provided in the path of the first oil path 91.
  • the cooler 5 cools the oil O that passes through the first oil passage 91. Further, as will be described later, the first oil passage 91 and the second oil passage 95 merge in the lower region of the accommodating portion 19. Therefore, the oil O that has passed through the first oil passage 91 cooled by the cooler 5 is mixed with the oil O that has passed through the second oil passage 95 in the lower region of the housing portion 19. Therefore, the cooler 5 can cool all the oil O in the oil passage 90.
  • the cooler 5 is fixed to the outer peripheral surface of the housing 10.
  • the cooler 5 is fixed to the outer peripheral surface of the generator housing main body 311 surrounding the generator chamber 19 ⁇ / b> B in the housing 10.
  • the cooler 5 has an installation surface 5a orthogonal to the radial direction of the first rotation axis J1.
  • the cooler 5 is in contact with the outer peripheral surface of the housing 10 on the installation surface 5a.
  • the installation surface 5 a faces the generator 3 through the wall portion of the housing 10. For this reason, the cooler 5 can cool the generator 3 through the wall portion of the housing 10. *
  • the lower end portion of the installation surface 5 a of the cooler 5 is located below the lower end portion of the first rotor 320 of the generator 3.
  • the liquid level height of the oil O accumulated in the lower region of the generator chamber 19 ⁇ / b> B changes up and down on the lower side of the first rotor 320.
  • the oil O accumulated in the lower region of the generator chamber 19B is cooled via the installation surface 5a of the cooler 5, and the first stator 330 of the generator 3 is effectively effective via the oil O. Can be cooled.
  • the generator 3 is a motor generator having both a function as a motor and a function as a generator.
  • the generator 3 functions as an electric motor (starter) when starting the engine 9, and generates power with engine power when the engine 9 is operated.
  • the generator 3 generates power using the power of the engine 9.
  • the generator 3 includes a first rotor 320 and a first stator 330 that surrounds the first rotor 320.
  • the first rotor 320 is rotatable about the first rotation axis J1.
  • the first rotor 320 has a first shaft 320a. That is, the generator 3 has a first shaft 320a that rotates around the first rotation axis J1.
  • a first pump unit 340 is provided at the end of the first shaft 320a. The other end of the first shaft 320a is connected to a crankshaft (not shown) of the engine 9. For this reason, the first shaft 320 a is rotated by the power of the engine 9. *
  • the first stator 330 is annular.
  • the first stator 330 surrounds the first rotor 320 from the outside in the radial direction of the first rotation axis J1. *
  • the first pump unit 340 is located inside the storage unit 19.
  • the first pump unit 340 is located on one axial side of the first rotating shaft J1 with respect to the generator 3.
  • the first pump unit 340 is driven by the rotation of the first shaft 320a.
  • the first shaft 320 a is rotated by the engine 9.
  • the first pump unit 340 is driven by the engine 9.
  • the 1st pump part 340 of this embodiment is a trochoidal pump.
  • the motor 2 is located above the generator 3.
  • the motor 2 is a motor generator that has both a function as a motor and a function as a generator.
  • the motor 2 mainly functions as an electric motor to drive the vehicle, and functions as a generator during regeneration. *
  • the motor 2 has a second rotor 20 and a second stator 30.
  • the second rotor 20 can rotate around the second rotation axis J2.
  • the second rotation axis J2 extends in parallel with the first rotation axis J1.
  • the second rotor 20 has a second shaft 20a. That is, the motor 2 has a second shaft 20a that rotates around the second rotation axis J2.
  • a second pump unit 40 is provided at one end of the second shaft 20a.
  • the other end of the second shaft 20 a is connected to the transmission mechanism 4.
  • the power of the motor 2 is output to the outside via the transmission mechanism 4. *
  • the second stator 30 is annular.
  • the second stator 30 surrounds the second rotor 20 from the outside in the radial direction of the second rotation axis J2. *
  • the second pump unit 40 is located inside the storage unit 19. Further, the second pump unit 40 is located on one axial side of the second rotating shaft J2 with respect to the motor 2. The second pump unit 40 is driven by the rotation of the second shaft 20a. That is, the second pump unit 40 is driven by the motor 2. Similar to the first pump unit 340, the second pump unit 40 of the present embodiment is a trochoidal pump. *
  • the transmission mechanism 4 transmits force between the engine 9, the generator 3 and the motor 2.
  • the transmission mechanism 4 incorporates a plurality of mechanisms responsible for power transmission between the drive source and the driven device.
  • the transmission mechanism 4 outputs the power of the engine 9 and the motor 2 to the outside.
  • the transmission mechanism 4 includes, for example, a clutch mechanism (not shown), a plurality of gears (not shown), a differential gear (not shown), and an output shaft (not shown).
  • the transmission mechanism 4 transmits the power of the engine 9 and the power of the motor 2 to the differential gear through a plurality of gears.
  • the differential gear is a device for transmitting torque output from the motor 2 and the engine 9 to the wheels of the vehicle.
  • the differential device transmits the same torque to the output shafts of the left and right wheels while absorbing the speed difference between the left and right wheels when the vehicle turns.
  • the clutch mechanism cuts the power transmission path of the engine 9 when the vehicle is driven only by the power of the motor 2.
  • the clutch mechanism connects the power transmission path of the engine 9 when the vehicle travels using both the power of the motor 2 and the power of the engine 9. *
  • the oil passage 90 includes the first oil passage 91 and the second oil passage 95.
  • the first oil passage 91 and the second oil passage 95 are oil passages for cooling both the motor 2 and the generator 3, respectively.
  • the first oil passage 91 includes a first suction oil passage 92, a first in-shaft oil passage 93 ⁇ / b> A, a first radial oil passage 93 ⁇ / b> B, and a motor supply oil passage 94.
  • the first siphoning oil path 92 is provided, for example, inside the peripheral wall portion of the housing 10.
  • the first suction oil passage 92 is connected to the first pump unit 340 from the lower region of the housing unit 19. As described above, the oil O accumulates in the lower region of the accommodating portion 19 (more specifically, the lower region of the generator chamber 19B).
  • the first siphoning oil passage 92 opens in the lower region of the generator chamber 19B at the upstream end.
  • the first suction oil passage 92 is connected to the first pump unit 340 at the downstream end. A negative pressure is applied to the downstream end of the first suction oil passage 92 from the first pump unit 340.
  • the oil O sucked up by the first pump unit 340 flows from the lower region of the housing part 19 through the first suction oil path 92. *
  • a cooler 5 is provided in the path of the first suction oil path 92.
  • the cooler 5 cools the oil O that passes through the first suction oil passage 92.
  • the first in-shaft oil passage 93A extends inside the first shaft 320a along the first rotation axis J1.
  • the first shaft 320a is a hollow shaft.
  • the first shaft oil passage 93A is an oil passage provided in a hollow portion of the first shaft 320a.
  • the hollow portion of the first shaft 320a opens on one side in the axial direction of the first rotation axis J1.
  • the first in-shaft oil passage 93A is closed on the other side in the other axial direction.
  • the opening of the hollow portion of the first shaft 320a is located at the upstream end of the first shaft oil passage 93A.
  • the opening of the hollow portion of the first shaft 320 a is connected to the discharge port 345 of the first pump unit 340.
  • the oil O flows from one axial side of the first in-shaft oil passage 93A toward the other side.
  • the first radial oil passage 93B is connected to the first in-shaft oil passage 93A.
  • the first radial oil passage 93B extends radially outward from the first shaft oil passage 93A.
  • the first radial oil passage 93B is provided in the first rotor 320 including the first shaft 320a.
  • Oil O flows from the first in-shaft oil passage 93A into the first radial oil passage 93B.
  • the first rotor 320 rotates around the first rotation axis J1. For this reason, centrifugal force is generated in the oil O in the first radial oil passage 93B toward the radially outer side. As a result, the oil O in the first radial oil passage 93B flows smoothly outward in the radial direction.
  • the first radial oil passage 93B opens toward the first stator 330 at the radially outer end of the first rotating shaft J1.
  • the first radial oil passage 93 ⁇ / b> B supplies oil O to the first stator 330 of the generator 3.
  • the oil O supplied to the first stator 330 cools the first stator 330 and further drops downward through the coil of the first stator 330 and the like. As a result, the oil O is recovered in the lower region of the generator chamber 19B.
  • the oil O can be supplied into the generator 3 by the first in-shaft oil passage 93A and the first radial oil passage 93B, and the generator 3 can be cooled from the inside. Thereby, the generator 3 can be cooled efficiently.
  • the motor supply oil passage 94 is provided, for example, inside the peripheral wall portion of the housing 10.
  • the motor supply oil passage 94 extends from the discharge port 345 of the first pump unit 340 toward the motor 2.
  • the motor supply oil passage 94 is connected to the discharge port 345 of the first pump unit 340 at the upstream end. That is, the first oil passage 91 is branched into the first in-shaft oil passage 93 ⁇ / b> A and the motor supply oil passage 94 at the discharge port 345 of the first pump unit 340.
  • the oil O can be supplied to the motor 2 while the oil O is supplied into the generator 3 by the first pump unit 340. For this reason, the generator 3 and the motor 2 can be simultaneously cooled using the first pump unit 340.
  • the cooler 5 is provided in the path of the first siphoning oil path 92.
  • the first oil passage 91 branches downstream of the first suction oil passage 92 and supplies oil O to the generator 3 and the motor 2.
  • the generator 3 and the motor 2 can be efficiently cooled by the oil O cooled by the cooler 5 by arranging the cooler 5 on the upstream side of the branch.
  • the motor supply oil passage 94 opens above the motor 2 at the downstream end.
  • the motor supply oil passage 94 supplies oil O from the upper side of the motor 2 to the second stator 30 of the motor 2.
  • the oil O supplied to the motor 2 travels along the surface of the motor 2 and cools the entire motor 2. That is, according to the present embodiment, the motor supply oil passage 94 supplies the oil O from the upper side of the motor 2 to the motor 2 so that the entire motor 2 can be efficiently cooled.
  • the first pump unit 340 is provided inside the housing unit 19, the first pump unit 340 and the motor unit 8 are compared with the case where the pump unit is provided outside the motor unit. No piping is required to connect That is, according to this embodiment, the structure of the motor unit 8 can be simplified.
  • the first pump unit 340 is driven by the rotation of the first shaft 320a, compared with the case where the pump unit is driven by an external power source, the electricity connected to the first pump unit 340 is connected. No wiring is required. That is, according to this embodiment, the structure of the motor unit 8 can be simplified.
  • the first pump unit 340 since the first pump unit 340 is driven by the rotation of the first shaft 320a of the generator 3, the first pump unit 340 is driven only when the generator 3 generates power.
  • the first pump unit 340 supplies oil O to the inside of the generator 3 to cool the generator 3.
  • the generator 3 generates heat when the generator 3 generates power. That is, according to the present embodiment, the generator 3 is driven only when the generator 3 generates heat, and the oil O for cooling the generator 3 is supplied to the generator 3. Therefore, the generator 3 can be efficiently cooled.
  • the motor 2 In general, in a hybrid vehicle, the motor 2 is always driven when the generator 3 generates power. According to the present embodiment, the motor 2 can be cooled simultaneously when the generator 3 is driven, and the motor 2 can be efficiently cooled. *
  • the second oil passage 95 includes a second suction oil passage 96, a second shaft oil passage 97A, and a second radial oil passage 97B.
  • the second siphoning oil passage 96 is provided, for example, inside the peripheral wall portion of the housing 10.
  • the second suction oil passage 96 is connected to the second pump unit 40 from the lower region of the housing unit 19.
  • the second suction oil passage 96 opens to the lower region of the generator chamber 19B at the upstream end.
  • the second suction oil passage 96 is connected to the second pump unit 40 at the downstream end.
  • a negative pressure is applied from the second pump unit 40 to the downstream end of the second suction oil passage 96.
  • the oil O sucked up by the second pump unit 40 flows from the lower region of the storage unit 19 through the second suction oil passage 96. *
  • the second shaft oil passage 97A extends inside the second shaft 20a along the second rotation axis J2.
  • the second shaft 20a is a hollow shaft.
  • the second shaft internal oil passage 97A is an oil passage provided in a hollow portion of the second shaft 20a.
  • the hollow portion of the second shaft 20a opens on one side in the axial direction of the second rotation axis J2.
  • the second shaft internal oil passage 97A is closed on the other side in the other axial direction.
  • the opening of the hollow portion of the second shaft 20a is located at the upstream end of the second in-shaft oil passage 97A.
  • the opening of the hollow portion of the second shaft 20 a is connected to the discharge port 45 of the second pump unit 40.
  • the oil O flows from one axial side of the second shaft oil passage 97A toward the other side.
  • the second radial oil passage 97B is connected to the second in-shaft oil passage 97A.
  • the second radial oil passage 97B extends radially outward from the second shaft oil passage 97A.
  • the second radial oil passage 97B is provided in the second rotor 20 including the second shaft 20a.
  • Oil O flows from the second shaft oil passage 97A into the second radial oil passage 97B.
  • the second rotor 20 rotates around the second rotation axis J2. For this reason, centrifugal force is generated in the oil O in the second radial oil passage 97B toward the radially outer side. Thereby, the oil O in the second radial oil passage 97B flows smoothly outward in the radial direction.
  • the second radial oil passage 97B opens toward the second stator 30 at the radially outer end of the second rotating shaft J2.
  • the second radial oil passage 97 ⁇ / b> B supplies oil O to the second stator 30 of the motor 2. As a result, the second stator 30 of the motor 2 is cooled.
  • the oil O can be supplied to the inside of the motor 2 by the second in-shaft oil passage 97A and the second radial oil passage 97B, and the motor 2 can be cooled from the inside. Thereby, the motor 2 can be cooled efficiently.
  • the second pump unit 40 is provided inside the housing unit 19, the second pump unit 40 and the motor unit 8 are compared with the case where the pump unit is provided outside the motor unit. No piping is required to connect That is, according to this embodiment, the structure of the motor unit 8 can be simplified.
  • the second pump unit 40 is driven by the rotation of the second shaft 20a, compared with the case where the pump unit is driven by an external power source, the electric connected to the second pump unit 40 is achieved. No wiring is required. That is, according to this embodiment, the structure of the motor unit 8 can be simplified.
  • the second pump unit 40 since the second pump unit 40 is driven by the rotation of the second shaft 20 a of the motor 2, the second pump unit 40 is driven simultaneously with the driving of the motor 2.
  • the second pump unit 40 supplies oil O to the inside of the motor 2 to cool the generator 3.
  • the motor 2 generates heat when the motor 2 is driven. That is, according to the present embodiment, the motor 2 is driven only when the motor 2 generates heat and the oil O for cooling the motor 2 is supplied to the motor 2, so that the motor 2 can be efficiently cooled.
  • the oil O supplied to the second stator 30 cools the second stator 30 and further drops down through the coil of the second stator 30 and the like.
  • the oil O dropped from the second stator 30 reaches the lower region of the motor chamber 19A.
  • the housing 10 is provided with a first partition wall 18A that partitions the motor chamber 19A and the generator chamber 19B.
  • the first partition wall 18A is provided with an oil inlet 18a penetrating in the vertical direction.
  • the oil O reaching the lower region of the motor chamber 19A is introduced into the generator chamber 19B through the oil introduction port 18a.
  • the oil introduction port 18 a is opened immediately above the generator 3. For this reason, the oil O introduced into the generator chamber 19 ⁇ / b> B via the oil introduction port 18 a is supplied to the first stator 330 of the generator 3.
  • the oil O supplied to the first stator 330 cools the first stator 330 and further drops downward through the coil of the first stator 330 and the like. As a result, the oil O is recovered in the lower
  • the motor 2 is positioned above the generator 3, and the oil O dripped from the motor 2 is supplied to the generator 3. For this reason, the oil O which cooled the motor 2 can be further used for cooling the generator 3, and as a result, efficient cooling becomes possible.
  • the generator 3 of the present embodiment includes a housing 10, a first rotor 320 having a first shaft 320 a disposed along a first rotation axis J ⁇ b> 1 extending in one direction, A rotation detection unit 380, a first stator 330, a first pump unit 340, and bearings 370 and 371 are provided.
  • the first rotation axis J1 extends in the left-right direction in FIG.
  • the direction parallel to the axial direction of the first rotation axis J1 is simply referred to as “axial direction”
  • the radial direction around the first rotation axis J1 is simply “radial direction”.
  • the circumferential direction around the first rotation axis J1 is simply referred to as “circumferential direction”.
  • the left side of FIG. 3 in the axial direction is referred to as “one axial side”
  • the right side of FIG. 3 in the axial direction is referred to as “the other axial side”. *
  • the housing 10 includes a generator housing body 311, an inner lid portion 312, and an outer lid portion 313.
  • the generator housing main body 311, the inner lid 312, and the outer lid 313 are separate members.
  • the generator housing body 311 has a bottomed cylindrical shape that opens to one side in the axial direction.
  • the generator housing main body 311 has a bottom 311a, a main body cylinder 311b, and a bearing holding portion 311c.
  • the bottom 311a has an annular plate shape that expands in the radial direction.
  • the main body cylinder portion 311b has a cylindrical shape extending from the radially outer edge portion of the bottom portion 311a to one side in the axial direction.
  • the bearing holding portion 311c has a cylindrical shape protruding from the inner edge portion of the bottom portion 311a to one side in the axial direction.
  • the bearing holding portion 311c holds the bearing 371 on the inner peripheral surface.
  • the inner lid 312 is attached to one side in the axial direction of the generator housing main body 311.
  • the inner lid portion 312 includes an annular plate portion 312a, an outer cylinder portion 312b, an inner cylinder portion 312c, and a bearing holding portion 312e.
  • the annular plate portion 312a has an annular plate shape that expands in the radial direction.
  • the inner lid portion 312 covers one side in the axial direction of the first stator 330 by the annular plate portion 312a.
  • the annular plate portion 312a has an opening 312f that penetrates the annular plate portion 312a in the axial direction at the lower end.
  • the opening 312 f is connected to the inside of the housing 10. *
  • the outer cylinder portion 312b has a cylindrical shape extending from the radially outer edge portion of the annular plate portion 312a to the other side in the axial direction.
  • the end portion on the other side in the axial direction of the outer tube portion 312b is fixed in contact with the end portion on the one side in the axial direction of the main body tube portion 311b.
  • the inner cylinder portion 312c has a cylindrical shape extending from the radially inner edge of the annular plate portion 312a to the other side in the axial direction.
  • the bearing holding portion 312e includes an annular portion 401 that extends radially inward from the other axial end of the inner cylindrical portion 312c, and a cylindrical portion 402 that protrudes from the radially inner edge of the annular portion toward the other axial end. And have.
  • the inner lid portion 312 has a second concave portion 312g that is recessed from the surface on one side in the axial direction of the inner lid portion 312 to the other side in the axial direction.
  • the inner surface of the second recess 312g includes the inner peripheral surface of the inner cylinder portion 312c and the surface on the one axial side of the annular portion 401.
  • the surface on the one side in the axial direction of the inner lid portion 312 is the surface on the one side in the axial direction of the annular portion 401 in the present embodiment.
  • the inner side surface of the second recess 312g includes a radially inner side surface of the inner cylindrical portion 312c and a surface on one axial side of the annular portion 401.
  • the cylindrical portion 402 of the bearing holding portion 312e has a cylindrical shape that protrudes from the radially inner end edge of the annular portion 401 to the other side in the axial direction.
  • the bearing holding portion 312 e holds the bearing 370 on the inner peripheral surface of the cylindrical portion 402.
  • the housing 10 has a generator housing portion 314 including a generator housing body 311 and an inner lid portion 312. Inside the generator housing 314, a generator room 19B (see FIG. 1) is configured.
  • the generator housing part 314 houses the first rotor 320 and the first stator 330.
  • the first stator 330 is fixed to the inner surface of the generator housing main body 311.
  • the first rotor 320 is disposed on the radially inner side of the first stator 330.
  • the first stator 330 faces the first rotor 320 via a gap in the radial direction.
  • the first stator 330 has a stator core 331 and a plurality of coils 332 attached to the stator core 331.
  • the stator core 331 has an annular shape around the first rotation axis J1.
  • the outer peripheral surface of the stator core 331 is fixed to the inner peripheral surface of the main body cylinder portion 311b.
  • the stator core 331 is opposed to a radially outer side of a rotor core 322, which will be described later, via a gap.
  • the coil 332 protrudes on the one axial side and the other axial side of the stator core 331.
  • the liquid level OS of the oil O stored in the generator housing unit 314 is located above the opening 312 f. Thereby, the oil O stored in the generator accommodating part 314 always flows through the opening 312f.
  • the liquid level OS of the oil O varies as the oil O is sucked up by the first pump unit 340, but is disposed below the first rotor 320 at least when the first rotor 320 rotates. . Thereby, when the 1st rotor 320 rotates, it can suppress that oil O becomes rotational resistance of the 1st rotor 320.
  • the outer lid portion 313 is attached to one side of the inner lid portion 312 in the axial direction.
  • the outer lid part 313 includes an outer lid body part 313a and a plug part 313b.
  • the outer lid main body 313a expands in the radial direction.
  • the outer lid main body portion 313a includes a lid plate portion 313c and a protruding portion 313d.
  • the lid plate portion 313c has a disk shape that expands in the radial direction.
  • the radially outer edge portion of the lid plate portion 313c is fixed to the radially outer edge portion of the annular plate portion 312a.
  • the surface on the other side in the axial direction of the cover plate portion 313c is in contact with the surface on the one side in the axial direction of the annular plate portion 312a.
  • the protruding portion 313d protrudes from the center portion of the lid plate portion 313c to the other side in the axial direction.
  • the protruding portion 313d is inserted into the inner cylinder portion 312c from one side in the axial direction.
  • the protruding portion 313d is disposed at an interval on one side in the axial direction of the annular portion 401 of the bearing holding portion 312e.
  • the outer lid main body 313a includes a first recess 313e and a second through hole 313f.
  • the first recess 313e is recessed from the surface on the one axial side of the outer lid main body 313a to the other axial side.
  • the first recess 313e is provided at the center of the outer lid main body 313a, and is provided across the lid plate 313c and the protrusion 313d.
  • the second through hole 313f penetrates from the bottom surface of the first recess 313e to the surface on the other axial side of the protruding portion 313d. That is, the second through hole 313 f penetrates from the bottom surface of the first recess 313 e to the inside of the housing 10.
  • the second through hole 313f opens inside the second recess 312g. Thereby, the 2nd penetration hole 313f connects the inside of the 1st crevice 313e and the inside of the 2nd crevice 12g.
  • the first rotation axis J1 passes through the second through hole 313f.
  • the plug portion 313b is fitted into the first recess 313e and fixed to the outer lid main body portion 313a.
  • the plug body portion 313b closes the opening on the one axial side of the first recess 313e.
  • the plug body portion 313b covers one side in the axial direction of the first shaft 320a. That is, the outer lid portion 313 covers one side in the axial direction of the first shaft 320a.
  • the plug portion 313b has a flange portion 313g that protrudes radially outward at an end portion on one axial side.
  • the flange portion 313g contacts the surface on one side in the axial direction of the lid plate portion 313c.
  • the plug body portion 313b is positioned in the axial direction by the flange portion 313g. *
  • an internal gear 343 and an external gear 342 are accommodated between the outer lid main body portion 313a and the plug body portion 313b.
  • a portion that accommodates the external gear 342 and the internal gear 343 in the outer lid portion 313 constitutes the first pump portion 340.
  • the first pump unit 340 is a trochoid pump.
  • the 1st pump part 340 has the structure substantially the same as the 2nd pump part 40 demonstrated in a back
  • a cylindrical mounting member 350 that connects the first pump portion 340 and the oil passage in the first shaft 320a is inserted into the through hole of the external gear 342.
  • the plug body portion 313b has a suction side oil passage 340a and a discharge side oil passage 340b.
  • the suction side oil passage 340 a connects the opening 312 f and the suction port of the first pump portion 340 via a first suction oil passage 92 (see FIG. 1) provided in the outer lid portion 313.
  • the discharge-side oil passage 340 b connects the discharge port 345 of the first pump unit 340 and the through hole of the attachment member 350.
  • the first rotor 320 includes a first shaft 320a, a rotor core 322, a first end plate 324, and a second end plate 325.
  • the first shaft 320a includes a shaft main body 321a, a rotor core holding part 321b, a connection part 321c, and an attachment member 350.
  • the shaft main body portion 321a, the rotor core holding portion 321b, and the connection portion 321c are a single member.
  • the shaft main body 321a has a cylindrical shape that extends in the axial direction with the first rotation axis J1 as the center.
  • the rotor core holding part 321b has a cylindrical shape centering on the first rotation axis J1 and surrounding the radially outer side of the shaft main body part 321a.
  • the axial length of the rotor core holding portion 321b is shorter than the axial length of the shaft main body portion 321a.
  • the connecting portion 321c extends in an annular shape from the axial center to the radial outer side of the shaft main body 321a.
  • the rotor core holding part 321b is connected in the radial direction.
  • the axial length of the connecting portion 321c is shorter than the axial length of the shaft main body portion 321a and the axial length of the rotor core holding portion 321b. Therefore, the outer peripheral surface 501a of the shaft main body 321a and the inner peripheral surface 501b of the rotor core holding portion 321b face each other in the radial direction on one axial side of the connecting portion 321c. Further, on the other axial side of the connecting portion 321c, the outer peripheral surface 502a of the shaft main body portion 321a and the inner peripheral surface 502b of the rotor core holding portion 321b face each other in the radial direction. *
  • the first shaft 320a includes a first shaft recess 321A that opens toward one side in the axial direction and a second shaft recess 321B that opens toward the other side in the axial direction.
  • the first shaft recess 321A is an annular groove that opens to one side in the axial direction and extends in the circumferential direction.
  • the first shaft recess 321A has the outer peripheral surface 501a of the shaft main body portion 321a and the inner peripheral surface 501b of the rotor core holding portion 321b as side surfaces, and the surface 501c on one axial side of the connection portion 321c as a bottom surface.
  • the inner peripheral surface 501b of the rotor core holding portion 321b is inclined outward in the radial direction toward the opening end on one axial side of the rotor core holding portion 321b.
  • the inner peripheral surface 501b of the rotor core holding portion 321b has a curved slope portion 501d at the end on the opening side in the axial direction.
  • the inclined surface portion 501d is a curved surface that is inclined outward in the radial direction toward the one side in the axial direction.
  • the second shaft recess 321B is an annular groove that opens to the other side in the axial direction and extends in the circumferential direction.
  • the second shaft recess 321B has the outer peripheral surface 502a of the shaft main body portion 321a and the inner peripheral surface 502b of the rotor core holding portion 321b as side surfaces, and the surface 502c on one axial side of the connection portion 321c as a bottom surface.
  • the inner peripheral surface 502b of the rotor core holding portion 321b is inclined radially outward toward the opening end on the other axial side of the rotor core holding portion 321b.
  • the shaft body 321a is rotatably supported by a bearing 370 located on one side in the axial direction of the connecting part 321c and a bearing 371 located on the other side in the axial direction of the connecting part 321c.
  • the bearings 370 and 371 are ball bearings, for example.
  • a part of the bearing holding portion 312e that holds the bearing 370 overlaps the rotor core holding portion 321b when viewed in the radial direction. According to this structure, the axial direction length of the generator 3 can be shortened, and it can be reduced in thickness. *
  • the cylindrical portion 402 of the bearing holding portion 312e has a shape whose diameter increases toward the one side in the axial direction in the vicinity of the opening on the one side in the axial direction of the rotor core holding portion 321b. That is, the outer peripheral surface of the bearing holding portion 312e is an inclined surface that is inclined radially outward from the inner side of the rotor core holding portion 321b toward the outer side in the axial direction.
  • the outer peripheral surface of the bearing holding portion 312e has a curved surface shape that follows the inclined surface portion 501d of the rotor core holding portion 321b facing each other through a gap.
  • the annular portion 401 of the bearing holding portion 312e faces the flange portion 503 in the axial direction. That is, the bearing holding portion 312e faces the surface of the rotor core holding portion 321b facing the axial direction.
  • the shaft main body portion 321a has an output portion 321e at the end on the other side in the axial direction.
  • a rotation detector 380 is arranged on one side of the bearing 370 in the axial direction.
  • the rotation detector 380 detects the rotation of the first rotor 320.
  • the rotation detection unit 380 is, for example, a VR (Variable Reluctance) type resolver.
  • the rotation detection unit 380 is disposed on the radially inner side of the inner cylinder portion 312c.
  • the resolver rotor of the rotation detector 380 is fixed to one end of the shaft main body 321a in the axial direction, and the resolver stator is fixed to the inner periphery of the inner cylinder portion 312c.
  • the rotation detection unit 380 may have a configuration in which a Hall element, an MR (Magneto Resistive) element, and a magnet are combined. *
  • the shaft main body portion 321a has a first in-shaft oil passage 93A that has a bottomed hole that opens to an end portion on one axial side of the shaft main body portion 321a and extends to the other axial side.
  • the end portion on the other side in the axial direction of the first in-shaft oil passage 93A is closed.
  • the inner edge of the first shaft oil passage 93A has a circular shape centered on the first rotation axis J1 in the cross section orthogonal to the axial direction.
  • the rotor core holding part 321b is a part to which the rotor core 322 is attached on the first shaft 320a.
  • the rotor core 322 has an annular shape fixed to the shaft main body 321a.
  • the rotor core 322 is fitted to the outer peripheral surface of the cylindrical rotor core holding part 321b.
  • the rotor core 322 has a plurality of rotor magnets (not shown). The plurality of rotor magnets are arranged along the circumferential direction of the rotor core 322. *
  • the rotor core holding part 321b has a flange part 503 that extends radially outward from an end on one axial side.
  • the flange portion 503 has a female screw portion 503a penetrating in the axial direction.
  • the first end plate 324 is disposed so as to be sandwiched between the flange portion 503 and the rotor core 322 in the axial direction.
  • the second end plate 325 is disposed in contact with the surface on the other axial side of the rotor core 322.
  • the first end plate 324 and the second end plate 325 have an annular plate shape that expands in the radial direction. However, the first end plate 324 may not be provided. *
  • the rotor core 322 and the second end plate 325 have through holes that penetrate the rotor core 322 and the second end plate 325 in the axial direction.
  • the rotor core 322 is fixed to the rotor core holding part 321b by bolts 504.
  • the bolt 504 is inserted into the through hole of the rotor core 322 and the second end plate 325.
  • the male screw portion of the bolt 504 is fastened to the female screw portion of the flange portion 503. *
  • the rotor core holding part 321b has the flange part 503, whereby the rotor core 322 can be positioned and fixed in the axial direction.
  • the bolt 504 can be fastened without using a nut. Since the tip of the bolt 504 protrudes slightly on the surface on one side in the axial direction of the flange portion 503, it is difficult to inhibit the flow of the oil O that travels on the surface of the flange portion 503.
  • the attachment member 350 is fixed to one side in the axial direction of the shaft main body 321a by a cap-shaped connecting member 351.
  • the connecting member 351 has a through hole that penetrates the connecting member 351 in the axial direction, and the attachment member 350 is inserted into the through hole of the connecting member 351.
  • the through-hole of the attachment member 350 constitutes a part of the first in-shaft oil passage 93A of the shaft main body portion 321a and is connected to the discharge-side oil passage 340b of the first pump portion 340.
  • the attachment member 350 extends to one side in the axial direction from the shaft body 321a and is rotatably supported by the second through hole 313f. *
  • the first in-shaft oil passage 93A is branched into a plurality of first radial oil passages 93B at the axial central portion of the shaft main body portion 321a.
  • the plurality of first radial oil passages 93B extend radially from the first shaft oil passage 93A in the radial direction.
  • the number of first radial oil passages 93B is, for example, 2 to 16.
  • the first radial oil passage 93B may have a shape that is inclined or curved with respect to the radial direction as long as oil can be guided radially outward from the first shaft oil passage 93A. *
  • the first radial oil passage 93B extends in the radial direction from the first shaft oil passage 93A, passes through the connection portion 321c and the rotor core holding portion 321b, and opens to the outer peripheral surface of the rotor core holding portion 321b. Therefore, a part of the inner peripheral surface of the rotor core 322 is exposed at the radially outer end of the first radial oil passage 93B. Thereby, the rotor core 322 can also be cooled by the oil O. *
  • the first radial oil passage 93B is branched into two third branch oil passages 363A and 363B inside the connection portion 321c.
  • the third branch oil passage 363A extends from the branch point with the first radial oil passage 93B to one side in the axial direction, and opens to a surface 501c on the one side in the axial direction of the connecting portion 321c.
  • the third branch oil passage 363B extends from the branch point with the first radial oil passage 93B to the other side in the axial direction, and opens on the surface 502c on the other side in the axial direction of the connecting portion 321c.
  • the third branch oil passages 363A and 363B may have a shape inclined or curved with respect to the axial direction as long as the oil can be guided in the axial direction from the first radial oil passage 93B. *
  • the third branch oil passages 363A and 363B open at the radial center of the connection portion 321c.
  • the corners of the bottom surfaces of the first shaft recess 321A and the second shaft recess 321B tend to be rounded, and the drill is easy to slip near the corners, making drilling difficult.
  • the central portion in the radial direction of the connecting portion 321c is likely to be a relatively flat surface, so that drilling is easy to perform. Further, since the processing is easy, it is easy to improve the accuracy of the third branch oil passages 363A, 363B. *
  • the shaft main body portion 321a further includes bearing lubrication oil passages 364A and 364B extending from the first in-shaft oil passage 93A to the bearings 370 and 371.
  • the bearing lubrication oil passage 364A is branched from the axial center of the first shaft oil passage 93A and extends obliquely outward in the radial direction toward the one radial side.
  • the bearing lubrication oil passage 64A opens at a position facing the other surface in the axial direction of the bearing 370 on the outer peripheral surface of the shaft main body 321a.
  • connection position between the bearing lubrication oil path 364A and the first in-shaft oil path 93A is on one axial side than the connection position between the first radial oil path 93B and the first in-shaft oil path 93A.
  • the number of bearing lubrication oil passages 364A is, for example, 1 to 8. *
  • the bearing lubrication oil passage 364B is branched from the end portion on the other axial side of the first shaft oil passage 93A and extends outward in the radial direction.
  • the connection position between the bearing lubrication oil passage 364B and the first in-shaft oil passage 93A is on the other side in the axial direction from the bearing 371.
  • the bearing lubrication oil passage 364B extends radially outward from the first shaft oil passage 93A.
  • the bearing lubrication oil passage 364B opens at a position facing the other surface in the axial direction of the bearing 371 on the outer peripheral surface of the shaft main body 321a.
  • the number of bearing lubrication oil passages 364B is, for example, 1 to 8. *
  • the 1st pump part 340 is driven via the 1st shaft 320a.
  • the external gear 342 fixed to the first shaft 320a rotates.
  • the internal gear 343 that meshes with the external gear 342 rotates, and the oil O is pumped from the lower portion of the generator housing portion 314 via the suction-side oil passage 340a.
  • the oil O sucked between the external gear 42 and the internal gear 343 is discharged to the discharge side oil passage 340b.
  • the oil O discharged to the discharge side oil passage 340b flows into the first shaft oil passage 93A.
  • the oil O that has flowed into the first in-shaft oil passage 93A flows into a plurality of first radial oil passages 93B that branch off in the central portion in the axial direction. Further, the oil O that has flowed into the first radial oil passage 93B flows into two third branch oil passages 363A and 363B that branch at the radial center of the first radial oil passage 93B. The oil O that has flowed into the third branch oil passage 363A flows into the first shaft recess 321A from the opening located on the surface 501c facing the one side in the axial direction of the connecting portion 321c. *
  • the oil O that has flowed into the first shaft recess 321A moves radially outward due to centrifugal force and reaches the inner peripheral surface 501b of the rotor core holding portion 321b.
  • the oil O on the inner peripheral surface 501b moves to one side in the axial direction along the inclination of the inner peripheral surface 501b.
  • the oil O that has reached the end on the one axial side of the inner peripheral surface 501b is directed radially outward along the inclined surface 501d and flows out of the first shaft recess 321A.
  • the inner peripheral surface 501b is an inclined surface, the oil O smoothly moves to the coil 332 side without staying on the inner peripheral surface 501b.
