WO2019189144A1 - Flakes, method for producing same, and paint - Google Patents
Flakes, method for producing same, and paint Download PDFInfo
- Publication number
- WO2019189144A1 WO2019189144A1 PCT/JP2019/012802 JP2019012802W WO2019189144A1 WO 2019189144 A1 WO2019189144 A1 WO 2019189144A1 JP 2019012802 W JP2019012802 W JP 2019012802W WO 2019189144 A1 WO2019189144 A1 WO 2019189144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- cholesteric
- flakes
- liquid crystal
- reflection
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/12—Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/65—Additives macromolecular
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/02—Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
Definitions
- the present invention relates to flakes, a method for producing the same, and a paint.
- the present inventor paid attention to flakes containing a cholesteric resin as the special pigment.
- the reflection color of the flakes visually recognized by observing the optical layer varies depending on the observation angle.
- the observation angle of a certain layer represents an angle formed by the observation direction with respect to the thickness direction of the layer.
- the reflected color observed in the front direction of the optical layer observed angle is 0 °
- the inclination direction of the optical layer observed angle is greater than 0 ° and less than 90 °.
- the observed reflected color is often different. Therefore, it is conceivable to use flakes containing a cholesteric resin as a special pigment by utilizing the unique property that the reflection color varies depending on the observation angle.
- various printed materials such as certificate papers, securities, banknotes, cards, and the like are printed as security inks containing special pigments.
- the environment for viewing these printed materials may be a bright environment or a dark environment.
- the illumination in the environment described above may include illumination with a wide light distribution angle and illumination with a narrow light distribution angle.
- the security ink containing the special pigment is applied. Therefore, the special pigment is required to have a clearly visible reflected color under various lighting environments.
- the present invention has been made in view of the above-mentioned problems, and includes flakes in which the reflected color can be clearly visually recognized in both the front direction and the tilt direction of the layer containing the flakes, and a method for producing the flakes.
- the object is to provide a paint.
- the present inventor has intensively studied to solve the above problems. As a result, the present inventor found that flakes containing pulverized pieces of a cholesteric resin layer having a predetermined range of haze due to light scattering caused by orientation defects can solve the above-mentioned problems, and completed the present invention. It was. That is, the present invention includes the following.
- [5] A method for producing flakes according to any one of [1] to [4], Forming a layer of resin having cholesteric regularity; And a step of pulverizing the resin layer.
- [6] A paint comprising the flakes according to any one of [1] to [4] and a dispersion medium.
- the present invention it is possible to provide flakes in which the reflected color can be clearly visually recognized in both the front direction and the inclination direction of the layer containing the flakes and a method for producing the flakes, and a paint containing the flakes.
- FIG. 1 is a cross-sectional view schematically showing an example of an optical layer containing flakes according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view schematically showing an example of an optical layer containing flakes according to an embodiment of the present invention.
- FIG. 3 is a cross-sectional view schematically showing an example of an optical layer containing flakes according to an embodiment of the present invention.
- the front direction of a certain layer represents a direction parallel to the thickness direction of the certain layer unless otherwise specified.
- the inclination direction of a certain layer represents a direction that is neither parallel nor perpendicular to the thickness direction of a certain layer unless otherwise specified.
- the flakes according to one embodiment of the present invention include crushed pieces of a layer of cholesteric resin.
- the cholesteric resin refers to a resin having cholesteric regularity as described above.
- Cholesteric regularity means that the molecular axes are aligned in a certain direction on a certain plane, but the direction of the molecular axis is slightly shifted in the next plane that overlaps it, and the angle is further shifted in the next plane. In this way, the structure is such that the molecular axes in the planes are displaced (twisted) as they sequentially pass through the overlapping planes. That is, when the molecules inside a certain resin layer have cholesteric regularity, the molecules are aligned so that the molecular axis is in a certain direction on a certain first plane inside the layer.
- the direction of the molecular axis deviates slightly from the direction of the molecular axis in the first plane.
- the direction of the molecular axis deviates further from the direction of the molecular axis in the second plane.
- the angles of the molecular axes in the planes are sequentially shifted (twisted).
- Such a structure in which the direction of the molecular axis is twisted is usually a helical structure and an optically chiral structure.
- an orientation defect refers to a portion where the cholesteric regularity of the cholesteric resin is impaired.
- the molecules are usually oriented in a different direction from the surrounding molecules. For this reason, such orientation defects generally cause optical phenomena such as refraction, reflection, and diffraction. Therefore, the cholesteric resin containing orientation defects has a scattering property that scatters light.
- the layer of cholesteric resin has a specific range of haze due to scattering properties due to orientation defects.
- the specific haze range of the cholesteric resin layer is usually 10% or more, preferably 15% or more, more preferably 20% or more, and usually 60% or less, preferably 55% or less, more preferably 50% or less. It is.
- the haze of the cholesteric resin layer is not less than the lower limit of the above range, the visibility of the reflected color of the flakes can be improved in both the front direction and the tilt direction of the optical layer containing the flakes.
- the degree of blue shift can be increased, so that the difference in reflected color according to the observation angle of the optical layer containing flakes can be increased.
- the haze of the cholesteric resin layer can be adjusted by, for example, a method of adjusting the alignment treatment conditions included in the method of manufacturing the cholesteric resin layer; a method of adjusting the thickness of the cholesteric resin layer; Specifically, the lower the alignment temperature during the alignment treatment, the easier it is for alignment defects to occur, so haze can be increased. In addition, the thicker the cholesteric resin, the easier it is for alignment defects to occur, so haze can be increased.
- the haze of the cholesteric resin layer can be measured with a haze meter using the cholesteric resin layer before pulverization.
- the method described in the embodiment can be adopted.
- the layer of cholesteric resin usually has a circularly polarized light separation function. That is, the cholesteric resin layer can function as a circularly polarized light separation film having a property of transmitting one circularly polarized light of right circularly polarized light and left circularly polarized light and reflecting part or all of the other circularly polarized light. Reflection in the cholesteric resin layer reflects circularly polarized light while maintaining its chirality.
- the wavelength range in which the circularly polarized light separation function is exhibited in this way may be referred to as “reflection band”. By adjusting this reflection band, the flakes can reflect circularly polarized light of a color corresponding to the reflection band. Therefore, the reflection color of the flakes can be adjusted by adjusting the reflection band.
- the specific wavelength that exhibits the circularly polarized light separation function generally depends on the pitch of the helical structure in the cholesteric resin layer.
- the pitch of the helical structure is the distance in the plane normal direction until the angle of the molecular axis in the helical structure gradually shifts as it advances along the plane and then returns to the original molecular axis direction again.
- the pitch p of the circularly polarized light and the wavelength ⁇ of the circularly polarized light to be reflected usually have the relationship of the formula (X) and the formula (Y).
- lambda c is the center wavelength of the reflection band (hereinafter sometimes referred to as "reflection center wavelength”.)
- n o denotes the refractive index along the short axis of the liquid crystal compound
- n e represents the refractive index of the long axis direction of the liquid crystal compounds
- n represents an (n e + n o) / 2
- p represents the pitch of the helical structure
- theta is a normal angle of incidence (the plane of the light Angle).
- the reflection center wavelength ⁇ c depends on the pitch p of the helical structure of the polymer in the cholesteric resin layer.
- the pitch p of the spiral structure is preferably set according to the wavelength of circularly polarized light that is desired to be reflected by the cholesteric resin layer.
- a method for adjusting the pitch p for example, a method described in Japanese Patent Application Laid-Open No. 2009-300662 can be used. Specific examples include a method of adjusting the type of chiral agent and the amount of chiral agent in the cholesteric liquid crystal composition.
- the reflection band varies depending on the incident angle of light. Therefore, a phenomenon called a blue shift in which the reflection band shifts to the lower wavelength side as the incident angle increases usually occurs in the cholesteric resin layer.
- Examples of the cholesteric resin layer include (i) a cholesteric resin layer in which the pitch of the helical structure is changed stepwise, and (ii) a continuous change in the pitch of the helical structure. Examples thereof include a cholesteric resin layer.
- the cholesteric resin layer in which the pitch of the helical structure is changed stepwise can be obtained, for example, by laminating a plurality of cholesteric resin layers having different helical structure pitches.
- Lamination can be performed by previously preparing a plurality of cholesteric resin layers having different helical structure pitches, and then fixing each layer via an adhesive or an adhesive.
- the lamination may be performed by forming a layer of a cholesteric resin and then sequentially forming another cholesteric resin layer.
- the cholesteric resin layer in which the pitch of the spiral structure is continuously changed includes, for example, one or more active energy ray irradiation treatments and / or heating treatments for the liquid crystal composition layer. After performing the broadening treatment, the liquid crystal composition layer can be cured. According to the band broadening process, since the pitch of the spiral structure can be continuously changed in the thickness direction, the reflection band of the cholesteric resin layer can be expanded, and is therefore called a band broadening process.
- the layer of cholesteric resin may be a single-layer structure composed of only one layer, or may be a multilayer structure including two or more layers.
- the number of layers contained in the cholesteric resin layer is preferably 1 to 100 layers, more preferably 1 to 20 layers, from the viewpoint of ease of production.
- the refractive index anisotropy ⁇ n of the cholesteric resin layer can be appropriately selected according to the reflection band of the flakes to be produced. For example, when producing flakes having a narrow reflection band and high color purity, it is preferable to use a cholesteric resin layer having a refractive index anisotropy ⁇ n of 0.2 or less. In the case of producing flakes having a reflection band in a mixed color, multiple colors, or in the entire visible range, a layer of cholesteric resin having a large refractive index anisotropy ⁇ n of 0.2 or more is preferable.
- the refractive index anisotropy ⁇ n of the cholesteric resin layer is 0.05 or more from the viewpoint of facilitating the adjustment of the haze of the cholesteric resin layer according to the thickness by reducing the thickness necessary for ensuring the reflectance. Is preferred.
- the refractive index anisotropy ⁇ n is 0.30 or more, the absorption edge on the long wavelength side of the ultraviolet absorption spectrum may extend to the visible range. It can be used as long as the performance is not adversely affected.
- the refractive index anisotropy ⁇ n can be measured by the Senarmon method.
- the upper limit of the refractive index anisotropy ⁇ n can be, for example, 0.25 or less.
- the flakes according to this embodiment include the above-mentioned pulverized pieces of the cholesteric resin layer, the flakes usually include a cholesteric resin layer.
- the layer of cholesteric resin before being pulverized may be referred to as a “cholesteric raw fabric layer”, and the layer of cholesteric resin after pulverization included in the flakes may be appropriately referred to as a “cholesteric pulverized layer”.
- the flakes usually have a single or different multiple reflection bands. Especially, it is preferable that a flake has one or more reflection bands including a visible region.
- the visible range usually refers to a wavelength range of 400 nm to 800 nm.
- the phrase “the reflection band includes the visible range” means that the reflection band includes at least a part of the visible range.
- the specific wavelength range of the reflection band is a wavelength range corresponding to the half-value width of the reflection peak in the reflection spectrum measured using a spectroscope (for example, JASCO Corporation “V570”) (that is, intensity) Is a wavelength range in which the peak intensity is 50% or more of the peak intensity).
- the above measurement is usually performed under measurement conditions with a light incident angle of 5 ° and a detection angle of 0 °.
- flakes having a reflection band in the visible range can visually recognize the reflected light of the flakes with the naked eye. Therefore, such flakes can be applied to a wide range of uses.
- the number of reflection bands in the visible range may be 1 or 2 or more.
- flakes having only one reflection band with a narrow bandwidth in the visible range can obtain reflected light of a single color (for example, red, green, blue, etc.) corresponding to the reflection band.
- flakes having only one reflection band having a wide bandwidth in the visible range so as to cover the entire visible range can obtain mixed color (usually silver) reflected light corresponding to the reflection band.
- flakes having two or more reflection bands in the visible range can obtain mixed color reflected light corresponding to each of the reflection bands.
- the bandwidth per one reflection band is preferably 100 nm or more, preferably 200 nm or more, and particularly preferably 400 nm or more.
- the flakes more preferably have a reflection band having the above bandwidth in the visible range. Thereby, it is possible to increase the amount of reflected light per flake, and it is possible to obtain a paint with more excellent design and visibility.
- the upper limit of the bandwidth per reflection band can be 300 nm or less.
- the bandwidth of the reflection band can be calculated based on the reflection spectrum obtained by measuring the reflection spectrum using a spectroscope (for example, JASCO Corporation “V570”). More specifically, the half-value width of the reflection peak in the measured reflection spectrum can be used as the bandwidth value of the reflection band.
- the above measurement is usually performed under measurement conditions with a light incident angle of 5 ° and a detection angle of 0 °.
- a blue shift usually occurs in a cholesteric pulverized layer containing a cholesteric resin. Therefore, when observing flakes, different reflection colors are usually visually recognized according to the observation angle. In general, the color visually recognized when the observation angle is small is changed to a color having a shorter wavelength as the observation angle is increased. For example, when green is visually recognized when the observation angle is small, blue is visually recognized as the observation angle increases. However, in the case of flakes having reflection bands in the blue region and the infrared region, it is possible to cause a color change called a red shift opposite to the blue shift. In such a red shift, for example, when the observation angle is small, blue is visually recognized, but as the observation angle increases, red is visually recognized.
- the flakes may further include an optional layer in combination with the cholesteric pulverized layer.
- the flake when a flake is produced by pulverizing a multilayer film containing a combination of a cholesteric raw fabric layer and an arbitrary layer, the flake may include a cholesteric pulverized layer and an optional layer.
- Flakes usually have a flake shape because they contain crushed pieces obtained by pulverizing a cholesteric raw fabric layer.
- flakes having such a flake shape are obtained by applying a paint containing the flakes, the layer plane of the layer and the layer plane of the cholesteric pulverized layer are parallel due to the shearing force during coating. Tends to be oriented.
- the average particle diameter of the flakes is preferably 1 ⁇ m or more from the viewpoint of improving the visibility of the reflected color of the flakes, and preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less from the viewpoint of improving the coating property of the paint. It is.
- the average particle size of the flakes can be measured by the method described in the examples.
- the flakes according to this embodiment can be usually produced by a production method including a step of forming a cholesteric raw fabric layer; and a step of pulverizing the cholesteric raw fabric layer.
- a cholesteric liquid crystal composition layer is provided on a suitable support for forming the cholesteric raw fabric layer, and the layer is cured to obtain a cholesteric raw fabric layer.
- the material referred to as a “liquid crystal composition” includes not only a mixture of two or more substances but also a material composed of a single substance.
- the cholesteric liquid crystal composition refers to a composition that can exhibit a liquid crystal phase (cholesteric liquid crystal phase) having cholesteric regularity when the liquid crystal compound contained in the liquid crystal composition is aligned. .
- a liquid crystal composition containing a liquid crystal compound and further containing an optional component as necessary can be used.
- the liquid crystal compound a liquid crystal compound that is a polymer compound and a polymerizable liquid crystal compound can be used.
- a polymerizable liquid crystal compound By polymerizing the polymerizable liquid crystal compound in a state exhibiting cholesteric regularity, the layer of the cholesteric liquid crystal composition can be cured to obtain a layer of a non-liquid crystalline cholesteric resin cured while exhibiting the cholesteric regularity. it can.
- the cholesteric liquid crystal composition for example, those described in International Publication No. 2016/002765 can be used.
- any member having a flat support surface capable of supporting the cholesteric liquid crystal composition layer can be used.
- a resin film is usually used.
- the support surface of the support may be subjected to a treatment for imparting an alignment regulating force in order to promote the alignment of the liquid crystal compound in the cholesteric liquid crystal composition layer.
- the alignment regulating force of a certain surface means the property of the surface capable of aligning the liquid crystal compound in the cholesteric liquid crystal composition.
- the treatment for imparting the alignment regulating force to the support surface include rubbing treatment, alignment film formation treatment, stretching treatment, ion beam alignment treatment, and the like.
- a layer of the cholesteric liquid crystal composition is provided by coating the cholesteric liquid crystal composition on the support surface of the support.
- the layer thickness of the cholesteric liquid crystal composition can be set according to the thickness of the target cholesteric raw fabric layer.
- the thickness of the cholesteric liquid crystal composition layer is preferably set according to the haze of the cholesteric raw fabric layer.
- the thicker the cholesteric liquid crystal composition layer is, the thicker the cholesteric raw fabric layer is obtained.
- the haze of a cholesteric original fabric layer can be raised, so that a cholesteric original fabric layer is thick. Accordingly, the haze of the cholesteric raw fabric layer can be adjusted by adjusting the thickness of the cholesteric liquid crystal composition layer formed on the support surface.
- the coating method of the cholesteric liquid crystal composition is arbitrary.
- coating methods include curtain coating, extrusion coating, roll coating, spin coating, dip coating, bar coating, spray coating, slide coating, print coating, gravure coating, and die coating. Method, gap coating method, and dipping method.
- the layer of cholesteric liquid crystal composition may be subjected to an alignment treatment.
- the alignment treatment is usually performed by heating a layer of the cholesteric liquid crystal composition to a predetermined alignment temperature. By performing such an alignment treatment, the liquid crystal compound contained in the cholesteric liquid crystal composition is aligned and becomes a state exhibiting cholesteric regularity.
- the alignment temperature can be arbitrarily set within the range in which the alignment of the liquid crystal compound proceeds.
- the orientation temperature is preferably set according to the haze of the cholesteric raw fabric layer.
- the haze of a cholesteric original fabric layer can be raised, so that orientation temperature is low. Therefore, the haze of the cholesteric original fabric layer can be adjusted by adjusting the orientation temperature.
- the specific alignment temperature is adjusted according to the composition of the cholesteric liquid crystal composition, and is set, for example, within a range of 50 ° C. to 150 ° C. so as to obtain a desired haze.
- the layer of the cholesteric liquid crystal composition is usually heated to the alignment temperature for a predetermined time.
- the treatment time at this time can be arbitrarily set within the range in which the alignment of the liquid crystal compound proceeds, and can be, for example, 0.5 minutes to 10 minutes.
- the alignment of the liquid crystal compound contained in the cholesteric liquid crystal composition may be immediately achieved by application of the cholesteric liquid crystal composition. Therefore, the alignment treatment is not necessarily performed on the layer of the cholesteric liquid crystal composition.
- the cholesteric liquid crystal composition layer is cured to obtain a cholesteric raw fabric layer.
- a polymerization component such as a polymerizable liquid crystal compound contained in the cholesteric liquid crystal composition is polymerized to cure the layer of the cholesteric liquid crystal composition.
- a method suitable for the properties of the components contained in the cholesteric liquid crystal composition can be selected. Examples of the polymerization method include a method of irradiating active energy rays and a thermal polymerization method. Among them, the method of irradiating active energy rays is preferable because the polymerization reaction can proceed at room temperature.
- the irradiated active energy rays can include light such as visible light, ultraviolet light, and infrared light, and arbitrary energy rays such as electron beams. Further, when curing the layer of cholesteric liquid crystal composition by irradiation of an active energy ray, intensity of the active energy ray to be irradiated may be, for example, 50mJ / cm 2 ⁇ 10,000mJ / cm 2.
- the layer of the cholesteric liquid crystal composition may be subjected to a broadening treatment before the layer of the cholesteric liquid crystal composition is cured.
- a broadening process can be performed, for example, by a combination of one or more active energy ray irradiation processes and a heating process.
- the irradiation treatment in the broadening treatment can be performed, for example, by irradiating light with a wavelength of 200 nm to 500 nm for 0.01 second to 3 minutes.
- the energy of the irradiated light can be, for example, 0.01 mJ / cm 2 to 50 mJ / cm 2 .
- the heat treatment can be performed, for example, by heating to a temperature of preferably 40 ° C. or higher, more preferably 50 ° C. or higher, preferably 200 ° C. or lower, more preferably 140 ° C. or lower.
- the heating time at this time is preferably 1 second or longer, more preferably 5 seconds or longer, and usually 3 minutes or shorter, preferably 120 seconds or shorter.
- the irradiation of the active energy ray may be performed in the air, or a part or all of the process may be performed in an atmosphere in which the oxygen concentration is controlled (for example, in a nitrogen atmosphere).
- the step of coating and curing the cholesteric liquid crystal composition is not limited to once, and the coating and curing may be repeated a plurality of times. Thereby, a thick cholesteric resin layer containing two or more layers is obtained.
- the twist direction in the cholesteric regularity can be appropriately selected depending on the structure of the chiral agent to be used. For example, when the twist is set to the right direction, a cholesteric liquid crystal composition containing a chiral agent that imparts dextrorotation is used. When the twist direction is set to the left direction, a cholesteric containing a chiral agent that imparts levorotation is used. A liquid crystal composition is used.
- the thickness of the cholesteric raw fabric layer is preferably 0.1 ⁇ m or more, and more preferably 1 ⁇ m or more, in order to obtain sufficient reflectance. Moreover, when obtaining transparency of a cholesteric original fabric layer, it is preferable that it is 20 micrometers or less, and it is more preferable that it is 10 micrometers or less.
- a cholesteric raw fabric layer is usually obtained on the support. Then, you may perform the process of peeling a support body before the process of grind
- the peeling method is arbitrary, and for example, the method described in JP-A-2015-27743 may be used.
- a step of pulverizing the cholesteric raw fabric layer is performed.
- the grinding method is arbitrary.
- the crusher include a hammer crusher, a cutter mill, a hammer mill, a bead mill, a vibration mill, a meteor ball mill, a sand mill, a ball mill, a roll mill, a three-roll mill, a jet mill, a high-speed rotary crusher, a fine crusher and a crusher.
- Examples thereof include a particle sizer and a nano jet mizer.
- the above-described flake production method may further include an optional step.
- the optional step include a step of classifying flakes.
- the flakes described above can be used, for example, as a pigment for paint.
- a paint is a fluid material containing the flakes.
- the fluid state includes not only a low-viscosity liquid state but also a high-viscosity gel state.
- the specific viscosity of the paint can be appropriately adjusted according to the use of the paint.
- the flakes contained in the paint may be one type or two or more types.
- the paint contains a dispersion medium in combination with flakes.
- the flakes are usually dispersed in the dispersion medium.
- an inorganic solvent such as water may be used as the dispersion medium, but an organic solvent is usually used.
- the organic solvent include organic solvents such as ketone compounds, alkyl halide compounds, amide compounds, sulfoxide compounds, heterocyclic compounds, hydrocarbon compounds, ester compounds, and ether compounds.
- a ketone compound is preferable in consideration of environmental load.
- a dispersion medium may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the amount of the dispersion medium is preferably 40 parts by weight or more, more preferably 60 parts by weight or more, particularly preferably 80 parts by weight or more, preferably 1000 parts by weight or less, more preferably 800 parts by weight with respect to 100 parts by weight of the flakes.
- the amount is not more than parts by weight, particularly preferably not more than 600 parts by weight.
- the paint may contain a binder for binding flakes after the dispersion medium is dried.
- a binder a polymer is usually used.
- the polymer include polyester polymers, acrylic polymers, polystyrene polymers, polyamide polymers, polyurethane polymers, polyolefin polymers, polycarbonate polymers, polyvinyl polymers, and the like.
- a binder may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- the amount of the binder is preferably 20 parts by weight or more, more preferably 40 parts by weight or more, particularly preferably 60 parts by weight or more, preferably 1000 parts by weight or less, more preferably 800 parts by weight with respect to 100 parts by weight of the flakes. Parts or less, particularly preferably 600 parts by weight or less.
- the coating material may contain a monomer of the polymer instead of the polymer as the binder or in combination with the polymer.
- an optical layer containing flakes and a binder can be produced by coating the paint on an appropriate member and drying the polymer to polymerize the monomer.
- the coating material containing a monomer further contains a polymerization initiator.
- the paint may contain any component other than the flakes, the dispersion medium, and the binder.
- optional components include antioxidants, ultraviolet absorbers, light stabilizers, and bluing agents. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- the said flake is normally used for manufacture of the optical layer containing the said flake.
- Such an optical layer can be manufactured by applying a coating material to an appropriate member and curing the coating layer formed by coating. Curing of the paint layer can be achieved by, for example, drying the paint layer or polymerizing monomers contained in the paint layer.
- This optical layer includes the flakes described above. Therefore, when the optical layer is irradiated with light, the circularly polarized light in the reflection band corresponding to the circularly polarized light separation function of the cholesteric resin is reflected by the flakes. Therefore, the observer can visually recognize the reflected color corresponding to the wavelength of the circularly polarized light reflected as described above. In particular, when the flakes according to the above-described embodiments are used, the observer can clearly see the reflected color in both the front direction and the tilt direction of the optical layer.
- the present inventors infer that the mechanism for achieving high visibility in both the front direction and the tilt direction is as follows.
- the mechanism described below does not limit the technical scope of the present invention.
- FIGS. 1 to 3 are cross-sectional views schematically showing an example of an optical layer 10 including flakes 100 according to an embodiment of the present invention.
- an optical layer 10 that includes flakes 100 and a binder 200 as shown in FIGS.
- the flake 100 is oriented parallel to the layer plane of the optical layer 10, and therefore the layer plane of the cholesteric pulverized layer 110 included in the flake 100 and the layer plane of the optical layer 10 are parallel.
- the cholesteric pulverized layer 110 is obtained by pulverizing the cholesteric raw fabric layer (not shown) having the above-mentioned specific range of haze, and includes orientation defects 120.
- circularly polarized light in the reflection band corresponding to the circularly polarized light separation function of the cholesteric resin is reflected by the cholesteric pulverized layer 110.
- the amount of light received by the flake 100 usually varies depending on the incident angle of light. Therefore, as shown in FIG. 1, the flake 100 tends to receive the light A1 in the front direction with a small incident angle with a relatively large amount of light. On the other hand, as shown in FIG. 2, the flake 100 tends to receive the light A2 in the tilt direction with a large incident angle with a relatively small amount of light. Therefore, if there is no alignment defect 120, a large amount of light is reflected in the front direction of the optical layer 10, but a small amount of light is reflected in the tilt direction of the optical layer 10. Therefore, when the conventional flakes are used, it is difficult to visually recognize the reflected color of the flakes viewed from the tilt direction.
- the alignment defect 120 causes light scattering as shown in FIG. Therefore, a part of the light A1 incident in the front direction is changed in the traveling direction by the action of scattering and exits in the tilt direction after reflection. Therefore, since the amount of light that can be seen by the observer in the tilt direction can be increased, the visibility of the reflected color in the tilt direction can be improved. Therefore, in both the front direction and the inclination direction of the optical layer 10, the observer can clearly see the reflected color.
- FIG. 3 shows an example in which the light scattered by the alignment defect 120 is reflected by the flake 100 including the alignment defect 120
- the light scattered by the alignment defect 120 is flake 100 including the alignment defect 120. It may be reflected by another flake (not shown).
- 3 shows an example in which the traveling direction of the light A1 is changed before being reflected by the flake 100 due to scattering by the alignment defect 120.
- FIG. The traveling direction of the light A ⁇ b> 1 may be changed by scattering at the alignment defect 120.
- the scattering action can suppress variations in the amount of light depending on the traveling direction of the light, so that the observer can clearly see the reflected color regardless of the observation angle.
- the flakes are generally oriented in a certain direction as a whole. Therefore, the layer plane of the cholesteric pulverized layer contained in the flake is usually oriented in a certain direction as a whole. In many cases, the flakes are oriented parallel to the layer plane of the optical layer, and therefore the layer plane of the cholesteric grinding layer is often also parallel to the layer plane of the optical layer. Thus, when the flakes are oriented in a certain direction as a whole, an observer who observes the optical layer can visually recognize the reflected flake color uniformly as the whole optical layer.
- the reflection color on the flakes can be changed by the influence of blue shift
- the reflection color visually observed by observing the optical layer containing the flakes can usually be changed according to the observation angle with respect to the optical layer.
- the reflected color closer to blue tends to be visually recognized in the inclined direction where the observation angle is larger.
- the flakes and paints described above can be used, for example, as security products for preventing forgery.
- the reflection color of the optical layer formed using the flakes or paint changes depending on the observation angle. Therefore, when an optical layer is formed on an article by a method such as printing, the article can be determined to be authentic if the optical layer is observed and the color of the pigment changes according to the observation angle.
- the authenticity may be determined using the circularly polarized light separation function of the cholesteric pulverized layer included in the flakes.
- the flakes usually reflect only one of right circular polarization and left circular polarization. Therefore, different images are visually recognized when the optical layer including flakes is observed using the right circularly polarizing plate and when observed using the left circularly polarizing plate. Therefore, if the image observed using the right circularly polarizing plate is different from the image observed using the left circularly polarizing plate, the article on which the optical layer is formed is authentic. Can be judged.
- the object there is no limitation on the object as an object for forming the optical layer as described above, and a wide variety of articles can be adopted. Examples of objects include cloth products such as clothing; leather products such as bags and shoes; metal products such as screws; paper products such as price tags; and rubber products such as tires. It is not limited to.
- the optical layer may be formed in a predetermined planar shape such as a design, a number, a symbol, or an identifier (such as a bar coat) in order to impart designability or information.
- the average particle size of the flakes was measured by the following method. First, using several sieves having different openings, the ratio of flakes passing through the sieve having the openings was measured. The particle size distribution of the flakes was expressed as an integrated weight percentage from the size of the openings and the ratio of the flakes passing through the sieve having the openings. In this particle size distribution, a particle size having an integrated value of 50% by weight was adopted as the average particle size.
- the optical layer produced in the example or the comparative example was visually observed under illumination of a white fluorescent lamp. This visual observation was initially performed (i) in the front direction of the optical layer, and thereafter with a larger observation angle (ii) in the tilt direction of the optical layer. Thus, evaluation was performed based on the following criteria according to the color change (blue shift) of the reflected color that occurs when the observation direction is changed from the front direction of the optical layer to the tilt direction. “A”: It was recognized that the reflected color changed sharply and clearly as the observation angle increased. “B”: It was recognized that the reflected color changed clearly but not suddenly as the observation angle increased. “C”: It was barely recognized that the reflected color was changed by increasing the observation angle. “D”: Even when the observation angle was large, the change in the reflected color was slow, and the color change could not be recognized.
- Example 1 (1-1. Production of cholesteric liquid crystal composition) 25.5 parts of a compound having a refractive index anisotropy ⁇ n 0.24 represented by the following formula (X1), 11 parts of a polymerizable liquid crystal compound represented by the following formula (Y1), a chiral agent (“LC756” manufactured by BASF Corporation) ) 2.3 parts, 1.2 parts of a polymerization initiator (“Irgacure OXE02” manufactured by Ciba Specialty Chemicals), 0.04 part of a surfactant (“Futergent 209F” manufactured by Neos), and cyclopentanone 60 as a solvent
- the cholesteric liquid crystal composition was prepared by mixing the parts.
- the liquid crystal composition layer was subjected to an alignment treatment by heating at 80 ° C. for 5 minutes. Thereafter, the liquid crystal composition layer is subjected to a broadening treatment including a UV irradiation treatment for irradiating weak ultraviolet rays of 20.7 mJ / cm 2 and a subsequent heating treatment for heating at 100 ° C. for 1 minute. did. Thereafter, the liquid crystal composition layer was cured by irradiating with 800 mJ / cm 2 of ultraviolet rays.
- a cholesteric original fabric layer as a circularly polarized light separating film having a thickness of 5.2 ⁇ m and a reflection band with a bandwidth of 250 nm in the wavelength range of 450 nm to 700 nm was obtained on the support.
- the haze of this cholesteric raw fabric layer was measured by the measurement method described above.
- the cholesteric raw fabric layer was peeled off from the support by blowing a water stream.
- the cholesteric raw fabric layer was pulverized using a counter jet mill to obtain flakes as a scale-like filler having an average particle diameter of 20 ⁇ m.
- Example 2 The optical layer was manufactured and evaluated in the same manner as in Example 1, except that the wire bar count was changed to # 8.
- the obtained cholesteric raw fabric layer had a thickness of 3.7 ⁇ m and had two reflection bands.
- One reflection band had a bandwidth of 100 nm in a wavelength range of 400 nm to 500 nm.
- the other reflection band had a bandwidth of 100 nm in the wavelength range of 550 nm to 650 nm.
- Example 3 The optical layer was manufactured and evaluated in the same manner as in Example 1 except that the wire bar count was changed to # 18.
- the obtained cholesteric raw fabric layer had a thickness of 8.6 ⁇ m and had a reflection band with a bandwidth of 200 nm in a wavelength range of 450 nm to 650 nm.
- Example 4 The optical layer was manufactured and evaluated in the same manner as in Example 2 except that the broadening treatment was not performed.
- the cholesteric raw fabric layer obtained in Example 4 had a reflection band with a bandwidth of 150 nm in the wavelength range of 500 nm to 650 nm.
- Comparative Example 1 The optical layer was produced and evaluated in the same manner as in Example 2 except that the temperature of the alignment treatment was changed to 130 ° C.
- the obtained cholesteric raw fabric layer had a thickness of 3.6 ⁇ m and had two reflection bands.
- One reflection band had a bandwidth of 100 nm in a wavelength range of 400 nm to 500 nm.
- the other reflection band had a bandwidth of 100 nm in the wavelength range of 550 nm to 650 nm.
- Example 2 The optical layer was produced and evaluated by the same operation as in Example 1 except that the rubbing treatment on the surface opposite to the surface of the support that was opposite to the easy adhesion treatment surface was not performed.
- the liquid crystal compound contained in the cholesteric raw fabric layer obtained in Comparative Example 2 was not aligned as a whole layer, but was aligned for each small segment. Therefore, the cholesteric raw fabric layer obtained in Comparative Example 2 was a set of the above-mentioned segments, and the entire layer did not have cholesteric regularity, and a large number of orientation defects were generated. Moreover, this cholesteric raw fabric layer did not show a clear reflection band and was clouded as a whole.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Polarising Elements (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
To provide flakes of which the reflected color is clearly visible in both a frontal direction and an inclined direction of a layer containing the flakes. (Solution) Flakes containing crushed pieces of a layer of a resin having cholesteric regularity, the layer of resin containing alignment defects in which the cholesteric regularity is impaired, and the haze of the layer of resin being 10-60%.
Description
本発明は、フレーク及びその製造方法、並びに塗料に関する。
The present invention relates to flakes, a method for producing the same, and a paint.
セキュリティインク分野では、偽造防止を目的として、特殊顔料を用いることがある。このような特殊顔料の一種として、コレステリック規則性を有する樹脂(以下、適宜「コレステリック樹脂」ということがある。)を利用したものが知られている(特許文献1参照)。
In the security ink field, special pigments are sometimes used to prevent counterfeiting. As one type of such a special pigment, one using a resin having cholesteric regularity (hereinafter sometimes referred to as “cholesteric resin” as appropriate) is known (see Patent Document 1).
本発明者は、前記の特殊顔料として、コレステリック樹脂を含むフレークに着目した。このフレークを含むセキュリティインクを印刷して当該フレークを含む光学層を形成した場合、通常、その光学層を観察して視認されるフレークの反射色は、観察角度に応じて異なる。ここで、ある層の観察角度とは、その層の厚み方向に対して観察方向がなす角度を表す。よって、例えば、前記の光学層の正面方向(観察角度が0°の方向)において観察される反射色と、前記の光学層の傾斜方向(観察角度が0°より大きく90°未満の方向)において観察される反射色とは、異なることが多い。したがって、このように観察角度に応じて反射色が異なるという特異的な性質を利用して、コレステリック樹脂を含むフレークを特殊顔料として用いることが考えられる。
The present inventor paid attention to flakes containing a cholesteric resin as the special pigment. When the security ink containing the flakes is printed to form an optical layer containing the flakes, the reflection color of the flakes visually recognized by observing the optical layer varies depending on the observation angle. Here, the observation angle of a certain layer represents an angle formed by the observation direction with respect to the thickness direction of the layer. Thus, for example, the reflected color observed in the front direction of the optical layer (observation angle is 0 °) and the inclination direction of the optical layer (observation angle is greater than 0 ° and less than 90 °). The observed reflected color is often different. Therefore, it is conceivable to use flakes containing a cholesteric resin as a special pigment by utilizing the unique property that the reflection color varies depending on the observation angle.
ところで、特殊顔料を含むセキュリティインクを印刷した印刷物としては、証紙、証券、紙幣、カード等のように、様々なものがある。また、これらの印刷物を見る環境は、明るい環境もあれば、暗い環境もありえる。さらに、前記の環境における照明は、配光角度が広い照明もあれば、配光角度が狭い照明もありえる。このように、特殊顔料を含むセキュリティインクが適用される環境は、多様である。したがって、前記の特殊顔料には、多様な照明環境下において、反射色がはっきりと視認できることが要求される。
By the way, various printed materials such as certificate papers, securities, banknotes, cards, and the like are printed as security inks containing special pigments. The environment for viewing these printed materials may be a bright environment or a dark environment. Furthermore, the illumination in the environment described above may include illumination with a wide light distribution angle and illumination with a narrow light distribution angle. As described above, there are various environments to which the security ink containing the special pigment is applied. Therefore, the special pigment is required to have a clearly visible reflected color under various lighting environments.
しかし、コレステリック樹脂を含む従来のフレークは、正面方向及び傾斜方向の両方において反射色をはっきりと視認することは、難しかった。特に、正面方向における観察で反射色がはっきりと視認できる環境であっても、傾斜方向では、反射色をはっきりとは視認できないことが多い。
However, it was difficult for the conventional flakes containing cholesteric resin to clearly see the reflected color in both the front direction and the tilt direction. In particular, even in an environment where the reflected color can be clearly recognized by observation in the front direction, the reflected color cannot often be clearly recognized in the inclined direction.
本発明は、前記の課題に鑑みて創案されたもので、当該フレークを含む層の正面方向及び傾斜方向の両方において反射色をはっきりと視認できるフレーク及びその製造方法;並びに、前記のフレークを含む塗料を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and includes flakes in which the reflected color can be clearly visually recognized in both the front direction and the tilt direction of the layer containing the flakes, and a method for producing the flakes. The object is to provide a paint.
本発明者は、前記の課題を解決するべく鋭意検討を行った。その結果、本発明者は、配向欠陥に起因した光散乱性による所定の範囲のヘイズを有するコレステリック樹脂の層の粉砕片を含むフレークが、前記の課題を解決できることを見い出し、本発明を完成させた。すなわち、本発明は、下記のものを含む。
The present inventor has intensively studied to solve the above problems. As a result, the present inventor found that flakes containing pulverized pieces of a cholesteric resin layer having a predetermined range of haze due to light scattering caused by orientation defects can solve the above-mentioned problems, and completed the present invention. It was. That is, the present invention includes the following.
〔1〕 コレステリック規則性を有する樹脂の層の粉砕片を含み、
前記樹脂の層が、コレステリック規則性が損なわれた配向欠陥を含み、
前記樹脂の層のヘイズが、10%以上60%以下である、フレーク。
〔2〕 前記フレークが、可視域を含む1以上の反射帯域を有する、〔1〕に記載のフレーク。
〔3〕 前記反射帯域1つあたりの帯域幅が、100nm以上である、〔2〕に記載のフレーク。
〔4〕 前記フレークの平均粒径が、1μm以上500μm以下である、〔1〕~〔3〕のいずれかに記載のフレーク。
〔5〕 〔1〕~〔4〕のいずれか一項に記載のフレークの製造方法であって、
コレステリック規則性を有する樹脂の層を形成する工程と、
前記樹脂の層を粉砕する工程と、を含む、フレークの製造方法。
〔6〕 〔1〕~〔4〕のいずれか一項に記載のフレークと、分散媒とを含む、塗料。 [1] A crushed piece of a resin layer having cholesteric regularity,
The resin layer includes orientation defects in which cholesteric regularity is impaired,
The flakes having a haze of the resin layer of 10% to 60%.
[2] The flake according to [1], wherein the flake has one or more reflection bands including a visible range.
[3] The flake according to [2], wherein a bandwidth per one reflection band is 100 nm or more.
[4] The flake according to any one of [1] to [3], wherein an average particle size of the flake is 1 μm or more and 500 μm or less.
[5] A method for producing flakes according to any one of [1] to [4],
Forming a layer of resin having cholesteric regularity;
And a step of pulverizing the resin layer.
[6] A paint comprising the flakes according to any one of [1] to [4] and a dispersion medium.
前記樹脂の層が、コレステリック規則性が損なわれた配向欠陥を含み、
前記樹脂の層のヘイズが、10%以上60%以下である、フレーク。
〔2〕 前記フレークが、可視域を含む1以上の反射帯域を有する、〔1〕に記載のフレーク。
〔3〕 前記反射帯域1つあたりの帯域幅が、100nm以上である、〔2〕に記載のフレーク。
〔4〕 前記フレークの平均粒径が、1μm以上500μm以下である、〔1〕~〔3〕のいずれかに記載のフレーク。
〔5〕 〔1〕~〔4〕のいずれか一項に記載のフレークの製造方法であって、
コレステリック規則性を有する樹脂の層を形成する工程と、
前記樹脂の層を粉砕する工程と、を含む、フレークの製造方法。
〔6〕 〔1〕~〔4〕のいずれか一項に記載のフレークと、分散媒とを含む、塗料。 [1] A crushed piece of a resin layer having cholesteric regularity,
The resin layer includes orientation defects in which cholesteric regularity is impaired,
The flakes having a haze of the resin layer of 10% to 60%.
[2] The flake according to [1], wherein the flake has one or more reflection bands including a visible range.
[3] The flake according to [2], wherein a bandwidth per one reflection band is 100 nm or more.
[4] The flake according to any one of [1] to [3], wherein an average particle size of the flake is 1 μm or more and 500 μm or less.
[5] A method for producing flakes according to any one of [1] to [4],
Forming a layer of resin having cholesteric regularity;
And a step of pulverizing the resin layer.
[6] A paint comprising the flakes according to any one of [1] to [4] and a dispersion medium.
本発明によれば、当該フレークを含む層の正面方向及び傾斜方向の両方において反射色をはっきりと視認できるフレーク及びその製造方法;並びに、前記のフレークを含む塗料;を提供できる。
According to the present invention, it is possible to provide flakes in which the reflected color can be clearly visually recognized in both the front direction and the inclination direction of the layer containing the flakes and a method for producing the flakes, and a paint containing the flakes.
以下、実施形態及び例示物を示して本発明について詳細に説明する。ただし、本発明は、以下に説明する実施形態及び例示物に限定されるものでは無く、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において、任意に変更して実施できる。
Hereinafter, the present invention will be described in detail with reference to embodiments and examples. However, the present invention is not limited to the embodiments and examples described below, and can be implemented with any modifications without departing from the scope of the claims of the present invention and the equivalents thereof.
以下の説明において、ある層の正面方向とは、別に断らない限り、ある層の厚み方向に対して平行な方向を表す。また、ある層の傾斜方向とは、別に断らない限り、ある層の厚み方向に平行でなく垂直でもない方向を表す。
In the following description, the front direction of a certain layer represents a direction parallel to the thickness direction of the certain layer unless otherwise specified. In addition, the inclination direction of a certain layer represents a direction that is neither parallel nor perpendicular to the thickness direction of a certain layer unless otherwise specified.
[1.フレークの構造]
本発明の一実施形態に係るフレークは、コレステリック樹脂の層の粉砕片を含む。コレステリック樹脂とは、上述したように、コレステリック規則性を有する樹脂をいう。 [1. Flakes structure]
The flakes according to one embodiment of the present invention include crushed pieces of a layer of cholesteric resin. The cholesteric resin refers to a resin having cholesteric regularity as described above.
本発明の一実施形態に係るフレークは、コレステリック樹脂の層の粉砕片を含む。コレステリック樹脂とは、上述したように、コレステリック規則性を有する樹脂をいう。 [1. Flakes structure]
The flakes according to one embodiment of the present invention include crushed pieces of a layer of cholesteric resin. The cholesteric resin refers to a resin having cholesteric regularity as described above.
コレステリック規則性とは、ある平面上では分子軸が一定の方向に並んでいるが、それに重なる次の平面では分子軸の方向が少し角度をなしてずれ、さらに次の平面ではさらに角度がずれるというように、重なって配列している平面を順次透過して進むに従って当該平面中の分子軸の角度がずれて(ねじれて)いく構造である。即ち、ある樹脂の層の内部の分子がコレステリック規則性を有する場合、分子は、層の内部のある第一の平面上では分子軸が一定の方向になるよう並ぶ。層の内部の、当該第一の平面に重なる次の第二の平面では、分子軸の方向が、第一の平面における分子軸の方向と、少し角度をなしてずれる。当該第二の平面にさらに重なる次の第三の平面では、分子軸の方向が、第二の平面における分子軸の方向から、さらに角度をなしてずれる。このように、重なって配列している平面において、当該平面中の分子軸の角度が順次ずれて(ねじれて)いく。このように分子軸の方向がねじれてゆく構造は、通常はらせん構造であり、光学的にカイラルな構造である。
Cholesteric regularity means that the molecular axes are aligned in a certain direction on a certain plane, but the direction of the molecular axis is slightly shifted in the next plane that overlaps it, and the angle is further shifted in the next plane. In this way, the structure is such that the molecular axes in the planes are displaced (twisted) as they sequentially pass through the overlapping planes. That is, when the molecules inside a certain resin layer have cholesteric regularity, the molecules are aligned so that the molecular axis is in a certain direction on a certain first plane inside the layer. In the next second plane inside the layer that overlaps the first plane, the direction of the molecular axis deviates slightly from the direction of the molecular axis in the first plane. In the next third plane that further overlaps the second plane, the direction of the molecular axis deviates further from the direction of the molecular axis in the second plane. In this way, in the planes arranged in an overlapping manner, the angles of the molecular axes in the planes are sequentially shifted (twisted). Such a structure in which the direction of the molecular axis is twisted is usually a helical structure and an optically chiral structure.
コレステリック樹脂の層として、本実施形態では、配向欠陥を含むものを用いる。配向欠陥とは、コレステリック樹脂のコレステリック規則性が損なわれた部分をいう。このような配向欠陥においては、分子は、通常、周囲の分子とは異なる方向に配向している。そのため、このような配向欠陥では、一般に、屈折、反射、回折等の光学現象が生じる。よって、配向欠陥を含むコレステリック樹脂は、光を散乱させる散乱性を有する。
As the cholesteric resin layer, in this embodiment, a layer containing an alignment defect is used. An orientation defect refers to a portion where the cholesteric regularity of the cholesteric resin is impaired. In such orientation defects, the molecules are usually oriented in a different direction from the surrounding molecules. For this reason, such orientation defects generally cause optical phenomena such as refraction, reflection, and diffraction. Therefore, the cholesteric resin containing orientation defects has a scattering property that scatters light.
配向欠陥による散乱性により、コレステリック樹脂の層は、特定の範囲のヘイズを有する。コレステリック樹脂の層の具体的なヘイズの範囲は、通常10%以上、好ましくは15%以上、より好ましくは20%以上であり、通常60%以下、好ましくは55%以下、より好ましくは50%以下である。コレステリック樹脂の層のヘイズが、前記範囲の下限値以上である場合に、フレークを含む光学層の正面方向及び傾斜方向の両方においてフレークの反射色の視認性を向上させることができる。また、コレステリック樹脂の層のヘイズが、前記範囲の上限値以下である場合に、ブルーシフトの程度を大きくできるので、フレークを含む光学層の観察角度に応じた反射色の違いを大きくできる。
The layer of cholesteric resin has a specific range of haze due to scattering properties due to orientation defects. The specific haze range of the cholesteric resin layer is usually 10% or more, preferably 15% or more, more preferably 20% or more, and usually 60% or less, preferably 55% or less, more preferably 50% or less. It is. When the haze of the cholesteric resin layer is not less than the lower limit of the above range, the visibility of the reflected color of the flakes can be improved in both the front direction and the tilt direction of the optical layer containing the flakes. Further, when the haze of the cholesteric resin layer is not more than the upper limit of the above range, the degree of blue shift can be increased, so that the difference in reflected color according to the observation angle of the optical layer containing flakes can be increased.
コレステリック樹脂の層のヘイズは、例えば、コレステリック樹脂の層の製造方法に含まれる配向処理の条件を調整する方法;コレステリック樹脂の層の厚みを調整する方法;などによって調整できる。具体的には、配向処理の際に配向温度が低いほど、配向欠陥が生じ易いので、ヘイズを高めることができる。また、コレステリック樹脂が厚いほど、配向欠陥が生じ易いので、ヘイズを高めることができる。
The haze of the cholesteric resin layer can be adjusted by, for example, a method of adjusting the alignment treatment conditions included in the method of manufacturing the cholesteric resin layer; a method of adjusting the thickness of the cholesteric resin layer; Specifically, the lower the alignment temperature during the alignment treatment, the easier it is for alignment defects to occur, so haze can be increased. In addition, the thicker the cholesteric resin, the easier it is for alignment defects to occur, so haze can be increased.
コレステリック樹脂の層のヘイズは、粉砕前のコレステリック樹脂の層を用いて、ヘイズメーターにより測定できる。具体的な測定方法は、実施例において説明した方法を採用できる。
The haze of the cholesteric resin layer can be measured with a haze meter using the cholesteric resin layer before pulverization. As a specific measuring method, the method described in the embodiment can be adopted.
コレステリック樹脂の層は、通常、円偏光分離機能を有する。すなわち、コレステリック樹脂の層は、右円偏光及び左円偏光のうちの一方の円偏光を透過させ、他方の円偏光の一部又は全部を反射させる性質を有する円偏光分離膜として機能できる。コレステリック樹脂の層における反射は、円偏光を、そのキラリティを維持したまま反射する。以下の説明において、このように円偏光分離機能が発揮される波長範囲を、「反射帯域」ということがある。この反射帯域を調整することにより、その反射帯域に応じた色の円偏光をフレークは反射できる。よって、反射帯域を調整することにより、フレークの反射色を調整することが可能である。
The layer of cholesteric resin usually has a circularly polarized light separation function. That is, the cholesteric resin layer can function as a circularly polarized light separation film having a property of transmitting one circularly polarized light of right circularly polarized light and left circularly polarized light and reflecting part or all of the other circularly polarized light. Reflection in the cholesteric resin layer reflects circularly polarized light while maintaining its chirality. In the following description, the wavelength range in which the circularly polarized light separation function is exhibited in this way may be referred to as “reflection band”. By adjusting this reflection band, the flakes can reflect circularly polarized light of a color corresponding to the reflection band. Therefore, the reflection color of the flakes can be adjusted by adjusting the reflection band.
円偏光分離機能を発揮する具体的な波長は、一般に、コレステリック樹脂の層におけるらせん構造のピッチに依存する。らせん構造のピッチとは、らせん構造において分子軸の方向が平面を進むに従って少しずつ角度がずれていき、そして再びもとの分子軸方向に戻るまでの平面法線方向の距離である。このらせん構造のピッチの大きさを変えることによって、円偏光分離機能を発揮する波長を変えることができる。
The specific wavelength that exhibits the circularly polarized light separation function generally depends on the pitch of the helical structure in the cholesteric resin layer. The pitch of the helical structure is the distance in the plane normal direction until the angle of the molecular axis in the helical structure gradually shifts as it advances along the plane and then returns to the original molecular axis direction again. By changing the pitch of the helical structure, the wavelength at which the circularly polarized light separating function is exhibited can be changed.
例えば、液晶化合物を用いて形成されるコレステリック樹脂の層では、螺旋構造において分子軸が捩れる時の回転軸を表す螺旋軸と、コレステリック樹脂の層の法線とが平行である場合、螺旋構造のピッチpと反射される円偏光の波長λとは、通常、式(X)および式(Y)の関係を有する。
For example, in a cholesteric resin layer formed using a liquid crystal compound, when the helical axis representing the rotation axis when the molecular axis is twisted in the helical structure and the normal of the cholesteric resin layer are parallel, the helical structure The pitch p of the circularly polarized light and the wavelength λ of the circularly polarized light to be reflected usually have the relationship of the formula (X) and the formula (Y).
式(X):λc=n×p×cosθ
式(Y):no×p×cosθ≦λ≦ne×p×cosθ Formula (X): λ c = n × p × cos θ
Formula (Y): n o × p × cos θ ≦ λ ≦ n e × p × cos θ
式(Y):no×p×cosθ≦λ≦ne×p×cosθ Formula (X): λ c = n × p × cos θ
Formula (Y): n o × p × cos θ ≦ λ ≦ n e × p × cos θ
式(X)及び式(Y)中、λcは反射帯域の中心波長(以下、「反射中心波長」ということがある。)を表し、noは液晶化合物の短軸方向の屈折率を表し、neは前記液晶化合物の長軸方向の屈折率を表し、nは(ne+no)/2を表し、pは螺旋構造のピッチを表し、θは光の入射角(面の法線との間になす角度)を表す。
In formula (X) and formula (Y), lambda c is the center wavelength of the reflection band (hereinafter sometimes referred to as "reflection center wavelength".) Represent, n o denotes the refractive index along the short axis of the liquid crystal compound , n e represents the refractive index of the long axis direction of the liquid crystal compounds, n represents an (n e + n o) / 2, p represents the pitch of the helical structure, theta is a normal angle of incidence (the plane of the light Angle).
したがって、反射中心波長λcは、コレステリック樹脂の層における重合体の螺旋構造のピッチpに依存する。この螺旋構造のピッチpを変えることによって、反射帯域を変えることができる。よって、螺旋構造のピッチpは、コレステリック樹脂の層に反射させたい円偏光の波長に応じて設定することが好ましい。ピッチpを調整する方法としては、例えば、特開2009-300662号公報に記載の方法を用いうる。具体例を挙げると、コレステリック液晶組成物において、カイラル剤の種類を調整したり、カイラル剤の量を調整したりする方法が挙げられる。
Accordingly, the reflection center wavelength λ c depends on the pitch p of the helical structure of the polymer in the cholesteric resin layer. By changing the pitch p of the spiral structure, the reflection band can be changed. Therefore, the pitch p of the spiral structure is preferably set according to the wavelength of circularly polarized light that is desired to be reflected by the cholesteric resin layer. As a method for adjusting the pitch p, for example, a method described in Japanese Patent Application Laid-Open No. 2009-300662 can be used. Specific examples include a method of adjusting the type of chiral agent and the amount of chiral agent in the cholesteric liquid crystal composition.
また、前記の式(X)及び式(Y)から分かるように、反射帯域は、光の入射角に応じて変化する。よって、コレステリック樹脂の層には、通常、入射角が大きくなるほど反射帯域が低波長側にシフトするブルーシフトと呼ばれる現象が生じる。
Further, as can be seen from the above formulas (X) and (Y), the reflection band varies depending on the incident angle of light. Therefore, a phenomenon called a blue shift in which the reflection band shifts to the lower wavelength side as the incident angle increases usually occurs in the cholesteric resin layer.
コレステリック樹脂の層としては、例えば、(i)らせん構造のピッチの大きさを段階的に変化させたコレステリック樹脂の層、及び、(ii)らせん構造のピッチの大きさを連続的に変化させたコレステリック樹脂の層、等が挙げられる。
Examples of the cholesteric resin layer include (i) a cholesteric resin layer in which the pitch of the helical structure is changed stepwise, and (ii) a continuous change in the pitch of the helical structure. Examples thereof include a cholesteric resin layer.
(i)らせん構造のピッチを段階的に変化させたコレステリック樹脂の層は、例えば、らせん構造のピッチが異なる複数のコレステリック樹脂の層を積層することによって得ることができる。積層は、予めらせん構造のピッチが異なる複数のコレステリック樹脂の層を作製した後に、各層を粘着剤又は接着剤を介して固着することによって行なうことができる。または、積層は、あるコレステリック樹脂の層を形成した上に、別のコレステリック樹脂の層を順次形成していくことによって行なうこともできる。
(I) The cholesteric resin layer in which the pitch of the helical structure is changed stepwise can be obtained, for example, by laminating a plurality of cholesteric resin layers having different helical structure pitches. Lamination can be performed by previously preparing a plurality of cholesteric resin layers having different helical structure pitches, and then fixing each layer via an adhesive or an adhesive. Alternatively, the lamination may be performed by forming a layer of a cholesteric resin and then sequentially forming another cholesteric resin layer.
(ii)らせん構造のピッチの大きさを連続的に変化させたコレステリック樹脂の層は、例えば、液晶組成物の層に、1回以上の活性エネルギー線の照射処理及び/又は加温処理を含む広帯域化処理を施した後で、その液晶組成物の層を硬化させて得ることができる。前記の広帯域化処理によれば、らせん構造のピッチを厚み方向において連続的に変化させることができるので、コレステリック樹脂の層の反射帯域を拡張することができ、そのため、広帯域化処理と呼ばれる。
(Ii) The cholesteric resin layer in which the pitch of the spiral structure is continuously changed includes, for example, one or more active energy ray irradiation treatments and / or heating treatments for the liquid crystal composition layer. After performing the broadening treatment, the liquid crystal composition layer can be cured. According to the band broadening process, since the pitch of the spiral structure can be continuously changed in the thickness direction, the reflection band of the cholesteric resin layer can be expanded, and is therefore called a band broadening process.
コレステリック樹脂の層は、1層のみからなる単層構造の層でもよく、2層以上の層を含む複層構造の層であってもよい。コレステリック樹脂の層に含まれる層の数は、製造のし易さの観点から、1層~100層であることが好ましく、1層~20層であることがより好ましい。
The layer of cholesteric resin may be a single-layer structure composed of only one layer, or may be a multilayer structure including two or more layers. The number of layers contained in the cholesteric resin layer is preferably 1 to 100 layers, more preferably 1 to 20 layers, from the viewpoint of ease of production.
コレステリック樹脂の層の屈折率異方性Δnは、作製するフレークの反射帯域に応じて適宜選択することができる。例えば、反射帯域が狭く色純度の高いフレークを作製する場合は、0.2以下の屈折率異方性Δnをもつコレステリック樹脂の層を用いるのが好ましい。また、混色や多色さらには可視域全域で反射帯域をもつフレークを作製する場合は、0.2以上の大きい屈折率異方性Δnを持つコレステリック樹脂の層が好ましい。ただし、反射率を確保するために必要な厚みを薄くして、厚みによるコレステリック樹脂の層のヘイズの調整を容易にする観点では、コレステリック樹脂の層の屈折率異方性Δnは0.05以上が好ましい。屈折率異方性Δnが0.30以上であると、紫外線吸収スペクトルの長波長側の吸収端が可視域に及ぶ場合があるが、該スペクトルの吸収端が可視域に及んでも所望する光学的性能に悪影響を及ぼさない限り、使用可能である。ここで、屈折率異方性Δnは、セナルモン法により測定しうる。屈折率異方性Δnの上限は、例えば、0.25以下でありうる。
The refractive index anisotropy Δn of the cholesteric resin layer can be appropriately selected according to the reflection band of the flakes to be produced. For example, when producing flakes having a narrow reflection band and high color purity, it is preferable to use a cholesteric resin layer having a refractive index anisotropy Δn of 0.2 or less. In the case of producing flakes having a reflection band in a mixed color, multiple colors, or in the entire visible range, a layer of cholesteric resin having a large refractive index anisotropy Δn of 0.2 or more is preferable. However, the refractive index anisotropy Δn of the cholesteric resin layer is 0.05 or more from the viewpoint of facilitating the adjustment of the haze of the cholesteric resin layer according to the thickness by reducing the thickness necessary for ensuring the reflectance. Is preferred. When the refractive index anisotropy Δn is 0.30 or more, the absorption edge on the long wavelength side of the ultraviolet absorption spectrum may extend to the visible range. It can be used as long as the performance is not adversely affected. Here, the refractive index anisotropy Δn can be measured by the Senarmon method. The upper limit of the refractive index anisotropy Δn can be, for example, 0.25 or less.
本実施形態に係るフレークが上述したコレステリック樹脂の層の粉砕片を含むので、当該フレークは、通常、コレステリック樹脂の層を含む。以下の説明においては、適宜、粉砕される前のコレステリック樹脂の層を「コレステリック原反層」、フレークに包含される粉砕後のコレステリック樹脂の層を「コレステリック粉砕層」と呼び分けることがある。
Since the flakes according to this embodiment include the above-mentioned pulverized pieces of the cholesteric resin layer, the flakes usually include a cholesteric resin layer. In the following description, the layer of cholesteric resin before being pulverized may be referred to as a “cholesteric raw fabric layer”, and the layer of cholesteric resin after pulverization included in the flakes may be appropriately referred to as a “cholesteric pulverized layer”.
コレステリック粉砕層を含むので、フレークは、通常、単一又は異なる複数の反射帯域を有する。なかでも、フレークは、可視域を含む1以上の反射帯域を有することが好ましい。可視域とは、具体的には、通常400nm以上800nm以下の波長域をいう。また、反射帯域が可視域を含むとは、反射帯域が可視域の少なくとも一部を含むことをいう。さらに、反射帯域の具体的な波長範囲は、分光器(例えば、日本分光株式会社「V570」)を使用して測定される反射スペクトルにおいて、反射ピークの半値幅に相当する波長範囲(即ち、強度がピーク強度の50%以上となる波長範囲)として測定できる。前記の測定は、通常、光の入射角5°、検出角0°の測定条件で行われる。このように可視域に反射帯域を有するフレークは、肉眼により当該フレークの反射光を視認できる。よって、このようなフレークは、広範な用途への適用が可能である。
Since the cholesteric ground layer is included, the flakes usually have a single or different multiple reflection bands. Especially, it is preferable that a flake has one or more reflection bands including a visible region. Specifically, the visible range usually refers to a wavelength range of 400 nm to 800 nm. Further, the phrase “the reflection band includes the visible range” means that the reflection band includes at least a part of the visible range. Further, the specific wavelength range of the reflection band is a wavelength range corresponding to the half-value width of the reflection peak in the reflection spectrum measured using a spectroscope (for example, JASCO Corporation “V570”) (that is, intensity) Is a wavelength range in which the peak intensity is 50% or more of the peak intensity). The above measurement is usually performed under measurement conditions with a light incident angle of 5 ° and a detection angle of 0 °. Thus, flakes having a reflection band in the visible range can visually recognize the reflected light of the flakes with the naked eye. Therefore, such flakes can be applied to a wide range of uses.
フレークが可視域に反射帯域を有する場合、可視域にある反射帯域の数は、1でもよく、2以上でもよい。例えば、帯域幅の狭い反射帯域を1つだけ可視域に有するフレークは、その反射帯域に対応した単色(例えば、赤色、緑色、青色等)の反射光を得ることができる。また、例えば、可視域全体を覆うほど帯域幅の広い反射帯域を1つだけ可視域に有するフレークは、その反射帯域に対応した混色(通常は、銀色)の反射光を得ることができる。さらに、例えば、2以上の反射帯域を可視域に有するフレークは、それらの反射帯域それぞれに対応する色の混色の反射光を得ることができる。
When flakes have a reflection band in the visible range, the number of reflection bands in the visible range may be 1 or 2 or more. For example, flakes having only one reflection band with a narrow bandwidth in the visible range can obtain reflected light of a single color (for example, red, green, blue, etc.) corresponding to the reflection band. Further, for example, flakes having only one reflection band having a wide bandwidth in the visible range so as to cover the entire visible range can obtain mixed color (usually silver) reflected light corresponding to the reflection band. Further, for example, flakes having two or more reflection bands in the visible range can obtain mixed color reflected light corresponding to each of the reflection bands.
前記の反射帯域1つ当たりの帯域幅は、好ましくは100nm以上、好ましくは200nm以上、特に好ましくは400nm以上である。特に、フレークは、可視域において前記の帯域幅を有する反射帯域を有することがより好ましい。これにより、フレーク単体当たりの反射光量を上げることが可能となり、より意匠性及び視認性に優れた塗料を得ることができる。反射帯域1つ当たりの帯域幅の上限は、300nm以下でありうる。
The bandwidth per one reflection band is preferably 100 nm or more, preferably 200 nm or more, and particularly preferably 400 nm or more. In particular, the flakes more preferably have a reflection band having the above bandwidth in the visible range. Thereby, it is possible to increase the amount of reflected light per flake, and it is possible to obtain a paint with more excellent design and visibility. The upper limit of the bandwidth per reflection band can be 300 nm or less.
反射帯域の帯域幅は、分光器(例えば、日本分光株式会社「V570」)を使用して反射スペクトルを測定し、その反射スペクトルに基づいて算出できる。より具体的には、測定した反射スペクトルにおける反射ピークの半値幅の値を、反射帯域の帯域幅の値とすることができる。前記の測定は、通常、光の入射角5°、検出角0°の測定条件で行われる。
The bandwidth of the reflection band can be calculated based on the reflection spectrum obtained by measuring the reflection spectrum using a spectroscope (for example, JASCO Corporation “V570”). More specifically, the half-value width of the reflection peak in the measured reflection spectrum can be used as the bandwidth value of the reflection band. The above measurement is usually performed under measurement conditions with a light incident angle of 5 ° and a detection angle of 0 °.
上述したように、コレステリック樹脂を含むコレステリック粉砕層では、通常、ブルーシフトが生じる。よって、フレークを観察した場合に、通常は、観察角度に応じて異なる反射色が視認される。一般には、観察角度が小さい場合に視認される色が、観察角度が大きくなるにしたがい、波長が短い側の色に変化していく。例えば、観察角度が小さい場合に緑色が視認される場合は、観察角度が大きくなるにしたがい青色が視認される。ただし、青色領域と赤外領域とに反射帯域を持つフレークの場合、ブルーシフトとは逆のレッドシフトとよばれる色変化を生じることが可能である。このようなレッドシフトでは、例えば、観察角度が小さい場合には、青色が視認でされるが、観察角度が大きくなるに従い赤色が視認される。
As described above, a blue shift usually occurs in a cholesteric pulverized layer containing a cholesteric resin. Therefore, when observing flakes, different reflection colors are usually visually recognized according to the observation angle. In general, the color visually recognized when the observation angle is small is changed to a color having a shorter wavelength as the observation angle is increased. For example, when green is visually recognized when the observation angle is small, blue is visually recognized as the observation angle increases. However, in the case of flakes having reflection bands in the blue region and the infrared region, it is possible to cause a color change called a red shift opposite to the blue shift. In such a red shift, for example, when the observation angle is small, blue is visually recognized, but as the observation angle increases, red is visually recognized.
フレークは、コレステリック粉砕層に組み合わせて、更に任意の層を含んでいてもよい。例えば、コレステリック原反層及び任意の層を組み合わせて含む複層フィルムを粉砕してフレークを製造した場合には、そのフレークは、コレステリック粉砕層及び任意の層を含みうる。
The flakes may further include an optional layer in combination with the cholesteric pulverized layer. For example, when a flake is produced by pulverizing a multilayer film containing a combination of a cholesteric raw fabric layer and an arbitrary layer, the flake may include a cholesteric pulverized layer and an optional layer.
フレークは、コレステリック原反層を粉砕した粉砕片を含むので、通常、薄片形状を有する。このような薄片形状を有するフレークは、当該フレークを含む塗料を塗工して層を得た場合に、塗工時のせん断力により、当該層の層平面とコレステリック粉砕層の層平面とが平行になるように配向する傾向がある。
Flakes usually have a flake shape because they contain crushed pieces obtained by pulverizing a cholesteric raw fabric layer. When flakes having such a flake shape are obtained by applying a paint containing the flakes, the layer plane of the layer and the layer plane of the cholesteric pulverized layer are parallel due to the shearing force during coating. Tends to be oriented.
フレークの平均粒径は、フレークの反射色の視認性を高める観点から、好ましくは1μm以上であり、また、塗料の塗工性を良好にする観点から、好ましくは500μm以下、より好ましくは100μm以下である。
フレークの平均粒径は、実施例に記載の方法によって測定できる。 The average particle diameter of the flakes is preferably 1 μm or more from the viewpoint of improving the visibility of the reflected color of the flakes, and preferably 500 μm or less, more preferably 100 μm or less from the viewpoint of improving the coating property of the paint. It is.
The average particle size of the flakes can be measured by the method described in the examples.
フレークの平均粒径は、実施例に記載の方法によって測定できる。 The average particle diameter of the flakes is preferably 1 μm or more from the viewpoint of improving the visibility of the reflected color of the flakes, and preferably 500 μm or less, more preferably 100 μm or less from the viewpoint of improving the coating property of the paint. It is.
The average particle size of the flakes can be measured by the method described in the examples.
[2.フレークの製造方法]
本実施形態に係るフレークは、通常、コレステリック原反層を形成する工程と;前記コレステリック原反層を粉砕する工程と;を含む製造方法によって、製造できる。 [2. Flakes manufacturing method]
The flakes according to this embodiment can be usually produced by a production method including a step of forming a cholesteric raw fabric layer; and a step of pulverizing the cholesteric raw fabric layer.
本実施形態に係るフレークは、通常、コレステリック原反層を形成する工程と;前記コレステリック原反層を粉砕する工程と;を含む製造方法によって、製造できる。 [2. Flakes manufacturing method]
The flakes according to this embodiment can be usually produced by a production method including a step of forming a cholesteric raw fabric layer; and a step of pulverizing the cholesteric raw fabric layer.
コレステリック原反層を形成する工程では、例えば、コレステリック原反層形成用の適切な支持体上にコレステリック液晶組成物の層を設け、前記層を硬化してコレステリック原反層を得る。便宜上「液晶組成物」と称する材料は、2以上の物質の混合物のみならず、単一の物質からなる材料をも包含する。また、コレステリック液晶組成物とは、当該液晶組成物に含まれる液晶化合物を配向させた場合に、液晶化合物がコレステリック規則性を有した液晶相(コレステリック液晶相)を呈することができる組成物をいう。
In the step of forming the cholesteric raw fabric layer, for example, a cholesteric liquid crystal composition layer is provided on a suitable support for forming the cholesteric raw fabric layer, and the layer is cured to obtain a cholesteric raw fabric layer. For convenience, the material referred to as a “liquid crystal composition” includes not only a mixture of two or more substances but also a material composed of a single substance. The cholesteric liquid crystal composition refers to a composition that can exhibit a liquid crystal phase (cholesteric liquid crystal phase) having cholesteric regularity when the liquid crystal compound contained in the liquid crystal composition is aligned. .
コレステリック液晶組成物としては、液晶化合物を含み、更に必要に応じて任意の成分を含む液晶組成物を用いることができる。液晶化合物としては、高分子化合物である液晶化合物、及び重合性液晶化合物を用いることができる。高い熱安定性を得る上では、重合性液晶化合物を用いることが好ましい。重合性液晶化合物を、コレステリック規則性を呈した状態で重合させることにより、コレステリック液晶組成物の層を硬化させ、コレステリック規則性を呈したまま硬化した非液晶性のコレステリック樹脂の層を得ることができる。コレステリック液晶組成物としては、例えば、国際公開第2016/002765号に記載されたものを用いることができる。
As the cholesteric liquid crystal composition, a liquid crystal composition containing a liquid crystal compound and further containing an optional component as necessary can be used. As the liquid crystal compound, a liquid crystal compound that is a polymer compound and a polymerizable liquid crystal compound can be used. In order to obtain high thermal stability, it is preferable to use a polymerizable liquid crystal compound. By polymerizing the polymerizable liquid crystal compound in a state exhibiting cholesteric regularity, the layer of the cholesteric liquid crystal composition can be cured to obtain a layer of a non-liquid crystalline cholesteric resin cured while exhibiting the cholesteric regularity. it can. As the cholesteric liquid crystal composition, for example, those described in International Publication No. 2016/002765 can be used.
支持体としては、通常、コレステリック液晶組成物の層を支持できる平坦な支持面を有する任意の部材を用いることができる。このような支持体として、通常は、樹脂フィルムを用いる。また、支持体の支持面には、コレステリック液晶組成物の層における液晶化合物の配向を促進するため、配向規制力を付与するための処理が施されていてもよい。ここで、ある面の配向規制力とは、コレステリック液晶組成物中の液晶化合物を配向させうる、その面の性質をいう。支持面に配向規制力を付与するための前記の処理としては、例えば、ラビング処理、配向膜形成処理、延伸処理、イオンビーム配向処理等が挙げられる。
As the support, any member having a flat support surface capable of supporting the cholesteric liquid crystal composition layer can be used. As such a support, a resin film is usually used. Further, the support surface of the support may be subjected to a treatment for imparting an alignment regulating force in order to promote the alignment of the liquid crystal compound in the cholesteric liquid crystal composition layer. Here, the alignment regulating force of a certain surface means the property of the surface capable of aligning the liquid crystal compound in the cholesteric liquid crystal composition. Examples of the treatment for imparting the alignment regulating force to the support surface include rubbing treatment, alignment film formation treatment, stretching treatment, ion beam alignment treatment, and the like.
通常は、コレステリック液晶組成物を支持体の支持面に塗工することにより、コレステリック液晶組成物の層を設ける。コレステリック液晶組成物の層の厚みは、目的とするコレステリック原反層の厚みに応じて設定しうる。また、コレステリック液晶組成物の層の厚みは、コレステリック原反層のヘイズに応じて設定することが好ましい。一般に、コレステリック液晶組成物の層が厚いほど、厚いコレステリック原反層が得られる。そして、コレステリック原反層が厚いほど、コレステリック原反層のヘイズを高めることができる。したがって、支持面に形成するコレステリック液晶組成物の層の厚みの調整により、コレステリック原反層のヘイズを調整することができる。
Usually, a layer of the cholesteric liquid crystal composition is provided by coating the cholesteric liquid crystal composition on the support surface of the support. The layer thickness of the cholesteric liquid crystal composition can be set according to the thickness of the target cholesteric raw fabric layer. The thickness of the cholesteric liquid crystal composition layer is preferably set according to the haze of the cholesteric raw fabric layer. In general, the thicker the cholesteric liquid crystal composition layer is, the thicker the cholesteric raw fabric layer is obtained. And the haze of a cholesteric original fabric layer can be raised, so that a cholesteric original fabric layer is thick. Accordingly, the haze of the cholesteric raw fabric layer can be adjusted by adjusting the thickness of the cholesteric liquid crystal composition layer formed on the support surface.
コレステリック液晶組成物の塗工方法は、任意である。塗工方法の例としては、カーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法、グラビアコーティング法、ダイコーティング法、ギャップコーティング法、及びディッピング法が挙げられる。
The coating method of the cholesteric liquid crystal composition is arbitrary. Examples of coating methods include curtain coating, extrusion coating, roll coating, spin coating, dip coating, bar coating, spray coating, slide coating, print coating, gravure coating, and die coating. Method, gap coating method, and dipping method.
コレステリック液晶組成物の層を設けた後で、必要に応じて、コレステリック液晶組成物の層に配向処理を施してもよい。配向処理は、通常、コレステリック液晶組成物の層を、所定の配向温度に加温することによって行われる。このような配向処理を施すことにより、コレステリック液晶組成物に含まれる液晶化合物が配向し、コレステリック規則性を呈した状態となる。
After providing the layer of cholesteric liquid crystal composition, if necessary, the layer of cholesteric liquid crystal composition may be subjected to an alignment treatment. The alignment treatment is usually performed by heating a layer of the cholesteric liquid crystal composition to a predetermined alignment temperature. By performing such an alignment treatment, the liquid crystal compound contained in the cholesteric liquid crystal composition is aligned and becomes a state exhibiting cholesteric regularity.
配向温度は、液晶化合物の配向が進行する範囲で、任意に設定できる。ただし、配向温度は、コレステリック原反層のヘイズに応じて設定することが好ましい。一般に、配向温度が低いほど、コレステリック原反層のヘイズを高めることができる。したがって、配向温度の調整によって、コレステリック原反層のヘイズを調整することができる。具体的な配向温度は、コレステリック液晶組成物の組成に応じて調整されるが、例えば、50℃~150℃の範囲で、所望の値のヘイズが得られるように設定される。
The alignment temperature can be arbitrarily set within the range in which the alignment of the liquid crystal compound proceeds. However, the orientation temperature is preferably set according to the haze of the cholesteric raw fabric layer. Generally, the haze of a cholesteric original fabric layer can be raised, so that orientation temperature is low. Therefore, the haze of the cholesteric original fabric layer can be adjusted by adjusting the orientation temperature. The specific alignment temperature is adjusted according to the composition of the cholesteric liquid crystal composition, and is set, for example, within a range of 50 ° C. to 150 ° C. so as to obtain a desired haze.
配向処理では、通常、コレステリック液晶組成物の層を、所定の時間だけ、前記の配向温度に加温する。この際の処理時間は、液晶化合物の配向が進行する範囲で任意に設定でき、例えば、0.5分間~10分間でありうる。
In the alignment treatment, the layer of the cholesteric liquid crystal composition is usually heated to the alignment temperature for a predetermined time. The treatment time at this time can be arbitrarily set within the range in which the alignment of the liquid crystal compound proceeds, and can be, for example, 0.5 minutes to 10 minutes.
ただし、コレステリック液晶組成物に含まれる液晶化合物の配向は、コレステリック液晶組成物の塗工により直ちに達成される場合がありえる。そのため、配向処理は、必ずしもコレステリック液晶組成物の層に施さなくてもよい。
However, the alignment of the liquid crystal compound contained in the cholesteric liquid crystal composition may be immediately achieved by application of the cholesteric liquid crystal composition. Therefore, the alignment treatment is not necessarily performed on the layer of the cholesteric liquid crystal composition.
液晶化合物を配向させた後で、コレステリック液晶組成物の層を硬化させて、コレステリック原反層が得られる。この工程では、通常、コレステリック液晶組成物に含まれる重合性液晶化合物等の重合成分を重合させて、コレステリック液晶組成物の層を硬化させる。重合方法としては、コレステリック液晶組成物に含まれる成分の性質に適合した方法を選択しうる。重合方法としては、例えば、活性エネルギー線を照射する方法、及び、熱重合法が挙げられる。中でも、室温で重合反応を進行させられるので、活性エネルギー線を照射する方法が好ましい。ここで、照射される活性エネルギー線には、可視光線、紫外線、及び赤外線等の光、並びに電子線等の任意のエネルギー線が含まれうる。また、活性エネルギー線の照射によってコレステリック液晶組成物の層を硬化させる場合、照射される活性エネルギー線の強度は、例えば、50mJ/cm2~10,000mJ/cm2でありうる。
After aligning the liquid crystal compound, the cholesteric liquid crystal composition layer is cured to obtain a cholesteric raw fabric layer. In this step, usually, a polymerization component such as a polymerizable liquid crystal compound contained in the cholesteric liquid crystal composition is polymerized to cure the layer of the cholesteric liquid crystal composition. As the polymerization method, a method suitable for the properties of the components contained in the cholesteric liquid crystal composition can be selected. Examples of the polymerization method include a method of irradiating active energy rays and a thermal polymerization method. Among them, the method of irradiating active energy rays is preferable because the polymerization reaction can proceed at room temperature. Here, the irradiated active energy rays can include light such as visible light, ultraviolet light, and infrared light, and arbitrary energy rays such as electron beams. Further, when curing the layer of cholesteric liquid crystal composition by irradiation of an active energy ray, intensity of the active energy ray to be irradiated may be, for example, 50mJ / cm 2 ~ 10,000mJ / cm 2.
また、液晶化合物を配向させた後、コレステリック液晶組成物の層を硬化させる前に、コレステリック液晶組成物の層に広帯域化処理を施してもよい。このような広帯域化処理は、例えば、1回以上の活性エネルギー線の照射処理と加温処理との組み合わせにより行うことができる。広帯域化処理における照射処理は、例えば、波長200nm~500nmの光を0.01秒~3分照射することにより行うことができる。この際、照射される光のエネルギーは、例えば、0.01mJ/cm2~50mJ/cm2としうる。また、加熱処理は、例えば、好ましくは40℃以上、より好ましくは50℃以上、好ましくは200℃以下、より好ましくは140℃以下の温度に加熱することにより行うことができる。この際の加熱時間は、好ましくは1秒以上、より好ましくは5秒以上、また、通常3分以下、好ましくは120秒以下の時間としうる。このような広帯域化処理を行うことにより、らせん構造のピッチの大きさを連続的に大きく変化させて、広い反射帯域を得ることができる。
Further, after aligning the liquid crystal compound, the layer of the cholesteric liquid crystal composition may be subjected to a broadening treatment before the layer of the cholesteric liquid crystal composition is cured. Such a broadening process can be performed, for example, by a combination of one or more active energy ray irradiation processes and a heating process. The irradiation treatment in the broadening treatment can be performed, for example, by irradiating light with a wavelength of 200 nm to 500 nm for 0.01 second to 3 minutes. At this time, the energy of the irradiated light can be, for example, 0.01 mJ / cm 2 to 50 mJ / cm 2 . The heat treatment can be performed, for example, by heating to a temperature of preferably 40 ° C. or higher, more preferably 50 ° C. or higher, preferably 200 ° C. or lower, more preferably 140 ° C. or lower. The heating time at this time is preferably 1 second or longer, more preferably 5 seconds or longer, and usually 3 minutes or shorter, preferably 120 seconds or shorter. By performing such a broadening process, it is possible to obtain a wide reflection band by continuously changing the pitch of the helical structure greatly.
前記の活性エネルギー線の照射は、空気下で行ってもよく、又はその工程の一部又は全部を、酸素濃度を制御した雰囲気(例えば、窒素雰囲気下)で行ってもよい。
The irradiation of the active energy ray may be performed in the air, or a part or all of the process may be performed in an atmosphere in which the oxygen concentration is controlled (for example, in a nitrogen atmosphere).
前記のコレステリック液晶組成物の塗工及び硬化の工程は、1回に限られず、塗工及び硬化を複数回繰り返して行ってもよい。これにより、2層以上を含む厚いコレステリック樹脂層が得られる。
The step of coating and curing the cholesteric liquid crystal composition is not limited to once, and the coating and curing may be repeated a plurality of times. Thereby, a thick cholesteric resin layer containing two or more layers is obtained.
前述した方法によってコレステリック原反層を製造する場合、コレステリック規則性におけるねじれ方向は、使用するカイラル剤の構造により適宜選択できる。例えば、ねじれを右方向とする場合には、右旋性を付与するカイラル剤を含むコレステリック液晶組成物を用い、ねじれ方向を左方向とする場合には、左旋性を付与するカイラル剤を含むコレステリック液晶組成物を用いる。
In the case of producing a cholesteric raw fabric layer by the method described above, the twist direction in the cholesteric regularity can be appropriately selected depending on the structure of the chiral agent to be used. For example, when the twist is set to the right direction, a cholesteric liquid crystal composition containing a chiral agent that imparts dextrorotation is used. When the twist direction is set to the left direction, a cholesteric containing a chiral agent that imparts levorotation is used. A liquid crystal composition is used.
コレステリック原反層の厚さは、十分な反射率を得る上で、0.1μm以上であることが好ましく、1μm以上であることがより好ましい。また、コレステリック原反層の透明性を得る上で、20μm以下であることが好ましく、10μm以下であることがより好ましい。
The thickness of the cholesteric raw fabric layer is preferably 0.1 μm or more, and more preferably 1 μm or more, in order to obtain sufficient reflectance. Moreover, when obtaining transparency of a cholesteric original fabric layer, it is preferable that it is 20 micrometers or less, and it is more preferable that it is 10 micrometers or less.
前記の工程によれば、通常、支持体上にコレステリック原反層が得られる。そこで、コレステリック原反層を粉砕する工程の前に、必要に応じて、支持体を剥離する工程を行ってもよい。剥離方法は任意であり、例えば、特開2015-27743号公報に記載の方法を用いてもよい。
According to the above process, a cholesteric raw fabric layer is usually obtained on the support. Then, you may perform the process of peeling a support body before the process of grind | pulverizing a cholesteric original fabric layer as needed. The peeling method is arbitrary, and for example, the method described in JP-A-2015-27743 may be used.
コレステリック原反層を用意した後で、コレステリック原反層を粉砕する工程を行う。コレステリック原反層を粉砕することにより、コレステリック原反層の粉砕片としてのコレステリック粉砕層を含むフレークが得られる。粉砕方法は、任意である。粉砕装置としては、例えば、ハンマークラッシャー、カッターミル、ハンマーミル、ビーズミル、振動ミル、流星型ボールミル、サンドミル、ボールミル、ロールミル、三本ロールミル、ジェットミル、高速回転式粉砕機、微粉砕機・解砕整粒機、ナノジェットマイザー等が挙げられる。
After preparing the cholesteric raw fabric layer, a step of pulverizing the cholesteric raw fabric layer is performed. By pulverizing the cholesteric original fabric layer, flakes containing a cholesteric pulverized layer as a pulverized piece of the cholesteric original fabric layer are obtained. The grinding method is arbitrary. Examples of the crusher include a hammer crusher, a cutter mill, a hammer mill, a bead mill, a vibration mill, a meteor ball mill, a sand mill, a ball mill, a roll mill, a three-roll mill, a jet mill, a high-speed rotary crusher, a fine crusher and a crusher. Examples thereof include a particle sizer and a nano jet mizer.
上述したフレークの製造方法は、更に、任意の工程を含んでいてもよい。任意の工程としては、例えば、フレークを分級する工程などが挙げられる。
The above-described flake production method may further include an optional step. Examples of the optional step include a step of classifying flakes.
[3.塗料]
上述したフレークは、例えば、塗料用の顔料として用いることができる。このような塗料は、前記のフレークを含む流体状の材料である。ここで、流体状とは、低粘度の液体状態だけでなく、高粘度のゲル状態も含む。塗料の具体的な粘度は、その塗料の用途に応じて適切に調整しうる。塗料が含むフレークは、1種類でもよく、2種類以上でもよい。 [3. paint]
The flakes described above can be used, for example, as a pigment for paint. Such a paint is a fluid material containing the flakes. Here, the fluid state includes not only a low-viscosity liquid state but also a high-viscosity gel state. The specific viscosity of the paint can be appropriately adjusted according to the use of the paint. The flakes contained in the paint may be one type or two or more types.
上述したフレークは、例えば、塗料用の顔料として用いることができる。このような塗料は、前記のフレークを含む流体状の材料である。ここで、流体状とは、低粘度の液体状態だけでなく、高粘度のゲル状態も含む。塗料の具体的な粘度は、その塗料の用途に応じて適切に調整しうる。塗料が含むフレークは、1種類でもよく、2種類以上でもよい。 [3. paint]
The flakes described above can be used, for example, as a pigment for paint. Such a paint is a fluid material containing the flakes. Here, the fluid state includes not only a low-viscosity liquid state but also a high-viscosity gel state. The specific viscosity of the paint can be appropriately adjusted according to the use of the paint. The flakes contained in the paint may be one type or two or more types.
通常、塗料は、フレークに組み合わせて分散媒を含む。この塗料において、フレークは、通常、前記の分散媒中に分散している。分散媒としては、例えば、水等の無機溶媒を用いてもよいが、通常は有機溶媒を用いる。有機溶媒の例を挙げると、ケトン化合物、アルキルハライド化合物、アミド化合物、スルホキシド化合物、ヘテロ環化合物、炭化水素化合物、エステル化合物、およびエーテル化合物などの有機溶媒が挙げられる。これらの中でも、環境への負荷を考慮した場合にはケトン化合物が好ましい。また、分散媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Normally, the paint contains a dispersion medium in combination with flakes. In this coating material, the flakes are usually dispersed in the dispersion medium. For example, an inorganic solvent such as water may be used as the dispersion medium, but an organic solvent is usually used. Examples of the organic solvent include organic solvents such as ketone compounds, alkyl halide compounds, amide compounds, sulfoxide compounds, heterocyclic compounds, hydrocarbon compounds, ester compounds, and ether compounds. Among these, a ketone compound is preferable in consideration of environmental load. Moreover, a dispersion medium may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
分散媒の量は、フレーク100重量部に対して、好ましくは40重量部以上、より好ましくは60重量部以上、特に好ましくは80重量部以上であり、好ましくは1000重量部以下、より好ましくは800重量部以下、特に好ましくは600重量部以下である。分散媒の量を前記範囲とすることで、塗料の塗工性を良好にすることができる。
The amount of the dispersion medium is preferably 40 parts by weight or more, more preferably 60 parts by weight or more, particularly preferably 80 parts by weight or more, preferably 1000 parts by weight or less, more preferably 800 parts by weight with respect to 100 parts by weight of the flakes. The amount is not more than parts by weight, particularly preferably not more than 600 parts by weight. By making the amount of the dispersion medium within the above range, the coating property of the paint can be improved.
また、塗料は、分散媒の乾燥後にフレークを結着させるためのバインダーを含んでいてもよい。バインダーとしては、通常、重合体を用いる。その重合体の例としては、ポリエステル系ポリマー、アクリル系ポリマー、ポリスチレン系ポリマー、ポリアミド系ポリマー、ポリウレタン系ポリマー、ポリオレフィン系ポリマー、ポリカーボネート系ポリマー、ポリビニル系ポリマーなどが挙げられる。バインダーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Further, the paint may contain a binder for binding flakes after the dispersion medium is dried. As the binder, a polymer is usually used. Examples of the polymer include polyester polymers, acrylic polymers, polystyrene polymers, polyamide polymers, polyurethane polymers, polyolefin polymers, polycarbonate polymers, polyvinyl polymers, and the like. A binder may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
バインダーの量は、フレーク100重量部に対して、好ましくは20重量部以上、より好ましくは40重量部以上、特に好ましくは60重量部以上であり、好ましくは1000重量部以下、より好ましくは800重量部以下、特に好ましくは600重量部以下である。バインダーの量を前記範囲とすることで、塗料の塗工性を良好にすることができる。また、分散媒の乾燥後にフレークを安定して結着することができる。
The amount of the binder is preferably 20 parts by weight or more, more preferably 40 parts by weight or more, particularly preferably 60 parts by weight or more, preferably 1000 parts by weight or less, more preferably 800 parts by weight with respect to 100 parts by weight of the flakes. Parts or less, particularly preferably 600 parts by weight or less. By making the amount of the binder within the above range, the coating property of the paint can be improved. Further, the flakes can be stably bound after the dispersion medium is dried.
また、前記の塗料は、バインダーとしての重合体の代わりに、又は重合体と組み合わせて、その重合体の単量体を含んでいてもよい。この場合、塗料を適切な部材に塗工し、乾燥させた後で単量体を重合させることにより、フレーク及びバインダーを含む光学層を製造できる。さらに、単量体を含む塗料は、更に重合開始剤を含むことが好ましい。
Further, the coating material may contain a monomer of the polymer instead of the polymer as the binder or in combination with the polymer. In this case, an optical layer containing flakes and a binder can be produced by coating the paint on an appropriate member and drying the polymer to polymerize the monomer. Furthermore, it is preferable that the coating material containing a monomer further contains a polymerization initiator.
塗料は、フレーク、分散媒及びバインダー以外に、任意の成分を含みうる。任意の成分としては、例えば、酸化防止剤、紫外線吸収剤、光安定剤、ブルーイング剤等が挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
The paint may contain any component other than the flakes, the dispersion medium, and the binder. Examples of optional components include antioxidants, ultraviolet absorbers, light stabilizers, and bluing agents. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
[4.フレークの使用方法及び効果]
前記のフレークは、通常、当該フレークを含む光学層の製造に用いられる。このような光学層は、塗料を適切な部材に塗工し、塗工により形成された塗料の層を硬化させて、製造できる。塗料の層の硬化は、例えば、塗料の層を乾燥させたり、塗料の層に含まれる単量体を重合させたりする方法によって、達成できる。 [4. How to use and effect of flakes]
The said flake is normally used for manufacture of the optical layer containing the said flake. Such an optical layer can be manufactured by applying a coating material to an appropriate member and curing the coating layer formed by coating. Curing of the paint layer can be achieved by, for example, drying the paint layer or polymerizing monomers contained in the paint layer.
前記のフレークは、通常、当該フレークを含む光学層の製造に用いられる。このような光学層は、塗料を適切な部材に塗工し、塗工により形成された塗料の層を硬化させて、製造できる。塗料の層の硬化は、例えば、塗料の層を乾燥させたり、塗料の層に含まれる単量体を重合させたりする方法によって、達成できる。 [4. How to use and effect of flakes]
The said flake is normally used for manufacture of the optical layer containing the said flake. Such an optical layer can be manufactured by applying a coating material to an appropriate member and curing the coating layer formed by coating. Curing of the paint layer can be achieved by, for example, drying the paint layer or polymerizing monomers contained in the paint layer.
この光学層は、前記のフレークを含む。よって、光学層に光が照射されると、コレステリック樹脂の円偏光分離機能に対応した反射帯域の円偏光が、フレークによって反射される。したがって、観察者は、前記のように反射した円偏光の波長に応じた反射色を視認できる。特に、上述した実施形態に係るフレークを用いた場合、光学層の正面方向及び傾斜方向の両方において、観察者は反射色をはっきりと視認できる。
This optical layer includes the flakes described above. Therefore, when the optical layer is irradiated with light, the circularly polarized light in the reflection band corresponding to the circularly polarized light separation function of the cholesteric resin is reflected by the flakes. Therefore, the observer can visually recognize the reflected color corresponding to the wavelength of the circularly polarized light reflected as described above. In particular, when the flakes according to the above-described embodiments are used, the observer can clearly see the reflected color in both the front direction and the tilt direction of the optical layer.
上述したように正面方向及び傾斜方向の両方において高い視認性が達成される仕組みは、下記のとおりであるものと、本発明者は推察する。ただし、下記に説明する仕組みは、本発明の技術的範囲を制限するものでは無い。
As described above, the present inventors infer that the mechanism for achieving high visibility in both the front direction and the tilt direction is as follows. However, the mechanism described below does not limit the technical scope of the present invention.
図1~図3は、本発明の一実施形態に係るフレーク100を含む光学層10の一例を模式的に示す断面図である。
図1~図3に示すように、フレーク100及びバインダー200を含む光学層10の例を考える。ここで示す例では、フレーク100は、光学層10の層平面に平行に配向しており、したがって、そのフレーク100が含むコレステリック粉砕層110の層平面と光学層10の層平面とは平行になっている。また、このコレステリック粉砕層110は、上述した特定の範囲のヘイズを有するコレステリック原反層(図示せず。)を粉砕して得られたものであり、配向欠陥120を含む。このようなフレーク100に光が入射すると、コレステリック樹脂の円偏光分離機能に対応した反射帯域の円偏光が、コレステリック粉砕層110で反射する。 1 to 3 are cross-sectional views schematically showing an example of anoptical layer 10 including flakes 100 according to an embodiment of the present invention.
Consider an example of anoptical layer 10 that includes flakes 100 and a binder 200 as shown in FIGS. In the example shown here, the flake 100 is oriented parallel to the layer plane of the optical layer 10, and therefore the layer plane of the cholesteric pulverized layer 110 included in the flake 100 and the layer plane of the optical layer 10 are parallel. ing. The cholesteric pulverized layer 110 is obtained by pulverizing the cholesteric raw fabric layer (not shown) having the above-mentioned specific range of haze, and includes orientation defects 120. When light enters such flakes 100, circularly polarized light in the reflection band corresponding to the circularly polarized light separation function of the cholesteric resin is reflected by the cholesteric pulverized layer 110.
図1~図3に示すように、フレーク100及びバインダー200を含む光学層10の例を考える。ここで示す例では、フレーク100は、光学層10の層平面に平行に配向しており、したがって、そのフレーク100が含むコレステリック粉砕層110の層平面と光学層10の層平面とは平行になっている。また、このコレステリック粉砕層110は、上述した特定の範囲のヘイズを有するコレステリック原反層(図示せず。)を粉砕して得られたものであり、配向欠陥120を含む。このようなフレーク100に光が入射すると、コレステリック樹脂の円偏光分離機能に対応した反射帯域の円偏光が、コレステリック粉砕層110で反射する。 1 to 3 are cross-sectional views schematically showing an example of an
Consider an example of an
図1及び図2に示すように、フレーク100が受ける光量は、通常、光の入射角に応じて異なる。よって、図1に示すように入射角が小さい正面方向の光A1を、フレーク100は、相対的に大きな光量で受ける傾向がある。他方、図2に示すように、入射角が大きい傾斜方向の光A2を、フレーク100は、相対的に小さな光量で受ける傾向がある。したがって、仮に配向欠陥120が無い場合には、光学層10の正面方向では大きな光量の反射が生じるが、光学層10の傾斜方向では小さい光量の反射が生じる。よって、従来のフレークを用いた場合には、傾斜方向から見たフレークの反射色を視認し難かった。
As shown in FIGS. 1 and 2, the amount of light received by the flake 100 usually varies depending on the incident angle of light. Therefore, as shown in FIG. 1, the flake 100 tends to receive the light A1 in the front direction with a small incident angle with a relatively large amount of light. On the other hand, as shown in FIG. 2, the flake 100 tends to receive the light A2 in the tilt direction with a large incident angle with a relatively small amount of light. Therefore, if there is no alignment defect 120, a large amount of light is reflected in the front direction of the optical layer 10, but a small amount of light is reflected in the tilt direction of the optical layer 10. Therefore, when the conventional flakes are used, it is difficult to visually recognize the reflected color of the flakes viewed from the tilt direction.
これに対し、本実施形態のようにフレーク100が配向欠陥120を含んでいると、図3に示すように、配向欠陥120が光の散乱を生じる。よって、正面方向において入射した光A1の一部が、散乱の作用によって進行方向を変化させられて、反射後に傾斜方向へと出て行く。したがって、傾斜方向において観察者が視ることができる光量を多くできるので、傾斜方向での反射色の視認性を高めることができる。そのため、光学層10の正面方向及び傾斜方向の両方において、観察者は反射色をはっきりと視認できる。
On the other hand, when the flake 100 includes the alignment defect 120 as in the present embodiment, the alignment defect 120 causes light scattering as shown in FIG. Therefore, a part of the light A1 incident in the front direction is changed in the traveling direction by the action of scattering and exits in the tilt direction after reflection. Therefore, since the amount of light that can be seen by the observer in the tilt direction can be increased, the visibility of the reflected color in the tilt direction can be improved. Therefore, in both the front direction and the inclination direction of the optical layer 10, the observer can clearly see the reflected color.
図3では、配向欠陥120で散乱された光が、その配向欠陥120を含むフレーク100で反射された例を示したが、配向欠陥120で散乱された光は、その配向欠陥120を含むフレーク100とは別のフレーク(図示せず。)によって反射されることも有りえる。また、図3では、配向欠陥120での散乱によって、フレーク100で反射される前に光A1の進行方向が変化させられた例を示したが、フレーク100によって反射された後の円偏光としての光A1が、配向欠陥120での散乱によって、進行方向が変化させられることもありえる。
Although FIG. 3 shows an example in which the light scattered by the alignment defect 120 is reflected by the flake 100 including the alignment defect 120, the light scattered by the alignment defect 120 is flake 100 including the alignment defect 120. It may be reflected by another flake (not shown). 3 shows an example in which the traveling direction of the light A1 is changed before being reflected by the flake 100 due to scattering by the alignment defect 120. However, as circularly polarized light after being reflected by the flake 100, FIG. The traveling direction of the light A <b> 1 may be changed by scattering at the alignment defect 120.
さらに、フレーク100が含むコレステリック粉砕層110の層平面が、光学層10の層平面に平行でない場合も、前記と同じ仕組みで効果が得られると考えられる。すなわち、散乱の作用によれば、光の進行方向による光量のバラツキを抑制することが可能であるので、観察角度に依らず観察者は反射色をはっきりと視認できる。
Furthermore, even when the layer plane of the cholesteric pulverized layer 110 included in the flake 100 is not parallel to the layer plane of the optical layer 10, it is considered that the effect can be obtained by the same mechanism as described above. In other words, the scattering action can suppress variations in the amount of light depending on the traveling direction of the light, so that the observer can clearly see the reflected color regardless of the observation angle.
光学層においては、一般に、フレークが全体として一定の方向に配向している。よって、そのフレークに含まれるコレステリック粉砕層の層平面も、通常は、全体として一定の方向に配向している。多くの場合、フレークは、光学層の層平面と平行に配向し、したがって、コレステリック粉砕層の層平面も、光学層の層平面と平行になっていることが多い。このようにフレークが全体として一定の方向に配向している場合、光学層を観察した観察者は、光学層の全体として均一なフレークの反射色を視認することができる。
In the optical layer, the flakes are generally oriented in a certain direction as a whole. Therefore, the layer plane of the cholesteric pulverized layer contained in the flake is usually oriented in a certain direction as a whole. In many cases, the flakes are oriented parallel to the layer plane of the optical layer, and therefore the layer plane of the cholesteric grinding layer is often also parallel to the layer plane of the optical layer. Thus, when the flakes are oriented in a certain direction as a whole, an observer who observes the optical layer can visually recognize the reflected flake color uniformly as the whole optical layer.
また、フレークでの反射色はブルーシフトの影響により変化できるので、当該フレークを含む光学層を観察して視認される反射色は、通常、その光学層に対する観察角度に応じて変化できる。一般には、光学層の厚み方向に対してなす観察角度が0°である正面方向に比べ、前記の観察角度が大きい傾斜方向の方が、より青色に近い反射色が視認される傾向がある。
In addition, since the reflection color on the flakes can be changed by the influence of blue shift, the reflection color visually observed by observing the optical layer containing the flakes can usually be changed according to the observation angle with respect to the optical layer. In general, compared to the front direction in which the observation angle formed with respect to the thickness direction of the optical layer is 0 °, the reflected color closer to blue tends to be visually recognized in the inclined direction where the observation angle is larger.
[5.用途]
上述したフレーク及び塗料は、例えば、偽造防止のためのセキュリティ製品として用いることができる。 [5. Application]
The flakes and paints described above can be used, for example, as security products for preventing forgery.
上述したフレーク及び塗料は、例えば、偽造防止のためのセキュリティ製品として用いることができる。 [5. Application]
The flakes and paints described above can be used, for example, as security products for preventing forgery.
例えば、前記のフレーク又は塗料を用いて形成された光学層は、上述したように、観察角度に応じて視認される反射色が変化する。よって、印刷等の方法によって物品に光学層を形成した場合、その光学層を観察し、顔料の色が観察角度に応じて変化すれば、その物品が真正なものであると判定できる。
For example, as described above, the reflection color of the optical layer formed using the flakes or paint changes depending on the observation angle. Therefore, when an optical layer is formed on an article by a method such as printing, the article can be determined to be authentic if the optical layer is observed and the color of the pigment changes according to the observation angle.
また、例えば、フレークが含むコレステリック粉砕層の円偏光分離機能を利用して、真正性の判定を行ってもよい。フレークは、通常、右円偏光及び左円偏光の一方のみを反射する。よって、フレークを含む光学層は、右円偏光板を用いて観察した場合と、左円偏光板を用いて観察した場合とで、異なる像が視認される。よって、このように右円偏光板を用いて観察される像と左円偏光板を用いて観察される像とが異なっていれば、その光学層が形成された物品が真正なものであると判定できる。
Further, for example, the authenticity may be determined using the circularly polarized light separation function of the cholesteric pulverized layer included in the flakes. The flakes usually reflect only one of right circular polarization and left circular polarization. Therefore, different images are visually recognized when the optical layer including flakes is observed using the right circularly polarizing plate and when observed using the left circularly polarizing plate. Therefore, if the image observed using the right circularly polarizing plate is different from the image observed using the left circularly polarizing plate, the article on which the optical layer is formed is authentic. Can be judged.
前記のような光学層を形成する対象としての対象物に制限は無く、広範な物品を採用できる。対象物の例としては、衣類等の布製品;カバン、靴等の皮革製品;ネジ等の金属製品;値札等の紙製品;タイヤ等のゴム製品;が挙げられるが、対象物はこれらの例に限定されない。また、前記の光学層は、意匠性又は情報性を付与するため、図案、数字、記号、識別子(バーコート等)のような所定の平面形状で形成してもよい。
There is no limitation on the object as an object for forming the optical layer as described above, and a wide variety of articles can be adopted. Examples of objects include cloth products such as clothing; leather products such as bags and shoes; metal products such as screws; paper products such as price tags; and rubber products such as tires. It is not limited to. The optical layer may be formed in a predetermined planar shape such as a design, a number, a symbol, or an identifier (such as a bar coat) in order to impart designability or information.
以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に説明する実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the embodiments described below, and can be implemented with any modifications without departing from the scope of the claims of the present invention and its equivalent scope.
In the following description, “%” and “part” representing amounts are based on weight unless otherwise specified. In addition, the operations described below were performed under normal temperature and normal pressure conditions unless otherwise specified.
以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the embodiments described below, and can be implemented with any modifications without departing from the scope of the claims of the present invention and its equivalent scope.
In the following description, “%” and “part” representing amounts are based on weight unless otherwise specified. In addition, the operations described below were performed under normal temperature and normal pressure conditions unless otherwise specified.
[評価方法]
〔ヘイズの測定方法〕
平板状のガラス板の片面に、コロナ処理を施した。また、実施例又は比較例で製造したコレステリック原反層の表面に、コロナ処理を施した。ガラス板のコロナ処理面と、コレステリック原反層のコロナ処理面とを接触させ、温度40℃で5MPaの圧力でプレスして、貼り合わせた。その後、支持体を剥離して、「ガラス板/コレステリック原反層」の層構成を有する試料を得た。この試料を用いて、ヘイズメーター(日本電色株式会社製「NDH-5000」)により、コレステリック原反層のヘイズを測定した。 [Evaluation methods]
[Measurement method of haze]
One side of the flat glass plate was subjected to corona treatment. Moreover, the corona treatment was given to the surface of the cholesteric original fabric layer manufactured by the Example or the comparative example. The corona-treated surface of the glass plate and the corona-treated surface of the cholesteric raw fabric layer were brought into contact, pressed at a temperature of 40 ° C. and a pressure of 5 MPa, and bonded together. Thereafter, the support was peeled off to obtain a sample having a layer configuration of “glass plate / cholesteric raw fabric layer”. Using this sample, the haze of the cholesteric raw fabric layer was measured with a haze meter (“NDH-5000” manufactured by Nippon Denshoku Co., Ltd.).
〔ヘイズの測定方法〕
平板状のガラス板の片面に、コロナ処理を施した。また、実施例又は比較例で製造したコレステリック原反層の表面に、コロナ処理を施した。ガラス板のコロナ処理面と、コレステリック原反層のコロナ処理面とを接触させ、温度40℃で5MPaの圧力でプレスして、貼り合わせた。その後、支持体を剥離して、「ガラス板/コレステリック原反層」の層構成を有する試料を得た。この試料を用いて、ヘイズメーター(日本電色株式会社製「NDH-5000」)により、コレステリック原反層のヘイズを測定した。 [Evaluation methods]
[Measurement method of haze]
One side of the flat glass plate was subjected to corona treatment. Moreover, the corona treatment was given to the surface of the cholesteric original fabric layer manufactured by the Example or the comparative example. The corona-treated surface of the glass plate and the corona-treated surface of the cholesteric raw fabric layer were brought into contact, pressed at a temperature of 40 ° C. and a pressure of 5 MPa, and bonded together. Thereafter, the support was peeled off to obtain a sample having a layer configuration of “glass plate / cholesteric raw fabric layer”. Using this sample, the haze of the cholesteric raw fabric layer was measured with a haze meter (“NDH-5000” manufactured by Nippon Denshoku Co., Ltd.).
〔フレークの平均粒径の測定方法〕
フレークの平均粒径は、次の方法により測定した。まず、目開きの異なるいくつかの篩を用いて、その目開きを有する篩を通過するフレークの割合を測定した。そして、目開きの大きさと、その目開きを有する篩を通過するフレークの割合から、フレークの粒径分布を積算重量百分率で表した。この粒径分布において、その重量の積算値が50%の粒径を、平均粒径として採用した。 [Method for measuring average particle size of flakes]
The average particle size of the flakes was measured by the following method. First, using several sieves having different openings, the ratio of flakes passing through the sieve having the openings was measured. The particle size distribution of the flakes was expressed as an integrated weight percentage from the size of the openings and the ratio of the flakes passing through the sieve having the openings. In this particle size distribution, a particle size having an integrated value of 50% by weight was adopted as the average particle size.
フレークの平均粒径は、次の方法により測定した。まず、目開きの異なるいくつかの篩を用いて、その目開きを有する篩を通過するフレークの割合を測定した。そして、目開きの大きさと、その目開きを有する篩を通過するフレークの割合から、フレークの粒径分布を積算重量百分率で表した。この粒径分布において、その重量の積算値が50%の粒径を、平均粒径として採用した。 [Method for measuring average particle size of flakes]
The average particle size of the flakes was measured by the following method. First, using several sieves having different openings, the ratio of flakes passing through the sieve having the openings was measured. The particle size distribution of the flakes was expressed as an integrated weight percentage from the size of the openings and the ratio of the flakes passing through the sieve having the openings. In this particle size distribution, a particle size having an integrated value of 50% by weight was adopted as the average particle size.
〔反射帯域の波長範囲及び帯域幅の測定方法〕
前記の〔ヘイズの測定方法〕で用意した試料を用いて、コレステリック原反層の反射スペクトルを、分光器(日本分光株式会社「V570」)を使用して測定した。前記の測定は、光の入射角5°、検出角0°の測定条件で行った。測定された反射スペクトルにおいて、反射率が30%以上となる反射ピークを、反射帯域を示す反射ピークとして特定した。この反射ピークの半値幅に相当する波長範囲を、反射帯域として求めた。また、反射ピークの半値幅の値を、反射帯域の帯域幅の値として求めた。 [Method of measuring wavelength range and bandwidth of reflection band]
Using the sample prepared in the above [Method for measuring haze], the reflection spectrum of the cholesteric raw fabric layer was measured using a spectroscope (JASCO Corporation "V570"). The measurement was performed under the measurement conditions of a light incident angle of 5 ° and a detection angle of 0 °. In the measured reflection spectrum, a reflection peak having a reflectance of 30% or more was specified as a reflection peak indicating a reflection band. A wavelength range corresponding to the half width of this reflection peak was determined as a reflection band. In addition, the half-width value of the reflection peak was determined as the bandwidth value of the reflection band.
前記の〔ヘイズの測定方法〕で用意した試料を用いて、コレステリック原反層の反射スペクトルを、分光器(日本分光株式会社「V570」)を使用して測定した。前記の測定は、光の入射角5°、検出角0°の測定条件で行った。測定された反射スペクトルにおいて、反射率が30%以上となる反射ピークを、反射帯域を示す反射ピークとして特定した。この反射ピークの半値幅に相当する波長範囲を、反射帯域として求めた。また、反射ピークの半値幅の値を、反射帯域の帯域幅の値として求めた。 [Method of measuring wavelength range and bandwidth of reflection band]
Using the sample prepared in the above [Method for measuring haze], the reflection spectrum of the cholesteric raw fabric layer was measured using a spectroscope (JASCO Corporation "V570"). The measurement was performed under the measurement conditions of a light incident angle of 5 ° and a detection angle of 0 °. In the measured reflection spectrum, a reflection peak having a reflectance of 30% or more was specified as a reflection peak indicating a reflection band. A wavelength range corresponding to the half width of this reflection peak was determined as a reflection band. In addition, the half-width value of the reflection peak was determined as the bandwidth value of the reflection band.
〔フレークの反射色の評価方法〕
実施例又は比較例で製造した光学層を、目視観察した。この観察は、(1)白色蛍光灯の照明下、及び(2)自動車のルームランプ下で、それぞれ行った。さらに、前記の観察は、(i)光学層の正面方向、及び(ii)光学層の傾斜方向とで、それぞれ行った。観察されるフレークの反射色に応じて、下記の基準に基づいて、評価を行った。
「A」:はっきりと鮮やかな反射色が認識できた。
「B」:はっきりではないが、反射色自体が認識できた。
「C」:反射色をかろうじて認識できた。
「D」:反射色を認識できなかった。 [Evaluation method of flake reflection color]
The optical layers produced in the examples or comparative examples were visually observed. This observation was performed under (1) illumination of a white fluorescent lamp and (2) under a room lamp of an automobile. Furthermore, the above observation was performed in (i) the front direction of the optical layer and (ii) the tilt direction of the optical layer. The evaluation was performed based on the following criteria according to the reflected color of the observed flakes.
“A”: A clear and vivid reflected color could be recognized.
“B”: Although not clear, the reflected color itself could be recognized.
“C”: The reflected color was barely recognized.
“D”: The reflected color could not be recognized.
実施例又は比較例で製造した光学層を、目視観察した。この観察は、(1)白色蛍光灯の照明下、及び(2)自動車のルームランプ下で、それぞれ行った。さらに、前記の観察は、(i)光学層の正面方向、及び(ii)光学層の傾斜方向とで、それぞれ行った。観察されるフレークの反射色に応じて、下記の基準に基づいて、評価を行った。
「A」:はっきりと鮮やかな反射色が認識できた。
「B」:はっきりではないが、反射色自体が認識できた。
「C」:反射色をかろうじて認識できた。
「D」:反射色を認識できなかった。 [Evaluation method of flake reflection color]
The optical layers produced in the examples or comparative examples were visually observed. This observation was performed under (1) illumination of a white fluorescent lamp and (2) under a room lamp of an automobile. Furthermore, the above observation was performed in (i) the front direction of the optical layer and (ii) the tilt direction of the optical layer. The evaluation was performed based on the following criteria according to the reflected color of the observed flakes.
“A”: A clear and vivid reflected color could be recognized.
“B”: Although not clear, the reflected color itself could be recognized.
“C”: The reflected color was barely recognized.
“D”: The reflected color could not be recognized.
〔色変化の評価方法〕
実施例又は比較例で製造した光学層を、白色蛍光灯の照明下で、目視観察した。この目視観察は、最初は(i)光学層の正面方向において行い、その後、観察角度を大きくして(ii)光学層の傾斜方向において行った。このように観察方向を光学層の正面方向から傾斜方向へと変化させた場合に生じる反射色の色変化(ブルーシフト)に応じて、下記の基準に基づいて、評価を行った。
「A」:観察角度が大きくなることで、反射色が急激にはっきりと変化したことが、認識できた。
「B」:観察角度が大きくなることで、反射色が急激にではないがはっきりと変化したことが、認識できた。
「C」:観察角度が大きくなることで、反射色が変化したことが、かろうじて認識できた。
「D」:観察角度が大きくしても、反射色の変化が緩やかであり、色変化が認識できなかった。 [Evaluation method of color change]
The optical layer produced in the example or the comparative example was visually observed under illumination of a white fluorescent lamp. This visual observation was initially performed (i) in the front direction of the optical layer, and thereafter with a larger observation angle (ii) in the tilt direction of the optical layer. Thus, evaluation was performed based on the following criteria according to the color change (blue shift) of the reflected color that occurs when the observation direction is changed from the front direction of the optical layer to the tilt direction.
“A”: It was recognized that the reflected color changed sharply and clearly as the observation angle increased.
“B”: It was recognized that the reflected color changed clearly but not suddenly as the observation angle increased.
“C”: It was barely recognized that the reflected color was changed by increasing the observation angle.
“D”: Even when the observation angle was large, the change in the reflected color was slow, and the color change could not be recognized.
実施例又は比較例で製造した光学層を、白色蛍光灯の照明下で、目視観察した。この目視観察は、最初は(i)光学層の正面方向において行い、その後、観察角度を大きくして(ii)光学層の傾斜方向において行った。このように観察方向を光学層の正面方向から傾斜方向へと変化させた場合に生じる反射色の色変化(ブルーシフト)に応じて、下記の基準に基づいて、評価を行った。
「A」:観察角度が大きくなることで、反射色が急激にはっきりと変化したことが、認識できた。
「B」:観察角度が大きくなることで、反射色が急激にではないがはっきりと変化したことが、認識できた。
「C」:観察角度が大きくなることで、反射色が変化したことが、かろうじて認識できた。
「D」:観察角度が大きくしても、反射色の変化が緩やかであり、色変化が認識できなかった。 [Evaluation method of color change]
The optical layer produced in the example or the comparative example was visually observed under illumination of a white fluorescent lamp. This visual observation was initially performed (i) in the front direction of the optical layer, and thereafter with a larger observation angle (ii) in the tilt direction of the optical layer. Thus, evaluation was performed based on the following criteria according to the color change (blue shift) of the reflected color that occurs when the observation direction is changed from the front direction of the optical layer to the tilt direction.
“A”: It was recognized that the reflected color changed sharply and clearly as the observation angle increased.
“B”: It was recognized that the reflected color changed clearly but not suddenly as the observation angle increased.
“C”: It was barely recognized that the reflected color was changed by increasing the observation angle.
“D”: Even when the observation angle was large, the change in the reflected color was slow, and the color change could not be recognized.
[実施例1]
(1-1.コレステリック液晶組成物の製造)
下記式(X1)で表される屈折率異方性Δn0.24の化合物25.5部、下記式(Y1)で表される重合性の液晶化合物11部、カイラル剤(BASF社製「LC756」)2.3部、重合開始剤(チバスペシャルティケミカルズ社製「イルガキュアOXE02」)1.2部、界面活性剤(ネオス社製「フタージェント209F」)0.04部、及び溶媒としてシクロペンタノン60部を混合して、コレステリック液晶組成物を調製した。 [Example 1]
(1-1. Production of cholesteric liquid crystal composition)
25.5 parts of a compound having a refractive index anisotropy Δn 0.24 represented by the following formula (X1), 11 parts of a polymerizable liquid crystal compound represented by the following formula (Y1), a chiral agent (“LC756” manufactured by BASF Corporation) ) 2.3 parts, 1.2 parts of a polymerization initiator (“Irgacure OXE02” manufactured by Ciba Specialty Chemicals), 0.04 part of a surfactant (“Futergent 209F” manufactured by Neos), and cyclopentanone 60 as a solvent The cholesteric liquid crystal composition was prepared by mixing the parts.
(1-1.コレステリック液晶組成物の製造)
下記式(X1)で表される屈折率異方性Δn0.24の化合物25.5部、下記式(Y1)で表される重合性の液晶化合物11部、カイラル剤(BASF社製「LC756」)2.3部、重合開始剤(チバスペシャルティケミカルズ社製「イルガキュアOXE02」)1.2部、界面活性剤(ネオス社製「フタージェント209F」)0.04部、及び溶媒としてシクロペンタノン60部を混合して、コレステリック液晶組成物を調製した。 [Example 1]
(1-1. Production of cholesteric liquid crystal composition)
25.5 parts of a compound having a refractive index anisotropy Δn 0.24 represented by the following formula (X1), 11 parts of a polymerizable liquid crystal compound represented by the following formula (Y1), a chiral agent (“LC756” manufactured by BASF Corporation) ) 2.3 parts, 1.2 parts of a polymerization initiator (“Irgacure OXE02” manufactured by Ciba Specialty Chemicals), 0.04 part of a surfactant (“Futergent 209F” manufactured by Neos), and cyclopentanone 60 as a solvent The cholesteric liquid crystal composition was prepared by mixing the parts.
前記の式(X1)で表される化合物は、特許第5365519号公報に記載された方法に従い製造したものを使用した。また、前記の式(Y1)で表される化合物は、特許第4054392号公報に記載された方法に従い製造したものを使用した。
As the compound represented by the formula (X1), a compound produced according to the method described in Japanese Patent No. 5365519 was used. Moreover, what was manufactured according to the method described in the patent 4054392 was used for the compound represented by said Formula (Y1).
(1-2.円偏光分離膜の製造)
支持体として、片面に易接着処理面を有するポリエステルフィルム(東洋紡製「コスモシャインA4100」、厚み100μm)を用意した。この支持体の易接着処理面とは反対側の面に、ラビング処理を施した。その後、このラビング処理面に、コレステリック液晶組成物を♯12のワイヤーバーを使用して塗工し、液晶組成物の層を形成した。 (1-2. Production of circularly polarized light separation membrane)
As a support, a polyester film (“Cosmo Shine A4100” manufactured by Toyobo,thickness 100 μm) having an easy adhesion treatment surface on one side was prepared. A rubbing treatment was performed on the surface of the support opposite to the easy adhesion treatment surface. Thereafter, a cholesteric liquid crystal composition was applied to the rubbing surface using a # 12 wire bar to form a liquid crystal composition layer.
支持体として、片面に易接着処理面を有するポリエステルフィルム(東洋紡製「コスモシャインA4100」、厚み100μm)を用意した。この支持体の易接着処理面とは反対側の面に、ラビング処理を施した。その後、このラビング処理面に、コレステリック液晶組成物を♯12のワイヤーバーを使用して塗工し、液晶組成物の層を形成した。 (1-2. Production of circularly polarized light separation membrane)
As a support, a polyester film (“Cosmo Shine A4100” manufactured by Toyobo,
液晶組成物の層に、80℃で5分間加温する配向処理を施した。その後、液晶組成物の層に対して、20.7mJ/cm2の微弱な紫外線を照射するUV照射処理と、それに続く100℃で1分間加温する加温処理とからなる広帯域化処理を施した。その後、液晶組成物の層に800mJ/cm2の紫外線を照射して硬化させた。これにより、支持体上に、厚み5.2μm、450nm~700nmの波長範囲に帯域幅250nmの反射帯域を有する円偏光分離膜としてのコレステリック原反層を得た。このコレステリック原反層のヘイズを、上述した測定方法で測定した。
The liquid crystal composition layer was subjected to an alignment treatment by heating at 80 ° C. for 5 minutes. Thereafter, the liquid crystal composition layer is subjected to a broadening treatment including a UV irradiation treatment for irradiating weak ultraviolet rays of 20.7 mJ / cm 2 and a subsequent heating treatment for heating at 100 ° C. for 1 minute. did. Thereafter, the liquid crystal composition layer was cured by irradiating with 800 mJ / cm 2 of ultraviolet rays. As a result, a cholesteric original fabric layer as a circularly polarized light separating film having a thickness of 5.2 μm and a reflection band with a bandwidth of 250 nm in the wavelength range of 450 nm to 700 nm was obtained on the support. The haze of this cholesteric raw fabric layer was measured by the measurement method described above.
(1-3.フレークの製造)
水流を吹き付けることにより、支持体からコレステリック原反層を剥がした。このコレステリック原反層を、カウンタージェットミルを用いて粉砕して、平均粒径20μmの鱗片状フィラーとしてのフレークを得た。 (1-3. Manufacture of flakes)
The cholesteric raw fabric layer was peeled off from the support by blowing a water stream. The cholesteric raw fabric layer was pulverized using a counter jet mill to obtain flakes as a scale-like filler having an average particle diameter of 20 μm.
水流を吹き付けることにより、支持体からコレステリック原反層を剥がした。このコレステリック原反層を、カウンタージェットミルを用いて粉砕して、平均粒径20μmの鱗片状フィラーとしてのフレークを得た。 (1-3. Manufacture of flakes)
The cholesteric raw fabric layer was peeled off from the support by blowing a water stream. The cholesteric raw fabric layer was pulverized using a counter jet mill to obtain flakes as a scale-like filler having an average particle diameter of 20 μm.
(1-4.塗料の製造)
前記のフレーク20重量部、ウレタンアクリレート系紫外線硬化型樹脂(大日本インキ化学工業社製「ユニディック17-806」)80重量部、及び、紫外線重合開始剤(チバ・スペシャルティ・ケミカルズ社製「イルガキュア187」)2重量部を、トルエン中に分散させて、固形分濃度20重量%の塗料を製造した。 (1-4. Production of paint)
20 parts by weight of the flakes described above, 80 parts by weight of urethane acrylate UV curable resin (“Unidic 17-806” manufactured by Dainippon Ink & Chemicals, Inc.), and UV polymerization initiator (“Irgacure” manufactured by Ciba Specialty Chemicals) 187 ") 2 parts by weight was dispersed in toluene to produce a paint having a solids concentration of 20% by weight.
前記のフレーク20重量部、ウレタンアクリレート系紫外線硬化型樹脂(大日本インキ化学工業社製「ユニディック17-806」)80重量部、及び、紫外線重合開始剤(チバ・スペシャルティ・ケミカルズ社製「イルガキュア187」)2重量部を、トルエン中に分散させて、固形分濃度20重量%の塗料を製造した。 (1-4. Production of paint)
20 parts by weight of the flakes described above, 80 parts by weight of urethane acrylate UV curable resin (“Unidic 17-806” manufactured by Dainippon Ink & Chemicals, Inc.), and UV polymerization initiator (“Irgacure” manufactured by Ciba Specialty Chemicals) 187 ") 2 parts by weight was dispersed in toluene to produce a paint having a solids concentration of 20% by weight.
(1-5.光学層の製造)
ノルボルネン系樹脂で形成された厚み100μmの樹脂フィルム(日本ゼオン社製「ゼオノアフィルム ZF14-100」)上に、前記の塗料を、アプリケーターを用いて塗工し、乾燥させ、更に100℃で2分間加熱して、塗膜を形成した。その後、この塗膜に、紫外線照射器(ウシオ電機社製「UVC321AM1」)を用いて、50mW/cm2×1秒間の紫外線を照射して、当該塗膜を硬化させて、厚み50μmの光学層を得た。得られた光学層を観察したところ、観察角度に応じて、光学層の色調が変化した。
このようにして得られた光学層を、上述した評価方法に従って評価した。 (1-5. Production of optical layer)
The above-mentioned paint is applied to a 100 μm-thick resin film made of norbornene-based resin (“ZEONOR FILM ZF14-100” manufactured by ZEON Corporation) using an applicator, dried, and further at 100 ° C. for 2 minutes. Heated to form a coating. Thereafter, this coating film was irradiated with ultraviolet rays of 50 mW / cm 2 × 1 second using an ultraviolet irradiator (“UVC321AM1” manufactured by USHIO INC.) To cure the coating film, and an optical layer having a thickness of 50 μm. Got. When the obtained optical layer was observed, the color tone of the optical layer changed according to the observation angle.
The optical layer thus obtained was evaluated according to the evaluation method described above.
ノルボルネン系樹脂で形成された厚み100μmの樹脂フィルム(日本ゼオン社製「ゼオノアフィルム ZF14-100」)上に、前記の塗料を、アプリケーターを用いて塗工し、乾燥させ、更に100℃で2分間加熱して、塗膜を形成した。その後、この塗膜に、紫外線照射器(ウシオ電機社製「UVC321AM1」)を用いて、50mW/cm2×1秒間の紫外線を照射して、当該塗膜を硬化させて、厚み50μmの光学層を得た。得られた光学層を観察したところ、観察角度に応じて、光学層の色調が変化した。
このようにして得られた光学層を、上述した評価方法に従って評価した。 (1-5. Production of optical layer)
The above-mentioned paint is applied to a 100 μm-thick resin film made of norbornene-based resin (“ZEONOR FILM ZF14-100” manufactured by ZEON Corporation) using an applicator, dried, and further at 100 ° C. for 2 minutes. Heated to form a coating. Thereafter, this coating film was irradiated with ultraviolet rays of 50 mW / cm 2 × 1 second using an ultraviolet irradiator (“UVC321AM1” manufactured by USHIO INC.) To cure the coating film, and an optical layer having a thickness of 50 μm. Got. When the obtained optical layer was observed, the color tone of the optical layer changed according to the observation angle.
The optical layer thus obtained was evaluated according to the evaluation method described above.
[実施例2]
ワイヤバーの番手を#8に変更したこと以外は、実施例1と同じ操作により、光学層の製造及び評価を行った。この実施例2では、得られたコレステリック原反層は、厚みは3.7μmであり、2つの反射帯域を有していた。一方の反射帯域は、400nm~500nmの波長範囲に帯域幅100nmを有していた。他方の反射帯域は、550nm~650nmの波長範囲に帯域幅100nmを有していた。 [Example 2]
The optical layer was manufactured and evaluated in the same manner as in Example 1, except that the wire bar count was changed to # 8. In Example 2, the obtained cholesteric raw fabric layer had a thickness of 3.7 μm and had two reflection bands. One reflection band had a bandwidth of 100 nm in a wavelength range of 400 nm to 500 nm. The other reflection band had a bandwidth of 100 nm in the wavelength range of 550 nm to 650 nm.
ワイヤバーの番手を#8に変更したこと以外は、実施例1と同じ操作により、光学層の製造及び評価を行った。この実施例2では、得られたコレステリック原反層は、厚みは3.7μmであり、2つの反射帯域を有していた。一方の反射帯域は、400nm~500nmの波長範囲に帯域幅100nmを有していた。他方の反射帯域は、550nm~650nmの波長範囲に帯域幅100nmを有していた。 [Example 2]
The optical layer was manufactured and evaluated in the same manner as in Example 1, except that the wire bar count was changed to # 8. In Example 2, the obtained cholesteric raw fabric layer had a thickness of 3.7 μm and had two reflection bands. One reflection band had a bandwidth of 100 nm in a wavelength range of 400 nm to 500 nm. The other reflection band had a bandwidth of 100 nm in the wavelength range of 550 nm to 650 nm.
[実施例3]
ワイヤーバーの番手を#18に変更したこと以外は、実施例1と同じ操作により、光学層の製造及び評価を行った。この実施例3では、得られたコレステリック原反層は、厚みは8.6μmであり、450nm~650nmの波長範囲に帯域幅200nmの反射帯域を有していた。 [Example 3]
The optical layer was manufactured and evaluated in the same manner as in Example 1 except that the wire bar count was changed to # 18. In Example 3, the obtained cholesteric raw fabric layer had a thickness of 8.6 μm and had a reflection band with a bandwidth of 200 nm in a wavelength range of 450 nm to 650 nm.
ワイヤーバーの番手を#18に変更したこと以外は、実施例1と同じ操作により、光学層の製造及び評価を行った。この実施例3では、得られたコレステリック原反層は、厚みは8.6μmであり、450nm~650nmの波長範囲に帯域幅200nmの反射帯域を有していた。 [Example 3]
The optical layer was manufactured and evaluated in the same manner as in Example 1 except that the wire bar count was changed to # 18. In Example 3, the obtained cholesteric raw fabric layer had a thickness of 8.6 μm and had a reflection band with a bandwidth of 200 nm in a wavelength range of 450 nm to 650 nm.
[実施例4]
広帯域化処理を行わなかったこと以外は、実施例2と同じ操作により、光学層の製造及び評価を行った。この実施例4で得られたコレステリック原反層は、500nm~650nmの波長範囲に帯域幅150nmの反射帯域を有していた。 [Example 4]
The optical layer was manufactured and evaluated in the same manner as in Example 2 except that the broadening treatment was not performed. The cholesteric raw fabric layer obtained in Example 4 had a reflection band with a bandwidth of 150 nm in the wavelength range of 500 nm to 650 nm.
広帯域化処理を行わなかったこと以外は、実施例2と同じ操作により、光学層の製造及び評価を行った。この実施例4で得られたコレステリック原反層は、500nm~650nmの波長範囲に帯域幅150nmの反射帯域を有していた。 [Example 4]
The optical layer was manufactured and evaluated in the same manner as in Example 2 except that the broadening treatment was not performed. The cholesteric raw fabric layer obtained in Example 4 had a reflection band with a bandwidth of 150 nm in the wavelength range of 500 nm to 650 nm.
[比較例1]
配向処理の温度を130℃に変更したこと以外は、実施例2と同じ操作により、光学層の製造及び評価を行った。この比較例1では、得られたコレステリック原反層は、厚みは3.6μmであり、2つの反射帯域を有していた。一方の反射帯域は、400nm~500nmの波長範囲に帯域幅100nmを有していた。他方の反射帯域は、550nm~650nmの波長範囲に帯域幅100nmを有していた。 [Comparative Example 1]
The optical layer was produced and evaluated in the same manner as in Example 2 except that the temperature of the alignment treatment was changed to 130 ° C. In Comparative Example 1, the obtained cholesteric raw fabric layer had a thickness of 3.6 μm and had two reflection bands. One reflection band had a bandwidth of 100 nm in a wavelength range of 400 nm to 500 nm. The other reflection band had a bandwidth of 100 nm in the wavelength range of 550 nm to 650 nm.
配向処理の温度を130℃に変更したこと以外は、実施例2と同じ操作により、光学層の製造及び評価を行った。この比較例1では、得られたコレステリック原反層は、厚みは3.6μmであり、2つの反射帯域を有していた。一方の反射帯域は、400nm~500nmの波長範囲に帯域幅100nmを有していた。他方の反射帯域は、550nm~650nmの波長範囲に帯域幅100nmを有していた。 [Comparative Example 1]
The optical layer was produced and evaluated in the same manner as in Example 2 except that the temperature of the alignment treatment was changed to 130 ° C. In Comparative Example 1, the obtained cholesteric raw fabric layer had a thickness of 3.6 μm and had two reflection bands. One reflection band had a bandwidth of 100 nm in a wavelength range of 400 nm to 500 nm. The other reflection band had a bandwidth of 100 nm in the wavelength range of 550 nm to 650 nm.
[比較例2]
支持体の易接着処理面とは反対側の面へのラビング処理を行わなかったこと以外は、実施例1と同じ操作により、光学層の製造及び評価を行った。この比較例2で得られたコレステリック原反層に含まれる液晶化合物は、層全体として配向をするのではなく、小さいセグメント毎に配向を生じていた。よって、比較例2で得られたコレステリック原反層は、前記のセグメントの集合となっており、層全体としてはコレステリック規則性を有さず、多数の配向欠陥が生じていた。また、このコレステリック原反層は、明確な反射帯域を示さず、全体として白濁していた。 [Comparative Example 2]
The optical layer was produced and evaluated by the same operation as in Example 1 except that the rubbing treatment on the surface opposite to the surface of the support that was opposite to the easy adhesion treatment surface was not performed. The liquid crystal compound contained in the cholesteric raw fabric layer obtained in Comparative Example 2 was not aligned as a whole layer, but was aligned for each small segment. Therefore, the cholesteric raw fabric layer obtained in Comparative Example 2 was a set of the above-mentioned segments, and the entire layer did not have cholesteric regularity, and a large number of orientation defects were generated. Moreover, this cholesteric raw fabric layer did not show a clear reflection band and was clouded as a whole.
支持体の易接着処理面とは反対側の面へのラビング処理を行わなかったこと以外は、実施例1と同じ操作により、光学層の製造及び評価を行った。この比較例2で得られたコレステリック原反層に含まれる液晶化合物は、層全体として配向をするのではなく、小さいセグメント毎に配向を生じていた。よって、比較例2で得られたコレステリック原反層は、前記のセグメントの集合となっており、層全体としてはコレステリック規則性を有さず、多数の配向欠陥が生じていた。また、このコレステリック原反層は、明確な反射帯域を示さず、全体として白濁していた。 [Comparative Example 2]
The optical layer was produced and evaluated by the same operation as in Example 1 except that the rubbing treatment on the surface opposite to the surface of the support that was opposite to the easy adhesion treatment surface was not performed. The liquid crystal compound contained in the cholesteric raw fabric layer obtained in Comparative Example 2 was not aligned as a whole layer, but was aligned for each small segment. Therefore, the cholesteric raw fabric layer obtained in Comparative Example 2 was a set of the above-mentioned segments, and the entire layer did not have cholesteric regularity, and a large number of orientation defects were generated. Moreover, this cholesteric raw fabric layer did not show a clear reflection band and was clouded as a whole.
[結果]
前記の実施例及び比較例の結果を、下記の表1に示す。 [result]
The results of the examples and comparative examples are shown in Table 1 below.
前記の実施例及び比較例の結果を、下記の表1に示す。 [result]
The results of the examples and comparative examples are shown in Table 1 below.
10 光学層
100 フレーク
110 コレステリック粉砕層
120 配向欠陥
200 バインダー DESCRIPTION OFSYMBOLS 10 Optical layer 100 Flakes 110 Cholesteric ground layer 120 Orientation defect 200 Binder
100 フレーク
110 コレステリック粉砕層
120 配向欠陥
200 バインダー DESCRIPTION OF
Claims (6)
- コレステリック規則性を有する樹脂の層の粉砕片を含み、
前記樹脂の層が、コレステリック規則性が損なわれた配向欠陥を含み、
前記樹脂の層のヘイズが、10%以上60%以下である、フレーク。 Including crushed pieces of a resin layer having cholesteric regularity,
The resin layer includes orientation defects in which cholesteric regularity is impaired,
The flakes having a haze of the resin layer of 10% to 60%. - 前記フレークが、可視域を含む1以上の反射帯域を有する、請求項1に記載のフレーク。 The flake according to claim 1, wherein the flake has one or more reflection bands including a visible range.
- 前記反射帯域1つあたりの帯域幅が、100nm以上である、請求項2に記載のフレーク。 The flakes according to claim 2, wherein the bandwidth per reflection band is 100 nm or more.
- 前記フレークの平均粒径が、1μm以上500μm以下である、請求項1~3のいずれかに記載のフレーク。 The flakes according to any one of claims 1 to 3, wherein an average particle size of the flakes is 1 µm or more and 500 µm or less.
- 請求項1~4のいずれか1項に記載のフレークの製造方法であって、
コレステリック規則性を有する樹脂の層を形成する工程と、
前記樹脂の層を粉砕する工程と、を含む、フレークの製造方法。 A method for producing flakes according to any one of claims 1 to 4,
Forming a layer of resin having cholesteric regularity;
And a step of pulverizing the resin layer. - 請求項1~4のいずれか1項に記載のフレークと、分散媒とを含む、塗料。 A paint comprising the flakes according to any one of claims 1 to 4 and a dispersion medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020510888A JP7327382B2 (en) | 2018-03-27 | 2019-03-26 | Flakes, method for producing the same, and paint |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018060134 | 2018-03-27 | ||
JP2018-060134 | 2018-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019189144A1 true WO2019189144A1 (en) | 2019-10-03 |
Family
ID=68061711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/012802 WO2019189144A1 (en) | 2018-03-27 | 2019-03-26 | Flakes, method for producing same, and paint |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7327382B2 (en) |
TW (1) | TWI840350B (en) |
WO (1) | WO2019189144A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022173034A1 (en) * | 2021-02-15 | 2022-08-18 | 日本ゼオン株式会社 | Ink composition, article, and production method therefor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005099158A (en) * | 2003-09-22 | 2005-04-14 | Dainippon Printing Co Ltd | Projection screen |
JP2005350626A (en) * | 2004-06-14 | 2005-12-22 | Nitto Denko Corp | Colored reflective material, colored reflective filler and application using them |
JP2014174471A (en) * | 2013-03-12 | 2014-09-22 | Nippon Zeon Co Ltd | Identification medium, method of identifying articles, and laminated structure body |
JP2014174472A (en) * | 2013-03-12 | 2014-09-22 | Nippon Zeon Co Ltd | Identification medium, method of identifying articles, and laminated structure body |
JP2016004485A (en) * | 2014-06-18 | 2016-01-12 | 富士フイルム株式会社 | Optical member and display having the optical member |
JP2017138555A (en) * | 2016-02-05 | 2017-08-10 | 旭硝子株式会社 | Projection device screen and projection device screen system |
-
2019
- 2019-03-26 WO PCT/JP2019/012802 patent/WO2019189144A1/en active Application Filing
- 2019-03-26 JP JP2020510888A patent/JP7327382B2/en active Active
- 2019-03-27 TW TW108110743A patent/TWI840350B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005099158A (en) * | 2003-09-22 | 2005-04-14 | Dainippon Printing Co Ltd | Projection screen |
JP2005350626A (en) * | 2004-06-14 | 2005-12-22 | Nitto Denko Corp | Colored reflective material, colored reflective filler and application using them |
JP2014174471A (en) * | 2013-03-12 | 2014-09-22 | Nippon Zeon Co Ltd | Identification medium, method of identifying articles, and laminated structure body |
JP2014174472A (en) * | 2013-03-12 | 2014-09-22 | Nippon Zeon Co Ltd | Identification medium, method of identifying articles, and laminated structure body |
JP2016004485A (en) * | 2014-06-18 | 2016-01-12 | 富士フイルム株式会社 | Optical member and display having the optical member |
JP2017138555A (en) * | 2016-02-05 | 2017-08-10 | 旭硝子株式会社 | Projection device screen and projection device screen system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022173034A1 (en) * | 2021-02-15 | 2022-08-18 | 日本ゼオン株式会社 | Ink composition, article, and production method therefor |
CN116848201A (en) * | 2021-02-15 | 2023-10-03 | 日本瑞翁株式会社 | Ink composition, article, and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
TWI840350B (en) | 2024-05-01 |
TW202003603A (en) | 2020-01-16 |
JP7327382B2 (en) | 2023-08-16 |
JPWO2019189144A1 (en) | 2021-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4225790B2 (en) | Birefringence marking | |
DE60106311T2 (en) | Multilayer reflective film or pigment with viewing angle dependent reflection properties | |
CN112368613B (en) | Identification medium, authenticity determination method, and article | |
CN102481723B (en) | The method for forming photon crystal material | |
JP5678328B2 (en) | Piezochromic security element | |
JP2001133628A (en) | Method for producing polarlized light diffractive film | |
WO2021065484A1 (en) | Display medium, display product, and display set | |
WO2020121791A1 (en) | Authenticity determining viewer and manufacturing method for same, method for determining authenticity of authentication medium, and authenticity determining set | |
CN114008496B (en) | Display medium, authenticity judging method, and article comprising display medium | |
JP6983072B2 (en) | Optical film | |
WO2019189144A1 (en) | Flakes, method for producing same, and paint | |
JPWO2019230840A1 (en) | Identification medium and method of identifying the authenticity of the identification medium | |
US20220289988A1 (en) | Composite pigment, identification medium, and authenticity determination method | |
JP2021076792A (en) | Display medium, manufacturing method therefor, and ink | |
CN112154360B (en) | Identification medium and method for identifying the authenticity of an identification medium | |
WO2020203815A1 (en) | Identification medium, and article including the identification medium | |
JP7552689B2 (en) | Display media and display articles | |
WO2020153349A1 (en) | Anti-forgery medium and information card | |
CN220121018U (en) | Identification element and identification object | |
JP4286377B2 (en) | Method for producing cholesteric liquid crystal film | |
EP1132450A2 (en) | Multilayer reflective film or pigment with viewing angle dependent reflection characteristics | |
US20220275213A1 (en) | Composite pigment, identification medium, and method for determining authenticity | |
JP2000347030A (en) | Manufacture of cholesteric liquid crystalline film | |
CN116500718A (en) | Identification element and identification object | |
CN116829994A (en) | Optical laminate, method for judging authenticity of optical laminate, and article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19775027 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020510888 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19775027 Country of ref document: EP Kind code of ref document: A1 |