WO2020153349A1 - Anti-forgery medium and information card - Google Patents

Anti-forgery medium and information card Download PDF

Info

Publication number
WO2020153349A1
WO2020153349A1 PCT/JP2020/001922 JP2020001922W WO2020153349A1 WO 2020153349 A1 WO2020153349 A1 WO 2020153349A1 JP 2020001922 W JP2020001922 W JP 2020001922W WO 2020153349 A1 WO2020153349 A1 WO 2020153349A1
Authority
WO
WIPO (PCT)
Prior art keywords
counterfeit medium
liquid crystal
layer
light
reflective layer
Prior art date
Application number
PCT/JP2020/001922
Other languages
French (fr)
Japanese (ja)
Inventor
峻也 加藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2020153349A1 publication Critical patent/WO2020153349A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/364Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/391Special inks absorbing or reflecting polarised light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation

Definitions

  • the present invention relates to an anti-counterfeit medium and an information card having this anti-counterfeit medium.
  • a cholesteric liquid crystal layer as a forgery prevention medium with high security.
  • a transparent substrate a transfer material including a first cholesteric liquid crystal layer on one surface of the transparent substrate, a patterned second cholesteric liquid crystal layer, and an adhesive layer, and a support substrate
  • a patch transfer medium comprising a support material provided with a peelable resin layer, a transfer portion of a transfer material being half-cut into a patch, and the patch being releasably laminated on the peelable resin layer surface of the support material is described. ing.
  • This patch transfer medium is used by transferring it to an object having a forgery prevention function.
  • Patent Document 2 includes a base material, an adhesive layer formed on the base material, and a liquid crystal film formed on the adhesive layer, and a surface of the liquid crystal film opposite to the adhesive layer is provided. , A concave-convex structure having a diffractive function is formed, a resin layer covering the concave-convex structure is formed on the liquid crystal film, and the resin layer is formed by curing an active energy ray-curable resin composition.
  • An optical laminate having a glass transition temperature T2 (°C) of 30°C or higher is described. Further, Patent Document 2 describes that this optical laminate can be used as a display medium for preventing forgery.
  • the methods for determining the authenticity of the anti-counterfeit medium there is a method of irradiating the anti-counterfeit medium with light in a specific wavelength range and reading the light reflected from the anti-counterfeit medium by a sensor. In such a determination method, it is possible to determine the authenticity that is difficult (cannot be determined) by visual observation, so that the security is further improved.
  • the outermost surface of the anti-counterfeit medium for example, the surface of the base material, the overcoat
  • the light that is specularly reflected by the surface of the overcoat layer, etc. will enter the sensor, and the proportion of the reflected light from the layer used for judging the authenticity of the cholesteric liquid crystal layer will decrease, so it will be read accurately.
  • the anti-counterfeit medium having a cholesteric liquid crystal layer when performing the determination method described above, if the positional relationship between the light source that emits light and the sensor that reads the reflected light is not at the position of specular reflection. However, the amount of light reflected by the cholesteric liquid crystal layer and reaching the sensor is reduced, so that there is a problem that the sensor cannot read.
  • the present invention aims to provide an anti-counterfeit medium and an information card that can be appropriately read regardless of the position of the sensor when irradiating light to the anti-counterfeit medium to determine authenticity.
  • the present invention has the following configurations.
  • a reflective layer and a support that supports the reflective layer has a cholesteric liquid crystal structure
  • the anti-counterfeit medium according to [1] wherein the reflective layer has two or more reflective regions having different selective reflection wavelengths of 30 nm or more due to the cholesteric liquid crystal structure.
  • the selective reflection wavelength of at least one reflection region is a wavelength in the visible light region.
  • an anti-counterfeit medium and an information card that can be appropriately read regardless of the position of the sensor when irradiating light on the anti-counterfeit medium to determine authenticity.
  • FIG. 3 is a cross-sectional view for explaining the action of the anti-counterfeit medium shown in FIG. 1. It is sectional drawing for demonstrating the conventional anti-counterfeit medium. It is sectional drawing which shows another example of the forgery prevention medium of this invention typically. It is sectional drawing which shows another example of the forgery prevention medium of this invention typically. It is a schematic diagram for demonstrating the effect
  • the numerical range represented by “to” means the range including the numerical values before and after “to” as the lower limit value and the upper limit value.
  • “orthogonal” and “parallel” include a range of error allowed in the technical field to which the present invention belongs.
  • “orthogonal” and “parallel” mean that the angle is within ⁇ 10° with respect to the strict orthogonal or parallel, and the error with respect to the strict orthogonal or parallel is 5° or less. Is preferable, and more preferably 3° or less.
  • angles represented by other than “orthogonal” and “parallel”, for example, specific angles such as 15° and 45° also include the error range allowable in the technical field to which the present invention belongs.
  • the angle means that it is less than ⁇ 5° with respect to the specifically indicated exact angle, and the error with respect to the indicated exact angle is ⁇ 3° or less. Preferably, it is preferably ⁇ 1° or less.
  • (meth)acrylate is used to mean “either one or both of acrylate and methacrylate”.
  • identity includes an error range generally accepted in the technical field. Further, in the present specification, when referring to “all”, “any” or “whole surface” and the like, in addition to the case of 100%, the error range generally accepted in the technical field is included, for example, 99% or more, The case where it is 95% or more, or 90% or more is included.
  • the term “selective” for circularly polarized light means that the light amount of either the right circularly polarized light component or the left circularly polarized light component of light is larger than that of the other circularly polarized light component.
  • the term “selective” means that the circular polarization degree of light is preferably 0.3 or more, more preferably 0.6 or more, and further preferably 0.8 or more. More preferably, it is substantially 1.0. Table In / (I R + I L)
  • circularly polarized light When referring to circularly polarized light as “sense,” it means right-handed circularly polarized light or left-handed circularly polarized light.
  • the sense of circularly polarized light is right circularly polarized when the tip of the electric field vector rotates clockwise with increasing time when viewed as if the light is traveling toward you, and left when it rotates counterclockwise. It is defined as being circularly polarized.
  • sense may be used for the twist direction of the spiral of cholesteric liquid crystal.
  • twist direction (sense) of the spiral of the cholesteric liquid crystal is right, right circularly polarized light is reflected and left circularly polarized light is transmitted, and when the sense is left, left circularly polarized light is reflected and right circularly polarized light is transmitted.
  • Visible light is a part of electromagnetic waves having a wavelength that can be seen by human eyes, and usually shows light in a wavelength range of 380 to 780 nm.
  • the non-visible light is light in a wavelength range of less than 380 nm or a wavelength range of more than 780 nm.
  • light in the wavelength range of 420 to 490 nm is blue (B) light
  • light in the wavelength range of 495 to 570 nm is green (G) light.
  • Light in the wavelength range of 620 to 750 nm is red (R) light.
  • near infrared light is an electromagnetic wave in the wavelength range of 780 nm to 2500 nm.
  • Ultraviolet light is light in the wavelength range of 10 to 380 nm.
  • the “visible light transmittance” is the visible light transmittance of the A light source defined in JIS (Japanese Industrial Standard) R 3212:2015 (Test method for automobile safety glass). That is, the transmittance of each wavelength in the wavelength range of 380 to 780 nm is measured with a spectrophotometer using the A light source, and is obtained from the wavelength distribution and the wavelength interval of the CIE (International Commission on Illumination) light adaptation standard ratio visual sensitivity. It is the transmittance obtained by multiplying the transmittance at each wavelength by the obtained weighting coefficient and performing a weighted average.
  • the term "reflected light” or "transmitted light” is used to include scattered light and diffracted light.
  • the polarization state of each wavelength of light can be measured using a spectral radiance meter or a spectrum meter equipped with a circularly polarizing plate.
  • the light intensity measured through the right circularly polarizing plate corresponds to I R
  • the light intensity measured through the left circularly polarizing plate corresponds to I L.
  • the ratio can be measured by attaching a right circularly polarized light transmitting plate and measuring the right circularly polarized light amount, and by attaching a left circularly polarized light transmitting plate and measuring the left circularly polarized light amount.
  • the front phase difference is a value measured using an AxoScan manufactured by Axometrics.
  • the measurement wavelength is 550 nm unless otherwise specified.
  • a value measured by KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments Co., Ltd.) with light having a wavelength within the visible light wavelength range incident in the film normal direction can be used.
  • the wavelength selection filter can be replaced manually or the measurement value can be converted by a program or the like for measurement.
  • haze means a value measured using a haze meter NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd. Theoretically, haze means the value represented by the following formula. (Scattered transmittance of natural light of 380 to 780 nm)/(scattered transmittance of natural light of 380 to 780 nm + direct transmittance of natural light) x 100%
  • the scattered transmittance is a value that can be calculated by subtracting the direct transmittance from the obtained omnidirectional transmittance using a spectrophotometer and an integrating sphere unit.
  • Direct transmittance is the transmittance at 0° when based on the values measured using an integrating sphere unit. That is, the low haze means that the directly transmitted light amount is large in the total transmitted light amount.
  • the refractive index is a refractive index for light having a wavelength of 589.3 nm.
  • the anti-counterfeit medium of the present invention is It has a reflective layer and a support that supports the reflective layer,
  • the reflective layer has a cholesteric liquid crystal structure,
  • the anti-counterfeit medium has a haze value of 2% or more and a visible light transmittance of 30% or more.
  • FIG. 1 shows a schematic sectional view of an example of the anti-counterfeit medium of the present invention.
  • the drawings in the present invention are schematic diagrams, and the relationship of the thickness of each layer, the positional relationship, and the like do not necessarily match the actual ones.
  • the following figures are also the same.
  • the anti-counterfeit medium 10a has a support 12 and a reflective layer 14 in this order.
  • the reflective layer 14 is a layer having a cholesteric liquid crystal structure.
  • the cholesteric liquid crystal structure reflects wavelength light according to the spiral pitch of the cholesteric liquid crystal structure and wavelength selective reflectivity that transmits light of other wavelength range, and circular polarization of one sense, and the other sense. Circularly polarized light that transmits circularly polarized light is selectively reflected.
  • the reflective layer 14 has a cholesteric structure and reflects circularly polarized light of one sense having a selective reflection wavelength and transmits light of another wavelength and circularly polarized light of the other sense.
  • the anti-counterfeit medium of the present invention can judge authenticity by utilizing the wavelength-selective reflectivity and the circularly polarized light reflectivity of the cholesteric liquid crystal structure of the reflective layer.
  • the authenticity of the anti-counterfeit medium is determined by using a light source that emits light having a predetermined center wavelength (and a predetermined sense) and a reader that has a sensor that reads the light reflected by the anti-counterfeit medium. ..
  • the anti-counterfeit medium when the anti-counterfeit medium is true, the light having a predetermined center wavelength emitted from the light source is reflected by the anti-counterfeit medium (reflection layer), and the sensor can read the light.
  • the anti-counterfeit medium when the anti-counterfeit medium is false, the light emitted from the light source and having the predetermined center wavelength is not reflected by the anti-counterfeit medium (reflection layer), so that the sensor cannot read the light.
  • the authenticity can be determined by whether or not the circularly polarized light of this sense can be reflected. That is, the authenticity can be determined by whether or not circularly polarized light with a predetermined sense can be reflected at a predetermined center wavelength.
  • the authenticity can be determined by whether or not it can be read (visible) through the circularly polarizing plate. Alternatively, it is possible to perform reading through the right circularly polarizing plate and reading through the left circularly polarizing plate, and determine the authenticity according to the intensity difference of the read light.
  • a light source used when determining the authenticity of the anti-counterfeit medium various laser light sources capable of irradiating a narrow band light having a desired center wavelength, LEDs (light emitting diodes), fluorescent lamps and the like can be used.
  • a known solid-state image sensor such as CCD (Charge Coupled Device) or CMOS (Complementary metal-oxide semiconductor) can be used.
  • the selective reflection wavelength of the reflective layer 14 is not limited and may be a wavelength in the visible light region, or a wavelength in the invisible light region such as a wavelength in the ultraviolet region or a wavelength in the infrared region. May be.
  • the anti-counterfeiting technology there are an overt technology that enables visual verification or a simple tool to verify authenticity, and a covert technology that requires the use of a dedicated tool for authenticity verification.
  • By setting the selective reflection wavelength of the reflective layer 14 to a wavelength in the visible light region it is possible to visually determine the authenticity, and thus an overt anti-counterfeit medium can be obtained.
  • the selective reflection wavelength of the reflective layer 14 is set to a wavelength in the invisible light region or a wavelength in the visible light region which is difficult to be visually recognized, it becomes invisible to the naked eye, and thus a covert anti-counterfeit medium can be obtained. From the viewpoint of security (anti-counterfeit property), it is preferable to use a covert anti-counterfeit medium.
  • the support 12 supports the reflective layer 14.
  • the support 12 has a base material 16 and an intermediate layer 18.
  • the support 12 has a haze value of 2% or more and a visible light transmittance of 30% or more.
  • the anti-counterfeit medium of the present invention by setting the haze value and the visible light transmittance of the support 12 in the above ranges, light incident from the support 12 side is diffused and made incident on the reflection layer 14, and the reflection layer. By diffusing the light reflected by 14, the light incident on the anti-counterfeit medium is reflected in various directions other than the direction of specular reflection. Thereby, when the authenticity is determined by irradiating the anti-counterfeit medium with light, it is possible to properly read the information regardless of the position of the sensor. This point will be described with reference to FIGS. 2 and 3.
  • FIG. 2 is a diagram for explaining the operation when determining the authenticity of the anti-counterfeit medium 10a of the present invention.
  • the authenticity of the anti-counterfeit medium 10a is determined using a reading device having a light source LS and a sensor SS.
  • the light source LS and the sensor SS are placed on the support 12 side of the anti-counterfeit medium 10a, and light is emitted from the light source LS obliquely to the surface of the support 12 (FIG. 2 middle thick arrow).
  • the light source LS emits light with a narrow band wavelength having a predetermined center wavelength. Incident light is preferably incident on the surface of the support 12 from a direction of 30 to 60°.
  • the haze value of the support 12 is 2% or more, so that the light incident on the support 12 is diffused as shown in FIG. Further, since the visible light transmittance of the support 12 is 30% or more, the diffused light reaches the reflective layer 14. If the central wavelength of light and the selective reflection wavelength of the cholesteric liquid crystal structure of the reflective layer 14 are substantially the same, the light that has reached the reflective layer 14 is reflected. At that time, since the light is diffused, it is incident on the surface of the reflective layer 14 (interface with the support 12) at various angles.
  • the reflection of the cholesteric liquid crystal structure of the reflective layer 14 is specular reflection
  • the light incident on the reflective layer 14 is specularly reflected according to various incident angles. Therefore, the light reflected by the reflective layer 14 travels in various directions.
  • the light reflected by the reflective layer 14 propagates inside the support 12 and is emitted from the surface of the support 12. Further, when the light propagates in the support 12, the light is diffused in the support 12. Therefore, the light emitted from the surface of the support 12 is emitted in various directions. Therefore, at least a part of the light is incident on the sensor SS regardless of the arrangement position of the sensor SS arranged facing the support body 12 side of the forgery prevention medium 10a. This makes it possible to properly read regardless of the position of the sensor when irradiating the anti-counterfeit medium with light to determine the authenticity.
  • FIG. 3 is a diagram for explaining the operation when determining the authenticity of the anti-counterfeit medium 100 having the reflective layer 14 having the cholesteric liquid crystal structure on the transparent support 102.
  • the light source LS and the sensor SS are positioned on the support 102 side of the anti-counterfeit medium 100, and light is emitted from the light source LS to the surface of the support 102 obliquely (FIG. 3 middle thick arrow).
  • the light source LS emits light with a narrow band wavelength having a predetermined center wavelength.
  • the light incident on the support 102 reaches the reflection layer 14 without being diffused, as shown in FIG. If the central wavelength of light and the selective reflection wavelength of the cholesteric liquid crystal structure of the reflective layer 14 are substantially the same, the light that has reached the reflective layer 14 is reflected. At that time, since the light is not diffused, it is incident on the surface of the reflective layer 14 (interface with the support 102) at a constant angle. Since the reflection of the cholesteric liquid crystal structure of the reflective layer 14 is specular reflection, the light incident on the reflective layer 14 is specularly reflected according to the incident angle.
  • the light reflected by the reflective layer 14 travels in one direction.
  • the light reflected by the reflective layer 14 propagates inside the support 102 and is emitted from the surface of the support 102. Therefore, the light emitted from the surface of the support 102 is emitted in one direction. Therefore, when the position of the sensor SS arranged facing the support 12 side of the anti-counterfeit medium 10a is not at the position corresponding to the specular reflection on the reflective layer 14, the sensor SS is reflected by the anti-counterfeit medium 100. Light does not enter the sensor SS (the amount of light entering the sensor SS decreases). Therefore, when the authenticity is judged by irradiating the anti-counterfeit medium with light, it cannot be properly read depending on the position of the sensor.
  • the anti-counterfeit medium of the present invention by setting the haze value of the support 12 to 2% or more, when irradiating light to the anti-counterfeit medium to determine authenticity, regardless of the position of the sensor. , Is properly readable.
  • the haze value of the support 12 is preferably 2% to 40%, more preferably 3% to 20%, further preferably 4% to 15%.
  • the visible light transmittance of the support 12 is preferably 50% to 95%, more preferably 60% to 93%, further preferably 70% to 90%.
  • the haze value and the visible light transmittance are the haze value and the transmittance with respect to the visible light, but the haze value and the transmittance with respect to the infrared rays and the ultraviolet rays are similar.
  • the haze value and the transmittance of the support 12 with respect to infrared rays or ultraviolet rays fall within the above numerical ranges.
  • the reflective layer 14 is formed uniformly on the entire surface of one surface of the support 12, but the present invention is not limited to this, and the reflective layer 14 is formed in an arbitrary shape on the surface of the support 12. It may have been done. With the configuration in which the reflective layer 14 is formed in an arbitrary shape, the authenticity of the anti-counterfeit medium can be determined based on this shape.
  • the uniform reflection layer 14 having the same selective reflection wavelength is provided over the entire surface.
  • the present invention is not limited to this, and the reflection layer 14 has a selective reflection wavelength of 30 nm or more due to the cholesteric liquid crystal structure. It may be configured to have two or more different reflection areas.
  • the anti-counterfeit medium 10b shown in FIG. 4 has a support 12 and a reflective layer 14b.
  • the reflective layer 14b has a first reflective area 20a and a second reflective area 20b.
  • Each of the first reflective region 20a and the second reflective region 20b has a cholesteric liquid crystal structure, and has wavelength selective reflectivity for selectively reflecting light in a wavelength range corresponding to the spiral pitch of each cholesteric liquid crystal structure. ing.
  • the selective reflection wavelength of the first reflection region 20a and the selective reflection wavelength of the second reflection region 20b differ by 30 nm or more.
  • the first reflection area 20a and the second reflection area 20b each have circularly polarized light selective reflectivity.
  • the reflective layer By thus configuring the reflective layer to have two or more reflective regions, forgery is made based on a combination of wavelength selective reflectivity and circularly polarized light reflectivity in each reflective region, and the shape, arrangement pattern, etc. of each reflective region. The authenticity of the prevention medium can be determined.
  • the selective reflection wavelength of at least one reflective region is a visible light region.
  • the reflective layer has two or more reflective regions, it is also preferable to set the selective reflection wavelength of at least one reflective region to the wavelength of the invisible light region.
  • the selective reflection wavelength of at least one reflective region is set to the wavelength of the visible light region, and the selective reflection wavelength of at least one other reflective region is set to It is also preferable to set the wavelength in the invisible light region.
  • an anti-counterfeit medium that is compatible with both the overt technology and the covert technology is desirable.
  • the reflective layer has two or more reflective regions
  • the selective reflection wavelength of at least one reflective region is the wavelength of the visible light region
  • the selective reflection wavelength of at least one other reflective region is the wavelength of the invisible light region.
  • the selective reflection wavelength of the reflection area is set to the wavelength of the invisible light area
  • the selective reflection wavelength is preferably 700 nm or more.
  • the thickness is more preferably 700 nm to 1250 nm (infrared region), and further preferably 800 nm to 1000 nm.
  • the anti-counterfeit medium of the present invention may further have another layer.
  • the circular polarizing plate 22 may be provided on the surface side of the reflective layer 14 opposite to the support 12 side.
  • the circularly polarizing plate 22 is a circularly polarizing plate 22 that absorbs circularly polarized light of the same sense as the circularly polarized light reflected by the cholesteric liquid crystal structure of the reflective layer 14.
  • a conventionally known circularly polarizing plate such as a circularly polarizing plate in which a ⁇ /4 plate and a linear polarizing plate are combined can be appropriately used.
  • the anti-counterfeit medium 10c further include the circularly polarizing plate 22, the light reflected by the reflection layer 14 can be observed from the support 12 side of the anti-counterfeiting medium 10c, and the circularly polarizing plate 22 side. From the above, it is possible to adopt a configuration in which the light reflected by the reflective layer 14 cannot be observed. This point will be described with reference to FIGS. 6 and 7.
  • FIGS. 6 and 7 are diagrams for explaining the action of the forgery prevention medium 10c
  • FIG. 6 is a diagram for explaining the action when the forgery prevention medium 10c is observed from the support 12 side.
  • FIG. 7 is a diagram for explaining the operation when the forgery prevention medium 10c is observed from the circular polarizing plate 22 side. 6 and 7, the support 12 is not shown for the sake of explanation. Further, the reflective layer 14 and the circularly polarizing plate 22 are shown separated from each other.
  • the reflective layer 14 has a reflective region 20 formed in the shape of the alphabet “A”.
  • the reflection area 20 reflects right-handed circularly polarized light.
  • the circularly polarizing plate 22 is a circularly polarizing plate that absorbs circularly polarized light having the same sense as the circularly polarized light reflected by the reflection region 20, that is, right circularly polarized light in the examples shown in FIGS. 6 and 7. That is, the circularly polarizing plate 22 is a left circularly polarizing plate.
  • the right circularly polarized light component I 1R of the selective reflection wavelength is obtained.
  • the shape “A” of the reflection area 20 can be visually recognized.
  • the other right circularly polarized light components are absorbed by the circularly polarizing plate 22, and the left circularly polarized light component I 1L is transmitted through the circularly polarizing plate 22.
  • the right circularly polarized light component is absorbed by the circularly polarizing plate 22, and only the left circularly polarized light component I 2L is incident on the reflective layer 14.
  • the left-hand circularly polarized light component I 2L is not reflected by the reflective layer 14 and therefore passes through the reflective layer 14. Therefore, the view (the star in FIG. 6) on the circular polarizer 22 side is visually recognized from the support 12 side.
  • the anti-counterfeit medium 10c when the anti-counterfeit medium 10c is observed from the side of the support 12, the anti-counterfeit medium 10c is visually recognized in a state where the shape "A" of the reflection region 20 is superimposed on the scenery on the opposite side of the anti-counterfeit medium 10c.
  • the right circularly polarized light component of I 2 incident on the anti-counterfeit medium 10c from the circular polarizing plate 22 side is circularly polarized light. Only the left-handed circularly polarized light component I 2L is absorbed by the plate 22 and is incident on the reflective layer 14. The left-hand circularly polarized light component I 2L is not reflected by the reflective layer 14 and therefore passes through the reflective layer 14. Further, the right circularly polarized light component I 1R of the selective reflection wavelength of the light I 1 incident on the anti-counterfeit medium 10c from the support 12 side is reflected by the reflection region 20.
  • the other right circularly polarized light components are absorbed by the circularly polarizing plate 22. Only the left circularly polarized light component I 1L passes through the circularly polarizing plate 22. Therefore, only the view (the star in FIG. 7) from the support 12 side to the circularly polarizing plate 22 side is visible.
  • the anti-counterfeit medium 10c can observe the light reflected by the reflective layer 14 from the support 12 side.
  • a configuration in which the light reflected by the reflective layer 14 cannot be observed from the polarizing plate 22 side can be adopted.
  • the security property anti-counterfeit property
  • the circular polarization plate 22 is provided on the surface of the reflective layer 14 opposite to the support 12, but the invention is not limited to this, and the forgery prevention medium shown in FIG. A circular polarizing plate 22 may be provided between the support 12 and the reflective layer 14 as in 10d.
  • the light reflected by the reflective layer 14 can be visually recognized from the side opposite to the support 12, but the light reflected by the reflective layer 14 cannot be visually viewed from the side of the support 12.
  • the reflection layer 14 has a reflection region of visible light and a reflection region of invisible light having a selective reflection wavelength
  • the circularly polarizing plate 22 has a visible light region.
  • the light may act on the light of (1) and do not act on the light in the invisible light region.
  • the light reflected by the reflective layer 14 can be visually recognized from the side opposite to the support 12, but the light reflected by the reflective layer 14 cannot be visually viewed from the side of the support 12. You can On the other hand, when invisible light is emitted from the support 12 side and the reflected light is read by the sensor, the circularly polarizing plate 22 does not function, so the reflected light from the reflective layer 14 can be read.
  • the overcoat layer 24 may be provided on the surface of the reflective layer 14 opposite to the support. ..
  • the anti-counterfeit medium 10e shown in FIG. 9 has the same structure as the anti-counterfeit medium 10a shown in FIG. 1 except that it has the overcoat layer 24.
  • the counterfeiting prevention medium 10f shown in FIG. 10 has the same structure as the counterfeiting prevention medium 10d shown in FIG. 8 except that it has the overcoat layer 24. With the structure having the overcoat layer 24, scratch resistance can be improved. In addition, the flatness of the surface of the anti-counterfeit medium can be improved.
  • the overcoat layer 24 is not particularly limited.
  • a resin layer obtained by coating a composition containing a monomer on the reflection layer 14 and then curing the coating film may be used.
  • the resin is not particularly limited and may be selected in consideration of adhesion to the liquid crystal material forming the reflective layer.
  • a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin or the like can be used. From the viewpoint of durability, solvent resistance, etc., a resin that is curable by crosslinking is preferable, and an ultraviolet curable resin that can be cured in a short time is particularly preferable.
  • Monomers that can be used to form the overcoat layer include ethyl (meth)acrylate, ethylhexyl (meth)acrylate, styrene, methylstyrene, N-vinylpyrrolidone, polymethylolpropane tri(meth)acrylate, and hexanediol (meth).
  • the thickness of the overcoat layer is not particularly limited and may be determined in consideration of scratch resistance, flatness, etc., and may be about 5 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 50 ⁇ m, more preferably 20 ⁇ m to 40 ⁇ m. Is. Further, it may have two or more overcoat layers.
  • the reflective layer is a layer having a cholesteric liquid crystal structure.
  • the cholesteric liquid crystal structure is a structure in which the orientation of the liquid crystal compound is a cholesteric liquid crystal phase. Even when the reflective layer has a plurality of reflective regions having different selective reflection wavelengths, the configuration of each reflective region is basically the same as the configuration of the reflective layer described below except that the selective reflection wavelengths are different.
  • the reflective layer may be a layer in which the orientation of the liquid crystal compound that is in the cholesteric liquid crystal phase is retained, and typically, after the polymerizable liquid crystal compound is in the orientation state of the cholesteric liquid crystal phase, ultraviolet irradiation, Any layer may be used as long as it is polymerized and hardened by heating or the like to form a layer having no fluidity, and at the same time, it is changed to a state in which the orientation form is not changed by an external field or an external force. In the reflective layer, it is sufficient if the optical properties of the cholesteric liquid crystal phase are retained in the layer, and the liquid crystal compound in the layer may no longer exhibit liquid crystallinity.
  • the polymerizable liquid crystal compound may have a high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
  • the cholesteric liquid crystal phase exhibits circularly polarized light selective reflection that selectively reflects the circularly polarized light of either the right circularly polarized light or the left circularly polarized light and transmits the circularly polarized light of the other sense.
  • a film containing a layer in which a cholesteric liquid crystal phase exhibiting circularly polarized light selective reflection is fixed many films formed from a composition containing a polymerizable liquid crystal compound have been known in the past. Can refer to technology.
  • the selective reflection center wavelength and the half value width of the cholesteric liquid crystal structure can be obtained as follows.
  • a spectrophotometer V-670, manufactured by JASCO Corporation was used to measure the reflection spectrum of the cholesteric liquid crystal structure (reflecting layer) (measured from the normal direction of the reflecting layer). A decline peak is seen.
  • the wavelength value on the short wavelength side is ⁇ l (nm)
  • the wavelength value on the long wavelength side is Is defined as ⁇ h (nm)
  • the central wavelength ⁇ of selective reflection and the full width at half maximum ⁇ can be expressed by the following equations.
  • the central wavelength of the selective reflection obtained as described above substantially coincides with the wavelength at the center of gravity of the reflection peak of the circularly polarized light reflection spectrum measured from the normal direction of the reflection layer.
  • the pitch of the cholesteric liquid crystal phase depends on the type of chiral agent used together with the polymerizable liquid crystal compound or the concentration added, the desired pitch can be obtained by adjusting these.
  • the method of measuring the sense and pitch of the spiral use the method described in “Introduction to Liquid Crystal Chemistry” edited by The Liquid Crystal Society of Japan, Sigma Publishing 2007, page 46, and “Liquid Crystal Handbook” Liquid Crystal Handbook Editing Committee Maruzen, page 196. be able to.
  • the reflective layer a reflective layer whose spiral sense is either right or left is used.
  • the sense of the reflected circular polarization of the reflective layer matches the sense of the helix.
  • the senses of the spirals in the reflection regions having different central wavelengths of selective reflection may be all the same or different. However, it is preferable that the plurality of reflective regions all have the same twist direction.
  • the ⁇ n can be adjusted by adjusting the type or mixing ratio of the polymerizable liquid crystal compound, or controlling the temperature when fixing the alignment.
  • a plurality of reflective layers having the same pitch P and the same spiral sense may be laminated. By stacking reflective layers having the same pitch P and the same spiral sense, circularly polarized light selectivity can be increased at a specific wavelength.
  • a plurality of layers having a cholesteric liquid crystal structure having different selective reflection wavelengths may be laminated to form one reflection layer (reflection area).
  • the wavelength region of reflected light can be widened by sequentially laminating layers with the selective reflection wavelength ⁇ shifted.
  • a technique of widening a wavelength range by a method called a pitch gradient method for changing a spiral pitch in a layer in a stepwise manner Specifically, Nature 378, 467-469 (1995), JP-A-6- 2818114 and the method of patent 4990426 are mentioned.
  • the reflective layer may be configured to reflect the selective reflection wavelengths in each cholesteric liquid crystal structure by providing a plurality of layers of cholesteric liquid crystal structures having different selective reflection wavelengths.
  • the thickness of the reflective layer is preferably 0.2 to 10 ⁇ m, more preferably 0.3 to 8.0 ⁇ m, and further preferably 0.4 to 6.0 ⁇ m.
  • the total thickness is preferably 1.0 to 30 ⁇ m, more preferably 1.5 to 25 ⁇ m, It is more preferably 2.0 to 20 ⁇ m.
  • the selective reflection wavelength in the reflective layer can be set to any range of visible light (about 380 to 780 nm) and near infrared light (about 780 to 2000 nm), and the setting method is described above. As I did.
  • the reflective layer having a cholesteric liquid crystal structure is basically for specular reflection of light having a selective reflection wavelength and has low light diffusivity, but may have fluctuation in the direction of the spiral axis of cholesteric alignment, By causing the alignment defect, it is possible to impart light diffusivity to the reflective layer. Since the reflective layer has diffusibility, the amount of reflected light in a direction other than the direction of specular reflection can be increased.
  • the material used for forming the above-mentioned reflective layer include a liquid crystal composition containing a polymerizable liquid crystal compound and a chiral agent (optically active compound). If necessary, the liquid crystal composition described above, which is further mixed with a surfactant, a polymerization initiator, or the like and dissolved in a solvent or the like, is applied to a support, an alignment layer, a cholesteric liquid crystal layer as an underlying layer, and the like, after cholesteric alignment aging.
  • the reflective layer can be formed by fixing the liquid crystal composition by curing.
  • the polymerizable liquid crystal compound may be a rod-shaped liquid crystal compound or a discotic liquid crystal compound, but is preferably a rod-shaped liquid crystal compound.
  • An example of the rod-shaped polymerizable liquid crystal compound forming the reflective layer is a rod-shaped nematic liquid crystal compound.
  • rod-shaped nematic liquid crystal compounds examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, and alkoxy-substituted phenylpyrimidines.
  • Phenyldioxane, tolan, and alkenylcyclohexylbenzonitrile are preferably used. Not only a low molecular weight liquid crystal compound but also a high molecular weight liquid crystal compound can be used.
  • the polymerizable liquid crystal compound is obtained by introducing a polymerizable group into the liquid crystal compound.
  • the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, an unsaturated polymerizable group is preferable, and an ethylenically unsaturated polymerizable group is particularly preferable.
  • the polymerizable group can be introduced into the molecule of the liquid crystal compound by various methods.
  • the number of polymerizable groups contained in the polymerizable liquid crystal compound is preferably 1 to 6, and more preferably 1 to 4 in one molecule. Examples of the polymerizable liquid crystal compound are described in Makromol. Chem.
  • polymerizable liquid crystal compound examples include compounds represented by the following formulas (1) to (13).
  • X 1 is 2 to 5 (an integer).
  • a cyclic organopolysiloxane compound having a cholesteric phase as disclosed in JP-A-57-165480 can be used.
  • a polymer in which a mesogenic group exhibiting liquid crystal is introduced in the main chain, a side chain, or both positions of the main chain and a side chain a polymer in which a cholesteryl group is introduced in a side chain Liquid crystals, liquid crystalline polymers as disclosed in JP-A-9-133810, and liquid crystalline polymers as disclosed in JP-A-11-293252 can be used.
  • the addition amount of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 80 to 99.9% by mass, and 85 to 99% by mass based on the solid content mass (mass excluding the solvent) of the liquid crystal composition. It is more preferably 0.5% by mass, and particularly preferably 90 to 99% by mass.
  • the reflective layer may have a low ⁇ n in order to improve the visible light transmittance.
  • the low ⁇ n reflective layer can be formed using a low ⁇ n polymerizable liquid crystal compound.
  • the low ⁇ n polymerizable liquid crystal compound will be specifically described below.
  • a narrow band reflective layer can be obtained by forming a cholesteric liquid crystal phase using a low ⁇ n polymerizable liquid crystal compound and fixing it to form a film.
  • low ⁇ n polymerizable liquid crystal compounds include the compounds described in WO2015/115390, WO2015/147243, WO2016/035873, JP-A-2015-163596, and JP-A-2016-53149.
  • the description of WO2016/047648 can also be referred to for the liquid crystal composition which gives a reflective layer having a narrow half width.
  • liquid crystal compound is a polymerizable compound represented by the following formula (I) described in WO2016/047648.
  • A represents a phenylene group which may have a substituent or a trans-1,4-cyclohexylene group which may have a substituent
  • m is 3 represents an integer of 3 to 12
  • Sp 1 and Sp 2 are each independently a single bond, a linear or branched alkylene group having 1 to 20 carbon atoms, and a linear or branched alkylene group having 1 to 20 carbon atoms.
  • One or more —CH 2 — is —O—, —S—, —NH—, —N(CH 3 )—, —C( ⁇ O)—, —OC( ⁇ O)—, or —
  • the phenylene group in formula (I) is preferably a 1,4-phenylene group.
  • the substituent which is “optionally substituted” is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, an alkoxy group and an alkyl ether.
  • the substituent include a group, an amido group, an amino group, a halogen atom, and a substituent selected from the group consisting of a combination of two or more of the above substituents.
  • the phenylene group and trans-1,4-cyclohexylene group may have 1 to 4 substituents. When it has two or more substituents, the two or more substituents may be the same or different from each other.
  • the alkyl group may be linear or branched.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably has 1 to 10 carbon atoms, and further preferably has 1 to 6 carbon atoms.
  • Examples of the alkyl group include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group.
  • Examples thereof include a group, 1,1-dimethylpropyl group, n-hexyl group, isohexyl group, linear or branched heptyl group, octyl group, nonyl group, decyl group, undecyl group, or dodecyl group.
  • the above description regarding the alkyl group is the same for the alkoxy group containing an alkyl group.
  • Specific examples of the alkylene group when referred to as an alkylene group include a divalent group obtained by removing one arbitrary hydrogen atom from each of the above-mentioned examples of the alkyl group.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the carbon number of the cycloalkyl group is preferably 3 to 20, more preferably 5 or more, preferably 10 or less, more preferably 8 or less, and further preferably 6 or less.
  • Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • X 3 represents a single bond, —O—, —S—, or —N(Sp 4 —Q 4 )—, or is a nitrogen atom forming a ring structure with Q 3 and Sp 3. Show.
  • Sp 3 and Sp 4 are each independently one or more of a single bond, a straight-chain or branched alkylene group having 1 to 20 carbon atoms, and a straight-chain or branched alkylene group having 1 to 20 carbon atoms.
  • a connecting group selected from the group consisting of substituted groups is shown.
  • one or more —CH 2 — is —O—, —S—, —NH—, —N(CH 3 )—, —C( ⁇ O)—, —OC( ⁇ O)
  • the substitution position is not particularly limited. Of these, a tetrahydrofuranyl group is preferable, and a 2-tetrahydrofuranyl group is particularly preferable.
  • the m-1 L's may be the same or different from each other.
  • Sp 1 and Sp 2 are each independently one or more of a single bond, a linear or branched alkylene group having 1 to 20 carbon atoms, and a linear or branched alkylene group having 1 to 20 carbon atoms.
  • a connecting group selected from the group consisting of substituted groups is shown.
  • Sp 1 and Sp 2 are each independently a carbon atom having a linking group selected from the group consisting of —O—, —OC( ⁇ O)—, and —C( ⁇ O)O— at both ends.
  • Q 1 and Q 2 each independently represent a hydrogen atom or a polymerizable group selected from the group consisting of the groups represented by the above formulas Q-1 to Q-5, provided that Q 1 and Q 2 are One of them represents a polymerizable group.
  • the polymerizable group an acryloyl group (formula Q-1) or a methacryloyl group (formula Q-2) is preferable.
  • m represents an integer of 3 to 12, is preferably an integer of 3 to 9, more preferably an integer of 3 to 7, and further preferably an integer of 3 to 5. ..
  • the polymerizable compound represented by the formula (I) has at least one optionally substituted phenylene group as A and a optionally substituted trans-1,4-cyclohexylene group. It is preferable to include at least one.
  • the polymerizable compound represented by the formula (I) preferably contains, as A, 1 to 4 trans-1,4-cyclohexylene groups which may have a substituent, and preferably 1 to 3 trans-1 ,4-cyclohexylene groups which may have a substituent. Is more preferable, and it is still more preferable to include 2 or 3.
  • the polymerizable compound represented by the formula (I) preferably contains, as A, at least one phenylene group which may have a substituent, more preferably 1 to 4 and more preferably 1 to 4 It is more preferable to include three, and it is particularly preferable to include two or three.
  • the number obtained by dividing the number of trans-1,4-cyclohexylene groups represented by A by m is mc
  • polymerizable compound represented by the formula (I) include the compounds described in paragraphs 0051 to 0058 of WO2016/047648, JP-A-2013-112631, JP-A-2010-70543, The compounds described in Japanese Patent No. 4725516, WO2015/115390, WO2015/147243, WO2016/035873, JP-A-2015-163596, and JP-A-2016-53149 can be exemplified.
  • the chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase.
  • the chiral compound may be selected according to the purpose because the sense of the helix or the helical pitch induced by the compound differs.
  • the chiral agent is not particularly limited, and known compounds can be used.
  • a liquid crystal device handbook (Chapter 3-4-3, TN (twisted nematic), STN (super-twisted nematic) chiral agent, p. 199, Japan Society for the Promotion of Science, 142th Committee, 1989.
  • JP-A-2003-287623, JP-A-2002-302487, JP-A-2002-80478, JP-A-2002-80851, JP-A-2010-181852 or JP-A-2014-034581. are listed.
  • the chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent.
  • Examples of the axially chiral compound or the planar chiral compound include binaphthyl, helicene, paracyclophane and derivatives thereof.
  • the chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, a repeating unit derived from the polymerizable liquid crystal compound and a chiral agent are generated by a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound.
  • the polymerizable group contained in the polymerizable chiral agent is preferably the same type of group as the polymerizable group contained in the polymerizable liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Particularly preferred. Further, the chiral agent may be a liquid crystal compound.
  • an isosorbide derivative As the chiral agent, an isosorbide derivative, an isomannide derivative, or a binaphthyl derivative can be preferably used.
  • an isosorbide derivative a commercially available product such as LC756 manufactured by BASF may be used.
  • the content of the chiral agent in the liquid crystal composition is preferably 0.01 mol% to 200 mol% of the amount of the polymerizable liquid crystal compound, and more preferably 1 mol% to 30 mol %.
  • the liquid crystal composition preferably contains a polymerization initiator.
  • the polymerization initiator used is preferably a photopolymerization initiator capable of initiating the polymerization reaction by irradiation with ultraviolet rays.
  • the photopolymerization initiator include ⁇ -carbonyl compounds (described in US Pat. No. 2,376,661 and US Pat. No. 2,367,670), acyloin ethers (US Pat. No. 2,448,828), and ⁇ -hydrocarbons. Of substituted aromatic acyloin compounds (described in US Pat. No.
  • acylphosphine oxide compounds JP-B-63-40799, JP-B-5-29234, JP-A-10-95788, JP-A-10-29997, JP-A-2001-233842, JP-A-2000-80068, JP-A-2006-342166, and JP-A-2006-342166.
  • 2013-114249, JP-A-2014-137466, JP-A-4223071, JP-A-2010-262028, JP-A-2014-500852, and oxime compound JP-A-2000-66385, JP Patent) No. 4454067
  • oxadiazole compounds described in US Pat. No. 4,212,970.
  • the description in paragraphs 0500 to 0547 of JP 2012-208494 A can be referred to.
  • acylphosphine oxide compound or an oxime compound is also preferable to use as the polymerization initiator.
  • acylphosphine oxide compound for example, a commercially available product, IRGACURE 810 (compound name: bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide) manufactured by BASF Japan Ltd. can be used.
  • IRGACURE OXE01 manufactured by BASF
  • IRGACURE OXE02 manufactured by BASF
  • TR-PBG-304 manufactured by Changzhou Power Electronics Co., Ltd.
  • ADEKA ARKRUZ NCI-831 ADEKA ARKRUZ NCI-930
  • Commercial products such as (made by ADEKA) and ADEKA ARKUL'S NCI-831 (made by ADEKA) can be used.
  • the polymerization initiator may be used alone or in combination of two or more.
  • the content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1% by mass to 20% by mass, and more preferably 0.5% by mass to 5% by mass, with respect to the content of the polymerizable liquid crystal compound. Is more preferable.
  • the liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and the durability.
  • a crosslinking agent one that can be cured by ultraviolet rays, heat, moisture or the like can be preferably used.
  • the cross-linking agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polyfunctional acrylate compounds such as trimethylolpropane tri(meth)acrylate and pentaerythritol tri(meth)acrylate; glycidyl (meth).
  • Epoxy compounds such as acrylate and ethylene glycol diglycidyl ether; 2,2-bishydroxymethylbutanol-tris[3-(1-aziridinyl)propionate] and aziridine compounds such as 4,4-bis(ethyleneiminocarbonylamino)diphenylmethane; Isocyanate compounds such as hexamethylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; alkoxysilane compounds such as vinyltrimethoxysilane and N-(2-aminoethyl)3-aminopropyltrimethoxysilane Can be mentioned.
  • a known catalyst can be used depending on the reactivity of the cross-linking agent, and the productivity can be improved in addition to the improvement of the film strength and durability. These may be used alone or in combination of two or more.
  • the content of the crosslinking agent is preferably 3% by mass to 20% by mass, more preferably 5% by mass to 15% by mass.
  • the liquid crystal composition may contain an alignment control agent that contributes to the stable or rapid formation of a reflective layer having a planar alignment.
  • the orientation control agent include fluorine (meth)acrylate polymers described in paragraphs [0018] to [0043] of JP2007-272185A, and paragraphs [0031] to [0034] of JP2012-203237A. ] And the like, compounds represented by formulas (I) to (IV), compounds described in JP-A-2013-113913, and the like.
  • the orientation control agent one kind may be used alone, or two or more kinds may be used in combination.
  • the addition amount of the orientation control agent in the liquid crystal composition is preferably 0.01% by mass to 10% by mass, more preferably 0.01% by mass to 5% by mass, based on the total mass of the polymerizable liquid crystal compound. It is particularly preferably from 0.02% by mass to 1% by mass.
  • the liquid crystal composition may contain at least one selected from various additives such as a surfactant for adjusting the surface tension of the coating film to make the thickness uniform and a polymerizable monomer.
  • a surfactant for adjusting the surface tension of the coating film to make the thickness uniform and a polymerizable monomer.
  • a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a coloring material, and metal oxide fine particles may be added, if necessary, within a range not deteriorating the optical performance. Can be added at.
  • the reflective layer is a support, an alignment layer, or a liquid crystal composition prepared by dissolving a polymerizable liquid crystal compound, a polymerization initiator, a chiral agent, a surfactant, and the like, which are added as necessary, in a solvent.
  • a cholesteric liquid crystal structure in which the cholesteric regularity is fixed by polymerizing the cholesteric liquid crystalline composition by irradiating the coating film with an actinic ray by applying an active ray to the cholesteric liquid crystal layer. It is possible to form a reflective layer having the same.
  • the solvent used for preparing the liquid crystal composition is not particularly limited and may be appropriately selected depending on the intended purpose, but organic solvents are preferably used.
  • the organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, and ethers. And the like. These may be used alone or in combination of two or more. Among these, ketones are particularly preferable in consideration of the load on the environment.
  • the coating method of the liquid crystal composition to the cholesteric liquid crystal layer to be the lower layer, etc. is not particularly limited and can be appropriately selected depending on the purpose, for example, a wire bar coating method, a curtain coating method, Examples thereof include an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method, a spin coating method, a dip coating method, a spray coating method, and a slide coating method. It can also be carried out by transferring a liquid crystal composition separately applied on a support. By heating the applied liquid crystal composition, the liquid crystal molecules are aligned. The heating temperature is preferably 200°C or lower, more preferably 130°C or lower. By this alignment treatment, a reflective layer in which the polymerizable liquid crystal compound is twisted and aligned so as to have a spiral axis in a direction substantially perpendicular to the film surface is obtained.
  • the liquid crystal composition can be cured by further polymerizing the aligned liquid crystal compound.
  • the polymerization may be either thermal polymerization or photopolymerization utilizing light irradiation, but photopolymerization is preferred. It is preferable to use ultraviolet rays for the light irradiation.
  • the irradiation energy is preferably 20mJ / cm 2 ⁇ 50J / cm 2, 100mJ / cm 2 ⁇ 1,500mJ / cm 2 is more preferable.
  • light irradiation may be carried out under heating or under a nitrogen atmosphere.
  • the irradiation ultraviolet wavelength is preferably 350 to 430 nm.
  • the polymerization reaction rate is preferably high, preferably 70% or more, and more preferably 80% or more.
  • the polymerization reaction rate can be determined by measuring the consumption rate of the polymerizable functional group by measuring the infrared absorption spectrum.
  • each reflective region is formed on the temporary support by the above-mentioned method, and each produced reflective region is cut into a desired shape.
  • it may be produced by transferring it onto a support.
  • a coating layer having a desired shape is formed on a support, and then an exposure treatment, a heat treatment, and a curing treatment are performed to obtain a desired shape.
  • the reflective layer having two or more reflective regions may be produced by repeating the formation of the reflective regions.
  • a photosensitive chiral agent which is sensitive to light and can change the helical pitch of the cholesteric liquid crystal phase may be used.
  • the photosensitive chiral agent is irradiated with light having a wavelength to be exposed through a mask having a predetermined opening pattern corresponding to the shape of each reflective region.
  • the selective reflection wavelength may be different for each reflection region by changing the helical induction force (HTP: Helical Twisting Power) of the chiral agent.
  • the support supports the reflective layer 14.
  • the support 12 has a haze value of 2% or more and a visible light transmittance of 30% or more.
  • the support 12 may be a single layer member or a member formed by laminating a plurality of layers. In the case of a support in which a plurality of layers are laminated, it is sufficient that the haze value of the whole support is 2% or more and the visible light transmittance is 30% or more.
  • a structure having a base material 16 and an intermediate layer 18 as illustrated in FIG. 1 is illustrated.
  • the base material 16 ensures the strength capable of supporting the reflective layer 14, and the intermediate layer 18 has a scattering function of having a haze value of 2% or more. It is preferable that the layer has.
  • Base material various resin films used as the base material in the optical film can be used.
  • the material of the base material include polyolefin resins such as polypropylene, polyacrylic resins such as polymethylmethacrylate, cellulose resins such as cellulose triacetate, cycloolefin polymer resins, polyethylene terephthalate (PET), polycarbonate, and polychlorinated resins. Examples thereof include vinyl.
  • the material of the base material is not limited to resin, and glass may be used.
  • the front phase difference of the base material is preferably 400 nm or less, more preferably 200 nm or less, and further preferably 122 nm or less. This is preferable in that it is possible to reduce the influence of polarization conversion by the support when making an authenticity determination using polarized light.
  • the thickness of the base material is preferably from 1 to 1000 ⁇ m, more preferably from 3 to 250 ⁇ m, even more preferably from 5 to 150 ⁇ m.
  • the intermediate layer is a layer having a scattering function with a haze value of 2% or more, it may be a layer made of a resin having a high haze value or a resin layer containing fine particles as a scattering material. ..
  • polypropylene polycarbonate
  • polyester such as polyethylene terephthalate
  • polyvinyl chloride polyamide and the like
  • the fine particles may be fine particles having a refractive index different from that of the resin to be dispersed, and known scattering materials can be used.
  • the fine particles for example, acrylic particles, silicone particles, nylon particles, styrene particles, polyethylene particles, urethane particles, resin particles such as benzoguanamine, or inorganic particles such as alumina particles and silica particles can be used.
  • the type of fine particles, the particle size and the addition amount may be appropriately selected according to the dispersibility in the resin to be dispersed, the solubility, the refractive index, the thickness of the support, the haze value as the support, the visible light transmittance, and the like. Good.
  • the particle size of the fine particles is preferably 50 nm or more, more preferably 100 nm to 200 nm, further preferably 150 nm to 1000 nm.
  • the resin for dispersing the fine particles is not particularly limited as long as the haze value and the visible light transmittance as the support satisfy the above ranges.
  • polyacrylate resin such as polyfunctional acrylate or urethane acrylate can be used.
  • the intermediate layer may have a function as an adhesive layer.
  • the intermediate layer has a bonding function, the reflective layer and the support can be bonded to each other when the reflective layer is formed by transfer.
  • acrylic resin, epoxy resin, or the like can be used.
  • the intermediate layer has a function as an adhesive layer, the fine particles described above may be dispersed.
  • a resin film made of a polyolefin resin such as polypropylene is exemplified.
  • a dispersion of the above-mentioned fine particles in the above-mentioned material as a material of the base material may be used as a single-layer support, and the haze value and visible light transmittance of the support may satisfy the above ranges.
  • the anti-counterfeit medium may have a layer other than the above-mentioned support (base material and intermediate layer), reflective layer, and circularly polarizing plate.
  • an adhesive layer for laminating each layer may be provided between each layer constituting the anti-counterfeit medium.
  • an adhesive layer may be provided on the outermost surface layer of either one of the anti-counterfeit media.
  • a layer made of an adhesive, or a soft gel-like (rubber-like) solid at the time of bonding, which does not change the gel state thereafter, may be a layer made of an adhesive, or an adhesive and an adhesive layer. It may be a layer made of a material having both characteristics as an agent. Therefore, as the adhesive layer, an optical transparent adhesive (OCA (Optical Clear Adhesive)), an optical transparent double-sided tape, an ultraviolet curable resin, or the like known in the art for bonding sheet-like materials may be used.
  • OCA optical Clear Adhesive
  • the information card of the present invention is The anti-counterfeiting medium described above, An information card having an image printing unit.
  • the information card is used in banknotes, securities, tickets, passports, driver's licenses, my number cards, ID (IDentification) cards such as admission cards, credit cards, cash cards, prepaid cards, stamps, local governments, etc. It includes the certificate of income used, stamps for postage, certificate of seal, certificate of residence used for certificate of residence, brand certificate, certificate of authenticity such as pharmaceutical products, etc.
  • the information card has an image printing unit on which characters, symbols, pictures, etc. are printed according to the type of the information card, and the above-mentioned forgery prevention medium.
  • the authenticity of the information card can be determined by using an anti-counterfeit medium.
  • the anti-counterfeit medium of the present invention has high security (anti-counterfeit property), it is difficult to forge an information card having the anti-counterfeit medium of the present invention, and the security can be enhanced.
  • the anti-counterfeit medium 10 and the image printing section 32 are covered with the same overcoat layer 24 as in the information card 30 shown in FIG. 11. That is, the overcoat layer of the anti-counterfeit medium and the overcoat layer of the image printing section may be integrally formed. Further, in FIG. 11, the support 12 is formed integrally with the support of the image printing unit 32. In FIG. 11, the area surrounded by the broken line corresponds to the forgery prevention medium 10.
  • the anti-counterfeit medium and the image printing part are covered with the same overcoat layer, so that scratch resistance can be improved.
  • the flatness of the surface of the information card can be improved.
  • the anti-counterfeit medium in a desired pattern on the surface of the information card, it is possible to judge the authenticity based on the arrangement pattern of the anti-counterfeit medium.
  • Example 1 As Example 1, an anti-counterfeit medium 10b having a structure as shown in FIG. 4 was produced.
  • cholesteric liquid crystal layer As a temporary support, a PET (polyethylene terephthalate, Cosmoshine A4100) film manufactured by Toyobo Co., Ltd. having a thickness of 100 ⁇ m was used. After the PET film was rubbed, the cholesteric liquid crystal coating liquid A prepared above was temporarily used. The rubbing surface on the support was coated with a wire bar. The coating amount was adjusted so that the thickness of the coating layer after drying was about 4.5 ⁇ m. The coating was performed at room temperature.
  • a PET polyethylene terephthalate, Cosmoshine A4100 film manufactured by Toyobo Co., Ltd. having a thickness of 100 ⁇ m was used. After the PET film was rubbed, the cholesteric liquid crystal coating liquid A prepared above was temporarily used. The rubbing surface on the support was coated with a wire bar. The coating amount was adjusted so that the thickness of the coating layer after drying was about 4.5 ⁇ m. The coating was performed at room temperature.
  • the coating layer is irradiated with UV (ultraviolet) for a certain period of time through a black mask having a predetermined opening pattern in an oxygen atmosphere at room temperature, and then the mask is removed and UV irradiation is performed for a certain period of time.
  • the pitch of the structure was adjusted.
  • the exposure amount of the portion without the mask was 50 mJ/cm 2
  • the exposure amount of the portion with the mask was 15 mJ/cm 2 .
  • the temporary support on which the coating layer after UV irradiation was laminated was allowed to stand on a hot plate at 100° C. for 1 minute to perform heat treatment.
  • the coating layer after the heat treatment is irradiated with UV for a certain period of time to cure the coating layer to have two or more types of reflective regions having different selective reflection wavelengths.
  • the reflective layer R1 was formed.
  • the UV irradiation dose in this step was 500 mJ/cm 2 .
  • the formed reflective layer R1 has a right-handed cholesteric liquid crystal phase and reflects right-handed circularly polarized light.
  • the PET film as the temporary support was peeled off from the reflective layer R1 to obtain the forgery prevention medium G1 of Example 1.
  • the base material polypropylene film
  • the intermediate layer Z1 were the support B1
  • the haze value of this support B1 was 5%.
  • the visible light transmittance was 91%.
  • composition of acrylic solution Z1) ⁇ Vanaresin GH-1203 (manufactured by Shin-Nakamura Chemical Co., Ltd.) 50 parts by mass ⁇ Viscoat #360 (manufactured by Osaka Organic Chemical Industry Co., Ltd.) 50 parts by mass ⁇ Silica particle dispersion (manufactured by Nissan Chemical Co., AC- 5140Z, solid content 30 wt%) 24 parts by mass ⁇ IRGACURE819 (manufactured by BASF) 4 parts by mass ⁇ Horizontal aligning agent 1 0.01 parts by mass
  • MEK/MIBK methyl isobutyl
  • the reflection layer R1 of the anti-counterfeit medium G1 manufactured in Example 1 has two reflection regions having different selective reflection wavelengths.
  • the selective reflection wavelength in the masked region when producing the reflective layer R1 is in the visible light region of 450 nm to 650 nm, and the selective reflection wavelength in the region without the mask is in the near infrared region of 800 nm or more.
  • the anti-counterfeit medium G1 was visually checked, the masked area could be visually recognized as a pattern of characters and images. Further, when the anti-counterfeit medium G1 was observed through the left circularly polarizing plate with the reflection layer R1 on the front side, the pattern of the reflection area could not be recognized. It was confirmed that the authenticity can be judged by a simple method.
  • the anti-counterfeit medium G1 of Example 1 was set in the absolute reflectance measurement unit ARV474S type connected to the JASCO spectrophotometer V-670 so that the support B1 side faced the light source.
  • the incident light was set to 45 degrees with respect to the surface of the anti-counterfeiting medium G1 on the support B1 side, and the sensor (detector) was set to be in the vertical direction with respect to the surface of the anti-counterfeiting medium G1 on the support B1 side (that is, a scanner was simulated.
  • Diffuse reflectance of the anti-counterfeit medium G1 was measured using a format in which reflected light from obliquely incident light is detected in the front direction.
  • the diffuse reflectance was similarly measured for the support B1 alone, that is, for the laminate having the same configuration as the forgery prevention medium G1 except that the support B1 was not provided, and the result was used as a reference.
  • the detection intensity of the reference was 1, the relative detection intensity of the forgery prevention medium G1 of Example 1 was 1.8.
  • Comparative Example 1 In Comparative Example 1, a reflective film R1 was formed on the PET film that is the temporary support in Example 1.
  • the anti-counterfeit medium of Comparative Example 1 has the same structure as the anti-counterfeit medium of Example 1 except that the support B1 was changed to a PET film.
  • the haze value of the PET film was 0.4%.
  • the visible light transmittance was 92%.
  • the anti-counterfeit medium G1 which is an example of the present invention having the support B1 having a high haze value has a significantly higher detection strength than the support B1 alone, and thus is useful as an anti-counterfeit medium.
  • Comparative Example 1 having a support having a low haze, it can be seen that it cannot be used as a forgery prevention medium because the detection strength is the same as that of the support alone. That is, it can be seen that the light reflected by the reflective layer R1 cannot be detected in Comparative Example 1, whereas the light reflected by the reflective layer R1 can be detected in Example 1.
  • Example 2 An anti-counterfeit medium G2 was produced in the same manner as in Example 1 except that the overcoat layer Z2 was formed on the surface of the reflective layer R1 opposite to the support B1. Specifically, the following acrylic solution Z2 was applied on a PET film as a temporary support so that the film thickness after drying was 2 ⁇ m, and heat treatment was performed at 85° C., and then “2” was applied under a nitrogen atmosphere. Execure 3000-W" (manufactured by HOYA CANDEO OPTRONICS CO., LTD.) was used to irradiate UV to form the overcoat layer Z2. The irradiation dose at this time was 150 mJ/cm 2 .
  • the reflective layer R2 was formed on the overcoat layer Z2 in the same manner as in Example 1, and the reflective layer R2 and the overcoat layer Z2 were used as the support B1.
  • the image was transferred to manufacture an anti-counterfeit medium G2.
  • the reflective layer R2 was manufactured by the same method as the reflective layer R1, the underlying layer is different, so that the reflective layer R2 has a different structure from the reflective layer R1 and has a different reflective property.
  • the overcoat layer Z2 is used as a base layer, the spiral axis of the cholesteric liquid crystal phase fluctuates and many alignment defects occur, so that the diffusivity of the reflective layer R2 itself becomes higher than that of the reflective layer R1.
  • composition of acrylic solution Z2 -Biscoat #360 (Osaka Organic Chemical Industry Co., Ltd.) 100 parts by mass-IRGACURE819 (BASF Corp.) 4 parts by mass-Horizontal aligning agent 1 0.01 parts by mass-MEK 200 parts by mass
  • Example 3 An anti-counterfeit medium G3 having the same configuration as in Example 1 was produced except that the circularly polarizing plate was provided on the reflective layer R1.
  • the circularly polarizing plate is a left circularly polarizing plate, and includes a ⁇ /4 plate (MCR140N: manufactured by Mitate Imaging Co., Ltd.) and a linear polarizing plate (MCR140N: manufactured by Mitate Imaging Co., Ltd.) as an adhesive layer (MCS70: Mitate Imaging Inc.). (Manufactured), and the direction was adjusted, and it stuck and produced.
  • MCS70 Mitate Imaging Inc.
  • Example 4 An anti-counterfeit medium G4 having the same configuration as in Example 2 was produced except that a circularly polarizing plate was provided between the support B1 and the reflective layer R2. As the circularly polarizing plate, the same circularly polarizing plate as that of Example 3 was used. After forming the reflective layer R1 on the temporary support (PET film with the overcoat layer Z2), the ⁇ /4 plate side of the circularly polarizing plate is provided on the reflective layer R1 with an adhesive layer (MCS70: manufactured by Mitachi Imaging Co., Ltd.). ) was used for bonding. Next, the overcoat layer Z2, the reflective layer R1, and the circularly polarizing plate were transferred to the support B1 to prepare an anti-counterfeit medium G4.
  • MCS70 manufactured by Mitachi Imaging Co., Ltd.
  • Example 4 In the same manner as in Example 1, the diffuse reflectance of the forgery prevention medium G4 of Example 4 was measured.
  • the reference is the support B1.
  • the relative detection intensity in the visible light region was 1.1.
  • the relative detection intensity in the near infrared region was 2.5. This is because right circularly polarized light does not reach the reflective layer R2 due to the action of the circularly polarizing plate in the visible light region, and thus the reflected light component by the reflective layer R2 is hardly detected.
  • the circularly polarizing plate since the circularly polarizing plate does not function in the near infrared region, the right circularly polarized light reaches the reflection layer R2 and is reflected by the reflection layer R2, so that the light reflected by the reflection layer R2 is detected. is there. Therefore, it can be seen that in reading using light in the near infrared region, a pattern that is reversed from the visual observation is detected. From the above results, the effect of the present invention is clear.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Credit Cards Or The Like (AREA)

Abstract

Provided are an anti-forgery medium and an information card, which enable proper reading, regardless of the position of a sensor, when the anti-forgery medium is irradiated with light for determination of authenticity. This medium has a reflective layer and a support body for supporting the reflective layer, wherein the reflective layer has a cholesteric liquid crystal structure, and the support body has a haze value of at least 2% and a visible light transmission of at least 30%.

Description

偽造防止媒体および情報カードAnti-counterfeit media and information cards
 本発明は、偽造防止媒体およびこの偽造防止媒体を有する情報カードに関する。 The present invention relates to an anti-counterfeit medium and an information card having this anti-counterfeit medium.
 従来、紙幣等に用いられる偽造防止媒体として、アルミニウムなどの反射材の上にエンボス加工したホログラムを設けたものが利用されている。しかしながら、ホログラムを用いた偽造防止媒体は偽造の容易性が増してきており、より偽造が困難な、すなわち、セキュリティ性の高い偽造防止媒体が求められている。 Conventionally, as an anti-counterfeit medium used for bills and the like, a medium provided with an embossed hologram on a reflective material such as aluminum has been used. However, the forgery prevention medium using a hologram is becoming easier to forge, and there is a demand for a forgery prevention medium that is more difficult to forge, that is, has high security.
 セキュリティ性の高い偽造防止媒体として、コレステリック液晶層を用いることが提案されている。
 例えば、特許文献1には、透明基材、透明基材の一方の面に第1のコレステリック液晶層、パターニングされた第2のコレステリック液晶層、及び接着層からなる転写材と、支持基材へ剥離性樹脂層を設けた支持材とからなり、転写材の転写部をハーフカット処理してパッチとし、パッチが支持材の剥離性樹脂層面へ剥離可能に積層されているパッチ転写媒体が記載されている。このパッチ転写媒体は、偽造防止機能を必要とする有する物に転写して用いられるものである。
It has been proposed to use a cholesteric liquid crystal layer as a forgery prevention medium with high security.
For example, in Patent Document 1, a transparent substrate, a transfer material including a first cholesteric liquid crystal layer on one surface of the transparent substrate, a patterned second cholesteric liquid crystal layer, and an adhesive layer, and a support substrate A patch transfer medium comprising a support material provided with a peelable resin layer, a transfer portion of a transfer material being half-cut into a patch, and the patch being releasably laminated on the peelable resin layer surface of the support material is described. ing. This patch transfer medium is used by transferring it to an object having a forgery prevention function.
 特許文献2には、基材と、基材の上に形成される粘着層と、粘着層の上に形成される液晶フィルムと、を備え、液晶フィルムにおける粘着層とは反対側の面には、回折機能を有する凹凸構造体が形成され、液晶フィルムの上には、凹凸構造体を覆う樹脂層が形成され、樹脂層は、活性エネルギー線硬化型樹脂組成物を硬化してなるとともに、そのガラス転移温度T2(℃)が30℃以上である光学積層体が記載されている。また、特許文献2には、この光学積層体が、偽造防止のための表示媒体として使用できることが記載されている。 Patent Document 2 includes a base material, an adhesive layer formed on the base material, and a liquid crystal film formed on the adhesive layer, and a surface of the liquid crystal film opposite to the adhesive layer is provided. , A concave-convex structure having a diffractive function is formed, a resin layer covering the concave-convex structure is formed on the liquid crystal film, and the resin layer is formed by curing an active energy ray-curable resin composition. An optical laminate having a glass transition temperature T2 (°C) of 30°C or higher is described. Further, Patent Document 2 describes that this optical laminate can be used as a display medium for preventing forgery.
特開2010-120230号公報JP, 2010-120230, A 特開2015-105962号公報JP, 2005-105962, A
 偽造防止媒体の真贋の判定方法の一つとして、特定の波長域の光を偽造防止媒体に照射し、偽造防止媒体から反射された光をセンサーによって読み取ることで判定する方法がある。このような判定方法は、目視では判定しにくい(判定できない)真贋を判定することができるため、セキュリティ性がより高くなる。 As one of the methods for determining the authenticity of the anti-counterfeit medium, there is a method of irradiating the anti-counterfeit medium with light in a specific wavelength range and reading the light reflected from the anti-counterfeit medium by a sensor. In such a determination method, it is possible to determine the authenticity that is difficult (cannot be determined) by visual observation, so that the security is further improved.
 ここで、偽造防止媒体に光を照射して反射光を読み取る場合、光源とセンサーとの位置関係を鏡面反射の位置に配置すると、偽造防止媒体の最表面(例えば、基材の表面、オーバーコート層を有する場合はオーバーコート層の表面等)で鏡面反射する光がセンサーに入射してしまい、コレステリック液晶層等の真贋の判定に利用する層からの反射光の割合が少なくなるため正確に読み取りできない。そのため、偽造防止媒体に光を照射して反射光を読み取る場合、光源とセンサーとの位置関係が鏡面反射の位置とならないようにする必要がある。
 しかしながら、コレステリック液晶層による光の反射は鏡面反射である。そのため、コレステリック液晶層を有する偽造防止媒体に対して、上述の判定方法を行う際に、光を照射する光源と反射された光を読み取るセンサーとの位置関係が鏡面反射の位置にない場合には、コレステリック液晶層によって反射され、センサーに到達する光量が少なくなるため、センサーで読み取りできないという問題があった。
Here, when irradiating the anti-counterfeit medium with light and reading the reflected light, if the positional relationship between the light source and the sensor is arranged at the position of specular reflection, the outermost surface of the anti-counterfeit medium (for example, the surface of the base material, the overcoat) If there is a layer, the light that is specularly reflected by the surface of the overcoat layer, etc. will enter the sensor, and the proportion of the reflected light from the layer used for judging the authenticity of the cholesteric liquid crystal layer will decrease, so it will be read accurately. Can not. Therefore, when irradiating the anti-counterfeit medium with light and reading the reflected light, it is necessary to prevent the positional relationship between the light source and the sensor from being the specular reflection position.
However, the reflection of light by the cholesteric liquid crystal layer is specular reflection. Therefore, for the anti-counterfeit medium having a cholesteric liquid crystal layer, when performing the determination method described above, if the positional relationship between the light source that emits light and the sensor that reads the reflected light is not at the position of specular reflection. However, the amount of light reflected by the cholesteric liquid crystal layer and reaching the sensor is reduced, so that there is a problem that the sensor cannot read.
 本発明は、上記実情に鑑みて、偽造防止媒体に光を照射して真贋の判定を行う際に、センサーの位置に関わらず、適切に読み取りできる偽造防止媒体および情報カードを提供することを課題とする。 In view of the above situation, the present invention aims to provide an anti-counterfeit medium and an information card that can be appropriately read regardless of the position of the sensor when irradiating light to the anti-counterfeit medium to determine authenticity. And
 この課題を解決するために、本発明は、以下の構成を有する。 In order to solve this problem, the present invention has the following configurations.
 [1] 反射層と、反射層を支持する支持体とを有し、
 反射層がコレステリック液晶構造を有し、
 支持体のヘイズ値が2%以上で、かつ、可視光透過率が30%以上である偽造防止媒体。
 [2] 反射層は、コレステリック液晶構造による選択反射波長が30nm以上異なる2以上の反射領域を有する[1]に記載の偽造防止媒体。
 [3] 少なくとも1つの反射領域の選択反射波長が、可視光領域の波長である[2]に記載の偽造防止媒体。
 [4] 少なくとも1つの反射領域の選択反射波長が、不可視光領域の波長である[2]または[3]に記載の偽造防止媒体。
 [5] 少なくとも1つの反射領域の選択反射波長が、700nm以上である[4]に記載の偽造防止媒体。
 [6] 面内の異なる位置に配置される2以上の反射領域を有する[2]~[5]のいずれかに記載の偽造防止媒体。
 [7] 反射層のコレステリック液晶構造が反射する円偏光と同じセンスの円偏光を吸収する円偏光板を有する[1]~[6]のいずれかに記載の偽造防止媒体。
 [8] 支持体は、基材と中間層とを有する[1]~[7]のいずれかに記載の偽造防止媒体。
 [9] 中間層が、粒径50nm以上の微粒子を含む[8]に記載の偽造防止媒体。
 [10] 基材が、ポリオレフィン系の高分子材料からなる[8]または[9]に記載の偽造防止媒体。
 [11] 基材の正面位相差が、400nm以下である[8]~[10]のいずれかに記載の偽造防止媒体。
 [12] 反射層の、支持体側とは反対側にオーバーコート層を有する[1]~[11]のいずれかに記載の偽造防止媒体。
 [13] [1]~[12]のいずれかに記載の偽造防止媒体と、
 画像印刷部とを有する情報カード。
 [14] 偽造防止媒体と、画像印刷部とが、同一のオーバーコート層で覆われている[13]に記載の情報カード。
[1] A reflective layer and a support that supports the reflective layer,
The reflective layer has a cholesteric liquid crystal structure,
An anti-counterfeit medium in which the haze value of the support is 2% or more and the visible light transmittance is 30% or more.
[2] The anti-counterfeit medium according to [1], wherein the reflective layer has two or more reflective regions having different selective reflection wavelengths of 30 nm or more due to the cholesteric liquid crystal structure.
[3] The anti-counterfeit medium according to [2], wherein the selective reflection wavelength of at least one reflection region is a wavelength in the visible light region.
[4] The forgery prevention medium according to [2] or [3], wherein the selective reflection wavelength of at least one reflection region is a wavelength of the invisible light region.
[5] The anti-counterfeit medium according to [4], wherein the selective reflection wavelength of at least one reflection region is 700 nm or more.
[6] The anti-counterfeit medium according to any one of [2] to [5], which has two or more reflective regions arranged at different positions in the plane.
[7] The anti-counterfeit medium according to any one of [1] to [6], which has a circularly polarizing plate that absorbs circularly polarized light having the same sense as the circularly polarized light reflected by the cholesteric liquid crystal structure of the reflective layer.
[8] The anti-counterfeit medium according to any one of [1] to [7], in which the support has a base material and an intermediate layer.
[9] The anti-counterfeit medium according to [8], wherein the intermediate layer contains fine particles having a particle size of 50 nm or more.
[10] The anti-counterfeit medium according to [8] or [9], wherein the base material is a polyolefin-based polymer material.
[11] The anti-counterfeit medium according to any one of [8] to [10], wherein the front surface retardation of the substrate is 400 nm or less.
[12] The anti-counterfeit medium according to any one of [1] to [11], which has an overcoat layer on the side opposite to the support side of the reflective layer.
[13] An anti-counterfeit medium according to any one of [1] to [12],
An information card having an image printing section.
[14] The information card according to [13], wherein the anti-counterfeit medium and the image printing section are covered with the same overcoat layer.
 本発明によれば、偽造防止媒体に光を照射して真贋の判定を行う際に、センサーの位置に関わらず、適切に読み取りできる偽造防止媒体および情報カードを提供することができる。 According to the present invention, it is possible to provide an anti-counterfeit medium and an information card that can be appropriately read regardless of the position of the sensor when irradiating light on the anti-counterfeit medium to determine authenticity.
本発明の偽造防止媒体の一例を模式的に示す断面図である。It is sectional drawing which shows an example of the forgery prevention medium of this invention typically. 図1に示す偽造防止媒体の作用を説明するための断面図である。FIG. 3 is a cross-sectional view for explaining the action of the anti-counterfeit medium shown in FIG. 1. 従来の偽造防止媒体を説明するための断面図である。It is sectional drawing for demonstrating the conventional anti-counterfeit medium. 本発明の偽造防止媒体の他の一例を模式的に示す断面図である。It is sectional drawing which shows another example of the forgery prevention medium of this invention typically. 本発明の偽造防止媒体の他の一例を模式的に示す断面図である。It is sectional drawing which shows another example of the forgery prevention medium of this invention typically. 図5に示す偽造防止媒体の作用を説明するための模式図である。It is a schematic diagram for demonstrating the effect|action of the forgery prevention medium shown in FIG. 図5に示す偽造防止媒体の作用を説明するための模式図である。It is a schematic diagram for demonstrating the effect|action of the forgery prevention medium shown in FIG. 本発明の偽造防止媒体の他の一例を模式的に示す断面図である。It is sectional drawing which shows another example of the forgery prevention medium of this invention typically. 本発明の偽造防止媒体の他の一例を模式的に示す断面図である。It is sectional drawing which shows another example of the forgery prevention medium of this invention typically. 本発明の偽造防止媒体の他の一例を模式的に示す断面図である。It is sectional drawing which shows another example of the forgery prevention medium of this invention typically. 本発明の情報カードの一例を模式的に示す断面図である。It is sectional drawing which shows an example of the information card of this invention typically.
 以下、本発明の偽造防止媒体について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、「直交」および「平行」とは、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、「直交」および「平行」とは、厳密な直交あるいは平行に対して±10°未満の範囲内であることなどを意味し、厳密な直交あるいは平行に対しての誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。
 また、「直交」および「平行」以外で表される角度、例えば、15°や45°等の具体的な角度についても、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、本発明においては、角度は、具体的に示された厳密な角度に対して、±5°未満であることなどを意味し、示された厳密な角度に対する誤差は、±3°以下であるのが好ましく、±1°以下であるのが好ましい。
Hereinafter, the anti-counterfeit medium of the present invention will be described in detail. In the present specification, the numerical range represented by “to” means the range including the numerical values before and after “to” as the lower limit value and the upper limit value.
In addition, in the present specification, “orthogonal” and “parallel” include a range of error allowed in the technical field to which the present invention belongs. For example, “orthogonal” and “parallel” mean that the angle is within ±10° with respect to the strict orthogonal or parallel, and the error with respect to the strict orthogonal or parallel is 5° or less. Is preferable, and more preferably 3° or less.
In addition, angles represented by other than “orthogonal” and “parallel”, for example, specific angles such as 15° and 45°, also include the error range allowable in the technical field to which the present invention belongs. For example, in the present invention, the angle means that it is less than ±5° with respect to the specifically indicated exact angle, and the error with respect to the indicated exact angle is ±3° or less. Preferably, it is preferably ±1° or less.
 本明細書において、「(メタ)アクリレート」は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味で使用される。
 本明細書において、「同一」は、技術分野で一般的に許容される誤差範囲を含むものとする。また、本明細書において、「全部」、「いずれも」または「全面」などというとき、100%である場合のほか、技術分野で一般的に許容される誤差範囲を含み、例えば99%以上、95%以上、または90%以上である場合を含むものとする。
In the present specification, “(meth)acrylate” is used to mean “either one or both of acrylate and methacrylate”.
In the present specification, “identical” includes an error range generally accepted in the technical field. Further, in the present specification, when referring to “all”, “any” or “whole surface” and the like, in addition to the case of 100%, the error range generally accepted in the technical field is included, for example, 99% or more, The case where it is 95% or more, or 90% or more is included.
 円偏光につき「選択的」というときは、光の右円偏光成分または左円偏光成分のいずれかの光量が、他方の円偏光成分よりも多いことを意味する。具体的には「選択的」というとき、光の円偏光度は、0.3以上であることが好ましく、0.6以上がより好ましく、0.8以上がさらに好ましい。実質的に1.0であることがさらに好ましい。ここで、円偏光度とは、光の右円偏光成分の強度をIR、左円偏光成分の強度をILとしたとき、|IR-IL|/(IR+IL)で表される値である。 The term “selective” for circularly polarized light means that the light amount of either the right circularly polarized light component or the left circularly polarized light component of light is larger than that of the other circularly polarized light component. Specifically, the term “selective” means that the circular polarization degree of light is preferably 0.3 or more, more preferably 0.6 or more, and further preferably 0.8 or more. More preferably, it is substantially 1.0. Table In / (I R + I L) | Here, the degree of circular polarization, the intensity of the right circularly polarized light component of the light I R, when the strength of the left-handed circularly polarized light component and I L, | I R -I L Is the value to be set.
 円偏光につき「センス」というときは、右円偏光であるか、または左円偏光であるかを意味する。円偏光のセンスは、光が手前に向かって進んでくるように眺めた場合に電場ベクトルの先端が時間の増加に従って時計回りに回る場合が右円偏光であり、反時計回りに回る場合が左円偏光であるとして定義される。 When referring to circularly polarized light as “sense,” it means right-handed circularly polarized light or left-handed circularly polarized light. The sense of circularly polarized light is right circularly polarized when the tip of the electric field vector rotates clockwise with increasing time when viewed as if the light is traveling toward you, and left when it rotates counterclockwise. It is defined as being circularly polarized.
 コレステリック液晶の螺旋のねじれ方向について「センス」との用語を用いることもある。コレステリック液晶の螺旋のねじれ方向(センス)が右の場合は右円偏光を反射し、左円偏光を透過し、センスが左の場合は左円偏光を反射し、右円偏光を透過する。 -The term "sense" may be used for the twist direction of the spiral of cholesteric liquid crystal. When the twist direction (sense) of the spiral of the cholesteric liquid crystal is right, right circularly polarized light is reflected and left circularly polarized light is transmitted, and when the sense is left, left circularly polarized light is reflected and right circularly polarized light is transmitted.
 可視光は電磁波のうち、ヒトの目で見える波長の光であり、通常、380~780nmの波長域の光を示す。非可視光は、380nm未満の波長領域または780nmを超える波長領域の光である。
 また、これに制限されるものではないが、可視光のうち、420~490nmの波長領域の光は青色(B)光であり、495~570nmの波長領域の光は緑色(G)光であり、620~750nmの波長領域の光は赤色(R)光である。
 赤外光のうち、近赤外光は780nm~2500nmの波長域の電磁波である。紫外光は波長10~380nmの範囲の光である。
Visible light is a part of electromagnetic waves having a wavelength that can be seen by human eyes, and usually shows light in a wavelength range of 380 to 780 nm. The non-visible light is light in a wavelength range of less than 380 nm or a wavelength range of more than 780 nm.
In addition, although not limited thereto, in the visible light, light in the wavelength range of 420 to 490 nm is blue (B) light, and light in the wavelength range of 495 to 570 nm is green (G) light. , Light in the wavelength range of 620 to 750 nm is red (R) light.
Among infrared light, near infrared light is an electromagnetic wave in the wavelength range of 780 nm to 2500 nm. Ultraviolet light is light in the wavelength range of 10 to 380 nm.
 「可視光線透過率」はJIS(日本工業規格) R 3212:2015(自動車用安全ガラス試験方法)において定められたA光源可視光線透過率とする。すなわち、A光源を用い分光光度計にて、波長380~780nmの範囲の各波長の透過率を測定し、CIE(国際照明委員会)の明順応標準比視感度の波長分布および波長間隔から得られる重価係数を各波長での透過率に乗じて加重平均することによって求められる透過率である。
 単に「反射光」または「透過光」というときは、散乱光および回折光を含む意味で用いられる。
The “visible light transmittance” is the visible light transmittance of the A light source defined in JIS (Japanese Industrial Standard) R 3212:2015 (Test method for automobile safety glass). That is, the transmittance of each wavelength in the wavelength range of 380 to 780 nm is measured with a spectrophotometer using the A light source, and is obtained from the wavelength distribution and the wavelength interval of the CIE (International Commission on Illumination) light adaptation standard ratio visual sensitivity. It is the transmittance obtained by multiplying the transmittance at each wavelength by the obtained weighting coefficient and performing a weighted average.
The term "reflected light" or "transmitted light" is used to include scattered light and diffracted light.
 なお、光の各波長の偏光状態は、円偏光板を装着した分光放射輝度計またはスペクトルメータを用いて測定することができる。この場合、右円偏光板を通して測定した光の強度がIR、左円偏光板を通して測定した光の強度がILに相当する。また、照度計または光スペクトルメータに円偏光板を取り付けても測定することができる。右円偏光透過板をつけ、右円偏光量を測定、左円偏光透過板をつけ、左円偏光量を測定することにより、比率を測定できる。 The polarization state of each wavelength of light can be measured using a spectral radiance meter or a spectrum meter equipped with a circularly polarizing plate. In this case, the light intensity measured through the right circularly polarizing plate corresponds to I R , and the light intensity measured through the left circularly polarizing plate corresponds to I L. It is also possible to measure by attaching a circularly polarizing plate to an illuminometer or an optical spectrum meter. The ratio can be measured by attaching a right circularly polarized light transmitting plate and measuring the right circularly polarized light amount, and by attaching a left circularly polarized light transmitting plate and measuring the left circularly polarized light amount.
 正面位相差は、Axometrics社製のAxoScanを用いて測定した値である。測定波長は特に言及のないときは、波長550nmとする。正面位相差はKOBRA 21ADHまたはWR(王子計測機器(株)製)において可視光波長域内の波長の光をフィルム法線方向に入射させて測定した値を用いることもできる。測定波長の選択にあたっては、波長選択フィルターをマニュアルで交換するか、または測定値をプログラム等で変換して測定することができる。 The front phase difference is a value measured using an AxoScan manufactured by Axometrics. The measurement wavelength is 550 nm unless otherwise specified. For the front phase difference, a value measured by KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments Co., Ltd.) with light having a wavelength within the visible light wavelength range incident in the film normal direction can be used. In selecting the measurement wavelength, the wavelength selection filter can be replaced manually or the measurement value can be converted by a program or the like for measurement.
 本明細書において、「ヘイズ」は、日本電色工業株式会社製のヘーズメーターNDH-2000を用いて測定される値を意味する。
 理論上は、ヘイズは、以下式で表される値を意味する。
(380~780nmの自然光の散乱透過率)/(380~780nmの自然光の散乱透過率+自然光の直透過率)×100%
 散乱透過率は分光光度計と積分球ユニットを用いて、得られる全方位透過率から直透過率を差し引いて算出することができる値である。直透過率は、積分球ユニットを用いて測定した値に基づく場合、0°での透過率である。つまり、ヘイズが低いということは、全透過光量のうち、直透過光量が多いことを意味する。
 屈折率は、波長589.3nmの光に対する屈折率である。
In the present specification, “haze” means a value measured using a haze meter NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd.
Theoretically, haze means the value represented by the following formula.
(Scattered transmittance of natural light of 380 to 780 nm)/(scattered transmittance of natural light of 380 to 780 nm + direct transmittance of natural light) x 100%
The scattered transmittance is a value that can be calculated by subtracting the direct transmittance from the obtained omnidirectional transmittance using a spectrophotometer and an integrating sphere unit. Direct transmittance is the transmittance at 0° when based on the values measured using an integrating sphere unit. That is, the low haze means that the directly transmitted light amount is large in the total transmitted light amount.
The refractive index is a refractive index for light having a wavelength of 589.3 nm.
<偽造防止媒体>
 本発明の偽造防止媒体は、
 反射層と、反射層を支持する支持体とを有し、
 反射層がコレステリック液晶構造を有し、
 支持体のヘイズ値が2%以上で、かつ、可視光透過率が30%以上である偽造防止媒体である。
<Counterfeit prevention medium>
The anti-counterfeit medium of the present invention is
It has a reflective layer and a support that supports the reflective layer,
The reflective layer has a cholesteric liquid crystal structure,
The anti-counterfeit medium has a haze value of 2% or more and a visible light transmittance of 30% or more.
 以下に、本発明の偽造防止媒体の好適な実施態様の一例について図面を参照して説明する。
 図1に、本発明の偽造防止媒体の一例の模式的な断面図を示す。
 なお、本発明における図は模式図であり、各層の厚みの関係や位置関係などは必ずしも実際のものとは一致しない。以下の図も同様である。
 図1に示すように、偽造防止媒体10aは、支持体12と、反射層14とをこの順に有する。
An example of a preferred embodiment of the forgery prevention medium of the present invention will be described below with reference to the drawings.
FIG. 1 shows a schematic sectional view of an example of the anti-counterfeit medium of the present invention.
It should be noted that the drawings in the present invention are schematic diagrams, and the relationship of the thickness of each layer, the positional relationship, and the like do not necessarily match the actual ones. The following figures are also the same.
As shown in FIG. 1, the anti-counterfeit medium 10a has a support 12 and a reflective layer 14 in this order.
 反射層14は、コレステリック液晶構造を有する層である。コレステリック液晶構造は、コレステリック液晶構造の螺旋ピッチに応じた波長域の光を反射し、他の波長域の光を透過する波長選択反射性と、一方のセンスの円偏光を反射し、他方のセンスの円偏光を透過する円偏光選択反射性とを備えている。反射層14はコレステリック構造により、選択反射波長の一方のセンスの円偏光を反射し、他の波長の光、および他方のセンスの円偏光を透過する。 The reflective layer 14 is a layer having a cholesteric liquid crystal structure. The cholesteric liquid crystal structure reflects wavelength light according to the spiral pitch of the cholesteric liquid crystal structure and wavelength selective reflectivity that transmits light of other wavelength range, and circular polarization of one sense, and the other sense. Circularly polarized light that transmits circularly polarized light is selectively reflected. The reflective layer 14 has a cholesteric structure and reflects circularly polarized light of one sense having a selective reflection wavelength and transmits light of another wavelength and circularly polarized light of the other sense.
 本発明の偽造防止媒体は、反射層が有するコレステリック液晶構造の波長選択反射性と円偏光反射性とを利用して真贋の判定を行うことができる。
 偽造防止媒体の真贋の判定を行う際には、所定の中心波長(および所定のセンス)の光を照射する光源、および、偽造防止媒体が反射した光を読み取るセンサーを有する読取装置を用いて行う。例えば、偽造防止媒体が真の場合には、光源から照射された所定の中心波長の光が偽造防止媒体(反射層)で反射されて、センサーが光を読み取ることができる。一方、偽造防止媒体が偽の場合には、光源から照射された所定の中心波長の光は偽造防止媒体(反射層)で反射されないため、センサーが光を読み取ることができない。これによって真贋の判定を行うことができる。さらに、偽造防止媒体に入射する光を一方のセンスの円偏光とすることで、このセンスの円偏光を反射できるか否かによっても真贋の判定を行うことができる。すなわち、所定の中心波長で、所定のセンスの円偏光を反射できるか否かによって真贋の判定を行うことができる。また、円偏光板を介して読み取り(視認)できるか否かによって真贋の判定を行うこともできる。あるいは、右円偏光板を介しての読み取りと、左円偏光板を介しての読み取りを行い、読み取った光の強度差に応じて真贋の判定を行うこともできる。
The anti-counterfeit medium of the present invention can judge authenticity by utilizing the wavelength-selective reflectivity and the circularly polarized light reflectivity of the cholesteric liquid crystal structure of the reflective layer.
The authenticity of the anti-counterfeit medium is determined by using a light source that emits light having a predetermined center wavelength (and a predetermined sense) and a reader that has a sensor that reads the light reflected by the anti-counterfeit medium. .. For example, when the anti-counterfeit medium is true, the light having a predetermined center wavelength emitted from the light source is reflected by the anti-counterfeit medium (reflection layer), and the sensor can read the light. On the other hand, when the anti-counterfeit medium is false, the light emitted from the light source and having the predetermined center wavelength is not reflected by the anti-counterfeit medium (reflection layer), so that the sensor cannot read the light. This makes it possible to judge the authenticity. Further, by making the light incident on the anti-counterfeit medium into circularly polarized light of one sense, the authenticity can be determined by whether or not the circularly polarized light of this sense can be reflected. That is, the authenticity can be determined by whether or not circularly polarized light with a predetermined sense can be reflected at a predetermined center wavelength. In addition, the authenticity can be determined by whether or not it can be read (visible) through the circularly polarizing plate. Alternatively, it is possible to perform reading through the right circularly polarizing plate and reading through the left circularly polarizing plate, and determine the authenticity according to the intensity difference of the read light.
 偽造防止媒体の真贋の判定を行う際に用いる光源としては、所望の中心波長の狭帯域光を照射可能な各種のレーザー光源、LED(light emitting diode)、蛍光灯等を用いることができる。
 また、偽造防止媒体の真贋の判定を行う際に用いるセンサーとしては、CCD(Charge Coupled Device)、CMOS(Complementary metal-oxide semiconductor)等の公知の個体撮像素子を用いることができる。
As a light source used when determining the authenticity of the anti-counterfeit medium, various laser light sources capable of irradiating a narrow band light having a desired center wavelength, LEDs (light emitting diodes), fluorescent lamps and the like can be used.
Further, as the sensor used when determining the authenticity of the anti-counterfeit medium, a known solid-state image sensor such as CCD (Charge Coupled Device) or CMOS (Complementary metal-oxide semiconductor) can be used.
 反射層14(コレステリック液晶構造)の選択反射波長には制限はなく、可視光領域の波長であってもよいし、紫外領域の波長あるいは赤外領域の波長のような不可視光領域の波長であってもよい。
 ここで、偽造防止技術として、目視もしくは簡単な器具を用いて真贋の鑑定が可能なオバート技術と、真贋の鑑定に専用器具を用いる必要があるコバート技術がある。
 反射層14の選択反射波長を可視光領域の波長とすることで目視でも真贋の判定ができるためオバートな偽造防止媒体とすることができる。一方、反射層14の選択反射波長を不可視光領域の波長、あるいは、視認しにくい可視光領域の波長とすることで目視では視認できなくなるため、コバートな偽造防止媒体とすることができる。
 セキュリティ性(偽造防止性)の観点からはコバートな偽造防止媒体とすることが好ましい。
The selective reflection wavelength of the reflective layer 14 (cholesteric liquid crystal structure) is not limited and may be a wavelength in the visible light region, or a wavelength in the invisible light region such as a wavelength in the ultraviolet region or a wavelength in the infrared region. May be.
Here, as the anti-counterfeiting technology, there are an overt technology that enables visual verification or a simple tool to verify authenticity, and a covert technology that requires the use of a dedicated tool for authenticity verification.
By setting the selective reflection wavelength of the reflective layer 14 to a wavelength in the visible light region, it is possible to visually determine the authenticity, and thus an overt anti-counterfeit medium can be obtained. On the other hand, when the selective reflection wavelength of the reflective layer 14 is set to a wavelength in the invisible light region or a wavelength in the visible light region which is difficult to be visually recognized, it becomes invisible to the naked eye, and thus a covert anti-counterfeit medium can be obtained.
From the viewpoint of security (anti-counterfeit property), it is preferable to use a covert anti-counterfeit medium.
 支持体12は、反射層14を支持するものである。図1に示す例においては、支持体12は、基材16および中間層18とを有している。 The support 12 supports the reflective layer 14. In the example shown in FIG. 1, the support 12 has a base material 16 and an intermediate layer 18.
 ここで、本発明において、支持体12は、ヘイズ値が2%以上で、かつ、可視光透過率が30%以上である。
 本発明の偽造防止媒体は、支持体12のヘイズ値および可視光透過率を上記範囲とすることで、支持体12側から入射した光を拡散して反射層14に入射させ、また、反射層14で反射された光を拡散することで、偽造防止媒体に入射した光を鏡面反射の方向以外の種々の方向にも反射する。これにより、偽造防止媒体に光を照射して真贋の判定を行う際に、センサーの位置に関わらず、適切に読み取り可能とすることができる。
 この点を図2および図3を用いて説明する。
Here, in the present invention, the support 12 has a haze value of 2% or more and a visible light transmittance of 30% or more.
In the anti-counterfeit medium of the present invention, by setting the haze value and the visible light transmittance of the support 12 in the above ranges, light incident from the support 12 side is diffused and made incident on the reflection layer 14, and the reflection layer. By diffusing the light reflected by 14, the light incident on the anti-counterfeit medium is reflected in various directions other than the direction of specular reflection. Thereby, when the authenticity is determined by irradiating the anti-counterfeit medium with light, it is possible to properly read the information regardless of the position of the sensor.
This point will be described with reference to FIGS. 2 and 3.
 図2は、本発明の偽造防止媒体10aの真贋の判定を行う際の作用を説明する図である。
 偽造防止媒体10aの真贋の判定を行う際には、光源LSおよびセンサーSSを有する読取装置を用いて行う。図2に示すように、偽造防止媒体10aの支持体12側に光源LSおよびセンサーSSが位置する状態にされ、光源LSから、支持体12の表面に対して斜め方向から光を照射する(図2中太矢印)。光源LSは、所定の中心波長の狭帯域な波長の光を照射する。
 入射光は、支持体12の表面に対して30~60°の方向から入射させることが好ましい。
FIG. 2 is a diagram for explaining the operation when determining the authenticity of the anti-counterfeit medium 10a of the present invention.
The authenticity of the anti-counterfeit medium 10a is determined using a reading device having a light source LS and a sensor SS. As shown in FIG. 2, the light source LS and the sensor SS are placed on the support 12 side of the anti-counterfeit medium 10a, and light is emitted from the light source LS obliquely to the surface of the support 12 (FIG. 2 middle thick arrow). The light source LS emits light with a narrow band wavelength having a predetermined center wavelength.
Incident light is preferably incident on the surface of the support 12 from a direction of 30 to 60°.
 ここで、本発明の偽造防止媒体10aは、支持体12のヘイズ値が2%以上であるため、図2に示すように支持体12に入射した光は拡散される。また、支持体12の可視光透過率は30%以上であるため、拡散された光は反射層14に到達する。光の中心波長と反射層14のコレステリック液晶構造の選択反射波長が略一致していれば、反射層14に到達した光は反射される。その際、光は拡散されているため、反射層14の表面(支持体12との界面)に対して、種々の角度で入射する。反射層14のコレステリック液晶構造による反射は鏡面反射であるため、反射層14に入射した光は、入射した種々の角度に応じてそれぞれ鏡面反射される。そのため、反射層14で反射された光は種々の方向に進行する。反射層14で反射された光は、支持体12内を伝播して支持体12の表面から出射される。また、支持体12内を伝播する際にも光は支持体12内で拡散される。従って、支持体12の表面から出射される光は、種々の方向に出射される。そのため、少なくとも一部の光は、偽造防止媒体10aの支持体12側に対面して配置されたセンサーSSの配置位置に関わらず、センサーSSに入射する。これにより、偽造防止媒体に光を照射して真贋の判定を行う際に、センサーの位置に関わらず、適切に読み取り可能とすることができる。 Here, in the anti-counterfeit medium 10a of the present invention, the haze value of the support 12 is 2% or more, so that the light incident on the support 12 is diffused as shown in FIG. Further, since the visible light transmittance of the support 12 is 30% or more, the diffused light reaches the reflective layer 14. If the central wavelength of light and the selective reflection wavelength of the cholesteric liquid crystal structure of the reflective layer 14 are substantially the same, the light that has reached the reflective layer 14 is reflected. At that time, since the light is diffused, it is incident on the surface of the reflective layer 14 (interface with the support 12) at various angles. Since the reflection of the cholesteric liquid crystal structure of the reflective layer 14 is specular reflection, the light incident on the reflective layer 14 is specularly reflected according to various incident angles. Therefore, the light reflected by the reflective layer 14 travels in various directions. The light reflected by the reflective layer 14 propagates inside the support 12 and is emitted from the surface of the support 12. Further, when the light propagates in the support 12, the light is diffused in the support 12. Therefore, the light emitted from the surface of the support 12 is emitted in various directions. Therefore, at least a part of the light is incident on the sensor SS regardless of the arrangement position of the sensor SS arranged facing the support body 12 side of the forgery prevention medium 10a. This makes it possible to properly read regardless of the position of the sensor when irradiating the anti-counterfeit medium with light to determine the authenticity.
 一方で、支持体のヘイズ値が2%未満の場合について、図3を用いて説明する。
 図3は、透明支持体102上に、コレステリック液晶構造を有する反射層14を有する偽造防止媒体100の真贋の判定を行う際の作用を説明する図である。
 図3に示すように、偽造防止媒体100の支持体102側に光源LSおよびセンサーSSが位置する状態にされ、光源LSから、支持体102の表面に対して斜め方向から光を照射する(図3中太矢印)。光源LSは、所定の中心波長の狭帯域な波長の光を照射する。
On the other hand, the case where the haze value of the support is less than 2% will be described with reference to FIG.
FIG. 3 is a diagram for explaining the operation when determining the authenticity of the anti-counterfeit medium 100 having the reflective layer 14 having the cholesteric liquid crystal structure on the transparent support 102.
As shown in FIG. 3, the light source LS and the sensor SS are positioned on the support 102 side of the anti-counterfeit medium 100, and light is emitted from the light source LS to the surface of the support 102 obliquely (FIG. 3 middle thick arrow). The light source LS emits light with a narrow band wavelength having a predetermined center wavelength.
 ここで、偽造防止媒体100は、支持体102のヘイズ値が2%未満であるため、図3に示すように支持体102に入射した光は拡散されずに反射層14に到達する。光の中心波長と反射層14のコレステリック液晶構造の選択反射波長が略一致していれば、反射層14に到達した光は反射される。その際、光は拡散されていないため、反射層14の表面(支持体102との界面)に対して、一定の角度で入射する。反射層14のコレステリック液晶構造による反射は鏡面反射であるため、反射層14に入射した光は、入射した角度に応じて鏡面反射される。そのため、反射層14で反射された光は一方向に進行する。反射層14で反射された光は、支持体102内を伝播して支持体102の表面から出射される。従って、支持体102の表面から出射される光は、一方向に出射される。そのため、偽造防止媒体10aの支持体12側に対面して配置されたセンサーSSの配置位置が、反射層14での鏡面反射に対応する位置にない場合には、偽造防止媒体100に反射された光はセンサーSSに入射されない(センサーSSに入射する光量が少なくなる)。従って、偽造防止媒体に光を照射して真贋の判定を行う際に、センサーの位置によっては、適切に読み取りすることができない。 Here, in the anti-counterfeit medium 100, since the haze value of the support 102 is less than 2%, the light incident on the support 102 reaches the reflection layer 14 without being diffused, as shown in FIG. If the central wavelength of light and the selective reflection wavelength of the cholesteric liquid crystal structure of the reflective layer 14 are substantially the same, the light that has reached the reflective layer 14 is reflected. At that time, since the light is not diffused, it is incident on the surface of the reflective layer 14 (interface with the support 102) at a constant angle. Since the reflection of the cholesteric liquid crystal structure of the reflective layer 14 is specular reflection, the light incident on the reflective layer 14 is specularly reflected according to the incident angle. Therefore, the light reflected by the reflective layer 14 travels in one direction. The light reflected by the reflective layer 14 propagates inside the support 102 and is emitted from the surface of the support 102. Therefore, the light emitted from the surface of the support 102 is emitted in one direction. Therefore, when the position of the sensor SS arranged facing the support 12 side of the anti-counterfeit medium 10a is not at the position corresponding to the specular reflection on the reflective layer 14, the sensor SS is reflected by the anti-counterfeit medium 100. Light does not enter the sensor SS (the amount of light entering the sensor SS decreases). Therefore, when the authenticity is judged by irradiating the anti-counterfeit medium with light, it cannot be properly read depending on the position of the sensor.
 以上のとおり、本発明の偽造防止媒体は、支持体12のヘイズ値を2%以上とすることで、偽造防止媒体に光を照射して真贋の判定を行う際に、センサーの位置に関わらず、適切に読み取り可能としている。 As described above, in the anti-counterfeit medium of the present invention, by setting the haze value of the support 12 to 2% or more, when irradiating light to the anti-counterfeit medium to determine authenticity, regardless of the position of the sensor. , Is properly readable.
 読み取りの観点から、支持体12のヘイズ値は、2%~40%が好ましく、3%~20%がより好ましく、4%~15%がさらに好ましい。
 また、支持体12の可視光透過率は、50%~95%が好ましく、60%~93%がより好ましく、70%~90%がさらに好ましい。
 なお、上記ヘイズ値、および、可視光透過率は、可視光に対するヘイズ値および透過率であるが、赤外線および紫外線に対しても近いヘイズ値および透過率となる。好ましくは、赤外線または紫外線を用いて真贋の判定を行う場合には、支持体12の赤外線または紫外線に対するヘイズ値および透過率が、それぞれ上記数値範囲であるのが好ましい。
From the viewpoint of reading, the haze value of the support 12 is preferably 2% to 40%, more preferably 3% to 20%, further preferably 4% to 15%.
Further, the visible light transmittance of the support 12 is preferably 50% to 95%, more preferably 60% to 93%, further preferably 70% to 90%.
The haze value and the visible light transmittance are the haze value and the transmittance with respect to the visible light, but the haze value and the transmittance with respect to the infrared rays and the ultraviolet rays are similar. Preferably, when the authenticity is determined using infrared rays or ultraviolet rays, it is preferable that the haze value and the transmittance of the support 12 with respect to infrared rays or ultraviolet rays fall within the above numerical ranges.
 ここで、図1に示す例では、反射層14は支持体12の一方の表面全面に均一に形成される構成としたがこれに限定はされず、支持体12の表面に任意の形状で形成されていてもよい。反射層14が任意の形状で形成された構成とすることで、さらに、この形状に基づいて偽造防止媒体の真贋の判定を行うことができる。 Here, in the example shown in FIG. 1, the reflective layer 14 is formed uniformly on the entire surface of one surface of the support 12, but the present invention is not limited to this, and the reflective layer 14 is formed in an arbitrary shape on the surface of the support 12. It may have been done. With the configuration in which the reflective layer 14 is formed in an arbitrary shape, the authenticity of the anti-counterfeit medium can be determined based on this shape.
 また、図1に示す例では、全面で選択反射波長が同じ均一な反射層14を有する構成としたが、これに限定はされず、反射層14が、コレステリック液晶構造による選択反射波長が30nm以上異なる2以上の反射領域を有する構成としてもよい。 In the example shown in FIG. 1, the uniform reflection layer 14 having the same selective reflection wavelength is provided over the entire surface. However, the present invention is not limited to this, and the reflection layer 14 has a selective reflection wavelength of 30 nm or more due to the cholesteric liquid crystal structure. It may be configured to have two or more different reflection areas.
 一例として、図4に示す偽造防止媒体10bは、支持体12と反射層14bとを有する。
 反射層14bは、第1反射領域20aと第2反射領域20bとを有する。
 第1反射領域20aおよび第2反射領域20bはそれぞれ、コレステリック液晶構造を有しており、それぞれのコレステリック液晶構造の螺旋ピッチに応じた波長域の光を選択的に反射する波長選択反射性を備えている。第1反射領域20aの選択反射波長と第2反射領域20bの選択反射波長とは30nm以上異なっている。また、第1反射領域20aおよび第2反射領域20bはそれぞれ円偏光選択反射性を備えている。
 このように反射層が2以上の反射領域を有する構成とすることで、各反射領域における波長選択反射性および円偏光反射性、ならびに、各反射領域の形状、配置パターン等の組み合わせに基づいて偽造防止媒体の真贋の判定を行うことができる。
As an example, the anti-counterfeit medium 10b shown in FIG. 4 has a support 12 and a reflective layer 14b.
The reflective layer 14b has a first reflective area 20a and a second reflective area 20b.
Each of the first reflective region 20a and the second reflective region 20b has a cholesteric liquid crystal structure, and has wavelength selective reflectivity for selectively reflecting light in a wavelength range corresponding to the spiral pitch of each cholesteric liquid crystal structure. ing. The selective reflection wavelength of the first reflection region 20a and the selective reflection wavelength of the second reflection region 20b differ by 30 nm or more. The first reflection area 20a and the second reflection area 20b each have circularly polarized light selective reflectivity.
By thus configuring the reflective layer to have two or more reflective regions, forgery is made based on a combination of wavelength selective reflectivity and circularly polarized light reflectivity in each reflective region, and the shape, arrangement pattern, etc. of each reflective region. The authenticity of the prevention medium can be determined.
 また、反射層が2以上の反射領域を有する構成とする場合には、少なくとも1つの反射領域の選択反射波長を可視光領域の波長とすることが好ましい。
 また、反射層が2以上の反射領域を有する構成とする場合には、少なくとも1つの反射領域の選択反射波長を不可視光領域の波長とすることも好ましい。
 さらに、反射層が2以上の反射領域を有する構成とする場合には、少なくとも1つの反射領域の選択反射波長を可視光領域の波長とし、かつ、他の少なくとも1つの反射領域の選択反射波長を不可視光領域の波長とすることも好ましい。
When the reflective layer has two or more reflective regions, it is preferable that the selective reflection wavelength of at least one reflective region is a visible light region.
When the reflective layer has two or more reflective regions, it is also preferable to set the selective reflection wavelength of at least one reflective region to the wavelength of the invisible light region.
Further, when the reflective layer has two or more reflective regions, the selective reflection wavelength of at least one reflective region is set to the wavelength of the visible light region, and the selective reflection wavelength of at least one other reflective region is set to It is also preferable to set the wavelength in the invisible light region.
 前述のとおり、偽造防止技術として、目視もしくは簡単な器具を用いて真贋の鑑定が可能なオバート技術と、真贋の鑑定に専用器具を用いる必要があるコバート技術がある。例えば、紙幣には、オバート技術とコバート技術の両方が偽造防止に用いられている。
 従って、オバート技術とコバート技術とを両立する偽造防止媒体が望ましい。
 反射層が2以上の反射領域を有する構成として、少なくとも1つの反射領域の選択反射波長を可視光領域の波長とし、かつ、他の少なくとも1つの反射領域の選択反射波長を不可視光領域の波長とすることで、オバート技術とコバート技術とを両立する偽造防止媒体とすることができる。
As described above, as anti-counterfeiting technologies, there are the overt technology that enables authenticity verification by visual inspection or a simple tool, and the covert technology that requires the use of dedicated tools for authenticity verification. For example, for banknotes, both obert and covert technologies are used to prevent forgery.
Therefore, an anti-counterfeit medium that is compatible with both the overt technology and the covert technology is desirable.
As a configuration in which the reflective layer has two or more reflective regions, the selective reflection wavelength of at least one reflective region is the wavelength of the visible light region, and the selective reflection wavelength of at least one other reflective region is the wavelength of the invisible light region. By doing so, it is possible to provide a forgery prevention medium that is compatible with both the overt technology and the covert technology.
 また、反射領域の選択反射波長を不可視光領域の波長とする場合には、選択反射波長は700nm以上とすることが好ましい。より好ましくは、700nm~1250nm(赤外領域)であり、さらに好ましくは、800nm~1000nmである。
 反射領域の選択反射波長を700nmとすることで、視認性を低下させてコバート技術でしか読み取りできない情報とすることができる。
When the selective reflection wavelength of the reflection area is set to the wavelength of the invisible light area, the selective reflection wavelength is preferably 700 nm or more. The thickness is more preferably 700 nm to 1250 nm (infrared region), and further preferably 800 nm to 1000 nm.
By setting the selective reflection wavelength of the reflection region to 700 nm, the visibility can be reduced and the information can be read only by the covert technique.
 ここで、本発明の偽造防止媒体は、さらに他の層を有していてもよい。
 例えば、図5に示す偽造防止媒体10cのように、反射層14の、支持体12側とは反対側の面側に円偏光板22を有する構成としてもよい。
 円偏光板22は、反射層14のコレステリック液晶構造が反射する円偏光と同じセンスの円偏光を吸収する円偏光板22である。
Here, the anti-counterfeit medium of the present invention may further have another layer.
For example, like the anti-counterfeit medium 10c shown in FIG. 5, the circular polarizing plate 22 may be provided on the surface side of the reflective layer 14 opposite to the support 12 side.
The circularly polarizing plate 22 is a circularly polarizing plate 22 that absorbs circularly polarized light of the same sense as the circularly polarized light reflected by the cholesteric liquid crystal structure of the reflective layer 14.
 円偏光板22としては、λ/4板と直線偏光板とを組み合わせた円偏光板など従来公知の円偏光板を適宜利用可能である。 As the circularly polarizing plate 22, a conventionally known circularly polarizing plate such as a circularly polarizing plate in which a λ/4 plate and a linear polarizing plate are combined can be appropriately used.
 偽造防止媒体10cがさらに円偏光板22を有する構成とすることで、偽造防止媒体10cを支持体12側からは、反射層14によって反射される光を観察することができ、円偏光板22側からは、反射層14によって反射される光を観察することがでない構成とすることができる。
 この点について図6および図7を用いて説明する。
By making the anti-counterfeit medium 10c further include the circularly polarizing plate 22, the light reflected by the reflection layer 14 can be observed from the support 12 side of the anti-counterfeiting medium 10c, and the circularly polarizing plate 22 side. From the above, it is possible to adopt a configuration in which the light reflected by the reflective layer 14 cannot be observed.
This point will be described with reference to FIGS. 6 and 7.
 図6および図7は、偽造防止媒体10cの作用を説明するための図であり、図6は、偽造防止媒体10cを支持体12側から観察した場合の作用を説明するための図であり、図7は、偽造防止媒体10cを円偏光板22側から観察した場合の作用を説明するための図である。
 なお、図6および図7においては説明のため、支持体12の図示を省略している。また、反射層14と円偏光板22とを離間して示している。
6 and 7 are diagrams for explaining the action of the forgery prevention medium 10c, and FIG. 6 is a diagram for explaining the action when the forgery prevention medium 10c is observed from the support 12 side. FIG. 7 is a diagram for explaining the operation when the forgery prevention medium 10c is observed from the circular polarizing plate 22 side.
6 and 7, the support 12 is not shown for the sake of explanation. Further, the reflective layer 14 and the circularly polarizing plate 22 are shown separated from each other.
 図6および図7において、反射層14は、アルファベットの「A」の形に形成された反射領域20を有する。反射領域20は右円偏光を反射するものとする。
 また、円偏光板22は反射領域20が反射する円偏光と同じセンスの円偏光、すなわち、図6および図7に示す例では右円偏光を吸収する円偏光板である。すなわち、円偏光板22は、左円偏光板である。
In FIGS. 6 and 7, the reflective layer 14 has a reflective region 20 formed in the shape of the alphabet “A”. The reflection area 20 reflects right-handed circularly polarized light.
The circularly polarizing plate 22 is a circularly polarizing plate that absorbs circularly polarized light having the same sense as the circularly polarized light reflected by the reflection region 20, that is, right circularly polarized light in the examples shown in FIGS. 6 and 7. That is, the circularly polarizing plate 22 is a left circularly polarizing plate.
 偽造防止媒体10cを支持体12側から観察した場合は、図6に示すように、支持体12側から偽造防止媒体10cに入射した光I1のうち、選択反射波長の右円偏光成分I1Rが反射領域20によって反射される。従って、反射領域20の形状「A」を視認することができる。また、それ以外の右円偏光成分は、円偏光板22によって吸収され、左円偏光成分I1Lが円偏光板22を透過する。
 また、円偏光板22側から偽造防止媒体10cに入射した光I2のうち、右円偏光成分は円偏光板22によって吸収され、左円偏光成分I2Lのみが反射層14に入射する。左円偏光成分I2Lは反射層14では反射されないため、反射層14を透過する。従って、支持体12側から円偏光板22側の景色(図6中の星)が視認される。
 すなわち、偽造防止媒体10cを支持体12側から観察した場合は、偽造防止媒体10cの反対側の景色に反射領域20の形状「A」が重畳した状態で視認される。
When the anti-counterfeit medium 10c is observed from the support 12 side, as shown in FIG. 6, of the light I 1 incident on the anti-counterfeit medium 10c from the support 12 side, the right circularly polarized light component I 1R of the selective reflection wavelength is obtained. Are reflected by the reflection area 20. Therefore, the shape “A” of the reflection area 20 can be visually recognized. The other right circularly polarized light components are absorbed by the circularly polarizing plate 22, and the left circularly polarized light component I 1L is transmitted through the circularly polarizing plate 22.
Of the light I 2 that enters the anti-counterfeit medium 10c from the side of the circularly polarizing plate 22, the right circularly polarized light component is absorbed by the circularly polarizing plate 22, and only the left circularly polarized light component I 2L is incident on the reflective layer 14. The left-hand circularly polarized light component I 2L is not reflected by the reflective layer 14 and therefore passes through the reflective layer 14. Therefore, the view (the star in FIG. 6) on the circular polarizer 22 side is visually recognized from the support 12 side.
That is, when the anti-counterfeit medium 10c is observed from the side of the support 12, the anti-counterfeit medium 10c is visually recognized in a state where the shape "A" of the reflection region 20 is superimposed on the scenery on the opposite side of the anti-counterfeit medium 10c.
 一方、偽造防止媒体10cを円偏光板22側から観察した場合は、図7に示すように、円偏光板22側から偽造防止媒体10cに入射したI2のうち、右円偏光成分は円偏光板22によって吸収され、左円偏光成分I2Lのみが反射層14に入射する。左円偏光成分I2Lは反射層14では反射されないため、反射層14を透過する。
 また、支持体12側から偽造防止媒体10cに入射した光I1のうち、選択反射波長の右円偏光成分I1Rが反射領域20によって反射される。また、それ以外の右円偏光成分は、円偏光板22によって吸収される。左円偏光成分I1Lのみが円偏光板22を透過する。従って、支持体12側から円偏光板22側の景色(図7中の星)のみが視認される。
On the other hand, when the anti-counterfeit medium 10c is observed from the circular polarizing plate 22 side, as shown in FIG. 7, the right circularly polarized light component of I 2 incident on the anti-counterfeit medium 10c from the circular polarizing plate 22 side is circularly polarized light. Only the left-handed circularly polarized light component I 2L is absorbed by the plate 22 and is incident on the reflective layer 14. The left-hand circularly polarized light component I 2L is not reflected by the reflective layer 14 and therefore passes through the reflective layer 14.
Further, the right circularly polarized light component I 1R of the selective reflection wavelength of the light I 1 incident on the anti-counterfeit medium 10c from the support 12 side is reflected by the reflection region 20. The other right circularly polarized light components are absorbed by the circularly polarizing plate 22. Only the left circularly polarized light component I 1L passes through the circularly polarizing plate 22. Therefore, only the view (the star in FIG. 7) from the support 12 side to the circularly polarizing plate 22 side is visible.
 このように、偽造防止媒体10cがさらに円偏光板22を有する構成とすることで、偽造防止媒体10cを支持体12側からは、反射層14によって反射される光を観察することができ、円偏光板22側からは、反射層14によって反射される光を観察することがでない構成とすることができる。
 これにより、さらにセキュリティ性(偽造防止性)を向上することができる。
As described above, by providing the anti-counterfeit medium 10c with the circular polarizing plate 22, the anti-counterfeit medium 10c can observe the light reflected by the reflective layer 14 from the support 12 side. A configuration in which the light reflected by the reflective layer 14 cannot be observed from the polarizing plate 22 side can be adopted.
As a result, the security property (anti-counterfeit property) can be further improved.
 なお、図5に示す例では、反射層14の、支持体12とは反対側の面側に円偏光板22を有する構成としたが、これに限定はされず、図8に示す偽造防止媒体10dのように、支持体12と反射層14との間に円偏光板22を有する構成としてもよい。 In the example shown in FIG. 5, the circular polarization plate 22 is provided on the surface of the reflective layer 14 opposite to the support 12, but the invention is not limited to this, and the forgery prevention medium shown in FIG. A circular polarizing plate 22 may be provided between the support 12 and the reflective layer 14 as in 10d.
 このような構成とすることで、支持体12とは反対側からは目視によって反射層14が反射する光を視認できるが、支持体12側からは反射層14が反射する光を目視で視認できないようにすることができる。 With such a configuration, the light reflected by the reflective layer 14 can be visually recognized from the side opposite to the support 12, but the light reflected by the reflective layer 14 cannot be visually viewed from the side of the support 12. You can
 さらに、図8のような構成とする場合には、例えば、反射層14が選択反射波長が可視光の反射領域と、不可視光の反射領域を有するとし、円偏光板22は、可視光領域の光に対して作用し、不可視光領域の光に対して作用しないものとしてもよい。
 このような構成とすることで、支持体12とは反対側からは目視によって反射層14が反射する光を視認できるが、支持体12側からは反射層14が反射する光を目視で視認できないようにすることができる。一方、支持体12側から不可視光を照射してセンサーで反射光を読み取りすると、円偏光板22が機能しないため、反射層14からの反射光を読み取ることができる。
Further, in the case of the configuration as shown in FIG. 8, for example, it is assumed that the reflection layer 14 has a reflection region of visible light and a reflection region of invisible light having a selective reflection wavelength, and the circularly polarizing plate 22 has a visible light region. The light may act on the light of (1) and do not act on the light in the invisible light region.
With such a configuration, the light reflected by the reflective layer 14 can be visually recognized from the side opposite to the support 12, but the light reflected by the reflective layer 14 cannot be visually viewed from the side of the support 12. You can On the other hand, when invisible light is emitted from the support 12 side and the reflected light is read by the sensor, the circularly polarizing plate 22 does not function, so the reflected light from the reflective layer 14 can be read.
 また、図9に示す偽造防止媒体10e、あるいは、図10に示す偽造防止媒体10fのように、反射層14の、支持体とは反対側の面側にオーバーコート層24を有する構成としてもよい。図9に示す偽造防止媒体10eはオーバーコート層24を有する以外は、図1に示す偽造防止媒体10aと同様の構成を有する。また、図10に示す偽造防止媒体10fはオーバーコート層24を有する以外は、図8に示す偽造防止媒体10dとs同様の構成を有する。
 オーバーコート層24を有する構成とすることで、耐傷性を向上できる。また、偽造防止媒体の表面の平坦性を向上できる。
Further, as in the anti-counterfeit medium 10e shown in FIG. 9 or the anti-counterfeit medium 10f shown in FIG. 10, the overcoat layer 24 may be provided on the surface of the reflective layer 14 opposite to the support. .. The anti-counterfeit medium 10e shown in FIG. 9 has the same structure as the anti-counterfeit medium 10a shown in FIG. 1 except that it has the overcoat layer 24. The counterfeiting prevention medium 10f shown in FIG. 10 has the same structure as the counterfeiting prevention medium 10d shown in FIG. 8 except that it has the overcoat layer 24.
With the structure having the overcoat layer 24, scratch resistance can be improved. In addition, the flatness of the surface of the anti-counterfeit medium can be improved.
 オーバーコート層24としては、特に限定はされない。例えば、モノマーを含む組成物を反射層14の上に塗布、その後塗布膜を硬化して得られる樹脂層などが挙げられる。樹脂は、特に限定されず、反射層を形成する液晶材料への密着性などを考慮して選択すればよい。例えば、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂等を用いることができる。耐久性、耐溶剤性等の点からは、架橋により硬化するタイプの樹脂が好ましく、特に、短時間での硬化が可能である紫外線硬化性樹脂が好ましい。オーバーコート層の形成に用いることができるモノマーとしては、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等が挙げられる。 The overcoat layer 24 is not particularly limited. For example, a resin layer obtained by coating a composition containing a monomer on the reflection layer 14 and then curing the coating film may be used. The resin is not particularly limited and may be selected in consideration of adhesion to the liquid crystal material forming the reflective layer. For example, a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin or the like can be used. From the viewpoint of durability, solvent resistance, etc., a resin that is curable by crosslinking is preferable, and an ultraviolet curable resin that can be cured in a short time is particularly preferable. Monomers that can be used to form the overcoat layer include ethyl (meth)acrylate, ethylhexyl (meth)acrylate, styrene, methylstyrene, N-vinylpyrrolidone, polymethylolpropane tri(meth)acrylate, and hexanediol (meth). Acrylate, tripropylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol Di (meth) acrylate etc. are mentioned.
 オーバーコート層の厚みは、特に限定されず、耐傷性、平坦性等を考慮して決定すればよく、5μm~100μm程度であればよく、好ましくは10μm~50μmであり、より好ましくは20μm~40μmである。
 また、オーバーコート層を2層以上有していてもよい。
The thickness of the overcoat layer is not particularly limited and may be determined in consideration of scratch resistance, flatness, etc., and may be about 5 μm to 100 μm, preferably 10 μm to 50 μm, more preferably 20 μm to 40 μm. Is.
Further, it may have two or more overcoat layers.
 以下、本発明の偽造防止媒体を構成する各要素について詳細に説明する。 Hereinafter, each element constituting the anti-counterfeit medium of the present invention will be described in detail.
〔反射層〕
 反射層は、コレステリック液晶構造を有する層である。コレステリック液晶構造は、液晶化合物の配向がコレステリック液晶相となっている構造である。
 なお、反射層が選択反射波長の異なる複数の反射領域を有する構成の場合でも、各反射領域の構成は選択反射波長が異なる以外は基本的に下記で説明する反射層の構成と同様である。
[Reflective layer]
The reflective layer is a layer having a cholesteric liquid crystal structure. The cholesteric liquid crystal structure is a structure in which the orientation of the liquid crystal compound is a cholesteric liquid crystal phase.
Even when the reflective layer has a plurality of reflective regions having different selective reflection wavelengths, the configuration of each reflective region is basically the same as the configuration of the reflective layer described below except that the selective reflection wavelengths are different.
 反射層は、コレステリック液晶相となっている液晶化合物の配向が保持されている層であればよく、典型的には、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射、加熱等によって重合、硬化し、流動性が無い層を形成して、同時に、また外場または外力によって配向形態に変化を生じさせることがない状態に変化した層であればよい。なお、反射層においては、コレステリック液晶相の光学的性質が層中において保持されていれば十分であり、層中の液晶化合物はもはや液晶性を示していなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子量化して、もはや液晶性を失っていてもよい。 The reflective layer may be a layer in which the orientation of the liquid crystal compound that is in the cholesteric liquid crystal phase is retained, and typically, after the polymerizable liquid crystal compound is in the orientation state of the cholesteric liquid crystal phase, ultraviolet irradiation, Any layer may be used as long as it is polymerized and hardened by heating or the like to form a layer having no fluidity, and at the same time, it is changed to a state in which the orientation form is not changed by an external field or an external force. In the reflective layer, it is sufficient if the optical properties of the cholesteric liquid crystal phase are retained in the layer, and the liquid crystal compound in the layer may no longer exhibit liquid crystallinity. For example, the polymerizable liquid crystal compound may have a high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
 コレステリック液晶相は、右円偏光または左円偏光のいずれか一方のセンスの円偏光を選択的に反射させるとともに他方のセンスの円偏光を透過する円偏光選択反射を示すことが知られている。
 円偏光選択反射性を示すコレステリック液晶相を固定した層を含むフィルムとして、重合性液晶化合物を含む組成物から形成されたフィルムは従来から数多く知られており、コレステリック液晶構造については、それらの従来技術を参照することができる。
It is known that the cholesteric liquid crystal phase exhibits circularly polarized light selective reflection that selectively reflects the circularly polarized light of either the right circularly polarized light or the left circularly polarized light and transmits the circularly polarized light of the other sense.
As a film containing a layer in which a cholesteric liquid crystal phase exhibiting circularly polarized light selective reflection is fixed, many films formed from a composition containing a polymerizable liquid crystal compound have been known in the past. Can refer to technology.
 コレステリック液晶構造の選択反射の中心波長λは、コレステリック液晶相における螺旋構造のピッチP(=螺旋の周期)に依存し、コレステリック液晶構造の平均屈折率nとλ=n×Pの関係に従う。この式からわかるように、n値とP値を調整することにより、選択反射の中心波長を調整することができる。 The central wavelength λ of selective reflection of the cholesteric liquid crystal structure depends on the pitch P (=helix period) of the helical structure in the cholesteric liquid crystal phase, and follows the relationship of the average refractive index n of the cholesteric liquid crystal structure and λ=n×P. As can be seen from this equation, the central wavelength of selective reflection can be adjusted by adjusting the n value and the P value.
 コレステリック液晶構造の選択反射中心波長と半値幅は下記のように求めることができる。
 分光光度計(日本分光株式会社製、V-670)を用いてコレステリック液晶構造(反射層)の反射スペクトル(反射層の法線方向から測定したもの)を測定すると、選択反射帯域に透過率の低下ピークがみられる。このピークの極小透過率と低下前の透過率との中間(平均)の透過率となる2つの波長のうち、短波長側の波長の値をλl(nm)、長波長側の波長の値をλh(nm)とすると、選択反射の中心波長λと半値幅Δλは下記式で表すことができる。
  λ=(λl+λh)/2×Δλ=(λh-λl
 上述のように求められる選択反射の中心波長は反射層の法線方向から測定した円偏光反射スペクトルの反射ピークの重心位置にある波長と略一致する。
The selective reflection center wavelength and the half value width of the cholesteric liquid crystal structure can be obtained as follows.
A spectrophotometer (V-670, manufactured by JASCO Corporation) was used to measure the reflection spectrum of the cholesteric liquid crystal structure (reflecting layer) (measured from the normal direction of the reflecting layer). A decline peak is seen. Of the two wavelengths that have an intermediate (average) transmittance between the minimum transmittance of this peak and the transmittance before reduction, the wavelength value on the short wavelength side is λ l (nm), and the wavelength value on the long wavelength side is Is defined as λ h (nm), the central wavelength λ of selective reflection and the full width at half maximum Δλ can be expressed by the following equations.
λ=(λ lh )/2×Δλ=(λ h −λ l )
The central wavelength of the selective reflection obtained as described above substantially coincides with the wavelength at the center of gravity of the reflection peak of the circularly polarized light reflection spectrum measured from the normal direction of the reflection layer.
 コレステリック液晶相のピッチは重合性液晶化合物とともに用いるキラル剤の種類、またはその添加濃度に依存するため、これらを調整することによって所望のピッチを得ることができる。なお、螺旋のセンスおよびピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46頁、および「液晶便覧」液晶便覧編集委員会 丸善 196頁に記載の方法を用いることができる。 Since the pitch of the cholesteric liquid crystal phase depends on the type of chiral agent used together with the polymerizable liquid crystal compound or the concentration added, the desired pitch can be obtained by adjusting these. For the method of measuring the sense and pitch of the spiral, use the method described in “Introduction to Liquid Crystal Chemistry” edited by The Liquid Crystal Society of Japan, Sigma Publishing 2007, page 46, and “Liquid Crystal Handbook” Liquid Crystal Handbook Editing Committee Maruzen, page 196. be able to.
 反射層としては、螺旋のセンスが右または左のいずれかである反射層が用いられる。反射層の反射円偏光のセンスは螺旋のセンスに一致する。また、複数の反射領域を有する構成の場合には、選択反射の中心波長が異なる反射領域の螺旋のセンスは全て同じであっても、異なるものが含まれていてもよい。しかしながら、複数の反射領域は、ねじれ方向が全て同じであることが好ましい。 As the reflective layer, a reflective layer whose spiral sense is either right or left is used. The sense of the reflected circular polarization of the reflective layer matches the sense of the helix. Further, in the case of a configuration having a plurality of reflection regions, the senses of the spirals in the reflection regions having different central wavelengths of selective reflection may be all the same or different. However, it is preferable that the plurality of reflective regions all have the same twist direction.
 選択反射を示す選択反射帯の半値幅Δλ(nm)は、Δλが液晶化合物の複屈折Δnと上述のピッチPに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射帯の幅の制御は、Δnを調整して行うことができる。Δnの調整は重合性液晶化合物の種類または混合比率を調整したり、配向固定時の温度を制御したりすることで行うことができる。
 選択反射の中心波長が同一の1種の反射層の形成のために、ピッチPが同じで、同じ螺旋のセンスの反射層を複数積層してもよい。ピッチPが同じで、同じ螺旋のセンスの反射層を積層することによって、特定の波長で円偏光選択性を高くすることができる。
The half-value width Δλ (nm) of the selective reflection band showing the selective reflection follows the relationship of Δλ=Δn×P, where Δλ depends on the birefringence Δn of the liquid crystal compound and the pitch P described above. Therefore, the width of the selective reflection band can be controlled by adjusting Δn. The Δn can be adjusted by adjusting the type or mixing ratio of the polymerizable liquid crystal compound, or controlling the temperature when fixing the alignment.
In order to form one kind of reflective layer having the same central wavelength of selective reflection, a plurality of reflective layers having the same pitch P and the same spiral sense may be laminated. By stacking reflective layers having the same pitch P and the same spiral sense, circularly polarized light selectivity can be increased at a specific wavelength.
 また、選択反射波長の異なるコレステリック液晶構造を有する層を複数層積層して1つの反射層(反射領域)としてもよい。
 例えば、選択反射波長λをずらした層を順次積層することで反射する光の波長領域を広くすることができる。また、ピッチグラジエント法と呼ばれる層内の螺旋ピッチを段階的に変化させる方法で、波長範囲を広げる技術も知られており、具体的にはNature 378、467-469(1995)、特開平6-281814号公報、および、特許4990426号公報に記載の方法などが挙げられる。
 あるいは、選択反射波長が重複しないコレステリック液晶構造を複数層有する構成とすることで、反射層は、各コレステリック液晶構造における選択反射波長を反射する構成とすることもできる。
Further, a plurality of layers having a cholesteric liquid crystal structure having different selective reflection wavelengths may be laminated to form one reflection layer (reflection area).
For example, the wavelength region of reflected light can be widened by sequentially laminating layers with the selective reflection wavelength λ shifted. There is also known a technique of widening a wavelength range by a method called a pitch gradient method for changing a spiral pitch in a layer in a stepwise manner. Specifically, Nature 378, 467-469 (1995), JP-A-6- 2818114 and the method of patent 4990426 are mentioned.
Alternatively, the reflective layer may be configured to reflect the selective reflection wavelengths in each cholesteric liquid crystal structure by providing a plurality of layers of cholesteric liquid crystal structures having different selective reflection wavelengths.
 反射層の厚みは、0.2~10μmであることが好ましく、0.3~8.0μmであることがより好ましく、0.4~6.0μmであることがさらに好ましい。また、反射層がコレステリック液晶構造を有する層を複数層有する構成とする場合には、厚みの総計は、1.0~30μmであることが好ましく、1.5~25μmであることがより好ましく、2.0~20μmであることがさらに好ましい。 The thickness of the reflective layer is preferably 0.2 to 10 μm, more preferably 0.3 to 8.0 μm, and further preferably 0.4 to 6.0 μm. When the reflective layer has a structure having a plurality of layers having a cholesteric liquid crystal structure, the total thickness is preferably 1.0 to 30 μm, more preferably 1.5 to 25 μm, It is more preferably 2.0 to 20 μm.
 本発明において、反射層における選択反射波長は、可視光(380~780nm程度)および近赤外光(780~2000nm程度)のいずれの範囲にも設定することが可能であり、その設定方法は上述した通りである。 In the present invention, the selective reflection wavelength in the reflective layer can be set to any range of visible light (about 380 to 780 nm) and near infrared light (about 780 to 2000 nm), and the setting method is described above. As I did.
 ここで、コレステリック液晶構造を有する反射層は、基本的に選択反射波長の光を鏡面反射するものであり、光の拡散性は低いが、コレステリック配向の螺旋軸の方向に揺らぎを持たせたり、配向欠陥を生じさせることで、反射層に光の拡散性を付与することができる。
 反射層が拡散性を有することで、鏡面反射の方向以外の方向への反射光の光量を増加させることができる。
Here, the reflective layer having a cholesteric liquid crystal structure is basically for specular reflection of light having a selective reflection wavelength and has low light diffusivity, but may have fluctuation in the direction of the spiral axis of cholesteric alignment, By causing the alignment defect, it is possible to impart light diffusivity to the reflective layer.
Since the reflective layer has diffusibility, the amount of reflected light in a direction other than the direction of specular reflection can be increased.
 反射層のコレステリック構造に光拡散性を付与する方法としては、反射層を形成する際の下地となる層の配向処理を弱くしたり、液晶が配向しにくく調整したりしてもよい。具体的には、ラビング処理を除いたり、多官能のアクリル樹脂を用いる等が挙げられる。 As a method of imparting light diffusivity to the cholesteric structure of the reflective layer, it is possible to weaken the alignment treatment of the underlying layer when forming the reflective layer, or to adjust the liquid crystal so that it is difficult to align. Specific examples include removing rubbing treatment and using a polyfunctional acrylic resin.
 (反射層の作製方法)
 以下、反射層の作製材料および作製方法について説明する。
 上述の反射層の形成に用いる材料としては、重合性液晶化合物とキラル剤(光学活性化合物)とを含む液晶組成物等が挙げられる。必要に応じてさらに界面活性剤または重合開始剤等と混合して溶剤等に溶解した上述の液晶組成物を、支持体、配向層、下層となるコレステリック液晶層等に塗布し、コレステリック配向熟成後、液晶組成物の硬化により固定化して反射層を形成することができる。
(Method for producing reflective layer)
Hereinafter, a material and a method for manufacturing the reflective layer will be described.
Examples of the material used for forming the above-mentioned reflective layer include a liquid crystal composition containing a polymerizable liquid crystal compound and a chiral agent (optically active compound). If necessary, the liquid crystal composition described above, which is further mixed with a surfactant, a polymerization initiator, or the like and dissolved in a solvent or the like, is applied to a support, an alignment layer, a cholesteric liquid crystal layer as an underlying layer, and the like, after cholesteric alignment aging. The reflective layer can be formed by fixing the liquid crystal composition by curing.
 (重合性液晶化合物)
 重合性液晶化合物は、棒状液晶化合物であっても、円盤状液晶化合物であってもよいが、棒状液晶化合物であることが好ましい。
 反射層を形成する棒状の重合性液晶化合物の例としては、棒状ネマチック液晶化合物が挙げられる。棒状ネマチック液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。
(Polymerizable liquid crystal compound)
The polymerizable liquid crystal compound may be a rod-shaped liquid crystal compound or a discotic liquid crystal compound, but is preferably a rod-shaped liquid crystal compound.
An example of the rod-shaped polymerizable liquid crystal compound forming the reflective layer is a rod-shaped nematic liquid crystal compound. Examples of rod-shaped nematic liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, and alkoxy-substituted phenylpyrimidines. , Phenyldioxane, tolan, and alkenylcyclohexylbenzonitrile are preferably used. Not only a low molecular weight liquid crystal compound but also a high molecular weight liquid crystal compound can be used.
 重合性液晶化合物は、重合性基を液晶化合物に導入することで得られる。重合性基の例には、不飽和重合性基、エポキシ基、およびアジリジニル基が含まれ、不飽和重合性基が好ましく、エチレン性不飽和重合性基が特に好ましい。重合性基は種々の方法で、液晶化合物の分子中に導入できる。重合性液晶化合物が有する重合性基の個数は、好ましくは一分子中に1~6個、より好ましくは1~4個である。重合性液晶化合物の例は、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、特開2001-328973号公報、同2001-328973号公報、同2011-207941号公報、同2012-6997号公報、同2008-19240号公報、同2013-166879号公報、同2014-198814号公報、および、同2014-198815号公報等に記載の化合物が含まれる。2種類以上の重合性液晶化合物を併用してもよい。2種類以上の重合性液晶化合物を併用すると、配向温度を低下させることができる。 The polymerizable liquid crystal compound is obtained by introducing a polymerizable group into the liquid crystal compound. Examples of the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, an unsaturated polymerizable group is preferable, and an ethylenically unsaturated polymerizable group is particularly preferable. The polymerizable group can be introduced into the molecule of the liquid crystal compound by various methods. The number of polymerizable groups contained in the polymerizable liquid crystal compound is preferably 1 to 6, and more preferably 1 to 4 in one molecule. Examples of the polymerizable liquid crystal compound are described in Makromol. Chem. , 190, 2255 (1989), Advanced Materials, 5 (107) (1993), U.S. Pat. Nos. 4,683,327, 5,622,648, 5,770,107, and WO 95/22586. No. 95/24455, No. 97/00600, No. 98/23580, No. 98/52905, No. 1-272551, No. 6-16616, No. 7-110469. No. 11-80081, No. 2001-328973, No. 2001-328973, No. 2011-207941, No. 2012-6997, No. 2008-19240, No. 2013-166879. , No. 2014-198814, No. 2014-198815 and the like. You may use together 2 or more types of polymerizable liquid crystal compounds. When two or more kinds of polymerizable liquid crystal compounds are used together, the alignment temperature can be lowered.
 重合性液晶化合物の具体例としては、下記式(1)~(13)に示す化合物が挙げられる。 Specific examples of the polymerizable liquid crystal compound include compounds represented by the following formulas (1) to (13).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
[化合物(11)において、X1は2~5(整数)である。]
Figure JPOXMLDOC01-appb-C000002
[In the compound (11), X 1 is 2 to 5 (an integer). ]
Figure JPOXMLDOC01-appb-C000003
    (12)
Figure JPOXMLDOC01-appb-C000003
(12)
Figure JPOXMLDOC01-appb-C000004
 (13)
Figure JPOXMLDOC01-appb-C000004
(13)
 また、上記以外の重合性液晶化合物としては、特開昭57-165480号公報に開示されているようなコレステリック相を有する環式オルガノポリシロキサン化合物等を用いることができる。さらに、前述の高分子液晶化合物としては、液晶を呈するメソゲン基を主鎖、側鎖、あるいは主鎖および側鎖の両方の位置に導入した高分子、コレステリル基を側鎖に導入した高分子コレステリック液晶、特開平9-133810号公報に開示されているような液晶性高分子、特開平11-293252号公報に開示されているような液晶性高分子等を用いることができる。 As the polymerizable liquid crystal compound other than the above, a cyclic organopolysiloxane compound having a cholesteric phase as disclosed in JP-A-57-165480 can be used. Further, as the above-mentioned polymer liquid crystal compound, a polymer in which a mesogenic group exhibiting liquid crystal is introduced in the main chain, a side chain, or both positions of the main chain and a side chain, a polymer in which a cholesteryl group is introduced in a side chain Liquid crystals, liquid crystalline polymers as disclosed in JP-A-9-133810, and liquid crystalline polymers as disclosed in JP-A-11-293252 can be used.
 また、液晶組成物中の重合性液晶化合物の添加量は、液晶組成物の固形分質量(溶媒を除いた質量)に対して、80~99.9質量%であることが好ましく、85~99.5質量%であることがより好ましく、90~99質量%であることが特に好ましい。 Further, the addition amount of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 80 to 99.9% by mass, and 85 to 99% by mass based on the solid content mass (mass excluding the solvent) of the liquid crystal composition. It is more preferably 0.5% by mass, and particularly preferably 90 to 99% by mass.
 可視光透過率を向上させるためには、反射層は低Δnであってもよい。低Δnの反射層は、低Δn重合性液晶化合物を用いて形成することができる。以下、低Δn重合性液晶化合物について具体的に説明する。 The reflective layer may have a low Δn in order to improve the visible light transmittance. The low Δn reflective layer can be formed using a low Δn polymerizable liquid crystal compound. The low Δn polymerizable liquid crystal compound will be specifically described below.
 (低Δn重合性液晶化合物)
 低Δn重合性液晶化合物を利用してコレステリック液晶相を形成し、これを固定したフィルムとすることにより、狭帯域な反射層を得ることができる。低Δn重合性液晶化合物の例としては、WO2015/115390、WO2015/147243、WO2016/035873、特開2015-163596号公報、特開2016-53149号公報に記載の化合物が挙げられる。半値幅の小さい反射層を与える液晶組成物については、WO2016/047648の記載も参照できる。
(Low Δn polymerizable liquid crystal compound)
A narrow band reflective layer can be obtained by forming a cholesteric liquid crystal phase using a low Δn polymerizable liquid crystal compound and fixing it to form a film. Examples of low Δn polymerizable liquid crystal compounds include the compounds described in WO2015/115390, WO2015/147243, WO2016/035873, JP-A-2015-163596, and JP-A-2016-53149. The description of WO2016/047648 can also be referred to for the liquid crystal composition which gives a reflective layer having a narrow half width.
 液晶化合物は、WO2016/047648に記載の以下の式(I)で表される重合性化合物であることも好ましい。 It is also preferable that the liquid crystal compound is a polymerizable compound represented by the following formula (I) described in WO2016/047648.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(I)中、Aは、置換基を有していてもよいフェニレン基または置換基を有していてもよいトランス-1,4-シクロヘキシレン基を示し、Lは単結合、-CH2O-、-OCH2-、-(CH22OC(=O)-、-C(=O)O(CH22-、-C(=O)O-、-OC(=O)-、-OC(=O)O-、-CH=CH-C(=O)O-、および-OC(=O)-CH=CH-からなる群から選択される連結基を示し、mは3~12の整数を示し、Sp1およびSp2はそれぞれ独立に、単結合、炭素数1から20の直鎖もしくは分岐のアルキレン基、および炭素数1から20の直鎖もしくは分岐のアルキレン基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基からなる群から選択される連結基を示し、Q1およびQ2はそれぞれ独立に、水素原子または以下の式Q-1~式Q-5で表される基からなる群から選択される重合性基を示し、ただしQ1およびQ2のいずれか一方は重合性基を示す。 In the formula (I), A represents a phenylene group which may have a substituent or a trans-1,4-cyclohexylene group which may have a substituent, and L represents a single bond, —CH 2 O-, -OCH 2 -, -(CH 2 ) 2 OC(=O)-, -C(=O)O(CH 2 ) 2 -, -C(=O)O-, -OC(=O) Represents a linking group selected from the group consisting of -, -OC(=O)O-, -CH=CH-C(=O)O-, and -OC(=O)-CH=CH-, and m is 3 represents an integer of 3 to 12, and Sp 1 and Sp 2 are each independently a single bond, a linear or branched alkylene group having 1 to 20 carbon atoms, and a linear or branched alkylene group having 1 to 20 carbon atoms. One or more —CH 2 — is —O—, —S—, —NH—, —N(CH 3 )—, —C(═O)—, —OC(═O)—, or — Represents a linking group selected from the group consisting of a group substituted with C(═O)O—, wherein Q 1 and Q 2 are each independently a hydrogen atom or a group represented by the following formula Q-1 to formula Q-5. Represents a polymerizable group selected from the group consisting of the following groups, wherein one of Q 1 and Q 2 represents a polymerizable group.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(I)中の、フェニレン基は1,4-フェニレン基であることが好ましい。
 フェニレン基およびトランス-1,4-シクロヘキシレン基について「置換基を有していてもよい」というときの置換基は、特に限定されず、例えば、アルキル基、シクロアルキル基、アルコキシ基、アルキルエーテル基、アミド基、アミノ基、およびハロゲン原子ならびに、上述の置換基を2つ以上組み合わせて構成される基からなる群から選択される置換基が挙げられる。また、置換基の例としては、後述の-C(=O)-X3-Sp3-Q3で表される置換基が挙げられる。フェニレン基およびトランス-1,4-シクロヘキシレン基は、置換基を1~4個有していてもよい。2個以上の置換基を有するとき、2個以上の置換基は互いに同一であっても異なっていてもよい。
The phenylene group in formula (I) is preferably a 1,4-phenylene group.
With respect to the phenylene group and the trans-1,4-cyclohexylene group, the substituent which is “optionally substituted” is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, an alkoxy group and an alkyl ether. Examples of the substituent include a group, an amido group, an amino group, a halogen atom, and a substituent selected from the group consisting of a combination of two or more of the above substituents. Moreover, examples of the substituent include a substituent represented by -C(=O)-X 3 -Sp 3 -Q 3 described later. The phenylene group and trans-1,4-cyclohexylene group may have 1 to 4 substituents. When it has two or more substituents, the two or more substituents may be the same or different from each other.
 アルキル基は直鎖状および分岐鎖状のいずれでもよい。アルキル基の炭素数は1~30が好ましく、1~10がより好ましく、1~6がさらに好ましい。アルキル基の例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、1,1-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、直鎖状または分岐鎖状のヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、またはドデシル基を挙げることができる。アルキル基に関する上述の説明はアルキル基を含むアルコキシ基においても同様である。また、アルキレン基というときのアルキレン基の具体例としては、上述のアルキル基の例それぞれにおいて、任意の水素原子を1つ除いて得られる2価の基等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、およびヨウ素原子が挙げられる。 The alkyl group may be linear or branched. The alkyl group preferably has 1 to 30 carbon atoms, more preferably has 1 to 10 carbon atoms, and further preferably has 1 to 6 carbon atoms. Examples of the alkyl group include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group. Examples thereof include a group, 1,1-dimethylpropyl group, n-hexyl group, isohexyl group, linear or branched heptyl group, octyl group, nonyl group, decyl group, undecyl group, or dodecyl group. The above description regarding the alkyl group is the same for the alkoxy group containing an alkyl group. Specific examples of the alkylene group when referred to as an alkylene group include a divalent group obtained by removing one arbitrary hydrogen atom from each of the above-mentioned examples of the alkyl group. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 シクロアルキル基の炭素数は、3~20が好ましく、5以上がより好ましく、また、10以下が好ましく、8以下がより好ましく、6以下がさらに好ましい。シクロアルキル基の例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基を挙げることができる。 The carbon number of the cycloalkyl group is preferably 3 to 20, more preferably 5 or more, preferably 10 or less, more preferably 8 or less, and further preferably 6 or less. Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
 フェニレン基およびトランス-1,4-シクロヘキシレン基が有していてもよい置換基としては特に、アルキル基、およびアルコキシ基、-C(=O)-X3-Sp3-Q3からなる群から選択される置換基が好ましい。ここで、X3は単結合、-O-、-S-、もしくは-N(Sp4-Q4)-を示すか、または、Q3およびSp3と共に環構造を形成している窒素原子を示す。Sp3、Sp4はそれぞれ独立に、単結合、炭素数1から20の直鎖もしくは分岐のアルキレン基、および炭素数1から20の直鎖もしくは分岐のアルキレン基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基からなる群から選択される連結基を示す。 As the substituent which the phenylene group and trans-1,4-cyclohexylene group may have, an alkyl group, an alkoxy group, and a group consisting of -C(=O)-X 3 -Sp 3 -Q 3 are particularly preferable. Substituents selected from are preferred. Here, X 3 represents a single bond, —O—, —S—, or —N(Sp 4 —Q 4 )—, or is a nitrogen atom forming a ring structure with Q 3 and Sp 3. Show. Sp 3 and Sp 4 are each independently one or more of a single bond, a straight-chain or branched alkylene group having 1 to 20 carbon atoms, and a straight-chain or branched alkylene group having 1 to 20 carbon atoms. CH 2 -is -O-, -S-, -NH-, -N(CH 3 )-, -C(=O)-, -OC(=O)-, or -C(=O)O-. A connecting group selected from the group consisting of substituted groups is shown.
 Q3およびQ4はそれぞれ独立に、水素原子、シクロアルキル基、シクロアルキル基において1つもしくは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、もしくは-C(=O)O-で置換された基、または式Q-1~式Q-5で表される基からなる群から選択されるいずれかの重合性基を示す。 Q 3 and Q 4 are each independently a hydrogen atom, a cycloalkyl group, or one or more —CH 2 — in the cycloalkyl group are —O—, —S—, —NH—, —N(CH 3 )-, -C(=O)-, -OC(=O)-, or -C(=O)O-, or a group represented by formula Q-1 to formula Q-5 Represents any polymerizable group selected from the group consisting of:
 シクロアルキル基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基として、具体的には、テトラヒドロフラニル基、ピロリジニル基、イミダゾリジニル基、ピラゾリジニル基、ピペリジル基、ピペラジニル基、および、モルホルニル基等が挙げられる。置換位置は特に限定されない。これらのうち、テトラヒドロフラニル基が好ましく、特に2-テトラヒドロフラニル基が好ましい。 In the cycloalkyl group, one or more —CH 2 — is —O—, —S—, —NH—, —N(CH 3 )—, —C(═O)—, —OC(═O) Specific examples of the group substituted with -or -C(=O)O- include a tetrahydrofuranyl group, a pyrrolidinyl group, an imidazolidinyl group, a pyrazolidinyl group, a piperidyl group, a piperazinyl group, and a morpholinyl group. .. The substitution position is not particularly limited. Of these, a tetrahydrofuranyl group is preferable, and a 2-tetrahydrofuranyl group is particularly preferable.
 式(I)において、Lは単結合、-CH2O-、-OCH2-、-(CH22OC(=O)-、-C(=O)O(CH22-、-C(=O)O-、-OC(=O)-、-OC(=O)O-、-CH=CH-C(=O)O-、および、-OC(=O)-CH=CH-からなる群から選択される連結基を示す。Lは-C(=O)O-または-OC(=O)-であることが好ましい。m-1個のLは互いに同一でも異なっていてもよい。 In the formula (I), L is a single bond, —CH 2 O—, —OCH 2 —, —(CH 2 ) 2 OC(═O)—, —C(═O)O(CH 2 ) 2 —, — C(=O)O-, -OC(=O)-, -OC(=O)O-, -CH=CH-C(=O)O-, and -OC(=O)-CH=CH Represents a linking group selected from the group consisting of: L is preferably -C(=O)O- or -OC(=O)-. The m-1 L's may be the same or different from each other.
 Sp1、Sp2はそれぞれ独立に、単結合、炭素数1から20の直鎖もしくは分岐のアルキレン基、および炭素数1から20の直鎖もしくは分岐のアルキレン基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基からなる群から選択される連結基を示す。Sp1およびSp2はそれぞれ独立に、両末端にそれぞれ-O-、-OC(=O)-、および-C(=O)O-からなる群から選択される連結基が結合した炭素数1から10の直鎖のアルキレン基、-OC(=O)-、-C(=O)O-、-O-、および炭素数1から10の直鎖のアルキレン基からなる群から選択される基を1または2以上組み合わせて構成される連結基であることが好ましく、両方の末端に-O-がそれぞれ結合した炭素数1から10の直鎖のアルキレン基であることが好ましい。 Sp 1 and Sp 2 are each independently one or more of a single bond, a linear or branched alkylene group having 1 to 20 carbon atoms, and a linear or branched alkylene group having 1 to 20 carbon atoms. CH 2 -is -O-, -S-, -NH-, -N(CH 3 )-, -C(=O)-, -OC(=O)-, or -C(=O)O-. A connecting group selected from the group consisting of substituted groups is shown. Sp 1 and Sp 2 are each independently a carbon atom having a linking group selected from the group consisting of —O—, —OC(═O)—, and —C(═O)O— at both ends. A group selected from the group consisting of a straight chain alkylene group having 1 to 10 carbon atoms, —OC(═O)—, —C(═O)O—, —O—, and a straight chain alkylene group having 1 to 10 carbon atoms. Is preferably a linking group formed by combining 1 or 2 or more, and is preferably a linear alkylene group having 1 to 10 carbon atoms in which —O— is bonded to both ends.
 Q1およびQ2はそれぞれ独立に、水素原子、もしくは上述の式Q-1~式Q-5で表される基からなる群から選択される重合性基を示し、ただしQ1およびQ2のいずれか一方は重合性基を示す。
 重合性基としては、アクリロイル基(式Q-1)またはメタクリロイル基(式Q-2)が好ましい。
Q 1 and Q 2 each independently represent a hydrogen atom or a polymerizable group selected from the group consisting of the groups represented by the above formulas Q-1 to Q-5, provided that Q 1 and Q 2 are One of them represents a polymerizable group.
As the polymerizable group, an acryloyl group (formula Q-1) or a methacryloyl group (formula Q-2) is preferable.
 式(I)中、mは3~12の整数を示し、3~9の整数であることが好ましく、3~7の整数であることがより好ましく、3~5の整数であることがさらに好ましい。 In the formula (I), m represents an integer of 3 to 12, is preferably an integer of 3 to 9, more preferably an integer of 3 to 7, and further preferably an integer of 3 to 5. ..
 式(I)で表される重合性化合物は、Aとして置換基を有していてもよいフェニレン基を少なくとも1つおよび置換基を有していてもよいトランス-1,4-シクロヘキシレン基を少なくとも1つ含むことが好ましい。式(I)で表される重合性化合物は、Aとして、置換基を有していてもよいトランス-1,4-シクロヘキシレン基を1~4個含むことが好ましく、1~3個含むことがより好ましく、2又は3個含むことがさらに好ましい。また、式(I)で表される重合性化合物は、Aとして、置換基を有していてもよいフェニレン基を1個以上含むことが好ましく、1~4個含むことがより好ましく、1~3個含むことがさらに好ましく、2個又は3個含むことが特に好ましい。 The polymerizable compound represented by the formula (I) has at least one optionally substituted phenylene group as A and a optionally substituted trans-1,4-cyclohexylene group. It is preferable to include at least one. The polymerizable compound represented by the formula (I) preferably contains, as A, 1 to 4 trans-1,4-cyclohexylene groups which may have a substituent, and preferably 1 to 3 trans-1 ,4-cyclohexylene groups which may have a substituent. Is more preferable, and it is still more preferable to include 2 or 3. The polymerizable compound represented by the formula (I) preferably contains, as A, at least one phenylene group which may have a substituent, more preferably 1 to 4 and more preferably 1 to 4 It is more preferable to include three, and it is particularly preferable to include two or three.
 式(I)において、Aで表されるトランス-1,4-シクロヘキシレン基の数をmで割った数をmcとしたとき、0.1<mc<0.9であることが好ましく、0.3<mc<0.8であることがより好ましく、0.5<mc<0.7であることがさらに好ましい。液晶組成物が0.5<mc<0.7である式(I)で表される重合性化合物とともに、0.1<mc<0.3である式(I)で表される重合性化合物を含むことも好ましい。 In the formula (I), when the number obtained by dividing the number of trans-1,4-cyclohexylene groups represented by A by m is mc, it is preferable that 0.1<mc<0.9, and 0 0.3<mc<0.8 is more preferable, and 0.5<mc<0.7 is further preferable. The polymerizable compound represented by the formula (I) in which the liquid crystal composition is 0.5<mc<0.7, and the polymerizable compound represented by the formula (I) in which 0.1<mc<0.3. It is also preferable to include.
 式(I)で表される重合性化合物の例として具体的には、WO2016/047648の段落0051~0058に記載の化合物のほか、特開2013-112631号公報、特開2010-70543号公報、特許4725516号、WO2015/115390、WO2015/147243、WO2016/035873、特開2015-163596号公報、および特開2016-53149号公報に記載の化合物等を挙げることができる。 Specific examples of the polymerizable compound represented by the formula (I) include the compounds described in paragraphs 0051 to 0058 of WO2016/047648, JP-A-2013-112631, JP-A-2010-70543, The compounds described in Japanese Patent No. 4725516, WO2015/115390, WO2015/147243, WO2016/035873, JP-A-2015-163596, and JP-A-2016-53149 can be exemplified.
 (キラル剤:光学活性化合物)
 キラル剤はコレステリック液晶相の螺旋構造を誘起する機能を有する。キラル化合物は、化合物によって誘起する螺旋のセンスまたは螺旋ピッチが異なるため、目的に応じて選択すればよい。
 キラル剤としては、特に制限はなく、公知の化合物を用いることができる。キラル剤の例としては、液晶デバイスハンドブック(第3章4-3項、TN(twisted nematic)、STN(Super-twisted nematic)用カイラル剤、199頁、日本学術振興会第142委員会編、1989)、特開2003-287623号、特開2002-302487号、特開2002-80478号、特開2002-80851号、特開2010-181852号または特開2014-034581号の各公報に記載の化合物が挙げられる。
(Chiral agent: optically active compound)
The chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase. The chiral compound may be selected according to the purpose because the sense of the helix or the helical pitch induced by the compound differs.
The chiral agent is not particularly limited, and known compounds can be used. As an example of the chiral agent, a liquid crystal device handbook (Chapter 3-4-3, TN (twisted nematic), STN (super-twisted nematic) chiral agent, p. 199, Japan Society for the Promotion of Science, 142th Committee, 1989. ), JP-A-2003-287623, JP-A-2002-302487, JP-A-2002-80478, JP-A-2002-80851, JP-A-2010-181852 or JP-A-2014-034581. Are listed.
 キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物あるいは面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤と液晶化合物とがいずれも重合性基を有する場合は、重合性キラル剤と重合性液晶化合物との重合反応により、重合性液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性キラル剤が有する重合性基は、重合性液晶化合物が有する重合性基と、同種の基であることが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基であることが特に好ましい。
 また、キラル剤は、液晶化合物であってもよい。
The chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent. Examples of the axially chiral compound or the planar chiral compound include binaphthyl, helicene, paracyclophane and derivatives thereof. The chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, a repeating unit derived from the polymerizable liquid crystal compound and a chiral agent are generated by a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound. Polymers having repeating units can be formed. In this aspect, the polymerizable group contained in the polymerizable chiral agent is preferably the same type of group as the polymerizable group contained in the polymerizable liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Particularly preferred.
Further, the chiral agent may be a liquid crystal compound.
 キラル剤としては、イソソルビド誘導体、イソマンニド誘導体、またはビナフチル誘導体を好ましく用いることができる。イソソルビド誘導体としては、BASF社製のLC756等の市販品を用いてもよい。
 液晶組成物における、キラル剤の含有量は、重合性液晶化合物量の0.01モル%~200モル%が好ましく、1モル%~30モル%がより好ましい。
As the chiral agent, an isosorbide derivative, an isomannide derivative, or a binaphthyl derivative can be preferably used. As the isosorbide derivative, a commercially available product such as LC756 manufactured by BASF may be used.
The content of the chiral agent in the liquid crystal composition is preferably 0.01 mol% to 200 mol% of the amount of the polymerizable liquid crystal compound, and more preferably 1 mol% to 30 mol %.
 (重合開始剤)
 液晶組成物は、重合開始剤を含有していることが好ましい。紫外線照射により重合反応を進行させる態様では、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であることが好ましい。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、米国特許第2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、米国特許第2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報、特開平10-29997号公報、特開2001-233842号公報、特開2000-80068号公報、特開2006-342166号公報、特開2013-114249号公報、特開2014-137466号公報、特許4223071号公報、特開2010-262028号公報、特表2014-500852号公報記載)、オキシム化合物(特開2000-66385号公報、日本特許第4454067号明細書記載)、およびオキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。例えば、特開2012-208494号公報の段落0500~0547の記載も参酌できる。
(Polymerization initiator)
The liquid crystal composition preferably contains a polymerization initiator. In the embodiment in which the polymerization reaction proceeds by irradiation with ultraviolet rays, the polymerization initiator used is preferably a photopolymerization initiator capable of initiating the polymerization reaction by irradiation with ultraviolet rays. Examples of the photopolymerization initiator include α-carbonyl compounds (described in US Pat. No. 2,376,661 and US Pat. No. 2,367,670), acyloin ethers (US Pat. No. 2,448,828), and α-hydrocarbons. Of substituted aromatic acyloin compounds (described in US Pat. No. 2,722,512), polynuclear quinone compounds (described in US Pat. No. 3,046,127, US Pat. No. 2,951,758), triarylimidazole dimer and p-aminophenyl ketone Combinations (described in US Pat. No. 3,549,367), acridine and phenazine compounds (described in JP-A-60-105667, US Pat. No. 4,239,850), acylphosphine oxide compounds (JP-B-63-40799), JP-B-5-29234, JP-A-10-95788, JP-A-10-29997, JP-A-2001-233842, JP-A-2000-80068, JP-A-2006-342166, and JP-A-2006-342166. 2013-114249, JP-A-2014-137466, JP-A-4223071, JP-A-2010-262028, JP-A-2014-500852, and oxime compound (JP-A-2000-66385, JP Patent) No. 4454067), and oxadiazole compounds (described in US Pat. No. 4,212,970). For example, the description in paragraphs 0500 to 0547 of JP 2012-208494 A can be referred to.
 重合開始剤としては、アシルフォスフィンオキシド化合物またはオキシム化合物を用いることも好ましい。
 アシルフォスフィンオキシド化合物としては、例えば、市販品のBASFジャパン(株)製のIRGACURE810(化合物名:ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド)を用いることができる。オキシム化合物としては、IRGACURE OXE01(BASF社製)、IRGACURE OXE02(BASF社製)、TR-PBG-304(常州強力電子新材料有限公司製)、アデカアークルズNCI-831、アデカアークルズNCI-930(ADEKA社製)、アデカアークルズNCI-831(ADEKA社製)等の市販品を用いることができる。
 重合開始剤は、1種のみ用いてもよいし、2種以上を併用してもよい。
 液晶組成物中の光重合開始剤の含有量は、重合性液晶化合物の含有量に対して0.1質量%~20質量%であることが好ましく、0.5質量%~5質量%であることがさらに好ましい。
It is also preferable to use an acylphosphine oxide compound or an oxime compound as the polymerization initiator.
As the acylphosphine oxide compound, for example, a commercially available product, IRGACURE 810 (compound name: bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide) manufactured by BASF Japan Ltd. can be used. As the oxime compound, IRGACURE OXE01 (manufactured by BASF), IRGACURE OXE02 (manufactured by BASF), TR-PBG-304 (manufactured by Changzhou Power Electronics Co., Ltd.), ADEKA ARKRUZ NCI-831, ADEKA ARKRUZ NCI-930 Commercial products such as (made by ADEKA) and ADEKA ARKUL'S NCI-831 (made by ADEKA) can be used.
The polymerization initiator may be used alone or in combination of two or more.
The content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1% by mass to 20% by mass, and more preferably 0.5% by mass to 5% by mass, with respect to the content of the polymerizable liquid crystal compound. Is more preferable.
 (架橋剤)
 液晶組成物は、硬化後の膜強度向上、耐久性向上のため、任意に架橋剤を含有していてもよい。架橋剤としては、紫外線、熱、湿気等で硬化するものが好適に使用できる。
 架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネート、ビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物等が挙げられる。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 架橋剤の含有量は、3質量%~20質量%が好ましく、5質量%~15質量%がより好ましい。架橋剤の含有量を3質量%以上とすることにより、架橋密度向上の効果を得ることができ、架橋剤の含有量を20質量%以下とすることにより、反射層の安定性の低下を防止できる。
(Crosslinking agent)
The liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and the durability. As the cross-linking agent, one that can be cured by ultraviolet rays, heat, moisture or the like can be preferably used.
The cross-linking agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polyfunctional acrylate compounds such as trimethylolpropane tri(meth)acrylate and pentaerythritol tri(meth)acrylate; glycidyl (meth). Epoxy compounds such as acrylate and ethylene glycol diglycidyl ether; 2,2-bishydroxymethylbutanol-tris[3-(1-aziridinyl)propionate] and aziridine compounds such as 4,4-bis(ethyleneiminocarbonylamino)diphenylmethane; Isocyanate compounds such as hexamethylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; alkoxysilane compounds such as vinyltrimethoxysilane and N-(2-aminoethyl)3-aminopropyltrimethoxysilane Can be mentioned. Further, a known catalyst can be used depending on the reactivity of the cross-linking agent, and the productivity can be improved in addition to the improvement of the film strength and durability. These may be used alone or in combination of two or more.
The content of the crosslinking agent is preferably 3% by mass to 20% by mass, more preferably 5% by mass to 15% by mass. By setting the content of the cross-linking agent to 3% by mass or more, the effect of improving the cross-linking density can be obtained, and by setting the content of the cross-linking agent to 20% by mass or less, deterioration of the stability of the reflective layer is prevented. it can.
 (配向制御剤)
 液晶組成物中には、安定的にまたは迅速にプレーナー配向の反射層とするために寄与する配向制御剤を添加してもよい。配向制御剤の例としては特開2007-272185号公報の段落〔0018〕~〔0043〕等に記載のフッ素(メタ)アクリレート系ポリマー、特開2012-203237号公報の段落〔0031〕~〔0034〕等に記載の式(I)~(IV)で表される化合物、特開2013-113913号公報に記載の化合物等が挙げられる。
 なお、配向制御剤としては1種を単独で用いてもよいし、2種以上を併用してもよい。
(Orientation control agent)
The liquid crystal composition may contain an alignment control agent that contributes to the stable or rapid formation of a reflective layer having a planar alignment. Examples of the orientation control agent include fluorine (meth)acrylate polymers described in paragraphs [0018] to [0043] of JP2007-272185A, and paragraphs [0031] to [0034] of JP2012-203237A. ] And the like, compounds represented by formulas (I) to (IV), compounds described in JP-A-2013-113913, and the like.
As the orientation control agent, one kind may be used alone, or two or more kinds may be used in combination.
 液晶組成物中における、配向制御剤の添加量は、重合性液晶化合物の全質量に対して0.01質量%~10質量%が好ましく、0.01質量%~5質量%がより好ましく、0.02質量%~1質量%が特に好ましい。 The addition amount of the orientation control agent in the liquid crystal composition is preferably 0.01% by mass to 10% by mass, more preferably 0.01% by mass to 5% by mass, based on the total mass of the polymerizable liquid crystal compound. It is particularly preferably from 0.02% by mass to 1% by mass.
 (その他の添加剤)
 その他、液晶組成物は、塗膜の表面張力を調整し厚みを均一にするための界面活性剤、および重合性モノマー等の種々の添加剤から選ばれる少なくとも1種を含有していてもよい。また、液晶組成物中には、必要に応じて、さらに重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、および、金属酸化物微粒子等を、光学性能を低下させない範囲で添加することができる。
(Other additives)
In addition, the liquid crystal composition may contain at least one selected from various additives such as a surfactant for adjusting the surface tension of the coating film to make the thickness uniform and a polymerizable monomer. Further, in the liquid crystal composition, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a coloring material, and metal oxide fine particles may be added, if necessary, within a range not deteriorating the optical performance. Can be added at.
 反射層は、重合性液晶化合物および重合開始剤、更に必要に応じて添加されるキラル剤、界面活性剤等を溶媒に溶解させた液晶組成物を、支持体、配向層、または先に作製されたコレステリック液晶層等の上に塗布し、乾燥させて塗膜を得、この塗膜に活性光線を照射してコレステリック液晶性組成物を重合し、コレステリック規則性が固定化されたコレステリック液晶構造を有する反射層を形成することができる。 The reflective layer is a support, an alignment layer, or a liquid crystal composition prepared by dissolving a polymerizable liquid crystal compound, a polymerization initiator, a chiral agent, a surfactant, and the like, which are added as necessary, in a solvent. A cholesteric liquid crystal structure in which the cholesteric regularity is fixed by polymerizing the cholesteric liquid crystalline composition by irradiating the coating film with an actinic ray by applying an active ray to the cholesteric liquid crystal layer. It is possible to form a reflective layer having the same.
 (溶媒)
 液晶組成物の調製に使用する溶媒としては、特に制限はなく、目的に応じて適宜選択することができるが、有機溶媒が好ましく用いられる。
 有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、および、エーテル類等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、環境への負荷を考慮した場合にはケトン類が特に好ましい。
(solvent)
The solvent used for preparing the liquid crystal composition is not particularly limited and may be appropriately selected depending on the intended purpose, but organic solvents are preferably used.
The organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, and ethers. And the like. These may be used alone or in combination of two or more. Among these, ketones are particularly preferable in consideration of the load on the environment.
 (塗布、配向、重合)
 支持体、配向層、下層となるコレステリック液晶層等への液晶組成物の塗布方法は、特に制限はなく、目的に応じて適宜選択することができ、例えば、ワイヤーバーコーティング法、カーテンコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スピンコーティング法、ディップコーティング法、スプレーコーティング法、および、スライドコーティング法等が挙げられる。また、別途支持体上に塗設した液晶組成物を転写することによっても実施できる。塗布した液晶組成物を加熱することにより、液晶分子を配向させる。加熱温度は、200℃以下が好ましく、130℃以下がより好ましい。この配向処理により、重合性液晶化合物が、フィルム面に対して実質的に垂直な方向に螺旋軸を有するようにねじれ配向している反射層が得られる。
(Coating, orientation, polymerization)
Support, alignment layer, the coating method of the liquid crystal composition to the cholesteric liquid crystal layer to be the lower layer, etc. is not particularly limited and can be appropriately selected depending on the purpose, for example, a wire bar coating method, a curtain coating method, Examples thereof include an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method, a spin coating method, a dip coating method, a spray coating method, and a slide coating method. It can also be carried out by transferring a liquid crystal composition separately applied on a support. By heating the applied liquid crystal composition, the liquid crystal molecules are aligned. The heating temperature is preferably 200°C or lower, more preferably 130°C or lower. By this alignment treatment, a reflective layer in which the polymerizable liquid crystal compound is twisted and aligned so as to have a spiral axis in a direction substantially perpendicular to the film surface is obtained.
 配向させた液晶化合物をさらに重合させることにより、液晶組成物を硬化することができる。重合は、熱重合、光照射を利用する光重合のいずれでもよいが、光重合が好ましい。光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2~50J/cm2が好ましく、100mJ/cm2~1,500mJ/cm2がより好ましい。
 光重合反応を促進するため、加熱条件下または窒素雰囲気下で光照射を実施してもよい。照射紫外線波長は350~430nmが好ましい。重合反応率は安定性の観点から、高いほうが好ましく70%以上が好ましく、80%以上がより好ましい。重合反応率は、重合性の官能基の消費割合を赤外線吸収スペクトルの測定により、決定することができる。
The liquid crystal composition can be cured by further polymerizing the aligned liquid crystal compound. The polymerization may be either thermal polymerization or photopolymerization utilizing light irradiation, but photopolymerization is preferred. It is preferable to use ultraviolet rays for the light irradiation. The irradiation energy is preferably 20mJ / cm 2 ~ 50J / cm 2, 100mJ / cm 2 ~ 1,500mJ / cm 2 is more preferable.
To accelerate the photopolymerization reaction, light irradiation may be carried out under heating or under a nitrogen atmosphere. The irradiation ultraviolet wavelength is preferably 350 to 430 nm. From the viewpoint of stability, the polymerization reaction rate is preferably high, preferably 70% or more, and more preferably 80% or more. The polymerization reaction rate can be determined by measuring the consumption rate of the polymerizable functional group by measuring the infrared absorption spectrum.
 反射層が、選択反射波長の異なる2以上の反射領域を有する構成の場合には、各反射領域を上述した方法で仮支持体上に形成して、作製した各反射領域を所望の形状に切り取るなどして支持体上に転写して作製すればよい。
 あるいは、例えば、インクジェット印刷法、グラビア印刷法、フレキソ印刷法等の印刷により、支持体上に所望の形状の塗布層を形成して、露光処理、加熱処理および硬化処理を行って、所望の形状の反射領域を形成することを繰り返して2以上の反射領域を有する反射層を作製してもよい。
 あるいは、キラル剤として、光に感応しコレステリック液晶相の螺旋ピッチを変化させ得る感光性キラル剤を用いてもよい。具体的には、液晶組成物を支持体に塗布した後に、各反射領域の形状に応じた所定の開口パターンを有するマスクを介して、感光性キラル剤が感光する波長の光を照射して感光性キラル剤の螺旋誘起力(HTP:Helical Twisting Power)を変化させることで、反射領域ごとに異なる選択反射波長となるようにしてもよい。
In the case where the reflective layer has two or more reflective regions having different selective reflection wavelengths, each reflective region is formed on the temporary support by the above-mentioned method, and each produced reflective region is cut into a desired shape. For example, it may be produced by transferring it onto a support.
Alternatively, for example, by printing by an inkjet printing method, a gravure printing method, a flexo printing method, or the like, a coating layer having a desired shape is formed on a support, and then an exposure treatment, a heat treatment, and a curing treatment are performed to obtain a desired shape. The reflective layer having two or more reflective regions may be produced by repeating the formation of the reflective regions.
Alternatively, as the chiral agent, a photosensitive chiral agent which is sensitive to light and can change the helical pitch of the cholesteric liquid crystal phase may be used. Specifically, after applying the liquid crystal composition to the support, the photosensitive chiral agent is irradiated with light having a wavelength to be exposed through a mask having a predetermined opening pattern corresponding to the shape of each reflective region. The selective reflection wavelength may be different for each reflection region by changing the helical induction force (HTP: Helical Twisting Power) of the chiral agent.
〔支持体〕
 支持体は、反射層14を支持するものである。また、本発明において支持体12は、ヘイズ値が2%以上で、かつ、可視光透過率が30%以上である。
 支持体12は、単層の部材であってもよいし、複数の層が積層されてなる部材であってもよい。複数の層が積層されてなる支持体の場合には、支持体全体でのヘイズ値が2%以上で、かつ、可視光透過率が30%以上であればよい。
[Support]
The support supports the reflective layer 14. In the present invention, the support 12 has a haze value of 2% or more and a visible light transmittance of 30% or more.
The support 12 may be a single layer member or a member formed by laminating a plurality of layers. In the case of a support in which a plurality of layers are laminated, it is sufficient that the haze value of the whole support is 2% or more and the visible light transmittance is 30% or more.
 複数の層が積層される支持体の例としては、図1に示す例のように基材16と中間層18とを有する構成が例示される。
 基材16と中間層18とを有する構成の場合には、基材16が反射層14を支持可能な強度を担保するものとし、中間層18は、ヘイズ値を2%以上とする散乱機能を有する層とするのが好ましい。
As an example of the support on which a plurality of layers are laminated, a structure having a base material 16 and an intermediate layer 18 as illustrated in FIG. 1 is illustrated.
In the case of the structure having the base material 16 and the intermediate layer 18, the base material 16 ensures the strength capable of supporting the reflective layer 14, and the intermediate layer 18 has a scattering function of having a haze value of 2% or more. It is preferable that the layer has.
 (基材)
 基材としては、光学フィルムで基材として用いられている各種の樹脂フィルムを用いることができる。
 基材の材料としては、ポリプロピレン等のポリオレフィン系樹脂、ポリメチルメタクリレート等のポリアクリル系樹脂、セルローストリアセテート等のセルロース系樹脂、シクロオレフィンポリマー系樹脂、ポリエチレンテレフタレート(PET)、ポリカーボネート、および、ポリ塩化ビニル等を挙げることができる。基材の材料は樹脂に限らず、ガラスを用いてもよい。
(Base material)
As the base material, various resin films used as the base material in the optical film can be used.
Examples of the material of the base material include polyolefin resins such as polypropylene, polyacrylic resins such as polymethylmethacrylate, cellulose resins such as cellulose triacetate, cycloolefin polymer resins, polyethylene terephthalate (PET), polycarbonate, and polychlorinated resins. Examples thereof include vinyl. The material of the base material is not limited to resin, and glass may be used.
 また、基材の正面位相差は400nm以下であるのが好ましく、200nm以下であるのがより好ましく、122nm以下であるのがさらに好ましい。これにより、偏光を用いた真贋判定をする際の支持体による偏光変換の影響を少なくできる点で好ましい。 The front phase difference of the base material is preferably 400 nm or less, more preferably 200 nm or less, and further preferably 122 nm or less. This is preferable in that it is possible to reduce the influence of polarization conversion by the support when making an authenticity determination using polarized light.
 基材の厚さには、制限はなく、偽造防止媒体の用途および基材の形成材料等に応じて、反射層を保持できる厚さを、適宜、設定すればよい。
 基材の厚さは、1~1000μmが好ましく、3~250μmがより好ましく、5~150μmがさらに好ましい。
There is no limitation on the thickness of the base material, and the thickness capable of holding the reflective layer may be appropriately set depending on the use of the anti-counterfeit medium, the material forming the base material, and the like.
The thickness of the substrate is preferably from 1 to 1000 μm, more preferably from 3 to 250 μm, even more preferably from 5 to 150 μm.
 (中間層)
 中間層を、ヘイズ値を2%以上とする散乱機能を有する層とする場合には、ヘイズ値の高い樹脂からなる層としてもよいし、あるいは、散乱材料としての微粒子を含む樹脂層としてもよい。
(Middle layer)
When the intermediate layer is a layer having a scattering function with a haze value of 2% or more, it may be a layer made of a resin having a high haze value or a resin layer containing fine particles as a scattering material. ..
 ヘイズ値の高い樹脂としては、ポリプロピレン、ポリカーボネート、ポリエチレンテレフタレートなどのポリエステル、ポリ塩化ビニル、ポリアミド等を用いることができる。 As the resin having a high haze value, polypropylene, polycarbonate, polyester such as polyethylene terephthalate, polyvinyl chloride, polyamide and the like can be used.
 微粒子としては、分散させる樹脂とは屈折率の異なる微粒子であればよく、公知の散乱材料を用いることができる。微粒子としては、例えば、アクリル粒子、シリコーン粒子、ナイロン粒子、スチレン粒子、ポリエチレン粒子、ウレタン粒子、ベンゾグアナミン等の樹脂粒子、あるいは、アルミナ粒子、シリカ粒子等の無機粒子を用いることができる。 The fine particles may be fine particles having a refractive index different from that of the resin to be dispersed, and known scattering materials can be used. As the fine particles, for example, acrylic particles, silicone particles, nylon particles, styrene particles, polyethylene particles, urethane particles, resin particles such as benzoguanamine, or inorganic particles such as alumina particles and silica particles can be used.
 微粒子の種類、粒径および添加量は、分散させる樹脂への分散性、溶解性、屈折率、支持体の厚さ、支持体としてのヘイズ値および可視光透過率等に応じて適宜選択すればよい。
 散乱性の観点から、微粒子の粒径は、50nm以上が好ましく、100nm~200nmがより好ましく、150nm~1000nmがさらに好ましい。
The type of fine particles, the particle size and the addition amount may be appropriately selected according to the dispersibility in the resin to be dispersed, the solubility, the refractive index, the thickness of the support, the haze value as the support, the visible light transmittance, and the like. Good.
From the viewpoint of scattering properties, the particle size of the fine particles is preferably 50 nm or more, more preferably 100 nm to 200 nm, further preferably 150 nm to 1000 nm.
 また、微粒子を分散させる樹脂としては、支持体としてのヘイズ値および可視光透過率が上記範囲を満たせば特に限定はない。例えば、多官能アクリレート、ウレタンアクリレートなどのポリアクリレート樹脂等を用いることができる。 Further, the resin for dispersing the fine particles is not particularly limited as long as the haze value and the visible light transmittance as the support satisfy the above ranges. For example, polyacrylate resin such as polyfunctional acrylate or urethane acrylate can be used.
 また、中間層は接着層としての機能を有していてもよい。中間層が接着機能を有する構成とすることで、反射層を転写によって形成する場合に、反射層と支持体とを接着することができる。
 中間層を接着層とする場合には、アクリル系樹脂、エポキシ系樹脂等を用いることができる。
 また、中間層に接着層としての機能を持たせる場合にも、上述した微粒子を分散させてもよい。
Further, the intermediate layer may have a function as an adhesive layer. When the intermediate layer has a bonding function, the reflective layer and the support can be bonded to each other when the reflective layer is formed by transfer.
When the intermediate layer is used as the adhesive layer, acrylic resin, epoxy resin, or the like can be used.
Further, when the intermediate layer has a function as an adhesive layer, the fine particles described above may be dispersed.
 単層の支持体でヘイズ値および可視光透過率が上記範囲を満たすものとしては、ポリプロピレン等のポリオレフィン系樹脂等からなる樹脂フィルムが例示される。
 また、上述した微粒子を、基材の材料として上述した材料中に分散させたものを単層の支持体として、支持体のヘイズ値および可視光透過率が上記範囲を満たすものとしてもよい。
As a single-layer support having a haze value and a visible light transmittance satisfying the above ranges, a resin film made of a polyolefin resin such as polypropylene is exemplified.
In addition, a dispersion of the above-mentioned fine particles in the above-mentioned material as a material of the base material may be used as a single-layer support, and the haze value and visible light transmittance of the support may satisfy the above ranges.
 (その他の層)
 偽造防止媒体は、上述した支持体(基材および中間層)、反射層、および、円偏光板以外の層を有していてもよい。
 例えば、偽造防止媒体を構成する各層の間に、各層を貼り合わせる粘着層を有していてもよい。
 また、偽造防止媒体のいずれか一方の最表層に粘着層を有していてもよい。最表層に粘着層を有する構成とすることで偽造防止媒体を各種の物品に貼り付けて利用することが可能になる。また、最表層に粘着層を有する場合には、粘着層の上に剥離可能な保護フィルムを有する構成としてもよい。偽造防止媒体を物品に貼り付ける際に、保護フィルムを剥離して偽造防止媒体を物品に貼り付ける構成とすることで粘着層の粘着力が低下するのを防止できる。
(Other layers)
The anti-counterfeit medium may have a layer other than the above-mentioned support (base material and intermediate layer), reflective layer, and circularly polarizing plate.
For example, an adhesive layer for laminating each layer may be provided between each layer constituting the anti-counterfeit medium.
Further, an adhesive layer may be provided on the outermost surface layer of either one of the anti-counterfeit media. By providing the adhesive layer on the outermost layer, the anti-counterfeit medium can be attached to various articles for use. When the outermost layer has an adhesive layer, a peelable protective film may be provided on the adhesive layer. When the anti-counterfeit medium is attached to the article, the protective film is peeled off to attach the anti-counterfeit medium to the article, whereby the adhesive force of the adhesive layer can be prevented from being lowered.
 (粘着層)
 粘着層は、対象となる層(シート状物)を貼り合わせられる物であれば、公知の各種の材料からなるものが利用可能であり、貼り合わせる際には流動性を有し、その後、固体になる、接着剤からなる層でもよいし、貼り合わせる際にゲル状(ゴム状)の柔らかい固体で、その後もゲル状の状態が変化しない、粘着剤からなる層でもよいし、接着剤と粘着剤との両方の特徴を持った材料からなる層でもよい。従って、粘着層は、光学透明接着剤(OCA(Optical Clear Adhesive))、光学透明両面テープ、紫外線硬化型樹脂等、シート状物の貼り合わせに用いられる公知のものを用いればよい。
(Adhesive layer)
As the adhesive layer, as long as the target layer (sheet-like material) can be bonded, those made of various known materials can be used, and when it is bonded, it has fluidity and then solid. , A layer made of an adhesive, or a soft gel-like (rubber-like) solid at the time of bonding, which does not change the gel state thereafter, may be a layer made of an adhesive, or an adhesive and an adhesive layer. It may be a layer made of a material having both characteristics as an agent. Therefore, as the adhesive layer, an optical transparent adhesive (OCA (Optical Clear Adhesive)), an optical transparent double-sided tape, an ultraviolet curable resin, or the like known in the art for bonding sheet-like materials may be used.
<情報カード>
 本発明の情報カードは、
 上述した偽造防止媒体と、
 画像印刷部とを有する情報カードである。
<Information card>
The information card of the present invention is
The anti-counterfeiting medium described above,
An information card having an image printing unit.
 本発明において情報カードは、紙幣、有価証券、チケット、パスポート、運転免許証、マイナンバーカード、入館証等のID(IDentification)カード、クレジットカード、キャッシュカード、プリペイドカード、印紙、地方自治体等で使用されている収入証紙、郵便切手、印鑑証明、住民票等に使用される証明書台紙、ブランド品、医薬品などの真正品の証明書等を含むものである。 In the present invention, the information card is used in banknotes, securities, tickets, passports, driver's licenses, my number cards, ID (IDentification) cards such as admission cards, credit cards, cash cards, prepaid cards, stamps, local governments, etc. It includes the certificate of income used, stamps for postage, certificate of seal, certificate of residence used for certificate of residence, brand certificate, certificate of authenticity such as pharmaceutical products, etc.
 情報カードは、情報カードの種類に応じて文字、記号および絵等が印刷された画像印刷部と、上述した偽造防止媒体とを有している。この情報カードは、偽造防止媒体を用いて情報カードの真贋を判定することができる。
 上述したとおり、本発明の偽造防止媒体は、セキュリティ性(偽造防止性)が高いため、本発明の偽造防止媒体を有する情報カードは、偽造が難しくセキュリティ性を高くすることができる。
The information card has an image printing unit on which characters, symbols, pictures, etc. are printed according to the type of the information card, and the above-mentioned forgery prevention medium. In this information card, the authenticity of the information card can be determined by using an anti-counterfeit medium.
As described above, since the anti-counterfeit medium of the present invention has high security (anti-counterfeit property), it is difficult to forge an information card having the anti-counterfeit medium of the present invention, and the security can be enhanced.
 ここで、図11に示す情報カード30のように、偽造防止媒体10と、画像印刷部32とが、同一のオーバーコート層24で覆われているのが好ましい。すなわち、偽造防止媒体のオーバーコート層と画像印刷部のオーバーコート層とが一体的に形成されていてもよい。
 また、図11において支持体12は画像印刷部32の支持体と一体的に形成されている。
 図11において、破線で囲んだ領域が偽造防止媒体10に相当する。
Here, it is preferable that the anti-counterfeit medium 10 and the image printing section 32 are covered with the same overcoat layer 24 as in the information card 30 shown in FIG. 11. That is, the overcoat layer of the anti-counterfeit medium and the overcoat layer of the image printing section may be integrally formed.
Further, in FIG. 11, the support 12 is formed integrally with the support of the image printing unit 32.
In FIG. 11, the area surrounded by the broken line corresponds to the forgery prevention medium 10.
 偽造防止媒体と、画像印刷部とが、同一のオーバーコート層で覆われている構成とすることで、耐傷性を向上できる。また、情報カードの表面の平坦性を向上できる。 The anti-counterfeit medium and the image printing part are covered with the same overcoat layer, so that scratch resistance can be improved. In addition, the flatness of the surface of the information card can be improved.
 また、情報カードにおいて、偽造防止媒体を面内に所望のパターンで配置することで、偽造防止媒体の配置パターンに基づいて真贋の判定を行うこともできる。 In addition, by arranging the anti-counterfeit medium in a desired pattern on the surface of the information card, it is possible to judge the authenticity based on the arrangement pattern of the anti-counterfeit medium.
 以上、本発明の偽造防止媒体および情報カードについて詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。 Although the forgery prevention medium and the information card of the present invention have been described above in detail, the present invention is not limited to the above-mentioned examples, and various improvements and changes may be made without departing from the scope of the present invention. Of course.
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、試薬、使用量、物質量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 The features of the present invention will be described more specifically with reference to the following examples. The materials, reagents, usage amounts, substance amounts, ratios, processing contents, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be limitedly interpreted by the following specific examples.
[実施例1]
 実施例1として、図4に示すような構成の偽造防止媒体10bを作製した。
[Example 1]
As Example 1, an anti-counterfeit medium 10b having a structure as shown in FIG. 4 was produced.
(液晶組成物の調製)
 下記に示す組成物を、25℃に保温された容器中にて、攪拌、溶解させ、コレステリック液晶塗布液A1を調製した。
---------------------------------
コレステリック液晶塗布液A
---------------------------------
・下記の液晶化合物M-1                84質量部
・下記の液晶化合物M-2                14質量部
・下記の液晶化合物M-3                 2質量部
・下記構造のキラル剤1               10.7質量部
・下記構造の水平配向剤1              0.05質量部
・開始剤:IRGACURE 907 (BASF社製)     4質量部
・IRGANOX1010                 1質量部
・MEK(メチルエチルケトン)            180質量部
---------------------------------
(Preparation of liquid crystal composition)
The composition shown below was stirred and dissolved in a container kept at 25° C. to prepare a cholesteric liquid crystal coating liquid A1.
----------------------------
Cholesteric liquid crystal coating liquid A
----------------------------
84 parts by mass of the following liquid crystal compound M-1 14 parts by mass of the following liquid crystal compound M-2 2 parts by mass of the following liquid crystal compound M-3 1 part by mass of the chiral agent 1 having the following structure Horizontal of the following structure Orientation agent 1 0.05 parts by mass-Initiator: IRGACURE 907 (manufactured by BASF) 4 parts by mass-IRGANOX 1010 1 part by mass-MEK (methyl ethyl ketone) 180 parts by mass --------------- ----------------
 化合物M-1(下記構造)
Figure JPOXMLDOC01-appb-C000007
Compound M-1 (structure below)
Figure JPOXMLDOC01-appb-C000007
 化合物M-2(下記構造)
Figure JPOXMLDOC01-appb-C000008
Compound M-2 (structure below)
Figure JPOXMLDOC01-appb-C000008
 化合物M-3(下記構造)
Figure JPOXMLDOC01-appb-C000009
Compound M-3 (structure below)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(コレステリック液晶層の形成)
 仮支持体として、厚み100μmの東洋紡(株)社製PET(ポリエチレンテレフタレート、コスモシャインA4100)フィルムを用いて、このPETフィルムにラビング処理を施した後、上記で調製したコレステリック液晶塗布液Aを仮支持体上のラビング面にワイヤーバーで塗布した。塗布量は乾燥後の塗布層の厚みが4.5μm程度になるように調整した。塗布は、室温にて行った。
 次に、酸素雰囲気下、室温で、所定の開口パターンを有する黒色のマスクを介して、塗布層に一定時間UV(紫外線)照射をし、さらに、マスクを外して一定時間UV照射を行って螺旋構造のピッチを調整した。マスクの無かった部分の露光量は50mJ/cm、マスクのかかった部分の露光量は15mJ/cmとした。
(Formation of cholesteric liquid crystal layer)
As a temporary support, a PET (polyethylene terephthalate, Cosmoshine A4100) film manufactured by Toyobo Co., Ltd. having a thickness of 100 μm was used. After the PET film was rubbed, the cholesteric liquid crystal coating liquid A prepared above was temporarily used. The rubbing surface on the support was coated with a wire bar. The coating amount was adjusted so that the thickness of the coating layer after drying was about 4.5 μm. The coating was performed at room temperature.
Next, the coating layer is irradiated with UV (ultraviolet) for a certain period of time through a black mask having a predetermined opening pattern in an oxygen atmosphere at room temperature, and then the mask is removed and UV irradiation is performed for a certain period of time. The pitch of the structure was adjusted. The exposure amount of the portion without the mask was 50 mJ/cm 2 , and the exposure amount of the portion with the mask was 15 mJ/cm 2 .
 次に、UV照射後の塗布層が積層された仮支持体を、100℃のホットプレート上に1分間静置し、加熱処理を行った。
 次に、窒素雰囲気下(酸素濃度500ppm以下)、室温で、加熱処理後の塗布層に一定時間UV照射を行い、塗布層を硬化させて、選択反射波長の異なる2種以上の反射領域を有する反射層R1を形成した。この工程でのUV照射量は500mJ/cm2であった。形成した反射層R1は、右捩れのコレステリック液晶相を有し、右円偏光を反射するものである。
 なお、本実施例において、UV照射の光源として、反射層を硬化させる工程では、「EXECURE3000-W」(HOYA CANDEO OPTRONICS(株)社製)を用い、コレステリック液晶相における螺旋構造のピッチを調整する工程では、UVトランスイルミネーターLM-26型(フナコシ株式会社製)を用いた。
Next, the temporary support on which the coating layer after UV irradiation was laminated was allowed to stand on a hot plate at 100° C. for 1 minute to perform heat treatment.
Next, in a nitrogen atmosphere (oxygen concentration of 500 ppm or less), at room temperature, the coating layer after the heat treatment is irradiated with UV for a certain period of time to cure the coating layer to have two or more types of reflective regions having different selective reflection wavelengths. The reflective layer R1 was formed. The UV irradiation dose in this step was 500 mJ/cm 2 . The formed reflective layer R1 has a right-handed cholesteric liquid crystal phase and reflects right-handed circularly polarized light.
In this example, in the step of curing the reflective layer as a light source for UV irradiation, “EXECURE 3000-W” (manufactured by HOYA CANDEO OPTRONICS Co., Ltd.) was used to adjust the pitch of the helical structure in the cholesteric liquid crystal phase. In the process, UV transilluminator LM-26 type (manufactured by Funakoshi Co., Ltd.) was used.
(反射層の転写)
 基材としてのポリプロピレンフィルム(2500H、東レ株式会社製)の片面をコロナ処理し、その面に対して下記に示すアクリル系溶液Z1を乾燥後の膜厚が2μmとなるように塗布した。この塗布面と上記で作製した反射層R1とを気泡が入らないように貼りあわせ、「EXECURE3000-W」(HOYA CANDEO OPTRONICS(株)社製)を用いてUVを照射し、アクリル系溶液Z1を硬化させて中間層(接着層)Z1を形成した。このときの照射量は300mJ/cm2であった。その後、仮支持体であるPETフィルムを反射層R1から剥離し、実施例1の偽造防止媒体G1を得た。
 この偽造防止媒体G1において、基材(ポリプロピレンフィルム)と中間層Z1とが支持体B1であり、この支持体B1のヘイズ値は5%であった。また、可視光透過率は、91%であった。
(Transfer of reflective layer)
One side of a polypropylene film (2500H, manufactured by Toray Industries, Inc.) as a substrate was corona-treated, and the acrylic solution Z1 shown below was applied to the surface so that the film thickness after drying was 2 μm. The coated surface and the reflection layer R1 produced above were attached to each other so that air bubbles did not enter, and UV was irradiated using "EXECURE 3000-W" (manufactured by HOYA CANDEO OPTRONICS CO., LTD.) to give an acrylic solution Z1. The intermediate layer (adhesive layer) Z1 was formed by curing. The irradiation dose at this time was 300 mJ/cm 2 . After that, the PET film as the temporary support was peeled off from the reflective layer R1 to obtain the forgery prevention medium G1 of Example 1.
In the anti-counterfeit medium G1, the base material (polypropylene film) and the intermediate layer Z1 were the support B1, and the haze value of this support B1 was 5%. The visible light transmittance was 91%.
(アクリル系溶液Z1の組成)
・バナレジンGH-1203(新中村化学工業(株)社製)   50質量部
・ビスコート#360(大阪有機化学工業(株)社製)    50質量部
・シリカ粒子分散液
(日産化学社製、AC-5140Z、固形分30wt%)  24質量部
・IRGACURE819(BASF社製)         4質量部
・上記の水平配向剤1                0.01質量部
 なお、固形分が30wt%になるように、MEK/MIBK(メチルイソブチルケトン)(1/1wt%)で調整した。
(Composition of acrylic solution Z1)
・Vanaresin GH-1203 (manufactured by Shin-Nakamura Chemical Co., Ltd.) 50 parts by mass ・Viscoat #360 (manufactured by Osaka Organic Chemical Industry Co., Ltd.) 50 parts by mass ・Silica particle dispersion (manufactured by Nissan Chemical Co., AC- 5140Z, solid content 30 wt%) 24 parts by mass ・IRGACURE819 (manufactured by BASF) 4 parts by mass ・Horizontal aligning agent 1 0.01 parts by mass In addition, MEK/MIBK (methyl isobutyl) is used so that the solid content becomes 30 wt% (Ketone) (1/1 wt%).
(偽造防止媒体の目視評価)
 実施例1で作製した偽造防止媒体G1の反射層R1は、選択反射波長の異なる2つの反射領域を有する。反射層R1を作製する際にマスクをした領域の選択反射波長は450nm~650nmの可視光域であり、マスクをしていない領域の選択反射波長は800nm以上の近赤外域である。偽造防止媒体G1を目視で確認したところ、マスクをした領域を文字や画像のパターンとして視認することができた。
 また、反射層R1を表側にして、左円偏光板を通して偽造防止媒体G1を観察すると、上記反射領域のパターンが認識できなくなった。簡便な方法で真贋判定ができることを確認した。
(Visual evaluation of anti-counterfeit medium)
The reflection layer R1 of the anti-counterfeit medium G1 manufactured in Example 1 has two reflection regions having different selective reflection wavelengths. The selective reflection wavelength in the masked region when producing the reflective layer R1 is in the visible light region of 450 nm to 650 nm, and the selective reflection wavelength in the region without the mask is in the near infrared region of 800 nm or more. When the anti-counterfeit medium G1 was visually checked, the masked area could be visually recognized as a pattern of characters and images.
Further, when the anti-counterfeit medium G1 was observed through the left circularly polarizing plate with the reflection layer R1 on the front side, the pattern of the reflection area could not be recognized. It was confirmed that the authenticity can be judged by a simple method.
(偽造防止媒体の機器評価)
 実施例1の偽造防止媒体G1の支持体B1側を光源に向けるようにして、JASCO製の分光光度計V-670と接続された絶対反射率測定ユニットARV474S型にセットした。入射光を偽造防止媒体G1の支持体B1側の表面に対して45度、センサー(検出器)を偽造防止媒体G1の支持体B1側の表面に対して鉛直方向とし(すなわち、スキャナーを模擬した斜め入射光からの反射光を正面方向で検出する形式とし)、偽造防止媒体G1の拡散反射率を測定した。
 支持体B1単体、すなわち、反射層R1を有さない以外は偽造防止媒体G1と同じ構成の積層体についても拡散反射率を同様に測定し、その結果をリファレンスとした。リファレンスでの検出強度を1とすると、実施例1の偽造防止媒体G1の相対検出強度は1.8であった。
(Equipment evaluation of anti-counterfeit media)
The anti-counterfeit medium G1 of Example 1 was set in the absolute reflectance measurement unit ARV474S type connected to the JASCO spectrophotometer V-670 so that the support B1 side faced the light source. The incident light was set to 45 degrees with respect to the surface of the anti-counterfeiting medium G1 on the support B1 side, and the sensor (detector) was set to be in the vertical direction with respect to the surface of the anti-counterfeiting medium G1 on the support B1 side (that is, a scanner was simulated. Diffuse reflectance of the anti-counterfeit medium G1 was measured using a format in which reflected light from obliquely incident light is detected in the front direction.
The diffuse reflectance was similarly measured for the support B1 alone, that is, for the laminate having the same configuration as the forgery prevention medium G1 except that the support B1 was not provided, and the result was used as a reference. When the detection intensity of the reference was 1, the relative detection intensity of the forgery prevention medium G1 of Example 1 was 1.8.
[比較例1]
 実施例1において、仮支持体であるPETフィルム上に反射層R1を形成したものを比較例1とした。言い換えると、比較例1の偽造防止媒体は、支持体B1をPETフィルムに変更した以外は実施例1の偽造防止媒体と同様の構成を有する。
 PETフィルムのヘイズ値は0.4%であった。また、可視光透過率は92%であった。
[Comparative Example 1]
In Comparative Example 1, a reflective film R1 was formed on the PET film that is the temporary support in Example 1. In other words, the anti-counterfeit medium of Comparative Example 1 has the same structure as the anti-counterfeit medium of Example 1 except that the support B1 was changed to a PET film.
The haze value of the PET film was 0.4%. The visible light transmittance was 92%.
(偽造防止媒体の機器評価)
 実施例1と同様にして、比較例1の偽造防止媒体の拡散反射率を測定した。また、支持体単体、すなわち、PETフィルム単体についても拡散反射率を同様に測定し、その結果をリファレンスとした。リファレンスでの検出強度を1とすると、比較例1の偽造防止媒体の相対検出強度は1であった。
(Equipment evaluation of anti-counterfeit media)
In the same manner as in Example 1, the diffuse reflectance of the anti-counterfeit medium of Comparative Example 1 was measured. Also, the diffuse reflectance was measured in the same manner for the support alone, that is, for the PET film alone, and the result was used as a reference. When the detection intensity of the reference is 1, the relative detection intensity of the anti-counterfeit medium of Comparative Example 1 was 1.
 以上の結果から、ヘイズ値の高い支持体B1を有する本発明の実施例である偽造防止媒体G1は、支持体B1単体よりも優位に高い検出強度を示したため、偽造防止媒体として有用であることがわかる。一方、ヘイズの低い支持体を有する比較例1では、支持体単体の場合と検出強度がかわらないため、偽造防止媒体としては使用できないことがわかる。すなわち、比較例1では反射層R1によって反射される光を検出できないのに対して、実施例1では反射層R1によって反射される光を検出できていることがわかる。 From the above results, the anti-counterfeit medium G1 which is an example of the present invention having the support B1 having a high haze value has a significantly higher detection strength than the support B1 alone, and thus is useful as an anti-counterfeit medium. I understand. On the other hand, in Comparative Example 1 having a support having a low haze, it can be seen that it cannot be used as a forgery prevention medium because the detection strength is the same as that of the support alone. That is, it can be seen that the light reflected by the reflective layer R1 cannot be detected in Comparative Example 1, whereas the light reflected by the reflective layer R1 can be detected in Example 1.
[実施例2]
 反射層R1の、支持体B1とは反対側の面にオーバーコート層Z2を有する構成とした以外は実施例1と同様にして偽造防止媒体G2を作製した。
 具体的には、仮支持体であるPETフィルムの上に下記に示すアクリル系溶液Z2を乾燥後の膜厚が2μmとなるように塗布し、85℃で加熱処理したのち、窒素雰囲気下で「EXECURE3000-W」(HOYA CANDEO OPTRONICS(株)社製)を用いてUVを照射しオーバーコート層Z2を形成した。このときの照射量は150mJ/cm2であった。
 このオーバーコート層Z2付きのPETフィルムを仮支持体としてオーバーコート層Z2の上に、実施例1と同様にして反射層R2を形成して、反射層R2およびオーバーコート層Z2を支持体B1に転写して偽造防止媒体G2を作製した。
 なお、反射層R2は、反射層R1と同様の方法で作製したが、下地となる層が異なるため、反射層R1とは異なる構造となり、異なる反射特性を有する層となる。具体的には、オーバーコート層Z2を下地層とした場合には、コレステリック液晶相の螺旋軸が揺らいだり、配向欠陥が多く生じるため反射層R2そのものの拡散性が反射層R1よりも高くなる。
[Example 2]
An anti-counterfeit medium G2 was produced in the same manner as in Example 1 except that the overcoat layer Z2 was formed on the surface of the reflective layer R1 opposite to the support B1.
Specifically, the following acrylic solution Z2 was applied on a PET film as a temporary support so that the film thickness after drying was 2 μm, and heat treatment was performed at 85° C., and then “2” was applied under a nitrogen atmosphere. Execure 3000-W" (manufactured by HOYA CANDEO OPTRONICS CO., LTD.) was used to irradiate UV to form the overcoat layer Z2. The irradiation dose at this time was 150 mJ/cm 2 .
Using the PET film with the overcoat layer Z2 as a temporary support, the reflective layer R2 was formed on the overcoat layer Z2 in the same manner as in Example 1, and the reflective layer R2 and the overcoat layer Z2 were used as the support B1. The image was transferred to manufacture an anti-counterfeit medium G2.
Although the reflective layer R2 was manufactured by the same method as the reflective layer R1, the underlying layer is different, so that the reflective layer R2 has a different structure from the reflective layer R1 and has a different reflective property. Specifically, when the overcoat layer Z2 is used as a base layer, the spiral axis of the cholesteric liquid crystal phase fluctuates and many alignment defects occur, so that the diffusivity of the reflective layer R2 itself becomes higher than that of the reflective layer R1.
(アクリル系溶液Z2の組成)
・ビスコート#360(大阪有機化学工業(株)社製)  100質量部
・IRGACURE819(BASF社製)        4質量部
・上記の水平配向剤1               0.01質量部
・MEK                      200質量部
(Composition of acrylic solution Z2)
-Biscoat #360 (Osaka Organic Chemical Industry Co., Ltd.) 100 parts by mass-IRGACURE819 (BASF Corp.) 4 parts by mass-Horizontal aligning agent 1 0.01 parts by mass-MEK 200 parts by mass
(偽造防止媒体の目視評価)
 偽造防止媒体G2を目視で確認したところ、G1よりも広い範囲から反射領域のパターンが視認できた。
 また、オーバーコート層Z2側を表側にして、右円偏光板を通して偽造防止媒体G2を観察すると、反射領域のパターンが認識できなくなった。
(Visual evaluation of anti-counterfeit medium)
When the anti-counterfeit medium G2 was visually confirmed, the pattern of the reflection region was visually recognized in a wider area than G1.
When the anti-counterfeit medium G2 was observed through the right circularly polarizing plate with the overcoat layer Z2 side on the front side, the pattern of the reflection area could not be recognized.
(偽造防止媒体の機器評価)
 実施例1と同様にして、実施例2の偽造防止媒体G2の拡散反射率を測定した。リファレンスは支持体B1である。実施例2の偽造防止媒体G2の相対検出強度は2.6であった。
(Equipment evaluation of anti-counterfeit media)
In the same manner as in Example 1, the diffuse reflectance of the anti-counterfeit medium G2 of Example 2 was measured. The reference is the support B1. The relative detection intensity of the anti-counterfeit medium G2 of Example 2 was 2.6.
[実施例3]
 反射層R1の上に円偏光板を有する構成とした以外は、実施例1と同様の構成の偽造防止媒体G3を作製した。
 円偏光板は、左円偏光板であり、λ/4板(MCR140N:美舘イメージング社製)と直線偏光板(MCR140N:美舘イメージング社製)とを粘着層(MCS70:株式会社美舘イメージング製)を用いて方向を調整して貼合して作製した。
 この円偏光板のλ/4板側を反射層R1の上に粘着層(MCS70:株式会社美舘イメージング製)を用いて貼合した。
[Example 3]
An anti-counterfeit medium G3 having the same configuration as in Example 1 was produced except that the circularly polarizing plate was provided on the reflective layer R1.
The circularly polarizing plate is a left circularly polarizing plate, and includes a λ/4 plate (MCR140N: manufactured by Mitate Imaging Co., Ltd.) and a linear polarizing plate (MCR140N: manufactured by Mitate Imaging Co., Ltd.) as an adhesive layer (MCS70: Mitate Imaging Inc.). (Manufactured), and the direction was adjusted, and it stuck and produced.
The λ/4 plate side of this circularly polarizing plate was laminated on the reflection layer R1 by using an adhesive layer (MCS70: manufactured by Meitan Imaging Co., Ltd.).
(偽造防止媒体の目視評価)
 偽造防止媒体G3を目視で確認したところ、支持体B1側から観察すると反射領域のパターンが認識できるのに対し、支持体B1とは反対側(円偏光板側)から観察すると、反射領域のパターンが認識できず透明になり、目視で偽造防止性能を確認できた。
(Visual evaluation of anti-counterfeit medium)
When the anti-counterfeit medium G3 is visually checked, the pattern of the reflection area can be recognized when observed from the support B1 side, whereas the pattern of the reflection area is observed when observed from the side opposite to the support B1 (circular polarizing plate side). However, it became transparent, and the anti-counterfeiting performance could be visually confirmed.
(偽造防止媒体の機器評価)
 実施例1と同様にして、実施例3の偽造防止媒体G3の拡散反射率を測定した。リファレンスは支持体B1である。実施例3の偽造防止媒体G3の相対検出強度は1.8であった。
(Equipment evaluation of anti-counterfeit media)
In the same manner as in Example 1, the diffuse reflectance of the anti-counterfeit medium G3 of Example 3 was measured. The reference is the support B1. The relative detection intensity of the forgery preventing medium G3 of Example 3 was 1.8.
[実施例4]
 支持体B1と反射層R2との間に円偏光板を有する構成とした以外は、実施例2と同様の構成の偽造防止媒体G4を作製した。
 円偏光板は、実施例3の円偏光板と同様のものを用いた。
 仮支持体(オーバーコート層Z2付きPETフィルム)の上に反射層R1を形成した後に、円偏光板のλ/4板側を反射層R1の上に粘着層(MCS70:株式会社美舘イメージング製)を用いて貼合した。次に、オーバーコート層Z2、反射層R1、および、円偏光板を支持体B1に転写して偽造防止媒体G4を作製した。
[Example 4]
An anti-counterfeit medium G4 having the same configuration as in Example 2 was produced except that a circularly polarizing plate was provided between the support B1 and the reflective layer R2.
As the circularly polarizing plate, the same circularly polarizing plate as that of Example 3 was used.
After forming the reflective layer R1 on the temporary support (PET film with the overcoat layer Z2), the λ/4 plate side of the circularly polarizing plate is provided on the reflective layer R1 with an adhesive layer (MCS70: manufactured by Mitachi Imaging Co., Ltd.). ) Was used for bonding. Next, the overcoat layer Z2, the reflective layer R1, and the circularly polarizing plate were transferred to the support B1 to prepare an anti-counterfeit medium G4.
(偽造防止媒体の目視評価)
 偽造防止媒体G4を目視で確認したところ、支持体B1とは反対側(オーバーコート層Z2側)から観察すると反射領域のパターンが認識できるのに対し、支持体B1側から観察すると、反射領域のパターンが認識できず透明になり、目視で偽造防止性能を確認できた。
(Visual evaluation of anti-counterfeit medium)
When the anti-counterfeit medium G4 was visually confirmed, the pattern of the reflection area was recognizable when observed from the side opposite to the support B1 (the overcoat layer Z2 side), whereas when observed from the support B1 side, The pattern could not be recognized and became transparent, and the anti-counterfeiting performance could be visually confirmed.
(偽造防止媒体の機器評価)
 実施例1と同様にして、実施例4の偽造防止媒体G4の拡散反射率を測定した。リファレンスは支持体B1である。可視光領域での相対検出強度は1.1であった。近赤外領域での相対検出強度は2.5であった。
 これは、可視光領域では円偏光板の作用によって右円偏光が反射層R2に到達しないため、反射層R2による反射光成分がほとんど検出されないためである。一方、近赤外領域では円偏光板が機能しなくなるため、右円偏光が反射層R2に到達して反射層R2によって反射されるため、反射層R2によって反射された光が検出されるためである。
 従って、近赤外領域の光を使った読み取りでは、目視とは反転したパターンが検出されることがわかる。
 以上の結果より本発明の効果は明らかである。
(Equipment evaluation of anti-counterfeit media)
In the same manner as in Example 1, the diffuse reflectance of the forgery prevention medium G4 of Example 4 was measured. The reference is the support B1. The relative detection intensity in the visible light region was 1.1. The relative detection intensity in the near infrared region was 2.5.
This is because right circularly polarized light does not reach the reflective layer R2 due to the action of the circularly polarizing plate in the visible light region, and thus the reflected light component by the reflective layer R2 is hardly detected. On the other hand, since the circularly polarizing plate does not function in the near infrared region, the right circularly polarized light reaches the reflection layer R2 and is reflected by the reflection layer R2, so that the light reflected by the reflection layer R2 is detected. is there.
Therefore, it can be seen that in reading using light in the near infrared region, a pattern that is reversed from the visual observation is detected.
From the above results, the effect of the present invention is clear.
 10、10a~10f 偽造防止媒体
 12 支持体
 14、14b 反射層
 16 基材
 18 中間層
 20 反射領域
 20a 第1反射領域
 20b 第2反射領域
 22 円偏光板
 24 オーバーコート層
 30 情報カード
 32 画像印刷部
10, 10a to 10f Anti-counterfeit medium 12 Support 14, 14b Reflective layer 16 Base material 18 Intermediate layer 20 Reflective area 20a First reflective area 20b Second reflective area 22 Circular polarizing plate 24 Overcoat layer 30 Information card 32 Image printing section

Claims (14)

  1.  反射層と、前記反射層を支持する支持体とを有し、
     前記反射層がコレステリック液晶構造を有し、
     前記支持体のヘイズ値が2%以上で、かつ、可視光透過率が30%以上である偽造防止媒体。
    A reflective layer and a support that supports the reflective layer,
    The reflective layer has a cholesteric liquid crystal structure,
    An anti-counterfeit medium in which the haze value of the support is 2% or more and the visible light transmittance is 30% or more.
  2.  前記反射層は、前記コレステリック液晶構造による選択反射波長が30nm以上異なる2以上の反射領域を有する請求項1に記載の偽造防止媒体。 The anti-counterfeit medium according to claim 1, wherein the reflective layer has two or more reflective regions having selective reflection wavelengths different by 30 nm or more due to the cholesteric liquid crystal structure.
  3.  少なくとも1つの前記反射領域の選択反射波長が、可視光領域の波長である請求項2に記載の偽造防止媒体。 The anti-counterfeit medium according to claim 2, wherein the selective reflection wavelength of at least one of the reflection regions is a wavelength in the visible light region.
  4.  少なくとも1つの前記反射領域の選択反射波長が、不可視光領域の波長である請求項2または3に記載の偽造防止媒体。 The anti-counterfeit medium according to claim 2 or 3, wherein the selective reflection wavelength of at least one of the reflection areas is a wavelength of an invisible light area.
  5.  少なくとも1つの前記反射領域の選択反射波長が、700nm以上である請求項4に記載の偽造防止媒体。 The anti-counterfeit medium according to claim 4, wherein the selective reflection wavelength of at least one of the reflection regions is 700 nm or more.
  6.  面内の異なる位置に配置される2以上の前記反射領域を有する請求項2~5のいずれか一項に記載の偽造防止媒体。 The anti-counterfeit medium according to any one of claims 2 to 5, which has two or more reflection areas arranged at different positions in a plane.
  7.  前記反射層の前記コレステリック液晶構造が反射する円偏光と同じセンスの円偏光を吸収する円偏光板を有する請求項1~6のいずれか一項に記載の偽造防止媒体。 The anti-counterfeit medium according to any one of claims 1 to 6, further comprising a circularly polarizing plate that absorbs circularly polarized light having the same sense as circularly polarized light reflected by the cholesteric liquid crystal structure of the reflective layer.
  8.  前記支持体は、基材と中間層とを有する請求項1~7のいずれか一項に記載の偽造防止媒体。 The anti-counterfeit medium according to any one of claims 1 to 7, wherein the support has a base material and an intermediate layer.
  9.  前記中間層が、粒径50nm以上の微粒子を含む請求項8に記載の偽造防止媒体。 The anti-counterfeit medium according to claim 8, wherein the intermediate layer contains fine particles having a particle size of 50 nm or more.
  10.  前記基材が、ポリオレフィン系の高分子材料からなる請求項8または9に記載の偽造防止媒体。 The anti-counterfeit medium according to claim 8 or 9, wherein the base material is made of a polyolefin-based polymer material.
  11.  前記基材の正面位相差が、400nm以下である請求項8~10のいずれか一項に記載の偽造防止媒体。 The anti-counterfeit medium according to any one of claims 8 to 10, wherein the front phase difference of the base material is 400 nm or less.
  12.  前記反射層の、前記支持体側とは反対側にオーバーコート層を有する請求項1~11のいずれか一項に記載の偽造防止媒体。 The anti-counterfeit medium according to any one of claims 1 to 11, which has an overcoat layer on a side of the reflective layer opposite to the support side.
  13.  請求項1~12のいずれか一項に記載の偽造防止媒体と、
     画像印刷部とを有する情報カード。
    An anti-counterfeit medium according to any one of claims 1 to 12,
    An information card having an image printing section.
  14.  前記偽造防止媒体と、前記画像印刷部とが、同一のオーバーコート層で覆われている請求項13に記載の情報カード。 The information card according to claim 13, wherein the anti-counterfeit medium and the image printing section are covered with the same overcoat layer.
PCT/JP2020/001922 2019-01-21 2020-01-21 Anti-forgery medium and information card WO2020153349A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-007793 2019-01-21
JP2019007793 2019-01-21

Publications (1)

Publication Number Publication Date
WO2020153349A1 true WO2020153349A1 (en) 2020-07-30

Family

ID=71736434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001922 WO2020153349A1 (en) 2019-01-21 2020-01-21 Anti-forgery medium and information card

Country Status (1)

Country Link
WO (1) WO2020153349A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105721A1 (en) * 2006-03-13 2007-09-20 Dai Nippon Printing Co., Ltd. Optical diffusion element, projection screen, design member and security medium
JP2010117381A (en) * 2008-10-14 2010-05-27 Nhk Spring Co Ltd Identification medium and article
JP2011099888A (en) * 2009-11-04 2011-05-19 Nhk Spring Co Ltd Identification medium and identification method of the same
JP2013010869A (en) * 2011-06-29 2013-01-17 Dainippon Printing Co Ltd Pseudo adhesive sheet and information recording laminate
JP2013222134A (en) * 2012-04-18 2013-10-28 Nhk Spring Co Ltd Optical reading device, and optical reading method and program
JP2014174472A (en) * 2013-03-12 2014-09-22 Nippon Zeon Co Ltd Identification medium, method of identifying articles, and laminated structure body
WO2017110225A1 (en) * 2015-12-25 2017-06-29 Jxエネルギー株式会社 Optical film
WO2018069216A1 (en) * 2016-10-10 2018-04-19 Oberthur Fiduciaire Method for producing a security element
WO2018146995A1 (en) * 2017-02-08 2018-08-16 富士フイルム株式会社 Decorative film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105721A1 (en) * 2006-03-13 2007-09-20 Dai Nippon Printing Co., Ltd. Optical diffusion element, projection screen, design member and security medium
JP2010117381A (en) * 2008-10-14 2010-05-27 Nhk Spring Co Ltd Identification medium and article
JP2011099888A (en) * 2009-11-04 2011-05-19 Nhk Spring Co Ltd Identification medium and identification method of the same
JP2013010869A (en) * 2011-06-29 2013-01-17 Dainippon Printing Co Ltd Pseudo adhesive sheet and information recording laminate
JP2013222134A (en) * 2012-04-18 2013-10-28 Nhk Spring Co Ltd Optical reading device, and optical reading method and program
JP2014174472A (en) * 2013-03-12 2014-09-22 Nippon Zeon Co Ltd Identification medium, method of identifying articles, and laminated structure body
WO2017110225A1 (en) * 2015-12-25 2017-06-29 Jxエネルギー株式会社 Optical film
WO2018069216A1 (en) * 2016-10-10 2018-04-19 Oberthur Fiduciaire Method for producing a security element
WO2018146995A1 (en) * 2017-02-08 2018-08-16 富士フイルム株式会社 Decorative film

Similar Documents

Publication Publication Date Title
KR100708510B1 (en) Optical laminate
US6671031B1 (en) Method for manufacturing polarization diffraction film
CN107615119B (en) Method for manufacturing half mirror used on surface of image display part of image display device, half mirror, and mirror with image display function
WO2015030176A1 (en) Stress display member and strain measurement method using stress display member
US10795254B2 (en) Transparent screen
EP1582893A1 (en) Broad-band-cholesteric liquid-crystal film, process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display
JP3670963B2 (en) Liquid crystalline film
WO2021065484A1 (en) Display medium, display product, and display set
JPWO2020004155A1 (en) Identification medium, authenticity determination method, and article
JP7428137B2 (en) Viewer for determining authenticity and its manufacturing method, method for determining authenticity of identification medium, and set for determining authenticity
US10746906B2 (en) Half mirror and mirror with image display function
WO2019230840A1 (en) Identification medium and method for authenticating identification medium
WO2020153349A1 (en) Anti-forgery medium and information card
JP6967075B2 (en) Mirror for vehicles, mirror with image display function for vehicles
WO2021220708A1 (en) Display medium and display article
JP7380554B2 (en) Identification media and methods for identifying authenticity of identification media
JP4286377B2 (en) Method for producing cholesteric liquid crystal film
JP4674829B2 (en) Optical laminate
EP4290282A1 (en) Optical layered product, method for determining authenticity thereof, and article
WO2023282063A1 (en) Optical display medium
WO2022168699A1 (en) Optical laminate, method for determining authenticity thereof, and article
JP4286380B2 (en) Transcription element
JP4309514B2 (en) Polarization diffraction element
JP2001004839A (en) Manufacture of polarizing diffraction element
JP2001004834A (en) Polarizing diffraction element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20745904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20745904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP