WO2019189283A1 - Vehicular air conditioning device - Google Patents

Vehicular air conditioning device Download PDF

Info

Publication number
WO2019189283A1
WO2019189283A1 PCT/JP2019/013051 JP2019013051W WO2019189283A1 WO 2019189283 A1 WO2019189283 A1 WO 2019189283A1 JP 2019013051 W JP2019013051 W JP 2019013051W WO 2019189283 A1 WO2019189283 A1 WO 2019189283A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
pinion
drive pinion
rack
mix door
Prior art date
Application number
PCT/JP2019/013051
Other languages
French (fr)
Japanese (ja)
Inventor
長野 秀樹
荒木 大助
Original Assignee
株式会社ヴァレオジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヴァレオジャパン filed Critical 株式会社ヴァレオジャパン
Priority to CN201980023211.8A priority Critical patent/CN111918783A/en
Publication of WO2019189283A1 publication Critical patent/WO2019189283A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices

Definitions

  • the present invention relates to a vehicle air conditioner.
  • a vehicle air conditioner having a heating heat exchanger inside an air conditioning case, wherein the air passing through the heating heat exchanger and the heating heat exchanger are bypassed inside the air conditioning case.
  • An air conditioner including an air mix door that adjusts a ratio with air to be performed is known. For example, when the heat exchanger for heating is arranged at the center in the vertical direction of the air conditioning case, detours are formed above and below the heat exchanger for heating, and the air flowing in the air conditioning case passes through these detours. The heat exchanger for heating can be bypassed.
  • an air mix door that adjusts the opening area of each detour is provided for each of the upper and lower detours, and the heat exchange for heating is performed by adjusting the opening area of the detour by moving the air mix door The ratio of the air passing through the oven and the air bypassing the heating heat exchanger.
  • an upper and lower air mix door is a single drive mechanism that uses upper and lower pinions connected to the support shafts of the upper and lower air mix doors and a rack that meshes with the upper and lower pinions. It is driven integrally with.
  • the temperature of the conditioned air blown from the vent outlet is set lower than the temperature of the conditioned air blown from the foot outlet, It is required to realize warm and cold.
  • the opening area of the upper detour needs to be larger than the opening area of the lower detour.
  • it is desirable to reduce the opening area of the upper bypass This is because if the opening area of the upper bypass route is increased and a certain amount or more of low-temperature air is guided to the defrost outlet, the time required to eliminate the fogging of the windshield may increase.
  • the opening area of the upper detour needs to be smaller than the opening area of the lower detour.
  • An object of the present invention is to provide an air conditioner that can change the size relationship between the opening areas of the upper detour and the lower detour.
  • an air conditioner for a vehicle an air conditioning case that forms an air passage through which air flows, and a heat exchanger for heating disposed in the air passage, Heating arranged to form an upper detour above the upper edge of the heating heat exchanger and to form a lower detour below the lower edge of the heating heat exchanger
  • a heat exchanger for sliding, a slide-type upper air mix door that is disposed in the air passage and adjusts a ratio of air toward the heat exchanger for heating and air toward the upper detour, and the upper air mix
  • the upper air mix door is connected to a door, and the upper air mix door is rotated in the circumferential direction.
  • the lower shaft is arranged in parallel with the lower air mix door, and is connected to the lower air mix door to change the ratio of the air toward the lower detour as the lower air mix door is rotated in the circumferential direction.
  • a drive mechanism for driving wherein the drive mechanism is coupled to an actuator that generates a rotational driving force, a drive pinion that is rotationally driven by the actuator, and the upper shaft.
  • An upper driven pinion that meshes with the drive pinion and transmits the rotational driving force of the actuator to the upper shaft; a rack that meshes with the drive pinion and that receives the rotational driving force of the actuator and moves linearly; and
  • a lower driven pinion coupled to the lower shaft and meshing with the rack to transmit the rotational driving force of the actuator to the lower shaft, and the driving pinion has a plurality of reference circular diameters different from each other.
  • the upper driven pinion has a plurality of upper driven pinion portions having different reference circular diameters provided corresponding to the plurality of driving pinion portions, and the plurality of driving pinion portions are: Engage with the corresponding upper driven pinion part in different phase ranges of the entire rotational phase range of the drive pinion.
  • Air conditioning apparatus is provided.
  • an air conditioner for a vehicle An air conditioning case forming an air passage through which air flows; A heating heat exchanger disposed in the air passage, wherein an upper detour is formed above an upper edge of the heating heat exchanger, and a lower edge of the heating heat exchanger A heat exchanger for heating arranged to form a lower bypass on the lower side, A sliding upper air mix door disposed in the air passage for adjusting a ratio of air toward the heat exchanger for heating and air toward the upper detour; The upper air mix door is connected to the upper air mix door, and the upper air mix door is rotated in the circumferential direction.
  • the drive mechanism is An actuator that generates rotational driving force;
  • an air conditioner that can change the size relationship between the opening areas of the upper detour and the lower detour.
  • FIG. 2 is a cross-sectional view taken along line II of the air conditioning unit shown in FIG. 1.
  • FIG. 2 is a cross-sectional view of the air conditioning unit shown in FIG. 1 taken along the line II-II.
  • FIG. 2 is a side view showing a drive pinion, an upper driven pinion, a rack, and a lower driven pinion of the drive mechanism shown in FIG. 1.
  • FIG. 6 is a side view showing a first drive pinion part of the drive pinion shown in FIG.
  • FIG. 6 is a side view showing a second drive pinion portion of the drive pinion shown in FIG. 5 and a second upper driven pinion portion of the upper driven pinion. It is a side view which shows the rack shown in FIG. 5, the rack pinion part, and a lower side driven pinion. It is a graph which shows the relationship between the rotation phase of the drive pinion shown in FIG. 5, and the position of each air mix door. It is a figure corresponding to FIG. 1, Comprising: It is a figure for demonstrating the relationship between each operation mode of an air conditioner, and the position of an air mix door. It is a figure corresponding to FIG.
  • FIG. 12 is a cross-sectional view of the drive mechanism shown in FIG. 11 taken along the line IIIa-IIIb-IIIc. It is sectional drawing along the IV-IV line of the drive mechanism shown in FIG. It is a figure for demonstrating the change of the rotational speed of the lower driven pinion in the drive mechanism shown in FIG. It is a side view which shows typically the other modification of the drive mechanism shown in FIG.
  • FIG. 17 is a side view showing the lower driven pinion and the lower part of the rack shown in FIG. 16.
  • FIG. 17 is a cross-sectional view taken along the line Va-Vb-Vc of the drive mechanism shown in FIG. FIG.
  • FIG. 17 is a cross-sectional view of the drive mechanism shown in FIG. 16 taken along line VI-VI. It is a figure for demonstrating the change of the rotational speed of the lower driven pinion in the drive mechanism shown in FIG.
  • FIG. 10 is a side view schematically showing still another modification of the drive mechanism shown in FIG. 1.
  • FIG. 22 is a cross-sectional view of the drive mechanism shown in FIG. 21 taken along line VII-VII.
  • FIG. 22 is a cross-sectional view of the drive mechanism shown in FIG. 21 taken along line VIIIa-VIIIb-VIIIc.
  • FIG. 10 is a side view schematically showing still another modification of the drive mechanism shown in FIG. 1.
  • FIG. 25 is a cross-sectional view of the drive mechanism shown in FIG. 24 taken along line IX-IX.
  • FIG. 25 is a cross-sectional view of the drive mechanism shown in FIG. 24 taken along line Xa-Xb-Xc.
  • FIG. 1 is a side view schematically showing the structure of an air conditioning unit of an air conditioner according to an embodiment of the present invention. For clarity of illustration, illustration of an urging rib and the like which will be described later is omitted in FIG. 2 and 3 are cross-sectional views taken along lines II-II and III-III, respectively, of the air conditioning unit shown in FIG.
  • FIG. 4 is an exploded perspective view showing an air mix door, a shaft, and a drive mechanism of the air conditioner shown in FIG.
  • the side shown in FIG. 1 is called the left side of the air conditioning unit, and the side (see FIGS. 2 and 3) facing the side shown in FIG. 1 is called the right side of the air conditioning unit.
  • the terms “clockwise” and “counterclockwise” with respect to the rotation direction of the pinion and the shaft described later, the pinion and the shaft are moved from the left side to the right side of the air conditioning unit unless otherwise specified. It means “clockwise” and “counterclockwise” which are judged in the situation seen in the direction of heading.
  • the vehicle air conditioner 1 has an air conditioning case 2, and an air flow formed by a blower (not shown) flows through the air conditioning case 2. That is, the air conditioning case 2 forms an air passage 3 through which air flows.
  • a cooling heat exchanger (evaporator) 4 is provided in the air conditioning case 2.
  • the upper portion 4 a of the cooling heat exchanger 4 is located in the upper portion of the air passage 3 formed by the air conditioning case 2.
  • the lower part 4 b of the cooling heat exchanger 4 is located in the lower part of the air passage 3.
  • the cooling heat exchanger 4 removes heat from the air passing therethrough, and lowers the humidity of the air by condensing moisture in the air when the humidity of the air is high.
  • a heating heat exchanger (heater core) 5 is provided in the air conditioning case 2.
  • the upper portion 5 a of the heating heat exchanger 5 is located in the upper portion of the air passage 3 formed by the air conditioning case 2, and the lower portion 5 b of the heating heat exchanger 5 is in the lower portion of the air passage 3. Is located.
  • the heating heat exchanger 5 heats the air passing therethrough.
  • the upper part 5 a of the heating heat exchanger 5 does not occupy the entire cross section of the upper part of the air passage 3.
  • a region where the heat exchanger 5 for heating in the upper part of the air passage 3 does not exist serves as an upper part of the air passage 3.
  • the bypass air 3a allows the flowing air to flow downstream of the heating heat exchanger 5 without passing through the heating heat exchanger 5 (bypassing the heating heat exchanger 5).
  • This detour is called an “upper detour 3a” in the sense of a detour provided “upper” of the air passage 3.
  • the lower part 5 b of the heating heat exchanger 5 does not occupy the entire cross section of the lower part of the air passage 3.
  • a region where the heat exchanger 5 for heating in the lower part of the air passage 3 does not exist is the region of the air passage 3.
  • the bypass circuit 3b enables the air flowing through the lower portion to flow downstream of the heating heat exchanger 5 without passing through the heating heat exchanger 5 (bypassing the heating heat exchanger 5). ing.
  • This detour is referred to as a “lower detour 3b” in the sense of a detour provided on the “lower side” of the air passage 3.
  • an upper air mix door 6 and a lower air are provided in the upper and lower portions of the air passage 3.
  • Mix doors 8 are respectively provided.
  • the upper air mix door 6 and the lower air mix door 8 are plate-like members, and are disposed substantially parallel to the upstream surface of the heating heat exchanger 5.
  • the upper air mix door 6 can slide in the upper portion of the air passage 3 along the vertical direction. More specifically, as shown in FIG. 4, a rack 6r is provided on one surface (upstream surface in the illustrated example) of the upper air mix door 6 from the upper edge 6a to the lower edge 6b. It has been.
  • An upper shaft 7 that extends in the left-right direction in the air passage 3 is connected to the upper air mix door 6.
  • the upper shaft 7 is disposed to face the surface of the upper air mix door 6 on the rack 6r side.
  • the upper shaft 7 is rotatably supported by the left and right side surfaces 2c and 2d of the air conditioning case 2 at both ends thereof.
  • the left end portion of the upper shaft 7 extends to the outside of the air conditioning case 2, and a drive mechanism 10 that rotationally drives the upper shaft 7 is connected to this end portion.
  • an upper internal pinion 7 p that meshes with the rack 6 r of the upper air mix door 6 is formed on the outer peripheral surface of the upper shaft 7.
  • the upper shaft 7 is connected to the upper air mix door 6 by the upper inner pinion 7p meshing with the rack 6r of the upper air mix door 6.
  • the moving speed of the upper air mix door 6 corresponds to the rotational speed of the upper shaft 7.
  • the upper air mix door 6 slides along the vertical direction in the upper portion of the air passage 3 to thereby change the ratio of the air toward the upper portion 5a of the heating heat exchanger 5 and the air toward the upper detour 3a. adjust. More specifically, the upper air mix door 6 maximizes the ratio of the upper first position (see FIG. 1) that minimizes the ratio of air toward the upper detour 3a and the ratio of air toward the upper detour 3a. Slide between the upper second position (see FIG. 10E). In the illustrated example, when the upper air mix door 6 is in the upper first position, the upper edge 6a abuts on the top surface 2a of the air conditioning case 2 to minimize the opening area of the upper bypass 3a.
  • the area of the portion of the upper air mix door 6 that overlaps the upper portion 5a of the heating heat exchanger 5 in the air flow direction is minimized, and the air flowing toward the heating heat exchanger 5 in the upper portion of the air passage 3 is reduced.
  • the ratio is maximized.
  • the area of the portion of the upper air mix door 6 that overlaps the upper portion 5a of the heating heat exchanger 5 in the air flow direction is maximized, and the air flowing toward the heating heat exchanger 5 in the upper portion of the air passage 3 becomes larger.
  • the ratio is minimized.
  • the lower air mix door 8 can slide along the vertical direction. More specifically, as shown in FIG. 4, on one surface of the lower air mix door 8 (upstream surface in the illustrated example), a rack 8r extends from the upper edge 8a to the lower edge 8b. Is provided.
  • the lower air mix door 8 is connected to a lower shaft 9 arranged in parallel with the upper shaft 7 (extending along the left-right direction).
  • the lower shaft 9 is arranged to face the surface of the lower air mix door 8 on the rack 8r side.
  • the lower shaft 9 is rotatably supported by the left and right side surfaces 2 c and 2 d of the air conditioning case 2 at both ends thereof.
  • the left end portion of the lower shaft 9 extends to the outside of the air conditioning case 2, and a drive mechanism 10 that rotationally drives the lower shaft 9 is connected to this end portion.
  • a lower internal pinion 9 p that meshes with the rack 8 r of the lower air mix door 8 is formed on the outer peripheral surface of the lower shaft 9.
  • the lower shaft 9 is connected to the lower air mix door 8 by the lower internal pinion 9p meshing with the rack 8r of the lower air mix door 8.
  • the rotational motion of the lower shaft 9 is converted into a vertical motion by the lower internal pinion 9p and the lower internal rack 8r, and the lower air mix door 8 moves up and down. To slide.
  • the moving speed of the lower air mix door 8 corresponds to the rotational speed of the lower shaft 9.
  • Lower air mix door 8 adjusts the ratio of the air which goes to lower part 5b of heat exchanger 5 for heating, and the air which goes to lower detour 3b by sliding along the up-and-down direction. More specifically, the lower air mix door 8 has a lower first position (see FIG. 1) that minimizes the ratio of air toward the lower detour 3b, and the ratio of air toward the lower detour 3b. And slide between the upper second position (see FIG. 10E) that maximizes. In the illustrated example, when the lower air mix door 8 is in the lower first position, the lower edge 8b abuts against the bottom surface 2b of the air conditioning case 2 to minimize the opening area of the lower bypass 3b. .
  • the area of the portion of the lower air mix door 8 that overlaps the lower portion 5b of the heating heat exchanger 5 in the air flow direction is minimized, and the lower portion of the air passage 3 becomes the heating heat exchanger 5 in the lower portion.
  • the ratio of air to head is maximized.
  • the lower end edge 8b of the lower air mix door 8 is farthest from the bottom surface 2b of the air conditioning case 2 in the movable range of the lower air mix door 8. Maximize the opening area of the path 3b.
  • the area of the portion of the lower air mix door 8 that overlaps the lower portion 5b of the heating heat exchanger 5 in the air flow direction is maximized, and the lower portion of the air passage 3 becomes the heating heat exchanger 5 in the lower portion.
  • the ratio of air going to is minimized.
  • a defrost outlet passage 301 is formed on the top surface 2 a of the air conditioning case 2 on the downstream side of the heat exchanger 5 for heating.
  • the downstream end of the defrost outlet passage 301 is connected to a defrost outlet (not shown) that blows air toward the inner surface of the windshield inside the vehicle interior. Since the defrost blowing passage 301 is opened to the top surface 2a of the air conditioning case 2, the air that has passed through the upper portion 5a and / or the upper detour 3a of the heating heat exchanger 5 enters the defrost blowing passage 301. It tends to be easy.
  • a vent outlet passage 302 is formed in the upper portion of the downstream side surface 3 f of the air conditioning case 2 on the downstream side of the heat exchanger 5 for heating.
  • the downstream end of the vent outlet passage 302 is connected to a vent outlet (not shown) that blows out air toward the upper body of an occupant sitting in the driver's seat and passenger seat (possibly the rear seat). Since the vent blowing passage 302 is open to the upper portion of the air conditioning case 2, the air that has passed through the upper portion 5a and / or the upper detour 3a of the heating heat exchanger 5 can easily enter the vent blowing passage 302. There is a tendency.
  • a foot outlet passage 303 is formed in the lower portion of the downstream side surface 3 f of the air conditioning case 2.
  • the downstream end of the foot outlet passage 303 is connected to a foot outlet (not shown) that blows out air toward the feet of passengers sitting in the driver's seat and the passenger seat (possibly the rear seat). Since the foot blowing passage 303 is open to the lower portion of the air conditioning case 2, the foot blowing passage 303 has air that has passed through the lower portion 5b and / or the lower detour 3b of the heat exchanger 5 for heating. Tend to enter.
  • the defrost blow passage 301, the vent blow passage 302, and the foot blow passage 303 are provided with a defrost door 301D, a vent door 302D, and a foot door 303D for adjusting the opening areas of the blow passages 301, 302, and 303, respectively. Openings of these doors 301D, 302D, and 303D are respectively controlled by a control unit that includes an in-vehicle microcomputer or the like, and the opening areas of the outlet passages 301, 302, and 303 can be set to arbitrary opening areas.
  • the operation mode of the air conditioner 1 shown in FIG. 1 includes a differential foot mode (D / F) (see FIGS. 10A and 10B), a vent mode (VENT) (see FIG. 10E), and a bi-level mode (B / L). (See FIGS. 10C and 10D).
  • a defrost mode (DEF) in which the defrost blowing passage 301 is opened and the vent blowing passage 302 and the foot blowing passage 303 are closed
  • a foot mode in which the defrost blowing passage 301 and the vent blowing passage 302 are closed and the foot blowing passage 303 is opened.
  • FOOT a defrost blowing passage 301 and the vent blowing passage 302 are closed and the foot blowing passage 303 is opened.
  • the defrost door 301D and the foot door 303D are opened, the vent door 302D is closed, and conditioned air is blown out from the defrost outlet and the foot outlet.
  • the vent door 302D is opened, the defrost door 301D and the foot door 303D are closed, and conditioned air is blown out from the vent outlet.
  • the vent door 302D and the foot door 303D are opened, the defrost door 301D is closed, and conditioned air is blown out from the vent outlet and the foot outlet.
  • FIG. 5 is a side view showing a drive pinion, an upper driven pinion, a rack, and a lower driven pinion of the drive mechanism shown in FIG. 6 is a side view showing the first drive pinion part of the drive pinion and the first upper driven pinion part of the upper driven pinion shown in FIG. 5, and FIG. 7 is the second drive pinion part and the upper driven pinion. It is a side view which shows the 2nd upper side follower pinion part.
  • FIG. 8 is a side view showing the rack, the rack pinion section, and the lower driven pinion shown in FIG.
  • FIG. 9 is a graph showing the relationship between the rotational phase of the drive pinion shown in FIG. 5 and the position of each air mix door.
  • FIG. 10B shows the position of the air mix door when the air conditioner is operated in the differential foot mode and the rotational phase of the drive pinion is 30 °.
  • FIG. 10C shows the position of the air mix door when the air conditioner is operated in the bi-level mode and the rotational phase of the drive pinion is 120 °.
  • FIG. 10D shows the position of the air mix door when the air conditioner is operated in the bi-level mode and the rotational phase of the drive pinion is 170 °.
  • FIG. 10E shows the position of the air mix door when the air conditioner is operated in the vent mode and the rotational phase of the drive pinion is 200 °.
  • the drive mechanism 10 is disposed outside the air conditioning case 2 so as to face the left side surface 2 c of the air conditioning case 2.
  • the drive mechanism 10 includes an actuator 11 that generates a rotational drive force, a drive pinion 20 that is rotationally driven by the actuator 11, and an upper driven pinion 30 that meshes with the drive pinion 20.
  • the rotational drive force of the actuator 11 is transmitted to the upper driven pinion 30 via the drive pinion 20.
  • the upper driven pinion 30 is connected to the left end portion of the upper shaft 7 protruding outside the air conditioning case 2 and transmits the rotational driving force of the actuator 11 to the upper shaft 7.
  • the actuator 11 is controlled by a control unit including an in-vehicle microcomputer.
  • the drive mechanism 10 also includes a rack 40 that extends generally in the vertical direction and a lower driven pinion 50 that meshes with the rack 40.
  • the lower driven pinion 50 is connected to the left end of the lower shaft 9 that protrudes outside the air conditioning case 2.
  • the rack 40 includes a rack body 40m formed with teeth that mesh with the drive pinion 20 and the lower driven pinion 50, and an urging arm 40n connected to the rack body 40m.
  • the rack 40 meshes with the drive pinion 20 at an upper portion thereof, and meshes with the lower driven pinion 50 at a lower portion thereof.
  • the rack 40 linearly moves in the vertical direction with the rotation of the drive pinion 20. Further, by engaging with the lower drive pinion 50, the rack 40 transmits the rotational driving force of the actuator 11 to the lower driven pinion 50. In this way, the rotational driving force of the actuator 11 is transmitted to the lower shaft 9 via the drive pinion 20, the rack 40 and the lower driven pinion 50.
  • the rack 40 meshes with the drive pinion 20 and the lower driven pinion 50 from one side of the virtual plane S1 including the rotation axis Ax of the drive pinion 20 and the rotation axis Cx of the lower driven pinion 50. is doing. Accordingly, the lower driven pinion 50 rotates in the same direction as the rotation direction of the drive pinion 20.
  • the upper driven pinion 30 meshes with the drive pinion 20 and rotates in the direction opposite to the rotation direction of the drive pinion 20.
  • the upper driven pinion 30 and the lower driven pinion 50 rotate in opposite directions.
  • the upper shaft 7 and the lower shaft 9 rotate in the opposite directions, and the upper air mix door 6 and the lower air mix door 8 slide in the opposite directions in the vertical direction.
  • the air conditioning case 2 is formed with two upper and lower regulating ribs 2m extending outward from the left side surface 2c toward the rack 40.
  • the rack 40 is provided with a restriction hole 40mo penetrating in the left-right direction at a position corresponding to each restriction rib 2m.
  • the restriction rib 2m is inserted through the restriction hole 40mo.
  • the left side surface 2c of the air conditioning case 2 is formed with a biasing rib 2n extending outward in the left-right direction.
  • the urging rib 2n extends along the virtual plane S1 on the opposite side of the rack 40 from the pinions 20 and 50.
  • An urging arm 40n is provided on the side of the rack body 40m that faces the urging rib 2n. The urging arm 40n abuts against the urging rib 2n and urges the rack body 40m toward the pinions 20 and 50. Thereby, the appropriate meshing between the rack 40 and the pinions 20 and 50 is maintained.
  • the surfaces of the urging arm 40n and the urging rib 2n that are in contact with each other are sufficiently smooth so as not to hinder the vertical movement of the rack 40.
  • the left side surface 2c of the air conditioning case 2 may have a stepped shape in the left-right direction and may be a surface (not shown) that contacts the rack 40.
  • the rack 40 meshes with the drive pinion 20 and the lower driven pinion 50 from one side of the virtual plane S1 including the rotation axis Ax of the drive pinion 20 and the rotation axis Cx of the lower driven pinion 50.
  • a proper engagement between the rack 40 and the drive pinion 20 and the lower driven pinion 50 is maintained only by applying a force in one direction to the rack 40 (ie, an urging force from the rack 40 toward the virtual surface S1). be able to.
  • the proper engagement between the rack 40 and the pinions 20 and 50 can be maintained by a simple configuration using the biasing rib 2n and the biasing arm 40n as described above.
  • the air mix doors 6 and 8, the shafts 7 and 9, and the drive mechanism 10 are such that when the upper air mix door 6 is in the upper first position, the lower air mix door 8 is in the lower first position.
  • the lower air mix door 8 is configured to be in the lower second position and is assembled to the air conditioning case 2.
  • the positions of the upper air mix door 6 and the lower air mix door 8 are the operation mode and set temperature of the air conditioner 1 set by the occupant, the actual temperature in the passenger compartment, the amount of solar radiation received by the vehicle, the outside air temperature of the vehicle, etc. It is controlled based on the target blowout temperature calculated using. Thereby, the air of the temperature according to the operation mode, preset temperature, etc. of the air conditioner 1 set by the passenger is blown out into the vehicle interior.
  • the temperature of the conditioned air blown out from the blowout passages 301, 302, and 303 is changed according to the operation mode of the air conditioner 1.
  • Such adjustment of the temperature of the conditioned air is performed by adjusting the positions of the air mix doors 6 and 8 and adjusting the opening areas of the detours 3a and 3b.
  • the differential foot mode (see FIG. 10A and FIG. 10B) is used when heating such as winter season is required.
  • conditioned air having a relatively warm temperature corresponding to the set temperature of the occupant is blown out from the foot outlet toward the occupant's feet to warm the occupant's feet.
  • relatively warm air is blown out from the defrost outlet toward the inner surface of the windshield to prevent fogging of the windshield.
  • freezing of the outer surface of the windshield is prevented.
  • the ratio of the air heated through the heat exchanger 5 for heating in each of the upper part and the lower part of the air passage 3 is relatively high or maximized (thus detouring).
  • the position of the air mix doors 6 and 8 is adjusted so that the ratio of air toward the paths 3a and 3b is relatively low or minimized.
  • the upper air mix door 6 is disposed at a position relatively close to the upper first position or the upper first position
  • the lower air mix door 8 is at the lower first position or the lower first position. It is arranged at a relatively close position.
  • the vent mode (see FIG. 10E) is used when rapid cooling is required.
  • relatively cool air is blown out from the vent outlet toward the occupant's upper body, giving the occupant a feeling of cold wind, and reducing the discomfort felt by the occupant when exposed to sunlight.
  • the ratio of air heated through the heating heat exchanger 5 is relatively low or minimized (thus the ratio of air toward the detours 3a and 3b is relatively high or maximum).
  • the position of the air mix doors 6 and 8 is adjusted. Specifically, the upper air mix door 6 is disposed at a position relatively close to the upper second position or the upper second position, and the lower air mix door 8 is at the lower second position or the lower second position. It is arranged at a relatively close position.
  • the bi-level mode (see FIGS. 10C and 10D) is mainly used in the intermediate period such as spring and autumn.
  • relatively cold air is blown out from the vent outlet toward the occupant's upper body, and relatively warm air is blown out from the foot outlet toward the occupant's feet, thereby realizing the occupant's foot warming.
  • the ratio of air passing through the heating heat exchanger 5 in the lower part of the air passage 3 is higher than the ratio of air passing through the heating heat exchanger 5 in the upper part of the air passage 3. Therefore, the ratio of air toward the lower bypass 3b at the lower part of the air passage 3 is lower than the ratio of air toward the upper bypass 3a at the upper part of the air passage 3).
  • the air mix doors 6 and 8 are located between the upper first position and the upper second position in the movable range from the lower first position to the lower second position. It arrange
  • the positions of the upper air mix door 6 and the lower air mix door 8 change depending on the rotational phase of the drive pinion 20 of the drive mechanism 10. If the rotational phase of the drive pinion 20 is 0 ° when the upper air mix door 6 is in the upper first position and the lower air mix door 8 is in the lower first position, the rotational phase of the drive pinion 20 increases. The upper air mix door 6 approaches the upper second position, and the lower air mix door 8 approaches the lower second position. Therefore, in order to adjust the temperature of the conditioned air according to the operation mode as described above, the angular position of the drive pinion 20 is adjusted as follows according to the operation mode.
  • the angular position of the drive pinion 20 is set to an angular position where the rotational phase is 0 ° or a relatively small value.
  • the angular position of the drive pinion 20 is set to an angular position where the rotational phase becomes a maximum or a relatively large value.
  • the angular position of the drive pinion 20 is set to an angular position larger than the rotational phase of the drive pinion 20 in the differential foot mode and smaller than the rotational phase of the drive pinion 20 in the vent mode. .
  • the drive mechanism 10 rotates the drive pinion 20 at a constant rotational speed by the actuator 11.
  • the lower air mix door 8 moves at a constant moving speed, but the moving speed of the upper air mix door 6 is configured to change depending on the rotational phase of the drive pinion 20.
  • the opening area of the lower detour 3a can be made smaller or larger than the opening area of the lower detour 3b depending on the rotational phase of the drive pinion 20.
  • the drive pinion 20 includes a plurality of drive pinion portions 21 and 22 having different reference circle diameters.
  • Each of the drive pinion parts 21 and 22 is a gear that rotates about the rotation axis Ax, and is arranged side by side along the direction in which the rotation axis Ax extends, as shown in FIG.
  • the upper driven pinion 30 includes a plurality of upper driven pinion portions 31 and 32 having different reference circle diameters.
  • Each of the upper driven pinion portions 31 and 32 is a gear that rotates about the rotation drive axis Bx, and is provided corresponding to the plurality of drive pinion portions 21 and 22, as shown in FIG.
  • the drive pinion 20 includes a first drive pinion unit 21 and a second drive pinion unit 22.
  • the reference circle diameters of the first drive pinion part 21 and the second drive pinion part 22 are R21 and R22, respectively.
  • the upper driven pinion 30 includes a first upper driven pinion part 31 and a second upper driven pinion part 32.
  • the first upper driven pinion part 31 is arranged side by side on the same plane as the first drive pinion part 21, and as shown in FIG. 6, the reference circle of the first drive pinion part 21 is arranged. It has a reference circle diameter R31 corresponding to the diameter R21.
  • the second upper driven pinion part 32 is arranged side by side on the same plane as the second drive pinion part 22, and as shown in FIG.
  • a reference circle diameter R32 corresponding to the reference circle diameter R22 is provided.
  • the teeth meshing with the first drive pinion part 21 of the first upper driven pinion part 31 and the teeth meshing with the second drive pinion part 22 of the second upper driven pinion part 32 Is the entire range of the rotational phase of the drive pinion 20 (the range of rotational phase in which the drive pinion 20 rotates when the air mix doors 6 and 8 are moved from the upper or lower first position to the upper or lower second position). ) In the phase ranges different from each other so as to mesh with the corresponding upper driven pinion portions 31 and 32.
  • the first drive pinion portion 21 having the reference circle diameter R21 and the first upper driven pinion portion 31 having the reference circle diameter R31 mesh with each other.
  • the second drive pinion portion 22 having the reference circle diameter R22 and the second upper driven pinion portion 32 having the reference circle diameter R32 mesh with each other.
  • the upper driven pinion 30 rotates at different rotation speeds V31 and V32 according to the rotation phase of the drive pinion 20. Therefore, the upper driven pinion 30 rotates the upper shaft 7 at different rotation speeds V31 and V32 according to the rotation phase of the drive pinion 20, and as a result, the upper air mix door 6 corresponds to the rotation phase of the drive pinion 20. Slide at different speeds.
  • the drive pinion 20 has a single rack pinion unit 23.
  • the rack pinion portion 23 is configured as a single gear having a reference circle diameter R23, and rotates about the rotation axis Ax.
  • the rack pinion portion 23 is arranged side by side with the drive pinion portions 21 and 22 along the direction in which the rotation axis Ax extends.
  • the rack pinion unit 23 meshes with the rack 40 in the entire rotational phase range of the drive pinion 20. As a result, the rack 40 moves upward or downward at a constant speed in the entire range of the rotational phase of the drive pinion 20.
  • the lower driven pinion 50 that meshes with the rack 40 is configured as a single gear having a reference circular diameter R50.
  • the lower driven pinion 50 has a rotation range of the lower driven pinion 50 (the lower driven pinion 50 rotates when the lower air mix door 8 is moved from the lower first position to the lower second position). In the range of the rotational phase), it meshes with the rack 40 moving at the above-mentioned constant speed. For this reason, the lower driven pinion 50 rotates at a constant rotational speed V50 in the entire rotational phase range of the lower driven pinion 50. As a result, in the entire rotational phase range of the lower driven pinion 50 (and thus in the entire rotational phase range of the drive pinion 20), the lower shaft 9 rotates at a constant rotational speed. 8 slides up or down at a constant speed.
  • the moving speed of the upper air mix door 6 can be changed with respect to the moving speed of the lower air mix door 8 according to the rotational phase of the drive pinion 20. .
  • the opening area of the lower detour 3a can be made smaller or larger than the opening area of the lower detour 3b depending on the rotational phase of the drive pinion 20.
  • the reference circular diameter R21 of the plurality of drive pinion portions 21 and 22 and the plurality of upper driven pinion portions 31 and 32 is maintained so that the opening area of the upper bypass 3a can be kept small in the differential foot mode.
  • R22, R31, R32 are determined as follows. That is, these reference circle diameters R21, R22, R31, and R32 are higher than the maximum rotational speed of the upper shaft 7 while the upper air mix door 6 moves from the first upper position to the second upper position. The rotational speed of the upper shaft 7 when 6 starts to move from the upper first position to the upper second position is determined to be small. In this case, since the moving speed of the upper air mix door 6 is relatively slow in the vicinity of the upper first position, the opening area of the upper bypass 3a can be kept small.
  • R32, the reference circle diameter R23 of the drive pinion 20 (rack drive pinion portion 23) that meshes with the rack 40, and the reference circle diameter R50 of the lower driven pinion 50 that meshes with the rack 40 are determined as follows. ing. That is, these reference circle diameters R21, R22, R31, R32, R23, and R50 are based on the rotational speed of the upper shaft 7 when the upper air mix door 6 starts moving from the upper second position to the upper first position.
  • the rotational speed of the lower shaft 9 when the lower air mix door 8 starts to move from the lower second position to the lower first position is determined so as to increase.
  • the opening area of the upper bypass 3a is reduced. It can be maintained larger than the opening area of the side bypass 3b.
  • the upper driven pinion 30 and the lower driven pinion 50 are also in the angular position of the rotational phase 0 °.
  • the upper air mix door 6 is in the upper first position
  • the lower air mix door 8 is in the lower first position.
  • the first drive pinion unit 21 and the first upper driven The pinion part 31 meshes.
  • the second drive pinion portion 22 and the second upper driven pinion portion 32 are engaged with each other.
  • the reference circle diameter R21 of the first drive pinion part 21 is smaller than the reference circle diameter R22 of the second drive pinion part 22, and correspondingly, the first upper driven pinion part 31 is.
  • the reference circle diameter R31 of the second upper driven pinion portion 32 is larger than the reference circle diameter R32. For this reason, when the rotational phase of the drive pinion 20 is in the range of 0 ° to 60 ° and 80 ° to 200 °, the drive pinion 20 has a relatively large reference circle at the first drive pinion portion 21 having a relatively small reference circle diameter R21. The first upper driven pinion portion 31 having the diameter R31 is rotationally driven. When the rotational phase of the drive pinion 20 is in the range of 60 ° to 80 °, the drive pinion 20 is a second drive pinion 22 having a relatively large reference circle diameter R22 and a second upper driven pinion having a relatively small reference circle diameter R32. The part 32 is driven to rotate.
  • the upper driven pinion 30 has a rotation phase range of 0 ° to 60 ° and 80 ° to 200 °. Then, it rotates at a relatively low rotational speed V31, and rotates at a relatively large rotational speed V32 when the rotational phase of the drive pinion 20 is in the range of 60 ° to 80 °.
  • the upper air mix door 6 moves at a relatively small speed when the rotational phase of the drive pinion 20 is in the range of 0 ° to 60 ° and 80 ° to 200 °, and the rotational phase of the drive pinion 20 is 60 ° to 80 °.
  • the range moves at a relatively high speed.
  • the rotational speed V50 of the lower driven pinion 50 is higher than the rotational speed V31 of the upper driven pinion 30 and lower than the rotational speed V32.
  • the moving speed of the upper air mix door 6 is smaller than that of the lower air mix door 8 when the rotational phase of the drive pinion 20 is in the range of 0 ° to 60 ° and 80 ° to 200 °, and the drive pinion 20 Is large in the range of 60 ° to 80 °.
  • the opening area of the upper detour 3a is smaller than the opening area of the lower detour 3b.
  • the magnitude relationship between the opening area of the upper detour 3a and the opening area of the lower detour 3b can be reversed when the rotational phase of the drive pinion 20 is in the range of 60 ° to 80 °. Yes (see FIG. 10C). Further, when the rotational phase of the drive pinion 20 is in the range of 80 ° to 200 °, the moving speed of the upper air mix door 6 becomes lower than the moving speed of the lower air mix door 8, so that the upper air mix door 6 moves upward. Simultaneously with reaching the second position, the lower air mix door 8 can reach the lower second position (see FIGS. 10D and 10E).
  • the drive pinion When the rotation phase of 20 is in the range of 80 ° to 200 °, the opening area of the upper detour 3a can be maintained larger than the opening area of the lower detour 3b.
  • the first direction in the circumferential direction of the drive pinion 20 is performed smoothly.
  • the distance between the teeth of the first drive pinion portion 21 and the teeth of the second drive pinion portion 22, and the teeth of the first upper driven pinion portion 31 and the teeth of the second upper driven pinion portion 32 in the circumferential direction of the upper driven pinion 30 The interval is set appropriately.
  • the rotational phase range in which the drive pinion 20 meshes with the upper driven pinion 30 and the rack 40 is only in the range of 0 ° to 200 ° in the illustrated example. For this reason, the tooth does not need to be provided over the entire circumference of each pinion part 21, 22 of the drive pinion 20.
  • the drive pinion 20, the upper driven pinion 30, and the rack 40 are easily assembled to the air conditioning case 2 (that is, when the drive pinion 20, the upper driven pinion 30 and the rack 40 are assembled to the air conditioning case 2, the pinion 20,
  • the teeth are provided over the entire circumference of each of the pinion portions 21, 22, and 23 of the drive pinion 20, so as to save the labor of assembling in consideration of the angle positions of the 30 and the rack 40. It is preferable.
  • the air conditioner 1 is operated in the differential foot mode, and then the operation mode of the air conditioner 1 is switched to the bi-level mode, then switched to the vent mode, and finally switched to the bi-level mode again.
  • An example will be described. It is assumed that the drive pinion 20 is in an angular position with a rotation phase of 0 ° before the operation of the air conditioner 1 is started. Further, in the illustrated example, in the differential foot mode, the angular position of the drive pinion is adjusted in a rotational phase range of 0 ° to 40 ° so that the opening area of the upper bypass 3a is equal to or less than a predetermined opening area. .
  • the angular position of the drive pinion is set to a rotational phase of 100 ° so that the temperature difference between the conditioned air blown from the vent outlet and the conditioned air blown from the foot outlet is within an appropriate range. It is adjusted in the range of ⁇ 180 °. Further, in the vent mode, the angular position of the drive pinion is adjusted in the range of the rotation phase of 180 ° to 200 ° so that the temperature of the conditioned air blown from the vent outlet is lowered to a desired level.
  • the air conditioner 1 is operated in the differential foot mode.
  • the operation mode of the air conditioner 1 is set to the differential foot mode
  • the defrost door 301D and the foot door 303D are opened and the bend door 302D is closed, as shown in FIGS. 10A and 10B.
  • the target blowout calculated using the operation mode (here, the differential foot mode) and the set temperature of the air conditioner 1 set by the occupant, the actual temperature in the passenger compartment, the amount of solar radiation received by the vehicle, and the outside air temperature of the vehicle Based on the temperature, the first new angular position of the drive pinion 20 is determined in the range of the rotational phase from 0 ° to 40 °.
  • the opening area of the lower bypass 3b is determined so that the temperature of the conditioned air blown out from the foot outlet toward the feet of the passenger becomes the target outlet temperature. Then, based on this opening area, the first new angular position of the drive pinion 20 is determined, for example, at a rotational phase of 30 °. Then, when the driving pinion 20 is rotated counterclockwise from the angular position of the rotational phase 0 ° to the angular position of the rotational phase 30 ° by the rotational driving force of the actuator 11, the rotation of the driving pinion 20 is accompanied accordingly.
  • the rack 40 rises by the amount.
  • the lower driven pinion 50 that meshes with the rack 40 rotates counterclockwise by the amount raised by the rack 40, and the lower air mix door 8 moves upward from the lower first position toward the lower second position. Slide to. As a result, the opening area of the lower bypass 3b becomes the determined opening area. Further, as the drive pinion 20 rotates counterclockwise, the upper driven pinion 30 rotates clockwise. Thereby, the upper air mix door 6 slides downward from the upper first position toward the upper second position. However, as shown in FIGS. 9 and 10B, the amount of movement of the upper air mix door 6 is smaller than the amount of movement of the lower air mix door 8.
  • the upper driven pinion 30 is rotated by meshing between the first drive pinion portion 21 having a relatively small reference circle diameter R21 and the first upper drive pinion portion 31 having a relatively large reference circle diameter R31. This is because the driven pinion 30 rotates at a rotational speed V31 that is lower than the rotational speed V50 of the lower driven pinion 50. As a result, the opening area of the upper detour 3a is sufficiently low, and the amount of air that bypasses the heating heat exchanger 5 included in the air blown from the defrost outlet is suppressed to a certain amount or less. Thereby, fogging of the windshield is prevented.
  • the vent door 302D and the foot door 303D are opened and the defrost door 301D is closed as shown in FIGS. 10C and 10D.
  • the second new angular position of the drive pinion 20 is determined in the range of the rotational phase of 100 ° to 180 °.
  • the opening area of the upper detour 3a is determined so that the temperature of the conditioned air blown from the vent outlet toward the upper body of the occupant becomes the target outlet temperature. Then, based on the opening area, the second new angular position of the drive pinion 20 is determined, for example, at a rotational phase of 120 °. Then, when the drive pinion 20 is further rotated counterclockwise from the angular position of the rotational phase 30 ° to the angular position of the rotational phase 120 ° by the rotational driving force of the actuator 11, the rotation of the drive pinion 20 is accompanied accordingly. The rack 40 further rises by this amount.
  • the lower driven pinion 50 that meshes with the rack 40 further rotates counterclockwise by the further rise of the rack 40, and the lower air mix door 8 further slides upward toward the lower second position.
  • the upper driven pinion 30 further rotates clockwise.
  • the upper air mix door 6 further slides downward toward the upper second position.
  • the drive pinion 20 rotates to the angular position of the rotation phase of 40 °
  • the upper driven pinion 30 rotates due to the engagement of the first drive pinion part 21 and the first upper drive pinion part 31, so the upper driven pinion 30 rotates.
  • the pinion 30 rotates at a rotation speed V31 that is lower than the rotation speed V50 of the lower driven pinion 50.
  • the upper driven pinion 30 has the second drive pinion portion 22 having the relatively large reference circle diameter V22 and the relatively small reference circle diameter V32.
  • the second upper drive pinion part 32 rotates by meshing with it.
  • the upper driven pinion 30 rotates at a rotational speed V32 that is greater than the rotational speed V50 of the lower driven pinion 50.
  • the opening area of the upper detour 3a is larger than the opening area of the lower detour 3b while the drive pinion 20 rotates from the rotational phase 40 ° to the angular position of 80 ° (see FIGS. 9 and 10C). ).
  • the upper driven pinion 30 is rotated again by the engagement of the first drive pinion portion 21 and the first upper drive pinion portion 31. .
  • the upper driven pinion 30 rotates at a rotational speed V31 that is smaller than the rotational speed V50 of the lower driven pinion 50.
  • the difference between the opening area of the upper detour 3a and the opening area of the lower detour 3b is reduced.
  • the difference between the temperature of the conditioned air blown from the vent outlet and the temperature of the conditioned air blown from the foot outlet is within an appropriate range.
  • the vent door 302D is opened and the defrost door 301D and the foot door 303D are closed as shown in FIG. 10E.
  • the target blowing temperature calculated using the operation mode (here, the vent mode) and the set temperature of the air conditioner 1 set by the passenger, the actual temperature in the passenger compartment, the amount of solar radiation received by the vehicle, the outside air temperature of the vehicle, and the like. Based on the above, the third new angular position of the drive pinion 20 is determined in the range of the rotation phase of 180 ° to 200 °.
  • the opening areas of the detours 3a and 3b are determined so that the temperature of the conditioned air blown out from the vent outlet toward the upper body of the occupant becomes the target outlet temperature.
  • the third new angular position of the drive pinion 20 is determined, for example, at a rotational phase of 200 °. Then, when the driving pinion 20 is further rotated counterclockwise from the angular position of the rotational phase 120 ° to the angular position of the rotational phase 200 ° by the rotational driving force of the actuator 11, the rotation of the driving pinion 20 is accompanied accordingly.
  • the rack 40 further rises by this amount.
  • the lower driven pinion 50 that meshes with the rack 40 further rotates counterclockwise by the further rise of the rack 40, and the lower air mix door 8 further slides upward toward the lower second position.
  • the upper driven pinion 20 further rotates clockwise.
  • the upper air mix door 6 further slides downward toward the upper second position.
  • the upper driven pinion 30 since the upper driven pinion 30 is rotated by meshing between the first drive pinion part 21 and the first upper driven pinion part 31, the upper driven pinion 30 rotates at a rotational speed V31 that is smaller than the rotational speed V50 of the lower driven pinion 50.
  • the lower air mix door 8 reaches the lower second position simultaneously with the upper air mix door 6 reaching the upper second position (see FIG. 10E).
  • the vent door 302D and the foot door 303D are opened and the defrost door 301D is closed, as shown in FIGS. 10C and 10D.
  • the fourth new angular position of the drive pinion 20 is determined within the range of the rotational phase of 100 ° to 180 °, for example, at the rotational phase of 120 °.
  • the upper driven pinion 30 is rotated by meshing between the first drive pinion portion 21 and the first upper drive pinion portion 22. Therefore, the lower driven pinion 50 rotates at a rotational speed V31 smaller than the rotational speed V50. Thereby, the opening area of the upper detour 3a becomes larger than the opening area of the lower detour 3b (see FIG. 10C). As a result, the temperature of the conditioned air blown out from the vent outlet becomes lower than the temperature of the conditioned air blown out from the foot outlet, thereby realizing the occupant's foot warming.
  • the air conditioner 1 is configured such that the rotational speed of the upper driven pinion 30 changes only by 1 degree while the drive pinion 20 rotates from the angular position of the rotational phase 0 ° to the angular position of the maximum rotational phase 200 °. It may be configured to change three times or more.
  • each of the drive pinion 20 and the upper driven pinion 30 has two drive pinion parts and two upper driven pinion parts corresponding thereto, and the rotational speeds of the upper driven pinion part are two different.
  • each of the drive pinion 20 and the upper driven pinion 30 may have three or more drive pinion parts and three or more upper driven pinion parts corresponding thereto.
  • the rotational speed of the upper driven pinion 30 can be rotated at three or more different rotational speeds.
  • the ratio of the opening area of the upper detour 3a and the opening area of the lower detour 3b can be adjusted more appropriately.
  • the vehicle air conditioner 1 includes an air conditioning case 2 that forms an air passage 3 through which air flows, and a heating heat exchanger 5 that is disposed in the air passage 3.
  • the upper detour 3a is formed above the upper end edge 5ae of the heating heat exchanger 5, and the lower detour 3b is disposed under the lower end edge 5be of the heating heat exchanger 5.
  • a heat exchanger 5 for heating arranged so as to form
  • the air conditioner 1 is disposed in the air passage 3, and includes a slide type upper air mix door 6 that adjusts the ratio of the air toward the heat exchanger 5 for heating and the air toward the upper detour 3 a, and the upper air.
  • the upper air mix door 6 connected to the mix door 6 in the circumferential direction, the upper first position that minimizes the ratio of air toward the upper detour 3a, and the ratio of air toward the upper detour 3a
  • the ratio between the upper shaft 7 that is slid between the upper second position that maximizes the pressure and the air that is disposed in the air passage 3 and that is directed to the heat exchanger 5 for heating and the air that is directed to the lower bypass 3b is adjusted.
  • Mix door 8 A lower shaft 9 that is slid between a lower first position that minimizes the ratio of air toward the lower bypass 3b and a lower second position that maximizes the ratio of air toward the lower bypass 3b. And a drive mechanism 10 that rotationally drives the upper shaft 7 and the lower shaft 9.
  • the drive mechanism 10 is connected to an actuator 11 that generates a rotational drive force, a drive pinion 20 that is rotationally driven by the actuator 11, and the upper shaft 7, and meshes with the drive pinion 20 to transfer the rotational drive force of the actuator 11 to the upper shaft.
  • the drive pinion 20 has a plurality of drive pinion portions 21 and 22 having different reference circle diameters
  • the upper driven pinion 30 is a reference circle diameter provided corresponding to the plurality of drive pinion portions 21 and 22.
  • the plurality of drive pinion units 21 and 22 mesh with the corresponding upper driven pinion units 31 and 32 in different phase ranges of the entire rotation phase range of the drive pinion 20.
  • the magnitude relationship of the opening area of 3b can be changed according to the rotational phase of the drive pinion 20.
  • the reference air diameters R21, R22, R31, and R32 of the plurality of drive pinion portions 21 and 22 and the plurality of upper driven pinion portions 31 and 32 are the same as the upper air mix door 6.
  • the upper air mix door 6 starts moving from the first upper position to the second upper position than the maximum rotational speed V32 of the upper shaft 7 during the movement from the position to the second upper position, the upper shaft 7
  • the rotational speed V31 is determined to be small. According to such an air conditioner 1, the moving speed of the upper air mix door 6 when the upper air mix door 6 is at or near the upper first position can be made relatively small.
  • the upper air mix door 6 In the differential foot mode, since the warm air is applied to the windshield through the defrost outlet, the upper air mix door 6 is required to be positioned in the vicinity of the upper first position.
  • the lower air mix door 8 is moved from the lower first position to the lower second position by the drive mechanism 10.
  • the opening area of the lower bypass 3b Even if the opening area of the lower bypass 3b is increased to some extent, the opening area of the upper bypass 3a can be kept small.
  • the quantity of the air which detoured the heat exchanger 5 for a heating which flows into a defrost blower outlet through the upper side detour 3a can be restrained low. As a result, fogging of the windshield is prevented.
  • the reference circle diameters R21 and R22 of the plurality of drive pinion parts 21 and 22 are engaged with the reference circle diameters R31 and R32 of the plurality of upper driven pinion parts 31 and 32 and the rack 40.
  • the reference circle diameter R32 of the drive pinion 20 (rack drive pinion portion 23) and the reference circle diameter R50 of the lower driven pinion 50 meshing with the rack 40 are such that the upper air mix door 6 is the upper first from the upper second position.
  • the lower air mix door 8 moves from the lower second position to the lower first position with respect to the rotational speed V31 of the upper shaft 7 when the movement to the position is started.
  • the rotational speed V50 is determined so as to increase.
  • the upper air mix door 6 moves from the upper second position or its vicinity to the upper first position, and the lower air mix door 8 moves to the lower second position or its position.
  • the moving speed of the upper air mix door 6 relative to the moving speed of the lower air mix door 8 when moving from the vicinity toward the lower first position can be reduced.
  • bi-level mode it is necessary to apply relatively cool air to the upper body of the occupant through the vent outlet and to apply relatively hot air to the occupant's feet through the foot outlet in order to realize the occupant's warmth. It is done.
  • the upper air mix door 6 needs to be positioned relatively near the upper second position.
  • the upper air mix door 6 near the upper second position is lower than the moving speed of the lower air mix door 8 near the lower second position
  • the upper air mix is driven by the drive mechanism 10.
  • the opening area of the upper detour 3a is made larger than the opening area of the lower detour 3b.
  • the amount of air that bypasses the heating heat exchanger 5 out of the air flowing into the vent outlet through the upper bypass 3a is transferred to the foot outlet through the lower bypass 3b. It can be made larger than the amount of air that bypasses the heat exchanger 5 for heating out of the inflowing air. As a result, occupant's foot warming can be realized.
  • FIG. 11 is a side view schematically showing a drive mechanism according to the first modification.
  • FIG. 12 is an enlarged side view showing the drive pinion of the drive mechanism shown in FIG. 11 and the upper portion of the rack.
  • 13 is a diagram schematically showing a cross section taken along line IIIa-IIIb-IIIc of the drive mechanism shown in FIG. 11, and
  • FIG. 14 is taken along line IV-IV of the drive mechanism shown in FIG. It is a figure which shows a cross section typically.
  • FIG. 11 is a side view schematically showing a drive mechanism according to the first modification.
  • FIG. 12 is an enlarged side view showing the drive pinion of the drive mechanism shown in FIG. 11 and the upper portion of the rack.
  • 13 is a diagram schematically showing a cross section taken along line IIIa-IIIb-IIIc of the drive mechanism shown in FIG. 11, and
  • FIG. 14 is taken along line IV-IV of the drive mechanism shown in FIG. It is a figure which shows a cross section typically.
  • FIG. 11 is a
  • FIG. 15 is a side view for explaining the change in the rotational speed of the lower driven pinion due to the change in the rotational phase of the drive pinion in the drive mechanism shown in FIG.
  • a portion indicated by a thick solid line and a thick broken line is a portion where rack or pinion teeth are provided.
  • the drive pinion has a plurality of rack drive pinion portions having different reference circular diameters compared to the drive mechanism shown in FIGS. 1 to 10E, and the upper portion of the rack. Is different in that it has a plurality of upper rack portions corresponding to a plurality of rack drive pinion portions.
  • Other configurations are substantially the same as those of the air conditioner 1 shown in FIGS. 1 to 10E.
  • the same parts as those in the embodiment shown in FIGS. 1 to 10E are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the drive pinion 20a includes a first rack drive pinion portion 21a and a second rack drive pinion portion 22a.
  • the rack 40a has a first upper rack portion 41a and a second upper rack portion 42a provided corresponding to the first rack drive pinion portion 21a and the second rack drive pinion portion 22a in the upper portion thereof. is doing.
  • the rack drive pinion portions 21a and 22a mesh with the corresponding upper rack portions 41a and 42a in different phase ranges of the entire rotational phase range of the drive pinion 20a.
  • the first drive pinion portion 21a and the second drive pinion portion 22a meshing with the upper driven pinion 30a are respectively connected to the first rack drive pinion portion and the second rack drive pinion. It functions as a part.
  • the first drive pinion unit 21a and the second drive pinion unit 22a are configured in the same manner as the first drive pinion unit 21 and the second drive pinion unit 22, respectively.
  • the upper driven pinion 30a is configured in the same manner as the upper driven pinion 30 and is configured in the same manner as the first upper driven pinion unit 30 and the second upper driven pinion unit 30, respectively.
  • a second upper driven pinion portion 30a is configured in the same manner as the first upper driven pinion unit 30 and the second upper driven pinion unit 30, respectively.
  • the first rack drive pinion unit 21a and the first rack drive pinion portion 21a are connected to the first rack drive pinion portion 21a and the first rack drive pinion portion 21a.
  • the first upper rack portion 41a meshes, and in the range of 60 ° to 200 °, the second rack drive pinion portion 22a meshes with the second upper rack portion 42a. Accordingly, the movement speed V41a of the rack 40a while the drive pinion 20a rotates in the rotation phase range of 0 ° to 60 ° is the movement speed V41a of the rack 40a while the drive pinion 20a rotates in the rotation phase range of 60 ° to 200 °. It is smaller than the speed V42a.
  • the rotational speed V51 of the lower driven pinion 50 when the drive pinion 20a rotates in the rotational phase range of 0 ° to 60 ° is the rotational speed V51 when the drive pinion 20a rotates in the rotational phase range of 60 ° to 200 °.
  • the rotational speed V52 of the lower driven pinion 50 is smaller. Therefore, the moving speed of the lower air mix door 8 when the drive pinion 20a rotates in the rotation phase range of 0 ° to 60 ° is lower than that when the drive pinion 20a rotates in the rotation phase range of 60 ° to 200 °. It is smaller than the moving speed of the side air mix door 8.
  • the moving speed of the lower air mix door 8 can be changed by the rotational phase of the drive pinion 20a. Therefore, the size relationship of the opening areas of the upper detour 3a and the lower detour 3b by the upper air mix door 6 and the lower air mix door 8 can be changed in various ways according to the rotational phase of the drive pinion 20a. it can. As a result, the opening areas of the upper detour 3a and the lower detour 3b can be adjusted more appropriately according to the operation mode of the air conditioner 1.
  • FIG. 16 is a side view schematically showing a drive mechanism according to the second modification.
  • FIG. 17 is an enlarged side view of the lower driven pinion and the lower portion of the rack shown in FIG. 18 is a diagram schematically showing a cross section taken along line Va-Vb-Vc of the drive mechanism shown in FIG. 16, and
  • FIG. 19 is a cross section taken along line VI-VI of the drive mechanism shown in FIG. It is a figure shown typically.
  • FIG. 20 is a side view for explaining the change in the rotational speed of the lower driven pinion due to the rotational phase of the lower driven pinion in the drive mechanism shown in FIG. In FIG. 20, a portion indicated by a thick solid line or a thick broken line is a portion where rack or pinion teeth are provided.
  • the lower driven pinion has a plurality of lower driven pinion portions having different reference circular diameters compared to the drive mechanism shown in FIGS. The difference is that the lower portion has a plurality of lower rack portions corresponding to the plurality of lower driven pinion portions.
  • Other configurations are substantially the same as those of the air conditioner 1 shown in FIGS. 1 to 10E.
  • the second modification shown in FIG. 16 to FIG. 20 the same parts as those in the embodiment shown in FIG. 1 to FIG.
  • the lower driven pinion 50b has a first lower driven pinion portion 51b and a second lower driven pinion portion 52b.
  • the rack 40b has a first lower rack portion 41b and a second lower rack portion provided at the lower portion thereof corresponding to the first lower driven pinion portion 51b and the second lower driven pinion portion 52b. 42b.
  • the lower driven pinion portions 51b and 52b are arranged in the entire rotational phase range of the lower driven pinion 50b (when the lower air mix door 8 is slid from the lower first position to the lower second position, the lower driven pinion 50b Meshing with the corresponding lower rack portions 41b and 42b in different phase ranges.
  • the reference circle diameter R51b of the first lower driven pinion portion 51b is larger than the reference circle diameter R52b of the second lower driven pinion portion 52b.
  • the drive pinion 20b is configured similarly to the drive pinion 20, and is configured in the same manner as the first drive pinion unit 21, the second drive pinion unit 22, and the rack drive pinion unit 23, respectively. Part 21b, second drive pinion part 22b and rack drive pinion part 23b.
  • the upper driven pinion 30b is configured in the same manner as the upper driven pinion 30, and the first upper driven pinion 30b is configured in the same manner as the first upper driven pinion 30 and the second upper driven pinion 30, respectively. And a second upper driven pinion portion 30b.
  • the entire rotation phase range of the drive pinion 20b is 0 ° to 200 °
  • the entire rotation phase range of the lower driven pinion 50b is 0 ° to 250 °.
  • the upper portion of the rack 40b meshes with the rack drive pinion portion 23b in the entire rotational phase range of the drive pinion 20b.
  • the rack 40b moves at a constant moving speed V40.
  • the rotational phase of the lower driven pinion 50b is in the range of 0 ° to 90 °
  • the lower driven pinion 50b has a first lower driven pinion portion 51b having a relatively large reference circle diameter R51b and the corresponding first lower driven pinion portion 51b.
  • the side rack portion 41b meshes, and in the range of 90 ° to 250 °, the second lower driven pinion portion 52b having a relatively small reference circle diameter R52b and the corresponding second lower rack portion 42b mesh with each other. Accordingly, the rotational speed V51b of the lower driven pinion 50b when the rotational phase of the lower driven pinion 50b is in the range of 0 ° to 90 ° is lower than the rotational phase of the lower driven pinion 50b within the range of 90 ° to 250 °.
  • the rotational speed V52b of the side driven pinion 50b is smaller.
  • the moving speed of the lower air mix door 8 can be changed by the rotational phase of the drive pinion 20b. Therefore, the size relationship of the opening areas of the upper detour 3a and the lower detour 3b by the upper air mix door 6 and the lower air mix door 8 can be changed in various ways according to the rotational phase of the drive pinion 20b. it can. As a result, the opening areas of the upper detour 3a and the lower detour 3b can be adjusted more appropriately according to the operation mode of the air conditioner 1.
  • FIG. 21 is a side view schematically showing a drive mechanism according to the third modification.
  • 22 is a diagram schematically showing a cross section taken along line VII-VII of the drive mechanism shown in FIG. 21, and
  • FIG. 23 is taken along line VIIIa-VIIIb-VIIIc of the drive mechanism shown in FIG. It is a figure which shows a cross section typically.
  • the drive pinion has a plurality of drive pinion portions having different reference circle diameters, and the lower driven pinion is provided with a reference circle diameter provided corresponding to the plurality of drive pinion portions.
  • the plurality of lower driven pinion parts are different from each other, and the plurality of driving pinion parts mesh with the corresponding lower driven pinion parts in different phase ranges of the entire rotational phase range of the driving pinion.
  • Other configurations are substantially the same as those of the air conditioner 1 shown in FIGS. 1 to 10E.
  • the same parts as those in the embodiment shown in FIGS. 1 to 10E are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the upper air mix door 6 is moved from the upper second position to the upper first position so that the occupant's foot warming can be realized in the bi-level mode.
  • the rotational speed of the lower shaft 9 when the lower air mix door 8 starts moving from the lower second position to the lower first position is higher than the rotational speed of the upper shaft 7 when the movement starts. It is configured to be large.
  • the rotational speed of the upper shaft 7 when the upper air mix door 8 starts to move from the upper first position to the upper second position so as to prevent the windshield from being fogged can be prevented.
  • the lower air mix door 8 is configured to increase the rotational speed of the lower shaft 9 when the lower air mix door 8 starts moving from the lower first position to the lower second position.
  • the drive pinion 20c is provided in the vicinity of the lower driven pinion 50c.
  • the lower driven pinion 50 c meshes with the drive pinion 20 c and transmits the rotational driving force of the actuator 11 to the lower shaft 9.
  • the rack 40c meshes with the drive pinion 20c at the lower portion thereof, and linearly moves by the rotational driving force of the actuator 11.
  • the upper driven pinion 30 c meshes with the upper portion of the rack 40 c and transmits the rotational driving force of the actuator 11 to the upper shaft 7.
  • the drive pinion 20c is configured in the same manner as the drive pinion 20, and the first drive pinion unit 21, the second drive pinion unit 22, and the rack drive pinion unit 23, respectively. It has the 1st drive pinion part 21c, the 2nd drive pinion part 22c, and the drive pinion part 23c for racks comprised similarly.
  • the rack 40 c is configured in the same manner as the rack 40.
  • the rack 40c meshes with the drive pinion 20c and the upper driven pinion 30c from one side of the virtual plane S2 including the rotation axis Ax of the drive pinion 20c and the rotation axis Bx of the upper driven pinion 30c. is doing. Accordingly, the upper driven pinion 30c rotates in the same direction as the rotation direction of the drive pinion 20c.
  • the lower driven pinion 50c meshes with the drive pinion 20c and rotates in the direction opposite to the rotation direction of the drive pinion 20c. As a result, the upper driven pinion 30c and the lower driven pinion 50c rotate in opposite directions.
  • the rack 40c is engaged with the drive pinion 20c and the upper driven pinion 30c from one side of the virtual plane S2 including the rotation axis Ax of the drive pinion 20c and the rotation axis Bx of the upper driven pinion 30c.
  • the appropriate engagement between the rack 40c, the drive pinion 20c, and the upper driven pinion 30c can be maintained by simply applying a force in one direction (ie, an urging force from the rack 40c toward the virtual surface S2). For this reason, for example, an appropriate meshing between the rack 40c and the pinions 20c and 30c can be maintained by a simple configuration using the biasing rib 2n and the biasing arm 40n as described above.
  • the drive pinion 20c includes a first drive pinion part 21c and a second drive pinion part 22c.
  • the lower driven pinion 50c includes a first lower driven pinion portion 51c and a second lower driven pinion portion 52c provided corresponding to the first drive pinion portion 21c and the second drive pinion portion 22c.
  • the reference circle diameter R21 of the first drive pinion portion 21c is smaller than the reference circle diameter R22 of the second drive pinion portion 22c.
  • the reference circle diameter of the first lower driven pinion portion 51c is larger than the reference circle diameter of the second lower driven pinion portion 52c.
  • the second drive pinion portion 22c having a relatively large reference circle diameter and the second lower side having a relatively small reference circle diameter.
  • the driven pinion portion 52c meshes with the first drive pinion portion 21c having a relatively small reference circle diameter and the first lower driven pinion portion 51c with a relatively small reference circle diameter in the range of 60 ° to 80 °.
  • the second drive pinion portion 22c having a relatively large reference circle diameter meshes with the second lower driven pinion portion 52c having a relatively small reference circle diameter.
  • the rotational speed of the lower driven pinion 50c is relatively fast in the range of 0 ° to 60 ° and relatively slow in the range of 60 ° to 80 ° of the entire rotational phase range of the drive pinion 20c. In the range of 80 ° to 200 °, it becomes relatively fast.
  • the rack 40c meshes with the rack drive pinion portion 23c of the drive pinion 20c in the entire rotational phase range of the drive pinion 20c. For this reason, the rack 40c moves in the vertical direction at a constant speed in the entire rotational phase range of the drive pinion 20c.
  • the upper driven pinion 30c that meshes with the rack 40c is constituted by a single gear.
  • the upper driven pinion 30c has the same rotational phase as that of the rack 40c in the entire rotational phase range (the rotational phase range in which the upper driven pinion 30c rotates when the upper air mix door 6 is slid from the upper first position to the upper second position). Mesh. Accordingly, the rotational speed of the upper driven pinion 30c is constant over the entire range of the rotational phase (and thus over the entire range of the rotational phase of the drive pinion 20c).
  • the reference circular diameter of the upper driven pinion 30c that meshes with the rack 40c is lower than the rotational speed of the upper shaft 7 when the upper air mix door 6 starts to move from the upper second position to the upper first position.
  • the rotational speed of the lower shaft 9 when the side air mix door 8 starts moving from the lower second position to the lower first position is determined so as to increase.
  • the rotational speed of the lower driven pinion 50c in the range of 80 ° to 200 ° in the entire rotational phase range of the drive pinion 20c is determined to be higher than the rotational speed of the upper driven pinion 30c. Yes.
  • the reference circular diameter of the upper driven pinion 30c that meshes with the rack 40c is lower than the rotational speed of the upper shaft 7 when the upper air mix door 8 starts moving from the upper first position to the upper second position.
  • the rotational speed of the lower shaft 9 when the side air mix door 8 starts moving from the lower first position to the lower second position is determined so as to increase.
  • the rotational speed of the lower driven pinion 50c in the range of 0 ° to 60 ° of the entire rotational phase range of the drive pinion 20c is determined to be higher than the rotational speed of the upper driven pinion 30c. ing.
  • the magnitude relationship of the opening area of the upper side detour route 3a and the lower side detour route 3b by the upper air mix door 6 and the lower air mix door 8 driven by one drive mechanism 10 is driven. It can be changed according to the rotational phase of the pinion 20c.
  • the amount of air that bypasses the heating heat exchanger 5 out of the air flowing into the vent outlet through the upper bypass 3a flows into the foot outlet through the lower bypass 3b. It can be made larger than the amount of air that bypasses the heat exchanger 5 for heating. As a result, occupant's foot warming can be realized.
  • the opening area of the upper detour 3a can be made smaller than the opening area of the lower detour 3b, and a relatively warm temperature corresponding to the set temperature of the occupant from the foot outlet While blowing out the conditioned air toward the feet of the occupant, the amount of air that bypasses the heating heat exchanger 5 through the upper detour 3a among the air blown out from the defrost outlet can be kept small. As a result, fogging of the windshield can be prevented.
  • the drive pinion 20c may have a plurality of rack drive pinion portions having different reference circle diameters.
  • the rack 40c may have a plurality of lower rack portions provided corresponding to the plurality of rack drive pinion portions.
  • the plurality of rack drive pinion portions may mesh with the corresponding lower rack portions in different phase ranges of the entire rotation phase range of the drive pinion 20c.
  • the moving speed of the rack 40c and thus the rotating speed of the upper driven pinion 30c can be changed according to the rotational phase of the drive pinion 20c.
  • the upper air mix door 6 is moved from the upper first position to the upper second position than the maximum rotational speed of the upper shaft 7 while the upper air mix door 6 is moved from the upper first position to the upper second position.
  • the drive mechanism 10c can be configured so that the rotational speed of the upper shaft 7 when starting to move to becomes smaller. This can also prevent fogging of the windshield during driving in the differential foot mode.
  • FIG. 24 is a side view schematically showing a drive mechanism according to the fourth modification.
  • FIG. 25 is a diagram schematically showing a cross section along the line IX-IX of the drive mechanism shown in FIG. 24, and
  • FIG. 26 is along the line Xa-Xb-Xc of the drive mechanism shown in FIG. It is a figure which shows a cross section typically.
  • the upper driven pinion has a plurality of drive pinion portions having different reference circular diameters
  • the rack has a plurality of upper rack portions provided corresponding to the plurality of upper driven pinion portions, and the plurality of upper driven pinion portions are in a different phase range from each other in the entire rotational phase range of the upper driven pinion. It differs in that it meshes with the corresponding upper rack part.
  • Other configurations are substantially the same as those of the air conditioner 1 shown in FIGS.
  • the fourth modification shown in FIGS. 24 to 26 the same parts as those in the third modification shown in FIGS. 21 to 23 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the upper air mix door 6 is moved from the upper first position to the upper first position so that the windshield can be prevented from being fogged during operation in the differential foot mode.
  • the rotational speed of the upper shaft 7 when the upper air mix door 6 starts moving from the upper first position to the upper second position is smaller than the maximum rotational speed of the upper shaft 7 while moving to the second position. It is configured as follows.
  • the upper driven pinion 30d has a first upper driven pinion portion 31d and a second upper driven pinion portion 32d.
  • the reference circular diameter of the first upper driven pinion portion 31d is larger than that of the second upper driven pinion portion 32d.
  • a first upper rack portion 41d and a second upper rack portion 42d are provided in the upper portion of the rack 40d corresponding to the first upper driven pinion portion 31d and the second upper driven pinion portion 32d.
  • the first upper driven pinion portion 31d having a relatively large reference circle diameter and the first corresponding to the first upper driven pinion portion 31d have a relatively large reference circle diameter.
  • the first upper rack portion 41d meshes, and at 160 ° to 250 °, the second upper driven pinion portion 32d having a relatively small reference circle diameter meshes with the corresponding second upper rack portion 42d. Accordingly, the rotational speed of the upper driven pinion 30d is relatively slow in the range of 0 ° to 160 ° and relatively fast in the range of 160 ° to 250 °, out of the entire range of the rotational phase.
  • the moving speed of the upper air mix door 6 can be changed by the rotational phase of the drive pinion 20c. Therefore, the size relationship of the opening areas of the upper detour 3a and the lower detour 3b by the upper air mix door 6 and the lower air mix door 8 can be changed in various ways according to the rotational phase of the drive pinion 20c. it can. As a result, the opening areas of the upper detour 3a and the lower detour 3b can be adjusted more appropriately according to the operation mode of the air conditioner 1.
  • the reference circular diameters of the plurality of upper driven pinion portions 31d and 32d that mesh with the rack 40d in accordance with the rotational phase of the drive pinion 20c are such that the upper air mix door 6 moves from the upper first position to the upper second position. Is determined so that the rotational speed of the upper shaft 7 when the upper air mix door 6 starts moving from the upper first position to the upper second position is smaller than the maximum rotational speed of the upper shaft 7 during the movement to Has been. Therefore, the moving speed of the upper air mix door 6 when the upper air mix door 6 is at or near the upper first position can be made relatively small. Thereby, the opening area of the upper detour 3a can be kept small during operation in the differential foot mode. As a result, fogging of the windshield can be prevented.
  • the upper air mix door 6 moves from the upper first position to the upper second position than the maximum rotational speed of the upper shaft 7 while the upper air mix door 6 moves from the upper first position to the upper second position. So that the rotational speed of the upper shaft 7 when starting is reduced, the reference circle diameters of the plurality of drive pinion portions 21c, 22c, the reference circle diameter of the drive pinion 20c meshing with the rack 40d, and meshing with the rack 40d The reference circle diameter of the upper driven pinion 30d to be determined may be determined.
  • vehicle air conditioner according to the present invention can be manufactured industrially and can be used for commercial transactions, it can be used industrially with economic value.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

[Problem] To provide an air conditioning device capable of changing the size relationship between opening areas in an upper-side detour path and a lower-side detour path. [Solution] According to the present invention, a drive mechanism (10) has a driving pinion (20), an upper-side driven pinion (30) and a rack (40) that engage with the driving pinion (20), and a lower-side driven pinion (50) that engages with the rack (40), wherein the driving pinion (20) has a plurality of driving pinion parts (21, 22) having mutually different reference circle diameters, the upper-side driven pinion (30) has a plurality of upper-side driven pinion parts (31, 32) having mutually different reference circle diameters, and the plurality of driving pinion parts (21, 22) engage with the respective upper-side driven pinion parts (31, 32) in mutually different phase ranges among the total range of rotational phase of the drive pinion (20).

Description

車両用空調装置Air conditioner for vehicles



 本発明は、車両用空調装置に関する。



The present invention relates to a vehicle air conditioner.



 従来、空調ケースの内部に加熱用熱交換器を有する車両用空調装置であって、空調ケースの内部において、加熱用熱交換器を通過して加熱される空気と、加熱用熱交換器を迂回する空気との比率を調節するエアミックスドアを備えた空調装置が知られている。例えば、加熱用熱交換器が空調ケースの上下方向の中央に配置される場合、加熱用熱交換器の上方および下方に迂回路が形成され、空調ケース内を流れる空気は、これらの迂回路を通じて加熱用熱交換器を迂回することができる。そして、上方および下方の迂回路のそれぞれに対して各迂回路の開口面積を調節するエアミックスドアを設け、エアミックスドアを移動させて迂回路の開口面積を調節することで、加熱用熱交換器を通過する空気と加熱用熱交換器を迂回する空気との比率を調節する。特許文献1では、このような上下のエアミックスドアを、上下のエアミックスドアの各々の支持軸に接続された上下のピニオンと、当該上下のピニオンと噛合するラックとを用いた一つの駆動機構で一体的に駆動している。 



2. Description of the Related Art Conventionally, a vehicle air conditioner having a heating heat exchanger inside an air conditioning case, wherein the air passing through the heating heat exchanger and the heating heat exchanger are bypassed inside the air conditioning case. 2. Description of the Related Art An air conditioner including an air mix door that adjusts a ratio with air to be performed is known. For example, when the heat exchanger for heating is arranged at the center in the vertical direction of the air conditioning case, detours are formed above and below the heat exchanger for heating, and the air flowing in the air conditioning case passes through these detours. The heat exchanger for heating can be bypassed. Then, an air mix door that adjusts the opening area of each detour is provided for each of the upper and lower detours, and the heat exchange for heating is performed by adjusting the opening area of the detour by moving the air mix door The ratio of the air passing through the oven and the air bypassing the heating heat exchanger. In Patent Document 1, such an upper and lower air mix door is a single drive mechanism that uses upper and lower pinions connected to the support shafts of the upper and lower air mix doors and a rack that meshes with the upper and lower pinions. It is driven integrally with.



 なお、上方の迂回路を通じて加熱用熱交換器を迂回した比較的低温の空気は、空調装置の上側部分に設けられたデフロスト吹出口またはベント吹出口に流れ込む傾向にある。また、下方の迂回路を通じて加熱用熱交換器を迂回した空気は、空調装置の下側部分に設けられたフット吹出口に流れ込む傾向にある。 



Note that relatively low-temperature air that has bypassed the heat exchanger for heating through the upper bypass route tends to flow into a defrost outlet or a vent outlet provided in the upper portion of the air conditioner. Further, the air that has bypassed the heat exchanger for heating through the lower bypass route tends to flow into the foot outlet provided in the lower portion of the air conditioner.



 ところで、車両用空調装置の運転モードのうち、バイレベルモードでは、ベント吹出口から吹き出される調和空気の温度を、フット吹出口から吹き出される調和空気の温度よりも低くして、乗員の足温頭寒を実現することが要求される。このことは、上側の迂回路の開口面積を下側の迂回路の開口面積よりも大きくする必要があることを意味している。一方、デフフットモードでは、上側の迂回路の開口面積を小さくすることが望ましい。これは、上側の迂回路の開口面積を大きくして一定量以上の低温の空気がデフロスト吹出口に導かれると、フロントガラスの曇りを解消するための時間が長くなる虞があるからである。この結果、デフフットモードでは、上側の迂回路の開口面積を下側の迂回路の開口面積よりも小さくする必要がある。 



By the way, in the operation mode of the vehicle air conditioner, in the bi-level mode, the temperature of the conditioned air blown from the vent outlet is set lower than the temperature of the conditioned air blown from the foot outlet, It is required to realize warm and cold. This means that the opening area of the upper detour needs to be larger than the opening area of the lower detour. On the other hand, in the differential foot mode, it is desirable to reduce the opening area of the upper bypass. This is because if the opening area of the upper bypass route is increased and a certain amount or more of low-temperature air is guided to the defrost outlet, the time required to eliminate the fogging of the windshield may increase. As a result, in the differential foot mode, the opening area of the upper detour needs to be smaller than the opening area of the lower detour.



 このように、上側の迂回路および下側の迂回路の開口面積の大小関係を変えることができる空調装置の実現が望まれている。



Thus, it is desired to realize an air conditioner that can change the size relationship between the opening areas of the upper detour and the lower detour.
特開2015-110404号公報JP2015-110404A



 本発明は、上側の迂回路および下側の迂回路の開口面積の大小関係を変えることができる空調装置を提供することを目的としている。



An object of the present invention is to provide an air conditioner that can change the size relationship between the opening areas of the upper detour and the lower detour.



 本発明の好適な一実施形態によれば、車両用の空調装置であって、 空気が流れる空気通路を形成する空調ケースと、 前記空気通路内に配置された加熱用熱交換器であって、当該加熱用熱交換器の上側端縁の上側に上側迂回路を形成し、且つ、当該加熱用熱交換器の下側端縁の下側に下側迂回路を形成するように配置された加熱用熱交換器と、 前記空気通路内に配置され、前記加熱用熱交換器に向かう空気と前記上側迂回路に向かう空気との比率を調整するスライド式の上側エアミックスドアと、 前記上側エアミックスドアに連結されて、周方向の回転に伴って前記上側エアミックスドアを、前記上側迂回路に向かう空気の比率を最小とする上側第1位置と、前記上側迂回路に向かう空気の比率を最大とする上側第2位置との間でスライドさせる上側シャフトと、 前記空気通路内に配置され、前記加熱用熱交換器に向かう空気と前記下側迂回路に向かう空気との比率を調整するスライド式の下側エアミックスドアと、 前記上側シャフトと平行に配置された下側シャフトであって、前記下側エアミックスドアに連結されて、周方向の回転に伴って前記下側エアミックスドアを、前記下側迂回路に向かう空気の比率を最小とする下側第1位置と、前記下側迂回路に向かう空気の比率を最大とする下側第2位置との間でスライドさせる下側シャフトと、 前記上側シャフトおよび前記下側シャフトを回転駆動する駆動機構と、を備え、 前記駆動機構は、 回転駆動力を発生するアクチュエータと、 前記アクチュエータにより回転駆動される駆動ピニオンと、 前記上側シャフトに連結され、前記駆動ピニオンと噛合して前記アクチュエータの回転駆動力を前記上側シャフトに伝達する上側従動ピニオンと、 前記駆動ピニオンと噛合し、前記アクチュエータの回転駆動力が伝達されて直線運動をするラックと、 前記下側シャフトに連結され、前記ラックと噛合して前記アクチュエータの回転駆動力を前記下側シャフトに伝達する下側従動ピニオンと、を有し、 前記駆動ピニオンは、互いに基準円直径の異なる複数の駆動ピニオン部を有し、 前記上側従動ピニオンは、前記複数の駆動ピニオン部に対応して設けられた互いに基準円直径の異なる複数の上側従動ピニオン部を有し、 前記複数の駆動ピニオン部は、前記駆動ピニオンの回転位相の全範囲のうち、互いに異なる位相範囲において、対応する上側従動ピニオン部と噛合する、空調装置が提供される。 



According to a preferred embodiment of the present invention, there is an air conditioner for a vehicle, an air conditioning case that forms an air passage through which air flows, and a heat exchanger for heating disposed in the air passage, Heating arranged to form an upper detour above the upper edge of the heating heat exchanger and to form a lower detour below the lower edge of the heating heat exchanger A heat exchanger for sliding, a slide-type upper air mix door that is disposed in the air passage and adjusts a ratio of air toward the heat exchanger for heating and air toward the upper detour, and the upper air mix The upper air mix door is connected to a door, and the upper air mix door is rotated in the circumferential direction. Slide between the upper second position An upper shaft that is disposed in the air passage, and a sliding lower air mix door that adjusts a ratio of air toward the heat exchanger for heating and air toward the lower detour, and the upper shaft The lower shaft is arranged in parallel with the lower air mix door, and is connected to the lower air mix door to change the ratio of the air toward the lower detour as the lower air mix door is rotated in the circumferential direction. A lower shaft that is slid between a lower first position that is minimized and a lower second position that maximizes the ratio of air toward the lower detour, and the upper shaft and the lower shaft are rotated. A drive mechanism for driving, wherein the drive mechanism is coupled to an actuator that generates a rotational driving force, a drive pinion that is rotationally driven by the actuator, and the upper shaft. An upper driven pinion that meshes with the drive pinion and transmits the rotational driving force of the actuator to the upper shaft; a rack that meshes with the drive pinion and that receives the rotational driving force of the actuator and moves linearly; and A lower driven pinion coupled to the lower shaft and meshing with the rack to transmit the rotational driving force of the actuator to the lower shaft, and the driving pinion has a plurality of reference circular diameters different from each other. The upper driven pinion has a plurality of upper driven pinion portions having different reference circular diameters provided corresponding to the plurality of driving pinion portions, and the plurality of driving pinion portions are: Engage with the corresponding upper driven pinion part in different phase ranges of the entire rotational phase range of the drive pinion. Air conditioning apparatus is provided.



 あるいは、本発明の好適な他の実施形態によれば、車両用の空調装置であって、



 空気が流れる空気通路を形成する空調ケースと、



 前記空気通路内に配置された加熱用熱交換器であって、当該加熱用熱交換器の上側端縁の上側に上側迂回路を形成し、且つ、当該加熱用熱交換器の下側端縁の下側に下側迂回路を形成するように配置された加熱用熱交換器と、



 前記空気通路内に配置され、前記加熱用熱交換器に向かう空気と前記上側迂回路に向かう空気との比率を調整するスライド式の上側エアミックスドアと、



 前記上側エアミックスドアに連結されて、周方向の回転に伴って前記上側エアミックスドアを、前記上側迂回路に向かう空気の比率を最小とする上側第1位置と、前記上側迂回路に向かう空気の比率を最大とする上側第2位置との間でスライドさせる上側シャフトと、



 前記空気通路内に配置され、前記加熱用熱交換器に向かう空気と前記下側迂回路に向かう空気との比率を調整するスライド式の下側エアミックスドアと、



 前記上側シャフトと平行に配置された下側シャフトであって、前記下側エアミックスドアに連結されて、周方向の回転に伴って前記下側エアミックスドアを、前記下側迂回路に向かう空気の比率を最小とする下側第1位置と、前記下側迂回路に向かう空気の比率を最大とする下側第2位置との間でスライドさせる下側シャフトと、



 前記上側シャフトおよび前記下側シャフトを回転駆動する駆動機構と、を備え、



 前記駆動機構は、



 回転駆動力を発生するアクチュエータと、



 前記アクチュエータにより回転駆動される駆動ピニオンと、



 前記下側シャフトに連結され、前記駆動ピニオンと噛合して前記アクチュエータの回転駆動力を前記下側シャフトに伝達する下側従動ピニオンと、



 前記駆動ピニオンと噛合し、前記アクチュエータの回転駆動力が伝達されて直線運動をするラックと、



 前記上側シャフトに連結され、前記ラックと噛合して前記アクチュエータの回転駆動力を前記上側シャフトに伝達する上側従動ピニオンと、を有し、



 前記駆動ピニオンは、互いに基準円直径の異なる複数の駆動ピニオン部を有し、



 前記下側従動ピニオンは、前記複数の駆動ピニオン部に対応して設けられた互いに基準円直径の異なる複数の下側従動ピニオン部を有し、



 前記複数の駆動ピニオン部は、前記駆動ピニオンの回転位相の全範囲のうち、互いに異なる位相範囲において、対応する下側従動ピニオン部と噛合する。



Alternatively, according to another preferred embodiment of the present invention, an air conditioner for a vehicle,



An air conditioning case forming an air passage through which air flows;



A heating heat exchanger disposed in the air passage, wherein an upper detour is formed above an upper edge of the heating heat exchanger, and a lower edge of the heating heat exchanger A heat exchanger for heating arranged to form a lower bypass on the lower side,



A sliding upper air mix door disposed in the air passage for adjusting a ratio of air toward the heat exchanger for heating and air toward the upper detour;



The upper air mix door is connected to the upper air mix door, and the upper air mix door is rotated in the circumferential direction. An upper shaft that slides between the upper second position that maximizes the ratio of



A sliding lower air mix door disposed in the air passage for adjusting a ratio of air toward the heating heat exchanger and air toward the lower detour;



A lower shaft disposed in parallel with the upper shaft, the air being connected to the lower air mix door, and the air flowing toward the lower detour along the circumferential direction with the rotation of the lower air mix door A lower shaft that slides between a lower first position that minimizes the ratio of the second lower position that maximizes a ratio of air toward the lower detour, and



A drive mechanism for rotationally driving the upper shaft and the lower shaft,



The drive mechanism is



An actuator that generates rotational driving force;



A drive pinion that is rotationally driven by the actuator;



A lower driven pinion coupled to the lower shaft and meshing with the drive pinion to transmit the rotational driving force of the actuator to the lower shaft;



A rack that meshes with the drive pinion and receives a rotational driving force of the actuator to perform a linear motion;



An upper driven pinion coupled to the upper shaft and meshing with the rack to transmit the rotational driving force of the actuator to the upper shaft;



The drive pinion has a plurality of drive pinion portions having different reference circle diameters,



The lower driven pinion has a plurality of lower driven pinion portions having different reference circle diameters provided corresponding to the plurality of driving pinion portions,



The plurality of drive pinion portions mesh with corresponding lower driven pinion portions in different phase ranges of the entire rotation phase range of the drive pinion.



 上記本発明の実施形態によれば、上側の迂回路および下側の迂回路の開口面積の大小関係を変えることができる空調装置を提供することができる。



According to the embodiment of the present invention, it is possible to provide an air conditioner that can change the size relationship between the opening areas of the upper detour and the lower detour.
本発明の一実施の形態による空調装置の空気調和部の構造を模式的に示す側面図である。It is a side view which shows typically the structure of the air conditioning part of the air conditioner by one embodiment of this invention. 図1に示す空気調和部のI-I線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line II of the air conditioning unit shown in FIG. 1. 図1に示す空気調和部のII-II線に沿った断面図である。FIG. 2 is a cross-sectional view of the air conditioning unit shown in FIG. 1 taken along the line II-II. 図1に示す空気調和部のエアミックスドアとシャフトと駆動機構とを示す分解斜視図である。It is a disassembled perspective view which shows the air mix door of the air conditioning part shown in FIG. 1, a shaft, and a drive mechanism. 図1に示す駆動機構の駆動ピニオンと上側従動ピニオンとラックと下側従動ピニオンとを示す側面図である。FIG. 2 is a side view showing a drive pinion, an upper driven pinion, a rack, and a lower driven pinion of the drive mechanism shown in FIG. 1. 図5に示す駆動ピニオンの第1駆動ピニオン部と上側従動ピニオンの第1上側従動ピニオン部とを示す側面図である。FIG. 6 is a side view showing a first drive pinion part of the drive pinion shown in FIG. 5 and a first upper driven pinion part of the upper driven pinion. 図5に示す駆動ピニオンの第2駆動ピニオン部と上側従動ピニオンの第2上側従動ピニオン部とを示す側面図である。FIG. 6 is a side view showing a second drive pinion portion of the drive pinion shown in FIG. 5 and a second upper driven pinion portion of the upper driven pinion. 図5に示すラックとラック用ピニオン部と下側従動ピニオンとを示す側面図である。It is a side view which shows the rack shown in FIG. 5, the rack pinion part, and a lower side driven pinion. 図5に示す駆動ピニオンの回転位相と各エアミックスドアの位置との関係を示すグラフである。It is a graph which shows the relationship between the rotation phase of the drive pinion shown in FIG. 5, and the position of each air mix door. 図1に対応する図であって、空調装置の各運転モードとエアミックスドアの位置との関係を説明するための図である。It is a figure corresponding to FIG. 1, Comprising: It is a figure for demonstrating the relationship between each operation mode of an air conditioner, and the position of an air mix door. 図1に対応する図であって、空調装置の各運転モードとエアミックスドアの位置との関係を説明するための図である。It is a figure corresponding to FIG. 1, Comprising: It is a figure for demonstrating the relationship between each operation mode of an air conditioner, and the position of an air mix door. 図1に対応する図であって、空調装置の各運転モードとエアミックスドアの位置との関係を説明するための図である。It is a figure corresponding to FIG. 1, Comprising: It is a figure for demonstrating the relationship between each operation mode of an air conditioner, and the position of an air mix door. 図1に対応する図であって、空調装置の各運転モードとエアミックスドアの位置との関係を説明するための図である。It is a figure corresponding to FIG. 1, Comprising: It is a figure for demonstrating the relationship between each operation mode of an air conditioner, and the position of an air mix door. 図1に対応する図であって、空調装置の各運転モードとエアミックスドアの位置との関係を説明するための図である。It is a figure corresponding to FIG. 1, Comprising: It is a figure for demonstrating the relationship between each operation mode of an air conditioner, and the position of an air mix door. 図1に示す駆動機構の変形例を模式的に示す側面図である。It is a side view which shows typically the modification of the drive mechanism shown in FIG. 図11に示す駆動機構の駆動ピニオンとラックの上側部分とを示す側面図である。It is a side view which shows the drive pinion of the drive mechanism shown in FIG. 11, and the upper part part of a rack. 図11に示す駆動機構のIIIa-IIIb-IIIc線に沿った断面図である。FIG. 12 is a cross-sectional view of the drive mechanism shown in FIG. 11 taken along the line IIIa-IIIb-IIIc. 図11に示す駆動機構のIV-IV線に沿った断面図である。It is sectional drawing along the IV-IV line of the drive mechanism shown in FIG. 図11に示す駆動機構における下側従動ピニオンの回転速度の変化を説明するための図である。It is a figure for demonstrating the change of the rotational speed of the lower driven pinion in the drive mechanism shown in FIG. 図1に示す駆動機構の他の変形例を模式的に示す側面図である。It is a side view which shows typically the other modification of the drive mechanism shown in FIG. 図16に示す下側従動ピニオンとラックの下側部分とを示す側面図である。FIG. 17 is a side view showing the lower driven pinion and the lower part of the rack shown in FIG. 16. 図16に示す駆動機構のVa-Vb-Vc線に沿った断面図である。FIG. 17 is a cross-sectional view taken along the line Va-Vb-Vc of the drive mechanism shown in FIG. 図16に示す駆動機構のVI-VI線に沿った断面図である。FIG. 17 is a cross-sectional view of the drive mechanism shown in FIG. 16 taken along line VI-VI. 図16に示す駆動機構における下側従動ピニオンの回転速度の変化を説明するための図である。It is a figure for demonstrating the change of the rotational speed of the lower driven pinion in the drive mechanism shown in FIG. 図1に示す駆動機構のさらに他の変形例を模式的に示す側面図である。FIG. 10 is a side view schematically showing still another modification of the drive mechanism shown in FIG. 1. 図21に示す駆動機構のVII-VII線に沿った断面図である。FIG. 22 is a cross-sectional view of the drive mechanism shown in FIG. 21 taken along line VII-VII. 図21に示す駆動機構のVIIIa-VIIIb-VIIIc線に沿った断面図である。FIG. 22 is a cross-sectional view of the drive mechanism shown in FIG. 21 taken along line VIIIa-VIIIb-VIIIc. 図1に示す駆動機構のさらに他の変形例を模式的に示す側面図である。FIG. 10 is a side view schematically showing still another modification of the drive mechanism shown in FIG. 1. 図24に示す駆動機構のIX-IX線に沿った断面図である。FIG. 25 is a cross-sectional view of the drive mechanism shown in FIG. 24 taken along line IX-IX. 図24に示す駆動機構のXa-Xb-Xc線に沿った断面図である。FIG. 25 is a cross-sectional view of the drive mechanism shown in FIG. 24 taken along line Xa-Xb-Xc.



 以下に添付図面を参照して本発明の一実施の形態について説明する。 



Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.



 図1は、本発明の一実施の形態による空調装置の空気調和部の構造を模式的に示す側面図である。図示の明確化のため、図1では、後述する付勢用リブ等の図示は省略している。また、図2および図3は、それぞれ、図1に示す空気調和部のII-II線およびIII-III線に沿った断面図である。また、図4は、図1に示す空気調和部のエアミックスドアとシャフトと駆動機構とを示す分解斜視図である。 



FIG. 1 is a side view schematically showing the structure of an air conditioning unit of an air conditioner according to an embodiment of the present invention. For clarity of illustration, illustration of an urging rib and the like which will be described later is omitted in FIG. 2 and 3 are cross-sectional views taken along lines II-II and III-III, respectively, of the air conditioning unit shown in FIG. FIG. 4 is an exploded perspective view showing an air mix door, a shaft, and a drive mechanism of the air conditioner shown in FIG.



 なお、本明細書において、説明の便宜上、図1に示す側を空気調和部の左側と呼び、図1に示す側に対向する側(図2および図3参照)を空気調和部の右側と呼ぶ。また、本明細書においては、後述するピニオンやシャフトの回転方向に対する「時計回り」および「反時計回り」の用語は、特に指示がない場合、ピニオンやシャフトを、空気調和部の左側から右側に向かう向きに見た状況で判断される「時計回り」および「反時計回り」と意味する。 



In the present specification, for convenience of explanation, the side shown in FIG. 1 is called the left side of the air conditioning unit, and the side (see FIGS. 2 and 3) facing the side shown in FIG. 1 is called the right side of the air conditioning unit. . In addition, in this specification, the terms “clockwise” and “counterclockwise” with respect to the rotation direction of the pinion and the shaft described later, the pinion and the shaft are moved from the left side to the right side of the air conditioning unit unless otherwise specified. It means “clockwise” and “counterclockwise” which are judged in the situation seen in the direction of heading.



 図1に示すように、車両用の空調装置1は、空調ケース2を有し、この空調ケース2内に、送風機(図示せず)が形成した空気流が流れる。すなわち、空調ケース2は、空気が流れる空気通路3を形成する。 



As shown in FIG. 1, the vehicle air conditioner 1 has an air conditioning case 2, and an air flow formed by a blower (not shown) flows through the air conditioning case 2. That is, the air conditioning case 2 forms an air passage 3 through which air flows.



 空調ケース2内には、冷却用熱交換器(エバポレータ)4が設けられている。冷却用熱交換器4の上側部分4aは、空調ケース2が形成する空気通路3の上側部分内に位置している。また、冷却用熱交換器4の下側部分4bは、空気通路3の下側部分内に位置している。冷却用熱交換器4は、そこを通過する空気から熱を奪い、かつ、空気の湿度が高い場合には空気中の水分を凝縮させることにより空気の湿度を下げる。 



A cooling heat exchanger (evaporator) 4 is provided in the air conditioning case 2. The upper portion 4 a of the cooling heat exchanger 4 is located in the upper portion of the air passage 3 formed by the air conditioning case 2. Further, the lower part 4 b of the cooling heat exchanger 4 is located in the lower part of the air passage 3. The cooling heat exchanger 4 removes heat from the air passing therethrough, and lowers the humidity of the air by condensing moisture in the air when the humidity of the air is high.



 冷却用熱交換器4の下流側において、空調ケース2内には、加熱用熱交換器(ヒータコア)5が設けられている。加熱用熱交換器5の上側部分5aは、空調ケース2が形成する空気通路3の上側部分内に位置し、加熱用熱交換器5の下側部分5bは、空気通路3の下側部分内に位置している。加熱用熱交換器5は、そこを通過する空気を加熱する。 



On the downstream side of the cooling heat exchanger 4, a heating heat exchanger (heater core) 5 is provided in the air conditioning case 2. The upper portion 5 a of the heating heat exchanger 5 is located in the upper portion of the air passage 3 formed by the air conditioning case 2, and the lower portion 5 b of the heating heat exchanger 5 is in the lower portion of the air passage 3. Is located. The heating heat exchanger 5 heats the air passing therethrough.



 加熱用熱交換器5の上側部分5aは空気通路3の上側部分の全断面を占有してはいない。空気通路3の上側部分の加熱用熱交換器5が存在しない領域(すなわち、空気通路3内における加熱用熱交換器5の上側端縁5aeの上側の領域)が、空気通路3の上側部分を流れる空気が加熱用熱交換器5を通過しないで(加熱用熱交換器5を迂回して)加熱用熱交換器5の下流側に流れることを可能とする迂回路3aとなっている。この迂回路は空気通路3の「上側」に設けられた迂回路という意味において「上側迂回路3a」と呼ばれる。 



The upper part 5 a of the heating heat exchanger 5 does not occupy the entire cross section of the upper part of the air passage 3. A region where the heat exchanger 5 for heating in the upper part of the air passage 3 does not exist (that is, a region above the upper edge 5 ae of the heating heat exchanger 5 in the air passage 3) serves as an upper part of the air passage 3. The bypass air 3a allows the flowing air to flow downstream of the heating heat exchanger 5 without passing through the heating heat exchanger 5 (bypassing the heating heat exchanger 5). This detour is called an “upper detour 3a” in the sense of a detour provided “upper” of the air passage 3.



 同様に、加熱用熱交換器5の下側部分5bは空気通路3の下側部分の全断面を占有してはいない。空気通路3の下側部分の加熱用熱交換器5が存在しない領域(すなわち、空気通路3内における加熱用熱交換器5の下側端縁5beの下側の領域)が、空気通路3の下側部分を流れる空気が加熱用熱交換器5を通過しないで(加熱用熱交換器5を迂回して)加熱用熱交換器5の下流側に流れることを可能とする迂回路3bとなっている。この迂回路は空気通路3の「下側」に設けられた迂回路という意味において「下側迂回路3b」と呼ばれる。 



Similarly, the lower part 5 b of the heating heat exchanger 5 does not occupy the entire cross section of the lower part of the air passage 3. A region where the heat exchanger 5 for heating in the lower part of the air passage 3 does not exist (that is, a region below the lower edge 5be of the heating heat exchanger 5 in the air passage 3) is the region of the air passage 3. The bypass circuit 3b enables the air flowing through the lower portion to flow downstream of the heating heat exchanger 5 without passing through the heating heat exchanger 5 (bypassing the heating heat exchanger 5). ing. This detour is referred to as a “lower detour 3b” in the sense of a detour provided on the “lower side” of the air passage 3.



 図1乃至図3に示すように、冷却用熱交換器4と加熱用熱交換器5との間において、空気通路3の上側部分及び下側部分には、上側エアミックスドア6及び下側エアミックスドア8がそれぞれ設けられている。上側エアミックスドア6及び下側エアミックスドア8は、板状の部材であり、加熱用熱交換器5の上流側の面に概ね平行に配置されている。 



As shown in FIGS. 1 to 3, between the cooling heat exchanger 4 and the heating heat exchanger 5, an upper air mix door 6 and a lower air are provided in the upper and lower portions of the air passage 3. Mix doors 8 are respectively provided. The upper air mix door 6 and the lower air mix door 8 are plate-like members, and are disposed substantially parallel to the upstream surface of the heating heat exchanger 5.



 上側エアミックスドア6は、空気通路3の上側部分内を上下方向に沿ってスライドすることができるようになっている。より具体的には、図4に示すように、上側エアミックスドア6の一方の面(図示の例では上流側の面)には、その上端縁6aから下端縁6bに亘ってラック6rが設けられている。上側エアミックスドア6には、空気通路3内を左右方向に沿って延びる上側シャフト7が連結されている。上側シャフト7は、上側エアミックスドア6のラック6r側の面に対向して配置されている。図2に示すように、上側シャフト7は、その両端部において、空調ケース2の左右の側面2c,2dに回転可能に支持されている。図示の例では、上側シャフト7の左側の端部は、空調ケース2の外側に延び出しており、この端部には、上側シャフト7を回転駆動する駆動機構10が接続されている。図4に示すように、上側シャフト7の外周面には、上側エアミックスドア6のラック6rと噛み合う上側内部ピニオン7pが形成されている。上側シャフト7は、上側内部ピニオン7pが上側エアミックスドア6のラック6rと噛合することで、上側エアミックスドア6と連結している。そして、上側シャフト7が周方向に回転すると、上側シャフト7の回転運動は上側内部ピニオン7pと上側内部ラック6rとによって上下方向の運動に変換され、上側エアミックスドア6は上下にスライドするようになっている。上側エアミックスドア6の移動速度は、上側シャフト7の回転速度に対応している。 



The upper air mix door 6 can slide in the upper portion of the air passage 3 along the vertical direction. More specifically, as shown in FIG. 4, a rack 6r is provided on one surface (upstream surface in the illustrated example) of the upper air mix door 6 from the upper edge 6a to the lower edge 6b. It has been. An upper shaft 7 that extends in the left-right direction in the air passage 3 is connected to the upper air mix door 6. The upper shaft 7 is disposed to face the surface of the upper air mix door 6 on the rack 6r side. As shown in FIG. 2, the upper shaft 7 is rotatably supported by the left and right side surfaces 2c and 2d of the air conditioning case 2 at both ends thereof. In the illustrated example, the left end portion of the upper shaft 7 extends to the outside of the air conditioning case 2, and a drive mechanism 10 that rotationally drives the upper shaft 7 is connected to this end portion. As shown in FIG. 4, an upper internal pinion 7 p that meshes with the rack 6 r of the upper air mix door 6 is formed on the outer peripheral surface of the upper shaft 7. The upper shaft 7 is connected to the upper air mix door 6 by the upper inner pinion 7p meshing with the rack 6r of the upper air mix door 6. When the upper shaft 7 rotates in the circumferential direction, the rotational motion of the upper shaft 7 is converted into a vertical motion by the upper internal pinion 7p and the upper internal rack 6r, and the upper air mix door 6 slides up and down. It has become. The moving speed of the upper air mix door 6 corresponds to the rotational speed of the upper shaft 7.