  • the moving direction of the oil O can be smoothly turned from the axial direction to the radial direction, and the main scattering direction of the oil O is directed to the coil 332. be able to.
  • the oil O that has flowed out of the first shaft recess 321A scatters directly from the end on the one axial side of the inner peripheral surface 501b to the outside in the radial direction, or travels radially outward through the surface of the flange portion 503. Scatter.
  • the scattered oil O adheres to the coil 332 of the first stator 330 and cools the coil 332.
  • the rotor core holding portion 321b has the flange portion 503, so that the oil O flowing out from the inclined surface portion 501d at the opening end of the first shaft concave portion 321A to the radially outer side is disposed on one axial side of the flange portion 503. The surface can be transmitted and smoothly scattered radially outward. *
  • the bearing holding portion 312e is disposed at a position facing the inner peripheral surface 501b and the flange portion 503 of the rotor core holding portion 321b.
  • the oil O that has flowed into the second shaft recess 321B moves outward in the radial direction by centrifugal force and reaches the inner peripheral surface 502b of the rotor core holding portion 321b.
  • the oil O on the inner peripheral surface 502b moves to the other axial side along the inclination of the inner peripheral surface 502b, and flows out of the second axial recess 321B from the other axial end of the inner peripheral surface 501b.
  • the inner peripheral surface 502b is an inclined surface, the oil O moves smoothly to the coil 332 side without staying on the inner peripheral surface 502b.
  • the oil O that has flowed out of the second shaft recess 321B directly scatters radially outward from the other axial end of the inner peripheral surface 502b, or travels radially outward along the surface of the second end plate 325. Then splash. The scattered oil O adheres to the coil 332 of the first stator 330 and cools the coil 332.
  • the flow passage cross-sectional areas of the oil passages are the first shaft oil passage 93A, the first radial oil passage 93B, the third branch oil passage 363A, It becomes small in order of 363B.
  • a plurality of first radial oil passages 93B are branched from one first shaft oil passage 93A, and two third branch oil passages 363A, 363B are further branched from one first radial oil passage 93B. Since the oil passage is narrowed every time it is branched, the cross-sectional area of the entire oil passage can be maintained, and the oil O can be conveyed at a constant pressure.
  • the flow passage cross-sectional area of the first shaft oil passage 93A may be 90% or more and 110% or less of the sum of the flow passage cross-sectional areas of the plurality of first radial oil passages 93B branched. .
  • the pressure fluctuation of the oil O flowing from the first shaft oil passage 93A to the first radial oil passage 93B can be suppressed. Thereby, it can suppress that the supply amount of the oil O to the coil 332 varies in the circumferential direction.
  • the flow passage cross-sectional area of the first radial oil passage 93B may be 90% or more and 110% or less of the sum of the flow passage cross-sectional areas of the third branch oil passages 363A and 363B branched.
  • the bearing lubrication oil passages 364A and 364B are branched from the first in-shaft oil passage 93A. Therefore, the relationship between the flow passage cross-sectional areas may take into account the flow passage cross-sectional areas of the bearing lubrication oil passages 364A and 364B. That is, the flow passage cross-sectional area of the first shaft oil passage 93A is the flow of the plurality of first radial oil passages 93B and bearing lubrication oil passages 364A and 364B branched from the first shaft oil passage 93A. It may be 90% or more and 110% or less of the sum of the road cross-sectional areas. Thereby, pressure fluctuation can be suppressed in each oil passage branched from the first shaft oil passage 93A, and variation in the discharge amount of the oil O can be suppressed. *
  • the first pump unit 340 is driven by the rotation of the first shaft 320a, and the oil O stored in the housing 10 is sucked up by the first pump unit 340, and the first rotor 320, first The stator 330 and the bearings 370 and 371 can be supplied.
  • the oil O stored in the housing 10 can be used to cool the first rotor 320 and the first stator 330, and the lubricity between the bearings 370 and 371 and the shaft main body 321a can be improved.
  • the oil O supplied to the first stator 330 and the bearings 370 and 371 falls in the generator housing portion 314 and is stored again in the lower region of the generator housing portion 314. Thereby, the oil O in the generator accommodating part 314 can be circulated.
  • the motor 2 of this embodiment includes a housing 10, a second rotor 20 having a second shaft 20 a disposed along a second rotation axis J ⁇ b> 2 extending in one direction, and rotation.
  • the detection part 80, the 2nd stator 30, the 2nd pump part 40, and the bearings 70 and 71 are provided.
  • the second rotation axis J2 extends in the left-right direction in FIG. That is, in this embodiment, the left-right direction in FIG. 4 corresponds to one direction.
  • a direction parallel to the axial direction of the second rotation axis J ⁇ b> 2 is simply referred to as “axial direction”
  • a radial direction around the second rotation axis J ⁇ b> 2 is simply referred to as “radial direction”.
  • the circumferential direction around the second rotation axis J2 is simply referred to as “circumferential direction”.
  • the left side of FIG. 4 in the axial direction is referred to as “one axial side”
  • the right side of FIG. 4 in the axial direction is referred to as “the other axial side”. *
  • the housing 10 includes a motor housing main body portion 11, an inner lid portion 12, and an outer lid portion 13.
  • the motor housing main body 11, the inner lid 12, and the outer lid 13 are separate members.
  • the motor housing main body 11 has a bottomed cylindrical shape that opens to one side in the axial direction.
  • the motor housing body 11 has a bottom 11a, a body cylinder 11b, and a bearing holding part 11c.
  • the bottom portion 11a has an annular plate shape that expands in the radial direction.
  • the main body cylinder portion 11b has a cylindrical shape extending from the radially outer edge portion of the bottom portion 11a to one side in the axial direction.
  • the bearing holding portion 11c has a cylindrical shape protruding from the inner edge portion of the bottom portion 11a to one side in the axial direction.
  • the bearing holding portion 11c holds the bearing 71 on the inner peripheral surface. *
  • the inner lid part 12 is attached to one side in the axial direction of the motor housing main body part 11.
  • the inner lid portion 12 includes an annular plate portion 12a, an outer cylinder portion 12b, an inner cylinder portion 12c, an inner cylinder bottom portion 12d, and a bearing holding portion 12e.
  • the annular plate portion 12a has an annular plate shape that extends in the radial direction.
  • the annular plate portion 12 a covers one axial side of the second stator 30. That is, the inner lid portion 12 covers one side of the second stator 30 in the axial direction.
  • the outer cylinder part 12b is a cylindrical shape extended from the radial direction outer edge part of the annular plate part 12a to the other side of an axial direction.
  • the end portion on the other side in the axial direction of the outer tube portion 12b is fixed in contact with the end portion on the one side in the axial direction of the main body tube portion 11b.
  • the inner cylinder portion 12c has a cylindrical shape extending from the radially inner edge of the annular plate portion 12a to the other side in the axial direction.
  • the inner cylinder bottom portion 12d has an annular shape that extends radially inward from the other axial end of the inner cylinder portion 12c.
  • the inner lid portion 12 is provided with a second recess 12g that is recessed from the surface on the one axial side of the inner lid portion 12 to the other axial side. That is, the inner lid part 12 has the 2nd recessed part 12g.
  • the surface on the one side in the axial direction of the inner lid portion 12 is the surface on the one side in the axial direction of the annular plate portion 12a.
  • the inner side surface of the second recess 12g includes a radially inner side surface of the inner cylinder portion 12c and a surface on one axial side of the inner cylinder bottom portion 12d.
  • the bearing holding portion 12e has a cylindrical shape that protrudes from the surface on the other axial side of the inner cylinder bottom portion 12d to the other axial side.
  • the bearing holding part 12e holds the bearing 70 on the inner peripheral surface. That is, the inner lid portion 12 holds the bearing 70.
  • a motor housing 14 surrounded by the motor housing main body 11 and the inner lid 12 is configured. That is, the housing 10 has a motor housing portion 14. A motor chamber 19 ⁇ / b> A (see FIG. 1) is configured inside the motor housing portion 14. The motor housing portion 14 houses the second rotor 20 and the second stator 30. *
  • the outer lid portion 13 is attached to one side in the axial direction of the inner lid portion 12.
  • the outer lid portion 13 includes an outer lid main body portion 13a and a plug body portion 13b.
  • the outer lid body 13a expands in the radial direction.
  • the outer lid main body portion 13a includes a lid plate portion 13c and a protruding portion 13d.
  • the lid plate portion 13c has a disk shape that expands in the radial direction.
  • the radially outer edge portion of the lid plate portion 13c is fixed to the radially outer edge portion of the annular plate portion 12a.
  • the surface on the other side in the axial direction of the cover plate portion 13c is in contact with the surface on the one side in the axial direction of the annular plate portion 12a.
  • the protruding portion 13d protrudes from the center portion of the lid plate portion 13c to the other side in the axial direction.
  • the protruding portion 13d is inserted into the inner cylinder portion 12c from one side in the axial direction.
  • the protruding portion 13d is disposed at an interval on one side in the axial direction of the inner cylinder bottom portion 12d.
  • the outer lid main body 13a has a first recess 13e and a second through hole 13f.
  • the first recess 13e is recessed from the surface on one side in the axial direction of the outer lid main body 13a to the other side in the axial direction.
  • the 1st recessed part 13e is provided in the center part of the outer cover main-body part 13a, and is provided ranging over the cover board part 13c and the protrusion part 13d.
  • the second through hole 13f penetrates from the bottom surface of the first recess 13e to the other surface in the axial direction of the protrusion 13d. That is, the second through hole 13f penetrates from the bottom surface of the first recess 13e to the inside of the housing 10.
  • the second through hole 13f opens inside the second recess 12g. Thereby, the second through hole 13f connects the inside of the first recess 13e and the inside of the second recess 12g.
  • the second rotation axis J2 passes through the second through hole 13f.
  • the plug body portion 13b is fitted into the first recess 13e and is fixed to the outer lid main body portion 13a.
  • the plug part 13b closes the opening on the one axial side of the first recess 13e.
  • the plug part 13b covers one side in the axial direction of the second shaft 20a. That is, the outer lid portion 13 covers one axial side of the second shaft 20a.
  • the plug body portion 13b has a flange portion 13g that protrudes radially outward at an end portion on one axial side.
  • the flange portion 13g contacts the surface on one side in the axial direction of the lid plate portion 13c. Thereby, the plug part 13b can be positioned in an axial direction.
  • a pump chamber 46 is provided in the outer lid portion 13.
  • the pump chamber 46 is provided between the axial direction other side surface of the plug part 13b and the bottom surface of the first recess 13e.
  • the surface on the other axial side of the pump chamber 46 is the bottom surface of the first recess 13e.
  • the surface on the one axial side of the pump chamber 46 is the surface on the other axial side of the plug body portion 13b.
  • the pump chamber 46 is an end on the other side in the axial direction of the inside of the first recess 13e.
  • the pump chamber 46 is disposed on the radially inner side of the inner cylinder portion 12c, that is, inside the second recess 12g.
  • the second rotation axis J2 passes through the pump chamber 46.
  • the outer shape of the pump chamber 46 is circular when viewed in the axial direction.
  • the pump chamber 46 accommodates an internal gear 43 and an external gear 42 which will be described later. *
  • the housing 10 includes an in-lid oil passage 61 and a second suction oil passage 96.
  • the in-lid oil passage 61 is provided in the outer lid portion 13. More specifically, the in-lid oil passage 61 is provided in the plug body portion 13b. Therefore, the configuration of the in-lid oil passage 61 can be easily changed by replacing the plug body portion 13b.
  • the in-lid oil passage 61 is disposed on one axial side of the pump chamber 46.
  • the oil passage 61 in the lid connects the upper end portion of the pump chamber 46 and the central portion of the pump chamber 46 on one axial side of the pump chamber 46. A portion connected to the pump chamber 46 in the oil passage 61 in the lid opens on the surface on the other axial side of the plug body portion 13b.
  • An upper end portion connected to the in-lid oil passage 61 in the pump chamber 46 is a discharge port 45. That is, the in-lid oil passage 61 is connected to the discharge port 45.
  • a central portion connected to the in-lid oil passage 61 in the pump chamber 46 is a connection port 61a. As shown in FIG. 5, the discharge port 45 and the connection port 61a are, for example, circular. The discharge port 45 is disposed above the connection port 61a. The second rotation axis J2 passes through the connection port 61a. *
  • the second rotor 20 includes a second shaft 20 a, a rotor core 22, a magnet 23, a first end plate 24, and a second end plate 25.
  • the second shaft 20 a includes a motor shaft main body 21 and an attachment member 50.
  • the motor shaft body 21 has a cylindrical shape extending in the axial direction.
  • the motor shaft main body 21 has a large diameter portion 21a, a first medium diameter portion 21b, a second medium diameter portion 21c, a small diameter portion 21d, and an output portion 21e. *
  • the large diameter portion 21a is a portion to which the rotor core 22 is attached.
  • a male screw portion is provided on the outer peripheral surface of the end portion on one axial side of the large diameter portion 21a.
  • a nut 88 is fastened to the male screw portion of the large diameter portion 21a.
  • the first medium diameter portion 21b is connected to the large diameter portion 21a on one axial side of the large diameter portion 21a.
  • the outer diameter of the first medium diameter portion 21b is smaller than the outer diameter of the large diameter portion 21a.
  • the end portion on the other axial side of the first medium diameter portion 21b is rotatably supported by the bearing 70. *
  • the second medium diameter portion 21c is connected to the large diameter portion 21a on the other axial side of the large diameter portion 21a.
  • the outer diameter of the second medium diameter portion 21c is smaller than the outer diameter of the large diameter portion 21a.
  • the end portion on the one axial side of the second medium diameter portion 21c is rotatably supported by the bearing 71.
  • the bearings 70 and 71 rotatably support the second shaft 20a.
  • the bearings 70 and 71 are ball bearings, for example. *
  • the small diameter portion 21d is connected to the first medium diameter portion 21b on one axial side of the first medium diameter portion 21b.
  • An end portion on one side in the axial direction of the small diameter portion 21 d is an end portion on one side in the axial direction of the motor shaft main body 21.
  • the end portion on one side in the axial direction of the small diameter portion 21d is disposed on the radially inner side of the inner cylinder portion 12c.
  • the outer diameter of the small diameter portion 21d is smaller than the outer diameter of the first medium diameter portion 21b. That is, the small diameter portion 21d is a portion whose outer diameter decreases toward one side in the axial direction.
  • the output part 21e is connected to the second medium diameter part 21c on the other axial side of the second medium diameter part 21c.
  • the output portion 21e is an end portion on the other side in the axial direction of the motor shaft main body 21.
  • the outer diameter of the output part 21e is smaller than the outer diameter of the small diameter part 21d.
  • the output portion 21e protrudes outside the housing 10 through the bottom portion 11a in the axial direction.
  • the motor shaft main body 21 has a flange portion 21f.
  • the flange portion 21f protrudes radially outward from the outer peripheral surface of the large diameter portion 21a.
  • the flange portion 21f has an annular plate shape that is provided over the circumference of the outer peripheral surface of the large diameter portion 21a.
  • the flange portion 21f is provided at the end portion on the other axial side of the large diameter portion 21a.
  • the motor shaft main body 21 has a hole 21g extending from the end on one side in the axial direction of the motor shaft main body 21 to the other side in the axial direction.
  • the hole 21g is a bottomed hole that opens to one side in the axial direction. That is, the end on the other axial side of the hole 21g is closed.
  • the attachment member 50 is fixed to one side in the axial direction of the motor shaft main body 21.
  • the attachment member 50 is fitted into the hole 21g and fixed.
  • the attachment member 50 has a cylindrical shape that opens on both sides in the axial direction.
  • the attachment member 50 has a cylindrical shape centered on the second rotation axis J2.
  • the attachment member 50 extends to one side in the axial direction from the motor shaft main body 21 and passes through the second through hole 13f. *
  • the attachment member 50 includes a fitting part 51 and a fixing part 52.
  • the fitting part 51 is a part fitted in the hole part 21g.
  • the fitting portion 51 is fixed to the inner peripheral surface of the end portion on one side in the axial direction of the hole portion 21g, and extends from the inside of the hole portion 21g to one side in the axial direction than the motor shaft main body 21.
  • One end of the fitting part 51 in the axial direction is inserted into the second through hole 13f. That is, at least a part of the fitting portion 51 is inserted into the second through hole 13f. Therefore, the radial gap between the outer peripheral surface of the mounting member 50 and the inner peripheral surface of the second through hole 13f can be increased. Thereby, even if it is a case where the position of the attachment member 50 shifts
  • the fixing part 52 is located on one side in the axial direction of the fitting part 51.
  • the fixing portion 52 is connected to the end portion on one side in the axial direction of the fitting portion 51.
  • the outer diameter of the fixing portion 52 is larger than the outer diameter of the fitting portion 51 and smaller than the inner diameter of the second through hole 13f.
  • the fixing portion 52 is inserted into the pump chamber 46.
  • the inner diameter of the fitting part 51 and the inner diameter of the fixed part 52 are, for example, the same. *
  • an external gear 42 described later is fixed to the attachment member 50.
  • the external gear 42 is fixed to the radially outer surface of the fixing portion 52. More specifically, the fixing portion 52 is fitted and fixed in a fixing hole portion 42b that penetrates the external gear 42 in the axial direction.
  • the fitting portion 51 having an outer diameter smaller than that of the fixing portion 52 is fitted into the hole portion 21g, and the external gear 42 is attached to the fixing portion 52 having an outer diameter larger than that of the fitting portion 51. Fix it. Therefore, the inner diameter of the hole portion 21g can be made smaller than the inner diameter of the fixed hole portion 42b of the external gear 42. Thereby, it is easy to make the internal diameter of the hole 21g comparatively small, and it can suppress that the rigidity of the motor shaft main body 21 falls.
  • the second shaft 20a has a second in-shaft oil passage 97A provided inside the second shaft 20a.
  • the second shaft oil passage 97A is a bottomed hole that extends from the end on the one axial side of the second shaft 20a so as to be recessed toward the other axial side.
  • the second in-shaft oil passage 97A opens to one axial side.
  • the second shaft oil passage 97 ⁇ / b> A extends from one end of the mounting member 50 in the axial direction to the other end of the second medium diameter portion 21 c in the axial direction. It is provided across.
  • the second in-shaft oil passage 97A is configured by connecting the inside of the attachment member 50 and the hole 21g in the axial direction. That is, the radially inner side surface of the mounting member 50 constitutes a part of the radially inner side surface of the second shaft oil passage 97A.
  • the inner edge of the second shaft oil passage 97A has a circular shape with the second rotation axis J2 as the center in the cross section orthogonal to the axial direction.
  • the inner diameter of the portion provided in the mounting member 50 in the second shaft oil passage 97A is smaller than the inner diameter of the portion provided in the motor shaft main body 21 in the second shaft oil passage 97A. That is, the inner diameter of the mounting member 50 is smaller than the inner diameter of the hole 21g.
  • the opening on one side in the axial direction of the mounting member 50 is connected to the connection port 61 a, whereby the second shaft oil passage 97 ⁇ / b> A is connected to the lid oil passage 61 through the inside of the attachment member 50.
  • the second shaft oil passage 97 ⁇ / b> A opens into the lid oil passage 61 at the end on one axial side of the second shaft 20 a.
  • the second shaft 20a has first through holes 26a to 26d that connect the second in-shaft oil passage 97A and the outer peripheral surface of the second shaft 20a.
  • the first through holes 26a to 26d function as the second radial oil passage 97B.
  • the first through holes 26a to 26d extend in the radial direction.
  • the first through holes 26a and 26b are provided in the large diameter portion 21a.
  • the first through holes 26a and 26b are disposed between the nut 88 and the flange portion 21f in the axial direction.
  • the radially outer end of the first through hole 26 a opens in the axial gap 27 a between the first end plate 24 and the rotor core 22.
  • the radially outer end of the first through hole 26 b opens in the axial gap 27 b between the second end plate 25 and the rotor core 22.
  • the first through hole 26c is provided in the first medium diameter portion 21b.
  • the radially outer end of the first through hole 26c opens on the radially inner side of the bearing holding portion 12e on one axial side of the bearing 70.
  • the first through hole 26d is provided in the second medium diameter portion 21c.
  • the radially outer end of the first through hole 26d opens on the radially inner side of the bearing holding portion 11c on the other axial side of the bearing 71.
  • a plurality of first through holes 26a to 26d are provided along the circumferential direction. *
  • the rotor core 22 has an annular shape fixed to the motor shaft main body 21.
  • the rotor core 22 is fitted into the large diameter portion 21a.
  • the rotor core 22 has a magnet insertion hole 22b that penetrates the rotor core 22 in the axial direction.
  • a plurality of magnet insertion holes 22b are provided along the circumferential direction.
  • the magnet 23 is inserted into the magnet insertion hole 22b.
  • the first end plate 24 and the second end plate 25 have an annular plate shape that expands in the radial direction.
  • a large diameter portion 21 a is passed through the first end plate 24 and the second end plate 25.
  • the first end plate 24 and the second end plate 25 sandwich the rotor core 22 in the axial direction while being in contact with the rotor core 22.
  • the first end plate 24 is disposed on one axial side of the rotor core 22.
  • the radially outer edge portion of the first end plate 24 protrudes to the other side in the axial direction, and contacts the radially outer edge portion of the surface on the one axial side of the rotor core 22.
  • the radially outer edge of the first end plate 24 overlaps with the opening on one axial side of the magnet insertion hole 22b in the axial direction, and presses the magnet 23 inserted into the magnet insertion hole 22b from one axial side.
  • a portion radially inward from the radially outer edge portion of the first end plate 24 faces the surface on one side in the axial direction of the rotor core 22 in the axial direction through a gap 27a.
  • the first end plate 24 has an ejection groove 24 a that is recessed from the surface on one side in the axial direction of the first end plate 24 toward the other side in the axial direction.
  • the ejection groove 24a extends in the radial direction.
  • the radially inner end of the ejection groove 24a penetrates the first end plate 24 in the axial direction and is connected to the gap 27a.
  • the radially outer end of the ejection groove 24a opens to the radially outer side of the first end plate 24, and opposes a coil 32, which will be described later, with a gap in the radial direction.
  • the opening on the one axial side in the radially inner portion of the ejection groove 24a is closed by a washer 89 that is sandwiched and fixed between the nut 88 and the first end plate 24 in the axial direction.
  • the washer 89 has an annular plate shape that expands in the radial direction.
  • the second end plate 25 is disposed on the other axial side of the rotor core 22.
  • the radially outer edge portion of the second end plate 25 projects to one side in the axial direction and contacts the radially outer edge portion of the surface on the other axial side of the rotor core 22.
  • the radially outer edge of the second end plate 25 overlaps the opening on the other axial side of the magnet insertion hole 22b in the axial direction, and presses the magnet 23 inserted into the magnet insertion hole 22b from the other axial side.
  • the magnet 23 inserted into the magnet insertion hole 22b is pressed by the first end plate 24 and the second end plate 25 on both sides in the axial direction. Therefore, the magnet 23 can be prevented from coming out of the magnet insertion hole 22b.
  • the radially inner portion of the second end plate 25 is radially opposed to the surface on the other axial side of the rotor core 22 via the gap 27b.
  • the second end plate 25 has an ejection groove 25 a that is recessed from the surface on the other axial side of the second end plate 25 to the one axial side.
  • the ejection groove 25a extends in the radial direction.
  • the radially inner end of the ejection groove 25a penetrates the second end plate 25 in the axial direction and is connected to the gap 27b.
  • the radially outer end of the ejection groove 25a opens to the radially outer side of the second end plate 25, and opposes the coil 32, which will be described later, with a gap in the radial direction.
  • the opening on the other side in the axial direction in the radially inner portion of the ejection groove 25a is closed by the flange portion 21f. *
  • the first end plate 24, the rotor core 22, and the second end plate 25 are sandwiched in the axial direction by the nut 88, the washer 89, and the flange portion 21f.
  • the nut 88 presses the first end plate 24, the rotor core 22, and the second end plate 25 against the flange portion 21 f via the washer 89.
  • the 1st end plate 24, the rotor core 22, and the 2nd end plate 25 are fixed to the 2nd shaft 20a.
  • the rotation detector 80 shown in FIG. 4 detects the rotation of the second rotor 20.
  • the rotation detection unit 80 is, for example, a VR (Variable Reluctance) type resolver.
  • the rotation detector 80 is disposed on the radially inner side of the inner cylinder portion 12c.
  • the rotation detection unit 80 includes a detected unit 81 and a sensor unit 82. *
  • the detected part 81 has an annular shape extending in the circumferential direction.
  • the detected part 81 is fitted and fixed to the second shaft 20a. More specifically, the detected portion 81 is fitted and fixed to the small diameter portion 21d.
  • the surface on the other axial side of the radially inner edge of the detected portion 81 is in contact with the step between the first medium diameter portion 21b and the small diameter portion 21d.
  • the detected portion 81 overlaps the mounting member 50 in the radial direction. Therefore, the second shaft 20a can be easily downsized in the axial direction as compared to the case where the detected portion 81 and the attachment member 50 are arranged in the axial direction without overlapping in the radial direction.
  • the detected part 81 is made of a magnetic material. *
  • the sensor portion 82 is disposed between the inner lid portion 12 and the outer lid portion 13 in the axial direction. More specifically, the sensor part 82 is fixed to the surface on the one axial side of the inner cylinder bottom part 12d on the radially inner side of the inner cylinder part 12c. That is, the sensor unit 82 is attached to the inner lid unit 12. Therefore, it is easy to attach the sensor unit 82.
  • the sensor part 82 is arrange
  • the sensor unit 82 has an annular shape that surrounds the radially outer side of the detected portion 81.
  • the sensor unit 82 has a plurality of coils along the circumferential direction.
  • an induced voltage corresponding to the circumferential position of the detected portion 81 is generated in the coil of the sensor portion 82.
  • the sensor unit 82 detects the rotation of the detected unit 81 by detecting the induced voltage.
  • the rotation detection unit 80 detects the rotation of the second rotor 20 by detecting the rotation of the second shaft 20a.
  • the second stator 30 faces the second rotor 20 via a gap in the radial direction.
  • the second stator 30 has a stator core 31 and a plurality of coils 32 attached to the stator core 31.
  • the stator core 31 has an annular shape around the second rotation axis J2.
  • the outer peripheral surface of the stator core 31 is fixed to the inner peripheral surface of the main body cylinder portion 11b.
  • the stator core 31 is opposed to the outer side in the radial direction of the rotor core 22 via a gap. *
  • the second pump part 40 is provided in the center part of the outer lid part 13.
  • the 2nd pump part 40 is arrange
  • the second pump unit 40 includes an external gear 42, an internal gear 43, the above-described pump chamber 46, a suction port 44, a discharge port 45, and a storage unit 48.
  • the external gear 42 is a gear that can rotate around the second rotation axis J2.
  • the external gear 42 is fixed to the end portion on one side in the axial direction of the second shaft 20a. More specifically, the external gear 42 is fixed to the outer peripheral surface of the fixing portion 52. Therefore, the external gear 42 can be fixed to the motor shaft main body 21 via the mounting member 50. Thereby, the external gear 42 can be fixed to the motor shaft main body 21 without changing the dimensions of the motor shaft main body 21 and the external gear 42 by adjusting the dimensions of the mounting member 50.
  • the external gear 42 is accommodated in the pump chamber 46. As shown in FIG. 5, the external gear 42 has a plurality of tooth portions 42a on the outer peripheral surface.
  • the tooth profile of the tooth portion 42a of the external gear 42 is a trochoidal tooth profile.
  • the internal gear 43 is an annular gear that is rotatable around an eccentric rotation axis Jt that is eccentric with respect to the second rotation axis J2.
  • the internal gear 43 is accommodated in the pump chamber 46.
  • the internal gear 43 surrounds the radially outer side of the external gear 42 and meshes with the external gear 42.
  • the internal gear 43 has a plurality of tooth portions 43a on the inner peripheral surface.
  • the tooth profile of the tooth portion 43a of the internal gear 43 is a trochoidal tooth profile.
  • the opening on the one axial side of the first recess 13e is closed by the plug portion 13b.
  • the pump chamber 46 can be configured, and the internal gear 43 and the external gear 42 can be accommodated in the pump chamber 46. Therefore, the assembly of the 2nd pump part 40 can be made easy.
  • the suction port 44 is connected to the second suction oil passage 96. As shown in FIG. 4, the suction port 44 opens to the other axial side of the pump chamber 46. The suction port 44 is connected to a gap between the external gear 42 and the internal gear 43. The suction port 44 can suck the oil O through the second suction oil passage 96 into the pump chamber 46, more specifically, into the gap between the external gear 42 and the internal gear 43. As shown in FIG. 5, the suction port 44 is disposed above the lower end portion of the storage portion 48 and above the lower end portion of the external gear 42. *
  • the discharge port 45 is connected to the in-lid oil passage 61. As shown in FIG. 4, the discharge port 45 opens on one axial side of the pump chamber 46. The discharge port 45 is connected to a gap between the external gear 42 and the internal gear 43. The discharge port 45 can discharge the oil O from the inside of the pump chamber 46, more specifically, from the gap between the external gear 42 and the internal gear 43. *
  • the reservoir 48 is connected to the pump chamber 46 on one axial side of the lower region in the vertical direction of the pump chamber 46.
  • the shape of the storage portion 48 in the axial direction is a bow shape that protrudes downward. Part of the oil O sucked into the pump chamber 46 from the suction port 44 flows into the storage portion 48.
  • the oil O that has flowed into the second shaft oil passage 97A receives a force radially outward due to the centrifugal force of the rotating second shaft 20a, and the first through holes 26a to 26a. It flows out of the second shaft 20a through 26d (that is, the second radial oil passage 97B).
  • the oil O flowing out of the first through hole 26a flows into the gap 27a.
  • the oil O which flowed into the clearance gap 27a is ejected toward the radial direction outer side from the ejection groove 24a.
  • the opening on the one axial side in the radially inner portion of the ejection groove 24 a is closed by the washer 89, so that the oil O that has flowed into the ejection groove 24 a is guided radially outward by the washer 89. It's easy to do.
  • the oil O flowing out of the first through hole 26b flows into the gap 27b.
  • the oil O which flowed into the clearance gap 27b is ejected toward the radial direction outer side from the ejection groove 25a.
  • the opening on the other axial side in the radially inner portion of the ejection groove 25a is closed by the flange portion 21f, so the oil O that has flowed into the ejection groove 25a is directed radially outward by the flange portion 21f. Easy to guide. *
  • Oil O ejected radially outward from the ejection grooves 24 a and 25 a is sprayed to the coil 32. Thereby, the coil 32 can be cooled by the oil O.
  • the second shaft oil passage 97A is provided inside the second shaft 20a, the second rotor 20 is cooled by the oil O until it is ejected from the ejection grooves 24a and 25a. You can also.
  • the oil O discharged from the discharge port 45 in the present embodiment is guided to the second rotor 20 and the second stator 30. *
  • the oil O flowing out of the first through hole 26c is supplied to the bearing 70. Since the first through hole 26d opens to the inside of the bearing holding portion 11c in the radial direction, the oil O flowing out of the first through hole 26d is supplied to the bearing 71. Thereby, the oil O can be used as a lubricant for the bearings 70 and 71.
  • FIG. 6 shows an example in which the oil O is ejected upward from the ejection grooves 24a and 25a
  • the present invention is not limited to this. Since the second rotor 20 rotates, the circumferential positions of the ejection grooves 24 a and 25 a change with the rotation of the second rotor 20. Thereby, the direction of the oil O ejected from the ejection grooves 24a and 25a changes in the circumferential direction, and the plurality of coils 32 arranged along the circumferential direction can be cooled by the oil O.
  • the second pump unit 40 can be driven by the rotation of the second shaft 20a, and the second rotor 20 is configured to suck up the oil O stored in the housing 10 by the second pump unit 40.
  • the second stator 30 and the bearings 70 and 71 can be supplied. Accordingly, the second rotor 20 and the second stator 30 can be cooled using the oil O stored in the housing 10, and the lubricity between the bearings 70 and 71 and the motor shaft main body 21 can be improved. Can be improved. *
  • the oil O discharged from the discharge port 45 can be sent to the inside of the second shaft 20a by providing the in-lid oil passage 61 and the second shaft oil passage 97A. Further, since the first through holes 26a to 26d are provided, the oil O that has flowed into the second shaft oil passage 97A can be supplied to the second stator 30 and the bearings 70 and 71. *
  • the second in-shaft oil passage 97 ⁇ / b> A provided in the second shaft 20 a is a lid that is connected to the discharge port 45 at the end on the one axial side of the second shaft 20 a. Open to the inner oil passage 61. Since the external gear 42 is fixed to the end portion on the one axial side of the second shaft 20a, the end portion on the one axial side of the second shaft 20a is relatively close to the discharge port 45. Be placed. Therefore, the length of the in-lid oil passage 61 that connects the discharge port 45 and the second in-shaft oil passage 97A can be shortened. *
  • the radially inner side surface of the attachment member 50 constitutes a part of the radially inner side surface of the second shaft oil passage 97A. Therefore, the oil O can be caused to flow from the mounting member 50 into the second shaft oil passage 97 ⁇ / b> A while fixing the external gear 42 to the mounting member 50.
  • the motor shaft main body 21 and the external gear 42 can be fixed via the mounting member 50 without changing the dimensions of the motor shaft main body 21 and the external gear 42, and the second It is easy to open the oil passage 97A in the shaft to the oil passage 61 in the lid.
  • the present invention is not limited to the above-described embodiment, and other configurations can be employed.
  • the external gear 42 may be directly fixed to the motor shaft main body 21 without using the attachment member 50.
  • the second in-shaft oil passage 97 ⁇ / b> A may be provided only inside the motor shaft main body 21, for example.
  • the attachment member 50 may be fixed to the outer peripheral surface of the motor shaft main body 21.
  • the attachment member 50 may be a member having a uniform outer diameter over the entire axial direction. That is, the outer diameter of the fitting part 51 and the outer diameter of the fixing part 52 may be the same. In this case, for example, if the outer diameter of the fixing portion 52 is made the same as the outer diameter of the fitting portion 51 shown in FIG. 4, the outer diameter of the external gear 42 to which the fixing portion 52 is fixed can be reduced. is there. Thereby, the outer diameter of the internal gear 43 can be reduced, and the inner diameter of the pump chamber 46 can be reduced. Therefore, the outer diameter of the protrusion 13d provided with the pump chamber 46 can be reduced, and the distance between the radial outer surface of the protrusion 13d and the inner peripheral surface of the second recess 12g can be increased.
  • the sensor unit 82 can be brought closer to the outer lid unit 13. Thereby, it is easy to miniaturize the entire motor 2 in the axial direction.
  • the part which protrudes in the axial direction one side among the sensor parts 82 is a coil which the sensor part 82 has, for example.
  • the attachment member 50 may be comprised by two or more members.
  • the attachment member 50 includes a first tubular member fitted into the hole portion 21g, and a second tubular member fitted to the first tubular member and extending to one side in the axial direction from the motor shaft main body 21. You may have.
  • the external gear 42 is fixed to the end portion on the one axial side of the second cylindrical member.
  • the portion of the attachment member 50 that is passed through the second through hole 13 f is the fitting portion 51 having an outer diameter smaller than that of the fixing portion 52.
  • the inner diameter of the second through hole 13f is made smaller than the outer diameter of the fixed portion 52, and the radial gap between the outer peripheral surface of the mounting member 50 and the inner peripheral surface of the second through hole 13f is made relatively small.
  • the assembler inserts the fitting portion 51 into the second through hole 13f from the left opening of the first recess 13e after attaching the outer lid portion 13 to the inner lid portion 12,
  • the mounting member 50 is fixed to the motor shaft main body 21 by being fitted into the hole 21 g of the motor shaft main body 21.
  • the radially inner end portion of the closing portion that closes the opening on the other axial side of the pump chamber 46 can be disposed more radially inward.
  • the closing portion that closes the opening on the other axial side of the pump chamber 46 is a portion on the radially outer side of the second through hole 13f in the protruding portion 13d. Since the radially inner end of the closed portion can be arranged more radially inward, the other axial direction of the pump chamber 46 can be reduced by the closed portion even if the outer diameter of the external gear 42 and the outer diameter of the internal gear 43 are made smaller.
  • the side opening can be suitably closed. Therefore, the inner diameter of the pump chamber 46 can be reduced.
  • a part of the sensor portion 82 can be disposed between the radial outer surface of the protruding portion 13d and the inner peripheral surface of the second recess 12g.
  • the motor 2 It is easy to reduce the size in the axial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

One embodiment of a motor unit according to the present invention is provided with an electric power generator including a first shaft which rotates by means of a motive force of an engine, a motor having a second shaft, a housing, oil which accumulates in a lower region of an accommodating portion, and a first pump portion which is positioned inside the accommodating portion and which is driven by means of the rotation of the first shaft. An oil passage includes a first oil passage. The first oil passage includes a first sucking-up oil passage connected from the lower region of the accommodating portion to the first pump portion, a first shaft inner oil passage which is connected to a discharge port of the first pump portion and extends inside the first shaft along a first axis of rotation, a first radial oil passage which extends from the first shaft inner oil passage to a radially outer side to supply oil to a first stator, and a motor supply oil passage which extends from the discharge port of the first pump portion toward the motor to supply oil to the motor.

Description

モータユニットMotor unit
本発明は、モータユニットに関する。 The present invention relates to a motor unit.
近年、ハイブリッド車両の普及が進んでいる。ハイブリッド車両のパワートレインには、走行用のモータ、発電用の発電機および動力を伝達する伝達機構を有するモータユニットに、エンジンが接続されて構成される。ハイブリッド車両の走行時には、モータおよび発電機が発熱して高温となる。特許文献1には、モータと発電機と共通の冷却装置により冷却する構造が記載されている。 In recent years, the spread of hybrid vehicles has progressed. The power train of a hybrid vehicle is configured by connecting an engine to a motor unit having a traveling motor, a generator for power generation, and a transmission mechanism for transmitting power. When the hybrid vehicle travels, the motor and the generator generate heat and become high temperature. Patent Document 1 describes a structure in which a motor and a generator are cooled by a common cooling device.
特開2012-96738号公報JP 2012-96738 A
従来の構造では、モータおよび発電機に冷媒であるオイルを供給するために、モータユニット外部にオイルポンプを設けていた。このため、オイルポンプに別途電力を供給する必要があった。このため、モータユニットの全体構造が複雑化するという問題があった。  In the conventional structure, an oil pump is provided outside the motor unit in order to supply oil as a refrigerant to the motor and the generator. For this reason, it is necessary to separately supply power to the oil pump. For this reason, there existed a problem that the whole structure of a motor unit became complicated. *
本発明の一つの態様は、モータおよび発電機を同時に冷却するとともに全体構造を簡素化できるモータユニットの提供を目的の一つとする。 One aspect of the present invention is to provide a motor unit capable of simultaneously cooling the motor and the generator and simplifying the overall structure.
本発明のモータユニットの一つの態様は、エンジンに接続されるモータユニットであって、前記エンジンの動力により第1の回転軸周りを回転する第1のシャフトを有する発電機と、第2の回転軸周りを回転する第2のシャフトを有するモータと、前記エンジン、前記発電機および前記モータの間で力を伝達し、前記エンジンおよび前記モータの動力を外部に出力する伝達機構と、前記発電機および前記モータを収容する収容部を有するハウジングと、前記収容部の下部領域に溜るオイルと、前記収容部の内部に位置し前記第1のシャフトの回転により駆動される第1のポンプ部と、を備える。前記発電機は、前記第1のシャフトを有する第1のロータと、前記第1の回転軸の径方向外側から前記第1のロータを囲む第1のステータと、を有する。前記モータは、前記第2のシャフトを有する第2のロータと、前記第2の回転軸の径方向外側から前記第2のロータを囲む第2のステータと、を有する。前記収容部には、前記オイルを循環させる油路が設けられる。前記油路の経路中には、前記油路を通過する前記オイルを冷却するクーラーが設けられる。前記油路は、第1の油路を含む。前記第1の油路は、前記収容部の下部領域から前記第1のポンプ部に繋がる第1の吸い上げ油路と、前記第1のポンプ部の吐出口に繋がり前記第1の回転軸に沿って前記第1のシャフトの内部を延びる第1のシャフト内油路と、前記第1のシャフト内油路から径方向外側に延びて前記第1のステータにオイルを供給する第1の径方向油路と、前記第1のポンプ部の吐出口から前記モータに向かって延びて前記モータにオイルを供給するモータ供給油路と、を有する。 One aspect of the motor unit of the present invention is a motor unit connected to an engine, and includes a generator having a first shaft that rotates around a first rotation shaft by the power of the engine, and a second rotation A motor having a second shaft that rotates about an axis; a transmission mechanism that transmits force between the engine, the generator, and the motor; and outputs the power of the engine and the motor to the outside; and the generator And a housing having a housing portion for housing the motor, oil accumulated in a lower region of the housing portion, a first pump portion located inside the housing portion and driven by rotation of the first shaft, Is provided. The generator includes a first rotor having the first shaft, and a first stator surrounding the first rotor from a radially outer side of the first rotating shaft. The motor includes a second rotor having the second shaft, and a second stator that surrounds the second rotor from a radially outer side of the second rotating shaft. The accommodating portion is provided with an oil passage for circulating the oil. A cooler for cooling the oil passing through the oil passage is provided in the passage of the oil passage. The oil passage includes a first oil passage. The first oil passage is connected to a first suction oil passage connected from the lower region of the housing portion to the first pump portion, and a discharge port of the first pump portion, along the first rotation axis. A first in-shaft oil passage extending through the first shaft and a first in-diameter oil extending radially outward from the first in-shaft oil passage and supplying oil to the first stator. And a motor supply oil passage that extends from the discharge port of the first pump unit toward the motor and supplies oil to the motor.
本発明の一つの態様によれば、モータおよび発電機を同時に冷却するとともに全体構造を簡素化できるモータユニットが提供される。 According to one aspect of the present invention, a motor unit capable of simultaneously cooling a motor and a generator and simplifying the entire structure is provided.
図1は、一実施形態のモータユニットを有するパワートレインの概念図である。FIG. 1 is a conceptual diagram of a power train having a motor unit according to an embodiment. 図2は、一実施形態のモータユニットの断面模式図である。FIG. 2 is a schematic cross-sectional view of a motor unit according to an embodiment. 図3は、一実施形態の発電機の断面図である。FIG. 3 is a cross-sectional view of a generator according to an embodiment. 図4は、一実施形態のモータの断面図である。FIG. 4 is a cross-sectional view of a motor according to an embodiment. 図5は、一実施形態の第2のポンプ部を軸方向他方側から視た図である。 Drawing 5 is a figure which looked at the 2nd pump part of one embodiment from the other side in the direction of an axis. 図3は、一実施形態のモータの一部を示す断面図である。FIG. 3 is a cross-sectional view illustrating a part of the motor according to the embodiment.
以下、図面を参照しながら、本発明の実施形態に係るモータユニットについて説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数などを異ならせる場合がある。  Hereinafter, a motor unit according to an embodiment of the present invention will be described with reference to the drawings. The scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention. Moreover, in the following drawings, in order to make each structure easy to understand, the actual structure may be different from the scale or number in each structure. *
以下の説明では、モータユニット8が水平な路面上に位置する車両に搭載された場合の位置関係を基に、重力方向を規定して説明する。 本明細書において、「軸方向に沿って延びる」とは、厳密に軸方向(すなわち、X軸と平行な方向)に延びる場合に加えて、軸方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。本明細書において、「~軸に沿って延びる」とは、所定の軸を中心として、軸方向に延びることを意味する。また、本明細書において、「径方向に延びる」とは、厳密に径方向、すなわち、軸方向に対して垂直な方向に延びる場合に加えて、径方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。  In the following description, the direction of gravity is defined and described based on the positional relationship when the motor unit 8 is mounted on a vehicle located on a horizontal road surface. In this specification, “extending along the axial direction” means not only extending in the axial direction (that is, the direction parallel to the X axis) but also tilting in a range of less than 45 ° with respect to the axial direction. This includes cases extending in the other direction. In this specification, “extending along the axis” means extending in the axial direction around a predetermined axis. Further, in this specification, “extending in the radial direction” means strictly in the range of less than 45 ° with respect to the radial direction in addition to the case of extending in the radial direction, that is, the direction perpendicular to the axial direction. Including the case of extending in an inclined direction. *
各図には、適宜Z軸を示す。各図に示すZ軸方向は、正の側を上側とし、負の側を下側とする鉛直方向Zである。本実施形態では、鉛直方向Zは、各図の上下方向である。以下の説明においては、鉛直方向上側を単に「上側」と呼び、鉛直方向下側を単に「下側」と呼ぶ。  Each figure shows the Z-axis as appropriate. The Z-axis direction shown in each figure is a vertical direction Z in which the positive side is the upper side and the negative side is the lower side. In the present embodiment, the vertical direction Z is the vertical direction of each figure. In the following description, the upper side in the vertical direction is simply referred to as “upper side”, and the lower side in the vertical direction is simply referred to as “lower side”. *
図1は、一実施形態のモータユニット8を有するパワートレイン1の概念図である。図2は、モータユニット8の断面模式図である。  FIG. 1 is a conceptual diagram of a power train 1 having a motor unit 8 according to an embodiment. FIG. 2 is a schematic cross-sectional view of the motor unit 8. *
パワートレイン1は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)など、モータ2とエンジン9とを動力源とする車両に搭載される。  The power train 1 is mounted on a vehicle using the motor 2 and the engine 9 as power sources, such as a hybrid vehicle (HEV) and a plug-in hybrid vehicle (PHV). *
パワートレイン1が搭載された車両(図示略)には、EVモード、シリーズモード、パラレルモードの三種類の走行モードが用意される。これらの走行モードは、図示しない電子制御装置によって、車両状態や走行状態、運転者の要求出力などに応じて択一的に選択される。  For a vehicle (not shown) on which the powertrain 1 is mounted, three types of travel modes are prepared: EV mode, series mode, and parallel mode. These travel modes are alternatively selected by an electronic control unit (not shown) according to the vehicle state, the travel state, the driver's requested output, and the like. *
図1に示すように、パワートレイン1は、モータユニット8とエンジン9とを有する。モータユニット8は、エンジン9に接続される。モータユニット8は、モータ2と、発電機3と、伝達機構(トランスアクスル)4と、ハウジング10と、オイルOと、第1のポンプ部340と、第2のポンプ部40と、クーラー5と、を備える。  As shown in FIG. 1, the powertrain 1 has a motor unit 8 and an engine 9. The motor unit 8 is connected to the engine 9. The motor unit 8 includes a motor 2, a generator 3, a transmission mechanism (transaxle) 4, a housing 10, an oil O, a first pump unit 340, a second pump unit 40, and a cooler 5. . *
ハウジング10は、モータ2、発電機3、伝達機構4、第1のポンプ部340および第2のポンプ部40を収容する収容部19を有する。また、収容部19には、オイルOが貯留される。オイルOは、収容部19の下部領域に貯留される。本明細書において所定の空間の「下部領域」とは、該当する空間の鉛直方向の中心よりも下側に位置する部分を含む。  The housing 10 includes a housing portion 19 that houses the motor 2, the generator 3, the transmission mechanism 4, the first pump portion 340, and the second pump portion 40. In addition, oil O is stored in the accommodating portion 19. The oil O is stored in the lower region of the storage unit 19. In this specification, the “lower region” of a predetermined space includes a portion located below the center in the vertical direction of the corresponding space. *
収容部19は、モータ2を収容するモータ室19Aと、発電機3を収容する発電機室19Bと、伝達機構4を収容するギヤ室19Cと、を含む。モータ室19A、発電機室19Bおよびギヤ室19Cは、隔壁(第1の隔壁18Aおよび第2の隔壁18B)によって互いに区画されている。すなわち、ハウジングには、第1の隔壁(隔壁)18Aおよび第2の隔壁18Bが設けられる。  The accommodating portion 19 includes a motor chamber 19A that accommodates the motor 2, a generator chamber 19B that accommodates the generator 3, and a gear chamber 19C that accommodates the transmission mechanism 4. The motor chamber 19A, the generator chamber 19B, and the gear chamber 19C are partitioned from each other by partition walls (first partition wall 18A and second partition wall 18B). That is, the housing is provided with a first partition (partition) 18A and a second partition 18B. *
本実施形態において、収容部19内のオイルOは、モータ室19Aおよび発電機室19Bにおいて循環する。すなわち、本実施形態において、オイルOは、ギヤ室19Cに流入しない。なお、ギヤ室19C内には、別途ギヤ潤滑用のオイルが貯留されていてもよい。  In the present embodiment, the oil O in the accommodating portion 19 circulates in the motor chamber 19A and the generator chamber 19B. That is, in this embodiment, the oil O does not flow into the gear chamber 19C. Note that gear lubrication oil may be separately stored in the gear chamber 19C. *
発電機室19Bは、モータ室19Aより下側に位置する。すなわち、発電機室19Bは、収容部19において最も下側に位置する。収容部19内のオイルは、発電機室19Bの下部領域に貯留される。本実施形態において、収容部19の下部領域とは、発電機室19Bの下部領域を意味する。  The generator room 19B is located below the motor room 19A. That is, the generator room 19 </ b> B is located on the lowermost side in the housing portion 19. The oil in the accommodating part 19 is stored in the lower region of the generator room 19B. In the present embodiment, the lower region of the accommodating portion 19 means the lower region of the generator room 19B. *
発電機室19Bの下部領域に溜るオイルOの液面高さは、オイルOの循環に伴い上下に変化する。発電機室19Bの下部領域に溜るオイルOの液面の下限高さは、発電機3の第1のステータ330の下端部より上側に位置する。これにより、発電機室19Bの下部領域に溜るオイルOによって、第1のステータ330を冷却することができる。また、発電機室19Bの下部領域に溜るオイルOの液面の上限高さは、発電機3の第1のロータ320の下端部より下側に位置する。これにより、発電機室19Bの下部領域に溜るオイルOが、第1のロータ320の回転の抵抗になることを抑制できる。  The liquid level height of the oil O accumulated in the lower region of the generator chamber 19B changes vertically as the oil O circulates. The lower limit height of the liquid level of the oil O accumulated in the lower region of the generator chamber 19 </ b> B is located above the lower end portion of the first stator 330 of the generator 3. Accordingly, the first stator 330 can be cooled by the oil O accumulated in the lower region of the generator chamber 19B. Further, the upper limit height of the liquid level of the oil O accumulated in the lower region of the generator chamber 19 </ b> B is located below the lower end portion of the first rotor 320 of the generator 3. Thereby, it can suppress that the oil O which accumulates in the lower area | region of the generator chamber 19B becomes resistance of rotation of the 1st rotor 320. *
モータ室19Aと発電機室19Bとは、上下方向において隣接して配置される。モータ室19Aは、発電機室19Bの上側に配置されている。モータ室19Aと発電機室19Bとは、第1の隔壁18Aによって区画されている。後段において説明するように、第1の隔壁18Aには、上下方向に貫通するオイル導入口18aが設けられる。モータ室19Aとギヤ室19Cとは、水平方向において隣接して配置される。モータ室19Aとギヤ室19Cとは、第2の隔壁18Bによって区画されている。  The motor chamber 19A and the generator chamber 19B are disposed adjacent to each other in the vertical direction. The motor chamber 19A is disposed above the generator chamber 19B. The motor chamber 19A and the generator chamber 19B are partitioned by the first partition wall 18A. As will be described later, the first partition wall 18A is provided with an oil introduction port 18a penetrating in the vertical direction. The motor chamber 19A and the gear chamber 19C are disposed adjacent to each other in the horizontal direction. The motor chamber 19A and the gear chamber 19C are partitioned by the second partition wall 18B. *
収容部19には、オイルOを循環させる油路90が設けられる。油路90は、第1の油路91と第2の油路95とを含む。油路90の経路中には、油路90を通過するオイルOを冷却するクーラー5が設けられる。  The accommodating portion 19 is provided with an oil passage 90 through which the oil O is circulated. The oil passage 90 includes a first oil passage 91 and a second oil passage 95. A cooler 5 for cooling the oil O passing through the oil passage 90 is provided in the oil passage 90. *
クーラー5は、第1の油路91の経路中に設けられる。クーラー5は、第1の油路91を通過するオイルOを冷却する。また、後段に説明するように、第1の油路91と第2の油路95とは、収容部19の下部領域において合流する。したがって、クーラー5で冷却された第1の油路91を通過したオイルOは、収容部19の下部領域で第2の油路95を通過したオイルOと混ざり合う。したがって、クーラー5は、油路90中の全てのオイルOを冷却することができる。  The cooler 5 is provided in the path of the first oil path 91. The cooler 5 cools the oil O that passes through the first oil passage 91. Further, as will be described later, the first oil passage 91 and the second oil passage 95 merge in the lower region of the accommodating portion 19. Therefore, the oil O that has passed through the first oil passage 91 cooled by the cooler 5 is mixed with the oil O that has passed through the second oil passage 95 in the lower region of the housing portion 19. Therefore, the cooler 5 can cool all the oil O in the oil passage 90. *
図2に示すように、クーラー5は、ハウジング10の外周面に固定される。本実施形態において、クーラー5は、ハウジング10のうち発電機室19Bを囲む発電機収容本体部311の外周面に固定される。クーラー5は、第1の回転軸J1の径方向と直交する設置面5aを有する。クーラー5は、設置面5aにおいて、ハウジング10の外周面と接触する。設置面5aは、ハウジング10の壁部を介して発電機3と対向する。このため、クーラー5は、ハウジング10の壁部を介して発電機3を冷却することができる。  As shown in FIG. 2, the cooler 5 is fixed to the outer peripheral surface of the housing 10. In the present embodiment, the cooler 5 is fixed to the outer peripheral surface of the generator housing main body 311 surrounding the generator chamber 19 </ b> B in the housing 10. The cooler 5 has an installation surface 5a orthogonal to the radial direction of the first rotation axis J1. The cooler 5 is in contact with the outer peripheral surface of the housing 10 on the installation surface 5a. The installation surface 5 a faces the generator 3 through the wall portion of the housing 10. For this reason, the cooler 5 can cool the generator 3 through the wall portion of the housing 10. *
クーラー5の設置面5aの下端部は、発電機3の第1のロータ320の下端部より下側に位置する。上述したように、発電機室19Bの下部領域に溜るオイルOの液面高さは、第1のロータ320の下側において上下に変化する。本実施形態によれば、クーラー5の設置面5aを介して、発電機室19Bの下部領域に溜るオイルOを冷却して、オイルOを介して発電機3の第1のステータ330を効果的に冷却できる。  The lower end portion of the installation surface 5 a of the cooler 5 is located below the lower end portion of the first rotor 320 of the generator 3. As described above, the liquid level height of the oil O accumulated in the lower region of the generator chamber 19 </ b> B changes up and down on the lower side of the first rotor 320. According to the present embodiment, the oil O accumulated in the lower region of the generator chamber 19B is cooled via the installation surface 5a of the cooler 5, and the first stator 330 of the generator 3 is effectively effective via the oil O. Can be cooled. *
発電機3はモータとしての機能と発電機としての機能とを兼ね備えた電動発電機である。発電機3はエンジン9を始動させる際に電動機(スターター)として機能し、エンジン9の作動時にはエンジン動力で発電を実施する。  The generator 3 is a motor generator having both a function as a motor and a function as a generator. The generator 3 functions as an electric motor (starter) when starting the engine 9, and generates power with engine power when the engine 9 is operated. *
図1に示すように、発電機3は、エンジン9の動力により発電する。発電機3は、第1のロータ320と、第1のロータ320を囲む第1のステータ330と、を有する。  As shown in FIG. 1, the generator 3 generates power using the power of the engine 9. The generator 3 includes a first rotor 320 and a first stator 330 that surrounds the first rotor 320. *
第1のロータ320は、第1の回転軸J1を中心に回転可能である。第1のロータ320は、第1のシャフト320aを有する。すなわち、発電機3は、第1の回転軸J1周りを回転する第1のシャフト320aを有する。第1のシャフト320aの端部には、第1のポンプ部340が設けられる。第1のシャフト320aの他方側の端部は、エンジン9のクランクシャフト(図示略)に接続される。このため、第1のシャフト320aは、エンジン9の動力により回転する。  The first rotor 320 is rotatable about the first rotation axis J1. The first rotor 320 has a first shaft 320a. That is, the generator 3 has a first shaft 320a that rotates around the first rotation axis J1. A first pump unit 340 is provided at the end of the first shaft 320a. The other end of the first shaft 320a is connected to a crankshaft (not shown) of the engine 9. For this reason, the first shaft 320 a is rotated by the power of the engine 9. *
第1のステータ330は、環状である。第1のステータ330は、第1のロータ320を第1の回転軸J1の径方向外側から囲む。  The first stator 330 is annular. The first stator 330 surrounds the first rotor 320 from the outside in the radial direction of the first rotation axis J1. *
第1のポンプ部340は、収容部19の内部に位置する。また、第1のポンプ部340は、発電機3に対して第1の回転軸J1の軸方向一方側に位置する。第1のポンプ部340は、第1のシャフト320aの回転により駆動される。上述したように、第1のシャフト320aは、エンジン9により回転させられる。このため、第1のポンプ部340は、エンジン9により駆動する。本実施形態の第1のポンプ部340は、トロコイダルポンプ
である。 
The first pump unit 340 is located inside the storage unit 19. The first pump unit 340 is located on one axial side of the first rotating shaft J1 with respect to the generator 3. The first pump unit 340 is driven by the rotation of the first shaft 320a. As described above, the first shaft 320 a is rotated by the engine 9. For this reason, the first pump unit 340 is driven by the engine 9. The 1st pump part 340 of this embodiment is a trochoidal pump.
モータ2は、発電機3の上側に位置する。モータ2は、電動機としての機能と発電機としての機能とを兼ね備えた電動発電機である。モータ2は、主に電動機として機能して車両を駆動し、回生時には発電機として機能する。  The motor 2 is located above the generator 3. The motor 2 is a motor generator that has both a function as a motor and a function as a generator. The motor 2 mainly functions as an electric motor to drive the vehicle, and functions as a generator during regeneration. *
モータ2は、第2のロータ20と、第2のステータ30と、を有する。 第2のロータ20は、第2の回転軸J2を中心に回転可能である。第2の回転軸J2は、第1の回転軸J1と平行に延びる。第2のロータ20は、第2のシャフト20aを有する。すなわち、モータ2は、第2の回転軸J2周りを回転する第2のシャフト20aを有する。第2のシャフト20aの一方側の端部には、第2のポンプ部40が設けられる。また、第2のシャフト20aの他方側の端部は、伝達機構4に接続される。モータ2の動力は、伝達機構4を介して外部に出力される。  The motor 2 has a second rotor 20 and a second stator 30. The second rotor 20 can rotate around the second rotation axis J2. The second rotation axis J2 extends in parallel with the first rotation axis J1. The second rotor 20 has a second shaft 20a. That is, the motor 2 has a second shaft 20a that rotates around the second rotation axis J2. A second pump unit 40 is provided at one end of the second shaft 20a. The other end of the second shaft 20 a is connected to the transmission mechanism 4. The power of the motor 2 is output to the outside via the transmission mechanism 4. *
第2のステータ30は、環状である。第2のステータ30は、第2のロータ20を第2の回転軸J2の径方向外側から囲む。  The second stator 30 is annular. The second stator 30 surrounds the second rotor 20 from the outside in the radial direction of the second rotation axis J2. *
第2のポンプ部40は、収容部19の内部に位置する。また、第2のポンプ部40は、モータ2に対して第2の回転軸J2の軸方向一方側に位置する。第2のポンプ部40は、第2のシャフト20aの回転により駆動される。すなわち、第2のポンプ部40は、モータ2により駆動する。本実施形態の第2のポンプ部40は、第1のポンプ部340と同様に、トロコイダルポンプである。  The second pump unit 40 is located inside the storage unit 19. Further, the second pump unit 40 is located on one axial side of the second rotating shaft J2 with respect to the motor 2. The second pump unit 40 is driven by the rotation of the second shaft 20a. That is, the second pump unit 40 is driven by the motor 2. Similar to the first pump unit 340, the second pump unit 40 of the present embodiment is a trochoidal pump. *
伝達機構4は、エンジン9、発電機3およびモータ2間で力を伝達する。伝達機構4は、駆動源と被駆動装置との間の動力伝達を担う複数の機構を内蔵する。伝達機構4はエンジン9およびモータ2の動力を外部に出力する。  The transmission mechanism 4 transmits force between the engine 9, the generator 3 and the motor 2. The transmission mechanism 4 incorporates a plurality of mechanisms responsible for power transmission between the drive source and the driven device. The transmission mechanism 4 outputs the power of the engine 9 and the motor 2 to the outside. *
伝達機構4は、例えば、クラッチ機構(図示略)と、複数のギヤ(図示略)と、デファレンシャルギヤ(図示略)と、出力シャフト(図示略)と、を有する。 伝達機構4は、複数のギヤを介して、エンジン9の動力およびモータ2の動力をそれぞれデファレンシャルギヤに伝達する。 デファレンシャルギヤは、モータ2およびエンジン9から出力されるトルクを車両の車輪に伝達するための装置である。差動装置は、車両の旋回時に、左右の車輪の速度差を吸収しつつ、左右両輪の出力シャフトに同トルクを伝える。 クラッチ機構は、モータ2の動力のみで車両を走行させる場合に、エンジン9の動力伝達経路を切断する。また、クラッチ機構は、モータ2の動力およびエンジン9の動力を両方使って車両を走行させる場合に、エンジン9の動力伝達経路を繋げる。  The transmission mechanism 4 includes, for example, a clutch mechanism (not shown), a plurality of gears (not shown), a differential gear (not shown), and an output shaft (not shown). The transmission mechanism 4 transmits the power of the engine 9 and the power of the motor 2 to the differential gear through a plurality of gears. The differential gear is a device for transmitting torque output from the motor 2 and the engine 9 to the wheels of the vehicle. The differential device transmits the same torque to the output shafts of the left and right wheels while absorbing the speed difference between the left and right wheels when the vehicle turns. The clutch mechanism cuts the power transmission path of the engine 9 when the vehicle is driven only by the power of the motor 2. The clutch mechanism connects the power transmission path of the engine 9 when the vehicle travels using both the power of the motor 2 and the power of the engine 9. *
<油路>



 次に油路90についてより具体的に説明する。上述したように、油路90は、第1の油路91と第2の油路95とを有する。第1の油路91および第2の油路95は、それぞれモータ2および発電機3の両方を冷却する油路である。 
<Oil channel>



Next, the oil passage 90 will be described more specifically. As described above, the oil passage 90 includes the first oil passage 91 and the second oil passage 95. The first oil passage 91 and the second oil passage 95 are oil passages for cooling both the motor 2 and the generator 3, respectively.
(第1の油路)



 第1の油路91は、第1の吸い上げ油路92と、第1のシャフト内油路93Aと、第1の径方向油路93Bと、モータ供給油路94と、を有する。 
(First oil passage)



The first oil passage 91 includes a first suction oil passage 92, a first in-shaft oil passage 93 </ b> A, a first radial oil passage 93 </ b> B, and a motor supply oil passage 94.
第1の吸い上げ油路92は、例えばハウジング10の周壁部の内部に設けられる。第1の吸い上げ油路92は、収容部19の下部領域から第1のポンプ部340に繋がる。上述したようにオイルOは、収容部19の下部領域(より具体的には、発電機室19Bの下部領域)に溜まる。第1の吸い上げ油路92は、上流側の端部において、発電機室19Bの下部領域に開口する。また、第1の吸い上げ油路92は、下流側の端部において、第1のポンプ部340に繋がる。第1の吸い上げ油路92の下流側の端部には、第1のポンプ部340から負圧が付与される。第1の吸い上げ油路92には、収容部19の下部領域から第1のポンプ部340によって吸い上げられたオイルOが流れる。  The first siphoning oil path 92 is provided, for example, inside the peripheral wall portion of the housing 10. The first suction oil passage 92 is connected to the first pump unit 340 from the lower region of the housing unit 19. As described above, the oil O accumulates in the lower region of the accommodating portion 19 (more specifically, the lower region of the generator chamber 19B). The first siphoning oil passage 92 opens in the lower region of the generator chamber 19B at the upstream end. Further, the first suction oil passage 92 is connected to the first pump unit 340 at the downstream end. A negative pressure is applied to the downstream end of the first suction oil passage 92 from the first pump unit 340. The oil O sucked up by the first pump unit 340 flows from the lower region of the housing part 19 through the first suction oil path 92. *
第1の吸い上げ油路92の経路中には、クーラー5が設けられる。クーラー5は、第1の吸い上げ油路92を通過するオイルOを冷却する。  A cooler 5 is provided in the path of the first suction oil path 92. The cooler 5 cools the oil O that passes through the first suction oil passage 92. *
第1のシャフト内油路93Aは、第1の回転軸J1に沿って第1のシャフト320aの内部を延びる。後段において説明するように、第1のシャフト320aは、中空シャフトである。第1のシャフト内油路93Aは、第1のシャフト320aの中空部分に設けられた油路である。第1のシャフト320aの中空部分は、第1の回転軸J1の軸方向の一方側に開口する。また、第1のシャフト内油路93Aは、軸方向他方側の他方側において閉塞する。第1のシャフト320aの中空部分の開口は、第1のシャフト内油路93Aの上流側の端部に位置する。第1のシャフト320aの中空部分の開口は、第1のポンプ部340の吐出口345に繋がる。オイルOは、第1のシャフト内油路93Aの軸方向一方側から他方側に向かって流れる。  The first in-shaft oil passage 93A extends inside the first shaft 320a along the first rotation axis J1. As will be described later, the first shaft 320a is a hollow shaft. The first shaft oil passage 93A is an oil passage provided in a hollow portion of the first shaft 320a. The hollow portion of the first shaft 320a opens on one side in the axial direction of the first rotation axis J1. The first in-shaft oil passage 93A is closed on the other side in the other axial direction. The opening of the hollow portion of the first shaft 320a is located at the upstream end of the first shaft oil passage 93A. The opening of the hollow portion of the first shaft 320 a is connected to the discharge port 345 of the first pump unit 340. The oil O flows from one axial side of the first in-shaft oil passage 93A toward the other side. *
第1の径方向油路93Bは、第1のシャフト内油路93Aに繋がる。第1の径方向油路93Bは、第1のシャフト内油路93Aから径方向外側に延びる。第1の径方向油路93Bは、第1のシャフト320aを含む第1のロータ320内に設けられる。第1の径方向油路93Bには、第1のシャフト内油路93AからオイルOが流入する。第1のロータ320は、第1の回転軸J1周りを回転する。このため、第1の径方向油路93B内のオイルOには、径方向外側に向かって遠心力が生じる。これにより、第1の径方向油路93B内のオイルOは、径方向外側にスムーズに流れる。  The first radial oil passage 93B is connected to the first in-shaft oil passage 93A. The first radial oil passage 93B extends radially outward from the first shaft oil passage 93A. The first radial oil passage 93B is provided in the first rotor 320 including the first shaft 320a. Oil O flows from the first in-shaft oil passage 93A into the first radial oil passage 93B. The first rotor 320 rotates around the first rotation axis J1. For this reason, centrifugal force is generated in the oil O in the first radial oil passage 93B toward the radially outer side. As a result, the oil O in the first radial oil passage 93B flows smoothly outward in the radial direction. *
第1の径方向油路93Bは、第1の回転軸J1の径方向外側の端部において、第1のステータ330に向かって開口する。第1の径方向油路93Bは、発電機3の第1のステータ330にオイルOを供給する。第1のステータ330に供給されたオイルOは、第1のステータ330を冷却し、さらに第1のステータ330のコイルなどを伝って下側に滴下する。これにより、オイルOは、発電機室19Bの下部領域に回収される。  The first radial oil passage 93B opens toward the first stator 330 at the radially outer end of the first rotating shaft J1. The first radial oil passage 93 </ b> B supplies oil O to the first stator 330 of the generator 3. The oil O supplied to the first stator 330 cools the first stator 330 and further drops downward through the coil of the first stator 330 and the like. As a result, the oil O is recovered in the lower region of the generator chamber 19B. *
本実施形態によれば、第1のシャフト内油路93Aおよび第1の径方向油路93Bによって発電機3の内部にオイルOを供給して、発電機3を内部から冷却できる。これにより、発電機3を効率的に冷却できる。  According to this embodiment, the oil O can be supplied into the generator 3 by the first in-shaft oil passage 93A and the first radial oil passage 93B, and the generator 3 can be cooled from the inside. Thereby, the generator 3 can be cooled efficiently. *
モータ供給油路94は、例えばハウジング10の周壁部の内部に設けられる。モータ供給油路94は、第1のポンプ部340の吐出口345からモータ2に向かって延びる。モータ供給油路94は、上流側の端部において第1のポンプ部340の吐出口345に繋がる。すなわち、第1の油路91は、第1のポンプ部340の吐出口345において、第1のシャフト内油路93Aとモータ供給油路94とに分岐される。  The motor supply oil passage 94 is provided, for example, inside the peripheral wall portion of the housing 10. The motor supply oil passage 94 extends from the discharge port 345 of the first pump unit 340 toward the motor 2. The motor supply oil passage 94 is connected to the discharge port 345 of the first pump unit 340 at the upstream end. That is, the first oil passage 91 is branched into the first in-shaft oil passage 93 </ b> A and the motor supply oil passage 94 at the discharge port 345 of the first pump unit 340. *
本実施形態によれば、第1のポンプ部340によって、発電機3の内部にオイルOを供給するとともに、モータ2にオイルOを供給できる。このため、第1のポンプ部340を用いて、発電機3およびモータ2を同時に冷却することができる。  According to this embodiment, the oil O can be supplied to the motor 2 while the oil O is supplied into the generator 3 by the first pump unit 340. For this reason, the generator 3 and the motor 2 can be simultaneously cooled using the first pump unit 340. *
本実施形態によれば、クーラー5は、第1の吸い上げ油路92の経路中に設けられる。第1の油路91は、第1の吸い上げ油路92の下流において分岐して、発電機3とモータ2とにオイルOを供給する。本実施形態によれば、クーラー5を分岐の上流側に配置することで、クーラー5によって冷却されたオイルOにより発電機3とモータ2とを効率的に冷却できる。  According to the present embodiment, the cooler 5 is provided in the path of the first siphoning oil path 92. The first oil passage 91 branches downstream of the first suction oil passage 92 and supplies oil O to the generator 3 and the motor 2. According to the present embodiment, the generator 3 and the motor 2 can be efficiently cooled by the oil O cooled by the cooler 5 by arranging the cooler 5 on the upstream side of the branch. *
モータ供給油路94は、下流側の端部において、モータ2の上側に開口する。モータ供給油路94は、モータ2の上側からモータ2の第2のステータ30に、オイルOを供給する。モータ2に供給されたオイルOは、モータ2表面を伝ってモータ2全体を冷却する。すなわち、本実施形態によれば、モータ供給油路94がモータ2の上側からモータ2にオイルOを供給することで、モータ2全体を効率的に冷却できる。  The motor supply oil passage 94 opens above the motor 2 at the downstream end. The motor supply oil passage 94 supplies oil O from the upper side of the motor 2 to the second stator 30 of the motor 2. The oil O supplied to the motor 2 travels along the surface of the motor 2 and cools the entire motor 2. That is, according to the present embodiment, the motor supply oil passage 94 supplies the oil O from the upper side of the motor 2 to the motor 2 so that the entire motor 2 can be efficiently cooled. *
本実施形態によれば、第1のポンプ部340が収容部19の内部に設けられるため、ポンプ部がモータユニットの外部に設けられる場合と比較して、第1のポンプ部340とモータユニット8とを繋ぐ配管等を必要としない。すなわち、本実施形態によれば、モータユニット8の構造を簡素化することができる。  According to the present embodiment, since the first pump unit 340 is provided inside the housing unit 19, the first pump unit 340 and the motor unit 8 are compared with the case where the pump unit is provided outside the motor unit. No piping is required to connect That is, according to this embodiment, the structure of the motor unit 8 can be simplified. *
本実施形態によれば、第1のポンプ部340が第1のシャフト320aの回転により駆動されるため、ポンプ部を外部電源により駆動する場合と比較して、第1のポンプ部340に繋がる電気配線等を必要としない。すなわち、本実施形態によれば、モータユニット8の構造を簡素化できる。  According to the present embodiment, since the first pump unit 340 is driven by the rotation of the first shaft 320a, compared with the case where the pump unit is driven by an external power source, the electricity connected to the first pump unit 340 is connected. No wiring is required. That is, according to this embodiment, the structure of the motor unit 8 can be simplified. *
本実施形態において、第1のポンプ部340は、発電機3の第1のシャフト320aの回転により駆動されるため、第1のポンプ部340は、発電機3が発電する際にのみ駆動する。第1のポンプ部340は、発電機3の内部にオイルOを供給して発電機3を冷却する。発電機3が発熱するのは、発電機3の発電時である。すなわち、本実施形態によれば、発電機3の発熱時にのみ駆動して、発電機3を冷却するためのオイルOを発電機3に供給するため、効率的に発電機3を冷却できる。また一般的に、ハイブリッド車両において、発電機3の発電時には、モータ2が常に駆動する。本実施形態によれば、発電機3の駆動時に同時にモータ2を冷却することができ、効率的なモータ2の冷却が可能となる。  In the present embodiment, since the first pump unit 340 is driven by the rotation of the first shaft 320a of the generator 3, the first pump unit 340 is driven only when the generator 3 generates power. The first pump unit 340 supplies oil O to the inside of the generator 3 to cool the generator 3. The generator 3 generates heat when the generator 3 generates power. That is, according to the present embodiment, the generator 3 is driven only when the generator 3 generates heat, and the oil O for cooling the generator 3 is supplied to the generator 3. Therefore, the generator 3 can be efficiently cooled. In general, in a hybrid vehicle, the motor 2 is always driven when the generator 3 generates power. According to the present embodiment, the motor 2 can be cooled simultaneously when the generator 3 is driven, and the motor 2 can be efficiently cooled. *
(第2の油路)



 第2の油路95は、第2の吸い上げ油路96と、第2のシャフト内油路97Aと、第2の径方向油路97Bと、を有する。 
(Second oil passage)



The second oil passage 95 includes a second suction oil passage 96, a second shaft oil passage 97A, and a second radial oil passage 97B.
第2の吸い上げ油路96は、例えばハウジング10の周壁部の内部に設けられる。第2の吸い上げ油路96は、収容部19の下部領域から第2のポンプ部40に繋がる。第2の吸い上げ油路96は、上流側の端部において、発電機室19Bの下部領域に開口する。また、第2の吸い上げ油路96は、下流側の端部において、第2のポンプ部40に繋がる。第2の吸い上げ油路96の下流側の端部には、第2のポンプ部40から負圧が付与される。第2の吸い上げ油路96には、収容部19の下部領域から第2のポンプ部40によって吸い上げられたオイルOが流れる。  The second siphoning oil passage 96 is provided, for example, inside the peripheral wall portion of the housing 10. The second suction oil passage 96 is connected to the second pump unit 40 from the lower region of the housing unit 19. The second suction oil passage 96 opens to the lower region of the generator chamber 19B at the upstream end. The second suction oil passage 96 is connected to the second pump unit 40 at the downstream end. A negative pressure is applied from the second pump unit 40 to the downstream end of the second suction oil passage 96. The oil O sucked up by the second pump unit 40 flows from the lower region of the storage unit 19 through the second suction oil passage 96. *
第2のシャフト内油路97Aは、第2の回転軸J2に沿って第2のシャフト20aの内部を延びる。後段において説明するように、第2のシャフト20aは、中空シャフトである。第2のシャフト内油路97Aは、第2のシャフト20aの中空部分に設けられた油路である。第2のシャフト20aの中空部分は、第2の回転軸J2の軸方向の一方側に開口する。また、第2のシャフト内油路97Aは、軸方向他方側の他方側において閉塞する。第2のシャフト20aの中空部分の開口は、第2のシャフト内油路97Aの上流側の端部に位置する。第2のシャフト20aの中空部分の開口は、第2のポンプ部40の吐出口45に繋がる。オイルOは、第2のシャフト内油路97Aの軸方向一方側から他方側に向かって流れる。  The second shaft oil passage 97A extends inside the second shaft 20a along the second rotation axis J2. As will be described later, the second shaft 20a is a hollow shaft. The second shaft internal oil passage 97A is an oil passage provided in a hollow portion of the second shaft 20a. The hollow portion of the second shaft 20a opens on one side in the axial direction of the second rotation axis J2. The second shaft internal oil passage 97A is closed on the other side in the other axial direction. The opening of the hollow portion of the second shaft 20a is located at the upstream end of the second in-shaft oil passage 97A. The opening of the hollow portion of the second shaft 20 a is connected to the discharge port 45 of the second pump unit 40. The oil O flows from one axial side of the second shaft oil passage 97A toward the other side. *
第2の径方向油路97Bは、第2のシャフト内油路97Aに繋がる。第2の径方向油路97Bは、第2のシャフト内油路97Aから径方向外側に延びる。第2の径方向油路97Bは、第2のシャフト20aを含む第2のロータ20内に設けられる。第2の径方向油路97Bには、第2のシャフト内油路97AからオイルOが流入する。第2のロータ20は、第2の回転軸J2周りを回転する。このため、第2の径方向油路97B内のオイルOには、径方向外側に向かって遠心力が生じる。これにより、第2の径方向油路97B内のオイルOは、径方向外側にスムーズに流れる。  The second radial oil passage 97B is connected to the second in-shaft oil passage 97A. The second radial oil passage 97B extends radially outward from the second shaft oil passage 97A. The second radial oil passage 97B is provided in the second rotor 20 including the second shaft 20a. Oil O flows from the second shaft oil passage 97A into the second radial oil passage 97B. The second rotor 20 rotates around the second rotation axis J2. For this reason, centrifugal force is generated in the oil O in the second radial oil passage 97B toward the radially outer side. Thereby, the oil O in the second radial oil passage 97B flows smoothly outward in the radial direction. *
第2の径方向油路97Bは、第2の回転軸J2の径方向外側の端部において、第2のステータ30に向かって開口する。第2の径方向油路97Bは、モータ2の第2のステータ30にオイルOを供給する。これにより、モータ2の第2のステータ30が冷却される。  The second radial oil passage 97B opens toward the second stator 30 at the radially outer end of the second rotating shaft J2. The second radial oil passage 97 </ b> B supplies oil O to the second stator 30 of the motor 2. As a result, the second stator 30 of the motor 2 is cooled. *
本実施形態によれば、第2のシャフト内油路97Aおよび第2の径方向油路97Bによってモータ2の内部にオイルOを供給して、モータ2を内部から冷却することができる。これにより、モータ2を効率的に冷却することができる。  According to this embodiment, the oil O can be supplied to the inside of the motor 2 by the second in-shaft oil passage 97A and the second radial oil passage 97B, and the motor 2 can be cooled from the inside. Thereby, the motor 2 can be cooled efficiently. *
本実施形態によれば、第2のポンプ部40が収容部19の内部に設けられるため、ポンプ部がモータユニットの外部に設けられる場合と比較して、第2のポンプ部40とモータユニット8とを繋ぐ配管等を必要としない。すなわち、本実施形態によれば、モータユニット8の構造を簡素化できる。  According to the present embodiment, since the second pump unit 40 is provided inside the housing unit 19, the second pump unit 40 and the motor unit 8 are compared with the case where the pump unit is provided outside the motor unit. No piping is required to connect That is, according to this embodiment, the structure of the motor unit 8 can be simplified. *
本実施形態によれば、第2のポンプ部40が第2のシャフト20aの回転により駆動されるため、ポンプ部を外部電源により駆動する場合と比較して、第2のポンプ部40に繋がる電気配線等を必要としない。すなわち、本実施形態によれば、モータユニット8の構造を簡素化することができる。  According to the present embodiment, since the second pump unit 40 is driven by the rotation of the second shaft 20a, compared with the case where the pump unit is driven by an external power source, the electric connected to the second pump unit 40 is achieved. No wiring is required. That is, according to this embodiment, the structure of the motor unit 8 can be simplified. *
本実施形態において、第2のポンプ部40は、モータ2の第2のシャフト20aの回転により駆動されるため、第2のポンプ部40は、モータ2の駆動と同時に駆動する。第2のポンプ部40は、モータ2の内部にオイルOを供給して発電機3を冷却する。モータ2が発熱するのは、モータ2の駆動時である。すなわち、本実施形態によれば、モータ2の発熱時にのみ駆動して、モータ2を冷却するためのオイルOをモータ2に供給するため、効率的にモータ2を冷却できる。  In the present embodiment, since the second pump unit 40 is driven by the rotation of the second shaft 20 a of the motor 2, the second pump unit 40 is driven simultaneously with the driving of the motor 2. The second pump unit 40 supplies oil O to the inside of the motor 2 to cool the generator 3. The motor 2 generates heat when the motor 2 is driven. That is, according to the present embodiment, the motor 2 is driven only when the motor 2 generates heat and the oil O for cooling the motor 2 is supplied to the motor 2, so that the motor 2 can be efficiently cooled. *
(共有油路)



 次に、第1の油路91および第2の油路95が共有する油路について説明する。 第1の油路91および第2の油路95は、ともにモータ2の第2のステータ30にオイルOを供給する。このため、第1の油路91および第2の油路95は、オイルOが第2のステータ30から発電機室19Bの下部領域に達する経路を共有する。 
(Shared oil passage)



Next, the oil passage shared by the first oil passage 91 and the second oil passage 95 will be described. Both the first oil passage 91 and the second oil passage 95 supply oil O to the second stator 30 of the motor 2. For this reason, the first oil passage 91 and the second oil passage 95 share a route through which the oil O reaches the lower region of the generator chamber 19B from the second stator 30.
第2のステータ30に供給されたオイルOは、第2のステータ30を冷却し、さらに第2のステータ30のコイルなどを伝って下側に滴下する。第2のステータ30から滴下したオイルOは、モータ室19Aの下部領域に達する。ハウジング10には、モータ室19Aと発電機室19Bとを区画する第1の隔壁18Aが設けられる。第1の隔壁18Aには、上下方向に貫通するオイル導入口18aが設けられる。モータ室19Aの下部領域に達したオイルOは、オイル導入口18aを介して、発電機室19Bに導入される。オイル導入口18aは、発電機3の直上で開口する。このため、オイル導入口18aを介して発電機室19Bに導入されたオイルOは、発電機3の第1のステータ330に供給される。第1のステータ330に供給されたオイルOは、第1のステータ330を冷却し、さらに第1のステータ330のコイルなどを伝って下側に滴下する。これにより、オイルOは、発電機室19Bの下部領域に回収される。  The oil O supplied to the second stator 30 cools the second stator 30 and further drops down through the coil of the second stator 30 and the like. The oil O dropped from the second stator 30 reaches the lower region of the motor chamber 19A. The housing 10 is provided with a first partition wall 18A that partitions the motor chamber 19A and the generator chamber 19B. The first partition wall 18A is provided with an oil inlet 18a penetrating in the vertical direction. The oil O reaching the lower region of the motor chamber 19A is introduced into the generator chamber 19B through the oil introduction port 18a. The oil introduction port 18 a is opened immediately above the generator 3. For this reason, the oil O introduced into the generator chamber 19 </ b> B via the oil introduction port 18 a is supplied to the first stator 330 of the generator 3. The oil O supplied to the first stator 330 cools the first stator 330 and further drops downward through the coil of the first stator 330 and the like. As a result, the oil O is recovered in the lower region of the generator chamber 19B. *
本実施形態によれば、モータ2が発電機3の上側に位置し、モータ2から滴下したオイルOが発電機3に供給される。このため、モータ2を冷却したオイルOを、さらに発電機3の冷却に用いることができ、結果的に効率的な冷却が可能となる。  According to this embodiment, the motor 2 is positioned above the generator 3, and the oil O dripped from the motor 2 is supplied to the generator 3. For this reason, the oil O which cooled the motor 2 can be further used for cooling the generator 3, and as a result, efficient cooling becomes possible. *



<発電機>



 次に発電機3の具体的な構成について説明する。 図3に示すように、本実施形態の発電機3は、ハウジング10と、一方向に延びる第1の回転軸J1に沿って配置される第1のシャフト320aを有する第1のロータ320と、回転検出部380と、第1のステータ330と、第1のポンプ部340と、ベアリング370,371と、を備える。 



<Generator>



Next, a specific configuration of the generator 3 will be described. As shown in FIG. 3, the generator 3 of the present embodiment includes a housing 10, a first rotor 320 having a first shaft 320 a disposed along a first rotation axis J <b> 1 extending in one direction, A rotation detection unit 380, a first stator 330, a first pump unit 340, and bearings 370 and 371 are provided.
第1の回転軸J1は、図3の左右方向に延びる。以下の発電機3の説明においては、第1の回転軸J1の軸方向と平行な方向を単に「軸方向」と呼び、第1の回転軸J1を中心とする径方向を単に「径方向」と呼び、第1の回転軸J1を中心とする周方向を単に「周方向」と呼ぶ。また、軸方向のうち図3の左側を、「軸方向一方側」と呼び、軸方向のうち図3の右側を、「軸方向他方側」と呼ぶ。  The first rotation axis J1 extends in the left-right direction in FIG. In the following description of the generator 3, the direction parallel to the axial direction of the first rotation axis J1 is simply referred to as “axial direction”, and the radial direction around the first rotation axis J1 is simply “radial direction”. The circumferential direction around the first rotation axis J1 is simply referred to as “circumferential direction”. Also, the left side of FIG. 3 in the axial direction is referred to as “one axial side”, and the right side of FIG. 3 in the axial direction is referred to as “the other axial side”. *
ハウジング10は、発電機収容本体部311と、内蓋部312と、外蓋部313と、を有する。本実施形態において発電機収容本体部311と内蓋部312と外蓋部313とは、互いに別部材である。発電機収容本体部311は、軸方向一方側に開口する有底の筒状である。発電機収容本体部311は、底部311aと、本体筒部311bと、ベアリング保持部311cと、を有する。底部311aは、径方向に拡がる円環板状である。本体筒部311bは、底部311aの径方向外縁部から軸方向一方側に延びる円筒状である。ベアリング保持部311cは、底部311aの内縁部から軸方向一方側に突出する円筒状である。ベアリング保持部311cは、内周面にベアリング371を保持する。  The housing 10 includes a generator housing body 311, an inner lid portion 312, and an outer lid portion 313. In the present embodiment, the generator housing main body 311, the inner lid 312, and the outer lid 313 are separate members. The generator housing body 311 has a bottomed cylindrical shape that opens to one side in the axial direction. The generator housing main body 311 has a bottom 311a, a main body cylinder 311b, and a bearing holding portion 311c. The bottom 311a has an annular plate shape that expands in the radial direction. The main body cylinder portion 311b has a cylindrical shape extending from the radially outer edge portion of the bottom portion 311a to one side in the axial direction. The bearing holding portion 311c has a cylindrical shape protruding from the inner edge portion of the bottom portion 311a to one side in the axial direction. The bearing holding portion 311c holds the bearing 371 on the inner peripheral surface. *
内蓋部312は、発電機収容本体部311の軸方向一方側に取り付けられる。内蓋部312は、円環板部312aと、外筒部312bと、内筒部312cと、ベアリング保持部312eと、を有する。円環板部312aは、径方向に拡がる円環板状である。内蓋部312は、円環板部312aにより第1のステータ330の軸方向一方側を覆う。円環板部312aは、下側の端部に、円環板部312aを軸方向に貫通する開口部312fを有する。開口部312fは、ハウジング10の内部に繋がる。  The inner lid 312 is attached to one side in the axial direction of the generator housing main body 311. The inner lid portion 312 includes an annular plate portion 312a, an outer cylinder portion 312b, an inner cylinder portion 312c, and a bearing holding portion 312e. The annular plate portion 312a has an annular plate shape that expands in the radial direction. The inner lid portion 312 covers one side in the axial direction of the first stator 330 by the annular plate portion 312a. The annular plate portion 312a has an opening 312f that penetrates the annular plate portion 312a in the axial direction at the lower end. The opening 312 f is connected to the inside of the housing 10. *
外筒部312bは、円環板部312aの径方向外縁部から軸方向他方側に延びる円筒状である。外筒部312bの軸方向他方側の端部は、本体筒部311bの軸方向一方側の端部と接触して固定される。内筒部312cは、円環板部312aの径方向内縁部から軸方向他方側に延びる円筒状である。  The outer cylinder portion 312b has a cylindrical shape extending from the radially outer edge portion of the annular plate portion 312a to the other side in the axial direction. The end portion on the other side in the axial direction of the outer tube portion 312b is fixed in contact with the end portion on the one side in the axial direction of the main body tube portion 311b. The inner cylinder portion 312c has a cylindrical shape extending from the radially inner edge of the annular plate portion 312a to the other side in the axial direction. *
ベアリング保持部312eは、内筒部312cの軸方向他方側の端部から径方向内側に拡がる円環状部401と、円環状部の径方向内縁部から軸方向他端側に突出する円筒部402とを有する。 内蓋部312は、内蓋部312の軸方向一方側の面から軸方向他方側に窪む第2凹部312gを有する。第2凹部312gの内面は、内筒部312cの内周面と円環状部401の軸方向一方側の面とを含む。内蓋部312の軸方向一方側の面は、本実施形態では円環状部401の軸方向一方側の面である。第2凹部312gの内側面は、内筒部312cの径方向内側面と円環状部401の軸方向一方側の面とを含む。  The bearing holding portion 312e includes an annular portion 401 that extends radially inward from the other axial end of the inner cylindrical portion 312c, and a cylindrical portion 402 that protrudes from the radially inner edge of the annular portion toward the other axial end. And have. The inner lid portion 312 has a second concave portion 312g that is recessed from the surface on one side in the axial direction of the inner lid portion 312 to the other side in the axial direction. The inner surface of the second recess 312g includes the inner peripheral surface of the inner cylinder portion 312c and the surface on the one axial side of the annular portion 401. The surface on the one side in the axial direction of the inner lid portion 312 is the surface on the one side in the axial direction of the annular portion 401 in the present embodiment. The inner side surface of the second recess 312g includes a radially inner side surface of the inner cylindrical portion 312c and a surface on one axial side of the annular portion 401. *
ベアリング保持部312eの円筒部402は、円環状部401の径方向内側の端縁から軸方向他方側に突出する円筒状である。ベアリング保持部312eは、円筒部402の内周面にベアリング370を保持する。  The cylindrical portion 402 of the bearing holding portion 312e has a cylindrical shape that protrudes from the radially inner end edge of the annular portion 401 to the other side in the axial direction. The bearing holding portion 312 e holds the bearing 370 on the inner peripheral surface of the cylindrical portion 402. *
ハウジング10は、発電機収容本体部311と内蓋部312とからなる発電機収容部314を有する。発電機収容部314の内部には、発電機室19B(図1参照)が構成される。発電機収容部314は、第1のロータ320および第1のステータ330を収容する。第1のステータ330は、発電機収容本体部311の内面に固定される。第1のロータ320は、第1のステータ330の径方向内側に配置される。  The housing 10 has a generator housing portion 314 including a generator housing body 311 and an inner lid portion 312. Inside the generator housing 314, a generator room 19B (see FIG. 1) is configured. The generator housing part 314 houses the first rotor 320 and the first stator 330. The first stator 330 is fixed to the inner surface of the generator housing main body 311. The first rotor 320 is disposed on the radially inner side of the first stator 330. *
第1のステータ330は、第1のロータ320と径方向に隙間を介して対向する。第1のステータ330は、ステータコア331と、ステータコア331に装着される複数のコイル332と、を有する。ステータコア331は、第1の回転軸J1を中心とした円環状である。ステータコア331の外周面は、本体筒部311bの内周面に固定される。ステータコア331は、後述するロータコア322の径方向外側に隙間を介して対向する。コイル332は、ステータコア331の軸方向一方側および軸方向他方側に突出する。  The first stator 330 faces the first rotor 320 via a gap in the radial direction. The first stator 330 has a stator core 331 and a plurality of coils 332 attached to the stator core 331. The stator core 331 has an annular shape around the first rotation axis J1. The outer peripheral surface of the stator core 331 is fixed to the inner peripheral surface of the main body cylinder portion 311b. The stator core 331 is opposed to a radially outer side of a rotor core 322, which will be described later, via a gap. The coil 332 protrudes on the one axial side and the other axial side of the stator core 331. *
図2を基に説明したように、発電機収容部314に貯留されるオイルOの液面OSは、開口部312fよりも上側に位置する。これにより、開口部312fには、発電機収容部314に貯留されるオイルOが常時流通する。オイルOの液面OSは、第1のポンプ部340によってオイルOが吸い上げられることで変動するが、少なくとも第1のロータ320の回転時において、第1のロータ320よりも下側に配置される。これにより、第1のロータ320が回転する際に、オイルOが第1のロータ320の回転抵抗となることを抑制できる。  As described based on FIG. 2, the liquid level OS of the oil O stored in the generator housing unit 314 is located above the opening 312 f. Thereby, the oil O stored in the generator accommodating part 314 always flows through the opening 312f. The liquid level OS of the oil O varies as the oil O is sucked up by the first pump unit 340, but is disposed below the first rotor 320 at least when the first rotor 320 rotates. . Thereby, when the 1st rotor 320 rotates, it can suppress that oil O becomes rotational resistance of the 1st rotor 320. FIG. *
外蓋部313は、内蓋部312の軸方向一方側に取り付けられる。外蓋部313は、外蓋本体部313aと、栓体部313bと、を有する。外蓋本体部313aは、径方向に拡がる。外蓋本体部313aは、蓋板部313cと、突出部313dと、を有する。蓋板部313cは、径方向に拡がる円板状である。蓋板部313cの径方向外縁部は、円環板部312aの径方向外縁部に固定される。蓋板部313cの軸方向他方側の面は、円環板部312aの軸方向一方側の面と接触する。突出部313dは、蓋板部313cの中央部から軸方向他方側に突出する。突出部313dは、内筒部312cに軸方向一方側から挿入される。突出部313dは、ベアリング保持部312eの円環状部401の軸方向一方側に間隔を空けて配置される。  The outer lid portion 313 is attached to one side of the inner lid portion 312 in the axial direction. The outer lid part 313 includes an outer lid body part 313a and a plug part 313b. The outer lid main body 313a expands in the radial direction. The outer lid main body portion 313a includes a lid plate portion 313c and a protruding portion 313d. The lid plate portion 313c has a disk shape that expands in the radial direction. The radially outer edge portion of the lid plate portion 313c is fixed to the radially outer edge portion of the annular plate portion 312a. The surface on the other side in the axial direction of the cover plate portion 313c is in contact with the surface on the one side in the axial direction of the annular plate portion 312a. The protruding portion 313d protrudes from the center portion of the lid plate portion 313c to the other side in the axial direction. The protruding portion 313d is inserted into the inner cylinder portion 312c from one side in the axial direction. The protruding portion 313d is disposed at an interval on one side in the axial direction of the annular portion 401 of the bearing holding portion 312e. *
外蓋本体部313aは、第1凹部313eと、第2貫通孔313fと、を有する。第1凹部313eは、外蓋本体部313aの軸方向一方側の面から軸方向他方側に窪む。第1凹部313eは、外蓋本体部313aの中央部に設けられ、蓋板部313cと突出部313dとに跨って設けられる。第2貫通孔313fは、第1凹部313eの底面から突出部313dの軸方向他方側の面まで貫通する。すなわち、第2貫通孔313fは、第1凹部313eの底面からハウジング10の内部まで貫通する。第2貫通孔313fは、第2凹部312gの内部に開口する。これにより、第2貫通孔313fは、第1凹部313eの内部と第2凹部12gの内部とを繋ぐ。第2貫通孔313fには、第1の回転軸J1が通る。  The outer lid main body 313a includes a first recess 313e and a second through hole 313f. The first recess 313e is recessed from the surface on the one axial side of the outer lid main body 313a to the other axial side. The first recess 313e is provided at the center of the outer lid main body 313a, and is provided across the lid plate 313c and the protrusion 313d. The second through hole 313f penetrates from the bottom surface of the first recess 313e to the surface on the other axial side of the protruding portion 313d. That is, the second through hole 313 f penetrates from the bottom surface of the first recess 313 e to the inside of the housing 10. The second through hole 313f opens inside the second recess 312g. Thereby, the 2nd penetration hole 313f connects the inside of the 1st crevice 313e and the inside of the 2nd crevice 12g. The first rotation axis J1 passes through the second through hole 313f. *
栓体部313bは、第1凹部313eに嵌め込まれて外蓋本体部313aに固定される。栓体部313bは、第1凹部313eの軸方向一方側の開口を閉塞する。栓体部313bは、第1のシャフト320aの軸方向一方側を覆う。すなわち、外蓋部313は、第1のシャフト320aの軸方向一方側を覆う。栓体部313bは、軸方向一方側の端部に径方向外側に突出する鍔部313gを有する。鍔部313gは、蓋板部313cの軸方向一方側の面に接触する。栓体部313bは、鍔部313gにより軸方向に位置決めされる。  The plug portion 313b is fitted into the first recess 313e and fixed to the outer lid main body portion 313a. The plug body portion 313b closes the opening on the one axial side of the first recess 313e. The plug body portion 313b covers one side in the axial direction of the first shaft 320a. That is, the outer lid portion 313 covers one side in the axial direction of the first shaft 320a. The plug portion 313b has a flange portion 313g that protrudes radially outward at an end portion on one axial side. The flange portion 313g contacts the surface on one side in the axial direction of the lid plate portion 313c. The plug body portion 313b is positioned in the axial direction by the flange portion 313g. *
外蓋部313において、外蓋本体部313aと栓体部313bとの間には、内歯歯車343および外歯歯車342が収容される。本実施形態において、外蓋部313のうちの外歯歯車342および内歯歯車343を収容する部位が第1のポンプ部340を構成する。本実施形態では、第1のポンプ部340はトロコイドポンプである。本実施形態において、第1のポンプ部340は、後段において説明する第2のポンプ部40と略同様の構成を有する。外歯歯車342の貫通孔には、第1のポンプ部340と第1のシャフト320a内の油路とを接続する筒状の取付部材350が挿入される。  In the outer lid portion 313, an internal gear 343 and an external gear 342 are accommodated between the outer lid main body portion 313a and the plug body portion 313b. In the present embodiment, a portion that accommodates the external gear 342 and the internal gear 343 in the outer lid portion 313 constitutes the first pump portion 340. In the present embodiment, the first pump unit 340 is a trochoid pump. In this embodiment, the 1st pump part 340 has the structure substantially the same as the 2nd pump part 40 demonstrated in a back | latter stage. A cylindrical mounting member 350 that connects the first pump portion 340 and the oil passage in the first shaft 320a is inserted into the through hole of the external gear 342. *
栓体部313bは、吸入側油路340aと、吐出側油路340bとを有する。吸入側油路340aは、外蓋部313に設けられる第1の吸い上げ油路92(図1参照)を介して開口部312fと第1のポンプ部340の吸入口とを繋ぐ。吐出側油路340bは、第1のポンプ部340の吐出口345と取付部材350の貫通孔とを繋ぐ。  The plug body portion 313b has a suction side oil passage 340a and a discharge side oil passage 340b. The suction side oil passage 340 a connects the opening 312 f and the suction port of the first pump portion 340 via a first suction oil passage 92 (see FIG. 1) provided in the outer lid portion 313. The discharge-side oil passage 340 b connects the discharge port 345 of the first pump unit 340 and the through hole of the attachment member 350. *
第1のロータ320は、第1のシャフト320aと、ロータコア322と、第1エンドプレート324と、第2エンドプレート325と、を有する。第1のシャフト320aは、シャフト本体部321aと、ロータコア保持部321bと、接続部321cと、取付部材350と、を有する。シャフト本体部321aと、ロータコア保持部321bと、接続部321cは、単一の部材である。  The first rotor 320 includes a first shaft 320a, a rotor core 322, a first end plate 324, and a second end plate 325. The first shaft 320a includes a shaft main body 321a, a rotor core holding part 321b, a connection part 321c, and an attachment member 350. The shaft main body portion 321a, the rotor core holding portion 321b, and the connection portion 321c are a single member. *
シャフト本体部321aは、第1の回転軸J1を中心とし、軸方向に延びる円柱状である。ロータコア保持部321bは、第1の回転軸J1を中心とし、シャフト本体部321aの径方向外側を囲む円筒状である。ロータコア保持部321bの軸方向長さは、シャフト本体部321aの軸方向長さよりも短い。接続部321cは、シャフト本体部321aとロータコア保持部321bとが径方向に見て重なる領域において、シャフト本体部321aの軸方向の中央部から径方向外側へ円環状に拡がり、シャフト本体部321aとロータコア保持部321bとを径方向に連結する。接続部321cの軸方向長さは、シャフト本体部321aの軸方向長さおよびロータコア保持部321bの軸方向長さよりも短い。したがって、接続部321cの軸方向一方側において、シャフト本体部321aの外周面501aとロータコア保持部321bの内周面501bとが、径方向に対向する。また接続部321cの軸方向他方側において、シャフト本体部321aの外周面502aとロータコア保持部321bの内周面502bとが、径方向に対向する。  The shaft main body 321a has a cylindrical shape that extends in the axial direction with the first rotation axis J1 as the center. The rotor core holding part 321b has a cylindrical shape centering on the first rotation axis J1 and surrounding the radially outer side of the shaft main body part 321a. The axial length of the rotor core holding portion 321b is shorter than the axial length of the shaft main body portion 321a. In the region where the shaft main body 321a and the rotor core holding portion 321b overlap in the radial direction, the connecting portion 321c extends in an annular shape from the axial center to the radial outer side of the shaft main body 321a. The rotor core holding part 321b is connected in the radial direction. The axial length of the connecting portion 321c is shorter than the axial length of the shaft main body portion 321a and the axial length of the rotor core holding portion 321b. Therefore, the outer peripheral surface 501a of the shaft main body 321a and the inner peripheral surface 501b of the rotor core holding portion 321b face each other in the radial direction on one axial side of the connecting portion 321c. Further, on the other axial side of the connecting portion 321c, the outer peripheral surface 502a of the shaft main body portion 321a and the inner peripheral surface 502b of the rotor core holding portion 321b face each other in the radial direction. *
第1のシャフト320aは、軸方向一方側に向けて開口する第1シャフト凹部321Aと、軸方向他方側に向けて開口する第2シャフト凹部321Bとを有する。第1シャフト凹部321Aは、軸方向一方側へ開口し周方向に延びる円環状の溝部である。第1シャフト凹部321Aは、シャフト本体部321aの外周面501a、およびロータコア保持部321bの内周面501bを側面とし、接続部321cの軸方向一方側の面501cを底面とする。  The first shaft 320a includes a first shaft recess 321A that opens toward one side in the axial direction and a second shaft recess 321B that opens toward the other side in the axial direction. The first shaft recess 321A is an annular groove that opens to one side in the axial direction and extends in the circumferential direction. The first shaft recess 321A has the outer peripheral surface 501a of the shaft main body portion 321a and the inner peripheral surface 501b of the rotor core holding portion 321b as side surfaces, and the surface 501c on one axial side of the connection portion 321c as a bottom surface. *
第1シャフト凹部321Aにおいて、ロータコア保持部321bの内周面501bは、ロータコア保持部321bの軸方向一方側の開口端に向かうに従って径方向外側へ傾斜する。また、ロータコア保持部321bの内周面501bは、軸方向の開口側の端部に曲面形状の斜面部501dを有する。斜面部501dは、軸方向一方側へ向かうに従って径方向外側へ傾斜する曲面である。  In the first shaft recess 321A, the inner peripheral surface 501b of the rotor core holding portion 321b is inclined outward in the radial direction toward the opening end on one axial side of the rotor core holding portion 321b. The inner peripheral surface 501b of the rotor core holding portion 321b has a curved slope portion 501d at the end on the opening side in the axial direction. The inclined surface portion 501d is a curved surface that is inclined outward in the radial direction toward the one side in the axial direction. *
第2シャフト凹部321Bは、軸方向他方側に開口し周方向に延びる円環状の溝部である。第2シャフト凹部321Bは、シャフト本体部321aの外周面502a、およびロータコア保持部321bの内周面502bを側面とし、接続部321cの軸方向一方側の面502cを底面とする。第2シャフト凹部321Bにおいて、ロータコア保持部321bの内周面502bは、ロータコア保持部321bの軸方向他方側の開口端に向かうに従って径方向外側へ傾斜する。  The second shaft recess 321B is an annular groove that opens to the other side in the axial direction and extends in the circumferential direction. The second shaft recess 321B has the outer peripheral surface 502a of the shaft main body portion 321a and the inner peripheral surface 502b of the rotor core holding portion 321b as side surfaces, and the surface 502c on one axial side of the connection portion 321c as a bottom surface. In the second shaft recess 321B, the inner peripheral surface 502b of the rotor core holding portion 321b is inclined radially outward toward the opening end on the other axial side of the rotor core holding portion 321b. *
シャフト本体部321aは、接続部321cの軸方向一方側に位置するベアリング370と、接続部321cの軸方向他方側に位置するベアリング371とにより回転可能に支持される。ベアリング370,371は例えばボールベアリングである。 本実施形態では、ベアリング370を保持するベアリング保持部312eの一部が、径方向に見て、ロータコア保持部321bと重なる。この構成によれば、発電機3の軸方向長さを短くでき、薄型化可能である。  The shaft body 321a is rotatably supported by a bearing 370 located on one side in the axial direction of the connecting part 321c and a bearing 371 located on the other side in the axial direction of the connecting part 321c. The bearings 370 and 371 are ball bearings, for example. In this embodiment, a part of the bearing holding portion 312e that holds the bearing 370 overlaps the rotor core holding portion 321b when viewed in the radial direction. According to this structure, the axial direction length of the generator 3 can be shortened, and it can be reduced in thickness. *
本実施形態では、ベアリング保持部312eの円筒部402は、ロータコア保持部321bの軸方向一方側の開口部の近傍において、軸方向一方側へ向かうに従って径が大きくなる形状を有する。すなわち、ベアリング保持部312eの外周面は、ロータコア保持部321bの内側から軸方向の外側へ向かって径方向外側に傾斜する傾斜面であ
る。ベアリング保持部312eの外周面は、隙間を介して対向するロータコア保持部321bの斜面部501dに倣う曲面形状を有する。 ベアリング保持部312eの円環状部401は、フランジ部503と軸方向に対向する。すなわち、ベアリング保持部312eは、ロータコア保持部321bの軸方向を向いた面と対向する。シャフト本体部321aは、軸方向他方側の端部に出力部321eを有する。


In the present embodiment, the cylindrical portion 402 of the bearing holding portion 312e has a shape whose diameter increases toward the one side in the axial direction in the vicinity of the opening on the one side in the axial direction of the rotor core holding portion 321b. That is, the outer peripheral surface of the bearing holding portion 312e is an inclined surface that is inclined radially outward from the inner side of the rotor core holding portion 321b toward the outer side in the axial direction. The outer peripheral surface of the bearing holding portion 312e has a curved surface shape that follows the inclined surface portion 501d of the rotor core holding portion 321b facing each other through a gap. The annular portion 401 of the bearing holding portion 312e faces the flange portion 503 in the axial direction. That is, the bearing holding portion 312e faces the surface of the rotor core holding portion 321b facing the axial direction. The shaft main body portion 321a has an output portion 321e at the end on the other side in the axial direction.


ベアリング370の軸方向一方側に、回転検出部380が配置される。回転検出部380は、第1のロータ320の回転を検出する。本実施形態において回転検出部380は、例えば、VR(Variable Reluctance)型レゾルバである。回転検出部380は、内筒部312cの径方向内側に配置される。回転検出部380のレゾルバロータはシャフト本体部321aの軸方向一方側の端部に固定され、レゾルバステータは、内筒部312cの内周に固定される。回転検出部380は、ホール素子やMR(Magneto Resistive)素子と、マグネットとを組み合わせた構成であってもよい。  A rotation detector 380 is arranged on one side of the bearing 370 in the axial direction. The rotation detector 380 detects the rotation of the first rotor 320. In the present embodiment, the rotation detection unit 380 is, for example, a VR (Variable Reluctance) type resolver. The rotation detection unit 380 is disposed on the radially inner side of the inner cylinder portion 312c. The resolver rotor of the rotation detector 380 is fixed to one end of the shaft main body 321a in the axial direction, and the resolver stator is fixed to the inner periphery of the inner cylinder portion 312c. The rotation detection unit 380 may have a configuration in which a Hall element, an MR (Magneto Resistive) element, and a magnet are combined. *
シャフト本体部321aは、シャフト本体部321aの軸方向一方側の端部に開口し、軸方向他方側へ延びる有底穴からなる第1のシャフト内油路93Aを有する。第1のシャフト内油路93Aの軸方向他方側の端部は閉塞される。本実施形態において軸方向と直交する断面において第1のシャフト内油路93Aの内縁は、第1の回転軸J1を中心とする円形状である。  The shaft main body portion 321a has a first in-shaft oil passage 93A that has a bottomed hole that opens to an end portion on one axial side of the shaft main body portion 321a and extends to the other axial side. The end portion on the other side in the axial direction of the first in-shaft oil passage 93A is closed. In the present embodiment, the inner edge of the first shaft oil passage 93A has a circular shape centered on the first rotation axis J1 in the cross section orthogonal to the axial direction. *
ロータコア保持部321bは、第1のシャフト320aにおいてロータコア322が取り付けられる部分である。ロータコア322は、シャフト本体部321aに固定される円環状である。ロータコア322は、円筒状のロータコア保持部321bの外周面に嵌め合わされる。ロータコア322は、図示しない複数のロータマグネットを有する。複数のロータマグネットは、ロータコア322の周方向に沿って配置される。  The rotor core holding part 321b is a part to which the rotor core 322 is attached on the first shaft 320a. The rotor core 322 has an annular shape fixed to the shaft main body 321a. The rotor core 322 is fitted to the outer peripheral surface of the cylindrical rotor core holding part 321b. The rotor core 322 has a plurality of rotor magnets (not shown). The plurality of rotor magnets are arranged along the circumferential direction of the rotor core 322. *
ロータコア保持部321bは、軸方向一方側の端部から径方向外側へ拡がるフランジ部503を有する。フランジ部503は、軸方向に貫通する雌ねじ部503aを有する。第1エンドプレート324は、フランジ部503とロータコア322との間に軸方向に挟まれて配置される。第2エンドプレート325は、ロータコア322の軸方向他方側の面と接して配置される。第1エンドプレート324および第2エンドプレート325は、径方向に拡がる円環板状である。ただし、第1エンドプレート324がなくてもよい。  The rotor core holding part 321b has a flange part 503 that extends radially outward from an end on one axial side. The flange portion 503 has a female screw portion 503a penetrating in the axial direction. The first end plate 324 is disposed so as to be sandwiched between the flange portion 503 and the rotor core 322 in the axial direction. The second end plate 325 is disposed in contact with the surface on the other axial side of the rotor core 322. The first end plate 324 and the second end plate 325 have an annular plate shape that expands in the radial direction. However, the first end plate 324 may not be provided. *
ロータコア322および第2エンドプレート325は、ロータコア322および第2エンドプレート325を軸方向に貫通する貫通孔を有する。ロータコア322は、ボルト504によりロータコア保持部321bに固定される。ボルト504は、ロータコア322および第2エンドプレート325の貫通孔に挿入される。ボルト504の雄ねじ部は、フランジ部503の雌ねじ部に締結される。  The rotor core 322 and the second end plate 325 have through holes that penetrate the rotor core 322 and the second end plate 325 in the axial direction. The rotor core 322 is fixed to the rotor core holding part 321b by bolts 504. The bolt 504 is inserted into the through hole of the rotor core 322 and the second end plate 325. The male screw portion of the bolt 504 is fastened to the female screw portion of the flange portion 503. *
本実施形態では、ロータコア保持部321bがフランジ部503を有することにより、ロータコア322を軸方向に位置決めして固定できる。フランジ部503に雌ねじ部が設けられていることにより、ナットを用いることなくボルト504を締結できる。フランジ部503の軸方向一方側の面には、ボルト504の先端がわずかに突出するだけであるため、フランジ部503の表面を伝わるオイルOの流れを阻害しにくい。  In this embodiment, the rotor core holding part 321b has the flange part 503, whereby the rotor core 322 can be positioned and fixed in the axial direction. By providing the internal thread portion on the flange portion 503, the bolt 504 can be fastened without using a nut. Since the tip of the bolt 504 protrudes slightly on the surface on one side in the axial direction of the flange portion 503, it is difficult to inhibit the flow of the oil O that travels on the surface of the flange portion 503. *
取付部材350は、キャップ状の連結部材351により、シャフト本体部321aの軸方向一方側に固定される。連結部材351は、連結部材351を軸方向に貫通する貫通孔を有し、取付部材350は、連結部材351の貫通孔に挿入される。取付部材350の貫通孔は、シャフト本体部321aの第1のシャフト内油路93Aの一部を構成し、第1のポンプ部340の吐出側油路340bに繋がる。取付部材350は、シャフト本体部321aよりも軸方向一方側に延びて、第2貫通孔313fに回転可能に支持される。  The attachment member 350 is fixed to one side in the axial direction of the shaft main body 321a by a cap-shaped connecting member 351. The connecting member 351 has a through hole that penetrates the connecting member 351 in the axial direction, and the attachment member 350 is inserted into the through hole of the connecting member 351. The through-hole of the attachment member 350 constitutes a part of the first in-shaft oil passage 93A of the shaft main body portion 321a and is connected to the discharge-side oil passage 340b of the first pump portion 340. The attachment member 350 extends to one side in the axial direction from the shaft body 321a and is rotatably supported by the second through hole 313f. *
第1のシャフト内油路93Aは、シャフト本体部321aの軸方向の中央部において、複数の第1の径方向油路93Bに分岐される。複数の第1の径方向油路93Bは、第1のシャフト内油路93Aから径方向に放射状に延びる。第1の径方向油路93Bの本数は、例えば2本~16本である。第1の径方向油路93Bは、第1のシャフト内油路93Aから径方向外側へオイルを案内可能であれば、径方向に対して傾斜または湾曲した形状であってもよい。  The first in-shaft oil passage 93A is branched into a plurality of first radial oil passages 93B at the axial central portion of the shaft main body portion 321a. The plurality of first radial oil passages 93B extend radially from the first shaft oil passage 93A in the radial direction. The number of first radial oil passages 93B is, for example, 2 to 16. The first radial oil passage 93B may have a shape that is inclined or curved with respect to the radial direction as long as oil can be guided radially outward from the first shaft oil passage 93A. *
第1の径方向油路93Bは、第1のシャフト内油路93Aから径方向に延びて接続部321cおよびロータコア保持部321bを貫通し、ロータコア保持部321bの外周面に開口する。したがって、第1の径方向油路93Bの径方向外側の端部には、ロータコア322の内周面の一部が露出する。これにより、ロータコア322についても、オイルOによって冷却できる。  The first radial oil passage 93B extends in the radial direction from the first shaft oil passage 93A, passes through the connection portion 321c and the rotor core holding portion 321b, and opens to the outer peripheral surface of the rotor core holding portion 321b. Therefore, a part of the inner peripheral surface of the rotor core 322 is exposed at the radially outer end of the first radial oil passage 93B. Thereby, the rotor core 322 can also be cooled by the oil O. *
第1の径方向油路93Bは、接続部321cの内部において、2本の第3分岐油路363A、363Bに分岐される。第3分岐油路363Aは、第1の径方向油路93Bとの分岐点から軸方向一方側へ延び、接続部321cの軸方向一方側の面501cに開口する。第3分岐油路363Bは、第1の径方向油路93Bとの分岐点から軸方向他方側へ延び、接続部321cの軸方向他方側の面502cに開口する。第3分岐油路363A、363Bは、第1の径方向油路93Bから軸方向へオイルを案内可能であれば、軸方向に対して傾斜または湾曲した形状であってもよい。  The first radial oil passage 93B is branched into two third branch oil passages 363A and 363B inside the connection portion 321c. The third branch oil passage 363A extends from the branch point with the first radial oil passage 93B to one side in the axial direction, and opens to a surface 501c on the one side in the axial direction of the connecting portion 321c. The third branch oil passage 363B extends from the branch point with the first radial oil passage 93B to the other side in the axial direction, and opens on the surface 502c on the other side in the axial direction of the connecting portion 321c. The third branch oil passages 363A and 363B may have a shape inclined or curved with respect to the axial direction as long as the oil can be guided in the axial direction from the first radial oil passage 93B. *
本実施形態では、第3分岐油路363A、363Bは、接続部321cの径方向の中央部に開口する。第1シャフト凹部321Aおよび第2シャフト凹部321Bの底面の角部は丸みを帯びた形状となりやすく、角部の近傍ではドリルが滑りやすいため穴開け加工が難しくなる。本実施形態では、接続部321cの径方向の中央部は、比較的平坦な面となりやすいため、穴開け加工が行いやすい。また、加工が容易であることから、第3分岐油路363A、363Bの精度も向上させやすい。  In the present embodiment, the third branch oil passages 363A and 363B open at the radial center of the connection portion 321c. The corners of the bottom surfaces of the first shaft recess 321A and the second shaft recess 321B tend to be rounded, and the drill is easy to slip near the corners, making drilling difficult. In the present embodiment, the central portion in the radial direction of the connecting portion 321c is likely to be a relatively flat surface, so that drilling is easy to perform. Further, since the processing is easy, it is easy to improve the accuracy of the third branch oil passages 363A, 363B. *
シャフト本体部321aは、第1のシャフト内油路93Aからベアリング370、371へ延びるベアリング潤滑用油路364A、364Bをさらに有する。ベアリング潤滑用油路364Aは、第1のシャフト内油路93Aの軸方向中央部から分岐され、径方向一方側へ向かうに従って径方向外側へ斜めに延びる。ベアリング潤滑用油路64Aは、シャフト本体部321aの外周面において、ベアリング370の軸方向他方側の面に臨む位置に開口する。ベアリング潤滑用油路364Aと第1のシャフト内油路93Aとの接続位置は、第1の径方向油路93Bと第1のシャフト内油路93Aとの接続位置よりも軸方向一方側である。ベアリング潤滑用油路364Aの本数は、例えば1本~8本である。  The shaft main body portion 321a further includes bearing lubrication oil passages 364A and 364B extending from the first in-shaft oil passage 93A to the bearings 370 and 371. The bearing lubrication oil passage 364A is branched from the axial center of the first shaft oil passage 93A and extends obliquely outward in the radial direction toward the one radial side. The bearing lubrication oil passage 64A opens at a position facing the other surface in the axial direction of the bearing 370 on the outer peripheral surface of the shaft main body 321a. The connection position between the bearing lubrication oil path 364A and the first in-shaft oil path 93A is on one axial side than the connection position between the first radial oil path 93B and the first in-shaft oil path 93A. . The number of bearing lubrication oil passages 364A is, for example, 1 to 8. *
ベアリング潤滑用油路364Bは、第1のシャフト内油路93Aの軸方向他方側の端部から分岐され、径方向外側へ延びる。ベアリング潤滑用油路364Bと第1のシャフト内油路93Aとの接続位置は、ベアリング371よりも軸方向他方側である。ベアリング潤滑用油路364Bは、第1のシャフト内油路93Aから径方向外側へ延びる。ベアリング潤滑用油路364Bは、シャフト本体部321aの外周面において、ベアリング371の軸方向他方側の面に臨む位置に開口する。ベアリング潤滑用油路364Bの本数は、例えば1本~8本である。  The bearing lubrication oil passage 364B is branched from the end portion on the other axial side of the first shaft oil passage 93A and extends outward in the radial direction. The connection position between the bearing lubrication oil passage 364B and the first in-shaft oil passage 93A is on the other side in the axial direction from the bearing 371. The bearing lubrication oil passage 364B extends radially outward from the first shaft oil passage 93A. The bearing lubrication oil passage 364B opens at a position facing the other surface in the axial direction of the bearing 371 on the outer peripheral surface of the shaft main body 321a. The number of bearing lubrication oil passages 364B is, for example, 1 to 8. *
本実施形態の発電機3において、第1のポンプ部340は、第1のシャフト320aを介して駆動される。発電機3において、第1のロータ320が回転して第1のシャフト320aが回転すると、第1のシャフト320aに固定された外歯歯車342が回転する。これにより、外歯歯車342と噛み合う内歯歯車343が回転し、吸入側油路340aを介して発電機収容部314の下部からオイルOが汲み上げられる。外歯歯車42と内歯歯車343の間に吸入されたオイルOは吐出側油路340bへ吐出される。吐出側油路340bへ吐出されたオイルOは、第1のシャフト内油路93Aに流入する。  In the generator 3 of this embodiment, the 1st pump part 340 is driven via the 1st shaft 320a. In the generator 3, when the first rotor 320 rotates and the first shaft 320a rotates, the external gear 342 fixed to the first shaft 320a rotates. As a result, the internal gear 343 that meshes with the external gear 342 rotates, and the oil O is pumped from the lower portion of the generator housing portion 314 via the suction-side oil passage 340a. The oil O sucked between the external gear 42 and the internal gear 343 is discharged to the discharge side oil passage 340b. The oil O discharged to the discharge side oil passage 340b flows into the first shaft oil passage 93A. *
第1のシャフト内油路93Aに流入したオイルOは、軸方向の中央部において分岐する複数の第1の径方向油路93Bへ流入する。さらに、第1の径方向油路93Bへ流入したオイルOは、第1の径方向油路93Bの径方向の中央部において分岐する2本の第3分岐油路363A、363Bへ流入する。第3分岐油路363Aに流入したオイルOは、接続部321cの軸方向一方側を向く面501cに位置する開口から第1シャフト凹部321A内へ流入する。  The oil O that has flowed into the first in-shaft oil passage 93A flows into a plurality of first radial oil passages 93B that branch off in the central portion in the axial direction. Further, the oil O that has flowed into the first radial oil passage 93B flows into two third branch oil passages 363A and 363B that branch at the radial center of the first radial oil passage 93B. The oil O that has flowed into the third branch oil passage 363A flows into the first shaft recess 321A from the opening located on the surface 501c facing the one side in the axial direction of the connecting portion 321c. *
第1シャフト凹部321A内に流入したオイルOは、遠心力により径方向外側へ移動し、ロータコア保持部321bの内周面501bに達する。内周面501b上のオイルOは、内周面501bの傾斜に沿って軸方向一方側へ移動する。内周面501bの軸方向一方側の端部に達したオイルOは、斜面部501dに沿って移動方向を径方向外側へ向けられ、第1シャフト凹部321Aの外側へ流出する。本実施形態では、内周面501bが傾斜面であることにより、オイルOが内周面501b上に滞留することなく円滑にコイル332側へ移動する。また、内周面501bの端部に斜面部501dを有することにより、オイルOの移動方向を軸方向から径方向に円滑に転回させることができ、オイルOの主な飛散方向をコイル332へ向けることができる。  The oil O that has flowed into the first shaft recess 321A moves radially outward due to centrifugal force and reaches the inner peripheral surface 501b of the rotor core holding portion 321b. The oil O on the inner peripheral surface 501b moves to one side in the axial direction along the inclination of the inner peripheral surface 501b. The oil O that has reached the end on the one axial side of the inner peripheral surface 501b is directed radially outward along the inclined surface 501d and flows out of the first shaft recess 321A. In the present embodiment, since the inner peripheral surface 501b is an inclined surface, the oil O smoothly moves to the coil 332 side without staying on the inner peripheral surface 501b. Further, by having the inclined surface portion 501d at the end portion of the inner peripheral surface 501b, the moving direction of the oil O can be smoothly turned from the axial direction to the radial direction, and the main scattering direction of the oil O is directed to the coil 332. be able to. *
第1シャフト凹部321Aから流出したオイルOは、内周面501bの軸方向一方側の端部から直接径方向外側へ飛散し、あるいは、フランジ部503の表面を伝わって径方向外側へ移動した後に飛散する。飛散したオイルOは、第1のステータ330のコイル332に付着し、コイル332を冷却する。 本実施形態では、ロータコア保持部321bがフランジ部503を有することで、第1シャフト凹部321Aの開口端の斜面部501dから径方向外側へ流出するオイルOを、フランジ部503の軸方向一方側の面を伝わらせて滑らかに径方向外側へ飛散させることができる。  The oil O that has flowed out of the first shaft recess 321A scatters directly from the end on the one axial side of the inner peripheral surface 501b to the outside in the radial direction, or travels radially outward through the surface of the flange portion 503. Scatter. The scattered oil O adheres to the coil 332 of the first stator 330 and cools the coil 332. In this embodiment, the rotor core holding portion 321b has the flange portion 503, so that the oil O flowing out from the inclined surface portion 501d at the opening end of the first shaft concave portion 321A to the radially outer side is disposed on one axial side of the flange portion 503. The surface can be transmitted and smoothly scattered radially outward. *
また本実施形態では、ロータコア保持部321bの内周面501bおよびフランジ部503と対向する位置にベアリング保持部312eが配置される。この構成により、第1シャフト凹部321Aから軸方向一方側へ飛散してベアリング保持部312eに衝突したオイルOについても、ベアリング保持部312eの表面形状によって、移動方向を軸方向から径方向へ滑らかに転回させることができる。これにより、効率よくコイル332にオイルOを供給できる。  In the present embodiment, the bearing holding portion 312e is disposed at a position facing the inner peripheral surface 501b and the flange portion 503 of the rotor core holding portion 321b. With this configuration, the oil O that has scattered from the first shaft recess 321A to one side in the axial direction and collided with the bearing holding portion 312e can be smoothly moved from the axial direction to the radial direction due to the surface shape of the bearing holding portion 312e. Can be turned around. Thereby, the oil O can be efficiently supplied to the coil 332. *
第1の径方向油路93Bから第3分岐油路363Bに流入したオイルOは、接続部321cの軸方向他方側を向く面502cに位置する開口から第2シャフト凹部321B内へ流入する。第2シャフト凹部321B内に流入したオイルOは、遠心力により径方向外側へ移動し、ロータコア保持部321bの内周面502bに達する。内周面502b上のオイルOは、内周面502bの傾斜に沿って軸方向他方側へ移動し、内周面501bの軸方向他方側の端部から第2シャフト凹部321Bの外側へ流出する。本実施形態では、内周面502bが傾斜面であることにより、オイルOが内周面502b上に滞留することなく円滑にコイル332側へ移動する。  The oil O that has flowed into the third branch oil passage 363B from the first radial oil passage 93B flows into the second shaft recess 321B from the opening located on the surface 502c facing the other axial side of the connection portion 321c. The oil O that has flowed into the second shaft recess 321B moves outward in the radial direction by centrifugal force and reaches the inner peripheral surface 502b of the rotor core holding portion 321b. The oil O on the inner peripheral surface 502b moves to the other axial side along the inclination of the inner peripheral surface 502b, and flows out of the second axial recess 321B from the other axial end of the inner peripheral surface 501b. . In the present embodiment, since the inner peripheral surface 502b is an inclined surface, the oil O moves smoothly to the coil 332 side without staying on the inner peripheral surface 502b. *
第2シャフト凹部321Bから流出したオイルOは、内周面502bの軸方向他方側の端部から直接径方向外側へ飛散し、あるいは、第2エンドプレート325の表面を伝わって径方向外側へ移動した後に飛散する。飛散したオイルOは、第1のステータ330のコイル332に付着し、コイル332を冷却する。  The oil O that has flowed out of the second shaft recess 321B directly scatters radially outward from the other axial end of the inner peripheral surface 502b, or travels radially outward along the surface of the second end plate 325. Then splash. The scattered oil O adheres to the coil 332 of the first stator 330 and cools the coil 332. *
本実施形態の発電機3では、図3に示すように、油路の流路断面積が、第1のシャフト内油路93A、第1の径方向油路93B、第3分岐油路363A、363Bの順に小さくなる。1本の第1のシャフト内油路93Aから複数の第1の径方向油路93Bが分岐され、さらに1本の第1の径方向油路93Bから2本の第3分岐油路363A、363Bが分岐されるため、分岐される毎に油路を細くすることで、油路全体の流路断面積を維持し、オイルOを一定の圧力で搬送できる。これにより、オイルOの流れが分岐した油路の一方に偏ったり、油路中にエアが入り込んでオイルOが流れなくなる不具合を抑制できる。その結果、所定量のオイルOをコイル332に供給でき、コイル332を十分に冷却できる。


In the generator 3 of the present embodiment, as shown in FIG. 3, the flow passage cross-sectional areas of the oil passages are the first shaft oil passage 93A, the first radial oil passage 93B, the third branch oil passage 363A, It becomes small in order of 363B. A plurality of first radial oil passages 93B are branched from one first shaft oil passage 93A, and two third branch oil passages 363A, 363B are further branched from one first radial oil passage 93B. Since the oil passage is narrowed every time it is branched, the cross-sectional area of the entire oil passage can be maintained, and the oil O can be conveyed at a constant pressure. As a result, it is possible to suppress a problem that the flow of the oil O is biased to one of the branched oil passages, or that air enters the oil passage and the oil O does not flow. As a result, a predetermined amount of oil O can be supplied to the coil 332, and the coil 332 can be sufficiently cooled.


本実施形態において、第1のシャフト内油路93Aの流路断面積は、分岐される複数の第1の径方向油路93Bの流路断面積の和の90%以上110%以下としてもよい。分岐前後の流路断面積の変化率を10%以下に抑えることで、第1のシャフト内油路93Aから第1の径方向油路93Bへ流れるオイルOの圧力変動を抑制できる。これにより、コイル332へのオイルOの供給量が周方向でばらつくのを抑制できる。  In the present embodiment, the flow passage cross-sectional area of the first shaft oil passage 93A may be 90% or more and 110% or less of the sum of the flow passage cross-sectional areas of the plurality of first radial oil passages 93B branched. . By suppressing the change rate of the channel cross-sectional area before and after branching to 10% or less, the pressure fluctuation of the oil O flowing from the first shaft oil passage 93A to the first radial oil passage 93B can be suppressed. Thereby, it can suppress that the supply amount of the oil O to the coil 332 varies in the circumferential direction. *
本実施形態において、第1の径方向油路93Bの流路断面積は、分岐される第3分岐油路363A、363Bの流路断面積の和の90%以上110%以下としてもよい。分岐前後の流路断面積の変化率を10%以下に抑えることで、第1の径方向油路93Bから2本の第3分岐油路363A、363Bへ流れるオイルOの圧力変動を抑制できる。これにより、コイル332へのオイルOの供給量が、軸方向一方側と他方側でばらつくのを抑制できる。  In the present embodiment, the flow passage cross-sectional area of the first radial oil passage 93B may be 90% or more and 110% or less of the sum of the flow passage cross-sectional areas of the third branch oil passages 363A and 363B branched. By suppressing the change rate of the cross-sectional area of the flow path before and after branching to 10% or less, it is possible to suppress the pressure fluctuation of the oil O flowing from the first radial oil path 93B to the two third branch oil paths 363A and 363B. Thereby, it can suppress that the supply amount of the oil O to the coil 332 varies on the one side and the other side in the axial direction. *
第1のシャフト内油路93Aを流通するオイルOの一部は、ベアリング潤滑用油路364Aを通ってシャフト本体部321aの外周面の開口から流出し、ベアリング370に供給される。また、オイルOの他の一部は、第1のシャフト内油路93Aからベアリング潤滑用油路364Bを通ってシャフト本体部321aの外周面の開口から流出し、ベアリング371に供給される。これにより、オイルOは、ベアリング370,371の潤滑剤として利用される。  Part of the oil O flowing through the first in-shaft oil passage 93 </ b> A flows out from the opening on the outer peripheral surface of the shaft main body 321 a through the bearing lubrication oil passage 364 </ b> A and is supplied to the bearing 370. Further, the other part of the oil O flows out from the opening in the outer peripheral surface of the shaft main body portion 321 a from the first in-shaft oil passage 93 </ b> A through the bearing lubrication oil passage 364 </ b> B, and is supplied to the bearing 371. As a result, the oil O is used as a lubricant for the bearings 370 and 371. *
本実施形態では、ベアリング潤滑用油路364A、364Bは、第1のシャフト内油路93Aから分岐される。したがって、上記流路断面積の関係は、ベアリング潤滑用油路364A、364Bの流路断面積を考慮してもよい。すなわち、第1のシャフト内油路93Aの流路断面積は、第1のシャフト内油路93Aから分岐される複数の第1の径方向油路93Bおよびベアリング潤滑用油路364A、364Bの流路断面積の和の90%以上110%以下としてもよい。これにより、第1のシャフト内油路93Aから分岐される各油路において圧力変動を抑制でき、オイルOの吐出量がばらつくのを抑制できる。  In the present embodiment, the bearing lubrication oil passages 364A and 364B are branched from the first in-shaft oil passage 93A. Therefore, the relationship between the flow passage cross-sectional areas may take into account the flow passage cross-sectional areas of the bearing lubrication oil passages 364A and 364B. That is, the flow passage cross-sectional area of the first shaft oil passage 93A is the flow of the plurality of first radial oil passages 93B and bearing lubrication oil passages 364A and 364B branched from the first shaft oil passage 93A. It may be 90% or more and 110% or less of the sum of the road cross-sectional areas. Thereby, pressure fluctuation can be suppressed in each oil passage branched from the first shaft oil passage 93A, and variation in the discharge amount of the oil O can be suppressed. *
以上のようにして、第1のシャフト320aの回転によって第1のポンプ部340を駆動し、第1のポンプ部340によってハウジング10に貯留されるオイルOを吸い上げて第1のロータ320、第1のステータ330およびベアリング370,371に供給できる。これにより、ハウジング10に貯留されるオイルOを利用して、第1のロータ320および第1のステータ330を冷却できるとともに、ベアリング370,371とシャフト本体部321aとの間の潤滑性を向上できる。第1のステータ330およびベアリング370,371に供給されたオイルOは、発電機収容部314内を落下して、再び発電機収容部314の下側の領域に貯留される。これにより、発電機収容部314内のオイルOを循環させることができる。  As described above, the first pump unit 340 is driven by the rotation of the first shaft 320a, and the oil O stored in the housing 10 is sucked up by the first pump unit 340, and the first rotor 320, first The stator 330 and the bearings 370 and 371 can be supplied. Thereby, the oil O stored in the housing 10 can be used to cool the first rotor 320 and the first stator 330, and the lubricity between the bearings 370 and 371 and the shaft main body 321a can be improved. . The oil O supplied to the first stator 330 and the bearings 370 and 371 falls in the generator housing portion 314 and is stored again in the lower region of the generator housing portion 314. Thereby, the oil O in the generator accommodating part 314 can be circulated. *



<モータ>



 次にモータ2の具体的な構成について説明する。 図4に示すように、本実施形態のモータ2は、ハウジング10と、一方向に延びる第2の回転軸J2に沿って配置される第2のシャフト20aを有する第2のロータ20と、回転検出部80と、第2のステータ30と、第2のポンプ部40と、ベアリング70,71と、を備える。 



<Motor>



Next, a specific configuration of the motor 2 will be described. As shown in FIG. 4, the motor 2 of this embodiment includes a housing 10, a second rotor 20 having a second shaft 20 a disposed along a second rotation axis J <b> 2 extending in one direction, and rotation. The detection part 80, the 2nd stator 30, the 2nd pump part 40, and the bearings 70 and 71 are provided.
第2の回転軸J2は、図4の左右方向に延びる。すなわち、本実施形態においては、図4の左右方向が一方向に相当する。以下のモータ2の説明においては、第2の回転軸J2の軸方向と平行な方向を単に「軸方向」と呼び、第2の回転軸J2を中心とする径方向を単に「径方向」と呼び、第2の回転軸J2を中心とする周方向を単に「周方向」と呼ぶ。また、軸方向のうち図4の左側を、「軸方向一方側」と呼び、軸方向のうち図4の右側を、「軸方向他方側」と呼ぶ。  The second rotation axis J2 extends in the left-right direction in FIG. That is, in this embodiment, the left-right direction in FIG. 4 corresponds to one direction. In the following description of the motor 2, a direction parallel to the axial direction of the second rotation axis J <b> 2 is simply referred to as “axial direction”, and a radial direction around the second rotation axis J <b> 2 is simply referred to as “radial direction”. The circumferential direction around the second rotation axis J2 is simply referred to as “circumferential direction”. Further, the left side of FIG. 4 in the axial direction is referred to as “one axial side”, and the right side of FIG. 4 in the axial direction is referred to as “the other axial side”. *
ハウジング10は、モータ収容本体部11と、内蓋部12と、外蓋部13と、を有する。本実施形態においてモータ収容本体部11と内蓋部12と外蓋部13とは、互いに別部材である。モータ収容本体部11は、軸方向一方側に開口する有底の筒状である。モータ収容本体部11は、底部11aと、本体筒部11bと、ベアリング保持部11cと、を有する。底部11aは、径方向に拡がる円環板状である。本体筒部11bは、底部11aの径方向外縁部から軸方向一方側に延びる円筒状である。ベアリング保持部11cは、底部11aの内縁部から軸方向一方側に突出する円筒状である。ベアリング保持部11cは、内周面にベアリング71を保持する。  The housing 10 includes a motor housing main body portion 11, an inner lid portion 12, and an outer lid portion 13. In the present embodiment, the motor housing main body 11, the inner lid 12, and the outer lid 13 are separate members. The motor housing main body 11 has a bottomed cylindrical shape that opens to one side in the axial direction. The motor housing body 11 has a bottom 11a, a body cylinder 11b, and a bearing holding part 11c. The bottom portion 11a has an annular plate shape that expands in the radial direction. The main body cylinder portion 11b has a cylindrical shape extending from the radially outer edge portion of the bottom portion 11a to one side in the axial direction. The bearing holding portion 11c has a cylindrical shape protruding from the inner edge portion of the bottom portion 11a to one side in the axial direction. The bearing holding portion 11c holds the bearing 71 on the inner peripheral surface. *
内蓋部12は、モータ収容本体部11の軸方向一方側に取り付けられる。内蓋部12は、円環板部12aと、外筒部12bと、内筒部12cと、内筒底部12dと、ベアリング保持部12eと、を有する。円環板部12aは、径方向に拡がる円環板状である。円環板部12aは、第2のステータ30の軸方向一方側を覆う。すなわち、内蓋部12は、第2のステータ30の軸方向一方側を覆う。  The inner lid part 12 is attached to one side in the axial direction of the motor housing main body part 11. The inner lid portion 12 includes an annular plate portion 12a, an outer cylinder portion 12b, an inner cylinder portion 12c, an inner cylinder bottom portion 12d, and a bearing holding portion 12e. The annular plate portion 12a has an annular plate shape that extends in the radial direction. The annular plate portion 12 a covers one axial side of the second stator 30. That is, the inner lid portion 12 covers one side of the second stator 30 in the axial direction. *
外筒部12bは、円環板部12aの径方向外縁部から軸方向他方側に延びる円筒状である。外筒部12bの軸方向他方側の端部は、本体筒部11bの軸方向一方側の端部と接触して固定される。内筒部12cは、円環板部12aの径方向内縁部から軸方向他方側に延びる円筒状である。内筒底部12dは、内筒部12cの軸方向他方側の端部から径方向内側に拡がる円環状である。内筒部12cと内筒底部12dとによって、内蓋部12には、内蓋部12の軸方向一方側の面から軸方向他方側に窪む第2凹部12gが設けられる。すなわち、内蓋部12は、第2凹部12gを有する。内蓋部12の軸方向一方側の面とは、本実施形態では円環板部12aの軸方向一方側の面である。第2凹部12gの内側面は、内筒部12cの径方向内側面と内筒底部12dの軸方向一方側の面とを含む。  The outer cylinder part 12b is a cylindrical shape extended from the radial direction outer edge part of the annular plate part 12a to the other side of an axial direction. The end portion on the other side in the axial direction of the outer tube portion 12b is fixed in contact with the end portion on the one side in the axial direction of the main body tube portion 11b. The inner cylinder portion 12c has a cylindrical shape extending from the radially inner edge of the annular plate portion 12a to the other side in the axial direction. The inner cylinder bottom portion 12d has an annular shape that extends radially inward from the other axial end of the inner cylinder portion 12c. Due to the inner cylinder portion 12c and the inner cylinder bottom portion 12d, the inner lid portion 12 is provided with a second recess 12g that is recessed from the surface on the one axial side of the inner lid portion 12 to the other axial side. That is, the inner lid part 12 has the 2nd recessed part 12g. In this embodiment, the surface on the one side in the axial direction of the inner lid portion 12 is the surface on the one side in the axial direction of the annular plate portion 12a. The inner side surface of the second recess 12g includes a radially inner side surface of the inner cylinder portion 12c and a surface on one axial side of the inner cylinder bottom portion 12d. *
ベアリング保持部12eは、内筒底部12dの軸方向他方側の面から軸方向他方側に突出する円筒状である。ベアリング保持部12eは、内周面にベアリング70を保持する。すなわち、内蓋部12は、ベアリング70を保持する。  The bearing holding portion 12e has a cylindrical shape that protrudes from the surface on the other axial side of the inner cylinder bottom portion 12d to the other axial side. The bearing holding part 12e holds the bearing 70 on the inner peripheral surface. That is, the inner lid portion 12 holds the bearing 70. *
モータ収容本体部11と内蓋部12とが互いに固定されることで、モータ収容本体部11と内蓋部12とによって囲まれたモータ収容部14が構成される。すなわち、ハウジング10は、モータ収容部14を有する。モータ収容部14の内部には、モータ室19A(図1参照)が構成される。モータ収容部14は、第2のロータ20および第2のステータ30を収容する。  By fixing the motor housing main body 11 and the inner lid 12 to each other, a motor housing 14 surrounded by the motor housing main body 11 and the inner lid 12 is configured. That is, the housing 10 has a motor housing portion 14. A motor chamber 19 </ b> A (see FIG. 1) is configured inside the motor housing portion 14. The motor housing portion 14 houses the second rotor 20 and the second stator 30. *
外蓋部13は、内蓋部12の軸方向一方側に取り付けられる。外蓋部13は、外蓋本体部13aと、栓体部13bと、を有する。外蓋本体部13aは、径方向に拡がる。外蓋本体部13aは、蓋板部13cと、突出部13dと、を有する。蓋板部13cは、径方向に拡がる円板状である。蓋板部13cの径方向外縁部は、円環板部12aの径方向外縁部に固定される。蓋板部13cの軸方向他方側の面は、円環板部12aの軸方向一方側の面と接触する。突出部13dは、蓋板部13cの中央部から軸方向他方側に突出する。突出部13dは、内筒部12cに軸方向一方側から挿入される。突出部13dは、内筒底部12dの軸方向一方側に間隔を空けて配置される。  The outer lid portion 13 is attached to one side in the axial direction of the inner lid portion 12. The outer lid portion 13 includes an outer lid main body portion 13a and a plug body portion 13b. The outer lid body 13a expands in the radial direction. The outer lid main body portion 13a includes a lid plate portion 13c and a protruding portion 13d. The lid plate portion 13c has a disk shape that expands in the radial direction. The radially outer edge portion of the lid plate portion 13c is fixed to the radially outer edge portion of the annular plate portion 12a. The surface on the other side in the axial direction of the cover plate portion 13c is in contact with the surface on the one side in the axial direction of the annular plate portion 12a. The protruding portion 13d protrudes from the center portion of the lid plate portion 13c to the other side in the axial direction. The protruding portion 13d is inserted into the inner cylinder portion 12c from one side in the axial direction. The protruding portion 13d is disposed at an interval on one side in the axial direction of the inner cylinder bottom portion 12d. *
外蓋本体部13aは、第1凹部13eと、第2貫通孔13fと、を有する。第1凹部13eは、外蓋本体部13aの軸方向一方側の面から軸方向他方側に窪む。第1凹部13eは、外蓋本体部13aの中央部に設けられ、蓋板部13cと突出部13dとに跨って設けられる。第2貫通孔13fは、第1凹部13eの底面から突出部13dの軸方向他方側の面まで貫通する。すなわち、第2貫通孔13fは、第1凹部13eの底面からハウジング10の内部まで貫通する。第2貫通孔13fは、第2凹部12gの内部に開口する。これにより、第2貫通孔13fは、第1凹部13eの内部と第2凹部12gの内部とを繋ぐ。第2貫通孔13fには、第2の回転軸J2が通る。  The outer lid main body 13a has a first recess 13e and a second through hole 13f. The first recess 13e is recessed from the surface on one side in the axial direction of the outer lid main body 13a to the other side in the axial direction. The 1st recessed part 13e is provided in the center part of the outer cover main-body part 13a, and is provided ranging over the cover board part 13c and the protrusion part 13d. The second through hole 13f penetrates from the bottom surface of the first recess 13e to the other surface in the axial direction of the protrusion 13d. That is, the second through hole 13f penetrates from the bottom surface of the first recess 13e to the inside of the housing 10. The second through hole 13f opens inside the second recess 12g. Thereby, the second through hole 13f connects the inside of the first recess 13e and the inside of the second recess 12g. The second rotation axis J2 passes through the second through hole 13f. *
栓体部13bは、第1凹部13eに嵌め込まれて外蓋本体部13aに固定される。栓体部13bは、第1凹部13eの軸方向一方側の開口を閉塞する。栓体部13bは、第2のシャフト20aの軸方向一方側を覆う。すなわち、外蓋部13は、第2のシャフト20aの軸方向一方側を覆う。栓体部13bは、軸方向一方側の端部に径方向外側に突出する鍔部13gを有する。鍔部13gは、蓋板部13cの軸方向一方側の面に接触する。これにより、栓体部13bを軸方向に位置決めできる。  The plug body portion 13b is fitted into the first recess 13e and is fixed to the outer lid main body portion 13a. The plug part 13b closes the opening on the one axial side of the first recess 13e. The plug part 13b covers one side in the axial direction of the second shaft 20a. That is, the outer lid portion 13 covers one axial side of the second shaft 20a. The plug body portion 13b has a flange portion 13g that protrudes radially outward at an end portion on one axial side. The flange portion 13g contacts the surface on one side in the axial direction of the lid plate portion 13c. Thereby, the plug part 13b can be positioned in an axial direction. *
外蓋部13には、ポンプ室46が設けられる。ポンプ室46は、栓体部13bの軸方向他方側の面と第1凹部13eの底面との軸方向の間に設けられる。本実施形態においてポンプ室46の軸方向他方側の面は、第1凹部13eの底面である。ポンプ室46の軸方向一方側の面は、栓体部13bの軸方向他方側の面である。ポンプ室46は、第1凹部13eの内部のうちの軸方向他方側の端部である。ポンプ室46は、内筒部12cの径方向内側、すなわち第2凹部12gの内部に配置される。ポンプ室46には、第2の回転軸J2が通る。図5に示すように、軸方向視において、ポンプ室46の外形は、円形状である。ポンプ室46は、後述する内歯歯車43および外歯歯車42を収容する。  A pump chamber 46 is provided in the outer lid portion 13. The pump chamber 46 is provided between the axial direction other side surface of the plug part 13b and the bottom surface of the first recess 13e. In the present embodiment, the surface on the other axial side of the pump chamber 46 is the bottom surface of the first recess 13e. The surface on the one axial side of the pump chamber 46 is the surface on the other axial side of the plug body portion 13b. The pump chamber 46 is an end on the other side in the axial direction of the inside of the first recess 13e. The pump chamber 46 is disposed on the radially inner side of the inner cylinder portion 12c, that is, inside the second recess 12g. The second rotation axis J2 passes through the pump chamber 46. As shown in FIG. 5, the outer shape of the pump chamber 46 is circular when viewed in the axial direction. The pump chamber 46 accommodates an internal gear 43 and an external gear 42 which will be described later. *
図4に示すように、ハウジング10は、蓋内油路61と、第2の吸い上げ油路96と、を有する。蓋内油路61は、外蓋部13に設けられる。より詳細には、蓋内油路61は、栓体部13bに設けられる。そのため、栓体部13bを交換することで、容易に蓋内油路61の構成を変えることができる。蓋内油路61は、ポンプ室46の軸方向一方側に配置される。蓋内油路61は、ポンプ室46の軸方向一方側において、ポンプ室46の上端部とポンプ室46の中央部とを繋ぐ。蓋内油路61におけるポンプ室46と繋がる部分は、栓体部13bの軸方向他方側の面に開口する。  As shown in FIG. 4, the housing 10 includes an in-lid oil passage 61 and a second suction oil passage 96. The in-lid oil passage 61 is provided in the outer lid portion 13. More specifically, the in-lid oil passage 61 is provided in the plug body portion 13b. Therefore, the configuration of the in-lid oil passage 61 can be easily changed by replacing the plug body portion 13b. The in-lid oil passage 61 is disposed on one axial side of the pump chamber 46. The oil passage 61 in the lid connects the upper end portion of the pump chamber 46 and the central portion of the pump chamber 46 on one axial side of the pump chamber 46. A portion connected to the pump chamber 46 in the oil passage 61 in the lid opens on the surface on the other axial side of the plug body portion 13b. *
ポンプ室46における蓋内油路61と繋がる上端部は、吐出口45である。すなわち、蓋内油路61は、吐出口45と繋がる。ポンプ室46における蓋内油路61と繋がる中央部は、接続口61aである。図5に示すように、吐出口45と接続口61aとは、例えば、円形状である。吐出口45は、接続口61aよりも上側に配置される。接続口61aには、第2の回転軸J2が通る。  An upper end portion connected to the in-lid oil passage 61 in the pump chamber 46 is a discharge port 45. That is, the in-lid oil passage 61 is connected to the discharge port 45. A central portion connected to the in-lid oil passage 61 in the pump chamber 46 is a connection port 61a. As shown in FIG. 5, the discharge port 45 and the connection port 61a are, for example, circular. The discharge port 45 is disposed above the connection port 61a. The second rotation axis J2 passes through the connection port 61a. *
第2のロータ20は、第2のシャフト20aと、ロータコア22と、マグネット23と、第1エンドプレート24と、第2エンドプレート25と、を有する。第2のシャフト20aは、モータシャフト本体21と、取付部材50と、を有する。モータシャフト本体21は、軸方向に延びる円柱状である。モータシャフト本体21は、大径部21aと、第1中径部21bと、第2中径部21cと、小径部21dと、出力部21eと、を有する。  The second rotor 20 includes a second shaft 20 a, a rotor core 22, a magnet 23, a first end plate 24, and a second end plate 25. The second shaft 20 a includes a motor shaft main body 21 and an attachment member 50. The motor shaft body 21 has a cylindrical shape extending in the axial direction. The motor shaft main body 21 has a large diameter portion 21a, a first medium diameter portion 21b, a second medium diameter portion 21c, a small diameter portion 21d, and an output portion 21e. *
大径部21aは、ロータコア22が取り付けられる部分である。大径部21aの軸方向一方側の端部における外周面には、雄ネジ部が設けられる。大径部21aの雄ネジ部には、ナット88が締め込まれる。第1中径部21bは、大径部21aの軸方向一方側において大径部21aに繋がる。第1中径部21bの外径は、大径部21aの外径よりも小さい。第1中径部21bの軸方向他方側の端部は、ベアリング70に回転可能に支持される。  The large diameter portion 21a is a portion to which the rotor core 22 is attached. A male screw portion is provided on the outer peripheral surface of the end portion on one axial side of the large diameter portion 21a. A nut 88 is fastened to the male screw portion of the large diameter portion 21a. The first medium diameter portion 21b is connected to the large diameter portion 21a on one axial side of the large diameter portion 21a. The outer diameter of the first medium diameter portion 21b is smaller than the outer diameter of the large diameter portion 21a. The end portion on the other axial side of the first medium diameter portion 21b is rotatably supported by the bearing 70. *
第2中径部21cは、大径部21aの軸方向他方側において大径部21aに繋がる。第2中径部21cの外径は、大径部21aの外径よりも小さい。第2中径部21cの軸方向一方側の端部は、ベアリング71に回転可能に支持される。ベアリング70,71は、第2のシャフト20aを回転可能に支持する。ベアリング70,71は、例えば、ボールベアリングである。  The second medium diameter portion 21c is connected to the large diameter portion 21a on the other axial side of the large diameter portion 21a. The outer diameter of the second medium diameter portion 21c is smaller than the outer diameter of the large diameter portion 21a. The end portion on the one axial side of the second medium diameter portion 21c is rotatably supported by the bearing 71. The bearings 70 and 71 rotatably support the second shaft 20a. The bearings 70 and 71 are ball bearings, for example. *
小径部21dは、第1中径部21bの軸方向一方側において第1中径部21bに繋がる。小径部21dの軸方向一方側の端部は、モータシャフト本体21の軸方向一方側の端部である。小径部21dの軸方向一方側の端部は、内筒部12cの径方向内側に配置される。小径部21dの外径は、第1中径部21bの外径よりも小さい。すなわち、小径部21dは、軸方向一方側に向かって外径が小さくなる部分である。  The small diameter portion 21d is connected to the first medium diameter portion 21b on one axial side of the first medium diameter portion 21b. An end portion on one side in the axial direction of the small diameter portion 21 d is an end portion on one side in the axial direction of the motor shaft main body 21. The end portion on one side in the axial direction of the small diameter portion 21d is disposed on the radially inner side of the inner cylinder portion 12c. The outer diameter of the small diameter portion 21d is smaller than the outer diameter of the first medium diameter portion 21b. That is, the small diameter portion 21d is a portion whose outer diameter decreases toward one side in the axial direction. *
出力部21eは、第2中径部21cの軸方向他方側において第2中径部21cに繋がる。出力部21eは、モータシャフト本体21の軸方向他方側の端部である。出力部21eの外径は、小径部21dの外径よりも小さい。出力部21eは、底部11aを軸方向に貫通してハウジング10の外部に突出する。  The output part 21e is connected to the second medium diameter part 21c on the other axial side of the second medium diameter part 21c. The output portion 21e is an end portion on the other side in the axial direction of the motor shaft main body 21. The outer diameter of the output part 21e is smaller than the outer diameter of the small diameter part 21d. The output portion 21e protrudes outside the housing 10 through the bottom portion 11a in the axial direction. *
モータシャフト本体21は、フランジ部21fを有する。フランジ部21fは、大径部21aの外周面から径方向外側に突出する。フランジ部21fは、大径部21aの外周面の一周に亘って設けられる円環板状である。フランジ部21fは、大径部21aの軸方向他方側の端部に設けられる。モータシャフト本体21は、モータシャフト本体21の軸方向一方側の端部から軸方向他方側に延びる穴部21gを有する。穴部21gは、軸方向一方側に開口する有底の穴である。すなわち、穴部21gの軸方向他方側の端部は、閉塞される。  The motor shaft main body 21 has a flange portion 21f. The flange portion 21f protrudes radially outward from the outer peripheral surface of the large diameter portion 21a. The flange portion 21f has an annular plate shape that is provided over the circumference of the outer peripheral surface of the large diameter portion 21a. The flange portion 21f is provided at the end portion on the other axial side of the large diameter portion 21a. The motor shaft main body 21 has a hole 21g extending from the end on one side in the axial direction of the motor shaft main body 21 to the other side in the axial direction. The hole 21g is a bottomed hole that opens to one side in the axial direction. That is, the end on the other axial side of the hole 21g is closed. *
取付部材50は、モータシャフト本体21の軸方向一方側に固定される。取付部材50は、穴部21gに嵌め合わされて固定される。取付部材50は、軸方向両側に開口する筒状である。本実施形態において取付部材50は、第2の回転軸J2と中心とする円筒状である。取付部材50は、モータシャフト本体21よりも軸方向一方側に延びて、第2貫通孔13fに通される。  The attachment member 50 is fixed to one side in the axial direction of the motor shaft main body 21. The attachment member 50 is fitted into the hole 21g and fixed. The attachment member 50 has a cylindrical shape that opens on both sides in the axial direction. In the present embodiment, the attachment member 50 has a cylindrical shape centered on the second rotation axis J2. The attachment member 50 extends to one side in the axial direction from the motor shaft main body 21 and passes through the second through hole 13f. *
取付部材50は、嵌合部51と、固定部52と、を有する。嵌合部51は、穴部21gに嵌め合わされる部分である。嵌合部51は、穴部21gの軸方向一方側の端部の内周面に固定され、穴部21g内からモータシャフト本体21よりも軸方向一方側まで延びる。嵌合部51の軸方向一方側の端部は、第2貫通孔13fに挿入される。すなわち、嵌合部51の少なくとも一部は、第2貫通孔13fに挿入される。そのため、取付部材50の外周面と第2貫通孔13fの内周面との径方向の隙間を大きくできる。これにより、振動等によって取付部材50の位置が径方向にずれた場合であっても、取付部材50が第2貫通孔13fの内周面と接触することを抑制できる。  The attachment member 50 includes a fitting part 51 and a fixing part 52. The fitting part 51 is a part fitted in the hole part 21g. The fitting portion 51 is fixed to the inner peripheral surface of the end portion on one side in the axial direction of the hole portion 21g, and extends from the inside of the hole portion 21g to one side in the axial direction than the motor shaft main body 21. One end of the fitting part 51 in the axial direction is inserted into the second through hole 13f. That is, at least a part of the fitting portion 51 is inserted into the second through hole 13f. Therefore, the radial gap between the outer peripheral surface of the mounting member 50 and the inner peripheral surface of the second through hole 13f can be increased. Thereby, even if it is a case where the position of the attachment member 50 shifts | deviates to radial direction by vibration etc., it can suppress that the attachment member 50 contacts the internal peripheral surface of the 2nd through-hole 13f. *
固定部52は、嵌合部51の軸方向一方側に位置する。固定部52は、嵌合部51の軸方向一方側の端部に繋がる。固定部52の外径は、嵌合部51の外径よりも大きく、第2貫通孔13fの内径よりも小さい。固定部52は、ポンプ室46内に挿入される。嵌合部51の内径と固定部52の内径とは、例えば、同じである。  The fixing part 52 is located on one side in the axial direction of the fitting part 51. The fixing portion 52 is connected to the end portion on one side in the axial direction of the fitting portion 51. The outer diameter of the fixing portion 52 is larger than the outer diameter of the fitting portion 51 and smaller than the inner diameter of the second through hole 13f. The fixing portion 52 is inserted into the pump chamber 46. The inner diameter of the fitting part 51 and the inner diameter of the fixed part 52 are, for example, the same. *
取付部材50には、後述する外歯歯車42が固定される。本実施形態では、外歯歯車42は、固定部52の径方向外側面に固定される。より詳細には、外歯歯車42を軸方向に貫通する固定孔部42bに、固定部52が嵌め合わされて固定される。このように、本実施形態によれば、固定部52より外径が小さい嵌合部51を穴部21gに嵌め合わせ、嵌合部51よりも外径が大
きい固定部52に外歯歯車42を固定する。そのため、穴部21gの内径を外歯歯車42の固定孔部42bの内径よりも小さくできる。これにより、穴部21gの内径を比較的小さくしやすく、モータシャフト本体21の剛性が低下することを抑制できる。 
An external gear 42 described later is fixed to the attachment member 50. In the present embodiment, the external gear 42 is fixed to the radially outer surface of the fixing portion 52. More specifically, the fixing portion 52 is fitted and fixed in a fixing hole portion 42b that penetrates the external gear 42 in the axial direction. Thus, according to the present embodiment, the fitting portion 51 having an outer diameter smaller than that of the fixing portion 52 is fitted into the hole portion 21g, and the external gear 42 is attached to the fixing portion 52 having an outer diameter larger than that of the fitting portion 51. Fix it. Therefore, the inner diameter of the hole portion 21g can be made smaller than the inner diameter of the fixed hole portion 42b of the external gear 42. Thereby, it is easy to make the internal diameter of the hole 21g comparatively small, and it can suppress that the rigidity of the motor shaft main body 21 falls.
第2のシャフト20aは、第2のシャフト20aの内部に設けられる第2のシャフト内油路97Aを有する。第2のシャフト内油路97Aは、第2のシャフト20aの軸方向一方側の端部から軸方向他方側に窪んで延びる有底の穴部である。第2のシャフト内油路97Aは、軸方向一方側に開口する。第2のシャフト内油路97Aは、取付部材50の軸方向一方側の端部から第2中径部21cの軸方向他方側の端部まで延びて、取付部材50とモータシャフト本体21とに跨って設けられる。第2のシャフト内油路97Aは、取付部材50の内部と穴部21gとが軸方向に繋がって構成される。すなわち、取付部材50の径方向内側面は、第2のシャフト内油路97Aの径方向内側面の一部を構成する。  The second shaft 20a has a second in-shaft oil passage 97A provided inside the second shaft 20a. The second shaft oil passage 97A is a bottomed hole that extends from the end on the one axial side of the second shaft 20a so as to be recessed toward the other axial side. The second in-shaft oil passage 97A opens to one axial side. The second shaft oil passage 97 </ b> A extends from one end of the mounting member 50 in the axial direction to the other end of the second medium diameter portion 21 c in the axial direction. It is provided across. The second in-shaft oil passage 97A is configured by connecting the inside of the attachment member 50 and the hole 21g in the axial direction. That is, the radially inner side surface of the mounting member 50 constitutes a part of the radially inner side surface of the second shaft oil passage 97A. *
本実施形態において軸方向と直交する断面において第2のシャフト内油路97Aの内縁は、第2の回転軸J2を中心とする円形状である。第2のシャフト内油路97Aにおける取付部材50に設けられる部分の内径は、第2のシャフト内油路97Aにおけるモータシャフト本体21に設けられる部分の内径よりも小さい。すなわち、取付部材50の内径は、穴部21gの内径よりも小さい。取付部材50の軸方向一方側の開口が接続口61aと繋がることで、第2のシャフト内油路97Aは、取付部材50の内部を介して蓋内油路61と繋がる。すなわち、第2のシャフト内油路97Aは、第2のシャフト20aの軸方向一方側の端部において蓋内油路61に開口する。  In the present embodiment, the inner edge of the second shaft oil passage 97A has a circular shape with the second rotation axis J2 as the center in the cross section orthogonal to the axial direction. The inner diameter of the portion provided in the mounting member 50 in the second shaft oil passage 97A is smaller than the inner diameter of the portion provided in the motor shaft main body 21 in the second shaft oil passage 97A. That is, the inner diameter of the mounting member 50 is smaller than the inner diameter of the hole 21g. The opening on one side in the axial direction of the mounting member 50 is connected to the connection port 61 a, whereby the second shaft oil passage 97 </ b> A is connected to the lid oil passage 61 through the inside of the attachment member 50. In other words, the second shaft oil passage 97 </ b> A opens into the lid oil passage 61 at the end on one axial side of the second shaft 20 a. *
第2のシャフト20aは、第2のシャフト内油路97Aと第2のシャフト20aの外周面とを繋ぐ第1貫通孔26a~26dを有する。第1貫通孔26a~26dは、第2の径方向油路97Bとして機能する。第1貫通孔26a~26dは、径方向に延びる。第1貫通孔26a,26bは、大径部21aに設けられる。第1貫通孔26a,26bは、軸方向において、ナット88とフランジ部21fとの間に配置される。図6に示すように、第1貫通孔26aの径方向外側の端部は、第1エンドプレート24とロータコア22との軸方向の隙間27aに開口する。第1貫通孔26bの径方向外側の端部は、第2エンドプレート25とロータコア22との軸方向の隙間27bに開口する。  The second shaft 20a has first through holes 26a to 26d that connect the second in-shaft oil passage 97A and the outer peripheral surface of the second shaft 20a. The first through holes 26a to 26d function as the second radial oil passage 97B. The first through holes 26a to 26d extend in the radial direction. The first through holes 26a and 26b are provided in the large diameter portion 21a. The first through holes 26a and 26b are disposed between the nut 88 and the flange portion 21f in the axial direction. As shown in FIG. 6, the radially outer end of the first through hole 26 a opens in the axial gap 27 a between the first end plate 24 and the rotor core 22. The radially outer end of the first through hole 26 b opens in the axial gap 27 b between the second end plate 25 and the rotor core 22. *
第1貫通孔26cは、第1中径部21bに設けられる。第1貫通孔26cの径方向外側の端部は、ベアリング70の軸方向一方側においてベアリング保持部12eの径方向内側に開口する。第1貫通孔26dは、第2中径部21cに設けられる。第1貫通孔26dの径方向外側の端部は、ベアリング71の軸方向他方側においてベアリング保持部11cの径方向内側に開口する。第1貫通孔26a~26dは、例えば、それぞれ周方向に沿って複数設けられる。  The first through hole 26c is provided in the first medium diameter portion 21b. The radially outer end of the first through hole 26c opens on the radially inner side of the bearing holding portion 12e on one axial side of the bearing 70. The first through hole 26d is provided in the second medium diameter portion 21c. The radially outer end of the first through hole 26d opens on the radially inner side of the bearing holding portion 11c on the other axial side of the bearing 71. For example, a plurality of first through holes 26a to 26d are provided along the circumferential direction. *
図4に示すように、ロータコア22はモータシャフト本体21に固定される円環状である。本実施形態においてロータコア22は大径部21aに嵌め合わされる。ロータコア22はロータコア22を軸方向に貫通するマグネット挿入孔22bを有する。マグネット挿入孔22bは周方向に沿って複数設けられる。マグネット23はマグネット挿入孔22bに挿入される。  As shown in FIG. 4, the rotor core 22 has an annular shape fixed to the motor shaft main body 21. In the present embodiment, the rotor core 22 is fitted into the large diameter portion 21a. The rotor core 22 has a magnet insertion hole 22b that penetrates the rotor core 22 in the axial direction. A plurality of magnet insertion holes 22b are provided along the circumferential direction. The magnet 23 is inserted into the magnet insertion hole 22b. *
第1エンドプレート24および第2エンドプレート25は、径方向に拡がる円環板状である。第1エンドプレート24および第2エンドプレート25には、大径部21aが通される。第1エンドプレート24と第2エンドプレート25とは、ロータコア22と接触した状態で、ロータコア22を軸方向に挟む。  The first end plate 24 and the second end plate 25 have an annular plate shape that expands in the radial direction. A large diameter portion 21 a is passed through the first end plate 24 and the second end plate 25. The first end plate 24 and the second end plate 25 sandwich the rotor core 22 in the axial direction while being in contact with the rotor core 22. *
図6に示すように、第1エンドプレート24は、ロータコア22の軸方向一方側に配置される。第1エンドプレート24の径方向外縁部は、軸方向他方側に突出し、ロータコア22の軸方向一方側の面のうち径方向外縁部と接触する。第1エンドプレート24の径方向外縁部は、マグネット挿入孔22bの軸方向一方側の開口部と軸方向に重なり、マグネット挿入孔22bに挿入されたマグネット23を軸方向一方側から押さえる。第1エンドプレート24の径方向外縁部よりも径方向内側の部分は、ロータコア22の軸方向一方側の面と軸方向に隙間27aを介して対向する。  As shown in FIG. 6, the first end plate 24 is disposed on one axial side of the rotor core 22. The radially outer edge portion of the first end plate 24 protrudes to the other side in the axial direction, and contacts the radially outer edge portion of the surface on the one axial side of the rotor core 22. The radially outer edge of the first end plate 24 overlaps with the opening on one axial side of the magnet insertion hole 22b in the axial direction, and presses the magnet 23 inserted into the magnet insertion hole 22b from one axial side. A portion radially inward from the radially outer edge portion of the first end plate 24 faces the surface on one side in the axial direction of the rotor core 22 in the axial direction through a gap 27a. *
第1エンドプレート24は、第1エンドプレート24の軸方向一方側の面から軸方向他方側に窪む噴出溝24aを有する。噴出溝24aは、径方向に延びる。噴出溝24aの径方向内側の端部は、第1エンドプレート24を軸方向に貫通して隙間27aと繋がる。噴出溝24aの径方向外側の端部は、第1エンドプレート24の径方向外側に開口し、後述するコイル32と径方向に隙間を介して対向する。噴出溝24aの径方向内側の部分における軸方向一方側の開口は、ナット88と第1エンドプレート24との軸方向の間に挟まれて固定されるワッシャ89によって閉塞される。ワッシャ89は、径方向に拡がる円環板状である。  The first end plate 24 has an ejection groove 24 a that is recessed from the surface on one side in the axial direction of the first end plate 24 toward the other side in the axial direction. The ejection groove 24a extends in the radial direction. The radially inner end of the ejection groove 24a penetrates the first end plate 24 in the axial direction and is connected to the gap 27a. The radially outer end of the ejection groove 24a opens to the radially outer side of the first end plate 24, and opposes a coil 32, which will be described later, with a gap in the radial direction. The opening on the one axial side in the radially inner portion of the ejection groove 24a is closed by a washer 89 that is sandwiched and fixed between the nut 88 and the first end plate 24 in the axial direction. The washer 89 has an annular plate shape that expands in the radial direction. *
第2エンドプレート25は、ロータコア22の軸方向他方側に配置される。第2エンドプレート25の径方向外縁部は、軸方向一方側に突出し、ロータコア22の軸方向他方側の面のうち径方向外縁部と接触する。第2エンドプレート25の径方向外縁部は、マグネット挿入孔22bの軸方向他方側の開口部と軸方向に重なり、マグネット挿入孔22bに挿入されたマグネット23を軸方向他方側から押さえる。これにより、マグネット挿入孔22bに挿入されたマグネット23は、軸方向の両側を第1エンドプレート24と第2エンドプレート25とによって押さえられる。したがって、マグネット23がマグネット挿入孔22bから抜け出ることを抑制できる。  The second end plate 25 is disposed on the other axial side of the rotor core 22. The radially outer edge portion of the second end plate 25 projects to one side in the axial direction and contacts the radially outer edge portion of the surface on the other axial side of the rotor core 22. The radially outer edge of the second end plate 25 overlaps the opening on the other axial side of the magnet insertion hole 22b in the axial direction, and presses the magnet 23 inserted into the magnet insertion hole 22b from the other axial side. Thereby, the magnet 23 inserted into the magnet insertion hole 22b is pressed by the first end plate 24 and the second end plate 25 on both sides in the axial direction. Therefore, the magnet 23 can be prevented from coming out of the magnet insertion hole 22b. *
第2エンドプレート25の径方向外縁部よりも径方向内側の部分は、ロータコア22の軸方向他方側の面と軸方向に隙間27bを介して対向する。第2エンドプレート25は、第2エンドプレート25の軸方向他方側の面から軸方向一方側に窪む噴出溝25aを有する。噴出溝25aは、径方向に延びる。噴出溝25aの径方向内側の端部は、第2エンドプレート25を軸方向に貫通して隙間27bと繋がる。噴出溝25aの径方向外側の端部は、第2エンドプレート25の径方向外側に開口し、後述するコイル32と径方向に隙間を介して対向する。噴出溝25aの径方向内側の部分における軸方向他方側の開口は、フランジ部21fによって閉塞される。  The radially inner portion of the second end plate 25 is radially opposed to the surface on the other axial side of the rotor core 22 via the gap 27b. The second end plate 25 has an ejection groove 25 a that is recessed from the surface on the other axial side of the second end plate 25 to the one axial side. The ejection groove 25a extends in the radial direction. The radially inner end of the ejection groove 25a penetrates the second end plate 25 in the axial direction and is connected to the gap 27b. The radially outer end of the ejection groove 25a opens to the radially outer side of the second end plate 25, and opposes the coil 32, which will be described later, with a gap in the radial direction. The opening on the other side in the axial direction in the radially inner portion of the ejection groove 25a is closed by the flange portion 21f. *
第1エンドプレート24とロータコア22と第2エンドプレート25とは、ナット88およびワッシャ89とフランジ部21fとによって軸方向に挟持される。ナット88が大径部21aの雄ネジ部に締め込まれることで、ナット88がワッシャ89を介して、第1エンドプレート24とロータコア22と第2エンドプレート25とをフランジ部21fに押し付ける。これにより、第1エンドプレート24とロータコア22と第2エンドプレート25とは、第2のシャフト20aに固定される。  The first end plate 24, the rotor core 22, and the second end plate 25 are sandwiched in the axial direction by the nut 88, the washer 89, and the flange portion 21f. When the nut 88 is tightened into the male screw portion of the large diameter portion 21 a, the nut 88 presses the first end plate 24, the rotor core 22, and the second end plate 25 against the flange portion 21 f via the washer 89. Thereby, the 1st end plate 24, the rotor core 22, and the 2nd end plate 25 are fixed to the 2nd shaft 20a. *
図4に示す回転検出部80は、第2のロータ20の回転を検出する。本実施形態において回転検出部80は、例えば、VR(Variable Reluctance)型レゾルバである。回転検出部80は、内筒部12cの径方向内側に配置される。回転検出部80は、被検出部81と、センサ部82と、を有する。  The rotation detector 80 shown in FIG. 4 detects the rotation of the second rotor 20. In the present embodiment, the rotation detection unit 80 is, for example, a VR (Variable Reluctance) type resolver. The rotation detector 80 is disposed on the radially inner side of the inner cylinder portion 12c. The rotation detection unit 80 includes a detected unit 81 and a sensor unit 82. *
被検出部81は、周方向に延びる環状である。被検出部81は、第2のシャフト20aに嵌め合わされて固定される。より詳細には、被検出部81は、小径部21dに嵌め合わされて固定される。被検出部81の径方向内縁部における軸方向他方側の面は、第1中径部21bと小径部21dとの間の段差に接触する。被検出部81は、取付部材50と径方向に重なる。そのため、被検出部81と取付部材50とが径方向に重ならずに軸方向に離れて配置される場合に比べて、第2のシャフト20aを軸方向に小型化しやすい。被検出部81は、磁性体製である。  The detected part 81 has an annular shape extending in the circumferential direction. The detected part 81 is fitted and fixed to the second shaft 20a. More specifically, the detected portion 81 is fitted and fixed to the small diameter portion 21d. The surface on the other axial side of the radially inner edge of the detected portion 81 is in contact with the step between the first medium diameter portion 21b and the small diameter portion 21d. The detected portion 81 overlaps the mounting member 50 in the radial direction. Therefore, the second shaft 20a can be easily downsized in the axial direction as compared to the case where the detected portion 81 and the attachment member 50 are arranged in the axial direction without overlapping in the radial direction. The detected part 81 is made of a magnetic material. *
なお、本明細書において「ある対象同士が、ある方向に重なる」とは、ある方向に沿って視た場合に、ある対象同士が重なることを含む。すなわち、被検出部81と取付部材50とが径方向に重なるとは、径方向に沿って視た場合に、被検出部81と取付部材50とが重なることを含む。  In the present specification, “some objects overlap in a certain direction” includes that certain objects overlap each other when viewed along a certain direction. That is, that the detected portion 81 and the attachment member 50 overlap in the radial direction includes the overlap of the detected portion 81 and the attachment member 50 when viewed along the radial direction. *
センサ部82は、内蓋部12と外蓋部13との軸方向の間に配置される。より詳細には、センサ部82は、内筒部12cの径方向内側において、内筒底部12dの軸方向一方側の面に固定される。すなわち、センサ部82は、内蓋部12に取り付けられる。そのため、センサ部82を取り付けやすい。センサ部82は、第2凹部12g内に配置される。そのため、内蓋部12をモータ収容本体部11に取り付けた後に、第2凹部12gの軸方向一方側の開口から第2凹部12g内にセンサ部82を挿入して配置することができる。したがって、センサ部82を配置することが容易である。  The sensor portion 82 is disposed between the inner lid portion 12 and the outer lid portion 13 in the axial direction. More specifically, the sensor part 82 is fixed to the surface on the one axial side of the inner cylinder bottom part 12d on the radially inner side of the inner cylinder part 12c. That is, the sensor unit 82 is attached to the inner lid unit 12. Therefore, it is easy to attach the sensor unit 82. The sensor part 82 is arrange | positioned in the 2nd recessed part 12g. Therefore, after attaching the inner lid part 12 to the motor housing main body part 11, the sensor part 82 can be inserted into the second recessed part 12g from the opening on the one axial side of the second recessed part 12g. Therefore, it is easy to arrange the sensor unit 82. *
センサ部82は、被検出部81の径方向外側を囲む環状である。センサ部82は、周方向に沿って複数のコイルを有する。第2のシャフト20aとともに被検出部81が回転することによって、センサ部82のコイルには、被検出部81の周方向位置に応じた誘起電圧が生じる。センサ部82は、誘起電圧を検出することで、被検出部81の回転を検出する。これにより、回転検出部80は、第2のシャフト20aの回転を検出して、第2のロータ20の回転を検出する。  The sensor unit 82 has an annular shape that surrounds the radially outer side of the detected portion 81. The sensor unit 82 has a plurality of coils along the circumferential direction. When the detected portion 81 rotates together with the second shaft 20a, an induced voltage corresponding to the circumferential position of the detected portion 81 is generated in the coil of the sensor portion 82. The sensor unit 82 detects the rotation of the detected unit 81 by detecting the induced voltage. Thereby, the rotation detection unit 80 detects the rotation of the second rotor 20 by detecting the rotation of the second shaft 20a. *
第2のステータ30は、第2のロータ20と径方向に隙間を介して対向する。第2のステータ30は、ステータコア31と、ステータコア31に装着される複数のコイル32と、を有する。ステータコア31は、第2の回転軸J2を中心とした円環状である。ステータコア31の外周面は、本体筒部11bの内周面に固定される。ステータコア31は、ロータコア22の径方向外側に隙間を介して対向する。  The second stator 30 faces the second rotor 20 via a gap in the radial direction. The second stator 30 has a stator core 31 and a plurality of coils 32 attached to the stator core 31. The stator core 31 has an annular shape around the second rotation axis J2. The outer peripheral surface of the stator core 31 is fixed to the inner peripheral surface of the main body cylinder portion 11b. The stator core 31 is opposed to the outer side in the radial direction of the rotor core 22 via a gap. *
第2のポンプ部40は、外蓋部13の中央部に設けられる。第2のポンプ部40は、第2のシャフト20aの軸方向一方側に配置される。第2のポンプ部40は、外歯歯車42と、内歯歯車43と、上述したポンプ室46と、吸入口44と、吐出口45と、貯留部48と、を有する。外歯歯車42は、第2の回転軸J2周りに回転可能な歯車である。外歯歯車42は、第2のシャフト20aの軸方向一方側の端部に固定される。より詳細には、外歯歯車42は、固定部52の外周面に固定される。そのため、取付部材50を介して外歯歯車42をモータシャフト本体21に固定できる。これにより、取付部材50の寸法を調整することで、モータシャフト本体21の寸法および外歯歯車42の寸法を変えずに、外歯歯車42をモータシャフト本体21に固定できる。  The second pump part 40 is provided in the center part of the outer lid part 13. The 2nd pump part 40 is arrange | positioned at the axial direction one side of the 2nd shaft 20a. The second pump unit 40 includes an external gear 42, an internal gear 43, the above-described pump chamber 46, a suction port 44, a discharge port 45, and a storage unit 48. The external gear 42 is a gear that can rotate around the second rotation axis J2. The external gear 42 is fixed to the end portion on one side in the axial direction of the second shaft 20a. More specifically, the external gear 42 is fixed to the outer peripheral surface of the fixing portion 52. Therefore, the external gear 42 can be fixed to the motor shaft main body 21 via the mounting member 50. Thereby, the external gear 42 can be fixed to the motor shaft main body 21 without changing the dimensions of the motor shaft main body 21 and the external gear 42 by adjusting the dimensions of the mounting member 50. *
外歯歯車42は、ポンプ室46内に収容される。図5に示すように、外歯歯車42は、外周面に複数の歯部42aを有する。外歯歯車42の歯部42aの歯形は、トロコイド歯形である。  The external gear 42 is accommodated in the pump chamber 46. As shown in FIG. 5, the external gear 42 has a plurality of tooth portions 42a on the outer peripheral surface. The tooth profile of the tooth portion 42a of the external gear 42 is a trochoidal tooth profile. *
内歯歯車43は、第2の回転軸J2に対して偏心する偏心回転軸Jt周りに回転可能な円環状の歯車である。内歯歯車43は、ポンプ室46内に収容される。内歯歯車43は、外歯歯車42の径方向外側を囲み、外歯歯車42と噛み合う。内歯歯車43は、内周面に複数の歯部43aを有する。内歯歯車43の歯部43aの歯形は、トロコイド歯形である。このように、外歯歯車42の歯部42aの歯形および内歯歯車43の歯部43aの歯形がトロコイド歯形であるため、トロコイドポンプを構成することができる。したがって、第2のポンプ部40から生じる騒音を低減でき、第2のポンプ部40から吐出されるオイルOの圧力および量を安定させやすい。  The internal gear 43 is an annular gear that is rotatable around an eccentric rotation axis Jt that is eccentric with respect to the second rotation axis J2. The internal gear 43 is accommodated in the pump chamber 46. The internal gear 43 surrounds the radially outer side of the external gear 42 and meshes with the external gear 42. The internal gear 43 has a plurality of tooth portions 43a on the inner peripheral surface. The tooth profile of the tooth portion 43a of the internal gear 43 is a trochoidal tooth profile. Thus, since the tooth profile of the tooth portion 42a of the external gear 42 and the tooth profile of the tooth portion 43a of the internal gear 43 are trochoidal tooth profiles, a trochoid pump can be configured. Therefore, noise generated from the second pump unit 40 can be reduced, and the pressure and amount of the oil O discharged from the second pump unit 40 can be easily stabilized. *
本実施形態では、第1凹部13eの軸方向一方側の開口から内歯歯車43および外歯歯車42を挿入した後に、栓体部13bによって第1凹部13eの軸方向一方側の開口を閉塞することで、ポンプ室46を構成することができるとともに、内歯歯車43および外歯歯車42をポンプ室46に
収容できる。そのため、第2のポンプ部40の組み立てを容易にできる。 
In the present embodiment, after the internal gear 43 and the external gear 42 are inserted from the opening on the one axial side of the first recess 13e, the opening on the one axial side of the first recess 13e is closed by the plug portion 13b. Thus, the pump chamber 46 can be configured, and the internal gear 43 and the external gear 42 can be accommodated in the pump chamber 46. Therefore, the assembly of the 2nd pump part 40 can be made easy.
上述したように吸入口44は、第2の吸い上げ油路96と繋がる。図4に示すように、吸入口44は、ポンプ室46の軸方向他方側に開口する。吸入口44は、外歯歯車42と内歯歯車43との隙間と繋がる。吸入口44は、第2の吸い上げ油路96を介してオイルOを、ポンプ室46内、より詳細には外歯歯車42と内歯歯車43との隙間内に吸入可能である。図5に示すように、吸入口44は、貯留部48の下側の端部よりも上側、かつ、外歯歯車42の下側の端部よりも上側に配置される。  As described above, the suction port 44 is connected to the second suction oil passage 96. As shown in FIG. 4, the suction port 44 opens to the other axial side of the pump chamber 46. The suction port 44 is connected to a gap between the external gear 42 and the internal gear 43. The suction port 44 can suck the oil O through the second suction oil passage 96 into the pump chamber 46, more specifically, into the gap between the external gear 42 and the internal gear 43. As shown in FIG. 5, the suction port 44 is disposed above the lower end portion of the storage portion 48 and above the lower end portion of the external gear 42. *
上述したように吐出口45は、蓋内油路61と繋がる。図4に示すように、吐出口45は、ポンプ室46の軸方向一方側に開口する。吐出口45は、外歯歯車42と内歯歯車43との隙間と繋がる。吐出口45は、ポンプ室46内、より詳細には外歯歯車42と内歯歯車43との隙間内からオイルOを吐出可能である。  As described above, the discharge port 45 is connected to the in-lid oil passage 61. As shown in FIG. 4, the discharge port 45 opens on one axial side of the pump chamber 46. The discharge port 45 is connected to a gap between the external gear 42 and the internal gear 43. The discharge port 45 can discharge the oil O from the inside of the pump chamber 46, more specifically, from the gap between the external gear 42 and the internal gear 43. *
貯留部48は、ポンプ室46の鉛直方向下側領域の軸方向一方側においてポンプ室46と繋がる。図5に示すように、軸方向視において貯留部48の形状は、下側に凸となる弓形状である。貯留部48には、吸入口44からポンプ室46内に吸入されたオイルOの一部が流入する。  The reservoir 48 is connected to the pump chamber 46 on one axial side of the lower region in the vertical direction of the pump chamber 46. As shown in FIG. 5, the shape of the storage portion 48 in the axial direction is a bow shape that protrudes downward. Part of the oil O sucked into the pump chamber 46 from the suction port 44 flows into the storage portion 48. *
吸入口44は、貯留部48の下側の端部よりも上側に配置されるため、第2のポンプ部40が停止しても、貯留部48に流入したオイルOの少なくとも一部は、吸入口44からモータ収容部14内に戻らずに、貯留部48内に貯留される。これにより、第2のポンプ部40が停止している際に、ポンプ室46内の外歯歯車42の下側の部分および内歯歯車43の下側の部分を貯留部48内のオイルOと接触した状態にすることができる。したがって、第2のポンプ部40を再度駆動した際に、外歯歯車42の歯部42aと内歯歯車43の歯部43aとの間、およびポンプ室46の内周面と内歯歯車43の外周面との間にオイルOを介在させることができ、焼き付きが生じることを抑制できる。  Since the suction port 44 is disposed above the lower end of the storage part 48, even if the second pump part 40 stops, at least part of the oil O that has flowed into the storage part 48 is suctioned. It is stored in the storage part 48 without returning from the mouth 44 into the motor housing part 14. Thus, when the second pump unit 40 is stopped, the lower part of the external gear 42 and the lower part of the internal gear 43 in the pump chamber 46 are replaced with the oil O in the storage unit 48. It can be in contact. Therefore, when the second pump portion 40 is driven again, the space between the tooth portion 42 a of the external gear 42 and the tooth portion 43 a of the internal gear 43, and the inner peripheral surface of the pump chamber 46 and the internal gear 43. Oil O can be interposed between the outer peripheral surface and the occurrence of seizure. *
第2のロータ20が回転して第2のシャフト20aが回転すると、第2のシャフト20aに固定された外歯歯車42が回転する。これにより、外歯歯車42と噛み合う内歯歯車43が回転して、吸入口44からポンプ室46内に吸入されるオイルOが、外歯歯車42と内歯歯車43との間を介して、吐出口45へと送られる。このようにして、第2のポンプ部40は、第2のシャフト20aを介して駆動される。吐出口45から吐出されたオイルOは、蓋内油路61に流入し、接続口61aから第2のシャフト内油路97Aへと流入する。図6に矢印で示すように、第2のシャフト内油路97Aに流入したオイルOは、回転する第2のシャフト20aの遠心力によって、径方向外側に力を受け、第1貫通孔26a~26d(すなわち、第2の径方向油路97B)を通って第2のシャフト20aの外部へと流出する。  When the second rotor 20 rotates and the second shaft 20a rotates, the external gear 42 fixed to the second shaft 20a rotates. As a result, the internal gear 43 that meshes with the external gear 42 rotates, and the oil O sucked into the pump chamber 46 from the suction port 44 passes between the external gear 42 and the internal gear 43. It is sent to the discharge port 45. In this way, the second pump unit 40 is driven via the second shaft 20a. The oil O discharged from the discharge port 45 flows into the in-lid oil passage 61 and then flows into the second shaft oil passage 97A from the connection port 61a. As indicated by an arrow in FIG. 6, the oil O that has flowed into the second shaft oil passage 97A receives a force radially outward due to the centrifugal force of the rotating second shaft 20a, and the first through holes 26a to 26a. It flows out of the second shaft 20a through 26d (that is, the second radial oil passage 97B). *
本実施形態では、第1貫通孔26aは第1エンドプレート24とロータコア22との軸方向の隙間27aに開口するため、第1貫通孔26aから流出したオイルOは隙間27aに流入する。そして、隙間27aに流入したオイルOは、噴出溝24aから径方向外側に向けて噴出される。本実施形態では、噴出溝24aの径方向内側の部分における軸方向一方側の開口がワッシャ89によって閉塞されるため、噴出溝24a内に流入したオイルOをワッシャ89によって径方向外側に向けて案内しやすい。  In the present embodiment, since the first through hole 26a opens in the axial gap 27a between the first end plate 24 and the rotor core 22, the oil O flowing out of the first through hole 26a flows into the gap 27a. And the oil O which flowed into the clearance gap 27a is ejected toward the radial direction outer side from the ejection groove 24a. In the present embodiment, the opening on the one axial side in the radially inner portion of the ejection groove 24 a is closed by the washer 89, so that the oil O that has flowed into the ejection groove 24 a is guided radially outward by the washer 89. It's easy to do. *
第1貫通孔26bは第2エンドプレート25とロータコア22との軸方向の隙間27bに開口するため、第1貫通孔26bから流出したオイルOは隙間27bに流入する。そして、隙間27bに流入したオイルOは、噴出溝25aから径方向外側に向けて噴出される。本実施形態では、噴出溝25aの径方向内側の部分における軸方向他方側の開口がフランジ部21fによって閉塞されるため、噴出溝25a内に流入したオイルOをフランジ部21fによって径方向外側に向けて案内しやすい。  Since the first through hole 26b opens in the axial gap 27b between the second end plate 25 and the rotor core 22, the oil O flowing out of the first through hole 26b flows into the gap 27b. And the oil O which flowed into the clearance gap 27b is ejected toward the radial direction outer side from the ejection groove 25a. In the present embodiment, the opening on the other axial side in the radially inner portion of the ejection groove 25a is closed by the flange portion 21f, so the oil O that has flowed into the ejection groove 25a is directed radially outward by the flange portion 21f. Easy to guide. *
噴出溝24a,25aから径方向外側に噴出されたオイルOは、コイル32に吹き付けられる。これにより、オイルOによってコイル32を冷却することができる。本実施形態では、第2のシャフト内油路97Aは、第2のシャフト20aの内部に設けられるため、噴出溝24a,25aから噴出されるまでのオイルOによって、第2のロータ20を冷却することもできる。このように、本実施形態において吐出口45から吐出されるオイルOは、第2のロータ20と第2のステータ30とに導かれる。  Oil O ejected radially outward from the ejection grooves 24 a and 25 a is sprayed to the coil 32. Thereby, the coil 32 can be cooled by the oil O. In this embodiment, since the second shaft oil passage 97A is provided inside the second shaft 20a, the second rotor 20 is cooled by the oil O until it is ejected from the ejection grooves 24a and 25a. You can also. As described above, the oil O discharged from the discharge port 45 in the present embodiment is guided to the second rotor 20 and the second stator 30. *
第1貫通孔26cはベアリング保持部12eの径方向内側に開口するため、第1貫通孔26cから流出したオイルOはベアリング70に供給される。第1貫通孔26dはベアリング保持部11cの径方向内側に開口するため、第1貫通孔26dから流出したオイルOはベアリング71に供給される。これにより、オイルOをベアリング70,71の潤滑剤として利用できる。  Since the first through hole 26c opens to the inside of the bearing holding portion 12e in the radial direction, the oil O flowing out of the first through hole 26c is supplied to the bearing 70. Since the first through hole 26d opens to the inside of the bearing holding portion 11c in the radial direction, the oil O flowing out of the first through hole 26d is supplied to the bearing 71. Thereby, the oil O can be used as a lubricant for the bearings 70 and 71. *
なお、図6では、噴出溝24a,25aからオイルOが上側に噴出される例を示すが、これに限られない。第2のロータ20は回転するため、噴出溝24a,25aの周方向位置は、第2のロータ20の回転に伴って変化する。これにより、噴出溝24a,25aから噴出されるオイルOの向きは、周方向に変化し、周方向に沿って配置される複数のコイル32をオイルOによって冷却することができる。  Although FIG. 6 shows an example in which the oil O is ejected upward from the ejection grooves 24a and 25a, the present invention is not limited to this. Since the second rotor 20 rotates, the circumferential positions of the ejection grooves 24 a and 25 a change with the rotation of the second rotor 20. Thereby, the direction of the oil O ejected from the ejection grooves 24a and 25a changes in the circumferential direction, and the plurality of coils 32 arranged along the circumferential direction can be cooled by the oil O. *
以上のようにして、第2のシャフト20aの回転によって第2のポンプ部40を駆動することができ、第2のポンプ部40によってハウジング10に貯留されるオイルOを吸い上げて第2のロータ20、第2のステータ30およびベアリング70,71に供給することができる。これにより、ハウジング10に貯留されるオイルOを利用して、第2のロータ20および第2のステータ30を冷却することができるとともに、ベアリング70,71とモータシャフト本体21との間の潤滑性を向上できる。  As described above, the second pump unit 40 can be driven by the rotation of the second shaft 20a, and the second rotor 20 is configured to suck up the oil O stored in the housing 10 by the second pump unit 40. The second stator 30 and the bearings 70 and 71 can be supplied. Accordingly, the second rotor 20 and the second stator 30 can be cooled using the oil O stored in the housing 10, and the lubricity between the bearings 70 and 71 and the motor shaft main body 21 can be improved. Can be improved. *
本実施形態によれば、蓋内油路61および第2のシャフト内油路97Aが設けられることで、吐出口45から吐出されたオイルOを第2のシャフト20aの内部に送ることができる。また、第1貫通孔26a~26dが設けられるため、第2のシャフト内油路97A内に流入したオイルOを第2のステータ30およびベアリング70,71に供給することができる。  According to the present embodiment, the oil O discharged from the discharge port 45 can be sent to the inside of the second shaft 20a by providing the in-lid oil passage 61 and the second shaft oil passage 97A. Further, since the first through holes 26a to 26d are provided, the oil O that has flowed into the second shaft oil passage 97A can be supplied to the second stator 30 and the bearings 70 and 71. *
また、本実施形態によれば、第2のシャフト20a内に設けられた第2のシャフト内油路97Aは、第2のシャフト20aの軸方向一方側の端部において、吐出口45と繋がる蓋内油路61に開口する。第2のシャフト20aの軸方向一方側の端部には、外歯歯車42が固定されるため、第2のシャフト20aの軸方向一方側の端部は、吐出口45と比較的近い位置に配置される。したがって、吐出口45と第2のシャフト内油路97Aとを繋ぐ蓋内油路61の長さを短くできる。  Further, according to the present embodiment, the second in-shaft oil passage 97 </ b> A provided in the second shaft 20 a is a lid that is connected to the discharge port 45 at the end on the one axial side of the second shaft 20 a. Open to the inner oil passage 61. Since the external gear 42 is fixed to the end portion on the one axial side of the second shaft 20a, the end portion on the one axial side of the second shaft 20a is relatively close to the discharge port 45. Be placed. Therefore, the length of the in-lid oil passage 61 that connects the discharge port 45 and the second in-shaft oil passage 97A can be shortened. *
また、本実施形態によれば、取付部材50の径方向内側面が第2のシャフト内油路97Aの径方向内側面の一部を構成する。そのため、取付部材50に外歯歯車42を固定しつつ、取付部材50から第2のシャフト内油路97A内にオイルOを流入させることができる。これにより、上述したように、モータシャフト本体21の寸法および外歯歯車42の寸法を変えずに、取付部材50を介してモータシャフト本体21と外歯歯車42とを固定できるとともに、第2のシャフト内油路97Aを蓋内油路61に開口させやすい。  Further, according to the present embodiment, the radially inner side surface of the attachment member 50 constitutes a part of the radially inner side surface of the second shaft oil passage 97A. Therefore, the oil O can be caused to flow from the mounting member 50 into the second shaft oil passage 97 </ b> A while fixing the external gear 42 to the mounting member 50. Thus, as described above, the motor shaft main body 21 and the external gear 42 can be fixed via the mounting member 50 without changing the dimensions of the motor shaft main body 21 and the external gear 42, and the second It is easy to open the oil passage 97A in the shaft to the oil passage 61 in the lid. *
本発明は上述の実施形態に限られず、他の構成を採用することもできる。外歯歯車42は、取付部材50を介さずにモータシャフト本体21に直接的に固定されてもよい。この場合、第2のシャフト内油路97Aは、例えば、モータシャフト本体21の内部にのみ設けられてもよい。また、取付部材50は、モータシャフト本体21の外周面に固定されてもよい。  The present invention is not limited to the above-described embodiment, and other configurations can be employed. The external gear 42 may be directly fixed to the motor shaft main body 21 without using the attachment member 50. In this case, the second in-shaft oil passage 97 </ b> A may be provided only inside the motor shaft main body 21, for example. Further, the attachment member 50 may be fixed to the outer peripheral surface of the motor shaft main body 21. *
また、取付部材50は、軸方向の全体に亘って外径が均一な部材であってもよい。すなわち、嵌合部51の外径と固定部52の外径とは、互いに同じであってもよい。この場合、例えば固定部52の外径を図4に示す嵌合部51の外径と同じにして小さくすると、固定部52の固定される外歯歯車42の外径を小さくすることが可能である。これにより、内歯歯車43の外径を小さくすることができ、ポンプ室46の内径を小さくできる。したがって、ポンプ室46が設けられた突出部13dの外径を小さくでき、突出部13dの径方向外側面と第2凹部12gの内周面との径方向の間を大きくできる。そのため、突出部13dの径方向外側面と第2凹部12gの内周面との径方向の間に、例えば、センサ部82のうち軸方向一方側に突出する部分を配置することが可能となり、よりセンサ部82を外蓋部13に近づけることができる。これにより、モータ2全体を軸方向に小型化しやすい。なお、センサ部82のうち軸方向一方側に突出する部分とは、例えば、センサ部82が有するコイルである。  Further, the attachment member 50 may be a member having a uniform outer diameter over the entire axial direction. That is, the outer diameter of the fitting part 51 and the outer diameter of the fixing part 52 may be the same. In this case, for example, if the outer diameter of the fixing portion 52 is made the same as the outer diameter of the fitting portion 51 shown in FIG. 4, the outer diameter of the external gear 42 to which the fixing portion 52 is fixed can be reduced. is there. Thereby, the outer diameter of the internal gear 43 can be reduced, and the inner diameter of the pump chamber 46 can be reduced. Therefore, the outer diameter of the protrusion 13d provided with the pump chamber 46 can be reduced, and the distance between the radial outer surface of the protrusion 13d and the inner peripheral surface of the second recess 12g can be increased. Therefore, for example, it is possible to arrange a portion of the sensor portion 82 that protrudes on one side in the axial direction between the radial outer surface of the protruding portion 13d and the inner peripheral surface of the second recess 12g. Thus, the sensor unit 82 can be brought closer to the outer lid unit 13. Thereby, it is easy to miniaturize the entire motor 2 in the axial direction. In addition, the part which protrudes in the axial direction one side among the sensor parts 82 is a coil which the sensor part 82 has, for example. *
また、取付部材50は、2つ以上の部材によって構成されてもよい。この場合、取付部材50は、穴部21g内に嵌め合わされる第1筒状部材と、第1筒状部材に嵌め合わされてモータシャフト本体21よりも軸方向一方側に延びる第2筒状部材と、を有してもよい。この場合、第2筒状部材の軸方向一方側の端部に外歯歯車42が固定される。  Moreover, the attachment member 50 may be comprised by two or more members. In this case, the attachment member 50 includes a first tubular member fitted into the hole portion 21g, and a second tubular member fitted to the first tubular member and extending to one side in the axial direction from the motor shaft main body 21. You may have. In this case, the external gear 42 is fixed to the end portion on the one axial side of the second cylindrical member. *
また、上述した実施形態では、取付部材50のうち第2貫通孔13fに通される部分は、固定部52よりも外径が小さい嵌合部51である。そのため、第2貫通孔13fの内径を固定部52の外径よりも小さくして、取付部材50の外周面と第2貫通孔13fの内周面との径方向の隙間を比較的小さくする構成を採用することもできる。これにより、ポンプ室46内のオイルOが第2貫通孔13fを介して漏れることを抑制できる。なお、この構成を採用する場合、組立者は、外蓋部13を内蓋部12に取り付けた後に、第1凹部13eの左側の開口から嵌合部51を第2貫通孔13fに挿し込み、モータシャフト本体21の穴部21gに嵌め合わせることで、取付部材50をモータシャフト本体21に固定する。  In the above-described embodiment, the portion of the attachment member 50 that is passed through the second through hole 13 f is the fitting portion 51 having an outer diameter smaller than that of the fixing portion 52. For this reason, the inner diameter of the second through hole 13f is made smaller than the outer diameter of the fixed portion 52, and the radial gap between the outer peripheral surface of the mounting member 50 and the inner peripheral surface of the second through hole 13f is made relatively small. Can also be adopted. Thereby, it can suppress that the oil O in the pump chamber 46 leaks through the 2nd through-hole 13f. When this configuration is adopted, the assembler inserts the fitting portion 51 into the second through hole 13f from the left opening of the first recess 13e after attaching the outer lid portion 13 to the inner lid portion 12, The mounting member 50 is fixed to the motor shaft main body 21 by being fitted into the hole 21 g of the motor shaft main body 21. *
また、第2貫通孔13fを小さくできれば、ポンプ室46の軸方向他方側の開口を閉塞する閉塞部の径方向内端部をより径方向内側に配置できる。本実施形態においてポンプ室46の軸方向他方側の開口を閉塞する閉塞部とは、突出部13dのうち第2貫通孔13fの径方向外側の部分である。閉塞部の径方向内端部をより径方向内側に配置できることで、外歯歯車42の外径および内歯歯車43の外径をより小さくしても、閉塞部によってポンプ室46の軸方向他方側の開口を好適に閉塞できる。そのため、ポンプ室46の内径を小さくできる。したがって、上述したのと同様に、突出部13dの径方向外側面と第2凹部12gの内周面との径方向の間にセンサ部82の一部を配置することができ、結果としてモータ2を軸方向に小型化しやすい。  Further, if the second through hole 13f can be made smaller, the radially inner end portion of the closing portion that closes the opening on the other axial side of the pump chamber 46 can be disposed more radially inward. In the present embodiment, the closing portion that closes the opening on the other axial side of the pump chamber 46 is a portion on the radially outer side of the second through hole 13f in the protruding portion 13d. Since the radially inner end of the closed portion can be arranged more radially inward, the other axial direction of the pump chamber 46 can be reduced by the closed portion even if the outer diameter of the external gear 42 and the outer diameter of the internal gear 43 are made smaller. The side opening can be suitably closed. Therefore, the inner diameter of the pump chamber 46 can be reduced. Therefore, in the same manner as described above, a part of the sensor portion 82 can be disposed between the radial outer surface of the protruding portion 13d and the inner peripheral surface of the second recess 12g. As a result, the motor 2 It is easy to reduce the size in the axial direction. *
以上に、本発明の実施形態および変形例を説明したが、実施形態および変形例における各構成およびそれらの組み合わせなどは一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 Although the embodiments and modifications of the present invention have been described above, the configurations and combinations thereof in the embodiments and modifications are examples, and additions and omissions of configurations are within the scope that does not depart from the spirit of the present invention. , Substitutions and other changes are possible. Further, the present invention is not limited by the embodiment.
2…モータ、3…発電機、4…伝達機構、5…クーラー、5a…設置面、8…モータユニット、9…エンジン、10…ハウジング、18a…オイル導入口、18A…第1の隔壁(隔壁)、19…収容部、19A…モータ室、19B…発電機室、20…第2のロータ、20a…第2のシャフト、30…第2のステータ、40…第2のポンプ部、45,345…吐出口、90…油路、91…第1の油路、92…第1の吸い上げ油路、93A…第1のシャフト内油路、93B…第1の径方向油路、94…モータ供給油路、95…第2の油路、96…第2の吸い上げ油路、97A…第2のシャフト内油路、97B…第2の径方向油路、320…第1のロータ、320a…第1のシャフト、330…第1のステータ、340
…第1のポンプ部、J1…第1の回転軸、J2…第2の回転軸、O…オイル
DESCRIPTION OF SYMBOLS 2 ... Motor, 3 ... Generator, 4 ... Transmission mechanism, 5 ... Cooler, 5a ... Installation surface, 8 ... Motor unit, 9 ... Engine, 10 ... Housing, 18a ... Oil inlet, 18A ... 1st partition (partition wall 19 ... accommodating part, 19A ... motor room, 19B ... generator room, 20 ... second rotor, 20a ... second shaft, 30 ... second stator, 40 ... second pump part, 45,345 ... Discharge port, 90 ... oil passage, 91 ... first oil passage, 92 ... first suction oil passage, 93A ... first shaft oil passage, 93B ... first radial oil passage, 94 ... motor supply Oil passage, 95 ... second oil passage, 96 ... second suction oil passage, 97A ... second shaft oil passage, 97B ... second radial oil passage, 320 ... first rotor, 320a ... first 1 shaft, 330 ... first stator, 340
... 1st pump part, J1 ... 1st rotating shaft, J2 ... 2nd rotating shaft, O ... Oil

Claims (7)

  1. エンジンに接続されるモータユニットであって、



     前記エンジンの動力により第1の回転軸周りを回転する第1のシャフトを有する発電機と、



     第2の回転軸周りを回転する第2のシャフトを有するモータと、



     前記エンジン、前記発電機および前記モータの間で力を伝達し、前記エンジンおよび前記モータの動力を外部に出力する伝達機構と、



     前記発電機および前記モータを収容する収容部を有するハウジングと、



     前記収容部の下部領域に溜るオイルと、



     前記収容部の内部に位置し前記第1のシャフトの回転により駆動される第1のポンプ部と、



    を備え、



     前記発電機は、前記第1のシャフトを有する第1のロータと、前記第1の回転軸の径方向外側から前記第1のロータを囲む第1のステータと、を有し、



     前記モータは、前記第2のシャフトを有する第2のロータと、前記第2の回転軸の径方向外側から前記第2のロータを囲む第2のステータと、を有し、



     前記収容部には、前記オイルを循環させる油路が設けられ、



     前記油路の経路中には、前記油路を通過する前記オイルを冷却するクーラーが設けられ、



     前記油路は、第1の油路を含み、



     前記第1の油路は、



      前記収容部の下部領域から前記第1のポンプ部に繋がる第1の吸い上げ油路と、



      前記第1のポンプ部の吐出口に繋がり前記第1の回転軸に沿って前記第1のシャフトの内部を延びる第1のシャフト内油路と、



      前記第1のシャフト内油路から径方向外側に延びて前記第1のステータにオイルを供給する第1の径方向油路と、



      前記第1のポンプ部の吐出口から前記モータに向かって延びて前記モータにオイルを供給するモータ供給油路と、を有する、



    モータユニット。
    A motor unit connected to the engine,



    A generator having a first shaft that rotates about a first rotation axis by the power of the engine;



    A motor having a second shaft that rotates about a second axis of rotation;



    A transmission mechanism for transmitting force between the engine, the generator and the motor, and outputting the power of the engine and the motor to the outside;



    A housing having a housing for housing the generator and the motor;



    Oil that accumulates in a lower region of the housing portion;



    A first pump unit located inside the housing unit and driven by rotation of the first shaft;



    With



    The generator includes a first rotor having the first shaft, and a first stator surrounding the first rotor from a radially outer side of the first rotating shaft,



    The motor has a second rotor having the second shaft, and a second stator surrounding the second rotor from a radially outer side of the second rotating shaft,



    The accommodating portion is provided with an oil passage for circulating the oil,



    In the path of the oil path, a cooler for cooling the oil passing through the oil path is provided,



    The oil passage includes a first oil passage,



    The first oil passage is



    A first siphoning oil passage leading from the lower region of the housing part to the first pump part;



    A first in-shaft oil passage that is connected to the discharge port of the first pump section and extends inside the first shaft along the first rotation axis;



    A first radial oil passage that extends radially outward from the first shaft oil passage and supplies oil to the first stator;



    A motor supply oil passage that extends from the discharge port of the first pump portion toward the motor and supplies oil to the motor.



    Motor unit.
  2. 前記モータ供給油路は、前記モータの上側から前記モータに、前記オイルを供給する、



    請求項1に記載のモータユニット。
    The motor supply oil path supplies the oil to the motor from above the motor.



    The motor unit according to claim 1.
  3. 前記クーラーは、前記第1の吸い上げ油路の経路中に設けられる、



    請求項1又は2に記載のモータユニット。
    The cooler is provided in a path of the first suction oil passage;



    The motor unit according to claim 1.
  4. 前記クーラーは、設置面において前記ハウジングの外周面と接触して固定され、



     前記設置面は、前記ハウジングの壁部を介して前記発電機と対向する、



    請求項1~3の何れか一項に記載のモータユニット。
    The cooler is fixed in contact with the outer peripheral surface of the housing on the installation surface,



    The installation surface is opposed to the generator through a wall portion of the housing.



    The motor unit according to any one of claims 1 to 3.
  5. 前記収容部の内部に位置し前記第2のシャフトの回転により駆動される第2のポンプ部を備え、



     前記油路は、第2の油路を含み、



     前記第2の油路は、



      前記収容部の下部領域から前記第2のポンプ部に繋がる第2の吸い上げ油路と、



      前記第2のポンプ部の吐出口に繋がり前記第2の回転軸に沿って前記第2のシャフトの内部を延びる第2のシャフト内油路と、



      前記第2のシャフト内油路から径方向外側に延びて前記第2のステータにオイルを供給する第2の径方向油路と、を有する、



    請求項1~4の何れか一項に記載のモータユニット。
    A second pump unit located inside the housing unit and driven by rotation of the second shaft;



    The oil passage includes a second oil passage,



    The second oil passage is



    A second suction oil passage that leads from the lower region of the housing part to the second pump part;



    A second oil passage in the shaft that is connected to the discharge port of the second pump section and extends inside the second shaft along the second rotation axis;



    A second radial oil passage that extends radially outward from the second shaft oil passage and supplies oil to the second stator.



    The motor unit according to any one of claims 1 to 4.
  6. 前記モータは、前記発電機の上側に位置し、



     前記モータから滴下したオイルは、前記発電機に供給される、



    請求項1~5の何れか一項に記載のモータユニット。
    The motor is located above the generator;



    Oil dripped from the motor is supplied to the generator,



    The motor unit according to any one of claims 1 to 5.
  7. 前記ハウジングには、前記収容部を、前記モータが収容されるモータ室と、前記発電機が収容される発電機室と、に区画する隔壁が設けられ、



     前記隔壁には、上下方向に貫通するオイル導入口が設けられ、



     前記オイル導入口は、前記発電機の直上で開口する、



    請求項6に記載のモータユニット。
    The housing is provided with a partition wall that divides the housing portion into a motor chamber in which the motor is accommodated and a generator chamber in which the generator is accommodated,



    The partition wall is provided with an oil introduction port penetrating vertically.



    The oil inlet opens just above the generator;



    The motor unit according to claim 6.
PCT/JP2019/013357 2018-03-30 2019-03-27 Motor unit WO2019189460A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980022640.3A CN111918785B (en) 2018-03-30 2019-03-27 Motor unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018068014 2018-03-30
JP2018-068014 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189460A1 true WO2019189460A1 (en) 2019-10-03

Family

ID=68062072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013357 WO2019189460A1 (en) 2018-03-30 2019-03-27 Motor unit

Country Status (2)

Country Link
CN (1) CN111918785B (en)
WO (1) WO2019189460A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042798A1 (en) * 2022-08-25 2024-02-29 ニデック株式会社 Pump-equipped motor and drive device
WO2024042799A1 (en) * 2022-08-25 2024-02-29 ニデック株式会社 Pump-equipped motor, and drive device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221918A (en) * 1986-03-24 1987-09-30 Mitsubishi Heavy Ind Ltd Electric wheel drive device
JPH0776229A (en) * 1993-06-16 1995-03-20 Aqueous Res:Kk Lubricating device for hybrid vehicle
JP2004112855A (en) * 2002-09-13 2004-04-08 Nissan Motor Co Ltd Controller for vehicle
JP2010001945A (en) * 2008-06-19 2010-01-07 Mazda Motor Corp Lubricating structure of driving device
JP2013047059A (en) * 2011-08-29 2013-03-07 Toyota Motor Corp Hybrid vehicle
JP2013126846A (en) * 2011-12-19 2013-06-27 Toyota Motor Corp Transaxle of hybrid system
JP2017047732A (en) * 2015-08-31 2017-03-09 トヨタ自動車株式会社 Power transmission mechanism
WO2017217067A1 (en) * 2016-06-13 2017-12-21 三菱自動車工業株式会社 Transaxle device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001112210A (en) * 1999-10-08 2001-04-20 Toyota Motor Corp Motor for vehicle
JP5365880B2 (en) * 2010-06-08 2013-12-11 アイシン・エィ・ダブリュ株式会社 Vehicle drive device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221918A (en) * 1986-03-24 1987-09-30 Mitsubishi Heavy Ind Ltd Electric wheel drive device
JPH0776229A (en) * 1993-06-16 1995-03-20 Aqueous Res:Kk Lubricating device for hybrid vehicle
JP2004112855A (en) * 2002-09-13 2004-04-08 Nissan Motor Co Ltd Controller for vehicle
JP2010001945A (en) * 2008-06-19 2010-01-07 Mazda Motor Corp Lubricating structure of driving device
JP2013047059A (en) * 2011-08-29 2013-03-07 Toyota Motor Corp Hybrid vehicle
JP2013126846A (en) * 2011-12-19 2013-06-27 Toyota Motor Corp Transaxle of hybrid system
JP2017047732A (en) * 2015-08-31 2017-03-09 トヨタ自動車株式会社 Power transmission mechanism
WO2017217067A1 (en) * 2016-06-13 2017-12-21 三菱自動車工業株式会社 Transaxle device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042798A1 (en) * 2022-08-25 2024-02-29 ニデック株式会社 Pump-equipped motor and drive device
WO2024042799A1 (en) * 2022-08-25 2024-02-29 ニデック株式会社 Pump-equipped motor, and drive device

Also Published As

Publication number Publication date
CN111918785A (en) 2020-11-10
CN111918785B (en) 2023-10-27

Similar Documents

Publication Publication Date Title
US11434977B2 (en) Vehicle drive device
JP5278774B2 (en) Vehicle drive device
JP6664302B2 (en) Vehicle drive system
JP5365880B2 (en) Vehicle drive device
JP5088593B2 (en) Drive device
US11054018B2 (en) Vehicle drive-force transmitting apparatus
CN109643934B (en) Drive device
JP2015072054A (en) Drive unit
WO2019189460A1 (en) Motor unit
US11300036B2 (en) Vehicle drive-force transmitting apparatus
US11828358B2 (en) Transmission mechanism device and drive device including oil catch tank
US11578798B2 (en) Drive device
US11837940B2 (en) Transmission mechanism device and drive device
CN210780419U (en) Lubricating and cooling structure for electric drive unit
US20230067898A1 (en) Drive apparatus
US20120217825A1 (en) Vehicle drive system
JP2017063542A (en) In-wheel motor drive drive
WO2015174212A1 (en) Device for driving in-wheel motor
WO2019208083A1 (en) Motor unit
US11519490B2 (en) Oil supply unit
WO2020032026A1 (en) Motor unit
CN112152384A (en) Motor unit
KR20210078095A (en) Reducer for Electric Vehicle Drive Module with Cooling and Lubrication Flow Path
US20120061201A1 (en) Drive apparatus for hybrid vehicle and case thereof
WO2019208084A1 (en) Motor unit and method for controlling motor unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777807

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19777807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP