WO2019189388A1 - Method for culturing equol-producing bacteria - Google Patents

Method for culturing equol-producing bacteria Download PDF

Info

Publication number
WO2019189388A1
WO2019189388A1 PCT/JP2019/013241 JP2019013241W WO2019189388A1 WO 2019189388 A1 WO2019189388 A1 WO 2019189388A1 JP 2019013241 W JP2019013241 W JP 2019013241W WO 2019189388 A1 WO2019189388 A1 WO 2019189388A1
Authority
WO
WIPO (PCT)
Prior art keywords
equol
medium
culture
arginine
yit
Prior art date
Application number
PCT/JP2019/013241
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 直
薫 森山
辻 浩和
Original Assignee
株式会社ヤクルト本社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヤクルト本社 filed Critical 株式会社ヤクルト本社
Priority to JP2020509207A priority Critical patent/JP7433215B2/en
Publication of WO2019189388A1 publication Critical patent/WO2019189388A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus
    • C12R2001/245Lactobacillus casei
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/46Streptococcus ; Enterococcus; Lactococcus

Definitions

  • the present invention relates to a culture method for efficiently growing equol-producing bacteria.
  • Isoflavones abundant in soy foods, are known as functional ingredients that are effective in improving menopause such as indefinite complaints, preventing osteoporosis, preventing hyperlipidemia and arteriosclerosis, and preventing breast cancer and prostate cancer. ing. Recent research has revealed that one of the isoflavones, Daidzein, is metabolized by the intestinal bacteria in the body into equol, which has a stronger estrogen action and antioxidant action. Therefore, it is attracting attention as one of the main active ingredients that exert the above-mentioned action.
  • Non-Patent Document 1 Production of daidzein to equol in the body is not uniformly performed in all humans, but there are individual differences in the production ability, and it has been reported that 30 to 50% of humans have the ability to produce equol.
  • intestinal bacteria having the ability to produce equol have been vigorously searched, and as microorganisms having the ability to produce equol, Bacteroides obatas, Streptococcus intermedias, Streptococcus constellatus (Patent Document 1), Lactococcus garbier (patent document 2), Bifidobacterium addresscentis TM-1 strain, Bifidobacterium breve JCM 1273 (patent document 3), Propionibacterium frownerecki, Bifidobacterium Lactis, Lactobacillus acidophilus, Lactococcus lactis, Enterococcus faecium, Lactobacillus casei, Lactobacillus salivaius (Patent Document 4) have been reported.
  • Non-Patent Document 2 gram positive battery do03
  • the present applicant as a microorganism having an extremely high ability to convert equol from daidzein, is a bacterium belonging to the genus Sluckia, Slacia sp. YIT 11861 (FERM BP-11231) is found (Patent Document 5). zucchini-producing bacteria belonging to the Coriobacteriaceae, including this strain, can be used as new probiotics to help prevent the above diseases by efficiently converting daidzein to equol in the intestine due to its high activity. There is expected. Furthermore, it can be used for efficient production of equol.
  • coriobacteria family equol-producing bacteria for the production of probiotics and equol, it is first necessary to establish a method for obtaining a large amount of the cells.
  • culture using a liquid medium is preferable.
  • coriobacteriaceae in particular, the echol-producing bacteria belonging to the genus Surakchia have a low growth potential in liquid media, and many of them are cultured in agar media.
  • the cholorobacteriaceae-producing equol-producing bacteria including the genus Sracchia, take approximately 3 days, sometimes as long as 7 days, to significantly limit their industrial applicability. .
  • the present invention relates to providing a culture method for efficiently growing equol-producing bacteria of the Coriobacteriaceae family.
  • the inventors of the present invention have the ability to produce an equol-producing bacterium belonging to the family Coriobacteriaceae in a medium containing arginine by cultivating the initial pH to be weakly acidic, or by culturing mixed with lactic acid bacteria.
  • the present invention was completed by finding that it can be efficiently propagated.
  • the present invention relates to the following 1) to 7).
  • Lactic acid bacteria are Lactobacillus casei YIT 9029 strain (FERM BP-1366), Lactobacillus acidophilus YIT 0198 (JCM1028), Lactococcus lactis YIT 2027 (FERM BP-6224), and Streptococcus thermophilus YIT 200 YIT 200 -The method of any one of 1) to 6), which is one or more selected from 7538).
  • equol-producing bacteria belonging to the Coriobacteriaceae family can be efficiently grown in a liquid medium, and a large amount of viable bacterial solution can be supplied over a long period of time. Therefore, the present invention is useful for development and research as probiotics of equol-producing bacteria belonging to the family Coriobacteria.
  • the figure which shows the growth property (influence of arginine) of YIT 11861 strain The figure which shows the growth property (influence of the initial pH of an arginine containing medium) of YIT 11861 stock
  • an equol-producing bacterium belonging to the Coriobacteriaceae family is a coriobacteria family that produces equol by assimilating daidzeins (daidzein glycoside, daidzein, dihydrodaidzein).
  • the microorganism is not particularly limited as long as it is a microorganism belonging to the genus No. 3, and examples include microorganisms belonging to the genus Adrecrotia, Egacera, and Thrackia, and more specifically, Adrecrotia equolifaciens, Eggerthella sp.
  • Y7918, Slackia isoflavonicon vertence, Slackia equolifaciens, Slackia spp. TM-30 strain, Slackia sp. YIT 11861 etc. are mentioned.
  • a bacterium belonging to the genus Slackia is preferable, and more preferably, Slaccia sp. It is YIT 11861 stock (FERM BP-11231).
  • the arginine contained in the medium may be L-form, D-form, or a mixture thereof, but L-arginine is preferred.
  • Arginine may take the form of a salt. Examples of the salt include hydrochloride, glutamate, citrate and the like, preferably hydrochloride.
  • the arginine content in the medium is selected from any one of 0.4 w / v%, 0.8 w / v% or 1.2 w / v% at the lower limit, and 10.0 w / v% at the upper limit.
  • arginine content defined by any combination of the lower limit and the upper limit selected from any one of 0 w / v%, 2.5 w / v%, 2.1 w / v%, or 1.7 w / v% 0.4 to 2.5 w / v%, preferably 0.8 to 2.1 w / v%, more preferably 1.2 to 1.7 w / v%.
  • the arginine content is an amount converted to free arginine.
  • the medium used in the method of the present invention a known medium suitable for the survival of anaerobic microorganisms can be used.
  • the medium can be liquid, semi-solid, or solid, but is preferably a liquid medium.
  • a GAM broth medium manufactured by Nissui Pharmaceutical Co., Ltd. a modified GAM broth medium, a BHI medium manufactured by Difco, or the like can be used.
  • a water-soluble organic substance can be added to the medium used in the present invention as a carbon source.
  • water-soluble organic substances include glucose, galactose, fructose, arabinose, xylose, mannose, rhamnose, ribose, sorbose, trehalose, cellobiose, lactose, maltose, sucrose, raffinose, melibiose, melezitose, lactulose, glycogen, erythritol, sorbitol, Adonitol, mannitol, inositol, lactitol, galactooligosaccharide, fructooligosaccharide, inulin, soluble starch and other sugars, as well as pyruvic acid, malic acid, succinic acid, lactic acid, valeric acid, isovaleric acid, isobutyric acid, butyric acid, propionic acid and Examples include compounds such as organic acids such as acetic acid.
  • the concentration of organic matter added to the medium as a carbon source can be appropriately adjusted in order to efficiently grow equol-producing bacteria in the medium.
  • the addition amount can be selected from the range of 0.05 to 5 w / v%.
  • a nitrogen source can be added to the medium.
  • Preferred inorganic nitrogen sources include ammonium salts and nitrates, and examples include ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium hydrogen phosphate, ammonium citrate, potassium nitrate, and sodium nitrate.
  • examples of the organic nitrogen source include amino acids, yeast extract, peptones, meat extract, liver extract, digested serum powder, and the like, preferably arginine, citrulline, ornithine, lysine, yeast extract, peptones and the like.
  • inorganic compounds such as cofactors such as vitamins and various salts can be added to the medium.
  • inorganic compounds include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium sulfate, manganese sulfate, sodium chloride, cobalt chloride, calcium chloride, zinc sulfate, copper sulfate, alum, sodium molybdate, potassium chloride, Examples include boric acid, nickel chloride, sodium tungstate, sodium selenate, and ferrous ammonium sulfate.
  • vitamins examples include biotin, folic acid, pyridoxine, thiamine, riboflavin, nicotinic acid, pantothenic acid, vitamin B12, thiooctoic acid, and p-aminobenzoic acid. It is also possible to add hemin, which is a porphyrin compound.
  • the culture of equol-producing bacteria belonging to the Coriobacteriaceae includes, as one aspect, a) culturing by adjusting the initial pH to slightly acidic.
  • weakly acidic means that the lower limit is selected from any one of pH 5.5, 5.7, or 6, and the upper limit is selected from any one of pH 6.5, 6.3, or 6.
  • the pH is adjusted by adding an acid such as hydrochloric acid or sulfuric acid.
  • the seeding amount of equol-producing bacteria in the above medium may be, for example, 0.01 to 50 v / v%, preferably 0.1 to 5 v / v%, more preferably about 0.5 v / v%.
  • Culture is performed in an anaerobic atmosphere.
  • the anaerobic gas constituting the anaerobic atmosphere include nitrogen gas alone, a mixed gas of nitrogen gas and carbon dioxide, or a mixed gas of nitrogen gas, carbon dioxide and hydrogen, preferably nitrogen gas, and nitrogen gas and carbon dioxide. It is more preferable to use a mixed gas of hydrogen and hydrogen.
  • the mixed gas preferably has a hydrogen gas content of 0.1 to 80%, more preferably 1 to 10%.
  • the culture temperature is preferably 25 to 42 ° C, more preferably 30 to 40 ° C, and more preferably 35 to 39 ° C.
  • the culture time is preferably 5 to 96 hours, more preferably 10 to 72 hours, and more preferably 12 to 48 hours.
  • the culture may be stationary culture, but is preferably agitated, more preferably at an agitation speed of about 50 to 650 rpm.
  • the culture of equol-producing bacteria belonging to the family Coriobacteria in the present invention includes, in addition to the above-described aspect a) or as another aspect, b) lactic acid bacteria mixed and cultured.
  • lactic acid bacteria used herein include Lactobacillus casei (L. casei), Lactobacillus acidophilus (L. acidophilus), Lactobacillus plantarum (L. plantarum), Lactobacillus buchneri (L. buchneri), L. gallinarum, L. amylovorus, L. brevis, L. rhamnosus, L. kefir, L. kefir Lactobacillus cruvatus (L.
  • Lactobacillus zeae L. zeae
  • Lactobacillus helveticus L. helveticus
  • Lact L. salivarius L. gasseri
  • Lactobacillus fermentum L. reuteri
  • L. cripatus L. crispatus
  • Lactobacillus delbrukki Subspecies Bulgaricus (L. delbrueckii subsp. Bulgaricus), Lactobacillus delbrukii Subspecies. Lactobacillus genus Lactobacillus such as L. delbrueckii subsp.
  • Lactobacillus johnsonii Streptococcus thermophilus
  • Streptococcus genus Streptococcus Lactococcus lactis subsp. Lactis Lactococcus lactis subspecies. Examples include bacteria of the genus Lactococcus such as Lactococcus lactis subsp. Cremoris, among which Lactobacillus casei, L. acidophilus, Lactococcus lactis (Lac. Lactis). Streptococcus thermophilus is preferred.
  • the Lactobacillus casei is preferably Lactobacillus casei YIT 9018 (FERM BP-665), Lactobacillus casei YIT 9029 (FERM BP-1366), Lactobacillus casei YIT 10003 (FERM BP-7707). Among them, Lactobacillus casei YIT 9029 (FERM BP-1366) is more preferable.
  • Preferred examples of Lactococcus lactis include Lactococcus lactis YIT 2027 (FERM BP-6224).
  • the Streptococcus thermophilus is preferably Streptococcus thermophilus YIT 2001 (FERM BP-7538).
  • Lactobacillus acidophilus Preferably, Lactobacillus acidophilus YIT 0198 (JCM1028) is mentioned. This strain is deposited with the Microbial Materials Development Office (JCM). Such lactic acid bacteria may be used alone or in combination of two or more.
  • Lactic acid bacteria are pre-cultured in a medium such as MRS medium in advance, and the pre-culture is added to the medium inoculated with the above-mentioned equol-producing bacteria and cultured.
  • the seeding amount of lactic acid bacteria may be, for example, 0.01 to 50 v / v%, preferably 0.05 to 5 v / v%, more preferably about 0.5 v / v%.
  • Cultivation performed by mixing equol-producing bacteria and lactic acid bacteria is performed under anaerobic or microaerobic conditions, and the culture temperature is preferably 25 to 42 ° C, more preferably 30 to 40 ° C, and more preferably 35 to 39 ° C. Is more preferable.
  • the culture time is preferably 5 to 96 hours, more preferably 10 to 72 hours, and more preferably 12 to 48 hours.
  • the culture may be stationary culture or may be performed at a stirring speed of about 50 to 650 rpm.
  • Test Example 1 Effect of Arginine Addition
  • Arginine hydrochloride was added to the modified GAM medium so that the final concentration was 1.0 w / v% (0.8 w / v% when converted to the amount of arginine in the free form). Then, after autoclaving at 115 ° C. for 15 minutes, anaerobic substitution was performed for 2 days or more in advance in an anaerobic glove box (COY LABORATORY PRODUCTS) to prepare a test medium.
  • the bacterial solution prepared according to the above (A) was inoculated into 4 mL of test medium dispensed in a test tube with an aluminum cap, and cultured at 37 ° C. for 24 hours in an anaerobic glove box. At that time, a modified GAM medium (containing 0.1% arginine) without addition of arginine hydrochloride was used as a control.
  • the proliferation of the microbial cells was evaluated according to the method described in (B) above.
  • Test Example 2 Examination of initial pH and arginine concentration (1) Effect of initial pH Modified method in which arginine hydrochloride was added at 1.0 w / v% (0.8% w / v% in terms of free arginine amount)
  • GAM medium containing 0.1% arginine
  • modified GAM medium not containing arginine hydrochloride the initial pH was adjusted to 5.0, 5.5, 6.0 and 6.5 using hydrochloric acid. After autoclaving at 115 ° C. for 15 minutes, the test medium was prepared by anaerobic replacement for 2 days or more in advance in an anaerobic glove box (COY LABORATORY PRODUCTS).
  • a modified GAM medium without pH adjustment without adding arginine hydrochloride was used as a control.
  • test medium dispensed in a test tube with an aluminum cap, 1/200 of the bacterial solution prepared according to the above (A) was inoculated, and cultured in an anaerobic glove box at 37 ° C. for 24 hours. The proliferation of the cells was evaluated according to the method described in (B) above.
  • the ⁇ OD 600 value increased by 1.2, 1.3 and 1.1 times compared to the medium without pH adjustment (pH 6.9) at the initial pH of 5.5, 6.0 and 6.5, respectively.
  • FIG. 2 the highest ⁇ OD 600 value was exhibited when the initial pH was 6.0.
  • growth was remarkably suppressed at pH 5.0.
  • arginine hydrochloride was not added, there was almost no difference in ⁇ OD 600 value compared to the control.
  • Arginine hydrochloride has final concentrations of 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 w / v% (in terms of free arginine, 0 .4, 0.8, 1.2, 1.7, 2.1, and 2.5 w / v%) to the modified GAM medium, and the initial pH is set to 5.5 or 6.0 with hydrochloric acid. Then, after autoclaving at 115 ° C. for 15 minutes, anaerobic substitution was performed in an anaerobic glove box (COY LABORATORY PRODUCTS) for 2 days or more in advance to prepare a test medium.
  • COY LABORATORY PRODUCTS an anaerobic glove box
  • test medium dispensed in a test tube with an aluminum cap
  • 1/200 of the bacterial solution prepared according to the above (A) was inoculated, and cultured in an anaerobic glove box at 37 ° C. for 24 hours.
  • the proliferation of the cells was evaluated according to the method described in (B) above.
  • Test Example 3 Effect of Agitation Modified GAM medium (initial pH 5.5 or 6.0) supplemented with 2.0 w / v% arginine hydrochloride (1.7 w / v% in terms of free arginine amount) 200 mL After autoclaving (using 500 ml Kolben) at 115 ° C. for 15 minutes, anaerobic substitution was carried out for 2 days or more in advance in an anaerobic glove box (COY LABORATORY PRODUCTS) to prepare a test medium.
  • the test medium was inoculated with 1/200 of the bacterial solution prepared according to (A) above, and cultured in an anaerobic glove box at 37 ° C. for 24 hours while rotating the stirrer at a stirring speed of 750 rpm.
  • a culture medium having the same composition as that described above and subjected to static culture without rotation was used as a control.
  • the rotational speed of the stirring culture was set to a speed at which the gas phase gas can be diffused throughout the medium and can be stably rotated for 24 hours.
  • the proliferation of the cells was evaluated according to the method described in (B) above.
  • Test Example 4 Mixed culture with lactic acid bacteria (1) Lactic acid strain acidophilus YIT0198, L. casei YIT9029 (LcS) ⁇ Lac. lactis ss. lactis YIT2027, ⁇ St. thermophilus YIT2001
  • a NATTS strain inoculum was prepared in the same manner as (A) above.
  • Various lactic acid bacteria were inoculated into 4 mL of MRS medium with microbank (Iwaki) frozen beads adsorbed with bacterial cells, and aerobically cultured at 37 ° C. for 24 hours.
  • the test medium was 10 mL of 0.5 g / v% glucose / 1.5 w / v% arginine hydrochloride added-modified GAM (pH unadjusted) sealed with nitrogen gas and sealed in a test tube with a butyl stopper.
  • the test medium was inoculated with 0.5% lactic acid bacteria and NATTS strain alone, or each was anaerobically cultured at 37 ° C. for 24 hours.
  • MRS medium was added to the NATTS single culture instead of the culture medium of lactic acid bacteria
  • modified GAM medium was added to the single culture of lactic acid bacteria instead of the culture medium of the NATTS strain. After 24 hours of culturing, the number of bacteria of the NATTS strain and each lactic acid bacterium was measured for the culture solution by the method described in (C) above.

Abstract

Provided is a culturing method for efficiently proliferating equol-producing bacteria belonging to Coriobacteriaceae. The present invention relates to a method for culturing equol -producing bacteria belonging to Coriobacteriaceae in an arginine-containing culture medium, wherein either a) or b) or both are carried out for culturing: a) adjusting the initial pH to a weakly acidic level; and b) mixing a lactic acid bacteria.

Description

エコール産生菌の培養方法Method for culturing equol-producing bacteria
 本発明は、エコール産生菌を効率的に増殖させるための培養方法に関する。 The present invention relates to a culture method for efficiently growing equol-producing bacteria.
 大豆食品に多く含まれるイソフラボンは、不定愁訴等の更年期障害の改善や骨粗鬆症の予防、高脂血症や動脈硬化の予防、乳がんや前立腺がんの予防等に効果がある機能性成分として知られている。近年の研究により、イソフラボンの一つであるダイゼイン(Daidzein)は、体内の腸内細菌によってエストロゲン作用や抗酸化作用がより強力なエコール(Equol)に代謝されることが明らかになり、エコールは体内で上記の作用を奏する主要な有効成分の一つとして注目されている。 Isoflavones, abundant in soy foods, are known as functional ingredients that are effective in improving menopause such as indefinite complaints, preventing osteoporosis, preventing hyperlipidemia and arteriosclerosis, and preventing breast cancer and prostate cancer. ing. Recent research has revealed that one of the isoflavones, Daidzein, is metabolized by the intestinal bacteria in the body into equol, which has a stronger estrogen action and antioxidant action. Therefore, it is attracting attention as one of the main active ingredients that exert the above-mentioned action.
 体内でのダイゼインからエコールへの産生は全てのヒトで一律に行われるのではなく、その産生能には個人差があり、30~50%のヒトがエコール産生能を有することが報告されている(非特許文献1)。そこで、エコール産生能を有する腸内細菌の探索が精力的に行われており、エコール産生能を有する微生物として、バクテロイデス・オバタス、ストレプトコッカス・インターメディアス、ストレプトコッカス・コンステラータス(特許文献1)、ラクトコッカス・ガルビエ(特許文献2)、ビフィドバクテリウム・アドレスセンティス TM-1株、ビフィドバクテリウム・ブレーベ JCM 1273(特許文献3)、プロピオニバクテリウム・フレウンデレッキ、ビフィドバクテリウム・ラクチス、ラクトバチルス・アシドフィルス、ラクトコッカス・ラクチス、エンテロコッカス・フェシウム、ラクトバチルス・カゼイ、ラクトバチルス・サリバリウス(特許文献4)が報告されている。さらに、高いエコール産生能を有する微生物はコリオバクテリア科(Coriobacteriaceae)に集中していることが知られており、アドレクロイチア・エクオリファシエンス、スラッキア・イソフラボニコンバーテンス、スラッキア・エクオリファシエンス、Slackia spp.TM-30株、Eggerthella sp.Y7918、SNU-Julong732(非特許文献2)、gram positive bacterium do03(非特許文献3)が報告されている。また、本出願人は、ダイゼインからのエコール変換能が極めて高い微生物として、スラッキア(Slackia)属細菌である、Slackia sp.YIT 11861(FERM BP-11231)を見出している(特許文献5)。当該菌株を始めとするコリオバクテリア科に属するエコール産生菌は、その高い活性から、腸内でダイゼインをエコールへと効率的に変換することで上記疾患の予防に役立つ新たなプロバイオティクスとしての利用が期待される。さらには、エコールの効率的な製造にも利用できる。 Production of daidzein to equol in the body is not uniformly performed in all humans, but there are individual differences in the production ability, and it has been reported that 30 to 50% of humans have the ability to produce equol. (Non-Patent Document 1). Accordingly, intestinal bacteria having the ability to produce equol have been vigorously searched, and as microorganisms having the ability to produce equol, Bacteroides obatas, Streptococcus intermedias, Streptococcus constellatus (Patent Document 1), Lactococcus garbier (patent document 2), Bifidobacterium addresscentis TM-1 strain, Bifidobacterium breve JCM 1273 (patent document 3), Propionibacterium frownerecki, Bifidobacterium Lactis, Lactobacillus acidophilus, Lactococcus lactis, Enterococcus faecium, Lactobacillus casei, Lactobacillus salivaius (Patent Document 4) have been reported. Furthermore, it is known that microorganisms having high equol-producing ability are concentrated in Coriobacteriaceae, such as Adroleicia equolifaciens, Srackia isoflavonicombense, Srackia aequifiens. , Slackia spp. TM-30 strain, Eggerella sp. Y7918, SNU-Julong 732 (Non-Patent Document 2), and gram positive battery do03 (Non-Patent Document 3) have been reported. In addition, the present applicant, as a microorganism having an extremely high ability to convert equol from daidzein, is a bacterium belonging to the genus Sluckia, Slacia sp. YIT 11861 (FERM BP-11231) is found (Patent Document 5). Ecole-producing bacteria belonging to the Coriobacteriaceae, including this strain, can be used as new probiotics to help prevent the above diseases by efficiently converting daidzein to equol in the intestine due to its high activity. There is expected. Furthermore, it can be used for efficient production of equol.
 斯かるコリオバクテリア科のエコール産生菌をプロバイオティクスやエコールの製造に利用するためには、先ず当該菌体を多量に取得する方法の確立が必要となる。一般的に菌体を高い収率で得るためには液体培地を用いた培養が好ましい。しかしながら、コリオバクテリア科、特にスラッキア属のエコール産生菌は液体培地での増殖性が低いため、その多くが寒天培地により培養されている。加えて、スラッキア属細菌を含むコリオバクテリア科のエコール産生菌は菌体が増殖するまでにはおおよそ3日間、ときには7日間もの長い時間を要し、その産業上の利用性が著しく制限されている。 In order to use such coriobacteria family equol-producing bacteria for the production of probiotics and equol, it is first necessary to establish a method for obtaining a large amount of the cells. In general, in order to obtain microbial cells in high yield, culture using a liquid medium is preferable. However, coriobacteriaceae, in particular, the echol-producing bacteria belonging to the genus Surakchia have a low growth potential in liquid media, and many of them are cultured in agar media. In addition, the cholorobacteriaceae-producing equol-producing bacteria, including the genus Sracchia, take approximately 3 days, sometimes as long as 7 days, to significantly limit their industrial applicability. .
国際公開第99/7392号International Publication No. 99/7392 国際公開第2005/42号International Publication No. 2005/42 特開2006-204296号公報JP 2006-204296 A 特表2006-504409号公報JP-T-2006-504409 特許第5631862号公報Japanese Patent No. 5631862
 本発明は、コリオバクテリア科のエコール産生菌を効率よく増殖させるための培養方法を提供することに関する。 The present invention relates to providing a culture method for efficiently growing equol-producing bacteria of the Coriobacteriaceae family.
 本発明者らは上記課題を解決するため鋭意検討した結果、コリオバクテリア科のエコール産生菌が、アルギニンを含む培地で、初発pHを弱酸性にして培養する、或いは乳酸菌と混合培養することにより、効率よく増殖できることを見出し、本発明を完成した。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have the ability to produce an equol-producing bacterium belonging to the family Coriobacteriaceae in a medium containing arginine by cultivating the initial pH to be weakly acidic, or by culturing mixed with lactic acid bacteria. The present invention was completed by finding that it can be efficiently propagated.
 すなわち、本発明は、以下の1)~7)に係るものである。
 1)アルギニンを含有する培地でコリオバクテリア科に属するエコール産生菌を培養する方法であって、以下のa)又はb)のいずれか一方又は両方を行う、エコール産生菌の培養方法。
  a)初発pHを弱酸性に調整して培養する
  b)乳酸菌を混合して培養する
 2)培地中のアルギニン含有量が0.4~2.5w/v%である、1)の方法。
 3)初発pHがpH5.5~6.5である、1)又は2)の方法。
 4)乳酸菌がラクトバチルス・カゼイ、ラクトバチルス・アシドフィルス、ラクトコッカス・ラクチス及びストレプトコッカス・サーモフィルスから選ばれる1種以上である、1)~3)のいずれかの方法。
 5)エコール産生菌がスラッキア属細菌である、1)~4)のいずれかの方法。
 6)エコール産生菌がSlackia sp.YIT 11861(FERM BP-11231)株である、1)~5)のいずれかの方法。
 7)乳酸菌がラクトバチルス・カゼイ YIT 9029株(FERM BP-1366)、ラクトバチルス・アシドフィルス YIT 0198(JCM1028)、ラクトコッカス・ラクチス YIT 2027(FERM BP-6224)及びストレプトコッカス・サーモフィルス YIT 2001(FERM BP-7538)から選ばれる1種以上である、1)~6)のいずれかの方法。
That is, the present invention relates to the following 1) to 7).
1) A method for culturing an equol-producing bacterium belonging to the family Coriobacteriaceae in a medium containing arginine, wherein one or both of the following a) and b) are performed.
a) Adjusting the initial pH to slightly acidic and cultivating b) Mixing and culturing lactic acid bacteria 2) The method of 1), wherein the arginine content in the medium is 0.4 to 2.5 w / v%.
3) The method according to 1) or 2), wherein the initial pH is pH 5.5 to 6.5.
4) The method according to any one of 1) to 3), wherein the lactic acid bacterium is at least one selected from Lactobacillus casei, Lactobacillus acidophilus, Lactococcus lactis and Streptococcus thermophilus.
5) The method according to any one of 1) to 4), wherein the equol-producing bacterium is a bacterium belonging to the genus Sracchia.
6) Ecole producing bacterium is Slackia sp. The method according to any one of 1) to 5), which is a YIT 11861 (FERM BP-11231) strain.
7) Lactic acid bacteria are Lactobacillus casei YIT 9029 strain (FERM BP-1366), Lactobacillus acidophilus YIT 0198 (JCM1028), Lactococcus lactis YIT 2027 (FERM BP-6224), and Streptococcus thermophilus YIT 200 YIT 200 -The method of any one of 1) to 6), which is one or more selected from 7538).
 本発明によれば、コリオバクテリア科に属するエコール産生菌を、液体培地中で効率よく増殖させることができ、多量の生菌液を長期間に渡って供給することが可能となる。したがって、本発明は、コリオバクテリア科に属するエコール産生菌のプロバイオティクスとしての開発・研究等のために有用である。 According to the present invention, equol-producing bacteria belonging to the Coriobacteriaceae family can be efficiently grown in a liquid medium, and a large amount of viable bacterial solution can be supplied over a long period of time. Therefore, the present invention is useful for development and research as probiotics of equol-producing bacteria belonging to the family Coriobacteria.
YIT 11861株の増殖性(アルギニンの影響)を示す図。The figure which shows the growth property (influence of arginine) of YIT 11861 strain. YIT 11861株の増殖性(アルギニン含有培地の初発pHの影響)を示す図。The figure which shows the growth property (influence of the initial pH of an arginine containing medium) of YIT 11861 stock | strain. YIT 11861株の増殖性(アルギニン含有培地のアルギニン濃度の検討)を示す図。The figure which shows the growth property (examination of the arginine density | concentration of an arginine containing culture medium) of YIT 11861 strain. YIT 11861株の増殖性(攪拌培養におけるpH条件の比較)を示す図。The figure which shows the growth property (comparison of pH conditions in stirring culture) of YIT 11861 strain.
 本発明において、コリオバクテリア科に属するエコール産生菌(以下、「エコール産生菌」と称する)としては、ダイゼイン類(ダイゼイン配糖体、ダイゼイン、ジヒドロダイゼイン)を資化してエコールを生成するコリオバクテリア科に属する微生物であれば特に限定されず、例えば、アドレクロイチア属、エガセラ属、スラッキア属等に属する微生物が挙げられ、より具体的には、アドレクロイチア・エクオリファシエンス、Eggerthella sp.Y7918、スラッキア・イソフラボニコンバーテンス、スラッキア・エクオリファシエンス、Slackia spp.TM-30株、Slackia sp.YIT 11861等が挙げられる。このうち、スラッキア属細菌が好ましく、より好ましくは、Slackia sp.YIT 11861株(FERM BP-11231)である。 In the present invention, an equol-producing bacterium belonging to the Coriobacteriaceae family (hereinafter referred to as “equol-producing bacterium”) is a coriobacteria family that produces equol by assimilating daidzeins (daidzein glycoside, daidzein, dihydrodaidzein). The microorganism is not particularly limited as long as it is a microorganism belonging to the genus No. 3, and examples include microorganisms belonging to the genus Adrecrotia, Egacera, and Thrackia, and more specifically, Adrecrotia equolifaciens, Eggerthella sp. Y7918, Slackia isoflavonicon vertence, Slackia equolifaciens, Slackia spp. TM-30 strain, Slackia sp. YIT 11861 etc. are mentioned. Of these, a bacterium belonging to the genus Slackia is preferable, and more preferably, Slaccia sp. It is YIT 11861 stock (FERM BP-11231).
 本発明において、培地中に含有されるアルギニンとしては、L体、D体、それらの混合物でもよいが、好ましくはL-アルギニンである。アルギニンは塩の形態をとっても良く、塩としては、例えば塩酸塩、グルタミン酸塩、クエン酸塩等を挙げることができ、好ましくは塩酸塩である。
 培地中のアルギニン含有量は、下限が0.4w/v%、0.8w/v%又は1.2w/v%のいずれか一つから選択され、上限が10.0w/v%、5.0w/v%、2.5w/v%、2.1w/v%又は1.7w/v%のいずれか一つから選択される、当該下限と上限との任意の組合せによって規定される含有量を指し、0.4~2.5w/v%、好ましくは0.8~2.1w/v%、より好ましくは1.2~1.7w/v%である。尚、アルギニンの塩を使用した場合、アルギニンの含有量とは、遊離体のアルギニンに換算した量である。
In the present invention, the arginine contained in the medium may be L-form, D-form, or a mixture thereof, but L-arginine is preferred. Arginine may take the form of a salt. Examples of the salt include hydrochloride, glutamate, citrate and the like, preferably hydrochloride.
The arginine content in the medium is selected from any one of 0.4 w / v%, 0.8 w / v% or 1.2 w / v% at the lower limit, and 10.0 w / v% at the upper limit. Content defined by any combination of the lower limit and the upper limit selected from any one of 0 w / v%, 2.5 w / v%, 2.1 w / v%, or 1.7 w / v% 0.4 to 2.5 w / v%, preferably 0.8 to 2.1 w / v%, more preferably 1.2 to 1.7 w / v%. When an arginine salt is used, the arginine content is an amount converted to free arginine.
 本発明の方法において用いられる培地は、嫌気性微生物の生存に適した公知の培地を使用することができる。培地は、液体、半固体、固体であり得るが、好ましくは液体培地である。例えば、日水製薬社製のGAMブイヨン培地や、変法GAMブイヨン培地、Difco社製のBHI培地等を使用することができる。
 本発明で用いられる培地には、例えば、水溶性の有機物を炭素源として加えることができる。水溶性の有機物としては、グルコース、ガラクトース、フルクトース、アラビノース、キシロース、マンノース、ラムノース、リボース、ソルボース、トレハロース、セロビオース、ラクトース、マルトース、シュクロース、ラフィノース、メリビオース、メレジトース、ラクチュロース、グリコーゲン、エリスリトール、ソルビトール、アドニトール、マンニトール、イノシトール、ラクチトール、ガラクトオリゴ糖、フラクトオリゴ糖、イヌリン、可溶性でんぷん等の糖類の他、ピルビン酸、リンゴ酸、コハク酸、乳酸、吉草酸、イソ吉草酸、イソ酪酸、酪酸、プロピオン酸及び酢酸など有機酸類等の化合物を挙げることができる。
As the medium used in the method of the present invention, a known medium suitable for the survival of anaerobic microorganisms can be used. The medium can be liquid, semi-solid, or solid, but is preferably a liquid medium. For example, a GAM broth medium manufactured by Nissui Pharmaceutical Co., Ltd., a modified GAM broth medium, a BHI medium manufactured by Difco, or the like can be used.
For example, a water-soluble organic substance can be added to the medium used in the present invention as a carbon source. Examples of water-soluble organic substances include glucose, galactose, fructose, arabinose, xylose, mannose, rhamnose, ribose, sorbose, trehalose, cellobiose, lactose, maltose, sucrose, raffinose, melibiose, melezitose, lactulose, glycogen, erythritol, sorbitol, Adonitol, mannitol, inositol, lactitol, galactooligosaccharide, fructooligosaccharide, inulin, soluble starch and other sugars, as well as pyruvic acid, malic acid, succinic acid, lactic acid, valeric acid, isovaleric acid, isobutyric acid, butyric acid, propionic acid and Examples include compounds such as organic acids such as acetic acid.
 炭素源として培地に加える有機物の濃度は、効率的に培地中のエコール産生菌を発育させるために適宜調節することができる。一般的には、0.05~5w/v%の範囲から添加量を選択することができる。 The concentration of organic matter added to the medium as a carbon source can be appropriately adjusted in order to efficiently grow equol-producing bacteria in the medium. In general, the addition amount can be selected from the range of 0.05 to 5 w / v%.
 上記の炭素源に加えて、培地には、窒素源を加えることができる。好ましい無機窒素源としては、アンモニウム塩や硝酸塩が挙げられ、例えば、硫安、塩化アンモニウム、リン酸アンモニウム、リン酸水素アンモニウム、クエン酸アンモニウム、硝酸カリウム、硝酸ソーダ等が挙げられる。有機窒素源としては、アミノ酸類、酵母エキス、ペプトン類、肉エキス、肝臓エキス、消化血清末等が挙げられ、好ましくは、アルギニン、シトルリン、オルニチン、リジン、酵母エキス、ペプトン類等が挙げられる。 In addition to the above carbon source, a nitrogen source can be added to the medium. Preferred inorganic nitrogen sources include ammonium salts and nitrates, and examples include ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium hydrogen phosphate, ammonium citrate, potassium nitrate, and sodium nitrate. Examples of the organic nitrogen source include amino acids, yeast extract, peptones, meat extract, liver extract, digested serum powder, and the like, preferably arginine, citrulline, ornithine, lysine, yeast extract, peptones and the like.
 更に、炭素源や窒素源に加えて、エコール産生菌の培養に適した他の有機物あるいは無機物、例えばビタミンなどの補因子や各種の塩類等の無機化合物を培地に加えることもできる。無機化合物としては、例えば、リン酸二水素カリウム、リン酸水素二カリウム、硫酸マグネシウム、硫酸マンガン、塩化ナトリウム、塩化コバルト、塩化カルシウム、硫酸亜鉛、硫酸銅、明ばん、モリブデン酸ソーダ、塩化カリウム、ホウ酸、塩化ニッケル、タングステン酸ナトリウム、セレン酸ナトリウム、硫酸第一鉄アンモニウム等が挙げられる。
 また、ビタミン類としては、例えば、ビオチン、葉酸、ピリドキシン、チアミン、リボフラビン、ニコチン酸、パントテン酸、ビタミンB12、チオオクト酸、p-アミノ安息香酸が挙げられる。
 また、ポルフィリン化合物であるヘミンを添加することも可能である。
Furthermore, in addition to the carbon source and the nitrogen source, other organic or inorganic substances suitable for culturing equol-producing bacteria, for example, inorganic compounds such as cofactors such as vitamins and various salts can be added to the medium. Examples of inorganic compounds include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium sulfate, manganese sulfate, sodium chloride, cobalt chloride, calcium chloride, zinc sulfate, copper sulfate, alum, sodium molybdate, potassium chloride, Examples include boric acid, nickel chloride, sodium tungstate, sodium selenate, and ferrous ammonium sulfate.
Examples of vitamins include biotin, folic acid, pyridoxine, thiamine, riboflavin, nicotinic acid, pantothenic acid, vitamin B12, thiooctoic acid, and p-aminobenzoic acid.
It is also possible to add hemin, which is a porphyrin compound.
 本発明において、コリオバクテリア科に属するエコール産生菌の培養は、一態様として、a)初発pHを弱酸性に調整して培養することが挙げられる。
 ここで、「弱酸性」とは、下限がpH5.5、5.7又は6のいずれか一つから選択され、上限がpH6.5、6.3又は6のいずれか一つから選択される、当該下限と上限との任意の組合せによって規定されるpH条件を指し、pH5.5~6.5、より好ましくはpH5.5~6の条件を指す。
 pH調整は、塩酸、硫酸等の酸を添加することにより行われる。
In the present invention, the culture of equol-producing bacteria belonging to the Coriobacteriaceae includes, as one aspect, a) culturing by adjusting the initial pH to slightly acidic.
Here, “weakly acidic” means that the lower limit is selected from any one of pH 5.5, 5.7, or 6, and the upper limit is selected from any one of pH 6.5, 6.3, or 6. , Refers to a pH condition defined by an arbitrary combination of the lower limit and the upper limit, and refers to a condition of pH 5.5 to 6.5, more preferably pH 5.5 to 6.
The pH is adjusted by adding an acid such as hydrochloric acid or sulfuric acid.
 上記培地へのエコール産生菌の播種量は、例えば0.01~50v/v%、好ましくは0.1~5v/v%、より好ましくは0.5v/v%程度とすればよい。 The seeding amount of equol-producing bacteria in the above medium may be, for example, 0.01 to 50 v / v%, preferably 0.1 to 5 v / v%, more preferably about 0.5 v / v%.
 培養は、嫌気雰囲気下で行われる。嫌気雰囲気を構成する嫌気性ガスとしては、窒素ガス単独、窒素ガスと二酸化炭素の混合ガス、又は窒素ガスと二酸化炭素と水素の混合ガスが挙げられるが、窒素ガスが好ましく、窒素ガスと二酸化炭素と水素の混合ガスを用いるのがより好ましい。混合ガスは、水素ガスの割合が0.1~80%であるのが好ましく、1~10%であるのがより好ましい。例えば、3種混合ガス(窒素:炭酸ガス:水素=88%:5%:7%)を用いることができる。 Culture is performed in an anaerobic atmosphere. Examples of the anaerobic gas constituting the anaerobic atmosphere include nitrogen gas alone, a mixed gas of nitrogen gas and carbon dioxide, or a mixed gas of nitrogen gas, carbon dioxide and hydrogen, preferably nitrogen gas, and nitrogen gas and carbon dioxide. It is more preferable to use a mixed gas of hydrogen and hydrogen. The mixed gas preferably has a hydrogen gas content of 0.1 to 80%, more preferably 1 to 10%. For example, three kinds of mixed gases (nitrogen: carbon dioxide gas: hydrogen = 88%: 5%: 7%) can be used.
 培養温度は、25~42℃とするのが好ましく、30~40℃がより好ましく、35~39℃がより好ましい。
 また、培養時間は、5~96時間とするのが好ましく、10~72時間がより好ましく、12~48時間がより好ましい。
The culture temperature is preferably 25 to 42 ° C, more preferably 30 to 40 ° C, and more preferably 35 to 39 ° C.
The culture time is preferably 5 to 96 hours, more preferably 10 to 72 hours, and more preferably 12 to 48 hours.
 また、培養は静置培養でも良いが、攪拌するのが好ましく、50~650rpm程度の撹拌速度で行うのがより好ましい。 The culture may be stationary culture, but is preferably agitated, more preferably at an agitation speed of about 50 to 650 rpm.
 本発明におけるコリオバクテリア科に属するエコール産生菌の培養は、上記のa)の態様に加えて、又は別の一態様として、b)乳酸菌を混合して培養することが挙げられる。
 ここで用いられる乳酸菌としては、例えばラクトバチルス・カゼイ(L.casei)、ラクトバチルス・アシドフィルス(L.acidophilus)、ラクトバチルス・プランタラム(L.plantarum)、ラクトバチルス・ブヒネリ(L.buchneri)、ラクトバチルス・ガリナラム(L.gallinarum)、ラクトバチルス・アミロボラス(L.amylovorus)、ラクトバチルス・ブレビス(L.brevis)、ラクトバチルス・ラムノーザス(L.rhamnosus)、ラクトバチルス・ケフィア(L.kefir)、ラクトバチルス・クルバタス(L.curvatus)、ラクトバチルス・ゼアエ(L.zeae)、ラクトバチルス・ヘルベティカス(L.helveticus)、ラクトバチルス・サリバリウス(L.salivalius)、ラクトバチルス・ガセリ(L.gasseri)、ラクトバチルス・ファーメンタム(L.fermentum)、ラクトバチルス・ロイテリ(L.reuteri)、ラクトバチルス・クリスパータス(L.crispatus)、ラクトバチルス・デルブルッキィ サブスピーシーズ.ブルガリカス(L.delbrueckii  subsp.bulgaricus)、ラクトバチルス・デルブルッキィ サブスピーシーズ.デルブルッキィ(L.delbrueckii  subsp.delbrueckii)、ラクトバチルス・ジョンソニー(L.johnsonii)等のラクトバチルス属細菌、ストレプトコッカス・サーモフィルス(Streptococcus  thermophilus)等のストレプトコッカス属細菌、ラクトコッカス・ラクチス  サブスピーシーズ.ラクチス(Lactococcus  lactis  subsp.lactis)、ラクトコッカス・ラクチス  サブスピーシーズ.クレモリス(Lactococcus  lactis  subsp.cremoris)等のラクトコッカス属細菌等が挙げられ、このうちラクトバチルス・カゼイ(L.casei)、ラクトバチルス・アシドフィルス(L.acidophilus)、ラクトコッカス・ラクチス(Lac.lactis)、ストレプトコッカス・サーモフィルス(Streptococcus  thermophilus)が好ましい。また、ラクトバチルス・カゼイとしては、好ましくは、ラクトバチルス・カゼイ YIT 9018(FERM BP-665)、ラクトバチルス・カゼイ YIT 9029(FERM BP-1366)、ラクトバチルス・カゼイ YIT 10003(FERM BP-7707)が挙げられ、このうちラクトバチルス・カゼイ YIT 9029(FERM BP-1366)がより好ましい。ラクトコッカス・ラクチスとしては、好ましくは、ラクトコッカス・ラクチス  YIT 2027(FERM BP-6224)が挙げられる。ストレプトコッカス・サーモフィルスとしては、好ましくは、ストレプトコッカス・サーモフィルス YIT 2001(FERM BP-7538)が挙げられる。これらの菌株は、独立行政法人産業技術総合研究所特許生物寄託センター(現在は、独立行政法人製品評価技術基盤機構 特許生物寄託センター)に寄託されている。ラクトバチルス・アシドフィルスとしては、好ましくは、ラクトバチルス・アシドフィルス YIT 0198(JCM1028)が挙げられる。この菌株は、微生物材料開発室(JCM)に寄託されている。斯かる乳酸菌は、単独で用いてもよく、2種以上を混合して用いても良い。
The culture of equol-producing bacteria belonging to the family Coriobacteria in the present invention includes, in addition to the above-described aspect a) or as another aspect, b) lactic acid bacteria mixed and cultured.
Examples of the lactic acid bacteria used herein include Lactobacillus casei (L. casei), Lactobacillus acidophilus (L. acidophilus), Lactobacillus plantarum (L. plantarum), Lactobacillus buchneri (L. buchneri), L. gallinarum, L. amylovorus, L. brevis, L. rhamnosus, L. kefir, L. kefir Lactobacillus cruvatus (L. curvatus), Lactobacillus zeae (L. zeae), Lactobacillus helveticus (L. helveticus), Lact L. salivarius, L. gasseri, Lactobacillus fermentum, L. reuteri, L. cripatus, L. crispatus, Lactobacillus delbrukki Subspecies. Bulgaricus (L. delbrueckii subsp. Bulgaricus), Lactobacillus delbrukii Subspecies. Lactobacillus genus Lactobacillus such as L. delbrueckii subsp. Delbrueckii, Lactobacillus johnsonii, Streptococcus thermophilus, Streptococcus genus Streptococcus Lactococcus lactis subsp. Lactis, Lactococcus lactis subspecies. Examples include bacteria of the genus Lactococcus such as Lactococcus lactis subsp. Cremoris, among which Lactobacillus casei, L. acidophilus, Lactococcus lactis (Lac. Lactis). Streptococcus thermophilus is preferred. The Lactobacillus casei is preferably Lactobacillus casei YIT 9018 (FERM BP-665), Lactobacillus casei YIT 9029 (FERM BP-1366), Lactobacillus casei YIT 10003 (FERM BP-7707). Among them, Lactobacillus casei YIT 9029 (FERM BP-1366) is more preferable. Preferred examples of Lactococcus lactis include Lactococcus lactis YIT 2027 (FERM BP-6224). The Streptococcus thermophilus is preferably Streptococcus thermophilus YIT 2001 (FERM BP-7538). These strains are deposited at the National Institute of Advanced Industrial Science and Technology Patent Biological Depositary Center (currently the National Institute for Product Evaluation Technology Patent Biological Depositary). As the Lactobacillus acidophilus, Preferably, Lactobacillus acidophilus YIT 0198 (JCM1028) is mentioned. This strain is deposited with the Microbial Materials Development Office (JCM). Such lactic acid bacteria may be used alone or in combination of two or more.
 乳酸菌は、予めMRS培地等の培地で前培養し、当該前培養物を、上述したエコール産生菌を播種した培地に添加して培養される。
 乳酸菌の播種量は、例えば0.01~50v/v%、好ましくは0.05~5v/v%、より好ましくは0.5v/v%程度とすればよい。
Lactic acid bacteria are pre-cultured in a medium such as MRS medium in advance, and the pre-culture is added to the medium inoculated with the above-mentioned equol-producing bacteria and cultured.
The seeding amount of lactic acid bacteria may be, for example, 0.01 to 50 v / v%, preferably 0.05 to 5 v / v%, more preferably about 0.5 v / v%.
 エコール産生菌と乳酸菌を混合して行われる培養は、嫌気条件もしくは微好気条件で行われ、培養温度は25~42℃とするのが好ましく、30~40℃がより好ましく、35~39℃がより好ましい。
 また、培養時間は、5~96時間とするのが好ましく、10~72時間がより好ましく、12~48時間がより好ましい。
 また、培養は静置培養でも良いが、50~650rpm程度の撹拌速度で行っても良い。
Cultivation performed by mixing equol-producing bacteria and lactic acid bacteria is performed under anaerobic or microaerobic conditions, and the culture temperature is preferably 25 to 42 ° C, more preferably 30 to 40 ° C, and more preferably 35 to 39 ° C. Is more preferable.
The culture time is preferably 5 to 96 hours, more preferably 10 to 72 hours, and more preferably 12 to 48 hours.
The culture may be stationary culture or may be performed at a stirring speed of about 50 to 650 rpm.
(A)接種菌液の調製
 嫌気グローブボックス内で1.0w/v%グルコース添加変法GAM(Gifu anaerobic medium)平板培地(日水製薬)にSlackia sp.YIT 11861株(以下「NATTS株」とも称する)の凍結菌株(分散媒 20%グリセロール溶液)を200μL接種し、37℃で24時間培養した。生育したコロニーを平板1枚あたり1.0w/v%グルコース添加変法GAM培地(日水製薬)2mLに懸濁し、接種菌液とした。
(A) Preparation of Inoculum Bacteria In an anaerobic glove box, 1.0 W / v% glucose-added modified GAM (Gifanaanaerobic medium) plate medium (Nissui Pharmaceutical) was added to Slackia sp. 200 μL of a frozen strain (dispersion medium 20% glycerol solution) of YIT 11861 strain (hereinafter also referred to as “NATSS strain”) was inoculated and cultured at 37 ° C. for 24 hours. The grown colonies were suspended in 2 mL of modified GAM medium (Nissui Pharmaceutical) with 1.0 w / v% glucose added per plate to prepare an inoculum.
(B)増殖性の評価
 培養開始0時間、24時間後のOD600を測定し、0時間からのΔOD600を求めて増殖の指標とした。
(B) Evaluation of Proliferation OD 600 at 0 hours and 24 hours after the start of culture was measured, and ΔOD 600 from 0 hours was obtained as an index of proliferation.
(C)NATTS株・乳酸菌の菌数測定
 培養液200μLを400μLのRNAlaterTM(Ambion)と混合し、10分間室温で静置した。その後、4℃のもと12,000rpmで5分間遠心して上清をデカンテーションで除去した後、RNA抽出まで-80℃で保存した。凍結保存したペレットは融解後、定法[1)Tsuji, H. et al. Isolation and characterization of the equol-producing bacterium Slackia sp. strain NATTS. Arch Microbiol. 192, 279-87 (2010)、2)Matsuda, K et al. Establishment of an analytical system for the human fecal microbiota, based on reverse transcription-quantitative PCR targeting of multicopy rRNA molecules. Appl Environ Microbiol. 75:1961-1969 (2009)]に従ってRNA抽出を行い、RT-qPCR法によりNATTS株の菌数を測定した。使用したプライマーは表1のとおりである。
 乳酸菌の菌数は、上記のRNAを鋳型に用い、定法[2)Matsuda, K. et al. Establishment of an analytical system for the human fecal microbiota, based on reverse transcription-quantitative PCR targeting of multicopy rRNA molecules. Appl Environ Microbiol. 75, 1961-1969 (2009)、3)Kubota, H. et al. Detection of human intestinal catalase-negative, gram-positive cocci by rRNA-targeted reverse transcription-PCR. Appl Environ Microbiol. 76, 5440-5451 (2010)]に従って測定した。使用したプライマーは表2のとおりである。
(C) NATTS strain / Lactic acid bacteria count The 200 μL culture solution was mixed with 400 μL RNAlater (Ambion) and allowed to stand at room temperature for 10 minutes. Thereafter, the mixture was centrifuged at 12,000 rpm for 5 minutes at 4 ° C., the supernatant was removed by decantation, and then stored at −80 ° C. until RNA extraction. After thawing the cryopreserved pellet, the conventional method [1] Tsuji, H. et al. Isolation and characterization of the equol-producing bacterium Slackia sp. Strain NATTS. Arch Microbiol. 192, 279-87 (2010), 2) Matsuda, K et al. Establishment of an analytical system for the human fecal microbiota, based on reverse transcription-quantitative PCR targeting of multicopy rRNA molecules. Appl Environ Microbiol. 75: 1961-1969 (2009)] The number of NATTS strains was measured by the method. The primers used are shown in Table 1.
The number of lactic acid bacteria is determined using the above RNA as a template, and the standard method [2] Matsuda, K. et al. Establishment of an analytical system for the human fecal microbiota, based on reverse transcription-quantitative PCR targeting of multicopy rRNA molecules. Environ Microbiol. 75, 1961-1969 (2009), 3) Kubota, H. et al. Detection of human intestinal catalase-negative, gram-positive cocci by rRNA-targeted reverse transcription-PCR. Appl Environ Microbiol. 76, 5440- 5451 (2010)]. Table 2 shows the primers used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
試験例1 アルギニンの添加効果
(1)アルギニン塩酸塩を最終濃度が1.0w/v%(遊離体のアルギニン量に換算すると、0.8w/v%)となるように変法GAM培地に添加し、115℃で15分間オートクレーブした後、嫌気グローブボックス(COY LABORATORY PRODUCTS)内において予め2日以上嫌気置換し、試験培地を調製した。嫌気ガスは窒素、炭酸ガス及び水素の3種混合ガス(窒素:炭酸ガス:水素=88%:5%:7%)を使用した。
 アルミキャップ付き試験管に分注した試験培地4mLに上記(A)に従い調製した菌液を1/200量接種し、嫌気グローブボックス内で37℃、24時間培養した。その際、対照として、アルギニン塩酸塩を添加しない変法GAM培地(0.1%アルギニンを含む)を使用した。菌体の増殖性を上記(B)に記載の方法に従って評価した。
Test Example 1 Effect of Arginine Addition (1) Arginine hydrochloride was added to the modified GAM medium so that the final concentration was 1.0 w / v% (0.8 w / v% when converted to the amount of arginine in the free form). Then, after autoclaving at 115 ° C. for 15 minutes, anaerobic substitution was performed for 2 days or more in advance in an anaerobic glove box (COY LABORATORY PRODUCTS) to prepare a test medium. As the anaerobic gas, a mixed gas of nitrogen, carbon dioxide and hydrogen (nitrogen: carbon dioxide: hydrogen = 88%: 5%: 7%) was used.
The bacterial solution prepared according to the above (A) was inoculated into 4 mL of test medium dispensed in a test tube with an aluminum cap, and cultured at 37 ° C. for 24 hours in an anaerobic glove box. At that time, a modified GAM medium (containing 0.1% arginine) without addition of arginine hydrochloride was used as a control. The proliferation of the microbial cells was evaluated according to the method described in (B) above.
(2)結果
 1.0w/v%アルギニン塩酸塩を変法GAM培地に添加した結果、非添加と比べてΔOD600値が約2.6倍増加した(図1)。
(2) Results As a result of adding 1.0 w / v% arginine hydrochloride to the modified GAM medium, the ΔOD 600 value increased by about 2.6 times compared to the case of no addition (FIG. 1).
試験例2 初発pH及びアルギニン濃度の検討
(1)初発pHの影響
 アルギニン塩酸塩を1.0w/v%(遊離体のアルギニン量に換算すると、0.8%w/v%)添加した変法GAM培地(0.1%アルギニンを含む)、又はアルギニン塩酸塩を添加しない変法GAM培地について、塩酸を用いて初発pHを5.0、5.5、6.0及び6.5に調整し、115℃で15分間オートクレーブした後、嫌気グローブボックス(COY LABORATORY PRODUCTS)内において予め2日以上嫌気置換し、試験培地を調製した。嫌気ガスは窒素、炭酸ガス及び水素の3種混合ガス(窒素:炭酸ガス:水素=88%:5%:7%)を使用した。その際、対照としてアルギニン塩酸塩を添加しないpH未調整の変法GAM培地を使用した。
 アルミキャップ付き試験管に分注した試験培地4mLに、上記(A)に従い調製した菌液を1/200量接種し、嫌気グローブボックス内で37℃、24時間培養した。菌体の増殖性は上記(B)に記載の方法に従って評価した。
Test Example 2 Examination of initial pH and arginine concentration (1) Effect of initial pH Modified method in which arginine hydrochloride was added at 1.0 w / v% (0.8% w / v% in terms of free arginine amount) For GAM medium (containing 0.1% arginine) or modified GAM medium not containing arginine hydrochloride, the initial pH was adjusted to 5.0, 5.5, 6.0 and 6.5 using hydrochloric acid. After autoclaving at 115 ° C. for 15 minutes, the test medium was prepared by anaerobic replacement for 2 days or more in advance in an anaerobic glove box (COY LABORATORY PRODUCTS). As the anaerobic gas, a mixed gas of nitrogen, carbon dioxide and hydrogen (nitrogen: carbon dioxide: hydrogen = 88%: 5%: 7%) was used. At that time, a modified GAM medium without pH adjustment without adding arginine hydrochloride was used as a control.
Into 4 mL of test medium dispensed in a test tube with an aluminum cap, 1/200 of the bacterial solution prepared according to the above (A) was inoculated, and cultured in an anaerobic glove box at 37 ° C. for 24 hours. The proliferation of the cells was evaluated according to the method described in (B) above.
 その結果、初発pHが5.5、6.0及び6.5においてpH未調整(pH6.9)の培地と比べてΔOD600値がそれぞれ1.2、1.3倍及び1.1倍増加した(図2)。なかでも初発pHが6.0の場合が最も高いΔOD600値を示した。一方、pH5.0では増殖が著しく抑制された。一方、アルギニン塩酸塩非添加の条件では、対照と比べてΔOD600値にほとんど差はなかった。 As a result, the ΔOD 600 value increased by 1.2, 1.3 and 1.1 times compared to the medium without pH adjustment (pH 6.9) at the initial pH of 5.5, 6.0 and 6.5, respectively. (FIG. 2). In particular, the highest ΔOD 600 value was exhibited when the initial pH was 6.0. On the other hand, growth was remarkably suppressed at pH 5.0. On the other hand, under the condition where arginine hydrochloride was not added, there was almost no difference in ΔOD 600 value compared to the control.
(2)アルギニン濃度の検討
 アルギニン塩酸塩を最終濃度が0.5、1.0、1.5、2.0、2.5及び3.0w/v%(遊離体のアルギニンに換算すると、0.4、0.8、1.2、1.7、2.1及び2.5w/v%)となるように変法GAM培地に添加し、塩酸で初発pHを5.5もしくは6.0に調整した後、115℃で15分間オートクレーブした後、嫌気グローブボックス(COY LABORATORY PRODUCTS)内において予め2日以上嫌気置換し、試験培地を調製した。嫌気ガスは窒素、炭酸ガス及び水素の3種混合ガス(窒素:炭酸ガス:水素=88%:5%:7%)を使用した。
 アルミキャップ付き試験管に分注した試験培地4mLに、上記(A)に従い調製した菌液を1/200量接種し、嫌気グローブボックス内で37℃、24時間培養した。菌体の増殖性は上記(B)に記載の方法に従って評価した。
(2) Examination of Arginine Concentration Arginine hydrochloride has final concentrations of 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 w / v% (in terms of free arginine, 0 .4, 0.8, 1.2, 1.7, 2.1, and 2.5 w / v%) to the modified GAM medium, and the initial pH is set to 5.5 or 6.0 with hydrochloric acid. Then, after autoclaving at 115 ° C. for 15 minutes, anaerobic substitution was performed in an anaerobic glove box (COY LABORATORY PRODUCTS) for 2 days or more in advance to prepare a test medium. As the anaerobic gas, a mixed gas of nitrogen, carbon dioxide and hydrogen (nitrogen: carbon dioxide: hydrogen = 88%: 5%: 7%) was used.
Into 4 mL of test medium dispensed in a test tube with an aluminum cap, 1/200 of the bacterial solution prepared according to the above (A) was inoculated, and cultured in an anaerobic glove box at 37 ° C. for 24 hours. The proliferation of the cells was evaluated according to the method described in (B) above.
 その結果、アルギニン塩酸塩濃度が0.5w/v%以上で未添加と比べて有意な増殖促進効果が認められ(図3)、初発pH5.5及び6.0の条件とも2.0%の添加効果が最も高かった。 As a result, a significant growth-promoting effect was observed when the arginine hydrochloride concentration was 0.5 w / v% or higher compared to the case where no addition was made (FIG. 3), and the initial pH 5.5 and 6.0 conditions were 2.0%. The effect of addition was the highest.
試験例3 撹拌の影響
 アルギニン塩酸塩を2.0w/v%(遊離体のアルギニン量に換算すると、1.7w/v%)添加した変法GAM培地(初発pH5.5もしくは6.0)200mL(500mlコルベンを使用)を115℃で15分間オートクレーブした後、嫌気グローブボックス(COY LABORATORY PRODUCTS)内において予め2日以上嫌気置換し、試験培地を調製した。嫌気ガスは窒素、炭酸ガス及び水素の3種混合ガス(窒素:炭酸ガス:水素=88%:5%:7%)を使用した。
 試験培地に上記(A)に従い調製した菌液を1/200量接種し、750rpmの攪拌速度で攪拌子を回転させながら、嫌気グローブボックス内で37℃、24時間培養した。
 また、上記と同じ組成の培地で回転を加えずに静置培養したものを対照とした。なお、攪拌培養の回転速度は、気相のガスを培地全体に拡散させることができ、かつ24時間安定して回転させることができる速度に設定した。菌体の増殖性は上記(B)に記載の方法に従って評価した。
Test Example 3 Effect of Agitation Modified GAM medium (initial pH 5.5 or 6.0) supplemented with 2.0 w / v% arginine hydrochloride (1.7 w / v% in terms of free arginine amount) 200 mL After autoclaving (using 500 ml Kolben) at 115 ° C. for 15 minutes, anaerobic substitution was carried out for 2 days or more in advance in an anaerobic glove box (COY LABORATORY PRODUCTS) to prepare a test medium. As the anaerobic gas, a mixed gas of nitrogen, carbon dioxide and hydrogen (nitrogen: carbon dioxide: hydrogen = 88%: 5%: 7%) was used.
The test medium was inoculated with 1/200 of the bacterial solution prepared according to (A) above, and cultured in an anaerobic glove box at 37 ° C. for 24 hours while rotating the stirrer at a stirring speed of 750 rpm.
In addition, a culture medium having the same composition as that described above and subjected to static culture without rotation was used as a control. The rotational speed of the stirring culture was set to a speed at which the gas phase gas can be diffused throughout the medium and can be stably rotated for 24 hours. The proliferation of the cells was evaluated according to the method described in (B) above.
 その結果、どちらのpH条件においても静置培養と比べて攪拌培養を行うことで増殖性の向上が見られた(図4)。攪拌条件下で初発pH5.5と6.0を比べた場合、pH6.0よりもpH5.5の条件がより高いΔOD600値を示し、pH5.5では同じ培地組成の静置培養と比べて約1.7倍に増加した。 As a result, in both pH conditions, the growth was improved by performing the agitation culture as compared with the stationary culture (FIG. 4). When the initial pH 5.5 and 6.0 were compared under stirring conditions, the pH 5.5 condition showed a higher ΔOD 600 value than the pH 6.0, compared to static culture with the same medium composition at pH 5.5. Increased about 1.7 times.
試験例4 乳酸菌との混合培養
(1)乳酸菌株
 ・L.acidophilus YIT0198、L. casei YIT9029(LcS)
 ・Lac.lactis ss.lactis YIT2027、
 ・St.thermophilus YIT2001
Test Example 4 Mixed culture with lactic acid bacteria (1) Lactic acid strain acidophilus YIT0198, L. casei YIT9029 (LcS)
・ Lac. lactis ss. lactis YIT2027,
・ St. thermophilus YIT2001
(2)NATTS株の接種菌液は、上記(A)と同様に調製した。各種乳酸菌は、菌体を吸着させたマイクロバンク(イワキ)凍結ビーズを4mLのMRS培地に接種し、37℃で24時間好気培養した。試験培地は窒素ガスを飽和させてブチル栓で試験管に密封した0.5w/v%グルコース/1.5w/v%アルギニン塩酸塩添加-変法GAM(pH未調整)10mLとした。試験培地に乳酸菌とNATTS株との組み合わせ、もしくはそれぞれ単独で0.5%接種し、37℃で24時間嫌気培養した。なお、NATTS単独培養には乳酸菌培養液の代わりにMRS培地を、乳酸菌単独培養にはNATTS株の培養液の代わりに変法GAM培地を加えた。
 培養24時間後に培養液について、前記(C)に記載の方法によりNATTS株及び各乳酸菌の菌数を測定した。
(2) A NATTS strain inoculum was prepared in the same manner as (A) above. Various lactic acid bacteria were inoculated into 4 mL of MRS medium with microbank (Iwaki) frozen beads adsorbed with bacterial cells, and aerobically cultured at 37 ° C. for 24 hours. The test medium was 10 mL of 0.5 g / v% glucose / 1.5 w / v% arginine hydrochloride added-modified GAM (pH unadjusted) sealed with nitrogen gas and sealed in a test tube with a butyl stopper. The test medium was inoculated with 0.5% lactic acid bacteria and NATTS strain alone, or each was anaerobically cultured at 37 ° C. for 24 hours. Note that MRS medium was added to the NATTS single culture instead of the culture medium of lactic acid bacteria, and modified GAM medium was added to the single culture of lactic acid bacteria instead of the culture medium of the NATTS strain.
After 24 hours of culturing, the number of bacteria of the NATTS strain and each lactic acid bacterium was measured for the culture solution by the method described in (C) above.
(3)結果
 L.acidophilus YIT0198、Lac.lactis YIT2027、St.thermophilus YIT 2001及びLcSを混合培養した際、培養24時間後のNATTS株の菌数がNATTS株単独培養と比べて高くなり、特にL.acidophilus YIT0198及びLcSを混合培養した際、有意に高くなった(表2,p<0.05)。特にLcSと混合培養した際のNATTS株の菌数は最も高く、これまでに確立した至適培地で培養した際の菌数とほぼ同等であった(表3)。また、LcSの菌数についても単独培養と比較してNATTS株と混合培養した場合に有意に高かった(表3,p<0.05)。
(3) Results acidophilus YIT0198, Lac. lactis YIT2027, St. When Thermophilus YIT 2001 and LcS were mixed and cultured, the number of NATTS strains after 24 hours of culture was higher than that of NATTS strain alone, When acidophilus YIT0198 and LcS were mixed and cultured, it was significantly higher (Table 2, p <0.05). In particular, the number of NATTS strains when mixed with LcS was the highest, and was almost the same as the number of bacteria when cultured in an optimal medium established so far (Table 3). In addition, the number of LcS bacteria was also significantly higher when mixed culture with NATTS strain compared to single culture (Table 3, p <0.05).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (7)

  1.  アルギニンを含有する培地でコリオバクテリア科に属するエコール産生菌を培養する方法であって、以下のa)又はb)のいずれか一方又は両方を行う、エコール産生菌の培養方法。
      a)初発pHを弱酸性に調整して培養する
      b)乳酸菌を混合して培養する
    A method for culturing equol-producing bacteria belonging to the Coriobacteriaceae in a medium containing arginine, wherein one or both of the following a) and b) are performed.
    a) Adjust the initial pH to slightly acidic and culture b) Mix and culture lactic acid bacteria
  2.  培地中のアルギニン含有量が0.4~2.5w/v%である、請求項1記載の方法。 The method according to claim 1, wherein the content of arginine in the medium is 0.4 to 2.5 w / v%.
  3.  初発pHがpH5.5~6.5である、請求項1又は2記載の方法。 The method according to claim 1 or 2, wherein the initial pH is from 5.5 to 6.5.
  4.  乳酸菌がラクトバチルス・カゼイ、ラクトバチルス・アシドフィルス、ラクトコッカス・ラクチス及びストレプトコッカス・サーモフィルスから選ばれる1種以上である、請求項1~3のいずれか1項記載の方法。 The method according to any one of claims 1 to 3, wherein the lactic acid bacterium is at least one selected from Lactobacillus casei, Lactobacillus acidophilus, Lactococcus lactis and Streptococcus thermophilus.
  5.  エコール産生菌がスラッキア属細菌である、請求項1~4のいずれか1項記載の方法。 The method according to any one of claims 1 to 4, wherein the equol-producing bacterium is a bacterium belonging to the genus Sracchia.
  6.  エコール産生菌がSlackia sp.YIT 11861株(FERM BP-11231)である、請求項1~5のいずれか1項記載の方法。 Ecole producing bacterium is Slackia sp. The method according to any one of claims 1 to 5, wherein the strain is YIT 11861 (FERM BP-11231).
  7.  乳酸菌がラクトバチルス・カゼイ YIT 9029株(FERM BP-1366)、ラクトバチルス・アシドフィルス YIT 0198(JCM1028)、ラクトコッカス・ラクチス YIT 2027(FERM BP-6224)及びストレプトコッカス・サーモフィルス YIT 2001(FERM BP-7538)から選ばれる1種以上である、請求項1~6のいずれか1項記載の方法。 Lactic acid bacteria are Lactobacillus casei YIT 9029 strain (FERM BP-1366), Lactobacillus acidophilus YIT 0198 (JCM1028), Lactococcus lactis YIT 2027 (FERM BP-6224) and Streptococcus thermophilus YITB IBFP38 FIT38F The method according to any one of claims 1 to 6, which is one or more selected from the group consisting of
PCT/JP2019/013241 2018-03-27 2019-03-27 Method for culturing equol-producing bacteria WO2019189388A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020509207A JP7433215B2 (en) 2018-03-27 2019-03-27 Cultivation method of Ecol-producing bacteria

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-060179 2018-03-27
JP2018060179 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019189388A1 true WO2019189388A1 (en) 2019-10-03

Family

ID=68059121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013241 WO2019189388A1 (en) 2018-03-27 2019-03-27 Method for culturing equol-producing bacteria

Country Status (2)

Country Link
JP (1) JP7433215B2 (en)
WO (1) WO2019189388A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09238647A (en) * 1996-03-08 1997-09-16 Yakult Honsha Co Ltd Food for cancer prevention
JP2001340059A (en) * 2000-05-31 2001-12-11 Yakult Honsha Co Ltd Isoflavone aglycone-containing fermented soymilk and method for producing the same
WO2010032838A1 (en) * 2008-09-19 2010-03-25 大塚製薬株式会社 Fermentation product containing equol-producing microorganism having maintained equol-producing ability, and method for producing same
JP2010187647A (en) * 2009-02-20 2010-09-02 Toyo Hakko:Kk Composition containing daidzein metabolite producing bacterium and method for producing daidzein metabolite
WO2010098103A1 (en) * 2009-02-25 2010-09-02 株式会社ヤクルト本社 Equol-producing bacterium and use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6557199B2 (en) 2016-09-23 2019-08-07 株式会社ヤクルト本社 Selective medium for lactic acid bacteria

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09238647A (en) * 1996-03-08 1997-09-16 Yakult Honsha Co Ltd Food for cancer prevention
JP2001340059A (en) * 2000-05-31 2001-12-11 Yakult Honsha Co Ltd Isoflavone aglycone-containing fermented soymilk and method for producing the same
WO2010032838A1 (en) * 2008-09-19 2010-03-25 大塚製薬株式会社 Fermentation product containing equol-producing microorganism having maintained equol-producing ability, and method for producing same
JP2010187647A (en) * 2009-02-20 2010-09-02 Toyo Hakko:Kk Composition containing daidzein metabolite producing bacterium and method for producing daidzein metabolite
WO2010098103A1 (en) * 2009-02-25 2010-09-02 株式会社ヤクルト本社 Equol-producing bacterium and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MINAMIDA, K. ET AL.: "Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine", JOURNAL OF BIOSCIENCE AND BIOENGINEERING, vol. 102, no. 3, September 2006 (2006-09-01), pages 247 - 450, XP028042248, doi:10.1263/jbb.102.247 *

Also Published As

Publication number Publication date
JP7433215B2 (en) 2024-02-19
JPWO2019189388A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
Özer et al. Effect of inulin and lactulose on survival of Lactobacillus acidophilusla-5 and Bifidobacterium bifidum bb-02 in Acidophilus-bifidus yoghurt
JP6483653B2 (en) Survivability improver for lactic acid bacteria and / or bifidobacteria
JP4862053B2 (en) New lactic acid bacteria
Shah et al. Influence of water activity on fermentation, organic acids production and viability of yogurt and probiotic bacteria
AU2011218925B2 (en) Method for constructing novel bacterium belonging to the genus Bifidobacterium
JPWO2008099543A1 (en) Method for producing fermented milk using novel lactic acid bacteria
Jayashree et al. Isolation, screening and characterization of riboflavin producing lactic acid bacteria from Katpadi, Vellore district
US7794763B2 (en) Bacterium of the genus bifidobacterium and fermented foods using the same
US20230100778A1 (en) Method for promoting growth of probiotic microorganism
Gurovic et al. Lactic acid bacteria isolated from fish gut produce conjugated linoleic acid without the addition of exogenous substrate
Hwang et al. Biomass production of Lactobacillus plantarum LP02 isolated from infant feces with potential cholesterollowering ability
EP1497409B1 (en) Growth medium for microorganisms comprising the biomass of methanotrophic and heterotrophic bacteria
JP2021193933A (en) Method for producing cycloastragenol-containing composition
JP7433215B2 (en) Cultivation method of Ecol-producing bacteria
KR101548640B1 (en) Novel Strains of Lactobacillus plantarum JA71 with Folic Acid Producing Ability
JP2022009842A (en) Composition for survival improvement and/or growth promotion of lactic acid bacteria
JP4794592B2 (en) New lactic acid bacteria
Hwang et al. Enhancement of biomass production and nutrition utilization by strain Lactobacillus acidophilus DGK derived from serial subculturing in an aerobic environment
JP7440407B2 (en) Ecole manufacturing method
EP3083982B1 (en) Method for the differential enumeration of lactic acid bacteria in a mixture in a food product
JP2009232717A (en) Method for producing fermented milk using new lactic acid bacterium
Karim et al. Media screening of lactic acid fermentation using Lactobacillus rhamnosus
WO2023199929A1 (en) Equol manufacturing method
Hwang ent of by stra from s
JP2014045743A (en) Method for improving survivability of microorganism to be used for food

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509207

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775862

Country of ref document: EP

Kind code of ref document: A1