 上側エアミックスドア6は、空気通路3の上側部分内を上下方向に沿ってスライドすることにより、加熱用熱交換器5の上側部分5aに向かう空気と上側迂回路3aに向かう空気との比率を調整する。より具体的には、上側エアミックスドア6は、上側迂回路3aに向かう空気の比率を最小とする上側第1位置(図1参照)と、上側迂回路3aに向かう空気の比率を最大とする上側第2位置(図10E参照)との間をスライドする。図示の例では、上側エアミックスドア6は、上側第1位置にある時、その上端縁6aが空調ケース2の天面2aに当接して、上側迂回路3aの開口面積を最小にする。このとき、空気の流れ方向において上側エアミックスドア6の加熱用熱交換器5の上側部分5aと重なる部分の面積が最小となり、空気通路3の上側部分において加熱用熱交換器5に向かう空気の比率が最大になる。また、上側エアミックスドア6は、上側第2位置にある時、上側エアミックスドア6の可動範囲において、その上端縁6aが空調ケース2の天面2aから最も離間して、上側迂回路3aの開口面積を最大にする。このとき、空気の流れ方向において上側エアミックスドア6の加熱用熱交換器5の上側部分5aと重なる部分の面積が最大となり、空気通路3の上側部分において加熱用熱交換器5に向かう空気の比率が最小になる。 



The upper air mix door 6 slides along the vertical direction in the upper portion of the air passage 3 to thereby change the ratio of the air toward the upper portion 5a of the heating heat exchanger 5 and the air toward the upper detour 3a. adjust. More specifically, the upper air mix door 6 maximizes the ratio of the upper first position (see FIG. 1) that minimizes the ratio of air toward the upper detour 3a and the ratio of air toward the upper detour 3a. Slide between the upper second position (see FIG. 10E). In the illustrated example, when the upper air mix door 6 is in the upper first position, the upper edge 6a abuts on the top surface 2a of the air conditioning case 2 to minimize the opening area of the upper bypass 3a. At this time, the area of the portion of the upper air mix door 6 that overlaps the upper portion 5a of the heating heat exchanger 5 in the air flow direction is minimized, and the air flowing toward the heating heat exchanger 5 in the upper portion of the air passage 3 is reduced. The ratio is maximized. When the upper air mix door 6 is in the second upper position, the upper edge 6a is farthest from the top surface 2a of the air conditioning case 2 within the movable range of the upper air mix door 6, and the upper detour 3a Maximize the opening area. At this time, the area of the portion of the upper air mix door 6 that overlaps the upper portion 5a of the heating heat exchanger 5 in the air flow direction is maximized, and the air flowing toward the heating heat exchanger 5 in the upper portion of the air passage 3 becomes larger. The ratio is minimized.



 同様に、下側エアミックスドア8は、上下方向に沿ってスライドすることができるようになっている。より具体的には、図4に示すように、下側エアミックスドア8の一方の面(図示の例では上流側の面)には、その上端縁8aから下端縁8bに亘ってラック8rが設けられている。下側エアミックスドア8には、上側シャフト7と平行に配置された(左右方向に沿って延びる)下側シャフト9が連結されている。下側シャフト9は、下側エアミックスドア8のラック8r側の面に対向して配置されている。図3に示すように、下側シャフト9は、その両端部において、空調ケース2の左右の側面2c,2dに回転可能に支持されている。図示の例では、下側シャフト9の左側の端部は、空調ケース2の外側に延び出しており、この端部には、下側シャフト9を回転駆動する駆動機構10が接続されている。図4に示すように、下側シャフト9の外周面には、下側エアミックスドア8のラック8rと噛み合う下側内部ピニオン9pが形成されている。下側シャフト9は、下側内部ピニオン9pが下側エアミックスドア8のラック8rと噛合することで、下側エアミックスドア8と連結している。そして、下側シャフト9が周方向に回転すると、下側シャフト9の回転運動は下側内部ピニオン9pと下側内部ラック8rとによって上下方向の運動に変換され、下側エアミックスドア8は上下にスライドするようになっている。下側エアミックスドア8の移動速度は、下側シャフト9の回転速度に対応している。 



Similarly, the lower air mix door 8 can slide along the vertical direction. More specifically, as shown in FIG. 4, on one surface of the lower air mix door 8 (upstream surface in the illustrated example), a rack 8r extends from the upper edge 8a to the lower edge 8b. Is provided. The lower air mix door 8 is connected to a lower shaft 9 arranged in parallel with the upper shaft 7 (extending along the left-right direction). The lower shaft 9 is arranged to face the surface of the lower air mix door 8 on the rack 8r side. As shown in FIG. 3, the lower shaft 9 is rotatably supported by the left and right side surfaces 2 c and 2 d of the air conditioning case 2 at both ends thereof. In the illustrated example, the left end portion of the lower shaft 9 extends to the outside of the air conditioning case 2, and a drive mechanism 10 that rotationally drives the lower shaft 9 is connected to this end portion. As shown in FIG. 4, a lower internal pinion 9 p that meshes with the rack 8 r of the lower air mix door 8 is formed on the outer peripheral surface of the lower shaft 9. The lower shaft 9 is connected to the lower air mix door 8 by the lower internal pinion 9p meshing with the rack 8r of the lower air mix door 8. When the lower shaft 9 rotates in the circumferential direction, the rotational motion of the lower shaft 9 is converted into a vertical motion by the lower internal pinion 9p and the lower internal rack 8r, and the lower air mix door 8 moves up and down. To slide. The moving speed of the lower air mix door 8 corresponds to the rotational speed of the lower shaft 9.



 下側エアミックスドア8は、上下方向に沿ってスライドすることにより、加熱用熱交換器5の下側部分5bに向かう空気と下側迂回路3bに向かう空気との比率を調整する。より具体的には、下側エアミックスドア8は、下側迂回路3bに向かう空気の比率を最小とする下側第1位置(図1参照)と、下側迂回路3bに向かう空気の比率を最大とする上側第2位置(図10E参照)との間をスライドする。図示の例では、下側エアミックスドア8は、下側第1位置にある時、その下端縁8bが空調ケース2の底面2bに当接して、下側迂回路3bの開口面積を最小にする。このとき、空気の流れ方向において下側エアミックスドア8の加熱用熱交換器5の下側部分5bと重なる部分の面積が最小となり、空気通路3の下側部分において加熱用熱交換器5に向かう空気の比率が最大になる。また、下側エアミックスドア8は、下側第2位置にある時、下側エアミックスドア8の可動範囲において、その下端縁8bが空調ケース2の底面2bから最も離間して、下側迂回路3bの開口面積を最大にする。このとき、空気の流れ方向において下側エアミックスドア8の加熱用熱交換器5の下側部分5bと重なる部分の面積が最大となり、空気通路3の下側部分において加熱用熱交換器5に向かう空気の比率が最小になる。 



Lower air mix door 8 adjusts the ratio of the air which goes to lower part 5b of heat exchanger 5 for heating, and the air which goes to lower detour 3b by sliding along the up-and-down direction. More specifically, the lower air mix door 8 has a lower first position (see FIG. 1) that minimizes the ratio of air toward the lower detour 3b, and the ratio of air toward the lower detour 3b. And slide between the upper second position (see FIG. 10E) that maximizes. In the illustrated example, when the lower air mix door 8 is in the lower first position, the lower edge 8b abuts against the bottom surface 2b of the air conditioning case 2 to minimize the opening area of the lower bypass 3b. . At this time, the area of the portion of the lower air mix door 8 that overlaps the lower portion 5b of the heating heat exchanger 5 in the air flow direction is minimized, and the lower portion of the air passage 3 becomes the heating heat exchanger 5 in the lower portion. The ratio of air to head is maximized. Further, when the lower air mix door 8 is in the lower second position, the lower end edge 8b of the lower air mix door 8 is farthest from the bottom surface 2b of the air conditioning case 2 in the movable range of the lower air mix door 8. Maximize the opening area of the path 3b. At this time, the area of the portion of the lower air mix door 8 that overlaps the lower portion 5b of the heating heat exchanger 5 in the air flow direction is maximized, and the lower portion of the air passage 3 becomes the heating heat exchanger 5 in the lower portion. The ratio of air going to is minimized.



 図1に示すように、加熱用熱交換器5の下流側において、空調ケース2の天面2aには、デフロスト吹出通路301が形成されている。デフロスト吹出通路301の下流端は、車室内のフロントガラスの内面に向けて空気を吹き出す図示しないデフロスト吹出口に接続されている。デフロスト吹出通路301が空調ケース2の天面2aに開口していることにより、デフロスト吹出通路301には、加熱用熱交換器5の上側部分5aおよび/または上側迂回路3aを通過した空気が入りやすい傾向にある。 



As shown in FIG. 1, a defrost outlet passage 301 is formed on the top surface 2 a of the air conditioning case 2 on the downstream side of the heat exchanger 5 for heating. The downstream end of the defrost outlet passage 301 is connected to a defrost outlet (not shown) that blows air toward the inner surface of the windshield inside the vehicle interior. Since the defrost blowing passage 301 is opened to the top surface 2a of the air conditioning case 2, the air that has passed through the upper portion 5a and / or the upper detour 3a of the heating heat exchanger 5 enters the defrost blowing passage 301. It tends to be easy.



 また、加熱用熱交換器5の下流側において、空調ケース2の下流側面3fの上側部分には、ベント吹出通路302が形成されている。ベント吹出通路302の下流端は、運転席及び助手席(場合によっては後席も)に座っている乗員の上半身に向けて空気を吹き出す図示しないベント吹出口に接続されている。ベント吹出通路302が空調ケース2の上側部分に開口していることにより、ベント吹出通路302には、加熱用熱交換器5の上側部分5aおよび/または上側迂回路3aを通過した空気が入りやすい傾向にある。 



In addition, a vent outlet passage 302 is formed in the upper portion of the downstream side surface 3 f of the air conditioning case 2 on the downstream side of the heat exchanger 5 for heating. The downstream end of the vent outlet passage 302 is connected to a vent outlet (not shown) that blows out air toward the upper body of an occupant sitting in the driver's seat and passenger seat (possibly the rear seat). Since the vent blowing passage 302 is open to the upper portion of the air conditioning case 2, the air that has passed through the upper portion 5a and / or the upper detour 3a of the heating heat exchanger 5 can easily enter the vent blowing passage 302. There is a tendency.



 また、加熱用熱交換器5の下流側において、空調ケース2の下流側面3fの下側部分には、フット吹出通路303が形成されている。フット吹出通路303の下流端は、運転席及び助手席(場合によっては後席も)に座っている乗員の足元に向けて空気を吹き出す図示しないフット吹出口に接続されている。フット吹出通路303が空調ケース2の下側部分に開口していることにより、フット吹出通路303には、加熱用熱交換器5の下側部分5bおよび/または下側迂回路3bを通過した空気が入りやすい傾向にある。 



Further, on the downstream side of the heating heat exchanger 5, a foot outlet passage 303 is formed in the lower portion of the downstream side surface 3 f of the air conditioning case 2. The downstream end of the foot outlet passage 303 is connected to a foot outlet (not shown) that blows out air toward the feet of passengers sitting in the driver's seat and the passenger seat (possibly the rear seat). Since the foot blowing passage 303 is open to the lower portion of the air conditioning case 2, the foot blowing passage 303 has air that has passed through the lower portion 5b and / or the lower detour 3b of the heat exchanger 5 for heating. Tend to enter.



 デフロスト吹出通路301、ベント吹出通路302及びフット吹出通路303には、これらの吹出通路301,302,303の開口面積を調整するためのデフロストドア301D、ベントドア302D及びフットドア303Dがそれぞれ設けられている。これらのドア301D,302D,303Dの開度は、それぞれ、車載マイクロコンピュータなどからなる制御部により制御され、吹出通路301,302,303の開口面積を任意の開口面積にすることができる。 



The defrost blow passage 301, the vent blow passage 302, and the foot blow passage 303 are provided with a defrost door 301D, a vent door 302D, and a foot door 303D for adjusting the opening areas of the blow passages 301, 302, and 303, respectively. Openings of these doors 301D, 302D, and 303D are respectively controlled by a control unit that includes an in-vehicle microcomputer or the like, and the opening areas of the outlet passages 301, 302, and 303 can be set to arbitrary opening areas.



 なお、図1に示す空調装置1の運転モードには、デフフットモード(D/F)(図10Aおよび図10B参照)、ベントモード(VENT)(図10E参照)、バイレベルモード(B/L)(図10Cおよび図10D参照)等がある。また、図示しないが、デフロスト吹出通路301を開きベント吹出通路302とフット吹出通路303を閉じたデフロストモード(DEF)、デフロスト吹出通路301とベント吹出通路302を閉じフット吹出通路303を開いたフットモード(FOOT)もある。 



The operation mode of the air conditioner 1 shown in FIG. 1 includes a differential foot mode (D / F) (see FIGS. 10A and 10B), a vent mode (VENT) (see FIG. 10E), and a bi-level mode (B / L). (See FIGS. 10C and 10D). Although not shown, a defrost mode (DEF) in which the defrost blowing passage 301 is opened and the vent blowing passage 302 and the foot blowing passage 303 are closed, and a foot mode in which the defrost blowing passage 301 and the vent blowing passage 302 are closed and the foot blowing passage 303 is opened. There is also (FOOT).



 デフフットモード(図10Aおよび図10B参照)では、デフロストドア301D及びフットドア303Dが開かれ、かつ、ベントドア302Dが閉じられ、デフロスト吹出口及びフット吹出口から調和空気が吹き出される。 



In the differential foot mode (see FIGS. 10A and 10B), the defrost door 301D and the foot door 303D are opened, the vent door 302D is closed, and conditioned air is blown out from the defrost outlet and the foot outlet.



 ベントモード(図10E参照)では、ベントドア302Dが開かれ、かつ、デフロストドア301D及びフットドア303Dが閉じられ、ベント吹出口から調和空気が吹き出される。 



In the vent mode (see FIG. 10E), the vent door 302D is opened, the defrost door 301D and the foot door 303D are closed, and conditioned air is blown out from the vent outlet.



 バイレベルモード(図10Cおよび図10D参照)では、ベントドア302D及びフットドア303Dが開かれ、かつ、デフロストドア301Dが閉じられ、ベント吹出口とフット吹出口とから調和空気が吹き出される。 



In the bi-level mode (see FIGS. 10C and 10D), the vent door 302D and the foot door 303D are opened, the defrost door 301D is closed, and conditioned air is blown out from the vent outlet and the foot outlet.



 次に、図1乃至図10Eを参照して、上側シャフト7および下側シャフト9を回転駆動する駆動機構10について説明する。 



Next, the drive mechanism 10 that rotationally drives the upper shaft 7 and the lower shaft 9 will be described with reference to FIGS. 1 to 10E.



 図5は、図1に示す駆動機構の駆動ピニオンと上側従動ピニオンとラックと下側従動ピニオンとを示す側面図である。また、図6は、図5に示す駆動ピニオンの第1駆動ピニオン部と上側従動ピニオンの第1上側従動ピニオン部とを示す側面図であり、図7は、第2駆動ピニオン部と上側従動ピニオンの第2上側従動ピニオン部とを示す側面図である。また、図8は、図5に示すラックとラック用ピニオン部と下側従動ピニオンとを示す側面図である。そして、図9は、図5に示す駆動ピニオンの回転位相と各エアミックスドアの位置との関係を表すグラフである。図9において、横軸は駆動ピニオンの回転位相を示しており、縦軸はエアミックスドアの上側第1位置または下側第1位置から上側第2位置または下側第2位置までの移動量の割合を示している。上側エアミックスドアの上側第1位置から上側第2位置までの移動量の割合は、実線で示されており、下側エアミックスドアの下側第1位置から下側第2位置までの移動量の割合は、破線で示されている。さらに、図10A乃至図10Eは、空調装置の各運転モードとエアミックスドアの位置との関係を説明するための図である。より詳細には、図10Aは、空調装置がデフフットモードで運転され、駆動ピニオンの回転位相が0°の場合のエアミックスドアの位置を示している。また、図10Bは、空調装置がデフフットモードで運転され、駆動ピニオンの回転位相が30°の場合のエアミックスドアの位置を示している。また、図10Cは、空調装置がバイレベルモードで運転され、駆動ピニオンの回転位相が120°の場合のエアミックスドアの位置を示している。また、図10Dは、空調装置がバイレベルモードで運転され、駆動ピニオンの回転位相が170°の場合のエアミックスドアの位置を示している。また、図10Eは、空調装置がベントモードで運転され、駆動ピニオンの回転位相が200°の場合のエアミックスドアの位置を示している。 



FIG. 5 is a side view showing a drive pinion, an upper driven pinion, a rack, and a lower driven pinion of the drive mechanism shown in FIG. 6 is a side view showing the first drive pinion part of the drive pinion and the first upper driven pinion part of the upper driven pinion shown in FIG. 5, and FIG. 7 is the second drive pinion part and the upper driven pinion. It is a side view which shows the 2nd upper side follower pinion part. FIG. 8 is a side view showing the rack, the rack pinion section, and the lower driven pinion shown in FIG. FIG. 9 is a graph showing the relationship between the rotational phase of the drive pinion shown in FIG. 5 and the position of each air mix door. In FIG. 9, the horizontal axis indicates the rotational phase of the drive pinion, and the vertical axis indicates the amount of movement of the air mix door from the upper first position or lower first position to the upper second position or lower second position. Shows the percentage. The ratio of the moving amount from the upper first position to the upper second position of the upper air mix door is indicated by a solid line, and the moving amount from the lower first position to the lower second position of the lower air mix door The percentage is indicated by a broken line. 10A to 10E are diagrams for explaining the relationship between each operation mode of the air conditioner and the position of the air mix door. More specifically, FIG. 10A shows the position of the air mix door when the air conditioner is operated in the differential foot mode and the rotational phase of the drive pinion is 0 °. FIG. 10B shows the position of the air mix door when the air conditioner is operated in the differential foot mode and the rotational phase of the drive pinion is 30 °. FIG. 10C shows the position of the air mix door when the air conditioner is operated in the bi-level mode and the rotational phase of the drive pinion is 120 °. FIG. 10D shows the position of the air mix door when the air conditioner is operated in the bi-level mode and the rotational phase of the drive pinion is 170 °. FIG. 10E shows the position of the air mix door when the air conditioner is operated in the vent mode and the rotational phase of the drive pinion is 200 °.



 図1乃至図3に示すように、駆動機構10は、空調ケース2の外側に、空調ケース2の左側の側面2cに対向して配置されている。駆動機構10は、回転駆動力を発生するアクチュエータ11と、アクチュエータ11により回転駆動される駆動ピニオン20と、駆動ピニオン20と噛合する上側従動ピニオン30と、を有している。上側従動ピニオン30には、駆動ピニオン20を介してアクチュエータ11の回転駆動力が伝達される。上側従動ピニオン30は、空調ケース2の外側に突出した上側シャフト7の左側の端部に連結されており、アクチュエータ11の回転駆動力を上側シャフト7に伝達する。アクチュエータ11は、車載マイクロコンピュータなどからなる制御部により制御される。 



As shown in FIGS. 1 to 3, the drive mechanism 10 is disposed outside the air conditioning case 2 so as to face the left side surface 2 c of the air conditioning case 2. The drive mechanism 10 includes an actuator 11 that generates a rotational drive force, a drive pinion 20 that is rotationally driven by the actuator 11, and an upper driven pinion 30 that meshes with the drive pinion 20. The rotational drive force of the actuator 11 is transmitted to the upper driven pinion 30 via the drive pinion 20. The upper driven pinion 30 is connected to the left end portion of the upper shaft 7 protruding outside the air conditioning case 2 and transmits the rotational driving force of the actuator 11 to the upper shaft 7. The actuator 11 is controlled by a control unit including an in-vehicle microcomputer.



 駆動機構10は、また、概ね上下方向に延びるラック40と、ラック40と噛合する下側従動ピニオン50と、を含む。下側従動ピニオン50は、空調ケース2の外側に突出した下側シャフト9の左側の端部に連結されている。ラック40は、駆動ピニオン20および下側従動ピニオン50と噛合する歯が形成されたラック本体部40mと、ラック本体部40mに接続された付勢用アーム40nとを有する。ラック40は、その上側部分において駆動ピニオン20と噛合し、その下側部分において下側従動ピニオン50と噛合する。駆動ピニオン20と噛合することにより、ラック40には、アクチュエータ11の回転駆動力が駆動ピニオン20を介して伝達される。そして、ラック40は、駆動ピニオン20の回転に伴って、概ね上下方向に直線運動をする。また、下側駆動ピニオン50と噛合することにより、ラック40は、アクチュエータ11の回転駆動力を下側従動ピニオン50に伝達する。このようにして、下側シャフト9には、アクチュエータ11の回転駆動力が、駆動ピニオン20、ラック40および下側従動ピニオン50を介して伝達される。 



The drive mechanism 10 also includes a rack 40 that extends generally in the vertical direction and a lower driven pinion 50 that meshes with the rack 40. The lower driven pinion 50 is connected to the left end of the lower shaft 9 that protrudes outside the air conditioning case 2. The rack 40 includes a rack body 40m formed with teeth that mesh with the drive pinion 20 and the lower driven pinion 50, and an urging arm 40n connected to the rack body 40m. The rack 40 meshes with the drive pinion 20 at an upper portion thereof, and meshes with the lower driven pinion 50 at a lower portion thereof. By meshing with the drive pinion 20, the rotational driving force of the actuator 11 is transmitted to the rack 40 via the drive pinion 20. The rack 40 linearly moves in the vertical direction with the rotation of the drive pinion 20. Further, by engaging with the lower drive pinion 50, the rack 40 transmits the rotational driving force of the actuator 11 to the lower driven pinion 50. In this way, the rotational driving force of the actuator 11 is transmitted to the lower shaft 9 via the drive pinion 20, the rack 40 and the lower driven pinion 50.



 図1に示すように、ラック40は、駆動ピニオン20の回転軸線Axと下側従動ピニオン50の回転軸線Cxとを含む仮想面S1の一側から、駆動ピニオン20および下側従動ピニオン50に噛合している。したがって、下側従動ピニオン50は、駆動ピニオン20の回転方向と同じ方向に回転する。一方、上側従動ピニオン30は、駆動ピニオン20と噛合して、駆動ピニオン20の回転方向と逆方向に回転する。この結果、上側従動ピニオン30と下側従動ピニオン50とは、逆方向に回転する。これにより、上側シャフト7と下側シャフト9とが逆方向に回転し、上側エアミックスドア6と下側エアミックスドア8とは、上下方向において逆方向にスライドする。 



As shown in FIG. 1, the rack 40 meshes with the drive pinion 20 and the lower driven pinion 50 from one side of the virtual plane S1 including the rotation axis Ax of the drive pinion 20 and the rotation axis Cx of the lower driven pinion 50. is doing. Accordingly, the lower driven pinion 50 rotates in the same direction as the rotation direction of the drive pinion 20. On the other hand, the upper driven pinion 30 meshes with the drive pinion 20 and rotates in the direction opposite to the rotation direction of the drive pinion 20. As a result, the upper driven pinion 30 and the lower driven pinion 50 rotate in opposite directions. As a result, the upper shaft 7 and the lower shaft 9 rotate in the opposite directions, and the upper air mix door 6 and the lower air mix door 8 slide in the opposite directions in the vertical direction.



 なお、ラック40が駆動ピニオン20および下側従動ピニオン50から径方向に離れすぎてしまって、ラック40とピニオン20,50との噛み合いが外れてしまうことのないよう、次のような工夫がなされている。すなわち、図5に示すように、空調ケース2には、その左側の側面2cからラック40に向かって外側に延び出す上下2つの規制用リブ2mが形成されている。また、ラック40には、各規制用リブ2mに対応する位置に、左右方向に貫通する規制用穴40moが設けられている。規制用穴40moには、規制用リブ2mが挿通されている。これにより、ラック40のピニオン20,50の径方向に対する移動量は、規制用穴40moの幅に規制される。この結果、ラック40がピニオン20,50から離れすぎてしまうことのないようになっている。なお、ラック40の規制用穴40moは、ラック40の上下方向の動きを妨げることのないよう、上下方向に十分な寸法を有している。 



The following measures are taken so that the rack 40 is not too far from the drive pinion 20 and the lower driven pinion 50 in the radial direction and the rack 40 and the pinions 20 and 50 are disengaged. ing. That is, as shown in FIG. 5, the air conditioning case 2 is formed with two upper and lower regulating ribs 2m extending outward from the left side surface 2c toward the rack 40. The rack 40 is provided with a restriction hole 40mo penetrating in the left-right direction at a position corresponding to each restriction rib 2m. The restriction rib 2m is inserted through the restriction hole 40mo. Thereby, the movement amount of the rack 40 in the radial direction of the pinions 20 and 50 is restricted by the width of the restriction hole 40mo. As a result, the rack 40 is prevented from being separated from the pinions 20 and 50 too much. The restriction hole 40mo of the rack 40 has a sufficient size in the vertical direction so as not to hinder the vertical movement of the rack 40.



 また、ラック40と駆動ピニオン20および下側従動ピニオン50との適切な噛み合いが維持されるよう、次のような工夫がなされている。すなわち、図5に示すように、空調ケース2の左側の側面2cには、左右方向に外側に延び出す付勢用リブ2nが形成されている。付勢用リブ2nは、ラック40に対してピニオン20,50とは反対の側に、仮想面S1に沿って延びている。また、ラック本体部40mの付勢用リブ2nに対向する側には、付勢用アーム40nが設けられている。付勢用アーム40nは、付勢用リブ2nに当接してラック本体部40mをピニオン20,50に向けて付勢する。これにより、ラック40と、ピニオン20,50と、の適切な噛み合いが維持される。なお、付勢用アーム40nおよび付勢用リブ2nの互いに接触する面は、ラック40の上下方向の動きを妨げることのないよう、十分に滑らかになっている。また、付勢用リブ2nに代えて、空調ケース2の左側の側面2cを左右方向に段差を有する形状とし、ラック40と接触する面(図示せず)としてもよい。 



Further, the following measures are taken so that proper engagement between the rack 40 and the drive pinion 20 and the lower driven pinion 50 is maintained. That is, as shown in FIG. 5, the left side surface 2c of the air conditioning case 2 is formed with a biasing rib 2n extending outward in the left-right direction. The urging rib 2n extends along the virtual plane S1 on the opposite side of the rack 40 from the pinions 20 and 50. An urging arm 40n is provided on the side of the rack body 40m that faces the urging rib 2n. The urging arm 40n abuts against the urging rib 2n and urges the rack body 40m toward the pinions 20 and 50. Thereby, the appropriate meshing between the rack 40 and the pinions 20 and 50 is maintained. Note that the surfaces of the urging arm 40n and the urging rib 2n that are in contact with each other are sufficiently smooth so as not to hinder the vertical movement of the rack 40. Instead of the urging rib 2n, the left side surface 2c of the air conditioning case 2 may have a stepped shape in the left-right direction and may be a surface (not shown) that contacts the rack 40.



 以上のように、ラック40は、駆動ピニオン20の回転軸線Axと下側従動ピニオン50の回転軸線Cxとを含む仮想面S1の一側から、駆動ピニオン20および下側従動ピニオン50に噛合していることにより、ラック40に一方向に向かう力(すなわちラック40から仮想面S1に向かう付勢力)を加えるだけで、ラック40と駆動ピニオン20および下側従動ピニオン50との適切な噛み合いを維持することができる。このため、例えば上述のような付勢用リブ2nおよび付勢用アーム40nを用いた簡単な構成により、ラック40とピニオン20,50との適切な噛み合いを維持することができる。 



As described above, the rack 40 meshes with the drive pinion 20 and the lower driven pinion 50 from one side of the virtual plane S1 including the rotation axis Ax of the drive pinion 20 and the rotation axis Cx of the lower driven pinion 50. As a result, a proper engagement between the rack 40 and the drive pinion 20 and the lower driven pinion 50 is maintained only by applying a force in one direction to the rack 40 (ie, an urging force from the rack 40 toward the virtual surface S1). be able to. For this reason, for example, the proper engagement between the rack 40 and the pinions 20 and 50 can be maintained by a simple configuration using the biasing rib 2n and the biasing arm 40n as described above.



 なお、空調装置1において、エアミックスドア6,8、シャフト7,9および駆動機構10は、上側エアミックスドア6が上側第1位置にあるとき、下側エアミックスドア8が下側第1位置にあり、且つ、上側エアミックスドア6が上側第2位置にあるとき、下側エアミックスドア8が下側第2位置にあるように構成され、空調ケース2に組み付けられる。上側エアミックスドア6および下側エアミックスドア8の各位置は、乗員により設定された空調装置1の運転モードおよび設定温度、車室内の実際の温度、車両が受ける日射量、車両の外気温度などを用いて演算された目標吹出温度に基づいて制御される。これにより、乗員により設定された空調装置1の運転モードや設定温度等に応じた温度の空気が、車室内に吹き出される。 



In the air conditioner 1, the air mix doors 6 and 8, the shafts 7 and 9, and the drive mechanism 10 are such that when the upper air mix door 6 is in the upper first position, the lower air mix door 8 is in the lower first position. When the upper air mix door 6 is in the upper second position, the lower air mix door 8 is configured to be in the lower second position and is assembled to the air conditioning case 2. The positions of the upper air mix door 6 and the lower air mix door 8 are the operation mode and set temperature of the air conditioner 1 set by the occupant, the actual temperature in the passenger compartment, the amount of solar radiation received by the vehicle, the outside air temperature of the vehicle, etc. It is controlled based on the target blowout temperature calculated using. Thereby, the air of the temperature according to the operation mode, preset temperature, etc. of the air conditioner 1 set by the passenger is blown out into the vehicle interior.



 ところで、上述のように、各吹出通路301,302,303から吹き出される調和空気の温度は、空調装置1の運転モードに応じて変更される。このような調和空気の温度の調節は、エアミックスドア6,8の位置を調節して、迂回路3a,3bの開口面積を調節することにより行われる。 



By the way, as mentioned above, the temperature of the conditioned air blown out from the blowout passages 301, 302, and 303 is changed according to the operation mode of the air conditioner 1. Such adjustment of the temperature of the conditioned air is performed by adjusting the positions of the air mix doors 6 and 8 and adjusting the opening areas of the detours 3a and 3b.



 具体的には、デフフットモード(図10Aおよび図10B参照)は、冬季等の暖房を必要とするときに使用される。デフフットモードでは、フット吹出口から乗員の設定温度に応じた比較的温かい温度の調和空気を乗員の足元に向けて吹き出し、乗員の足元を温める。また、デフロスト吹出口から比較的温かい空気をフロントガラスの内面に向けて吹き出して、フロントガラスの曇りを防止する。あるいは、フロントガラスの外側表面の凍結を防止する。このデフフットモードでは、空気通路3の上側部分および下側部分のそれぞれにおいて、加熱用熱交換器5を通過して温められる空気の比率が、比較的高く、あるいは最大となるよう(したがって、迂回路3a,3bに向かう空気の比率が比較的低く、あるいは最小となるよう)、エアミックスドア6,8の位置が調節される。具体的には、上側エアミックスドア6は、上側第1位置または上側第1位置に比較的近い位置に配置され、下側エアミックスドア8は、下側第1位置または下側第1位置に比較的近い位置に配置される。 



Specifically, the differential foot mode (see FIG. 10A and FIG. 10B) is used when heating such as winter season is required. In the differential foot mode, conditioned air having a relatively warm temperature corresponding to the set temperature of the occupant is blown out from the foot outlet toward the occupant's feet to warm the occupant's feet. Further, relatively warm air is blown out from the defrost outlet toward the inner surface of the windshield to prevent fogging of the windshield. Alternatively, freezing of the outer surface of the windshield is prevented. In the differential foot mode, the ratio of the air heated through the heat exchanger 5 for heating in each of the upper part and the lower part of the air passage 3 is relatively high or maximized (thus detouring). The position of the air mix doors 6 and 8 is adjusted so that the ratio of air toward the paths 3a and 3b is relatively low or minimized. Specifically, the upper air mix door 6 is disposed at a position relatively close to the upper first position or the upper first position, and the lower air mix door 8 is at the lower first position or the lower first position. It is arranged at a relatively close position.



 また、ベントモード(図10E参照)は、急速冷房が必要なとき等に使用される。ベントモードでは、ベント吹出口から比較的冷たい空気が乗員の上半身に向けて吹き出し、乗員に冷風感を与えたり、日射が当たることにより乗員が感じる不快感を低減させる。このベントモードでは、加熱用熱交換器5を通過して温められる空気の比率が比較的低く、あるいは最小となるよう(したがって、迂回路3a,3bに向かう空気の比率が比較的高く、あるいは最大となるよう)、エアミックスドア6,8の位置が調節される。具体的には、上側エアミックスドア6は、上側第2位置または上側第2位置に比較的近い位置に配置され、下側エアミックスドア8は、下側第2位置または下側第2位置に比較的近い位置に配置される。 



The vent mode (see FIG. 10E) is used when rapid cooling is required. In the vent mode, relatively cool air is blown out from the vent outlet toward the occupant's upper body, giving the occupant a feeling of cold wind, and reducing the discomfort felt by the occupant when exposed to sunlight. In this vent mode, the ratio of air heated through the heating heat exchanger 5 is relatively low or minimized (thus the ratio of air toward the detours 3a and 3b is relatively high or maximum). The position of the air mix doors 6 and 8 is adjusted. Specifically, the upper air mix door 6 is disposed at a position relatively close to the upper second position or the upper second position, and the lower air mix door 8 is at the lower second position or the lower second position. It is arranged at a relatively close position.



 また、バイレベルモード(図10Cおよび図10D参照)は、おもに春、秋などの中間期に使用される。バイレベルモードでは、ベント吹出口から比較的冷たい空気を乗員の上半身に向けて吹き出し、フット吹出口から比較的温かい空気を乗員の足元に向けて吹き出して、乗員の足温頭寒を実現する。このバイレベルモードでは、空気通路3の下側部分で加熱用熱交換器5を通過する空気の比率が、空気通路3の上側部分で加熱用熱交換器5を通過する空気の比率よりも高くなるように(したがって、空気通路3の下側部分で下側迂回路3bに向かう空気の比率が、空気通路3の上側部分で上側迂回路3aに向かう空気の比率よりも低くなるように)される。具体的には、エアミックスドア6,8は、下側第1位置から下側第2位置までの可動範囲における下側エアミックスドア8の位置が、上側第1位置から上側第2位置までの可動範囲における上側エアミックスドア6の位置よりも、第1位置に近い位置となるように配置される。 



Further, the bi-level mode (see FIGS. 10C and 10D) is mainly used in the intermediate period such as spring and autumn. In the bi-level mode, relatively cold air is blown out from the vent outlet toward the occupant's upper body, and relatively warm air is blown out from the foot outlet toward the occupant's feet, thereby realizing the occupant's foot warming. In this bi-level mode, the ratio of air passing through the heating heat exchanger 5 in the lower part of the air passage 3 is higher than the ratio of air passing through the heating heat exchanger 5 in the upper part of the air passage 3. Therefore, the ratio of air toward the lower bypass 3b at the lower part of the air passage 3 is lower than the ratio of air toward the upper bypass 3a at the upper part of the air passage 3). The Specifically, the air mix doors 6 and 8 are located between the upper first position and the upper second position in the movable range from the lower first position to the lower second position. It arrange | positions so that it may become a position near a 1st position rather than the position of the upper side air mix door 6 in a movable range.



 図1に示す空調装置1において、上側エアミックスドア6および下側エアミックスドア8の位置は、駆動機構10の駆動ピニオン20の回転位相により変化する。上側エアミックスドア6が上側第1位置にあり且つ下側エアミックスドア8が下側第1位置にある場合の駆動ピニオン20の回転位相を0°とすると、駆動ピニオン20の回転位相が大きくなるほど、上側エアミックスドア6は上側第2位置に近づき、下側エアミックスドア8は下側第2位置に近づく。そこで、上述のような運転モードに応じた調和空気の温度調節を行うため、運転モードに応じて駆動ピニオン20の角度位置を次のように調節する。すなわち、デフフットモードでは、駆動ピニオン20の角度位置を、その回転位相が0°または比較的小さい値となる角度位置にする。また、ベントモードでは、駆動ピニオン20の角度位置を、その回転位相が最大または比較的大きい値となる角度位置にする。また、バイレベルモードでは、駆動ピニオン20の角度位置を、デフフットモードにおける駆動ピニオン20の回転位相よりも大きい角度位置にし、且つ、ベントモードにおける駆動ピニオン20の回転位相よりも小さい角度位置にする。 



In the air conditioner 1 shown in FIG. 1, the positions of the upper air mix door 6 and the lower air mix door 8 change depending on the rotational phase of the drive pinion 20 of the drive mechanism 10. If the rotational phase of the drive pinion 20 is 0 ° when the upper air mix door 6 is in the upper first position and the lower air mix door 8 is in the lower first position, the rotational phase of the drive pinion 20 increases. The upper air mix door 6 approaches the upper second position, and the lower air mix door 8 approaches the lower second position. Therefore, in order to adjust the temperature of the conditioned air according to the operation mode as described above, the angular position of the drive pinion 20 is adjusted as follows according to the operation mode. That is, in the differential foot mode, the angular position of the drive pinion 20 is set to an angular position where the rotational phase is 0 ° or a relatively small value. In the vent mode, the angular position of the drive pinion 20 is set to an angular position where the rotational phase becomes a maximum or a relatively large value. In the bi-level mode, the angular position of the drive pinion 20 is set to an angular position larger than the rotational phase of the drive pinion 20 in the differential foot mode and smaller than the rotational phase of the drive pinion 20 in the vent mode. .



 ところで、上述のように、デフフットモードでは、フロントガラスの曇りを防止するなどのため、デフロスト吹出口から車室内のフロントガラスの内面に向けて比較的温かい調和空気が吹き出される。このとき、上側迂回路3aの開口面積が大きすぎると、フロントガラスの曇りを解消するための時間が長くなる虞がある。これは、上側迂回路3aを通過した比較的低温の空気がデフロスト吹出口に入って行きやすい傾向にあるためである。このため、デフフットモードでは、上側迂回路3aの開口面積を小さく抑える必要がある。結果として、デフフットモードでは、上側迂回路3aの開口面積を下側迂回路3bの開口面積よりも小さくする必要がある。その一方で、上述のように、バイレベルモードでは、乗員の足温頭寒を実現するため、上側迂回路3aの開口面積を下側迂回路3bの開口面積よりも大きくする必要がある。 



As described above, in the differential foot mode, relatively warm conditioned air is blown out from the defrost outlet toward the inner surface of the windshield in the vehicle compartment in order to prevent the windshield from fogging. At this time, if the opening area of the upper detour 3a is too large, there is a possibility that the time for eliminating the fogging of the windshield becomes longer. This is because the relatively low temperature air that has passed through the upper bypass 3a tends to enter the defrost outlet. For this reason, in the differential foot mode, it is necessary to keep the opening area of the upper bypass 3a small. As a result, in the differential foot mode, it is necessary to make the opening area of the upper detour 3a smaller than the opening area of the lower detour 3b. On the other hand, as described above, in the bi-level mode, it is necessary to make the opening area of the upper detour route 3a larger than the opening area of the lower detour route 3b in order to realize the occupant's warmth.



 このような要求を満たす空調装置1を実現するために、図1に示す例では、図9から理解されるように、駆動機構10は、アクチュエータ11によって駆動ピニオン20を一定の回転速度で回転させた場合、下側エアミックスドア8は一定の移動速度で移動するが、上側エアミックスドア6の移動速度は駆動ピニオン20の回転位相によって変化するように構成されている。これにより、駆動ピニオン20の回転位相によって、下側迂回路3aの開口面積を、下側迂回路3bの開口面積と比較して小さくしたり大きくしたりすることができる。 



In order to realize the air conditioner 1 that satisfies such requirements, in the example shown in FIG. 1, as can be understood from FIG. 9, the drive mechanism 10 rotates the drive pinion 20 at a constant rotational speed by the actuator 11. In this case, the lower air mix door 8 moves at a constant moving speed, but the moving speed of the upper air mix door 6 is configured to change depending on the rotational phase of the drive pinion 20. Thereby, the opening area of the lower detour 3a can be made smaller or larger than the opening area of the lower detour 3b depending on the rotational phase of the drive pinion 20.



 まず、図2乃至図8を参照して、駆動機構10について、さらに詳細に説明する。 



First, the drive mechanism 10 will be described in more detail with reference to FIGS.



 まず、図2および図5乃至図7に示すように、駆動ピニオン20は、互いに基準円直径の異なる複数の駆動ピニオン部21,22を有している。各駆動ピニオン部21,22は、回転軸線Axを中心として回転する歯車であり、図2に示すように、回転軸線Axの延びる方向に沿って並んで配置されている。また、上側従動ピニオン30は、互いに基準円直径の異なる複数の上側従動ピニオン部31,32を有している。各上側従動ピニオン部31,32は、回転駆動軸線Bxを中心として回転する歯車であり、図2に示すように、複数の駆動ピニオン部21,22に対応して設けられている。 



First, as shown in FIGS. 2 and 5 to 7, the drive pinion 20 includes a plurality of drive pinion portions 21 and 22 having different reference circle diameters. Each of the drive pinion parts 21 and 22 is a gear that rotates about the rotation axis Ax, and is arranged side by side along the direction in which the rotation axis Ax extends, as shown in FIG. The upper driven pinion 30 includes a plurality of upper driven pinion portions 31 and 32 having different reference circle diameters. Each of the upper driven pinion portions 31 and 32 is a gear that rotates about the rotation drive axis Bx, and is provided corresponding to the plurality of drive pinion portions 21 and 22, as shown in FIG.



 図示の例では、駆動ピニオン20は、第1駆動ピニオン部21および第2駆動ピニオン部22を有している。第1駆動ピニオン部21および第2駆動ピニオン部22の基準円直径は、それぞれR21,R22である。また、上側従動ピニオン30は、第1上側従動ピニオン部31および第2上側従動ピニオン部32を有している。図2に示すように、第1上側従動ピニオン部31は、第1駆動ピニオン部21と同一平面上に並んで配置され、また、図6に示すように、第1駆動ピニオン部21の基準円直径R21に対応する基準円直径R31を有している。また、第2上側従動ピニオン部32は、図2に示すように、第2駆動ピニオン部22と同一平面上に並んで配置され、また、図7に示すように、第2駆動ピニオン部22の基準円直径R22に対応する基準円直径R32を有している。 



In the illustrated example, the drive pinion 20 includes a first drive pinion unit 21 and a second drive pinion unit 22. The reference circle diameters of the first drive pinion part 21 and the second drive pinion part 22 are R21 and R22, respectively. The upper driven pinion 30 includes a first upper driven pinion part 31 and a second upper driven pinion part 32. As shown in FIG. 2, the first upper driven pinion part 31 is arranged side by side on the same plane as the first drive pinion part 21, and as shown in FIG. 6, the reference circle of the first drive pinion part 21 is arranged. It has a reference circle diameter R31 corresponding to the diameter R21. Further, as shown in FIG. 2, the second upper driven pinion part 32 is arranged side by side on the same plane as the second drive pinion part 22, and as shown in FIG. A reference circle diameter R32 corresponding to the reference circle diameter R22 is provided.



 図5乃至図7から理解されるように、第1上側従動ピニオン部31の第1駆動ピニオン部21と噛合する歯と、第2上側従動ピニオン部32の第2駆動ピニオン部22と噛合する歯とは、駆動ピニオン20の回転位相の全範囲(エアミックスドア6,8を上側または下側第1位置から上側または下側第2位置まで移動させる際に駆動ピニオン20が回転する回転位相の範囲)のうち、互いに異なる位相範囲において、対応する上側従動ピニオン部31,32と噛合するように設けられている。これにより、駆動ピニオン20の回転位相の全範囲のうち、ある位相範囲においては、基準円直径がR21の第1駆動ピニオン部21と基準円直径がR31の第1上側従動ピニオン部31とが噛合する。その一方で、他の位相範囲においては、基準円直径がR22の第2駆動ピニオン部22と基準円直径がR32の第2上側従動ピニオン部32とが噛合する。 



As can be understood from FIGS. 5 to 7, the teeth meshing with the first drive pinion part 21 of the first upper driven pinion part 31 and the teeth meshing with the second drive pinion part 22 of the second upper driven pinion part 32. Is the entire range of the rotational phase of the drive pinion 20 (the range of rotational phase in which the drive pinion 20 rotates when the air mix doors 6 and 8 are moved from the upper or lower first position to the upper or lower second position). ) In the phase ranges different from each other so as to mesh with the corresponding upper driven pinion portions 31 and 32. Thus, in a certain phase range of the entire rotational phase range of the drive pinion 20, the first drive pinion portion 21 having the reference circle diameter R21 and the first upper driven pinion portion 31 having the reference circle diameter R31 mesh with each other. To do. On the other hand, in the other phase range, the second drive pinion portion 22 having the reference circle diameter R22 and the second upper driven pinion portion 32 having the reference circle diameter R32 mesh with each other.



 この結果、上側従動ピニオン30は、駆動ピニオン20の回転位相に応じて異なる回転速度V31,V32で回転する。このため、上側従動ピニオン30は、上側シャフト7を駆動ピニオン20の回転位相に応じて異なる回転速度V31,V32で回転させ、この結果、上側エアミックスドア6は、駆動ピニオン20の回転位相に応じて異なる速度でスライドする。 



As a result, the upper driven pinion 30 rotates at different rotation speeds V31 and V32 according to the rotation phase of the drive pinion 20. Therefore, the upper driven pinion 30 rotates the upper shaft 7 at different rotation speeds V31 and V32 according to the rotation phase of the drive pinion 20, and as a result, the upper air mix door 6 corresponds to the rotation phase of the drive pinion 20. Slide at different speeds.



 また、図2、図5および図8に示すように、駆動ピニオン20は、単一のラック用ピニオン部23を有している。ラック用ピニオン部23は、基準円直径がR23の単一の歯車として構成され、回転軸線Axを中心として回転する。図2に示すように、ラック用ピニオン部23は、回転軸線Axの延びる方向に沿って駆動ピニオン部21,22と並んで配置されている。ラック用ピニオン部23は、駆動ピニオン20の回転位相の全範囲において、ラック40と噛合する。これにより、ラック40は、駆動ピニオン20の回転位相の全範囲において、一定の速度で上方または下方に移動する。 



As shown in FIGS. 2, 5 and 8, the drive pinion 20 has a single rack pinion unit 23. The rack pinion portion 23 is configured as a single gear having a reference circle diameter R23, and rotates about the rotation axis Ax. As shown in FIG. 2, the rack pinion portion 23 is arranged side by side with the drive pinion portions 21 and 22 along the direction in which the rotation axis Ax extends. The rack pinion unit 23 meshes with the rack 40 in the entire rotational phase range of the drive pinion 20. As a result, the rack 40 moves upward or downward at a constant speed in the entire range of the rotational phase of the drive pinion 20.



 また、図3、図5および図8に示すように、ラック40と噛合する下側従動ピニオン50は、基準円直径がR50の単一の歯車として構成される。下側従動ピニオン50は、下側従動ピニオン50の回転位相の全範囲(下側エアミックスドア8を下側第1位置から下側第2位置まで移動させる際に下側従動ピニオン50が回転する回転位相の範囲)において、上述の一定の速度で移動するラック40と噛合する。このため、下側従動ピニオン50は、下側従動ピニオン50の回転位相の全範囲において、一定の回転速度V50で回転する。この結果、下側従動ピニオン50の回転位相の全範囲において(したがって駆動ピニオン20の回転位相の全範囲において)、下側シャフト9は一定の回転速度で回転し、これにより、下側エアミックスドア8は、一定の速度で上方または下方にスライドする。 



As shown in FIGS. 3, 5, and 8, the lower driven pinion 50 that meshes with the rack 40 is configured as a single gear having a reference circular diameter R50. The lower driven pinion 50 has a rotation range of the lower driven pinion 50 (the lower driven pinion 50 rotates when the lower air mix door 8 is moved from the lower first position to the lower second position). In the range of the rotational phase), it meshes with the rack 40 moving at the above-mentioned constant speed. For this reason, the lower driven pinion 50 rotates at a constant rotational speed V50 in the entire rotational phase range of the lower driven pinion 50. As a result, in the entire rotational phase range of the lower driven pinion 50 (and thus in the entire rotational phase range of the drive pinion 20), the lower shaft 9 rotates at a constant rotational speed. 8 slides up or down at a constant speed.



 駆動機構10が上述のように構成されていることにより、駆動ピニオン20の回転位相によって、上側エアミックスドア6の移動速度を、下側エアミックスドア8の移動速度に対して変化させることができる。これにより、駆動ピニオン20の回転位相によって、下側迂回路3aの開口面積を、下側迂回路3bの開口面積と比較して小さくしたり大きくしたりすることができる。 



Since the drive mechanism 10 is configured as described above, the moving speed of the upper air mix door 6 can be changed with respect to the moving speed of the lower air mix door 8 according to the rotational phase of the drive pinion 20. . Thereby, the opening area of the lower detour 3a can be made smaller or larger than the opening area of the lower detour 3b depending on the rotational phase of the drive pinion 20.



 さらに、図示の例では、デフフットモードにおいて上側迂回路3aの開口面積を小さく維持することができるよう、複数の駆動ピニオン部21,22および複数の上側従動ピニオン部31,32の基準円直径R21,R22,R31,R32は、次のように決定されている。すなわち、これらの基準円直径R21,R22,R31,R32は、上側エアミックスドア6が上側第1位置から上側第2位置まで移動する間の上側シャフト7の最大回転速度よりも、上側エアミックスドア6が上側第1位置から上側第2位置への移動を開始した際の上側シャフト7の回転速度が、小さくなるように決定されている。この場合、上側第1位置付近において、上側エアミックスドア6の移動速度が比較的遅くなるため、上側迂回路3aの開口面積を小さく維持することができる。 



Further, in the illustrated example, the reference circular diameter R21 of the plurality of drive pinion portions 21 and 22 and the plurality of upper driven pinion portions 31 and 32 is maintained so that the opening area of the upper bypass 3a can be kept small in the differential foot mode. , R22, R31, R32 are determined as follows. That is, these reference circle diameters R21, R22, R31, and R32 are higher than the maximum rotational speed of the upper shaft 7 while the upper air mix door 6 moves from the first upper position to the second upper position. The rotational speed of the upper shaft 7 when 6 starts to move from the upper first position to the upper second position is determined to be small. In this case, since the moving speed of the upper air mix door 6 is relatively slow in the vicinity of the upper first position, the opening area of the upper bypass 3a can be kept small.



 また、バイレベルモードにおいて乗員の足温頭寒を実現することができるよう、複数の駆動ピニオン部21,22の基準円直径R21,R22、複数の上側従動ピニオン部31,32の基準円直径R31,R32、ラック40と噛合する駆動ピニオン20(ラック用駆動ピニオン部23)の基準円直径R23、および、ラック40と噛合する下側従動ピニオン50の基準円直径R50は、次のように決定されている。すなわち、これらの基準円直径R21,R22,R31,R32,R23,R50は、上側エアミックスドア6が上側第2位置から上側第1位置への移動を開始した際の上側シャフト7の回転速度よりも、下側エアミックスドア8が下側第2位置から下側第1位置への移動を開始した際の下側シャフト9の回転速度が、大きくなるように決定されている。この場合、上側第2位置付近における上側エアミックスドア6の移動速度よりも、下側第2位置付近における下側エアミックスドア8の移動速度が大きくなるため、上側迂回路3aの開口面積を下側迂回路3bの開口面積よりも大きく維持することができる。 



In addition, the reference circle diameters R21 and R22 of the plurality of drive pinion portions 21 and 22 and the reference circle diameter R31 of the plurality of upper driven pinion portions 31 and 32 so that the occupant's foot warming can be realized in the bi-level mode. , R32, the reference circle diameter R23 of the drive pinion 20 (rack drive pinion portion 23) that meshes with the rack 40, and the reference circle diameter R50 of the lower driven pinion 50 that meshes with the rack 40 are determined as follows. ing. That is, these reference circle diameters R21, R22, R31, R32, R23, and R50 are based on the rotational speed of the upper shaft 7 when the upper air mix door 6 starts moving from the upper second position to the upper first position. Also, the rotational speed of the lower shaft 9 when the lower air mix door 8 starts to move from the lower second position to the lower first position is determined so as to increase. In this case, since the moving speed of the lower air mix door 8 near the lower second position is higher than the moving speed of the upper air mix door 6 near the upper second position, the opening area of the upper bypass 3a is reduced. It can be maintained larger than the opening area of the side bypass 3b.



 図示の例では、駆動ピニオン20が回転位相0°の角度位置にある場合、上側従動ピニオン30および下側従動ピニオン50も回転位相0°の角度位置にある。また、図1に示すように、上側エアミックスドア6は上側第1位置にあり、下側エアミックスドア8は下側第1位置にある。そして、駆動ピニオン20が回転位相0°の角度位置から、反時計回りに回転位相200°の角度位置まで、回転すると、それに伴って、上側従動ピニオン30および下側従動ピニオン50が回転し、上側エアミックスドア6が上側第2位置まで、そして下側エアミックスドア8が下側第2位置までスライドする。 



In the illustrated example, when the drive pinion 20 is in the angular position of the rotational phase 0 °, the upper driven pinion 30 and the lower driven pinion 50 are also in the angular position of the rotational phase 0 °. Further, as shown in FIG. 1, the upper air mix door 6 is in the upper first position, and the lower air mix door 8 is in the lower first position. When the drive pinion 20 is rotated counterclockwise from the angular position of the rotational phase 0 ° to the angular position of the rotational phase 200 °, the upper driven pinion 30 and the lower driven pinion 50 are rotated accordingly. The air mix door 6 slides to the upper second position, and the lower air mix door 8 slides to the lower second position.



 さらに詳細には、図6および図7に示すように、駆動ピニオン20が回転位相0°~60°および80°~200°の角度位置にある場合、第1駆動ピニオン部21と第1上側従動ピニオン部31とが噛合する。また、駆動ピニオン20が回転位相60°~80°の角度位置にある場合、第2駆動ピニオン部22と第2上側従動ピニオン部32とが噛合する。図5から理解されるように、第1駆動ピニオン部21の基準円直径R21は、第2駆動ピニオン部22の基準円直径R22よりも小さく、これに対応して、第1上側従動ピニオン部31の基準円直径R31は、第2上側従動ピニオン部32の基準円直径R32よりも大きい。このため、駆動ピニオン20の回転位相が0°~60°および80°~200°の範囲では、駆動ピニオン20は、比較的小さな基準円直径R21の第1駆動ピニオン部21で比較的大きな基準円直径R31の第1上側従動ピニオン部31を回転駆動させることになる。そして、駆動ピニオン20の回転位相が60°~80°の範囲では、駆動ピニオン20は、比較的大きな基準円直径R22の第2駆動ピニオン22で比較的小さな基準円直径R32の第2上側従動ピニオン部32を回転駆動させることになる。この結果、駆動ピニオン20をその回転位相の全範囲で一定の回転速度V20で回転させると、上側従動ピニオン30は、駆動ピニオン20の回転位相が0°~60°および80°~200°の範囲では、比較的小さな回転速度V31で回転し、駆動ピニオン20の回転位相が60°~80°の範囲では比較的大きな回転速度V32で回転する。そして、上側エアミックスドア6は、駆動ピニオン20の回転位相が0°~60°および80°~200°の範囲では比較的小さな速度で移動し、駆動ピニオン20の回転位相が60°~80°の範囲では比較的大きな速度で移動する。 



More specifically, as shown in FIGS. 6 and 7, when the drive pinion 20 is in the angular positions of the rotational phases 0 ° to 60 ° and 80 ° to 200 °, the first drive pinion unit 21 and the first upper driven The pinion part 31 meshes. In addition, when the drive pinion 20 is at an angular position with a rotation phase of 60 ° to 80 °, the second drive pinion portion 22 and the second upper driven pinion portion 32 are engaged with each other. As can be understood from FIG. 5, the reference circle diameter R21 of the first drive pinion part 21 is smaller than the reference circle diameter R22 of the second drive pinion part 22, and correspondingly, the first upper driven pinion part 31 is. The reference circle diameter R31 of the second upper driven pinion portion 32 is larger than the reference circle diameter R32. For this reason, when the rotational phase of the drive pinion 20 is in the range of 0 ° to 60 ° and 80 ° to 200 °, the drive pinion 20 has a relatively large reference circle at the first drive pinion portion 21 having a relatively small reference circle diameter R21. The first upper driven pinion portion 31 having the diameter R31 is rotationally driven. When the rotational phase of the drive pinion 20 is in the range of 60 ° to 80 °, the drive pinion 20 is a second drive pinion 22 having a relatively large reference circle diameter R22 and a second upper driven pinion having a relatively small reference circle diameter R32. The part 32 is driven to rotate. As a result, when the drive pinion 20 is rotated at a constant rotation speed V20 in the entire rotation phase range, the upper driven pinion 30 has a rotation phase range of 0 ° to 60 ° and 80 ° to 200 °. Then, it rotates at a relatively low rotational speed V31, and rotates at a relatively large rotational speed V32 when the rotational phase of the drive pinion 20 is in the range of 60 ° to 80 °. The upper air mix door 6 moves at a relatively small speed when the rotational phase of the drive pinion 20 is in the range of 0 ° to 60 ° and 80 ° to 200 °, and the rotational phase of the drive pinion 20 is 60 ° to 80 °. The range moves at a relatively high speed.



 また、図示の例において、下側従動ピニオン50の回転速度V50は、上側従動ピニオン30の回転速度V31よりも大きく、回転速度V32よりも小さい。この結果、上側エアミックスドア6の移動速度は、下側エアミックスドア8と比較して、駆動ピニオン20の回転位相が0°~60°および80°~200°の範囲では小さく、駆動ピニオン20の回転位相が60°~80°の範囲では大きい。これにより、図9乃至図10Eから理解されるように、駆動ピニオン20の回転位相が0°~60°の範囲では、上側迂回路3aの開口面積を下側迂回路3bの開口面積よりも小さくし(図10Aおよび図10B参照)、駆動ピニオン20の回転位相が60°~80°の範囲で上側迂回路3aの開口面積と下側迂回路3bの開口面積との大小関係を逆転させることができる(図10C参照)。また、駆動ピニオン20の回転位相が80°~200°の範囲で、上側エアミックスドア6の移動速度が下側エアミックスドア8の移動速度よりも小さくなることにより、上側エアミックスドア6が上側第2位置に到達すると同時に、下側エアミックスドア8が下側第2位置に到達することができる(図10Dおよび図10E参照)。あるいは、上側エアミックスドア6が上側第2位置から上側第1位置へ向けて移動し、下側エアミックスドア8が下側第2位置から下側第1位置へ向けて移動する際、駆動ピニオン20の回転位相が80°~200°の範囲で、上側迂回路3aの開口面積を下側迂回路3bの開口面積よりも大きく維持することができる。 



In the illustrated example, the rotational speed V50 of the lower driven pinion 50 is higher than the rotational speed V31 of the upper driven pinion 30 and lower than the rotational speed V32. As a result, the moving speed of the upper air mix door 6 is smaller than that of the lower air mix door 8 when the rotational phase of the drive pinion 20 is in the range of 0 ° to 60 ° and 80 ° to 200 °, and the drive pinion 20 Is large in the range of 60 ° to 80 °. As a result, as understood from FIGS. 9 to 10E, when the rotational phase of the drive pinion 20 is in the range of 0 ° to 60 °, the opening area of the upper detour 3a is smaller than the opening area of the lower detour 3b. However, the magnitude relationship between the opening area of the upper detour 3a and the opening area of the lower detour 3b can be reversed when the rotational phase of the drive pinion 20 is in the range of 60 ° to 80 °. Yes (see FIG. 10C). Further, when the rotational phase of the drive pinion 20 is in the range of 80 ° to 200 °, the moving speed of the upper air mix door 6 becomes lower than the moving speed of the lower air mix door 8, so that the upper air mix door 6 moves upward. Simultaneously with reaching the second position, the lower air mix door 8 can reach the lower second position (see FIGS. 10D and 10E). Alternatively, when the upper air mix door 6 moves from the upper second position toward the upper first position and the lower air mix door 8 moves from the lower second position toward the lower first position, the drive pinion When the rotation phase of 20 is in the range of 80 ° to 200 °, the opening area of the upper detour 3a can be maintained larger than the opening area of the lower detour 3b.



 なお、駆動ピニオン20の回転に伴って、第1駆動ピニオン部21と第1上側従動ピニオン部31とが噛合した第1の状態(図6参照)から、第2駆動ピニオン部22と第2上側従動ピニオン部32とが噛合した第2の状態(図7参照)に、あるいは第2の状態から第1の状態に切り替わるが、この切り替わりが円滑に行われるよう、駆動ピニオン20の周方向における第1駆動ピニオン部21の歯と第2駆動ピニオン部22の歯との間隔、および、上側従動ピニオン30の周方向における第1上側従動ピニオン部31の歯と第2上側従動ピニオン部32の歯との間隔は、適切に設定されている。 



In addition, from the 1st state (refer FIG. 6) with which the 1st drive pinion part 21 and the 1st upper driven pinion part 31 meshed with rotation of the drive pinion 20, the 2nd drive pinion part 22 and the 2nd upper side Switching to the second state (see FIG. 7) with which the driven pinion portion 32 is engaged, or from the second state to the first state, the first direction in the circumferential direction of the drive pinion 20 is performed smoothly. The distance between the teeth of the first drive pinion portion 21 and the teeth of the second drive pinion portion 22, and the teeth of the first upper driven pinion portion 31 and the teeth of the second upper driven pinion portion 32 in the circumferential direction of the upper driven pinion 30 The interval is set appropriately.



 また、上述のように、図示の例においては、駆動ピニオン20が上側従動ピニオン30およびラック40と噛合する回転位相の範囲は、図示の例では、0°~200°の範囲のみである。このため、駆動ピニオン20の各ピニオン部21,22の全周に亘って歯が設けられていなくてもよい。しかしながら、駆動ピニオン20や上側従動ピニオン30、ラック40の空調ケース2への組み付けが容易になるよう(すなわち駆動ピニオン20、上側従動ピニオン30およびラック40を空調ケース2に組み付ける際に、ピニオン20,30の互いに対する角度位置や、ラック40に対するピニオン20の角度位置を考慮して組み付ける手間が省かれるよう)、駆動ピニオン20の各ピニオン部21,22,23の全周に亘って歯が設けられていることが好ましい。 



As described above, in the illustrated example, the rotational phase range in which the drive pinion 20 meshes with the upper driven pinion 30 and the rack 40 is only in the range of 0 ° to 200 ° in the illustrated example. For this reason, the tooth does not need to be provided over the entire circumference of each pinion part 21, 22 of the drive pinion 20. However, the drive pinion 20, the upper driven pinion 30, and the rack 40 are easily assembled to the air conditioning case 2 (that is, when the drive pinion 20, the upper driven pinion 30 and the rack 40 are assembled to the air conditioning case 2, the pinion 20, The teeth are provided over the entire circumference of each of the pinion portions 21, 22, and 23 of the drive pinion 20, so as to save the labor of assembling in consideration of the angle positions of the 30 and the rack 40. It is preferable.



 次に、図9乃至図10Eを参照して、空調装置1の動作について説明する。ここでは、まず、空調装置1がデフフットモードで運転され、その後、空調装置1の運転モードがバイレベルモードに切り換えられ、次いでベントモードに切り換えられ、最後に再びバイレベルモードに切り換えられる場合を例に挙げて説明する。駆動ピニオン20は、空調装置1の運転が開始される前、回転位相0°の角度位置にあるものとする。また、図示の例では、デフフットモードの場合、駆動ピニオンの角度位置は、上側迂回路3aの開口面積が所定の開口面積以下となるよう、回転位相0°~40°の範囲で調節される。また、バイレベルモードの場合、ベント吹出口から吹き出される調和空気とフット吹出口から吹き出される調和空気の温度差が適切な範囲内となるよう、駆動ピニオンの角度位置は、回転位相100°~180°の範囲で調節される。さらに、ベントモードの場合、ベント吹出口から吹き出される調和空気の温度が所望の程度に低くなるよう、駆動ピニオンの角度位置は、回転位相180°~200°の範囲で調節される。 



Next, the operation of the air conditioner 1 will be described with reference to FIGS. 9 to 10E. Here, first, the air conditioner 1 is operated in the differential foot mode, and then the operation mode of the air conditioner 1 is switched to the bi-level mode, then switched to the vent mode, and finally switched to the bi-level mode again. An example will be described. It is assumed that the drive pinion 20 is in an angular position with a rotation phase of 0 ° before the operation of the air conditioner 1 is started. Further, in the illustrated example, in the differential foot mode, the angular position of the drive pinion is adjusted in a rotational phase range of 0 ° to 40 ° so that the opening area of the upper bypass 3a is equal to or less than a predetermined opening area. . Further, in the bi-level mode, the angular position of the drive pinion is set to a rotational phase of 100 ° so that the temperature difference between the conditioned air blown from the vent outlet and the conditioned air blown from the foot outlet is within an appropriate range. It is adjusted in the range of ~ 180 °. Further, in the vent mode, the angular position of the drive pinion is adjusted in the range of the rotation phase of 180 ° to 200 ° so that the temperature of the conditioned air blown from the vent outlet is lowered to a desired level.



 まず、空調装置1がデフフットモードで運転される場合について説明する。空調装置1の運転モードがデフフットモードにされると、図10Aおよび図10Bに示すように、デフロストドア301Dとフットドア303Dが開かれ、かつ、ベンドドア302Dが閉じられる。また、乗員により設定された空調装置1の運転モード(ここではデフフットモード)および設定温度、車室内の実際の温度、車両が受ける日射量、車両の外気温度などを用いて演算された目標吹出温度に基づいて、駆動ピニオン20の第1の新たな角度位置が回転位相0°~40°の範囲で決定される。具体的には、フット吹出口から乗員の足元に向けて吹き出される調和空気の温度が目標吹出温度になるように、下側迂回路3bの開口面積が決定される。そして、この開口面積に基づいて、駆動ピニオン20の第1の新たな角度位置が、例えば回転位相30°の位置に決定される。そして、アクチュエータ11の回転駆動力により、駆動ピニオン20が回転位相0°の角度位置から回転位相30°の角度位置まで反時計回りに回転されると、これに伴って、駆動ピニオン20の回転の分だけラック40が上昇する。そして、ラック40と噛合する下側従動ピニオン50が、ラック40の上昇分だけ反時計回りに回転し、下側エアミックスドア8が下側第1位置から下側第2位置に向けて上方向にスライドする。これにより、下側迂回路3bの開口面積が上記決定された開口面積になる。さらに、駆動ピニオン20の反時計回りの回転に伴って、上側従動ピニオン30が時計回りに回転する。これにより、上側エアミックスドア6が上側第1位置から上側第2位置に向けて下方向にスライドする。しかしながら、図9および図10Bに示すように、上側エアミックスドア6の移動量は、下側エアミックスドア8の移動量と比較して小さい。これは、上側従動ピニオン30が、比較的小さい基準円直径R21の第1駆動ピニオン部21と、比較的大きい基準円直径R31の第1上側駆動ピニオン部31と、の噛み合いにより回転するため、上側従動ピニオン30が下側従動ピニオン50の回転速度V50よりも小さい回転速度V31で回転するためである。この結果、上側迂回路3aの開口面積が十分に低く抑えられ、デフロスト吹出口から吹き出される空気に含まれる加熱用熱交換器5を迂回した空気の量が、一定量以下に抑えられる。これにより、フロントガラスの曇りが防止される。 



First, the case where the air conditioner 1 is operated in the differential foot mode will be described. When the operation mode of the air conditioner 1 is set to the differential foot mode, the defrost door 301D and the foot door 303D are opened and the bend door 302D is closed, as shown in FIGS. 10A and 10B. Further, the target blowout calculated using the operation mode (here, the differential foot mode) and the set temperature of the air conditioner 1 set by the occupant, the actual temperature in the passenger compartment, the amount of solar radiation received by the vehicle, and the outside air temperature of the vehicle Based on the temperature, the first new angular position of the drive pinion 20 is determined in the range of the rotational phase from 0 ° to 40 °. Specifically, the opening area of the lower bypass 3b is determined so that the temperature of the conditioned air blown out from the foot outlet toward the feet of the passenger becomes the target outlet temperature. Then, based on this opening area, the first new angular position of the drive pinion 20 is determined, for example, at a rotational phase of 30 °. Then, when the driving pinion 20 is rotated counterclockwise from the angular position of the rotational phase 0 ° to the angular position of the rotational phase 30 ° by the rotational driving force of the actuator 11, the rotation of the driving pinion 20 is accompanied accordingly. The rack 40 rises by the amount. Then, the lower driven pinion 50 that meshes with the rack 40 rotates counterclockwise by the amount raised by the rack 40, and the lower air mix door 8 moves upward from the lower first position toward the lower second position. Slide to. As a result, the opening area of the lower bypass 3b becomes the determined opening area. Further, as the drive pinion 20 rotates counterclockwise, the upper driven pinion 30 rotates clockwise. Thereby, the upper air mix door 6 slides downward from the upper first position toward the upper second position. However, as shown in FIGS. 9 and 10B, the amount of movement of the upper air mix door 6 is smaller than the amount of movement of the lower air mix door 8. This is because the upper driven pinion 30 is rotated by meshing between the first drive pinion portion 21 having a relatively small reference circle diameter R21 and the first upper drive pinion portion 31 having a relatively large reference circle diameter R31. This is because the driven pinion 30 rotates at a rotational speed V31 that is lower than the rotational speed V50 of the lower driven pinion 50. As a result, the opening area of the upper detour 3a is sufficiently low, and the amount of air that bypasses the heating heat exchanger 5 included in the air blown from the defrost outlet is suppressed to a certain amount or less. Thereby, fogging of the windshield is prevented.



 次に、空調装置の運転モードがバイレベルモードに切り換えられると、図10Cおよび図10Dに示すように、ベントドア302Dとフットドア303Dが開かれ、デフロストドア301Dが閉じられる。また、乗員により設定された空調装置1の運転モード(ここではバイレベルモード)および設定温度、車室内の実際の温度、車両が受ける日射量、車両の外気温度などを用いて演算された目標吹出温度に基づいて、駆動ピニオン20の第2の新たな角度位置が回転位相100°~180°の範囲で決定される。具体的には、ベント吹出口から乗員の上半身に向けて吹き出される調和空気の温度が目標吹出温度になるように、上側迂回路3aの開口面積が決定される。そして、この開口面積に基づいて、駆動ピニオン20の第2の新たな角度位置が、例えば回転位相120°の位置に決定される。そして、アクチュエータ11の回転駆動力により、駆動ピニオン20が回転位相30°の角度位置から回転位相120°の角度位置まで反時計回りにさらに回転されると、これに伴って、駆動ピニオン20の回転の分だけラック40がさらに上昇する。そして、ラック40と噛合する下側従動ピニオン50が、ラック40のさらなる上昇分だけ反時計回りにさらに回転し、下側エアミックスドア8が下側第2位置に向けて上方向にさらにスライドする。また、駆動ピニオン20の反時計回りの回転に伴って、上側従動ピニオン30が時計回りにさらに回転する。これにより、上側エアミックスドア6が上側第2位置に向けて下方向にさらにスライドする。ここで、駆動ピニオン20が回転位相40°の角度位置まで回転する間は、上側従動ピニオン30は、第1駆動ピニオン部21と第1上側駆動ピニオン部31との噛み合いにより回転するため、上側従動ピニオン30は、下側従動ピニオン50の回転速度V50よりも小さい回転速度V31で回転する。しかし、駆動ピニオン20が回転位相40°から80°の角度位置まで回転する間は、上側従動ピニオン30は、比較的大きい基準円直径V22の第2駆動ピニオン部22と比較的小さい基準円直径V32の第2上側駆動ピニオン部32との噛み合いにより回転する。このため、上側従動ピニオン30は、下側従動ピニオン50の回転速度V50よりも大きい回転速度V32で回転する。このため、上側迂回路3aの開口面積は、駆動ピニオン20が回転位相40°から80°の角度位置まで回転する間に下側迂回路3bの開口面積よりも大きくなる(図9および図10C参照)。その後、駆動ピニオン20が回転位相80°から120°の角度位置まで回転する間は、上側従動ピニオン30は、再び、第1駆動ピニオン部21と第1上側駆動ピニオン部31との噛み合いにより回転する。このため、上側従動ピニオン30は、下側従動ピニオン50の回転速度V50よりも小さい回転速度V31で回転する。これにより、上側迂回路3aの開口面積と下側迂回路3bの開口面積との差は小さくなる。この結果、ベント吹出口から吹き出す調和空気の温度とフット吹出口から吹き出される調和空気の温度との差が、適切な範囲内になる。 



Next, when the operation mode of the air conditioner is switched to the bi-level mode, the vent door 302D and the foot door 303D are opened and the defrost door 301D is closed as shown in FIGS. 10C and 10D. Further, the target blowout calculated using the operation mode (here, the bi-level mode) and set temperature of the air conditioner 1 set by the occupant, the actual temperature in the passenger compartment, the amount of solar radiation received by the vehicle, the outside air temperature of the vehicle, etc. Based on the temperature, the second new angular position of the drive pinion 20 is determined in the range of the rotational phase of 100 ° to 180 °. Specifically, the opening area of the upper detour 3a is determined so that the temperature of the conditioned air blown from the vent outlet toward the upper body of the occupant becomes the target outlet temperature. Then, based on the opening area, the second new angular position of the drive pinion 20 is determined, for example, at a rotational phase of 120 °. Then, when the drive pinion 20 is further rotated counterclockwise from the angular position of the rotational phase 30 ° to the angular position of the rotational phase 120 ° by the rotational driving force of the actuator 11, the rotation of the drive pinion 20 is accompanied accordingly. The rack 40 further rises by this amount. Then, the lower driven pinion 50 that meshes with the rack 40 further rotates counterclockwise by the further rise of the rack 40, and the lower air mix door 8 further slides upward toward the lower second position. . In addition, as the drive pinion 20 rotates counterclockwise, the upper driven pinion 30 further rotates clockwise. Thereby, the upper air mix door 6 further slides downward toward the upper second position. Here, while the drive pinion 20 rotates to the angular position of the rotation phase of 40 °, the upper driven pinion 30 rotates due to the engagement of the first drive pinion part 21 and the first upper drive pinion part 31, so the upper driven pinion 30 rotates. The pinion 30 rotates at a rotation speed V31 that is lower than the rotation speed V50 of the lower driven pinion 50. However, while the drive pinion 20 rotates from the rotational phase 40 ° to the angular position of 80 °, the upper driven pinion 30 has the second drive pinion portion 22 having the relatively large reference circle diameter V22 and the relatively small reference circle diameter V32. The second upper drive pinion part 32 rotates by meshing with it. For this reason, the upper driven pinion 30 rotates at a rotational speed V32 that is greater than the rotational speed V50 of the lower driven pinion 50. For this reason, the opening area of the upper detour 3a is larger than the opening area of the lower detour 3b while the drive pinion 20 rotates from the rotational phase 40 ° to the angular position of 80 ° (see FIGS. 9 and 10C). ). Thereafter, while the drive pinion 20 is rotated from the rotational phase of 80 ° to an angular position of 120 °, the upper driven pinion 30 is rotated again by the engagement of the first drive pinion portion 21 and the first upper drive pinion portion 31. . For this reason, the upper driven pinion 30 rotates at a rotational speed V31 that is smaller than the rotational speed V50 of the lower driven pinion 50. Thereby, the difference between the opening area of the upper detour 3a and the opening area of the lower detour 3b is reduced. As a result, the difference between the temperature of the conditioned air blown from the vent outlet and the temperature of the conditioned air blown from the foot outlet is within an appropriate range.



 次に、空調装置の運転モードがベントモードに切り換えられると、図10Eに示すように、ベントドア302Dが開かれ、デフロストドア301Dとフットドア303Dが閉じられる。また、乗員により設定された空調装置1の運転モード(ここではベントモード)および設定温度、車室内の実際の温度、車両が受ける日射量、車両の外気温度などを用いて演算された目標吹出温度に基づいて、駆動ピニオン20の第3の新たな角度位置が回転位相180°~200°の範囲で決定される。具体的には、ベント吹出口から乗員の上半身に向けて吹き出される調和空気の温度が目標吹出温度になるように、迂回路3a,3bの開口面積が決定される。そして、この開口面積に基づいて、駆動ピニオン20の第3の新たな角度位置が、例えば回転位相200°の位置に決定される。そして、アクチュエータ11の回転駆動力により、駆動ピニオン20が回転位相120°の角度位置から回転位相200°の角度位置まで反時計回りにさらに回転されると、これに伴って、駆動ピニオン20の回転の分だけラック40がさらに上昇する。そして、ラック40と噛合する下側従動ピニオン50が、ラック40のさらなる上昇分だけ反時計回りにさらに回転し、下側エアミックスドア8が下側第2位置に向けて上方向にさらにスライドする。また、駆動ピニオン20の回転に伴って、上側従動ピニオン20が時計回りにさらに回転する。これにより、上側エアミックスドア6が上側第2位置に向けて下方向にさらにスライドする。ここで、上側従動ピニオン30は、第1駆動ピニオン部21と第1上側従動ピニオン部31との噛み合いにより回転するため、下側従動ピニオン50の回転速度V50よりも小さな回転速度V31で回転する。これにより、上側エアミックスドア6が上側第2位置に到達すると同時に下側エアミックスドア8が下側第2位置に到達する(図10E参照)。 



Next, when the operation mode of the air conditioner is switched to the vent mode, the vent door 302D is opened and the defrost door 301D and the foot door 303D are closed as shown in FIG. 10E. Further, the target blowing temperature calculated using the operation mode (here, the vent mode) and the set temperature of the air conditioner 1 set by the passenger, the actual temperature in the passenger compartment, the amount of solar radiation received by the vehicle, the outside air temperature of the vehicle, and the like. Based on the above, the third new angular position of the drive pinion 20 is determined in the range of the rotation phase of 180 ° to 200 °. Specifically, the opening areas of the detours 3a and 3b are determined so that the temperature of the conditioned air blown out from the vent outlet toward the upper body of the occupant becomes the target outlet temperature. Based on this opening area, the third new angular position of the drive pinion 20 is determined, for example, at a rotational phase of 200 °. Then, when the driving pinion 20 is further rotated counterclockwise from the angular position of the rotational phase 120 ° to the angular position of the rotational phase 200 ° by the rotational driving force of the actuator 11, the rotation of the driving pinion 20 is accompanied accordingly. The rack 40 further rises by this amount. Then, the lower driven pinion 50 that meshes with the rack 40 further rotates counterclockwise by the further rise of the rack 40, and the lower air mix door 8 further slides upward toward the lower second position. . Further, as the drive pinion 20 rotates, the upper driven pinion 20 further rotates clockwise. Thereby, the upper air mix door 6 further slides downward toward the upper second position. Here, since the upper driven pinion 30 is rotated by meshing between the first drive pinion part 21 and the first upper driven pinion part 31, the upper driven pinion 30 rotates at a rotational speed V31 that is smaller than the rotational speed V50 of the lower driven pinion 50. Thereby, the lower air mix door 8 reaches the lower second position simultaneously with the upper air mix door 6 reaching the upper second position (see FIG. 10E).



 最後に、空調装置1の運転モードがベントモードからバイレベルモードに切り換えられると、図10Cおよび図10Dに示すように、ベントドア302Dとフットドア303Dが開かれ、デフロストドア301Dが閉じられる。また、乗員により設定された運転モード(ここではバイレベルモード)および設定温度、車室内の実際の温度、車両が受ける日射量、車両の外気温度などを用いて演算された目標吹出温度に基づいて、駆動ピニオン20の第4の新たな角度位置が回転位相100°~180°の範囲で、例えば回転位相120°の位置に決定される。そして、アクチュエータ11の回転駆動力により、駆動ピニオン20が回転位相200°の角度位置から回転位相120°の角度位置まで時計回りに回転されると、これに伴って、駆動ピニオン20の回転の分だけラック40が下降する。そして、ラック40と噛合する下側従動ピニオン50が、ラック40の下降分だけ時計回りに回転し、下側エアミックスドア8が下側第1位置に向けて下方向にスライドする。また、駆動ピニオン20の時計回りの回転に伴って、上側従動ピニオン30が反時計回りに回転する。これにより、上側エアミックスドア6が上側第1位置に向けて上方向にスライドする。ここで、駆動ピニオン20が回転位相200°から回転位相120°の角度位置まで回転する間は、上側従動ピニオン30は、第1駆動ピニオン部21と第1上側駆動ピニオン部22との噛み合いにより回転するため、下側従動ピニオン50の回転速度V50よりも小さな回転速度V31で回転する。これにより、上側迂回路3aの開口面積は下側迂回路3bの開口面積よりも大きくなる(図10C参照)。この結果、ベント吹出口から吹き出す調和空気の温度がフット吹出口から吹き出される調和空気の温度よりも低くなり、乗員の足温頭寒が実現される。 



Finally, when the operation mode of the air conditioner 1 is switched from the vent mode to the bi-level mode, the vent door 302D and the foot door 303D are opened and the defrost door 301D is closed, as shown in FIGS. 10C and 10D. Also, based on the operation mode (bi-level mode here) set by the occupant and the set temperature, the actual temperature in the passenger compartment, the amount of solar radiation received by the vehicle, the outside air temperature of the vehicle, etc. The fourth new angular position of the drive pinion 20 is determined within the range of the rotational phase of 100 ° to 180 °, for example, at the rotational phase of 120 °. Then, when the drive pinion 20 is rotated clockwise from the angular position of the rotational phase 200 ° to the angular position of the rotational phase 120 ° by the rotational driving force of the actuator 11, the rotation of the drive pinion 20 is accordingly accompanied. Only the rack 40 is lowered. Then, the lower driven pinion 50 that meshes with the rack 40 rotates clockwise by the amount of lowering of the rack 40, and the lower air mix door 8 slides downward toward the lower first position. Further, as the drive pinion 20 rotates clockwise, the upper driven pinion 30 rotates counterclockwise. Thereby, the upper air mix door 6 slides upward toward the upper first position. Here, while the drive pinion 20 is rotated from the rotation phase 200 ° to the angular position of the rotation phase 120 °, the upper driven pinion 30 is rotated by meshing between the first drive pinion portion 21 and the first upper drive pinion portion 22. Therefore, the lower driven pinion 50 rotates at a rotational speed V31 smaller than the rotational speed V50. Thereby, the opening area of the upper detour 3a becomes larger than the opening area of the lower detour 3b (see FIG. 10C). As a result, the temperature of the conditioned air blown out from the vent outlet becomes lower than the temperature of the conditioned air blown out from the foot outlet, thereby realizing the occupant's foot warming.



 以上、駆動ピニオン20が回転位相0°の角度位置から最大の回転位相200°の角度位置まで回転する間、上側従動ピニオン30の回転速度が2度変化する場合を例に挙げて説明してきたが、これに限られない。例えば、空調装置1は、駆動ピニオン20が回転位相0°の角度位置から最大の回転位相200°の角度位置まで回転する間、上側従動ピニオン30の回転速度が1度だけ変化するように構成されていてもよいし、3度以上変化するように構成されていてもよい。また、以上に説明してきた例では、駆動ピニオン20および上側従動ピニオン30がそれぞれ2つの駆動ピニオン部およびそれに対応する2つの上側従動ピニオン部を有し、上側従動ピニオン部の回転速度が2つの異なる回転速度で回転可能である場合を例に挙げて説明してきたが、これに限られない。例えば、駆動ピニオン20および上側従動ピニオン30は、それぞれ、3以上の駆動ピニオン部およびそれに対応する3以上の上側従動ピニオン部を有していてもよい。この場合、上側従動ピニオン30の回転速度を、3以上の異なる回転速度で回転させることができる。この結果、上側迂回路3aの開口面積と下側迂回路3bの開口面積との比を、より適切に調整することができる。 



As described above, the case where the rotational speed of the upper driven pinion 30 changes by 2 degrees while the drive pinion 20 rotates from the angular position of the rotational phase 0 ° to the angular position of the maximum rotational phase 200 ° has been described as an example. Not limited to this. For example, the air conditioner 1 is configured such that the rotational speed of the upper driven pinion 30 changes only by 1 degree while the drive pinion 20 rotates from the angular position of the rotational phase 0 ° to the angular position of the maximum rotational phase 200 °. It may be configured to change three times or more. In the example described above, each of the drive pinion 20 and the upper driven pinion 30 has two drive pinion parts and two upper driven pinion parts corresponding thereto, and the rotational speeds of the upper driven pinion part are two different. Although the case where it can rotate at a rotational speed has been described as an example, it is not limited thereto. For example, each of the drive pinion 20 and the upper driven pinion 30 may have three or more drive pinion parts and three or more upper driven pinion parts corresponding thereto. In this case, the rotational speed of the upper driven pinion 30 can be rotated at three or more different rotational speeds. As a result, the ratio of the opening area of the upper detour 3a and the opening area of the lower detour 3b can be adjusted more appropriately.



 以上に説明してきた上述の一実施の形態において、車両用の空調装置1は、空気が流れる空気通路3を形成する空調ケース2と、空気通路3内に配置された加熱用熱交換器5であって、当該加熱用熱交換器5の上側端縁5aeの上側に上側迂回路3aを形成し、且つ、当該加熱用熱交換器5の下側端縁5beの下側に下側迂回路3bを形成するように配置された加熱用熱交換器5と、を備えている。また、空調装置1は、空気通路3内に配置され、加熱用熱交換器5に向かう空気と上側迂回路3aに向かう空気との比率を調整するスライド式の上側エアミックスドア6と、上側エアミックスドア6に連結されて、周方向の回転に伴って上側エアミックスドア6を、上側迂回路3aに向かう空気の比率を最小とする上側第1位置と、上側迂回路3aに向かう空気の比率を最大とする上側第2位置との間でスライドさせる上側シャフト7と、空気通路3内に配置され、加熱用熱交換器5に向かう空気と下側迂回路3bに向かう空気との比率を調整するスライド式の下側エアミックスドア8と、上側シャフト7と平行に配置された下側シャフト9であって、下側エアミックスドア8に連結されて、周方向の回転に伴って下側エアミックスドア8を、下側迂回路3bに向かう空気の比率を最小とする下側第1位置と、下側迂回路3bに向かう空気の比率を最大とする下側第2位置との間でスライドさせる下側シャフト9と、上側シャフト7および下側シャフト9を回転駆動する駆動機構10と、を備えている。駆動機構10は、回転駆動力を発生するアクチュエータ11と、アクチュエータ11により回転駆動される駆動ピニオン20と、上側シャフト7に連結され、駆動ピニオン20と噛合してアクチュエータ11の回転駆動力を上側シャフト7に伝達する上側従動ピニオン30と、駆動ピニオン20と噛合し、アクチュエータ11の回転駆動力が伝達されて直線運動をするラック40と、下側シャフト9に連結され、ラック40と噛合してアクチュエータ11の回転駆動力を下側シャフト9に伝達する下側従動ピニオン50と、を有している。そして、駆動ピニオン20は、互いに基準円直径の異なる複数の駆動ピニオン部21,22を有し、上側従動ピニオン30は、複数の駆動ピニオン部21,22に対応して設けられた互いに基準円直径の異なる複数の上側従動ピニオン部31,32を有している。複数の駆動ピニオン部21,22は、駆動ピニオン20の回転位相の全範囲のうち、互いに異なる位相範囲において、対応する上側従動ピニオン部31,32と噛合する。 



In the above-described embodiment described above, the vehicle air conditioner 1 includes an air conditioning case 2 that forms an air passage 3 through which air flows, and a heating heat exchanger 5 that is disposed in the air passage 3. The upper detour 3a is formed above the upper end edge 5ae of the heating heat exchanger 5, and the lower detour 3b is disposed under the lower end edge 5be of the heating heat exchanger 5. And a heat exchanger 5 for heating arranged so as to form Further, the air conditioner 1 is disposed in the air passage 3, and includes a slide type upper air mix door 6 that adjusts the ratio of the air toward the heat exchanger 5 for heating and the air toward the upper detour 3 a, and the upper air. The upper air mix door 6 connected to the mix door 6 in the circumferential direction, the upper first position that minimizes the ratio of air toward the upper detour 3a, and the ratio of air toward the upper detour 3a The ratio between the upper shaft 7 that is slid between the upper second position that maximizes the pressure and the air that is disposed in the air passage 3 and that is directed to the heat exchanger 5 for heating and the air that is directed to the lower bypass 3b is adjusted. A sliding lower air mix door 8 and a lower shaft 9 arranged in parallel with the upper shaft 7, which are connected to the lower air mix door 8 and are connected to the lower air mix door 8 in accordance with the rotation in the circumferential direction. Mix door 8 A lower shaft 9 that is slid between a lower first position that minimizes the ratio of air toward the lower bypass 3b and a lower second position that maximizes the ratio of air toward the lower bypass 3b. And a drive mechanism 10 that rotationally drives the upper shaft 7 and the lower shaft 9. The drive mechanism 10 is connected to an actuator 11 that generates a rotational drive force, a drive pinion 20 that is rotationally driven by the actuator 11, and the upper shaft 7, and meshes with the drive pinion 20 to transfer the rotational drive force of the actuator 11 to the upper shaft. 7 is engaged with the upper driven pinion 30 and the drive pinion 20 that are transmitted to the rack 7, and the rotational drive force of the actuator 11 is transmitted to move linearly, and the rack 40 is coupled to the lower shaft 9 and meshes with the rack 40 to be the actuator. 11 and a lower driven pinion 50 that transmits the rotational driving force of 11 to the lower shaft 9. The drive pinion 20 has a plurality of drive pinion portions 21 and 22 having different reference circle diameters, and the upper driven pinion 30 is a reference circle diameter provided corresponding to the plurality of drive pinion portions 21 and 22. Are provided with a plurality of upper driven pinion portions 31 and 32. The plurality of drive pinion units 21 and 22 mesh with the corresponding upper driven pinion units 31 and 32 in different phase ranges of the entire rotation phase range of the drive pinion 20.



 上述した一実施の形態の空調装置1によれば、1つの駆動機構10で駆動される上側エアミックスドア6および下側エアミックスドア8の位置によって決定される上側迂回路3aおよび下側迂回路3bの開口面積の大小関係を、駆動ピニオン20の回転位相に応じて変えることができる。これにより、例えば、空調装置1がデフフットモードで運転される場合、デフロスト吹出口から吹き出される空気のうち加熱用熱交換器5を迂回した空気の量を、フット吹出口から吹き出される空気のうち加熱用熱交換器5を迂回した空気の量よりも低く抑え、その一方で、空調装置1がバイレベルモードで運転される場合は、ベント吹出口から吹き出される空気のうち加熱用熱交換器5を迂回した空気の量を、フット吹出口から吹き出される空気のうち加熱用熱交換器5を迂回した空気の量よりも大きくする、ということができる。 



According to the air conditioner 1 of the embodiment described above, the upper detour route 3a and the lower detour route determined by the positions of the upper air mix door 6 and the lower air mix door 8 that are driven by one drive mechanism 10. The magnitude relationship of the opening area of 3b can be changed according to the rotational phase of the drive pinion 20. Thereby, for example, when the air conditioner 1 is operated in the differential foot mode, the amount of air that bypasses the heating heat exchanger 5 out of the air blown from the defrost blower outlet is blown from the foot blower outlet. When the air conditioner 1 is operated in the bi-level mode, the heat for heating out of the air blown out from the vent outlet is suppressed. It can be said that the amount of air bypassing the exchanger 5 is made larger than the amount of air bypassing the heating heat exchanger 5 among the air blown out from the foot outlet.



 また、上述した一実施の形態において、複数の駆動ピニオン部21,22および複数の上側従動ピニオン部31,32の基準円直径R21,R22,R31,R32は、上側エアミックスドア6が上側第1位置から前記上側第2位置まで移動する間の上側シャフト7の最大回転速度V32よりも、上側エアミックスドア6が上側第1位置から上側第2位置への移動を開始した際の上側シャフト7の回転速度V31が、小さくなるように決定されている。このような空調装置1によれば、上側エアミックスドア6が上側第1位置またはその近傍にある際の上側エアミックスドア6の移動速度を、比較的小さくすることができる。デフフットモードでは、デフロスト吹出口を通じてフロントガラスに温風を当てるため、上側エアミックスドア6は、上側第1位置の近傍に位置することが求められる。ここで、上側第1位置の近傍での上側エアミックスドア6の移動速度が小さければ、駆動機構10により下側エアミックスドア8が下側第1位置から下側第2位置に向けて移動されて下側迂回路3bの開口面積が或る程度大きくされても、上側迂回路3aの開口面積を小さく維持することができる。これにより、デフフットモードでの運転の際、上側迂回路3aを通じてデフロスト吹出口に入流する加熱用熱交換器5を迂回した空気の量を低く抑えることができる。この結果、フロントガラスの曇りが防止される。 



In the above-described embodiment, the reference air diameters R21, R22, R31, and R32 of the plurality of drive pinion portions 21 and 22 and the plurality of upper driven pinion portions 31 and 32 are the same as the upper air mix door 6. When the upper air mix door 6 starts moving from the first upper position to the second upper position than the maximum rotational speed V32 of the upper shaft 7 during the movement from the position to the second upper position, the upper shaft 7 The rotational speed V31 is determined to be small. According to such an air conditioner 1, the moving speed of the upper air mix door 6 when the upper air mix door 6 is at or near the upper first position can be made relatively small. In the differential foot mode, since the warm air is applied to the windshield through the defrost outlet, the upper air mix door 6 is required to be positioned in the vicinity of the upper first position. Here, if the moving speed of the upper air mix door 6 in the vicinity of the upper first position is low, the lower air mix door 8 is moved from the lower first position to the lower second position by the drive mechanism 10. Even if the opening area of the lower bypass 3b is increased to some extent, the opening area of the upper bypass 3a can be kept small. Thereby, at the time of driving | operation in differential foot mode, the quantity of the air which detoured the heat exchanger 5 for a heating which flows into a defrost blower outlet through the upper side detour 3a can be restrained low. As a result, fogging of the windshield is prevented.



 また、上述した第1の実施の形態において、複数の駆動ピニオン部21,22の基準円直径R21,R22、複数の上側従動ピニオン部31,32の基準円直径R31,R32、ラック40と噛合する駆動ピニオン20(ラック用駆動ピニオン部23)の基準円直径R32、および、ラック40と噛合する下側従動ピニオン50の基準円直径R50は、上側エアミックスドア6が上側第2位置から上側第1位置への移動を開始した際の上側シャフト7の回転速度V31よりも、下側エアミックスドア8が下側第2位置から下側第1位置への移動を開始した際の下側シャフト9の回転速度V50が、大きくなるように決定されている。このような空調装置1によれば、上側エアミックスドア6が上側第2位置またはその近傍から上側第1位置に向けて移動し、また、下側エアミックスドア8が下側第2位置またはその近傍から下側第1位置に向けて移動する際の、下側エアミックスドア8の移動速度に対する上側エアミックスドア6の移動速度を、小さくすることができる。バイレベルモードでは、乗員の足温頭寒を実現するため、ベント吹出口を通じて乗員の上半身に比較的低温の空気を当て、フット吹出口を通じて乗員の足元に比較的高温の空気を当てることが求められる。ベント吹出口からの空気の温度を比較的低くするため、上側エアミックスドア6は比較的上側第2位置の近傍に位置付ける必要がある。ここで、上側第2位置の近傍での上側エアミックスドア6の移動速度が下側第2位置の近傍での下側エアミックスドア8の移動速度よりも小さければ、駆動機構10により上側エアミックスドア6の上側第2位置から上側第1位置への移動が開始されて上側迂回路3aの開口面積がある程度小さくされても、上側迂回路3aの開口面積を下側迂回路3bの開口面積よりも大きく維持することができる。これにより、バイレベルモードでの運転の際、上側迂回路3aを通じてベント吹出口に流入する空気のうち加熱用熱交換器5を迂回した空気の量を、下側迂回路3bを通じてフット吹出口に流入する空気のうち加熱用熱交換器5を迂回した空気の量よりも大きくすることができる。この結果、乗員の足温頭寒を実現することができる。 



In the first embodiment described above, the reference circle diameters R21 and R22 of the plurality of drive pinion parts 21 and 22 are engaged with the reference circle diameters R31 and R32 of the plurality of upper driven pinion parts 31 and 32 and the rack 40. The reference circle diameter R32 of the drive pinion 20 (rack drive pinion portion 23) and the reference circle diameter R50 of the lower driven pinion 50 meshing with the rack 40 are such that the upper air mix door 6 is the upper first from the upper second position. The lower air mix door 8 moves from the lower second position to the lower first position with respect to the rotational speed V31 of the upper shaft 7 when the movement to the position is started. The rotational speed V50 is determined so as to increase. According to such an air conditioner 1, the upper air mix door 6 moves from the upper second position or its vicinity to the upper first position, and the lower air mix door 8 moves to the lower second position or its position. The moving speed of the upper air mix door 6 relative to the moving speed of the lower air mix door 8 when moving from the vicinity toward the lower first position can be reduced. In bi-level mode, it is necessary to apply relatively cool air to the upper body of the occupant through the vent outlet and to apply relatively hot air to the occupant's feet through the foot outlet in order to realize the occupant's warmth. It is done. In order to make the temperature of the air from the vent outlet relatively low, the upper air mix door 6 needs to be positioned relatively near the upper second position. Here, if the moving speed of the upper air mix door 6 near the upper second position is lower than the moving speed of the lower air mix door 8 near the lower second position, the upper air mix is driven by the drive mechanism 10. Even if the movement of the door 6 from the second upper position to the first upper position is started and the opening area of the upper detour 3a is reduced to some extent, the opening area of the upper detour 3a is made larger than the opening area of the lower detour 3b. Can also be kept large. Thus, during operation in the bi-level mode, the amount of air that bypasses the heating heat exchanger 5 out of the air flowing into the vent outlet through the upper bypass 3a is transferred to the foot outlet through the lower bypass 3b. It can be made larger than the amount of air that bypasses the heat exchanger 5 for heating out of the inflowing air. As a result, occupant's foot warming can be realized.



<変形例1>



 次に、図11乃至図15を参照して、上述の一実施の形態における空調装置1の変形例1について説明する。図11は、変形例1による駆動機構を模式的に示す側面図である。また、図12は、図11に示す駆動機構の駆動ピニオンとラックの上側部分を拡大して示す側面図である。また、図13は、図11に示す駆動機構のIIIa-IIIb-IIIc線に沿った断面を模式的に示す図であり、図14は、図11に示す駆動機構のIV-IV線に沿った断面を模式的に示す図である。また、図15は、図11に示す駆動機構における、駆動ピニオンの回転位相の変化による下側従動ピニオンの回転速度の変化を説明するための側面図である。図15において、太い実線および太い破線で示された部分が、ラックまたはピニオンの歯が設けられている部分である。 



<Modification 1>



Next, with reference to FIG. 11 thru | or FIG. 15, the modification 1 of the air conditioner 1 in one above-mentioned embodiment is demonstrated. FIG. 11 is a side view schematically showing a drive mechanism according to the first modification. FIG. 12 is an enlarged side view showing the drive pinion of the drive mechanism shown in FIG. 11 and the upper portion of the rack. 13 is a diagram schematically showing a cross section taken along line IIIa-IIIb-IIIc of the drive mechanism shown in FIG. 11, and FIG. 14 is taken along line IV-IV of the drive mechanism shown in FIG. It is a figure which shows a cross section typically. FIG. 15 is a side view for explaining the change in the rotational speed of the lower driven pinion due to the change in the rotational phase of the drive pinion in the drive mechanism shown in FIG. In FIG. 15, a portion indicated by a thick solid line and a thick broken line is a portion where rack or pinion teeth are provided.



 図11乃至図15に示す変形例1では、図1乃至図10Eに示す駆動機構と比較して、駆動ピニオンが互いに基準円直径の異なる複数のラック用駆動ピニオン部を有し、ラックの上側部分が複数のラック用駆動ピニオン部に対応する複数の上側ラック部を有している点で異なっている。他の構成は、図1乃至図10Eに示す空調装置1と略同一である。図11乃至図15に示す変形例1において、図1乃至図10Eに示す一実施の形態と同一の部分には同一符号を付して詳細な説明は省略する。 



In the first modification shown in FIGS. 11 to 15, the drive pinion has a plurality of rack drive pinion portions having different reference circular diameters compared to the drive mechanism shown in FIGS. 1 to 10E, and the upper portion of the rack. Is different in that it has a plurality of upper rack portions corresponding to a plurality of rack drive pinion portions. Other configurations are substantially the same as those of the air conditioner 1 shown in FIGS. 1 to 10E. In the first modification shown in FIGS. 11 to 15, the same parts as those in the embodiment shown in FIGS. 1 to 10E are denoted by the same reference numerals, and detailed description thereof is omitted.



 図11乃至図14に示す駆動機構10aにおいて、駆動ピニオン20aは、第1ラック用駆動ピニオン部21aと第2ラック用駆動ピニオン部22aを有している。また、ラック40aは、その上側部分に、第1ラック用駆動ピニオン部21aおよび第2ラック用駆動ピニオン部22aに対応して設けられた第1上側ラック部41aおよび第2上側ラック部42aを有している。ラック用駆動ピニオン部21a,22aは、駆動ピニオン20aの回転位相の全範囲のうち、互いに異なる位相範囲において、対応する上側ラック部41a,42aと噛合する。図11乃至図14から理解されるように、上側従動ピニオン30aと噛合する第1駆動ピニオン部21aおよび第2駆動ピニオン部22aが、それぞれ、第1ラック用駆動ピニオン部および第2ラック用駆動ピニオン部として機能する。 



In the drive mechanism 10a shown in FIGS. 11 to 14, the drive pinion 20a includes a first rack drive pinion portion 21a and a second rack drive pinion portion 22a. The rack 40a has a first upper rack portion 41a and a second upper rack portion 42a provided corresponding to the first rack drive pinion portion 21a and the second rack drive pinion portion 22a in the upper portion thereof. is doing. The rack drive pinion portions 21a and 22a mesh with the corresponding upper rack portions 41a and 42a in different phase ranges of the entire rotational phase range of the drive pinion 20a. As can be understood from FIGS. 11 to 14, the first drive pinion portion 21a and the second drive pinion portion 22a meshing with the upper driven pinion 30a are respectively connected to the first rack drive pinion portion and the second rack drive pinion. It functions as a part.



 なお、図11乃至図14に示す例において、第1駆動ピニオン部21aおよび第2駆動ピニオン部22aは、それぞれ、第1駆動ピニオン部21および第2駆動ピニオン部22と同様に構成されている。また、上側従動ピニオン30aは、上側従動ピニオン30と同様に構成されており、第1上側従動ピニオン部30および第2上側従動ピニオン部30とそれぞれ同様に構成された、第1上側従動ピニオン部30aおよび第2上側従動ピニオン部30aを有している。 



In the example shown in FIGS. 11 to 14, the first drive pinion unit 21a and the second drive pinion unit 22a are configured in the same manner as the first drive pinion unit 21 and the second drive pinion unit 22, respectively. The upper driven pinion 30a is configured in the same manner as the upper driven pinion 30 and is configured in the same manner as the first upper driven pinion unit 30 and the second upper driven pinion unit 30, respectively. And a second upper driven pinion portion 30a.



 図示の例では、図15に示すように、駆動ピニオン20aの回転位相の全範囲である0°~200°のうち、0°~60°の範囲では、第1ラック用駆動ピニオン部21aと第1上側ラック部41aとが噛合し、60°~200°の範囲では、第2ラック用駆動ピニオン部22aと第2上側ラック部42aとが噛合する。したがって、駆動ピニオン20aが回転位相0°~60°の範囲で回転する間のラック40aの移動速度V41aは、駆動ピニオン20aが回転位相60°~200°の範囲で回転する間のラック40aの移動速度V42aよりも小さい。この結果、駆動ピニオン20aが回転位相0°~60°の範囲で回転する際の下側従動ピニオン50の回転速度V51は、駆動ピニオン20aが回転位相60°~200°の範囲で回転する際の下側従動ピニオン50の回転速度V52よりも小さい。したがって、駆動ピニオン20aが回転位相0°~60°の範囲で回転する際の下側エアミックスドア8の移動速度は、駆動ピニオン20aが回転位相60°~200°の範囲で回転する際の下側エアミックスドア8の移動速度よりも小さい。 



In the illustrated example, as shown in FIG. 15, the first rack drive pinion unit 21a and the first rack drive pinion portion 21a are connected to the first rack drive pinion portion 21a and the first rack drive pinion portion 21a. The first upper rack portion 41a meshes, and in the range of 60 ° to 200 °, the second rack drive pinion portion 22a meshes with the second upper rack portion 42a. Accordingly, the movement speed V41a of the rack 40a while the drive pinion 20a rotates in the rotation phase range of 0 ° to 60 ° is the movement speed V41a of the rack 40a while the drive pinion 20a rotates in the rotation phase range of 60 ° to 200 °. It is smaller than the speed V42a. As a result, the rotational speed V51 of the lower driven pinion 50 when the drive pinion 20a rotates in the rotational phase range of 0 ° to 60 ° is the rotational speed V51 when the drive pinion 20a rotates in the rotational phase range of 60 ° to 200 °. The rotational speed V52 of the lower driven pinion 50 is smaller. Therefore, the moving speed of the lower air mix door 8 when the drive pinion 20a rotates in the rotation phase range of 0 ° to 60 ° is lower than that when the drive pinion 20a rotates in the rotation phase range of 60 ° to 200 °. It is smaller than the moving speed of the side air mix door 8.



 このような空調装置1においては、駆動ピニオン20aの回転位相により、下側エアミックスドア8の移動速度を変化させることができる。したがって、上側エアミックスドア6および下側エアミックスドア8による上側迂回路3aおよび下側迂回路3bの開口面積の大小関係を、駆動ピニオン20aの回転位相に伴って、より多様に変化させることができる。この結果、上側迂回路3aおよび下側迂回路3bの開口面積を、空調装置1の運転モードに応じて、より適切に調節することができる。 



In such an air conditioner 1, the moving speed of the lower air mix door 8 can be changed by the rotational phase of the drive pinion 20a. Therefore, the size relationship of the opening areas of the upper detour 3a and the lower detour 3b by the upper air mix door 6 and the lower air mix door 8 can be changed in various ways according to the rotational phase of the drive pinion 20a. it can. As a result, the opening areas of the upper detour 3a and the lower detour 3b can be adjusted more appropriately according to the operation mode of the air conditioner 1.



<変形例2>



 次に、図16乃至図20を参照して、上述の一実施の形態における空調装置1の変形例2について説明する。図16は、変形例2による駆動機構を模式的に示す側面図である。また、図17は、図16に示す駆動機構の下側従動ピニオンおよびラックの下側部分を拡大して示す側面図である。図18は、図16に示す駆動機構のVa-Vb-Vc線に沿った断面を模式的に示す図であり、図19は、図16に示す駆動機構のVI-VI線に沿った断面を模式的に示す図である。図20は、図16に示す駆動機構における、下側従動ピニオンの回転位相による下側従動ピニオンの回転速度の変化を説明するための側面図である。図20において、太い実線または太い破線で示された部分が、ラックまたはピニオンの歯が設けられている部分である。 



<Modification 2>



Next, with reference to FIG. 16 thru | or FIG. 20, the modification 2 of the air conditioner 1 in one above-mentioned embodiment is demonstrated. FIG. 16 is a side view schematically showing a drive mechanism according to the second modification. FIG. 17 is an enlarged side view of the lower driven pinion and the lower portion of the rack shown in FIG. 18 is a diagram schematically showing a cross section taken along line Va-Vb-Vc of the drive mechanism shown in FIG. 16, and FIG. 19 is a cross section taken along line VI-VI of the drive mechanism shown in FIG. It is a figure shown typically. FIG. 20 is a side view for explaining the change in the rotational speed of the lower driven pinion due to the rotational phase of the lower driven pinion in the drive mechanism shown in FIG. In FIG. 20, a portion indicated by a thick solid line or a thick broken line is a portion where rack or pinion teeth are provided.



 図16乃至図20に示す変形例2では、図1乃至図10Eに示す駆動機構と比較して、下側従動ピニオンが互いに基準円直径の異なる複数の下側従動ピニオン部を有し、ラックの下側部分が複数の下側従動ピニオン部に対応する複数の下側ラック部を有している点で異なっている。他の構成は、図1乃至図10Eに示す空調装置1と略同一である。図16乃至図20に示す変形例2において、図1乃至図10Eに示す一実施の形態と同一の部分には同一符号を付して詳細な説明は省略する。 



In Modification 2 shown in FIGS. 16 to 20, the lower driven pinion has a plurality of lower driven pinion portions having different reference circular diameters compared to the drive mechanism shown in FIGS. The difference is that the lower portion has a plurality of lower rack portions corresponding to the plurality of lower driven pinion portions. Other configurations are substantially the same as those of the air conditioner 1 shown in FIGS. 1 to 10E. In the second modification shown in FIG. 16 to FIG. 20, the same parts as those in the embodiment shown in FIG. 1 to FIG.



 図16乃至図20に示す駆動機構10bにおいて、下側従動ピニオン50bは、第1下側従動ピニオン部51bと第2下側従動ピニオン部52bを有している。また、ラック40bは、その下側部分に、第1下側従動ピニオン部51bおよび第2下側従動ピニオン部52bに対応して設けられた第1下側ラック部41bおよび第2下側ラック部42bを有している。下側従動ピニオン部51b,52bは、下側従動ピニオン50bの回転位相の全範囲(下側エアミックスドア8を下側第1位置から下側第2位置までスライドさせる際に下側従動ピニオン50bが回転する回転位相の範囲)のうち、互いに異なる位相範囲において、対応する下側ラック部41b,42bと噛合する。 



In the drive mechanism 10b shown in FIGS. 16 to 20, the lower driven pinion 50b has a first lower driven pinion portion 51b and a second lower driven pinion portion 52b. The rack 40b has a first lower rack portion 41b and a second lower rack portion provided at the lower portion thereof corresponding to the first lower driven pinion portion 51b and the second lower driven pinion portion 52b. 42b. The lower driven pinion portions 51b and 52b are arranged in the entire rotational phase range of the lower driven pinion 50b (when the lower air mix door 8 is slid from the lower first position to the lower second position, the lower driven pinion 50b Meshing with the corresponding lower rack portions 41b and 42b in different phase ranges.



 なお、図16乃至図20に示す例において、第1下側従動ピニオン部51bの基準円直径R51bは、第2下側従動ピニオン部52bの基準円直径R52bよりも大きい。また、駆動ピニオン20bは、駆動ピニオン20と同様に構成されており、第1駆動ピニオン部21、第2駆動ピニオン部22およびラック用駆動ピニオン部23とそれぞれ同様に構成された、第1駆動ピニオン部21b、第2駆動ピニオン部22bおよびラック用駆動ピニオン部23bを有している。また、上側従動ピニオン30bは、上側従動ピニオン30と同様に構成されており、第1上側従動ピニオン部30および第2上側従動ピニオン部30とそれぞれ同様に構成された、第1上側従動ピニオン部30bおよび第2上側従動ピニオン部30bを有している。





In the examples shown in FIGS. 16 to 20, the reference circle diameter R51b of the first lower driven pinion portion 51b is larger than the reference circle diameter R52b of the second lower driven pinion portion 52b. The drive pinion 20b is configured similarly to the drive pinion 20, and is configured in the same manner as the first drive pinion unit 21, the second drive pinion unit 22, and the rack drive pinion unit 23, respectively. Part 21b, second drive pinion part 22b and rack drive pinion part 23b. The upper driven pinion 30b is configured in the same manner as the upper driven pinion 30, and the first upper driven pinion 30b is configured in the same manner as the first upper driven pinion 30 and the second upper driven pinion 30, respectively. And a second upper driven pinion portion 30b.





 図示の例では、駆動ピニオン20bの回転位相の全範囲は0°~200°であり、下側従動ピニオン50bの回転位相の全範囲が0°~250°であるとする。図20に示すように、ラック40bの上側部分は、駆動ピニオン20bの回転位相の全範囲においてラック用駆動ピニオン部23bと噛合する。このためラック40bは、一定の移動速度V40で移動する。一方、下側従動ピニオン50bは、下側従動ピニオン50bの回転位相が0°~90°の範囲では、比較的大きい基準円直径R51bの第1下側従動ピニオン部51bとそれに対応する第1下側ラック部41bとが噛合し、90°~250°の範囲では、比較的小さい基準円直径R52bの第2下側従動ピニオン部52bとそれに対応する第2下側ラック部42bとが噛合する。したがって、下側従動ピニオン50bの回転位相が0°~90°の範囲での下側従動ピニオン50bの回転速度V51bは、下側従動ピニオン50bの回転位相が90°~250°の範囲での下側従動ピニオン50bの回転速度V52bよりも小さい。 



In the illustrated example, it is assumed that the entire rotation phase range of the drive pinion 20b is 0 ° to 200 °, and the entire rotation phase range of the lower driven pinion 50b is 0 ° to 250 °. As shown in FIG. 20, the upper portion of the rack 40b meshes with the rack drive pinion portion 23b in the entire rotational phase range of the drive pinion 20b. For this reason, the rack 40b moves at a constant moving speed V40. On the other hand, when the rotational phase of the lower driven pinion 50b is in the range of 0 ° to 90 °, the lower driven pinion 50b has a first lower driven pinion portion 51b having a relatively large reference circle diameter R51b and the corresponding first lower driven pinion portion 51b. The side rack portion 41b meshes, and in the range of 90 ° to 250 °, the second lower driven pinion portion 52b having a relatively small reference circle diameter R52b and the corresponding second lower rack portion 42b mesh with each other. Accordingly, the rotational speed V51b of the lower driven pinion 50b when the rotational phase of the lower driven pinion 50b is in the range of 0 ° to 90 ° is lower than the rotational phase of the lower driven pinion 50b within the range of 90 ° to 250 °. The rotational speed V52b of the side driven pinion 50b is smaller.



 このような空調装置1においては、駆動ピニオン20bの回転位相により、下側エアミックスドア8の移動速度を変化させることができる。したがって、上側エアミックスドア6および下側エアミックスドア8による上側迂回路3aおよび下側迂回路3bの開口面積の大小関係を、駆動ピニオン20bの回転位相に伴って、より多様に変化させることができる。この結果、上側迂回路3aおよび下側迂回路3bの開口面積を、空調装置1の運転モードに応じて、より適切に調節することができる。 



In such an air conditioner 1, the moving speed of the lower air mix door 8 can be changed by the rotational phase of the drive pinion 20b. Therefore, the size relationship of the opening areas of the upper detour 3a and the lower detour 3b by the upper air mix door 6 and the lower air mix door 8 can be changed in various ways according to the rotational phase of the drive pinion 20b. it can. As a result, the opening areas of the upper detour 3a and the lower detour 3b can be adjusted more appropriately according to the operation mode of the air conditioner 1.



<変形例3>



 次に、図21乃至図23を参照して、上述の一実施の形態における空調装置1の変形例3について説明する。図21は、変形例3による駆動機構を模式的に示す側面図である。また、図22は、図21に示す駆動機構のVII-VII線の沿った断面を模式的に示す図であり、図23は、図21に示す駆動機構のVIIIa-VIIIb-VIIIc線に沿った断面を模式的に示す図である。 



<Modification 3>



Next, with reference to FIG. 21 thru | or FIG. 23, the modification 3 of the air conditioner 1 in one above-mentioned embodiment is demonstrated. FIG. 21 is a side view schematically showing a drive mechanism according to the third modification. 22 is a diagram schematically showing a cross section taken along line VII-VII of the drive mechanism shown in FIG. 21, and FIG. 23 is taken along line VIIIa-VIIIb-VIIIc of the drive mechanism shown in FIG. It is a figure which shows a cross section typically.



 図21乃至図23に示す変形例3では、図1乃至図10Eに示す駆動機構と比較して、駆動ピニオンと下側従動ピニオンが噛合し、上側従動ピニオンがラックと噛合している点で異なっている。より詳細には、変形例3では、駆動ピニオンが互いに基準円直径の異なる複数の駆動ピニオン部を有し、下側従動ピニオンが、複数の駆動ピニオン部に対応して設けられた互いに基準円直径の異なる複数の下側従動ピニオン部を有し、複数の駆動ピニオン部が、駆動ピニオンの回転位相の全範囲のうち、互いに異なる位相範囲において、対応する下側従動ピニオン部と噛合する。他の構成は、図1乃至図10Eに示す空調装置1と略同一である。図21乃至図23に示す変形例3において、図1乃至図10Eに示す一実施の形態と同一の部分には同一符号を付して詳細な説明は省略する。 



21 to FIG. 23 differs from the drive mechanism shown in FIGS. 1 to 10E in that the drive pinion and the lower driven pinion mesh with each other and the upper driven pinion meshes with the rack. ing. More specifically, in Modification 3, the drive pinion has a plurality of drive pinion portions having different reference circle diameters, and the lower driven pinion is provided with a reference circle diameter provided corresponding to the plurality of drive pinion portions. The plurality of lower driven pinion parts are different from each other, and the plurality of driving pinion parts mesh with the corresponding lower driven pinion parts in different phase ranges of the entire rotational phase range of the driving pinion. Other configurations are substantially the same as those of the air conditioner 1 shown in FIGS. 1 to 10E. In Modification 3 shown in FIGS. 21 to 23, the same parts as those in the embodiment shown in FIGS. 1 to 10E are denoted by the same reference numerals, and detailed description thereof is omitted.



 なお、図21乃至図23に示す変形例3においても、バイレベルモードにおいて乗員の足温頭寒を実現することができるよう、上側エアミックスドア6が上側第2位置から上側第1位置への移動を開始した際の上側シャフト7の回転速度よりも、下側エアミックスドア8が下側第2位置から下側第1位置への移動を開始した際の前記下側シャフト9の回転速度が大きくなるように、構成されている。また、デフフットモードにおいて、フロントガラスの曇り等を防止することができるよう、上側エアミックスドア8が上側第1位置から上側第2位置への移動を開始した際の上側シャフト7の回転速度よりも、下側エアミックスドア8が下側第1位置から下側第2位置への移動を開始した際の下側シャフト9の回転速度が大きくなるように、構成されている。 



In the third modification shown in FIGS. 21 to 23, the upper air mix door 6 is moved from the upper second position to the upper first position so that the occupant's foot warming can be realized in the bi-level mode. The rotational speed of the lower shaft 9 when the lower air mix door 8 starts moving from the lower second position to the lower first position is higher than the rotational speed of the upper shaft 7 when the movement starts. It is configured to be large. Further, in the differential foot mode, the rotational speed of the upper shaft 7 when the upper air mix door 8 starts to move from the upper first position to the upper second position so as to prevent the windshield from being fogged can be prevented. Also, the lower air mix door 8 is configured to increase the rotational speed of the lower shaft 9 when the lower air mix door 8 starts moving from the lower first position to the lower second position.



 具体的には、駆動ピニオン20cは、下側従動ピニオン50cの近傍に設けられている。そして、下側従動ピニオン50cは、駆動ピニオン20cと噛合してアクチュエータ11の回転駆動力を下側シャフト9に伝達する。また、ラック40cは、その下側部分において駆動ピニオン20cと噛合して、アクチュエータ11の回転駆動力により直線運動をする。また、上側従動ピニオン30cは、ラック40cの上側部分と噛合してアクチュエータ11の回転駆動力を上側シャフト7に伝達する。 



Specifically, the drive pinion 20c is provided in the vicinity of the lower driven pinion 50c. The lower driven pinion 50 c meshes with the drive pinion 20 c and transmits the rotational driving force of the actuator 11 to the lower shaft 9. Further, the rack 40c meshes with the drive pinion 20c at the lower portion thereof, and linearly moves by the rotational driving force of the actuator 11. The upper driven pinion 30 c meshes with the upper portion of the rack 40 c and transmits the rotational driving force of the actuator 11 to the upper shaft 7.



 なお、図21乃至図23に示す例において、駆動ピニオン20cは、駆動ピニオン20と同様に構成されており、第1駆動ピニオン部21、第2駆動ピニオン部22およびラック用駆動ピニオン部23とそれぞれ同様に構成された、第1駆動ピニオン部21c、第2駆動ピニオン部22cおよびラック用駆動ピニオン部23cを有している。また、ラック40cは、ラック40と同様に構成されている。 



In the example shown in FIGS. 21 to 23, the drive pinion 20c is configured in the same manner as the drive pinion 20, and the first drive pinion unit 21, the second drive pinion unit 22, and the rack drive pinion unit 23, respectively. It has the 1st drive pinion part 21c, the 2nd drive pinion part 22c, and the drive pinion part 23c for racks comprised similarly. The rack 40 c is configured in the same manner as the rack 40.



 図21から理解されるように、ラック40cは、駆動ピニオン20cの回転軸線Axと上側従動ピニオン30cの回転軸線Bxとを含む仮想面S2の一側から、駆動ピニオン20cおよび上側従動ピニオン30cに噛合している。したがって、上側従動ピニオン30cは、駆動ピニオン20cの回転方向と同じ方向に回転する。一方、下側従動ピニオン50cは、駆動ピニオン20cと噛合して、駆動ピニオン20cの回転方向と逆方向に回転する。この結果、上側従動ピニオン30cと下側従動ピニオン50cとは、逆方向に回転する。これにより、上側シャフト7と下側シャフト9とが逆方向に回転し、上側エアミックスドア6と下側エアミックスドア8とは、上下方向において逆方向にスライドする。また、ラック40cが駆動ピニオン20cの回転軸線Axと上側従動ピニオン30cの回転軸線Bxとを含む仮想面S2の一側から、駆動ピニオン20cおよび上側従動ピニオン30cに噛合していることにより、ラック40cに一方向に向かう力(すなわちラック40cから仮想面S2に向かう付勢力)を加えるだけで、ラック40cと駆動ピニオン20cおよび上側従動ピニオン30cとの適切な噛み合いを維持することができる。このため、例えば上述のような付勢用リブ2nおよび付勢用アーム40nを用いた簡単な構成により、ラック40cとピニオン20c,30cとの適切な噛み合いを維持することができる。 



As understood from FIG. 21, the rack 40c meshes with the drive pinion 20c and the upper driven pinion 30c from one side of the virtual plane S2 including the rotation axis Ax of the drive pinion 20c and the rotation axis Bx of the upper driven pinion 30c. is doing. Accordingly, the upper driven pinion 30c rotates in the same direction as the rotation direction of the drive pinion 20c. On the other hand, the lower driven pinion 50c meshes with the drive pinion 20c and rotates in the direction opposite to the rotation direction of the drive pinion 20c. As a result, the upper driven pinion 30c and the lower driven pinion 50c rotate in opposite directions. As a result, the upper shaft 7 and the lower shaft 9 rotate in the opposite directions, and the upper air mix door 6 and the lower air mix door 8 slide in the opposite directions in the vertical direction. Further, the rack 40c is engaged with the drive pinion 20c and the upper driven pinion 30c from one side of the virtual plane S2 including the rotation axis Ax of the drive pinion 20c and the rotation axis Bx of the upper driven pinion 30c. The appropriate engagement between the rack 40c, the drive pinion 20c, and the upper driven pinion 30c can be maintained by simply applying a force in one direction (ie, an urging force from the rack 40c toward the virtual surface S2). For this reason, for example, an appropriate meshing between the rack 40c and the pinions 20c and 30c can be maintained by a simple configuration using the biasing rib 2n and the biasing arm 40n as described above.



 図示の例では、駆動ピニオン20cは、第1駆動ピニオン部21cと第2駆動ピニオン部22cを有している。また、下側従動ピニオン50cは、第1駆動ピニオン部21cおよび第2駆動ピニオン部22cに対応して設けられた第1下側従動ピニオン部51cおよび第2下側従動ピニオン部52cを有している。第1駆動ピニオン部21cの基準円直径R21は、第2駆動ピニオン部22cの基準円直径R22よりも小さい。これに対応して、第1下側従動ピニオン部51cの基準円直径は、第2下側従動ピニオン部52cの基準円直径よりも大きい。そして、駆動ピニオン20cの回転位相の全範囲のうち、例えば、0°~60°の範囲では、比較的基準円直径の大きい第2駆動ピニオン部22cと比較的基準円直径の小さい第2下側従動ピニオン部52cとが噛合し、60°~80°の範囲では、比較的基準円直径の小さい第1駆動ピニオン部21cと比較的基準円直径の小さい第1下側従動ピニオン部51cとが噛合し、80°~200°の範囲では、比較的基準円直径の大きい第2駆動ピニオン部22cと比較的基準円直径の小さい第2下側従動ピニオン部52cとが噛合する。このため、下側従動ピニオン50cの回転速度は、駆動ピニオン20cの回転位相の全範囲のうち、0°~60°の範囲では比較的速くなり、60°~80°の範囲では比較的遅くなり、80°~200°の範囲では比較的速くなる。 



In the illustrated example, the drive pinion 20c includes a first drive pinion part 21c and a second drive pinion part 22c. The lower driven pinion 50c includes a first lower driven pinion portion 51c and a second lower driven pinion portion 52c provided corresponding to the first drive pinion portion 21c and the second drive pinion portion 22c. Yes. The reference circle diameter R21 of the first drive pinion portion 21c is smaller than the reference circle diameter R22 of the second drive pinion portion 22c. Correspondingly, the reference circle diameter of the first lower driven pinion portion 51c is larger than the reference circle diameter of the second lower driven pinion portion 52c. Of the entire range of rotational phases of the drive pinion 20c, for example, in the range of 0 ° to 60 °, the second drive pinion portion 22c having a relatively large reference circle diameter and the second lower side having a relatively small reference circle diameter. The driven pinion portion 52c meshes with the first drive pinion portion 21c having a relatively small reference circle diameter and the first lower driven pinion portion 51c with a relatively small reference circle diameter in the range of 60 ° to 80 °. In the range of 80 ° to 200 °, the second drive pinion portion 22c having a relatively large reference circle diameter meshes with the second lower driven pinion portion 52c having a relatively small reference circle diameter. For this reason, the rotational speed of the lower driven pinion 50c is relatively fast in the range of 0 ° to 60 ° and relatively slow in the range of 60 ° to 80 ° of the entire rotational phase range of the drive pinion 20c. In the range of 80 ° to 200 °, it becomes relatively fast.



 一方、ラック40cは、駆動ピニオン20cの回転位相の全範囲において、駆動ピニオン20cのラック用駆動ピニオン部23cと噛合する。このため、ラック40cは、駆動ピニオン20cの回転位相の全範囲において、一定の速度で上下方向に移動する。また、ラック40cと噛合する上側従動ピニオン30cは、単一の歯車で構成されている。上側従動ピニオン30cは、その回転位相の全範囲(上側エアミックスドア6を上側第1位置から上側第2位置までスライドさせる際に上側従動ピニオン30cが回転する回転位相の範囲)において、ラック40cと噛合する。したがって、上側従動ピニオン30cの回転速度は、その回転位相の全範囲において(したがって駆動ピニオン20cの回転位相の全範囲において)、一定である。 



On the other hand, the rack 40c meshes with the rack drive pinion portion 23c of the drive pinion 20c in the entire rotational phase range of the drive pinion 20c. For this reason, the rack 40c moves in the vertical direction at a constant speed in the entire rotational phase range of the drive pinion 20c. Further, the upper driven pinion 30c that meshes with the rack 40c is constituted by a single gear. The upper driven pinion 30c has the same rotational phase as that of the rack 40c in the entire rotational phase range (the rotational phase range in which the upper driven pinion 30c rotates when the upper air mix door 6 is slid from the upper first position to the upper second position). Mesh. Accordingly, the rotational speed of the upper driven pinion 30c is constant over the entire range of the rotational phase (and thus over the entire range of the rotational phase of the drive pinion 20c).



 なお、複数の駆動ピニオン部21c,22cの基準円直径R21,R22、複数の下側従動ピニオン部51c,52cの基準円直径、ラック40cと噛合するラック用駆動ピニオン部23cの基準円直径R23、および、ラック40cと噛合する上側従動ピニオン30cの基準円直径は、上側エアミックスドア6が上側第2位置から上側第1位置への移動を開始した際の上側シャフト7の回転速度よりも、下側エアミックスドア8が下側第2位置から下側第1位置への移動を開始した際の前記下側シャフト9の回転速度が、大きくなるように決定されている。具体的には、駆動ピニオン20cの回転位相の全範囲のうち80°~200°の範囲における下側従動ピニオン50cの回転速度が、上側従動ピニオン30cの回転速度よりも速くなるように決定されている。 



Reference circle diameters R21, R22 of the plurality of drive pinion portions 21c, 22c, reference circle diameters of the plurality of lower driven pinion portions 51c, 52c, reference circle diameter R23 of the rack drive pinion portion 23c meshing with the rack 40c, The reference circular diameter of the upper driven pinion 30c that meshes with the rack 40c is lower than the rotational speed of the upper shaft 7 when the upper air mix door 6 starts to move from the upper second position to the upper first position. The rotational speed of the lower shaft 9 when the side air mix door 8 starts moving from the lower second position to the lower first position is determined so as to increase. Specifically, the rotational speed of the lower driven pinion 50c in the range of 80 ° to 200 ° in the entire rotational phase range of the drive pinion 20c is determined to be higher than the rotational speed of the upper driven pinion 30c. Yes.



 また、複数の駆動ピニオン部21c,22cの基準円直径R21,R22、複数の下側従動ピニオン部51c,52cの基準円直径、ラック40と噛合するラック用駆動ピニオン部23cの基準円直径R23、および、ラック40cと噛合する上側従動ピニオン30cの基準円直径は、上側エアミックスドア8が上側第1位置から上側第2位置への移動を開始した際の上側シャフト7の回転速度よりも、下側エアミックスドア8が下側第1位置から下側第2位置への移動を開始した際の下側シャフト9の回転速度が、大きくなるように決定されている。具体的には、駆動ピニオン20cの回転位相の全範囲のうち、0°~60°の範囲における下側従動ピニオン50cの回転速度が、上側従動ピニオン30cの回転速度よりも速くなるように決定されている。 



Further, reference circle diameters R21, R22 of the plurality of drive pinion portions 21c, 22c, reference circle diameters of the plurality of lower driven pinion portions 51c, 52c, reference circle diameter R23 of the rack drive pinion portion 23c meshing with the rack 40, The reference circular diameter of the upper driven pinion 30c that meshes with the rack 40c is lower than the rotational speed of the upper shaft 7 when the upper air mix door 8 starts moving from the upper first position to the upper second position. The rotational speed of the lower shaft 9 when the side air mix door 8 starts moving from the lower first position to the lower second position is determined so as to increase. Specifically, the rotational speed of the lower driven pinion 50c in the range of 0 ° to 60 ° of the entire rotational phase range of the drive pinion 20c is determined to be higher than the rotational speed of the upper driven pinion 30c. ing.



 このような空調装置1においても、1つの駆動機構10で駆動される上側エアミックスドア6および下側エアミックスドア8による上側迂回路3aおよび下側迂回路3bの開口面積の大小関係を、駆動ピニオン20cの回転位相に応じて変えることができる。 



Also in such an air conditioner 1, the magnitude relationship of the opening area of the upper side detour route 3a and the lower side detour route 3b by the upper air mix door 6 and the lower air mix door 8 driven by one drive mechanism 10 is driven. It can be changed according to the rotational phase of the pinion 20c.



 また、バイレベルモードでの運転の際、上側迂回路3aを通じてベント吹出口に流入する空気のうち加熱用熱交換器5を迂回した空気の量を、下側迂回路3bを通じてフット吹出口に流入する空気のうち加熱用熱交換器5を迂回した空気の量よりも大きくすることができる。この結果、乗員の足温頭寒を実現することができる。 



In addition, during operation in the bi-level mode, the amount of air that bypasses the heating heat exchanger 5 out of the air flowing into the vent outlet through the upper bypass 3a flows into the foot outlet through the lower bypass 3b. It can be made larger than the amount of air that bypasses the heat exchanger 5 for heating. As a result, occupant's foot warming can be realized.



 また、デフフットモードでの運転の際、上側迂回路3aの開口面積を下側迂回路3bの開口面積よりも小さくすることができ、フット吹出口から乗員の設定温度に応じた比較的温かい温度の調和空気を乗員の足元に向けて吹き出しつつ、デフロスト吹出口から吹き出される空気のうち上側迂回路3aを通じて加熱用熱交換器5を迂回した空気の量を小さく押さえることができる。この結果、フロントガラスの曇りなどを防止することができる。 



Further, when operating in the differential foot mode, the opening area of the upper detour 3a can be made smaller than the opening area of the lower detour 3b, and a relatively warm temperature corresponding to the set temperature of the occupant from the foot outlet While blowing out the conditioned air toward the feet of the occupant, the amount of air that bypasses the heating heat exchanger 5 through the upper detour 3a among the air blown out from the defrost outlet can be kept small. As a result, fogging of the windshield can be prevented.



 なお、図11に示す場合と同様に、駆動ピニオン20cは、互いに基準円直径の異なる複数のラック用駆動ピニオン部を有していてもよい。また、ラック40cは、複数のラック用駆動ピニオン部に対応して設けられた複数の下側ラック部を有していてもよい。そして、複数のラック用駆動ピニオン部は、駆動ピニオン20cの回転位相の全範囲のうち、互いに異なる位相範囲において、対応する下側ラック部と噛合するようになっていてもよい。この場合、図11に示す場合と同様に、駆動ピニオン20cの回転位相に応じてラック40cの移動速度を、したがって上側従動ピニオン30cの回転速度を、変更することができる。これにより、例えば、上側エアミックスドア6が上側第1位置から上側第2位置まで移動する間の上側シャフト7の最大回転速度よりも、上側エアミックスドア6が上側第1位置から上側第2位置への移動を開始した際の上側シャフト7の回転速度が小さくなるように、駆動機構10cを構成することができる。このことによっても、デフフットモードでの運転の際のフロントガラスの曇り等を防止することができる。 



Similarly to the case shown in FIG. 11, the drive pinion 20c may have a plurality of rack drive pinion portions having different reference circle diameters. The rack 40c may have a plurality of lower rack portions provided corresponding to the plurality of rack drive pinion portions. The plurality of rack drive pinion portions may mesh with the corresponding lower rack portions in different phase ranges of the entire rotation phase range of the drive pinion 20c. In this case, similarly to the case shown in FIG. 11, the moving speed of the rack 40c and thus the rotating speed of the upper driven pinion 30c can be changed according to the rotational phase of the drive pinion 20c. Thereby, for example, the upper air mix door 6 is moved from the upper first position to the upper second position than the maximum rotational speed of the upper shaft 7 while the upper air mix door 6 is moved from the upper first position to the upper second position. The drive mechanism 10c can be configured so that the rotational speed of the upper shaft 7 when starting to move to becomes smaller. This can also prevent fogging of the windshield during driving in the differential foot mode.



<変形例4>



 次に、図24乃至図26を参照して、上述の一実施の形態における空調装置1の変形例4について説明する。図24は、変形例4による駆動機構を模式的に示す側面図である。また、図25は、図24に示す駆動機構のIX-IX線の沿った断面を模式的に示す図であり、図26は、図24に示す駆動機構のXa-Xb-Xc線に沿った断面を模式的に示す図である。 



<Modification 4>



Next, with reference to FIG. 24 thru | or FIG. 26, the modification 4 of the air conditioning apparatus 1 in one above-mentioned embodiment is demonstrated. FIG. 24 is a side view schematically showing a drive mechanism according to the fourth modification. FIG. 25 is a diagram schematically showing a cross section along the line IX-IX of the drive mechanism shown in FIG. 24, and FIG. 26 is along the line Xa-Xb-Xc of the drive mechanism shown in FIG. It is a figure which shows a cross section typically.



 図24乃至図26に示す変形例4では、図21乃至図23に示す変形例3に示す空調装置と比較して、上側従動ピニオンが互いに基準円直径の異なる複数の駆動ピニオン部を有し、ラックが複数の上側従動ピニオン部に対応して設けられた複数の上側ラック部を有し、複数の上側従動ピニオン部が、上側従動ピニオンの回転位相の全範囲のうち、互いに異なる位相範囲において、対応する上側ラック部と噛合する点で異なっている。他の構成は、図21乃至図23に示す空調装置1と略同一である。図24乃至図26に示す変形例4において、図21乃至図23に示す変形例3と同一の部分には同一符号を付して詳細な説明は省略する。 



In Modification 4 shown in FIGS. 24 to 26, compared to the air conditioner shown in Modification 3 shown in FIGS. 21 to 23, the upper driven pinion has a plurality of drive pinion portions having different reference circular diameters, The rack has a plurality of upper rack portions provided corresponding to the plurality of upper driven pinion portions, and the plurality of upper driven pinion portions are in a different phase range from each other in the entire rotational phase range of the upper driven pinion. It differs in that it meshes with the corresponding upper rack part. Other configurations are substantially the same as those of the air conditioner 1 shown in FIGS. In the fourth modification shown in FIGS. 24 to 26, the same parts as those in the third modification shown in FIGS. 21 to 23 are denoted by the same reference numerals, and detailed description thereof is omitted.



 なお、図24乃至図26に示す駆動機構10dにおいても、デフフットモードでの運転の際にフロントガラスの曇り等を防止することができるよう、上側エアミックスドア6が上側第1位置から上側第2位置まで移動する間の上側シャフト7の最大回転速度よりも、上側エアミックスドア6が上側第1位置から上側第2位置への移動を開始した際の上側シャフト7の回転速度が、小さくなるように構成されている。 



In the drive mechanism 10d shown in FIGS. 24 to 26, the upper air mix door 6 is moved from the upper first position to the upper first position so that the windshield can be prevented from being fogged during operation in the differential foot mode. The rotational speed of the upper shaft 7 when the upper air mix door 6 starts moving from the upper first position to the upper second position is smaller than the maximum rotational speed of the upper shaft 7 while moving to the second position. It is configured as follows.



 具体的には、上側従動ピニオン30dは、第1上側従動ピニオン部31dと第2上側従動ピニオン部32dを有している。第1上側従動ピニオン部31dの基準円直径は、第2上側従動ピニオン部32dよりも大きい。また、ラック40dの上側部分には、第1上側従動ピニオン部31dおよび第2上側従動ピニオン部32dに対応して、第1上側ラック部41dおよび第2上側ラック部42dが設けられている。そして、例えば、上側従動ピニオン30dの回転位相の全範囲である0°~250°のうち、0°~160°では、比較的基準円直径の大きい第1上側従動ピニオン部31dとそれに対応する第1上側ラック部41dとが噛合し、160°~250°では、比較的基準円直径の小さい第2上側従動ピニオン部32dとそれに対応する第2上側ラック部42dとが噛合する。したがって、上側従動ピニオン30dの回転速度は、その回転位相の全範囲のうち、0°~160°では比較的遅く、160°~250°では比較的速い。 



Specifically, the upper driven pinion 30d has a first upper driven pinion portion 31d and a second upper driven pinion portion 32d. The reference circular diameter of the first upper driven pinion portion 31d is larger than that of the second upper driven pinion portion 32d. A first upper rack portion 41d and a second upper rack portion 42d are provided in the upper portion of the rack 40d corresponding to the first upper driven pinion portion 31d and the second upper driven pinion portion 32d. For example, out of 0 ° to 250 °, which is the entire range of the rotational phase of the upper driven pinion 30d, the first upper driven pinion portion 31d having a relatively large reference circle diameter and the first corresponding to the first upper driven pinion portion 31d have a relatively large reference circle diameter. The first upper rack portion 41d meshes, and at 160 ° to 250 °, the second upper driven pinion portion 32d having a relatively small reference circle diameter meshes with the corresponding second upper rack portion 42d. Accordingly, the rotational speed of the upper driven pinion 30d is relatively slow in the range of 0 ° to 160 ° and relatively fast in the range of 160 ° to 250 °, out of the entire range of the rotational phase.



 このような空調装置1においては、駆動ピニオン20cの回転位相により、上側エアミックスドア6の移動速度を変化させることができる。したがって、上側エアミックスドア6および下側エアミックスドア8による上側迂回路3aおよび下側迂回路3bの開口面積の大小関係を、駆動ピニオン20cの回転位相に伴って、より多様に変化させることができる。この結果、上側迂回路3aおよび下側迂回路3bの開口面積を、空調装置1の運転モードに応じて、より適切に調節することができる。 



In such an air conditioner 1, the moving speed of the upper air mix door 6 can be changed by the rotational phase of the drive pinion 20c. Therefore, the size relationship of the opening areas of the upper detour 3a and the lower detour 3b by the upper air mix door 6 and the lower air mix door 8 can be changed in various ways according to the rotational phase of the drive pinion 20c. it can. As a result, the opening areas of the upper detour 3a and the lower detour 3b can be adjusted more appropriately according to the operation mode of the air conditioner 1.



 とりわけ図示の例では、駆動ピニオン20cの回転位相に応じてラック40dと噛合する複数の上側従動ピニオン部31d,32dの基準円直径が、上側エアミックスドア6が上側第1位置から上側第2位置まで移動する間の上側シャフト7の最大回転速度よりも、上側エアミックスドア6が上側第1位置から上側第2位置への移動を開始した際の上側シャフト7の回転速度が小さくなるように決定されている。したがって、上側エアミックスドア6が上側第1位置またはその近傍にある際の上側エアミックスドア6の移動速度を、比較的小さくすることができる。これにより、デフフットモードでの運転の際に、上側迂回路3aの開口面積を小さく押さえることができる。この結果、フロントガラスの曇り等を防止することができる。 



In particular, in the illustrated example, the reference circular diameters of the plurality of upper driven pinion portions 31d and 32d that mesh with the rack 40d in accordance with the rotational phase of the drive pinion 20c are such that the upper air mix door 6 moves from the upper first position to the upper second position. Is determined so that the rotational speed of the upper shaft 7 when the upper air mix door 6 starts moving from the upper first position to the upper second position is smaller than the maximum rotational speed of the upper shaft 7 during the movement to Has been. Therefore, the moving speed of the upper air mix door 6 when the upper air mix door 6 is at or near the upper first position can be made relatively small. Thereby, the opening area of the upper detour 3a can be kept small during operation in the differential foot mode. As a result, fogging of the windshield can be prevented.



 なお、上側エアミックスドア6が上側第1位置から上側第2位置まで移動する間の上側シャフト7の最大回転速度よりも、上側エアミックスドア6が上側第1位置から上側第2位置への移動を開始した際の上側シャフト7の回転速度が、小さくなるように、複数の駆動ピニオン部21c,22cの基準円直径、ラック40dと噛合する駆動ピニオン20cの基準円直径、および、ラック40dと噛合する上側従動ピニオン30dの基準円直径を決定してもよい。



In addition, the upper air mix door 6 moves from the upper first position to the upper second position than the maximum rotational speed of the upper shaft 7 while the upper air mix door 6 moves from the upper first position to the upper second position. So that the rotational speed of the upper shaft 7 when starting is reduced, the reference circle diameters of the plurality of drive pinion portions 21c, 22c, the reference circle diameter of the drive pinion 20c meshing with the rack 40d, and meshing with the rack 40d The reference circle diameter of the upper driven pinion 30d to be determined may be determined.



 本発明に係る車両用空調装置は、工業的に製造することができ、また商取引の対象とすることができるから、経済的価値を有して産業上利用することができる。



Since the vehicle air conditioner according to the present invention can be manufactured industrially and can be used for commercial transactions, it can be used industrially with economic value.



 1 車両用空調装置



 2 空調ケース



 3 空気通路



 3a 上側迂回路



 3b 下側迂回路



 5 加熱用熱交換器



 6 上側エアミックスドア



 7 上側シャフト



 8 下側エアミックスドア



 9 下側シャフト



 10,10a,10b,10c 駆動機構



 11 アクチュエータ



 20,20a,20b、20c 駆動ピニオン



 21,21a,21b、21c 第1駆動ピニオン部



 22,22a,22b、22c 第2駆動ピニオン部



 30,30a、30b、30c,30d 上側従動ピニオン



 31,31a、31b、31d 第1上側従動ピニオン部



 32,32a、32b、32d 第2上側従動ピニオン部



 40,40a,40b,40d ラック



 41a、41d 第1上側ラック部



 42a、42d 第2上側ラック部



 41b 第1下側ラック部



 42b 第2下側ラック部



 50,50b,50c 下側従動ピニオン



 51,51b,51c 第1下側従動ピニオン部



 52,52b,52c 第2下側従動ピニオン部



 Ax 駆動ピニオンの回転軸線



 Bx 上側従動ピニオンの回転軸線



 Cx 下側従動ピニオンの回転軸線



 S1 仮想面



 S2 仮想面



1 Vehicle air conditioner



2 Air conditioning case



3 Air passage



3a Upper detour



3b Lower detour



5 Heat exchanger for heating



6 Upper air mix door



7 Upper shaft



8 Lower air mix door



9 Lower shaft



10, 10a, 10b, 10c Drive mechanism



11 Actuator



20, 20a, 20b, 20c Drive pinion



21, 21a, 21b, 21c First drive pinion section



22, 22a, 22b, 22c Second drive pinion section



30, 30a, 30b, 30c, 30d Upper driven pinion



31, 31a, 31b, 31d First upper driven pinion portion



32, 32a, 32b, 32d Second upper driven pinion part



40, 40a, 40b, 40d rack



41a, 41d First upper rack portion



42a, 42d 2nd upper side rack part



41b First lower rack portion



42b Second lower rack part



50, 50b, 50c Lower driven pinion



51, 51b, 51c 1st lower side driven pinion part



52, 52b, 52c Second lower driven pinion portion



Ax drive pinion axis of rotation



Bx Upper driven pinion axis of rotation



Cx Lower driven pinion axis of rotation



S1 Virtual plane



S2 Virtual plane

Claims (10)




  1.  車両用の空調装置(1)であって、



     空気が流れる空気通路(3)を形成する空調ケース(2)と、



     前記空気通路(3)内に配置された加熱用熱交換器(5)であって、当該加熱用熱交換器(5)の上側端縁の上側に上側迂回路(3a)を形成し、且つ、当該加熱用熱交換器(5)の下側端縁の下側に下側迂回路(3b)を形成するように配置された加熱用熱交換器(5)と、



     前記空気通路(3)内に配置され、前記加熱用熱交換器(5)に向かう空気と前記上側迂回路(3a)に向かう空気との比率を調整するスライド式の上側エアミックスドア(6)と、



     前記上側エアミックスドア(6)に連結されて、周方向の回転に伴って前記上側エアミックスドア(6)を、前記上側迂回路(3a)に向かう空気の比率を最小とする上側第1位置と、前記上側迂回路(3a)に向かう空気の比率を最大とする上側第2位置との間でスライドさせる上側シャフト(7)と、



     前記空気通路(3)内に配置され、前記加熱用熱交換器(5)に向かう空気と前記下側迂回路(3b)に向かう空気との比率を調整するスライド式の下側エアミックスドア(8)と、



     前記上側シャフト(7)と平行に配置された下側シャフト(9)であって、前記下側エアミックスドア(8)に連結されて、周方向の回転に伴って前記下側エアミックスドア(8)を、前記下側迂回路(3b)に向かう空気の比率を最小とする下側第1位置と、前記下側迂回路(3b)に向かう空気の比率を最大とする下側第2位置との間でスライドさせる下側シャフト(9)と、



     前記上側シャフト(7)および前記下側シャフト(9)を回転駆動する駆動機構(10a,10b)と、



    を備え、



     前記駆動機構(10a,10b)は、



     回転駆動力を発生するアクチュエータ(11)と、



     前記アクチュエータ(11)により回転駆動される駆動ピニオン(20,20a,20b)と、



     前記上側シャフト(7)に連結され、前記駆動ピニオン(20,20a,20b)と噛合して前記アクチュエータ(11)の回転駆動力を前記上側シャフト(7)に伝達する上側従動ピニオン(30,30a,30b)と、



     前記駆動ピニオン(20,20a,20b)と噛合し、前記アクチュエータ(11)の回転駆動力が伝達されて直線運動をするラック(40,40a,40b)と、



     前記下側シャフト(9)に連結され、前記ラック(40,40a,40b)と噛合して前記アクチュエータ(11)の回転駆動力を前記下側シャフト(9)に伝達する下側従動ピニオン(50,50b)と、



    を有し、



     前記駆動ピニオン(20,20a,20b)は、互いに基準円直径の異なる複数の駆動ピニオン部(21,22,21a,22a,21b,22b)を有し、



     前記上側従動ピニオン(30,30a,30b)は、前記複数の駆動ピニオン部(21,22,21a,22a,21b,22b)に対応して設けられた互いに基準円直径の異なる複数の上側従動ピニオン部(31,32,31a,32a,31b,32b)を有し、



     前記複数の駆動ピニオン部(21,22,21a,22a,21b,22b)は、前記駆動ピニオン(20,20a,20b)の回転位相の全範囲のうち、互いに異なる位相範囲において、対応する上側従動ピニオン部(31,32,31a,32a,31b,32b)と噛合する、空調装置(1)。



    An air conditioner (1) for a vehicle,



    An air conditioning case (2) forming an air passage (3) through which air flows;



    A heating heat exchanger (5) disposed in the air passage (3), wherein an upper detour (3a) is formed above the upper edge of the heating heat exchanger (5); and A heating heat exchanger (5) arranged to form a lower detour (3b) below the lower end edge of the heating heat exchanger (5);



    A slide type upper air mix door (6) which is arranged in the air passage (3) and adjusts the ratio of the air which goes to the heating heat exchanger (5) and the air which goes to the upper detour (3a). When,



    An upper first position that is connected to the upper air mix door (6) and minimizes the ratio of the air toward the upper detour (3a) in the upper air mix door (6) as it rotates in the circumferential direction. And an upper shaft (7) that is slid between the upper second position that maximizes the ratio of air toward the upper detour (3a),



    A sliding lower air mix door (adjusted in the air passage (3)) that adjusts the ratio of the air going to the heating heat exchanger (5) and the air going to the lower bypass (3b) 8) and



    A lower shaft (9) arranged in parallel with the upper shaft (7), connected to the lower air mix door (8), and with the rotation in the circumferential direction, the lower air mix door ( 8) a lower first position that minimizes the ratio of air toward the lower detour (3b), and a lower second position that maximizes the ratio of air toward the lower detour (3b). A lower shaft (9) that slides between



    Drive mechanisms (10a, 10b) for rotationally driving the upper shaft (7) and the lower shaft (9);



    With



    The drive mechanism (10a, 10b)



    An actuator (11) for generating a rotational driving force;



    A drive pinion (20, 20a, 20b) driven to rotate by the actuator (11);



    The upper driven pinion (30, 30a) is connected to the upper shaft (7) and meshes with the drive pinion (20, 20a, 20b) to transmit the rotational driving force of the actuator (11) to the upper shaft (7). 30b)



    Racks (40, 40a, 40b) that mesh with the drive pinions (20, 20a, 20b) and transmit a rotational driving force of the actuator (11) to move linearly;



    A lower driven pinion (50) connected to the lower shaft (9) and meshing with the rack (40, 40a, 40b) to transmit the rotational driving force of the actuator (11) to the lower shaft (9). , 50b),



    Have



    The drive pinion (20, 20a, 20b) has a plurality of drive pinion portions (21, 22, 21a, 22a, 21b, 22b) having different reference circle diameters,



    The upper driven pinions (30, 30a, 30b) are a plurality of upper driven pinions provided corresponding to the plurality of drive pinion portions (21, 22, 21a, 22a, 21b, 22b) and having different reference circular diameters. Part (31, 32, 31a, 32a, 31b, 32b),



    The plurality of drive pinion parts (21, 22, 21a, 22a, 21b, 22b) have corresponding upper driven parts in the phase ranges different from each other in the entire rotational phase range of the drive pinion (20, 20a, 20b). The air conditioner (1) meshing with the pinion part (31, 32, 31a, 32a, 31b, 32b).



  2.  前記複数の駆動ピニオン部(21,22,21a,22a,21b,22b)および前記複数の上側従動ピニオン部(31,32,31a,32a,31b,32b)の基準円直径は、前記上側エアミックスドア(6)が前記上側第1位置から前記上側第2位置まで移動する間の前記上側シャフト(7)の最大回転速度よりも、前記上側エアミックスドア(6)が前記上側第1位置から前記上側第2位置への移動を開始した際の前記上側シャフト(7)の回転速度が、小さくなるように決定されている、請求項1に記載の空調装置(1)。



    The reference circular diameters of the plurality of drive pinion parts (21, 22, 21a, 22a, 21b, 22b) and the plurality of upper driven pinion parts (31, 32, 31a, 32a, 31b, 32b) are determined by the upper air mix. The upper air mix door (6) is moved from the upper first position to the maximum rotational speed of the upper shaft (7) while the door (6) moves from the upper first position to the upper second position. The air conditioner (1) according to claim 1, wherein a rotation speed of the upper shaft (7) when starting to move to the upper second position is determined to be small.



  3.  前記複数の駆動ピニオン部(21,22,21a,22a,21b,22b)の前記基準円直径、前記複数の上側従動ピニオン部(31,32,31a,32a,31b,32b)の前記基準円直径、前記ラック(40,40a,40b)と噛合する前記駆動ピニオン(20,20a,20b)の基準円直径、および、前記ラック(40,40a,40b)と噛合する前記下側従動ピニオン(50,50b)の基準円直径は、前記上側エアミックスドア(6)が前記上側第2位置から前記上側第1位置への移動を開始した際の前記上側シャフト(7)の回転速度よりも、前記下側エアミックスドア(8)が前記下側第2位置から前記下側第1位置への移動を開始した際の前記下側シャフト(9)の回転速度が、大きくなるように決定されている、請求項1または2に記載の空調装置(1)。



    The reference circle diameter of the plurality of drive pinion parts (21, 22, 21a, 22a, 21b, 22b) and the reference circle diameter of the plurality of upper driven pinion parts (31, 32, 31a, 32a, 31b, 32b) A reference circular diameter of the drive pinion (20, 20a, 20b) meshing with the rack (40, 40a, 40b), and the lower driven pinion (50, 40) meshing with the rack (40, 40a, 40b) The reference circle diameter of 50b) is lower than the rotational speed of the upper shaft (7) when the upper air mix door (6) starts moving from the second upper position to the first upper position. The rotational speed of the lower shaft (9) when the side air mix door (8) starts moving from the lower second position to the lower first position is determined so as to increase. Air conditioning apparatus according to claim 1 or 2 (1).



  4.  前記駆動ピニオン(20a)は、互いに基準円直径の異なる複数のラック用駆動ピニオン部(21a,22a)を有し、 前記ラック(40a)は、前記複数のラック用駆動ピニオン部(21a,22a)に対応して設けられた複数の上側ラック部(41a,42a)を有し、 前記複数のラック用駆動ピニオン部(21a,22a)は、前記駆動ピニオン(20a)の回転位相の全範囲のうち、互いに異なる位相範囲において、対応する上側ラック部(41a,42a)と噛合する、請求項1乃至3のいずれか一項に記載の空調装置(1)。



    The drive pinion (20a) includes a plurality of rack drive pinion portions (21a, 22a) having different reference circular diameters, and the rack (40a) includes the plurality of rack drive pinion portions (21a, 22a). The plurality of upper rack portions (41a, 42a) provided corresponding to the plurality of rack drive pinion portions (21a, 22a) are included in the entire rotational phase range of the drive pinion (20a). The air conditioner (1) according to any one of claims 1 to 3, wherein the air conditioner (1) meshes with a corresponding upper rack portion (41a, 42a) in different phase ranges.



  5.  前記下側従動ピニオン(50b)は、互いに基準円直径の異なる複数の下側従動ピニオン部(51b,52b)を有し、 前記ラック(40b)は、前記複数の下側従動ピニオン部(51b,52b)に対応して設けられた複数の下側ラック部(41b,42b)を有し、 前記複数の下側従動ピニオン部(51b,52b)は、前記下側従動ピニオン(50b)の回転位相の全範囲のうち、互いに異なる位相範囲において、対応する下側ラック部(41b,42b)と噛合する、請求項1乃至4のいずれか一項に記載の空調装置(1)。



    The lower driven pinion (50b) includes a plurality of lower driven pinion portions (51b, 52b) having different reference circular diameters, and the rack (40b) includes the plurality of lower driven pinion portions (51b, 52b), and a plurality of lower driven pinion portions (51b, 52b) are rotational phases of the lower driven pinion (50b). 5. The air conditioner (1) according to claim 1, wherein the air conditioner (1) meshes with a corresponding lower rack part (41 b, 42 b) in a phase range different from each other in the entire range.



  6.  前記ラック(40,40a,40b)は、前記駆動ピニオン(20,20a,20b)の回転軸線(Ax)と前記下側従動ピニオン(50,50b)の回転軸線(Cx)とを含む仮想面(S1)の一側から、前記駆動ピニオン(20,20a,20b)および前記下側従動ピニオン(50,50b)に噛合している、請求項1乃至5のいずれか一項に記載の空調装置(1)。



    The rack (40, 40a, 40b) is a virtual plane (Ax) including the rotation axis (Ax) of the drive pinion (20, 20a, 20b) and the rotation axis (Cx) of the lower driven pinion (50, 50b). The air conditioner according to any one of claims 1 to 5, wherein the air conditioner meshes with the drive pinion (20, 20a, 20b) and the lower driven pinion (50, 50b) from one side of S1. 1).



  7.  車両用の空調装置(1)であって、



     空気が流れる空気通路(3)を形成する空調ケース(2)と、



     前記空気通路(3)内に配置された加熱用熱交換器(5)であって、当該加熱用熱交換器(5)の上側端縁の上側に上側迂回路(3a)を形成し、且つ、当該加熱用熱交換器(5)の下側端縁の下側に下側迂回路(3b)を形成するように配置された加熱用熱交換器(5)と、



     前記空気通路(3)内に配置され、前記加熱用熱交換器(5)に向かう空気と前記上側迂回路(3a)に向かう空気との比率を調整するスライド式の上側エアミックスドア(6)と、



     前記上側エアミックスドア(6)に連結されて、周方向の回転に伴って前記上側エアミックスドア(6)を、前記上側迂回路(3a)に向かう空気の比率を最小とする上側第1位置と、前記上側迂回路(3a)に向かう空気の比率を最大とする上側第2位置との間でスライドさせる上側シャフト(7)と、



     前記空気通路(3)内に配置され、前記加熱用熱交換器(5)に向かう空気と前記下側迂回路(3b)に向かう空気との比率を調整するスライド式の下側エアミックスドア(8)と、



     前記上側シャフト(7)と平行に配置された下側シャフト(9)であって、前記下側エアミックスドア(8)に連結されて、周方向の回転に伴って前記下側エアミックスドア(8)を、前記下側迂回路(3b)に向かう空気の比率を最小とする下側第1位置と、前記下側迂回路(3b)に向かう空気の比率を最大とする下側第2位置との間でスライドさせる下側シャフト(9)と、



     前記上側シャフト(7)および前記下側シャフト(9)を回転駆動する駆動機構(10c,10d)と、



    を備え、



     前記駆動機構(10c,10d)は、



     回転駆動力を発生するアクチュエータ(11)と、



     前記アクチュエータ(11)により回転駆動される駆動ピニオン(20c)と、



     前記下側シャフト(9)に連結され、前記駆動ピニオン(20c)と噛合して前記アクチュエータ(11)の回転駆動力を前記下側シャフト(9)に伝達する下側従動ピニオン(50c)と、



     前記駆動ピニオン(20c)と噛合し、前記アクチュエータ(11)の回転駆動力が伝達されて直線運動をするラック(40c,40d)と、



     前記上側シャフト(7)に連結され、前記ラック(40c,40d)と噛合して前記アクチュエータ(11)の回転駆動力を前記上側シャフト(7)に伝達する上側従動ピニオン(30c,30d)と、



    を有し、



     前記駆動ピニオン(20c)は、互いに基準円直径の異なる複数の駆動ピニオン部(21c,22c)を有し、



     前記下側従動ピニオン(50c)は、前記複数の駆動ピニオン部(21c,22c)に対応して設けられた互いに基準円直径の異なる複数の下側従動ピニオン部(51c,52c)を有し、



     前記複数の駆動ピニオン部(21c,22c)は、前記駆動ピニオン(20c)の回転位相の全範囲のうち、互いに異なる位相範囲において、対応する下側従動ピニオン部(51c,52c)と噛合する、空調装置(1)。



    An air conditioner (1) for a vehicle,



    An air conditioning case (2) forming an air passage (3) through which air flows;



    A heating heat exchanger (5) disposed in the air passage (3), wherein an upper detour (3a) is formed above the upper edge of the heating heat exchanger (5); and A heating heat exchanger (5) arranged to form a lower detour (3b) below the lower end edge of the heating heat exchanger (5);



    A slide type upper air mix door (6) which is arranged in the air passage (3) and adjusts the ratio of the air which goes to the heating heat exchanger (5) and the air which goes to the upper detour (3a). When,



    An upper first position that is connected to the upper air mix door (6) and minimizes the ratio of the air toward the upper detour (3a) in the upper air mix door (6) as it rotates in the circumferential direction. And an upper shaft (7) that is slid between the upper second position that maximizes the ratio of air toward the upper detour (3a),



    A sliding lower air mix door (adjusted in the air passage (3)) that adjusts the ratio of the air going to the heating heat exchanger (5) and the air going to the lower bypass (3b) 8) and



    A lower shaft (9) arranged in parallel with the upper shaft (7), connected to the lower air mix door (8), and with the rotation in the circumferential direction, the lower air mix door ( 8) a lower first position that minimizes the ratio of air toward the lower detour (3b), and a lower second position that maximizes the ratio of air toward the lower detour (3b). A lower shaft (9) that slides between



    Drive mechanisms (10c, 10d) for rotationally driving the upper shaft (7) and the lower shaft (9);



    With



    The drive mechanism (10c, 10d)



    An actuator (11) for generating a rotational driving force;



    A drive pinion (20c) driven to rotate by the actuator (11);



    A lower driven pinion (50c) connected to the lower shaft (9) and meshing with the drive pinion (20c) to transmit the rotational driving force of the actuator (11) to the lower shaft (9);



    Racks (40c, 40d) meshing with the drive pinion (20c) and transmitting a rotational driving force of the actuator (11) to perform linear motion;



    An upper driven pinion (30c, 30d) connected to the upper shaft (7) and meshing with the rack (40c, 40d) to transmit the rotational driving force of the actuator (11) to the upper shaft (7);



    Have



    The drive pinion (20c) has a plurality of drive pinion portions (21c, 22c) having different reference circular diameters,



    The lower driven pinion (50c) has a plurality of lower driven pinion portions (51c, 52c) having different reference circle diameters provided corresponding to the plurality of drive pinion portions (21c, 22c),



    The plurality of drive pinion portions (21c, 22c) mesh with corresponding lower driven pinion portions (51c, 52c) in different phase ranges of the entire rotation phase range of the drive pinion (20c). Air conditioner (1).



  8.  前記複数の駆動ピニオン部(21c,22c)の前記基準円直径、前記ラック(40d)と噛合する前記駆動ピニオン(20c)の基準円直径、および、前記ラック(40d)と噛合する前記上側従動ピニオン(30d)の基準円直径は、前記上側エアミックスドア(6)が前記上側第1位置から前記上側第2位置まで移動する間の前記上側シャフト(7)の最大回転速度よりも、前記上側エアミックスドア(6)が前記上側第1位置から前記上側第2位置への移動を開始した際の前記上側シャフト(7)の回転速度が、小さくなるように決定されている、請求項7に記載の空調装置(1)。



    The reference circle diameter of the plurality of drive pinion portions (21c, 22c), the reference circle diameter of the drive pinion (20c) meshing with the rack (40d), and the upper driven pinion meshing with the rack (40d) The reference circle diameter of (30d) is higher than the maximum rotational speed of the upper shaft (7) while the upper air mix door (6) moves from the first upper position to the second upper position. The rotational speed of the upper shaft (7) when the mixing door (6) starts moving from the upper first position to the upper second position is determined to be small. Air conditioner (1).



  9.  前記複数の駆動ピニオン部(21c,22c)の前記基準円直径、前記複数の下側従動ピニオン部(51c,52c)の前記基準円直径、前記ラック(40c,40d)と噛合する前記駆動ピニオン(20c)の基準円直径、および、前記ラック(40c,40d)と噛合する前記上側従動ピニオン(30c,30d)の基準円直径は、前記上側エアミックスドア(6)が前記上側第2位置から前記上側第1位置への移動を開始した際の前記上側シャフト(7)の回転速度よりも、前記下側エアミックスドア(8)が前記下側第2位置から前記下側第1位置への移動を開始した際の前記下側シャフト(9)の回転速度が、大きくなるように決定されている、請求項7または8に記載の空調装置(1)。



    The reference circle diameter of the plurality of drive pinion parts (21c, 22c), the reference circle diameter of the plurality of lower driven pinion parts (51c, 52c), and the drive pinion meshing with the rack (40c, 40d) 20c) and the reference circle diameter of the upper driven pinion (30c, 30d) meshing with the rack (40c, 40d), the upper air mix door (6) from the upper second position The lower air mix door (8) moves from the lower second position to the lower first position than the rotational speed of the upper shaft (7) when the movement to the upper first position is started. The air conditioner (1) according to claim 7 or 8, wherein the rotational speed of the lower shaft (9) when starting the operation is determined to be increased.



  10.  前記ラック(40c,40d)は、前記駆動ピニオン(20c)の回転軸線(Ax)と前記上側従動ピニオン(30c,30d)の回転軸線(Bx)とを含む仮想面(S2)の一側から、前記駆動ピニオン(20c)および前記上側従動ピニオン(30c,30d)に噛合している、請求項7乃至9のいずれか一項に記載の空調装置(1)。



    The racks (40c, 40d) are arranged from one side of a virtual plane (S2) including the rotation axis (Ax) of the drive pinion (20c) and the rotation axis (Bx) of the upper driven pinion (30c, 30d). The air conditioner (1) according to any one of claims 7 to 9, which meshes with the drive pinion (20c) and the upper driven pinion (30c, 30d).
PCT/JP2019/013051 2018-03-29 2019-03-27 Vehicular air conditioning device WO2019189283A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980023211.8A CN111918783A (en) 2018-03-29 2019-03-27 Air conditioner for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-065835 2018-03-29
JP2018065835 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019189283A1 true WO2019189283A1 (en) 2019-10-03

Family

ID=68060033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013051 WO2019189283A1 (en) 2018-03-29 2019-03-27 Vehicular air conditioning device

Country Status (2)

Country Link
CN (1) CN111918783A (en)
WO (1) WO2019189283A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001603A (en) * 2018-06-29 2020-01-09 株式会社ケーヒン Door drive device
JP2021172111A (en) * 2020-04-17 2021-11-01 株式会社デンソー Vehicular air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011201473A (en) * 2010-03-26 2011-10-13 Denso Corp Air conditioner driving device and air conditioner for vehicle using the same
JP2013086719A (en) * 2011-10-20 2013-05-13 Calsonic Kansei Corp Air mix door structure of vehicle air conditioner device
JP2015110404A (en) * 2013-11-01 2015-06-18 株式会社デンソー Vehicle air conditioning device
JP2016068885A (en) * 2014-10-01 2016-05-09 株式会社デンソー Air conditioner for vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100590368C (en) * 2006-07-21 2010-02-17 海尔集团公司 Folding driving mechanism for air conditioner air intake grid
JP5502409B2 (en) * 2009-09-25 2014-05-28 株式会社ケーヒン Air conditioner for vehicles
JP5568408B2 (en) * 2010-08-23 2014-08-06 株式会社ケーヒン Air conditioner for vehicles
JP2015151014A (en) * 2014-02-14 2015-08-24 カルソニックカンセイ株式会社 Air conditioner
CN104089386B (en) * 2014-07-17 2017-03-01 安徽江淮汽车集团股份有限公司 A kind of automobile air-conditioning throttle drive mechanism, air conditioning for automobiles and automobile
CN204415807U (en) * 2014-12-23 2015-06-24 广州市万世德智能装备科技有限公司 A kind of bottle distributing mechanism
CN107621119B (en) * 2017-10-16 2020-10-30 合肥华凌股份有限公司 Air door device and refrigerator with same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011201473A (en) * 2010-03-26 2011-10-13 Denso Corp Air conditioner driving device and air conditioner for vehicle using the same
JP2013086719A (en) * 2011-10-20 2013-05-13 Calsonic Kansei Corp Air mix door structure of vehicle air conditioner device
JP2015110404A (en) * 2013-11-01 2015-06-18 株式会社デンソー Vehicle air conditioning device
JP2016068885A (en) * 2014-10-01 2016-05-09 株式会社デンソー Air conditioner for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001603A (en) * 2018-06-29 2020-01-09 株式会社ケーヒン Door drive device
JP7157572B2 (en) 2018-06-29 2022-10-20 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング door drive
JP2021172111A (en) * 2020-04-17 2021-11-01 株式会社デンソー Vehicular air conditioner
JP7327260B2 (en) 2020-04-17 2023-08-16 株式会社デンソー vehicle air conditioner

Also Published As

Publication number Publication date
CN111918783A (en) 2020-11-10

Similar Documents

Publication Publication Date Title
JP4424409B2 (en) Air conditioner for vehicles
EP2357101B1 (en) Sliding door device
US9616729B2 (en) Vehicular air conditioner
WO2019189283A1 (en) Vehicular air conditioning device
JP6341114B2 (en) Air conditioner for vehicles
JP2010018248A (en) Air conditioner for vehicle
JP3994841B2 (en) Air conditioner for vehicles
CN110356189B (en) Air conditioner for vehicle
JP2009126217A (en) Vehicular air conditioner
JP7045162B2 (en) Vehicle air conditioner
JP7051733B2 (en) Vehicle air conditioner
WO2020145280A1 (en) Door device
JP5477347B2 (en) Air conditioner for vehicles
JP4063096B2 (en) Air conditioner for vehicles
WO2016194674A1 (en) Air-conditioning device for vehicles
JP2006001378A (en) Air conditioner for vehicle
JP2004136772A (en) Air-conditioning device for vehicle
JP2003154835A (en) Automotive air conditioner
JP2018020650A (en) Vehicular air conditioner
JP4513656B2 (en) Link plate support structure for air conditioner
JP5293590B2 (en) Air conditioner for vehicles
JP7186676B2 (en) Air conditioner
JP6481595B2 (en) Air blowing device for vehicle
JP4950558B2 (en) Door operating device for vehicle air conditioning unit
JP2015016783A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP