WO2019189098A1 - 自己位置推定装置、自己位置推定方法、プログラム及び記憶媒体 - Google Patents
自己位置推定装置、自己位置推定方法、プログラム及び記憶媒体 Download PDFInfo
- Publication number
- WO2019189098A1 WO2019189098A1 PCT/JP2019/012721 JP2019012721W WO2019189098A1 WO 2019189098 A1 WO2019189098 A1 WO 2019189098A1 JP 2019012721 W JP2019012721 W JP 2019012721W WO 2019189098 A1 WO2019189098 A1 WO 2019189098A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- end point
- self
- vehicle
- moving body
- coefficient
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/4808—Evaluating distance, position or velocity data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/86—Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
- G01C21/1652—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with ranging devices, e.g. LIDAR or RADAR
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
- G01C21/30—Map- or contour-matching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/4802—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/588—Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/10—Recognition assisted with metadata
Definitions
- the present invention relates to a self-position estimation technique.
- Patent Document 1 discloses a technique for estimating a self-position by collating the output of a measurement sensor with the position information of a feature registered in advance on a map.
- Patent Document 2 discloses a vehicle position estimation technique using a Kalman filter.
- the present invention has been made in order to solve the above-described problems, and is intended for measuring a marking line such as a white line and capable of estimating not only the horizontal direction but also the traveling direction with high accuracy.
- the main object is to provide a position estimation device.
- the invention according to claim 1 is a self-position estimation device mounted on a mobile object, based on acquisition means for acquiring the predicted position of the mobile object, and information on the end points of lane markings acquired from map information A difference value between the obtained predicted position of the end point of the lane marking and the measurement position of the end point of the lane marking measured by the measurement unit mounted on the moving body scanning light in a predetermined direction is calculated. Difference value calculation means; and estimation means for correcting the predicted position of the moving body by a value obtained by multiplying the difference value by a coefficient, and estimating the self position of the moving body, wherein the estimation means includes the lane markings. The coefficient is corrected based on the interval of the scanning position of the measuring unit at the position where the end point is detected.
- the invention according to claim 6 is a self-position estimation method executed by a self-position estimation device mounted on a mobile body, an acquisition step of acquiring a predicted position of the mobile body, and a section acquired from map information The predicted position of the end point of the lane marking obtained based on the information of the end point of the line, and the measurement of the end point of the lane marking measured by the measurement unit mounted on the moving body scanning light in a predetermined direction
- the coefficient is corrected based on the interval of the scanning position of the measurement unit at the position where the end point of the lane marking is detected.
- the invention according to claim 7 is a program that is mounted on a mobile body and is executed by a self-position estimation device including a computer, an acquisition unit that acquires a predicted position of the mobile body, and a lane marking acquired from map information The predicted position of the end point of the lane line obtained based on the information of the end point of the lane, and the measurement position of the end point of the lane line measured by the measurement unit mounted on the moving body scanning light in a predetermined direction
- the computer functions as a difference value calculating means for calculating a difference value with respect to the above, and an estimating means for correcting the predicted position of the moving body by a value obtained by multiplying the difference value by a coefficient to estimate the self position of the moving body.
- the estimation unit corrects the coefficient based on the interval of the scanning position of the measurement unit at the position where the end point of the lane marking is detected.
- the functional block of the own vehicle position estimation part is shown.
- a method for converting lidar measurement values to a Cartesian coordinate system is shown.
- a method for detecting a white line by a rider mounted on a vehicle will be described. The positions of a plurality of scan lines in the window are shown.
- a method for detecting the position of the end point of the beginning of the white line is shown.
- a method for detecting the position of the end point of the end portion of the white line will be described.
- a method for determining the position of an end point when the reflection intensity changes in the middle of a scan line will be described.
- the method of calculating the landmark prediction value of the end point of the white line is shown.
- One preferred embodiment of the present invention is a self-position estimation device mounted on a moving body, including acquisition means for acquiring a predicted position of the moving body, and information on end points of lane markings acquired from map information.
- acquisition means for acquiring a predicted position of the moving body, and information on end points of lane markings acquired from map information.
- the above self-position estimation apparatus is mounted on a moving body and acquires the predicted position of the moving body.
- the self-position estimation device scans light in a predetermined direction by the predicted position of the lane marking end point obtained based on the lane marking end point information acquired from the map information, and the measurement unit mounted on the moving body.
- the difference value with the measurement position of the end point of the lane marking thus measured is calculated, and the predicted position of the moving object is corrected by a value obtained by multiplying the difference value by a coefficient to estimate the self position of the moving object.
- the self-position estimation apparatus corrects the coefficient based on the interval of the scanning position of the measuring unit at the position where the end point of the lane marking is detected.
- the coefficient is Kalman gain.
- the estimation unit corrects the coefficient by the reciprocal of the interval between the scanning positions. In another aspect, the estimation unit corrects the coefficient based on a ratio between the interval between the scan positions and the shortest interval between the scan positions measured by the measurement unit among the intervals between the scan positions. . In this aspect, the coefficient is corrected so that the difference value is more greatly reflected in the self-position estimation as the scanning position interval is smaller.
- the measurement unit detects a lane marking existing in a window defined at a predetermined position with respect to the position of the moving body, and the estimation unit includes the estimation unit
- the coefficient is corrected based on a ratio between the number of scanning lines existing on the partition line and the number of scanning lines determined in advance based on the size of the window.
- the coefficient is corrected so that the difference value is largely reflected in the estimation of the self-position as the number of scanning lines existing on the detected division line increases.
- the measurement unit detects an intermediate point between a scanning line that is adjacent to each other on the lane line and a scanning line that is not on the lane line as an end point of the lane line. To do. Thereby, the end point of a division line can be determined from the position of the scanning line which exists on a division line, and the scanning line which does not exist on a division line.
- Another preferred embodiment of the present invention is a self-position estimation method executed by a self-position estimation device mounted on a mobile body, the acquisition step for acquiring the predicted position of the mobile body, and the acquisition from map information The predicted position of the end point of the lane line obtained based on the information of the end point of the lane line, and the end point of the lane line measured by the measurement unit mounted on the moving body scanning light in a predetermined direction
- a difference calculating step for calculating a difference value with respect to the measurement position
- an estimation step for correcting the predicted position of the moving body by a value obtained by multiplying the difference value by a coefficient to estimate the self position of the moving body.
- the coefficient is corrected based on the interval of the scanning position of the measurement unit at the position where the end point of the lane marking is detected. According to this self-position estimation method, it is possible to improve the estimation accuracy of the self-position in the traveling direction of the moving object using the position of the end point of the lane marking.
- Another preferred embodiment of the present invention is a program that is mounted on a mobile body and is executed by a self-position estimation apparatus that includes a computer, and is acquired from map information, an acquisition unit that acquires the predicted position of the mobile body The predicted position of the end point of the lane line obtained based on the information of the end point of the lane line, and the end point of the lane line measured by the measurement unit mounted on the moving body scanning light in a predetermined direction
- the computer as a difference value calculation means for calculating a difference value with respect to a measurement position, an estimation means for correcting the predicted position of the moving body by a value obtained by multiplying the difference value by a coefficient, and estimating the self position of the moving body.
- the estimation means corrects the coefficient based on an interval between scanning positions of the measurement unit at a position where the end point of the lane marking is detected.
- FIG. 1 is a schematic configuration diagram of a driving support system according to the present embodiment.
- the driving support system shown in FIG. 1 is mounted on a vehicle and performs in-vehicle device 1 that performs control related to driving of the vehicle, a lidar (Lidar: Light Detection and Ranging, or Laser Illuminated Detection And Ranging) 2, and a gyro sensor 3. And a vehicle speed sensor 4 and a GPS receiver 5.
- lidar Light Detection and Ranging, or Laser Illuminated Detection And Ranging
- the in-vehicle device 1 is electrically connected to the rider 2, the gyro sensor 3, the vehicle speed sensor 4, and the GPS receiver 5, and based on these outputs, the position of the vehicle on which the in-vehicle device 1 is mounted ("own vehicle position"). Also called.) And the vehicle equipment 1 performs automatic driving
- the in-vehicle device 1 stores a map database (DB: DataBase) 10 in which information on road data and landmarks and lane markings provided near the road is registered.
- DB DataBase
- the features that serve as the above-mentioned landmarks are, for example, features such as kilometer posts, 100 m posts, delineators, traffic infrastructure facilities (for example, signs, direction signs, signals), utility poles, street lamps, and the like that are periodically arranged on the side of the road.
- the vehicle equipment 1 estimates the own vehicle position by collating with the output of the lidar 2 etc. based on this map DB10.
- the in-vehicle device 1 is an example of the “self-position estimation device” in the present invention.
- the lidar 2 emits a pulse laser in a predetermined angle range in the horizontal direction and the vertical direction, thereby discretely measuring the distance to an object existing in the outside world, and a three-dimensional point indicating the position of the object Generate group information.
- the lidar 2 includes an irradiation unit that emits laser light while changing the irradiation direction, a light receiving unit that receives reflected light (scattered light) of the irradiated laser light, and scan data based on a light reception signal output by the light receiving unit.
- Output unit the laser irradiation range emitted from the lidar 2 includes at least the road surface of the road.
- the scan data is generated based on the irradiation direction corresponding to the laser light received by the light receiving unit and the distance to the object in the irradiation direction of the laser light specified based on the light reception signal.
- the accuracy of the lidar distance measurement value is higher as the distance to the object is shorter, and the accuracy is lower as the distance is longer.
- the rider 2, the gyro sensor 3, the vehicle speed sensor 4, and the GPS receiver 5 each supply output data to the in-vehicle device 1.
- the lidar 2 is an example of the “measurement unit” in the present invention.
- FIG. 2 is a block diagram showing a functional configuration of the in-vehicle device 1.
- the in-vehicle device 1 mainly includes an interface 11, a storage unit 12, an input unit 14, a control unit 15, and an information output unit 16. Each of these elements is connected to each other via a bus line.
- the interface 11 acquires output data from sensors such as the lidar 2, the gyro sensor 3, the vehicle speed sensor 4, and the GPS receiver 5, and supplies the output data to the control unit 15.
- the storage unit 12 stores a program executed by the control unit 15 and information necessary for the control unit 15 to execute a predetermined process.
- the storage unit 12 stores a map DB 10 including lane marking information and feature information.
- the lane marking information is information regarding lane markings (white lines) provided on each road, and coordinate information indicating the discrete positions of the lane markings is included for each lane marking.
- the lane marking information may be information incorporated in road data for each road.
- coordinate information indicating the position of the end point is included for the broken partition line.
- the feature information is information about features other than the lane markings, and here, for each feature, the feature ID corresponding to the feature index, the latitude and longitude (and elevation), etc.
- the map DB 10 may be updated regularly.
- the control unit 15 receives partial map information related to the area to which the vehicle position belongs from a server device that manages the map information via a communication unit (not shown), and reflects it in the map DB 10.
- the input unit 14 is a button for operation by the user, a touch panel, a remote controller, a voice input device, or the like.
- the information output unit 16 is, for example, a display or a speaker that outputs based on the control of the control unit 15.
- the control unit 15 includes a CPU that executes a program and controls the entire vehicle-mounted device 1.
- the control unit 15 includes a host vehicle position estimation unit 17.
- the control unit 15 is an example of an acquisition unit, a difference value calculation unit, and an estimation unit in the present invention.
- the own vehicle position estimation unit 17 is based on the measured values of the distance and angle by the lidar 2 with respect to the landmark and the position information of the landmark extracted from the map DB 10, and the gyro sensor 3, the vehicle speed sensor 4, and / or the GPS receiver.
- the vehicle position estimated from the output data of 5 is corrected.
- the vehicle position estimation unit 17 predicts the vehicle position from output data of the gyro sensor 3, the vehicle speed sensor 4 and the like based on a state estimation method based on Bayesian estimation,
- the measurement update step for correcting the predicted value of the vehicle position calculated in the prediction step is executed alternately.
- Various filters developed to perform Bayesian estimation can be used as the state estimation filter used in these steps, and examples thereof include an extended Kalman filter, an unscented Kalman filter, and a particle filter. As described above, various methods have been proposed for position estimation based on Bayesian estimation.
- the own vehicle position estimating unit 17 uses the extended Kalman filter to uniformly estimate the own vehicle position when performing vehicle position estimation for either a feature or a lane marking. Process.
- FIG. 3 is a diagram showing the state variable vector x in two-dimensional orthogonal coordinates.
- the vehicle position on the plane defined on the two-dimensional orthogonal coordinates of xy is represented by coordinates “(x, y)” and the direction “ ⁇ ” of the vehicle.
- the direction ⁇ is defined as an angle formed by the traveling direction of the vehicle and the x axis.
- the coordinates (x, y) indicate an absolute position in a coordinate system with a certain reference position as the origin, which corresponds to, for example, a combination of latitude and longitude.
- FIG. 4 is a diagram illustrating a schematic relationship between the prediction step and the measurement update step.
- FIG. 5 shows an example of functional blocks of the vehicle position estimation unit 17. As shown in FIG. 4, by repeating the prediction step and the measurement update step, calculation and update of the estimated value of the state variable vector “X” indicating the vehicle position are sequentially executed. Moreover, as shown in FIG. 5, the own vehicle position estimation part 17 has the position estimation part 21 which performs a prediction step, and the position estimation part 22 which performs a measurement update step.
- the position prediction unit 21 includes a dead reckoning block 23 and a position prediction block 24, and the position estimation unit 22 includes a landmark search / extraction unit 25 and a position correction block 26.
- the provisional estimated value (predicted value) estimated in the predicting step is appended with “ - ” on the character representing the predicted value, and the estimated value with higher accuracy updated in the measurement updating step. Is appended with “ ⁇ ” on the character representing the value.
- the position prediction block 24 of the vehicle position estimation unit 17 adds the obtained moving distance and azimuth change to the state variable vector X ⁇ (t-1) at time t-1 calculated in the immediately preceding measurement update step. Then, the predicted value of the vehicle position at time t (also referred to as “predicted vehicle position”) X ⁇ (t) is calculated.
- the covariance matrix “P ⁇ (t)” corresponding to the error distribution of the predicted vehicle position X ⁇ (t) is converted into the covariance at time t ⁇ 1 calculated in the immediately preceding measurement update step. It is calculated from the matrix “P ⁇ (t ⁇ 1)”.
- the landmark search / extraction unit 25 of the vehicle position estimation unit 17 associates the landmark position vector registered in the map DB 10 with the scan data of the lidar 2. Then, the landmark search / extraction unit 25 of the vehicle position estimation unit 17 calls the measurement value (“landmark measurement value”) by the lidar 2 of the landmark that has been associated when the association is made. ) Landmark measurement estimated value obtained by modeling the measurement process by the rider 2 using “Z (t)”, the predicted vehicle position X ⁇ (t) and the landmark position vector registered in the map DB 10. (Referred to as “landmark prediction value”) “Z ⁇ (t)” is acquired.
- the landmark measurement value Z (t) is a two-dimensional vehicle body coordinate system in which the landmark distance and scan angle measured by the lidar 2 at time t are converted into components with the vehicle traveling direction and the lateral direction as axes. Is a vector. Then, the position correction block 26 of the vehicle position estimation unit 17 calculates a difference value between the landmark measurement value Z (t) and the landmark prediction value Z ⁇ (t) as shown in the following equation (1). To do.
- the position correction block 26 of the vehicle position estimation unit 17 calculates the Kalman to the difference value between the landmark measurement value Z (t) and the landmark prediction value Z ⁇ (t) as shown in the following equation (2).
- the gain “K (t)” By multiplying the gain “K (t)” and adding this to the predicted own vehicle position X ⁇ (t), the updated state variable vector (also referred to as “estimated own vehicle position”) X ⁇ (t) calculate.
- the position correction block 26 of the vehicle position estimating section 17 similarly to the prediction step, the covariance matrix corresponding to the error distribution of the estimated vehicle position X ⁇ (t) P ⁇ ( t) ( simply P (t)) is obtained from the covariance matrix P ⁇ (t).
- Parameters such as the Kalman gain K (t) can be calculated in the same manner as a known self-position estimation technique using an extended Kalman filter, for example.
- the prediction step and the measurement update step are repeatedly performed, and the predicted vehicle position X ⁇ (t) and the estimated vehicle position X ⁇ (t) are sequentially calculated, so that the most likely vehicle position Is calculated.
- the vehicle position estimation using the lane markings which is a feature of the present embodiment, will be described.
- the vehicle position is estimated using a lane marking as a landmark.
- a white line is used as a lane marking, but the same can be applied to a yellow lane marking.
- FIG. 7 shows a method of detecting a white line by the rider 2 mounted on the vehicle. Since the white line is coated with a retroreflecting material, the reflection intensity is high. Therefore, the vehicle-mounted device 1 provides a window at a position where a white line on the road surface ahead of the vehicle is easily detected, and detects a portion having a high reflection intensity in the window to recognize it as a white line.
- the emitted light EL is emitted from the riders 2 provided on the left and right of the front of the vehicle toward the road surface in front of the vehicle.
- a virtual window W is defined at a predetermined position in front of the vehicle.
- the position of the window W with respect to the center O of the vehicle is determined in advance. That is, the horizontal distance L1 from the vehicle center O to the window W, the lateral distance L2 from the vehicle center O to the left and right windows W, the length L3 of the window W, and the like are determined in advance.
- the in-vehicle device 1 extracts scan data belonging to the window W from the scan data output from the lidar 2 and determines that a white line has been detected when the reflection intensity is higher than a predetermined threshold.
- FIG. 8 shows the positions of a plurality of scan lines s in the window W.
- the intervals between the plurality of scan lines s in the window W (hereinafter referred to as “line intervals”) increase as the distance from the vehicle increases.
- the upper right part of FIG. 8 shows a plan view of the scan line in the window W as viewed from above. Scan lines s 1 to s 10 are formed in the window W, and line intervals d 1 to d 9 of the scan lines are shown. As the scan line is farther from the vehicle, the line interval d becomes longer. Further, the lower right part of FIG. 8 shows a view of the scan line in the window W as viewed from the side. Similarly, the line interval d becomes longer as the scan line is farther from the vehicle.
- the horizontal angle of the i th scan line is ⁇ (i)
- the vertical angle is ⁇ (i)
- the distance from the vehicle is r (i)
- the i th The line interval d (i) between the scan line and the (i + 1) th scan line is obtained by the following equation (4).
- the line interval d (i + 1) between the (i + 1) th scan line and the (i + 2) th scan line is obtained by the following equation (5), and the (i + 2) th scan line and the (i + 3) th scan are obtained.
- the line interval d (i + 2) of the lines is obtained by the following equation (6).
- the line intervals d of the plurality of scan lines s in the window W can be obtained based on the scan data of the lidar 2.
- FIG. 9 shows a method of measuring the position of the end point (white line start point) of the beginning of the white line.
- the in-vehicle device 1 detects the white line based on the reflection intensity of the scan data obtained by the lidar. Now, as shown in Example 1, it is assumed that the reflection intensity of scan data changes between scan lines s 2 and s 3 .
- the in-vehicle device 1 regards the midpoint of the scan lines s 2 and s 3 as the end point of the white line.
- the in-vehicle device 1 regards the midpoint of the scan lines s 4 and s 5 as the end point of the white line. Further, as shown in Example 3, when the reflection intensity of the scan data changes between the scan lines s 7 and s 8 , the in-vehicle device 1 regards the midpoint of the scan lines s 7 and s 8 as the end point of the white line.
- FIG. 10 shows a method of measuring the position of the end point (the end point of the white line) of the end portion of the white line.
- Example 4 it is assumed that the reflection intensity of scan data changes between scan lines s 2 and s 3 . That is, it is assumed that the reflection intensity of the scan line s 2 is less than a predetermined threshold value, and the reflection intensity of the scan line s 3 is greater than or equal to the predetermined threshold value.
- the in-vehicle device 1 regards the midpoint of the scan lines s 2 and s 3 as the end point of the white line.
- the in-vehicle device 1 regards the midpoint of the scan lines s 4 and s 5 as the end point of the white line. Further, as shown in Example 6, when the reflection intensity of the scan data changes between the scan lines s 7 and s 8 , the vehicle-mounted device 1 regards the midpoint of the scan lines s 7 and s 8 as the end point of the white line.
- the lidar indicating the position of the end point of the white line in the traveling direction of the vehicle measured value L x (t), the following using the position r x of the i-th scan line s i in the traveling direction of the vehicle and (i) and (i + 1) th scan line s i + 1 position r x (i + 1) It is calculated by the following formula.
- FIG. 11 shows an example when the reflection intensity of scan data changes in the middle of a scan line.
- Example 7 and Example 8 the reflection intensity of the scanned data in the middle of the scan line s 3 has changed, it is difficult to assert the scan lines s 3 white lines endpoint. Therefore, when the reflection intensity of the scan data changes in the middle of the scan line, the in-vehicle device 1 determines the midpoint between the scan line correctly detected as the white line and the scan line that could not be detected as the white line at the end of the white line.
- the in-vehicle device 1 regards the midpoint of the scan line s 2 correctly detected as a white line and the scan line s 4 that cannot be detected as a white line as the end point position of the white line.
- Example 8 the in-vehicle device 1, a scan line s 4 that is correctly detected as a white line, regarded as the midpoint of the white line edge point of the scan line s 2 can not be detected at all as the white line.
- the reflection intensity of the scan data has changed in the middle of the i-th scan line s i located between the (i ⁇ 1) -th scan line s i ⁇ 1 and the (i + 1) -th scan line s i + 1 .
- the lidar measurement value L x (t) indicating the position of the end point of the white line in the traveling direction of the vehicle is the position r x ((i ⁇ 1) -th scan line s i ⁇ 1 in the traveling direction of the vehicle). It is calculated by the following equation (9) using i ⁇ 1) and the position r x (i + 1) of the (i + 1) th scan line s i + 1 .
- the line interval d (t) at that time is calculated by Expression (10).
- the measurement value L x (t) in the traveling direction of the vehicle is a value given by Expression (7) or Expression (9).
- the measurement value L x (t) in the traveling direction of the vehicle is absent.
- the measured value L y (t) in the lateral direction of the vehicle is an average value of the center points of the plurality of scan lines detected in the window W.
- FIG. 12 shows a method of calculating the landmark prediction value of the end point of the white line.
- a vehicle V exists in the world coordinate system, and the vehicle coordinate system is defined with the center of the vehicle V as the origin.
- the coordinates of the white line end point k stored in the map DB10 and (m x (k), m y (k)).
- the coordinates of the white line end point k stored in the map DB 10 are coordinates in the world coordinate system, and the vehicle-mounted device 1 converts the coordinates into the vehicle coordinate system. Specifically, assuming that the estimated vehicle position of the vehicle V is x ⁇ (t), y ⁇ (t) and the estimated vehicle direction is ⁇ ⁇ (t), the rotation for coordinate conversion from the world coordinate system to the vehicle coordinate system is performed. Using the matrix, the landmark prediction value of the white line end point k is expressed by the following equation.
- FIG. 13A shows a Kalman gain correction coefficient when the in-vehicle device 1 detects a white line end point.
- Landmark measurement values used for vehicle position estimation include a measurement value in the traveling direction of the vehicle and a measurement value in the lateral direction of the vehicle. Accordingly, the correction coefficient in the traveling direction of the vehicle is defined as a traveling direction correction coefficient a (t), and the correction coefficient in the lateral direction of the vehicle is defined as a lateral coefficient b (t).
- the in-vehicle device 1 uses the position of the end point of the white line as a measurement value in the traveling direction.
- the measured value of the end point position of the white line is obtained as the midpoint between two adjacent scan lines before and after the reflection intensity changes, so the measurement of the traveling direction of the vehicle is performed based on the line interval of the scan lines.
- the accuracy is different. That is, when the line interval is wide, the error is large, and when the line interval is narrow, the error is small. Therefore, the Kalman gain in the traveling direction is corrected using the length of the line interval of the scan lines. Specifically, the reciprocal of the line interval d (t) is set as the traveling direction coefficient a (t).
- FIG. 13B shows a Kalman gain correction coefficient when the in-vehicle device 1 detects a white line but does not detect an end point of the white line.
- the lateral coefficient b (t) 1 Is set.
- the own vehicle position estimating unit 17 corrects the Kalman gain using the traveling direction coefficient a (t) and the lateral direction coefficient b (t) thus obtained. Specifically, the host vehicle position estimation unit 17 multiplies the Kalman gain K (t) shown in the following expression (12) by the traveling direction coefficient a (t) and the lateral direction coefficient b (t) to obtain an expression (13 The adaptive Kalman gain K (t) ′ shown in FIG.
- the own vehicle position estimation unit 17 applies the obtained adaptive Kalman gain K (t) ′ to the Kalman gain K (t) in Expression (2), and estimates the own vehicle position X ⁇ by the following Expression (14). (T) is calculated.
- FIG. 14A shows a measurement noise correction coefficient when the in-vehicle device 1 detects a white line end point.
- Landmark measurement values used for vehicle position estimation include a measurement value in the traveling direction of the vehicle and a measurement value in the lateral direction of the vehicle. Accordingly, the correction coefficient in the traveling direction of the vehicle is defined as a traveling direction correction coefficient a (t), and the correction coefficient in the lateral direction of the vehicle is defined as a lateral coefficient b (t).
- the in-vehicle device 1 uses the position of the end point of the white line as a measurement value in the traveling direction.
- the measured value of the end point position of the white line is obtained as the midpoint between two adjacent scan lines before and after the reflection intensity changes, so the measurement of the traveling direction of the vehicle is performed based on the line interval of the scan lines.
- the accuracy is different. That is, when the line interval is wide, the error is large, and when the line interval is narrow, the error is small. Therefore, the measurement noise in the traveling direction is corrected using the length of the line interval of the scan lines. Specifically, a ratio between the line interval d (t) and the shortest line interval (line interval d 9 in FIG.
- FIG. 14B shows a measurement noise correction coefficient when the in-vehicle device 1 detects a white line but does not detect an end point of the white line.
- a white line is not detected, a measurement value in the traveling direction of the vehicle cannot be obtained, and thus a large value is set for the traveling direction coefficient a (t).
- a (t) 10000 Is set.
- the own vehicle position estimating unit 17 multiplies the traveling direction coefficient a (t) and the lateral direction coefficient b (t) thus obtained by the measurement noise to generate adaptive measurement noise. And the own vehicle position estimation part 17 calculates
- the basic measurement noise R (t) is given by the following equation. Note that ⁇ Lx 2 is measurement noise in the traveling direction of the vehicle coordinate system, and ⁇ Ly 2 is measurement noise in the lateral direction of the vehicle coordinate system with respect to the white line measurement as a target.
- the vehicle position estimation unit 17 multiplies the measurement noise by the traveling direction coefficient a (t) and the lateral direction coefficient b (t) to obtain the following adaptive measurement noise R (t) ′.
- the own vehicle position estimating unit 17 applies the obtained adaptive Kalman gain K (t) ′ to the Kalman gain K (t) in the equation (2), and the estimated own vehicle position X ⁇ (t ) Is calculated.
- FIG. 15 is a flowchart of own vehicle position estimation processing executed by the own vehicle position estimation unit 17.
- the own vehicle position estimation unit 17 repeatedly executes the processing of the flowchart of FIG.
- the vehicle position estimation unit 17 determines whether or not the vehicle body speed and the angular speed in the yaw direction of the vehicle have been detected (step S11). For example, the host vehicle position estimation unit 17 detects the vehicle body speed based on the output of the vehicle speed sensor 4 and detects the angular speed in the yaw direction based on the output of the gyro sensor 3. When detecting the vehicle body speed and the angular velocity in the yaw direction of the vehicle (step S11: Yes), the vehicle position estimation unit 17 uses the detected vehicle body speed and angular velocity to estimate the vehicle position X ⁇ (t prediction -1) vehicle position X - calculating a (t).
- the vehicle position estimation unit 17 calculates a covariance matrix at the current time from the covariance matrix one hour before (step S12).
- the vehicle position estimation unit 17 does not detect the vehicle body speed and the angular velocity in the yaw direction of the vehicle (step S11: No)
- the vehicle position estimation unit 17 predicts the estimated vehicle position X ⁇ (t-1) one time before.
- the vehicle position X ⁇ (t) is set, and the covariance matrix one hour before is the covariance matrix at the current time.
- the vehicle position estimation unit 17 determines whether a white line has been detected as a landmark used for vehicle position estimation (step S13). Specifically, the vehicle position estimating unit 17 sets the window W as shown in FIG. 7 and determines whether or not a white line is detected in the window W based on the reflection intensity of the scan data of the lidar 2. To do. When the white line is not detected (step S13: No), since the vehicle position cannot be estimated using the white line, the process ends.
- step S13 when a white line is detected (step S13: Yes), the vehicle position estimation unit 17 calculates a white line landmark prediction value based on the map data in the map DB 10, and also measures the white line landmarks by the lidar 2.
- a value is calculated (step S14). Specifically, the vehicle position estimation unit 17 converts the coordinates of the white line end points included in the map data into the vehicle coordinate system to calculate the landmark predicted value of the white line end points, and also measures the white line measurement values by the lidar. Is a landmark measurement value.
- the vehicle position estimation unit 17 calculates the traveling direction coefficient a (t) and the lateral direction coefficient b (t) depending on whether or not the end point of the white line has been detected. Calculate (step S15).
- the host vehicle position estimation unit 17 calculates the Kalman gain K (t) based on the above equation (10) using the covariance matrix, and calculates the traveling direction coefficient a (t) and the lateral direction coefficient b (t).
- the adaptive Kalman gain K (t) ′ shown in Expression (13) or Expression (17) is used to generate the estimated vehicle position using Expression (14). Further, the own vehicle position estimation unit 17 updates the covariance matrix using the adaptive Kalman gain K (t) ′ as shown in Expression (18) (step S16).
- the vehicle position estimation unit 17 when the vehicle position estimation unit 17 detects the end point of the white line, the vehicle position estimation unit 17 performs the vehicle position estimation process based on the Kalman filter using the end point of the white line as a landmark. Further, the Kalman gain is corrected by calculating the advancing direction coefficient based on the line interval of the scan line by the lidar 2 when the end point of the white line is detected. As a result, the vehicle position can be estimated with high accuracy even in the traveling direction of the vehicle.
- the in-vehicle device 1 detects the white line by providing the window W at the left and right positions in front of the vehicle.
- a white line may be detected by providing a window W also in the left and right positions behind.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Automation & Control Theory (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Navigation (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Traffic Control Systems (AREA)
Abstract
自己位置推定装置は、移動体に搭載され、移動体の予測位置を取得する。また、自己位置推定装置は、地図情報から取得した区画線の端点の情報に基づいて得られた区画線の端点の予測位置と、移動体に搭載された計測部が光を所定方向に走査することで計測された区画線の端点の計測位置との差分値を算出し、差分値に係数を乗じた値で予測位置を修正して前記移動体の自己位置を推定する。そして、自己位置推定装置は、区画線の端点を検出した位置における前記計測部の走査位置の間隔に基づいて係数を補正する。
Description
本発明は、自己位置推定技術に関する。
従来から、車両の進行先に設置される地物をレーダやカメラを用いて検出し、その検出結果に基づいて自車位置を校正する技術が知られている。例えば、特許文献1には、計測センサの出力と、予め地図上に登録された地物の位置情報とを照合させることで自己位置を推定する技術が開示されている。また、特許文献2には、カルマンフィルタを用いた自車位置推定技術が開示されている。
特許文献2に示されるベイズ手法に基づく自己位置推定では、白線、縁石、ガードレールなどの連続的に設けられた構造物を計測する場合、自車から見て横方向の距離は計測可能であるが、進行方向への連続性に起因して進行方向における距離を的確に特定できないという問題がある。また、破線形状の区画線の場合には、検出される区画線の前後方向の長さが変化するため、同様に進行方向における位置を的確に特定できない。
本発明は、上記のような課題を解決するためになされたものであり、白線などの区画線を計測対象とし、横方向だけでなく進行方向の位置推定を高精度に行うことが可能な自己位置推定装置を提供することを主な目的とする。
請求項1に記載の発明は、移動体に搭載される自己位置推定装置であって、前記移動体の予測位置を取得する取得手段と、地図情報から取得した区画線の端点の情報に基づいて得られた前記区画線の端点の予測位置と、前記移動体に搭載された計測部が光を所定方向に走査することで計測された前記区画線の端点の計測位置との差分値を算出する差分値算出手段と、前記差分値に係数を乗じた値で前記移動体の予測位置を修正して前記移動体の自己位置を推定する推定手段と、を備え、前記推定手段は、前記区画線の端点を検出した位置における前記計測部の走査位置の間隔に基づいて、前記係数を補正する。
請求項6に記載の発明は、移動体に搭載される自己位置推定装置により実行される自己位置推定方法であって、前記移動体の予測位置を取得する取得工程と、地図情報から取得した区画線の端点の情報に基づいて得られた前記区画線の端点の予測位置と、前記移動体に搭載された計測部が光を所定方向に走査することで計測された前記区画線の端点の計測位置との差分値を算出する差分算出工程と、前記差分値に係数を乗じた値で前記移動体の予測位置を修正して前記移動体の自己位置を推定する推定工程と、を備え、前記推定工程は、前記区画線の端点を検出した位置における前記計測部の走査位置の間隔に基づいて、前記係数を補正する。
請求項7に記載の発明は、移動体に搭載され、コンピュータを備える自己位置推定装置により実行されるプログラムであって、前記移動体の予測位置を取得する取得手段、地図情報から取得した区画線の端点の情報に基づいて得られた前記区画線の端点の予測位置と、前記移動体に搭載された計測部が光を所定方向に走査することで計測された前記区画線の端点の計測位置との差分値を算出する差分値算出手段、前記差分値に係数を乗じた値で前記移動体の予測位置を修正して前記移動体の自己位置を推定する推定手段、として前記コンピュータを機能させ、前記推定手段は、前記区画線の端点を検出した位置における前記計測部の走査位置の間隔に基づいて、前記係数を補正する。
本発明の1つの好適な実施形態は、移動体に搭載される自己位置推定装置であって、前記移動体の予測位置を取得する取得手段と、地図情報から取得した区画線の端点の情報に基づいて得られた前記区画線の端点の予測位置と、前記移動体に搭載された計測部が光を所定方向に走査することで計測された前記区画線の端点の計測位置との差分値を算出する差分値算出手段と、前記差分値に係数を乗じた値で前記移動体の予測位置を修正して前記移動体の自己位置を推定する推定手段と、を備え、前記推定手段は、前記区画線の端点を検出した位置における前記計測部の走査位置の間隔に基づいて、前記係数を補正する。
上記の自己位置推定装置は、移動体に搭載され、移動体の予測位置を取得する。また、自己位置推定装置は、地図情報から取得した区画線の端点の情報に基づいて得られた区画線の端点の予測位置と、移動体に搭載された計測部が光を所定方向に走査することで計測された区画線の端点の計測位置との差分値を算出し、差分値に係数を乗じた値で移動体の予測位置を修正して移動体の自己位置を推定する。そして、自己位置推定装置は、区画線の端点を検出した位置における計測部の走査位置の間隔に基づいて係数を補正する。この自己位置推定装置によれば、区画線の端点の位置を利用して、移動体の進行方向における自己位置の推定精度を高めることができる。好適な例では、係数はカルマンゲインである。
上記の自己位置推定装置の一態様では、前記推定手段は、前記走査位置の間隔の逆数により、前記係数を補正する。他の一態様では、前記推定手段は、前記走査位置の間隔と、当該走査位置の間隔のうち前記計測部により計測された前記走査位置の最短の間隔との比に基づき、前記係数を補正する。この態様では、走査位置の間隔が小さいほど、差分値が自己位置の推定に大きく反映されるように係数が補正される。
上記の自己位置推定装置の他の一態様では、前記計測部は、前記移動体の位置を基準とした所定位置に規定されるウィンドウ内に存在する区画線を検出し、前記推定手段は、前記区画線上に存在する走査線数と、前記ウィンドウのサイズに基づいて予め決められた走査線数との比により、前記係数を補正する。この態様では、検出された区画線上に存在する走査線数が多いほど、差分値が自己位置の推定に大きく反映されるように係数が補正される。
上記の自己位置推定装置の他の一態様では、前記計測部は、相互に隣接する、区画線上に存在する走査線と区画線上に存在しない走査線との中間点を前記区画線の端点として検出する。これにより、区画線上に存在する走査線と区画線上に存在しない走査線の位置から、区画線の端点を決定することができる。
本発明の他の好適な実施形態は、移動体に搭載される自己位置推定装置により実行される自己位置推定方法であって、前記移動体の予測位置を取得する取得工程と、地図情報から取得した区画線の端点の情報に基づいて得られた前記区画線の端点の予測位置と、前記移動体に搭載された計測部が光を所定方向に走査することで計測された前記区画線の端点の計測位置との差分値を算出する差分算出工程と、前記差分値に係数を乗じた値で前記移動体の予測位置を修正して前記移動体の自己位置を推定する推定工程と、を備え、前記推定工程は、前記区画線の端点を検出した位置における前記計測部の走査位置の間隔に基づいて、前記係数を補正する。この自己位置推定方法によれば、区画線の端点の位置を利用して、移動体の進行方向における自己位置の推定精度を高めることができる。
本発明の他の好適な実施形態は、移動体に搭載され、コンピュータを備える自己位置推定装置により実行されるプログラムであって、前記移動体の予測位置を取得する取得手段、地図情報から取得した区画線の端点の情報に基づいて得られた前記区画線の端点の予測位置と、前記移動体に搭載された計測部が光を所定方向に走査することで計測された前記区画線の端点の計測位置との差分値を算出する差分値算出手段、前記差分値に係数を乗じた値で前記移動体の予測位置を修正して前記移動体の自己位置を推定する推定手段、として前記コンピュータを機能させ、前記推定手段は、前記区画線の端点を検出した位置における前記計測部の走査位置の間隔に基づいて、前記係数を補正する。このプログラムをコンピュータで実行することにより、上記の自己位置推定装置を実現することができる。このプログラムは、記憶媒体に記憶して取り扱うことができる。
以下、図面を参照して本発明の好適な実施例について説明する。なお、任意の記号の上に「^」または「-」が付された文字を、本明細書では便宜上、「A^」または「A-」(「A」は任意の文字)と表す。
[運転支援システム]
[運転支援システム]
図1は、本実施例に係る運転支援システムの概略構成図である。図1に示す運転支援システムは、車両に搭載され、車両の運転支援に関する制御を行う車載機1と、ライダ(Lidar:Light Detection and Ranging、または、Laser Illuminated Detection And Ranging)2と、ジャイロセンサ3と、車速センサ4と、GPS受信機5とを有する。
車載機1は、ライダ2、ジャイロセンサ3、車速センサ4、及びGPS受信機5と電気的に接続し、これらの出力に基づき、車載機1が搭載される車両の位置(「自車位置」とも呼ぶ。)の推定を行う。そして、車載機1は、自車位置の推定結果に基づき、設定された目的地への経路に沿って走行するように、車両の自動運転制御などを行う。車載機1は、道路データ及び道路付近に設けられた目印となる地物や区画線に関する情報が登録された地図データベース(DB:DataBase)10を記憶する。上述の目印となる地物は、例えば、道路脇に周期的に並んでいるキロポスト、100mポスト、デリニエータ、交通インフラ設備(例えば標識、方面看板、信号)、電柱、街灯などの地物である。そして、車載機1は、この地図DB10に基づき、ライダ2等の出力と照合させて自車位置の推定を行う。車載機1は、本発明における「自己位置推定装置」の一例である。
ライダ2は、水平方向および垂直方向の所定の角度範囲に対してパルスレーザを出射することで、外界に存在する物体までの距離を離散的に測定し、当該物体の位置を示す3次元の点群情報を生成する。この場合、ライダ2は、照射方向を変えながらレーザ光を照射する照射部と、照射したレーザ光の反射光(散乱光)を受光する受光部と、受光部が出力する受光信号に基づくスキャンデータを出力する出力部とを有する。本実施例では、ライダ2が出射するレーザの照射範囲には、少なくとも道路の路面が含まれている。スキャンデータは、受光部が受光したレーザ光に対応する照射方向と、上述の受光信号に基づき特定される当該レーザ光のその照射方向における物体までの距離とに基づき生成される。一般的に、対象物までの距離が近いほどライダの距離測定値の精度は高く、距離が遠いほど精度は低い。ライダ2、ジャイロセンサ3、車速センサ4、GPS受信機5は、それぞれ、出力データを車載機1へ供給する。ライダ2は、本発明における「計測部」の一例である。
図2は、車載機1の機能的構成を示すブロック図である。車載機1は、主に、インターフェース11と、記憶部12と、入力部14と、制御部15と、情報出力部16と、を有する。これらの各要素は、バスラインを介して相互に接続されている。
インターフェース11は、ライダ2、ジャイロセンサ3、車速センサ4、及びGPS受信機5などのセンサから出力データを取得し、制御部15へ供給する。
記憶部12は、制御部15が実行するプログラムや、制御部15が所定の処理を実行するのに必要な情報を記憶する。本実施例では、記憶部12は、区画線情報及び地物情報を含む地図DB10を記憶する。ここで、区画線情報は、各道路に設けられた区画線(白線)に関する情報であり、区画線ごとに、区画線の離散的な位置を示す座標情報が含まれている。なお、区画線情報は、道路ごとの道路データに組み込まれた情報であってもよい。さらに本実施例では、破線の区画線については、その端点の位置を示す座標情報が含まれている。地物情報は、区画線以外の地物に関する情報であり、ここでは、地物ごとに、地物のインデックスに相当する地物IDと、緯度及び経度(及び標高)等により表わされた地物の絶対的な位置を示す位置情報とが少なくとも関連付けられている。なお、地図DB10は、定期的に更新されてもよい。この場合、例えば、制御部15は、図示しない通信部を介し、地図情報を管理するサーバ装置から、自車位置が属するエリアに関する部分地図情報を受信し、地図DB10に反映させる。
入力部14は、ユーザが操作するためのボタン、タッチパネル、リモートコントローラ、音声入力装置等である。情報出力部16は、例えば、制御部15の制御に基づき出力を行うディスプレイやスピーカ等である。
制御部15は、プログラムを実行するCPUなどを含み、車載機1の全体を制御する。本実施例では、制御部15は、自車位置推定部17を有する。制御部15は、本発明における取得手段、差分値算出手段、推定手段の一例である。
自車位置推定部17は、ランドマークに対するライダ2による距離及び角度の計測値と、地図DB10から抽出したランドマークの位置情報とに基づき、ジャイロセンサ3、車速センサ4、及び/又はGPS受信機5の出力データから推定した自車位置を補正する。本実施例では、一例として、自車位置推定部17は、ベイズ推定に基づく状態推定手法に基づき、ジャイロセンサ3、車速センサ4等の出力データから自車位置を予測する予測ステップと、直前の予測ステップで算出した自車位置の予測値を補正する計測更新ステップとを交互に実行する。これらのステップで用いる状態推定フィルタは、ベイズ推定を行うように開発された様々のフィルタが利用可能であり、例えば、拡張カルマンフィルタ、アンセンテッドカルマンフィルタ、パーティクルフィルタなどが該当する。このように、ベイズ推定に基づく位置推定は、種々の方法が提案されている。
以下では、拡張カルマンフィルタを用いた自車位置推定について簡略的に説明する。後述するように、本実施例では、自車位置推定部17は、地物又は区画線のいずれを対象として自車位置推定を行う場合にも、拡張カルマンフィルタを用いて統一的に自車位置推定処理を行う。
図3は、状態変数ベクトルxを2次元直交座標で表した図である。図3に示すように、xyの2次元直交座標上で定義された平面での自車位置は、座標「(x、y)」、自車の方位「Ψ」により表される。ここでは、方位Ψは、車の進行方向とx軸とのなす角として定義されている。座標(x、y)は、例えば緯度及び経度の組合せに相当する、ある基準位置を原点とした座標系における絶対位置を示す。
図4は、予測ステップと計測更新ステップとの概略的な関係を示す図である。また、図5は、自車位置推定部17の機能ブロックの一例を示す。図4に示すように、予測ステップと計測更新ステップとを繰り返すことで、自車位置を示す状態変数ベクトル「X」の推定値の算出及び更新を逐次的に実行する。また、図5に示すように、自車位置推定部17は、予測ステップを実行する位置予測部21と、計測更新ステップを実行する位置推定部22とを有する。位置予測部21は、デッドレコニングブロック23及び位置予測ブロック24を含み、位置推定部22は、ランドマーク探索・抽出部25及び位置補正ブロック26を含む。なお、図4では、計算対象となる基準時刻(即ち現在時刻)「t」の状態変数ベクトルを、「X-(t)」または「X^(t)」と表記している(「状態変数ベクトルX(t)=(x(t)、y(t)、Ψ(t))T」と表記する)。ここで、予測ステップで推定された暫定的な推定値(予測値)には当該予測値を表す文字の上に「-」を付し、計測更新ステップで更新された,より精度の高い推定値には当該値を表す文字の上に「^」を付す。
予測ステップでは、自車位置推定部17のデッドレコニングブロック23は、車両の移動速度「v」と角速度「ω」(これらをまとめて「制御値u(t)=(v(t)、ω(t))T」と表記する。)を用い、前回時刻からの移動距離と方位変化を求める。自車位置推定部17の位置予測ブロック24は、直前の計測更新ステップで算出された時刻t-1の状態変数ベクトルX^(t-1)に対し、求めた移動距離と方位変化を加えて、時刻tの自車位置の予測値(「予測自車位置」とも呼ぶ。)X-(t)を算出する。また、これと同時に、予測自車位置X-(t)の誤差分布に相当する共分散行列「P-(t)」を、直前の計測更新ステップで算出された時刻t-1での共分散行列「P^(t-1)」から算出する。
計測更新ステップでは、自車位置推定部17のランドマーク探索・抽出部25は、地図DB10に登録されたランドマークの位置ベクトルとライダ2のスキャンデータとの対応付けを行う。そして、自車位置推定部17のランドマーク探索・抽出部25は、この対応付けができた場合に、対応付けができたランドマークのライダ2による計測値(「ランドマーク計測値」と呼ぶ。)「Z(t)」と、予測自車位置X-(t)及び地図DB10に登録されたランドマークの位置ベクトルを用いてライダ2による計測処理をモデル化して求めたランドマークの計測推定値(「ランドマーク予測値」と呼ぶ。)「Z-(t)」とをそれぞれ取得する。ランドマーク計測値Z(t)は、時刻tにライダ2が計測したランドマークの距離及びスキャン角度から、車両の進行方向と横方向を軸とした成分に変換した車両のボディ座標系における2次元ベクトルである。そして、自車位置推定部17の位置補正ブロック26は、以下の式(1)に示すように、ランドマーク計測値Z(t)とランドマーク予測値Z-(t)との差分値を算出する。
そして、自車位置推定部17の位置補正ブロック26は、以下の式(2)に示すように、ランドマーク計測値Z(t)とランドマーク予測値Z-(t)との差分値にカルマンゲイン「K(t)」を乗算し、これを予測自車位置X-(t)に加えることで、更新された状態変数ベクトル(「推定自車位置」とも呼ぶ。)X^(t)を算出する。
また、計測更新ステップでは、自車位置推定部17の位置補正ブロック26は、予測ステップと同様、推定自車位置X^(t)の誤差分布に相当する共分散行列P^(t)(単にP(t)とも表記する)を共分散行列P-(t)から求める。カルマンゲインK(t)等のパラメータについては、例えば拡張カルマンフィルタを用いた公知の自己位置推定技術と同様に算出することが可能である。
このように、予測ステップと計測更新ステップが繰り返し実施され、予測自車位置X-(t)と推定自車位置X^(t)が逐次的に計算されることにより、もっとも確からしい自車位置が計算される。
[区画線を用いた自車位置推定]
次に、本実施例の特徴である、区画線を用いた自車位置推定について説明する。本実施例は、ランドマークとして区画線を用いて自車位置推定を行う。なお、以下の説明では、区画線として白線を用いた例を説明するが、黄色の区画線にも同様に適用することもできる。
次に、本実施例の特徴である、区画線を用いた自車位置推定について説明する。本実施例は、ランドマークとして区画線を用いて自車位置推定を行う。なお、以下の説明では、区画線として白線を用いた例を説明するが、黄色の区画線にも同様に適用することもできる。
(1)ライダによる白線の計測
まず、ライダによる白線の計測方法について説明する。
(ライダの計測値)
いま、図6に示すように、車両の自車位置を原点とし、車両の進行方向をx軸にとったデカルト座標系(以下、「車両座標系」と呼ぶ。)を考える。ライダによる計測対象までの計測値は、水平角度α、垂直角度β、距離rを含む。これらをデカルト座標系に変換すると、ライダによる計測値は以下の式により示される。
まず、ライダによる白線の計測方法について説明する。
(ライダの計測値)
いま、図6に示すように、車両の自車位置を原点とし、車両の進行方向をx軸にとったデカルト座標系(以下、「車両座標系」と呼ぶ。)を考える。ライダによる計測対象までの計測値は、水平角度α、垂直角度β、距離rを含む。これらをデカルト座標系に変換すると、ライダによる計測値は以下の式により示される。
(白線の検出)
図7は、車両に搭載されたライダ2により白線を検出する方法を示す。白線は再帰性反射材が塗布されているため、反射強度が強い。よって、車載機1は、車両の前方の路面上における白線を検出しやすい位置にウィンドウを設け、その中の反射強度の高い部分を検出して白線と認識する。
図7は、車両に搭載されたライダ2により白線を検出する方法を示す。白線は再帰性反射材が塗布されているため、反射強度が強い。よって、車載機1は、車両の前方の路面上における白線を検出しやすい位置にウィンドウを設け、その中の反射強度の高い部分を検出して白線と認識する。
具体的には、図7に示すように、車両の前方の左右に設けられたライダ2から、車両の前方の路面に向けて出射光ELが出射される。車両前方の所定位置には、仮想的なウィンドウWが規定される。車両の中心Oを基準としたウィンドウWの位置は予め決められている。即ち、車両の中心OからウィンドウWまでの水平距離L1、車両の中心Oから左右のウィンドウWまでの横方向距離L2、及び、ウィンドウWの長さL3などは予め決められている。車載機1は、ライダ2から出力されるスキャンデータのうち、ウィンドウW内に属するスキャンデータを抽出し、それらの反射強度が所定の閾値より高い場合に、白線を検出したと判定する。
(ライン間隔)
ライダ2として多層式のライダを用いることにより、ウィンドウW内には複数のスキャンラインsが形成される。図8は、ウィンドウW内における複数のスキャンラインsの位置を示す。ウィンドウW内の複数のスキャンラインsは、車両から遠いほどその間隔(以下、「ライン間隔」と呼ぶ。)が長くなる。図8の右上部は、ウィンドウW内のスキャンラインを上方から見た平面図を示す。ウィンドウW内にスキャンラインs1~s10が形成されており、各スキャンラインのライン間隔d1~d9が示されている。車両から遠いスキャンラインほどライン間隔dが長くなる。また、図8の右下部は、ウィンドウW内のスキャンラインを側方から見た図を示す。同様に、車両から遠いスキャンラインほどライン間隔dが長くなる。
ライダ2として多層式のライダを用いることにより、ウィンドウW内には複数のスキャンラインsが形成される。図8は、ウィンドウW内における複数のスキャンラインsの位置を示す。ウィンドウW内の複数のスキャンラインsは、車両から遠いほどその間隔(以下、「ライン間隔」と呼ぶ。)が長くなる。図8の右上部は、ウィンドウW内のスキャンラインを上方から見た平面図を示す。ウィンドウW内にスキャンラインs1~s10が形成されており、各スキャンラインのライン間隔d1~d9が示されている。車両から遠いスキャンラインほどライン間隔dが長くなる。また、図8の右下部は、ウィンドウW内のスキャンラインを側方から見た図を示す。同様に、車両から遠いスキャンラインほどライン間隔dが長くなる。
任意のスキャンラインの番号を「i」とし、i番目のスキャンラインの水平角度をα(i)、垂直角度をβ(i)とし、車両からの距離をr(i)とすると、i番目のスキャンラインと(i+1)番目のスキャンラインとのライン間隔d(i)は以下の式(4)により求められる。同様に、(i+1)番目のスキャンラインと(i+2)番目のスキャンラインのライン間隔d(i+1)は以下の式(5)により求められ、(i+2)番目のスキャンラインと(i+3)番目のスキャンラインのライン間隔d(i+2)は以下の式(6)により求められる。
こうして、ライダ2のスキャンデータに基づいて、ウィンドウW内の複数のスキャンラインsのライン間隔dを求めることができる。
(白線の端点位置の計測)
次に、ライダにより白線の端点位置を計測する方法について説明する。図9は、白線の始まり部分の端点(白線の開始点)の位置を計測する方法を示す。ウィンドウW内にはs1~s10の10本のスキャンラインが形成されている。前述のように、車載機1は、ライダにより得られるスキャンデータの反射強度に基づいて白線を検出する。いま、例1に示すように、スキャンラインs2とs3の間でスキャンデータの反射強度が変化したものとする。即ち、スキャンラインs2の反射強度が所定の閾値以上になり、スキャンラインs3の反射強度は所定の閾値未満であるとする。この場合、白線の端点は、スキャンラインs2とs3の間に存在することがわかるが、その正確な位置まではわからない。そこで、車載機1は、スキャンラインs2とs3の中点を白線の端点とみなす。
次に、ライダにより白線の端点位置を計測する方法について説明する。図9は、白線の始まり部分の端点(白線の開始点)の位置を計測する方法を示す。ウィンドウW内にはs1~s10の10本のスキャンラインが形成されている。前述のように、車載機1は、ライダにより得られるスキャンデータの反射強度に基づいて白線を検出する。いま、例1に示すように、スキャンラインs2とs3の間でスキャンデータの反射強度が変化したものとする。即ち、スキャンラインs2の反射強度が所定の閾値以上になり、スキャンラインs3の反射強度は所定の閾値未満であるとする。この場合、白線の端点は、スキャンラインs2とs3の間に存在することがわかるが、その正確な位置まではわからない。そこで、車載機1は、スキャンラインs2とs3の中点を白線の端点とみなす。
同様に、例2に示すようにスキャンラインs4とs5の間でスキャンデータの反射強度が変化した場合、車載機1はスキャンラインs4とs5の中点を白線の端点とみなす。また、例3に示すようにスキャンラインs7とs8の間でスキャンデータの反射強度が変化した場合、車載機1はスキャンラインs7とs8の中点を白線の端点とみなす。
白線の終わり部分の端点位置を検出する方法も基本的に同様である。図10は、白線の終わり部分の端点(白線の終了点)の位置を計測する方法を示す。例4に示すように、スキャンラインs2とs3の間でスキャンデータの反射強度が変化したものとする。即ち、スキャンラインs2の反射強度が所定の閾値未満になり、スキャンラインs3の反射強度は所定の閾値以上であるとする。この場合、車載機1は、スキャンラインs2とs3の中点を白線の端点とみなす。
同様に、例5に示すようにスキャンラインs4とs5の間でスキャンデータの反射強度が変化した場合、車載機1はスキャンラインs4とs5の中点を白線の端点とみなす。また、例6に示すようにスキャンラインs7とs8の間でスキャンデータの反射強度が変化した場合、車載機1はスキャンラインs7とs8の中点を白線の端点とみなす。
いま、i番目のスキャンラインsiと、(i+1)番目のスキャンラインsi+1との間でスキャンデータの反射強度が変化したものとすると、車両の進行方向における白線の端点の位置を示すライダの計測値Lx(t)は、車両の進行方向におけるi番目のスキャンラインsiの位置rx(i)と(i+1)番目のスキャンラインsi+1の位置rx(i+1)とを用いて以下の式で算出される。
ライダ2による白線の計測値は、以下の式で与えられる。
なお、図9及び図10の例では、反射強度が等しいスキャンデータの集合として1つのスキャンラインを検出できた場合を示しているが、1つのスキャンラインの途中でスキャンデータの反射強度が変化する場合がある。この場合、そのスキャンラインが白線の端点位置なのか、本当は白線の端点位置ではないが汚れやかすれ等によってそのように検出されてしまったのかを区別することが難しい。
図11は、スキャンラインの途中でスキャンデータの反射強度が変化した場合の例を示す。例7や例8では、スキャンラインs3の途中でスキャンデータの反射強度が変化しているため、スキャンラインs3を白線の端点と断定することは難しい。そこで、スキャンラインの途中でスキャンデータの反射強度が変化した場合は、車載機1は、白線として正しく検出されたスキャンラインと、白線として全く検出できなかったスキャンラインとの中点を白線の端点位置とみなす。図11の例7では、車載機1は、白線として正しく検出されたスキャンラインs2と、白線として全く検出できなかったスキャンラインs4との中点を白線の端点位置とみなす。同様に、例8では、車載機1は、白線として正しく検出されたスキャンラインs4と、白線として全く検出できなかったスキャンラインs2との中点を白線の端点位置とみなす。
いま、(i-1)番目のスキャンラインsiー1と、(i+1)番目のスキャンラインsi+1との間に位置するi番目のスキャンラインsiの途中でスキャンデータの反射強度が変化したものとすると、車両の進行方向における白線の端点の位置を示すライダの計測値Lx(t)は、車両の進行方向における(i-1)番目のスキャンラインsi-1の位置rx(i-1)と(i+1)番目のスキャンラインsi+1の位置rx(i+1)とを用いて以下の式(9)で算出される。また、その時のライン間隔d(t)は、式(10)で算出される。
以上より、白線の端点が検出できた場合、車両の進行方向の計測値Lx(t)は、式(7)又は式(9)で与えられる値となる。白線の端点が検出できなかった場合、車両の進行方向の計測値Lx(t)は無しとなる。一方、車両の横方向の計測値Ly(t)は、ウィンドウW内で検出された複数のスキャンラインの中心点の平均値となる。こうして、白線の検出結果に応じて、ライダによる白線の計測値が求められる。
(2)自車位置推定方法
次に、実施例による自車位置推定方法について説明する。
(ランドマーク予測値の算出)
まず、地図データを用いて、白線の端点のランドマーク予測値を算出する方法を説明する。図12は、白線の端点のランドマーク予測値を算出する方法を示す。図12において、ワールド座標系に車両Vが存在し、その車両Vの中心を原点として車両座標系が規定される。地図DB10に記憶されている白線端点kの座標を(mx(k),my(k))とする。地図DB10に記憶されている白線端点kの座標はワールド座標系における座標であり、車載機1はこれを車両座標系に座標変換する。具体的には、車両Vの推定自車位置をx-(t)、y-(t)、推定自車方位をΨ-(t)とすると、ワールド座標系から車両座標系に座標変換する回転行列を用いて、白線端点kのランドマーク予測値は以下の式で表される。
次に、実施例による自車位置推定方法について説明する。
(ランドマーク予測値の算出)
まず、地図データを用いて、白線の端点のランドマーク予測値を算出する方法を説明する。図12は、白線の端点のランドマーク予測値を算出する方法を示す。図12において、ワールド座標系に車両Vが存在し、その車両Vの中心を原点として車両座標系が規定される。地図DB10に記憶されている白線端点kの座標を(mx(k),my(k))とする。地図DB10に記憶されている白線端点kの座標はワールド座標系における座標であり、車載機1はこれを車両座標系に座標変換する。具体的には、車両Vの推定自車位置をx-(t)、y-(t)、推定自車方位をΨ-(t)とすると、ワールド座標系から車両座標系に座標変換する回転行列を用いて、白線端点kのランドマーク予測値は以下の式で表される。
(カルマンゲインの修正)
次に、白線の端点の検出状態に応じてカルマンゲインを修正する方法について説明する。図13(A)は、車載機1が白線の端点を検出した場合のカルマンゲインの補正係数を示す。自車位置推定に用いられるランドマーク計測値としては、車両の進行方向の計測値と、車両の横方向の計測値とがある。そこで、車両の進行方向の補正係数を進行方向補正係数a(t)とし、車両の横方向の補正係数を横方向係数b(t)とする。
次に、白線の端点の検出状態に応じてカルマンゲインを修正する方法について説明する。図13(A)は、車載機1が白線の端点を検出した場合のカルマンゲインの補正係数を示す。自車位置推定に用いられるランドマーク計測値としては、車両の進行方向の計測値と、車両の横方向の計測値とがある。そこで、車両の進行方向の補正係数を進行方向補正係数a(t)とし、車両の横方向の補正係数を横方向係数b(t)とする。
ウィンドウW内に白線の端点を検出した場合、車載機1は、白線の端点の位置を進行方向の計測値として用いる。但し、前述したように、白線の端点位置の計測値は、反射強度が変化した前後の2つの隣接するスキャンラインの中点として求められるので、スキャンラインのライン間隔により、車両の進行方向の計測精度は異なる。即ち、ライン間隔が広いと誤差が大きく、ライン間隔が狭いと誤差は少ない。そこで、スキャンラインのライン間隔の長さを用いて、進行方向のカルマンゲインを修正する。具体的には、ライン間隔d(t)の逆数を進行方向係数a(t)とする。即ち、進行方向係数a(t)は、
a(t)=1/d(t)
と設定される。白線の端点が検出された場合、ライン間隔が狭い場合ほど、計測された白線の端点位置の精度は高いので、カルマンゲインが大きくなるような補正がなされる。
a(t)=1/d(t)
と設定される。白線の端点が検出された場合、ライン間隔が狭い場合ほど、計測された白線の端点位置の精度は高いので、カルマンゲインが大きくなるような補正がなされる。
車両の横方向の計測値は、ウィンドウW内で検出された複数のスキャンラインの中心点の平均値を用いる。ウィンドウW内に白線の端点が検出された場合、図13(A)に示すように、ウィンドウW内に存在するスキャンライン数をNMとし、ライダにより白線上で計測されたスキャンライン数をNLとすると、横方向係数b(t)は、
b(t)=NL(t)/NM
と設定される。白線の端点が検出された場合、白線上で検出されたスキャンライン数が多いほど、車両の横方向の計測精度は高いので、カルマンゲインが大きくなるような補正がなされる。
b(t)=NL(t)/NM
と設定される。白線の端点が検出された場合、白線上で検出されたスキャンライン数が多いほど、車両の横方向の計測精度は高いので、カルマンゲインが大きくなるような補正がなされる。
図13(B)は、車載機1が白線を検出したが、白線の端点を検出しない場合におけるカルマンゲインの補正係数を示す。白線を検出しない場合、車両の進行方向における計測値が得られないので、進行方向係数a(t)は、
a(t)=0
と設定される。また、白線の端点を検出しない場合、ウィンドウW内の全てのスキャンラインの中心点が計測でき、車両の横方向の計測精度は高いため、横方向係数b(t)は、
b(t)=1
と設定される。
a(t)=0
と設定される。また、白線の端点を検出しない場合、ウィンドウW内の全てのスキャンラインの中心点が計測でき、車両の横方向の計測精度は高いため、横方向係数b(t)は、
b(t)=1
と設定される。
自車位置推定部17は、こうして得られた進行方向係数a(t)及び横方向係数b(t)を用いて、カルマンゲインを補正する。具体的には、自車位置推定部17は、以下の式(12)に示すカルマンゲインK(t)に、進行方向係数a(t)及び横方向係数b(t)を乗じて式(13)に示す適応カルマンゲインK(t)’を生成する。
そして、自車位置推定部17は、得られた適応カルマンゲインK(t)’を式(2)におけるカルマンゲインK(t)に適用し、以下の式(14)により推定自車位置X^(t)を算出する。
(計測雑音の修正)
次に、白線の端点の検出状態に応じて計測雑音を修正する方法について説明する。図14(A)は、車載機1が白線の端点を検出した場合の計測雑音の補正係数を示す。自車位置推定に用いられるランドマーク計測値としては、車両の進行方向の計測値と、車両の横方向の計測値とがある。そこで、車両の進行方向の補正係数を進行方向補正係数a(t)とし、車両の横方向の補正係数を横方向係数b(t)とする。
次に、白線の端点の検出状態に応じて計測雑音を修正する方法について説明する。図14(A)は、車載機1が白線の端点を検出した場合の計測雑音の補正係数を示す。自車位置推定に用いられるランドマーク計測値としては、車両の進行方向の計測値と、車両の横方向の計測値とがある。そこで、車両の進行方向の補正係数を進行方向補正係数a(t)とし、車両の横方向の補正係数を横方向係数b(t)とする。
ウィンドウW内に白線の端点を検出した場合、車載機1は、白線の端点の位置を進行方向の計測値として用いる。但し、前述したように、白線の端点位置の計測値は、反射強度が変化した前後の2つの隣接するスキャンラインの中点として求められるので、スキャンラインのライン間隔により、車両の進行方向の計測精度は異なる。即ち、ライン間隔が広いと誤差が大きく、ライン間隔が狭いと誤差は少ない。そこで、スキャンラインのライン間隔の長さを用いて、進行方向の計測雑音を修正する。具体的には、ライン間隔d(t)と、検出された複数のライン間隔のうち最短のライン間隔(図9におけるライン間隔d9)との比を進行方向係数a(t)とする。即ち、進行方向係数a(t)は、
a(t)=d(t)/d9
と設定される。白線の端点が検出された場合、ライン間隔が狭い場合ほど、計測された白線の端点位置の精度は高いので、計測雑音が小さくなるような補正がなされる。
a(t)=d(t)/d9
と設定される。白線の端点が検出された場合、ライン間隔が狭い場合ほど、計測された白線の端点位置の精度は高いので、計測雑音が小さくなるような補正がなされる。
車両の横方向の計測値は、ウィンドウW内で検出された複数のスキャンラインの中心点の平均値を用いる。ウィンドウW内に白線の端点が検出された場合、図14(A)に示すように、ウィンドウW内に存在するスキャンライン数をNMとし、ライダにより白線上で計測されたスキャンライン数をNLとすると、横方向係数b(t)は、
b(t)=NM/NL(t)
と設定される。白線の端点が検出された場合、白線上で検出されたスキャンライン数が多いほど、車両の横方向の計測精度は高いので、計測雑音が小さくなるような補正がなされる。
b(t)=NM/NL(t)
と設定される。白線の端点が検出された場合、白線上で検出されたスキャンライン数が多いほど、車両の横方向の計測精度は高いので、計測雑音が小さくなるような補正がなされる。
図14(B)は、車載機1が白線を検出したが、白線の端点を検出しない場合における計測雑音の補正係数を示す。白線を検出しない場合、車両の進行方向における計測値が得られないので、進行方向係数a(t)は、大きな値が設定される。例えば、
a(t)=10000
と設定される。また、白線の端点を検出しない場合、ウィンドウW内の全てのスキャンラインの中心点が計測でき、車両の横方向の計測精度は高いため、横方向係数b(t)は、
b(t)=1
と設定される。
a(t)=10000
と設定される。また、白線の端点を検出しない場合、ウィンドウW内の全てのスキャンラインの中心点が計測でき、車両の横方向の計測精度は高いため、横方向係数b(t)は、
b(t)=1
と設定される。
自車位置推定部17は、こうして得られた進行方向係数a(t)及び横方向係数b(t)を計測雑音に乗じて、適応的計測雑音を生成する。そして、自車位置推定部17は、この適応的計測雑音を用いて、推定自車位置を求める。
具体的に、基本的な計測雑音R(t)は以下の式で与えられる。なお、対象とする白線計測に対して、σLx
2は車両座標系の進行方向における計測雑音であり、σLy
2は車両座標系の横方向における計測雑音である。
よって、自車位置推定部17は、進行方向係数a(t)及び横方向係数b(t)を計測雑音に乗じて、以下の適応的計測雑音R(t)’を得る。
これを、カルマンゲインの式(12)に代入して、以下の適応カルマンゲインK(t)’を得る。
そして、自車位置推定部17は、得られた適応カルマンゲインK(t)’を式(2)におけるカルマンゲインK(t)に適用し、式(14)により推定自車位置X^(t)を算出する。
これにより、破線の端点情報を用いて進行方向の位置推定を行うことができ、かつ、白線の端点の検出精度及び検出ライン数に応じた適応的計測雑音による処理によって、白線の検出状態に応じた好適な処理を行うことができる。
(3)自車位置推定処理
図15は、自車位置推定部17が実行する自車位置推定処理のフローチャートである。自車位置推定部17は、図15のフローチャートの処理を繰り返し実行する。
図15は、自車位置推定部17が実行する自車位置推定処理のフローチャートである。自車位置推定部17は、図15のフローチャートの処理を繰り返し実行する。
まず、自車位置推定部17は、車体速度と車両のヨー方向の角速度を検出したか否か判定する(ステップS11)。例えば、自車位置推定部17は、車速センサ4の出力に基づき車体速度を検出し、ジャイロセンサ3の出力に基づきヨー方向の角速度を検出する。自車位置推定部17は、車体速度と車両のヨー方向の角速度を検出した場合(ステップS11:Yes)、検出した車体速度と角速度を用いて、1時刻前の推定自車位置X^(t-1)から予測自車位置X-(t)を算出する。さらに、自車位置推定部17は、1時刻前の共分散行列から、現時刻での共分散行列を算出する(ステップS12)。なお、自車位置推定部17は、車体速度と車両のヨー方向の角速度を検出しなかった場合(ステップS11:No)、1時刻前の推定自車位置X^(t-1)を予測自車位置X-(t)とし、1時刻前の共分散行列を現時刻での共分散行列とする。
次に、自車位置推定部17は、自車位置推定に用いるランドマークとして、白線を検出したか否か判定する(ステップS13)。具体的には、自車位置推定部17は、図7に示すようにウィンドウWを設定し、ライダ2のスキャンデータの反射強度に基づいて、ウィンドウW内に白線を検出したか否かを判定する。白線を検出しない場合(ステップS13:No)、白線を利用した自車位置推定はできないので、処理は終了する。
一方、白線を検出した場合(ステップS13:Yes)、自車位置推定部17は、地図DB10内の地図データに基づいて白線のランドマーク予測値を算出するとともに、ライダ2による白線のランドマーク計測値を算出する(ステップS14)。具体的には、自車位置推定部17は、地図データに含まれる白線の端点の座標を車両座標系に座標変換して白線端点のランドマーク予測値を算出するとともに、ライダによる白線の計測値をランドマーク計測値とする。
また、自車位置推定部17は、図13及び図14で説明したように、白線の端点を検出できたか否かに応じて、進行方向係数a(t)及び横方向係数b(t)を算出する(ステップS15)。
そして、自車位置推定部17は、共分散行列を用いて上述の式(10)に基づきカルマンゲインK(t)を計算し、進行方向係数a(t)及び横方向係数b(t)を用いて式(13)又は式(17)に示す適応カルマンゲインK(t)’を生成し、式(14)を用いて推定自車位置を算出する。さらに、自車位置推定部17は、適応カルマンゲインK(t)’を用いて、式(18)に示すように共分散行列を更新する(ステップS16)。
以上説明したように、自車位置推定部17は、白線の端点を検出できた場合、白線の端点をランドマークとしてカルマンフィルタに基づく自車位置推定処理を行う。また、白線の端点を検出した際のライダ2によるスキャンラインのライン間隔に基づいて、進行方向係数を算出してカルマンゲインを修正する。これにより、車両の進行方向においても高精度の自車位置推定が可能となる。
[変形例]
上記の実施例では、車載機1は、車両の前方の左右位置にウィンドウWを設けて白線を検出しているが、車両の後部にも一対のライダ2が設けられている場合には、車両の後方の左右位置にもウィンドウWを設けて白線を検出しても良い。
上記の実施例では、車載機1は、車両の前方の左右位置にウィンドウWを設けて白線を検出しているが、車両の後部にも一対のライダ2が設けられている場合には、車両の後方の左右位置にもウィンドウWを設けて白線を検出しても良い。
1 車載機
2 ライダ
3 ジャイロセンサ
4 車速センサ
5 GPS受信機
10 地図DB
2 ライダ
3 ジャイロセンサ
4 車速センサ
5 GPS受信機
10 地図DB
Claims (9)
- 移動体に搭載される自己位置推定装置であって、
前記移動体の予測位置を取得する取得手段と、
地図情報から取得した区画線の端点の情報に基づいて得られた前記区画線の端点の予測位置と、前記移動体に搭載された計測部が光を所定方向に走査することで計測された前記区画線の端点の計測位置との差分値を算出する差分値算出手段と、
前記差分値に係数を乗じた値で前記移動体の予測位置を修正して前記移動体の自己位置を推定する推定手段と、
を備え、
前記推定手段は、前記区画線の端点を検出した位置における前記計測部の走査位置の間隔に基づいて、前記係数を補正する自己位置推定装置。 - 前記推定手段は、前記走査位置の間隔の逆数により、前記係数を補正する請求項1に記載の自己位置推定装置。
- 前記推定手段は、前記走査位置の間隔と、当該走査位置の間隔のうち前記計測部により計測された前記走査位置の最短の間隔と、の比に基づき、前記係数を補正する請求項1に記載の自己位置推定装置。
- 前記計測部は、前記移動体の位置を基準とした所定位置に規定されるウィンドウ内に存在する区画線を検出し、
前記推定手段は、前記区画線上に存在する走査線数と、前記ウィンドウのサイズに基づいて予め決められた走査線数との比により、前記係数を補正する請求項1乃至3のいずれか一項に記載の自己位置推定装置。 - 前記計測部は、相互に隣接する、区画線上に存在する走査線と区画線上に存在しない走査線との中間点を前記区画線の端点として検出する請求項1乃至4のいずれか一項に記載の自己位置推定装置。
- 前記係数は、カルマンゲインである請求項1乃至5のいずれか一項に記載の自己位置推定装置。
- 移動体に搭載される自己位置推定装置により実行される自己位置推定方法であって、
前記移動体の予測位置を取得する取得工程と、
地図情報から取得した区画線の端点の情報に基づいて得られた前記区画線の端点の予測位置と、前記移動体に搭載された計測部が光を所定方向に走査することで計測された前記区画線の端点の計測位置との差分値を算出する差分算出工程と、
前記差分値に係数を乗じた値で前記移動体の予測位置を修正して前記移動体の自己位置を推定する推定工程と、
を備え、
前記推定工程は、前記区画線の端点を検出した位置における前記計測部の走査位置の間隔に基づいて、前記係数を補正する自己位置推定方法。 - 移動体に搭載され、コンピュータを備える自己位置推定装置により実行されるプログラムであって、
前記移動体の予測位置を取得する取得手段、
地図情報から取得した区画線の端点の情報に基づいて得られた前記区画線の端点の予測位置と、前記移動体に搭載された計測部が光を所定方向に走査することで計測された前記区画線の端点の計測位置との差分値を算出する差分値算出手段、
前記差分値に係数を乗じた値で前記移動体の予測位置を修正して前記移動体の自己位置を推定する推定手段、
として前記コンピュータを機能させ、
前記推定手段は、前記区画線の端点を検出した位置における前記計測部の走査位置の間隔に基づいて、前記係数を補正するプログラム。 - 請求項8に記載のプログラムを記憶した記憶媒体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020510866A JP6923750B2 (ja) | 2018-03-28 | 2019-03-26 | 自己位置推定装置、自己位置推定方法、プログラム及び記憶媒体 |
EP19777416.9A EP3779510A4 (en) | 2018-03-28 | 2019-03-26 | DEVICE AND METHOD FOR ESTABLISHMENT ESTIMATE, PROGRAM AND RECORDING MEDIUM |
US17/042,854 US11822009B2 (en) | 2018-03-28 | 2019-03-26 | Self-position estimation device, self-position estimation method, program, and recording medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-063351 | 2018-03-28 | ||
JP2018063351 | 2018-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019189098A1 true WO2019189098A1 (ja) | 2019-10-03 |
Family
ID=68058961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/012721 WO2019189098A1 (ja) | 2018-03-28 | 2019-03-26 | 自己位置推定装置、自己位置推定方法、プログラム及び記憶媒体 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11822009B2 (ja) |
EP (1) | EP3779510A4 (ja) |
JP (3) | JP6923750B2 (ja) |
WO (1) | WO2019189098A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023176617A1 (ja) | 2022-03-14 | 2023-09-21 | パイオニア株式会社 | 位置推定装置、位置推定方法、およびプログラム |
US12085408B2 (en) | 2021-03-25 | 2024-09-10 | Toyota Jidosha Kabushiki Kaisha | Vehicle position estimation device, vehicle position estimation method, and non-transitory recording medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09178482A (ja) * | 1995-12-26 | 1997-07-11 | Mitsubishi Electric Corp | 走行路検出装置 |
US20040036586A1 (en) * | 2002-08-23 | 2004-02-26 | Mark Harooni | Light tracking apparatus and method |
JP2008249639A (ja) * | 2007-03-30 | 2008-10-16 | Mitsubishi Electric Corp | 自己位置標定装置、自己位置標定方法および自己位置標定プログラム |
JP2013257742A (ja) | 2012-06-13 | 2013-12-26 | Sumitomo Heavy Ind Ltd | 移動体位置推定方法及び移動体 |
JP2017072422A (ja) | 2015-10-05 | 2017-04-13 | パイオニア株式会社 | 情報処理装置、制御方法、プログラム及び記憶媒体 |
JP2018025490A (ja) * | 2016-08-10 | 2018-02-15 | 株式会社デンソー | 位置推定装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2990991A1 (en) | 2014-08-29 | 2016-03-02 | Honda Research Institute Europe GmbH | Method and system for using global scene context for adaptive prediction and corresponding program, and vehicle equipped with such system |
US9711050B2 (en) | 2015-06-05 | 2017-07-18 | Bao Tran | Smart vehicle |
KR20170016177A (ko) * | 2015-08-03 | 2017-02-13 | 엘지전자 주식회사 | 차량 및 그 제어방법 |
US11454514B2 (en) * | 2015-12-25 | 2022-09-27 | Pioneer Corporation | Distance estimation device, distance estimation method and program |
US11243534B2 (en) * | 2017-01-31 | 2022-02-08 | Pioneer Corporation | Information processing device, information processing method, and non-transitory computer readable medium |
CN106908775B (zh) * | 2017-03-08 | 2019-10-18 | 同济大学 | 一种基于激光反射强度的无人车实时定位方法 |
JP6740470B2 (ja) * | 2017-05-19 | 2020-08-12 | パイオニア株式会社 | 測定装置、測定方法およびプログラム |
WO2018221453A1 (ja) * | 2017-05-31 | 2018-12-06 | パイオニア株式会社 | 出力装置、制御方法、プログラム及び記憶媒体 |
US10332395B1 (en) * | 2017-12-21 | 2019-06-25 | Denso International America, Inc. | System and method for translating roadside device position data according to differential position data |
-
2019
- 2019-03-26 JP JP2020510866A patent/JP6923750B2/ja active Active
- 2019-03-26 WO PCT/JP2019/012721 patent/WO2019189098A1/ja unknown
- 2019-03-26 EP EP19777416.9A patent/EP3779510A4/en active Pending
- 2019-03-26 US US17/042,854 patent/US11822009B2/en active Active
-
2021
- 2021-07-29 JP JP2021124030A patent/JP2021181995A/ja active Pending
-
2023
- 2023-06-13 JP JP2023097052A patent/JP2023118751A/ja not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09178482A (ja) * | 1995-12-26 | 1997-07-11 | Mitsubishi Electric Corp | 走行路検出装置 |
US20040036586A1 (en) * | 2002-08-23 | 2004-02-26 | Mark Harooni | Light tracking apparatus and method |
JP2008249639A (ja) * | 2007-03-30 | 2008-10-16 | Mitsubishi Electric Corp | 自己位置標定装置、自己位置標定方法および自己位置標定プログラム |
JP2013257742A (ja) | 2012-06-13 | 2013-12-26 | Sumitomo Heavy Ind Ltd | 移動体位置推定方法及び移動体 |
JP2017072422A (ja) | 2015-10-05 | 2017-04-13 | パイオニア株式会社 | 情報処理装置、制御方法、プログラム及び記憶媒体 |
JP2018025490A (ja) * | 2016-08-10 | 2018-02-15 | 株式会社デンソー | 位置推定装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12085408B2 (en) | 2021-03-25 | 2024-09-10 | Toyota Jidosha Kabushiki Kaisha | Vehicle position estimation device, vehicle position estimation method, and non-transitory recording medium |
WO2023176617A1 (ja) | 2022-03-14 | 2023-09-21 | パイオニア株式会社 | 位置推定装置、位置推定方法、およびプログラム |
Also Published As
Publication number | Publication date |
---|---|
EP3779510A1 (en) | 2021-02-17 |
US11822009B2 (en) | 2023-11-21 |
JPWO2019189098A1 (ja) | 2021-03-11 |
EP3779510A4 (en) | 2022-01-05 |
JP2021181995A (ja) | 2021-11-25 |
JP6923750B2 (ja) | 2021-08-25 |
US20210025981A1 (en) | 2021-01-28 |
JP2023118751A (ja) | 2023-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018181974A1 (ja) | 判定装置、判定方法、及び、プログラム | |
JP7155284B2 (ja) | 計測精度算出装置、自己位置推定装置、制御方法、プログラム及び記憶媒体 | |
JP6980010B2 (ja) | 自己位置推定装置、制御方法、プログラム及び記憶媒体 | |
JP6806891B2 (ja) | 情報処理装置、制御方法、プログラム及び記憶媒体 | |
JP2023118751A (ja) | 自己位置推定装置 | |
JP2023075184A (ja) | 出力装置、制御方法、プログラム及び記憶媒体 | |
JP2022176322A (ja) | 自己位置推定装置、制御方法、プログラム及び記憶媒体 | |
JP2020032986A (ja) | 姿勢推定装置、制御方法、プログラム及び記憶媒体 | |
JP2023164553A (ja) | 位置推定装置、推定装置、制御方法、プログラム及び記憶媒体 | |
JP2022136145A (ja) | データ構造、情報処理装置、及び地図データ生成装置 | |
WO2018212302A1 (ja) | 自己位置推定装置、制御方法、プログラム及び記憶媒体 | |
WO2018180247A1 (ja) | 出力装置、制御方法、プログラム及び記憶媒体 | |
US20240053440A1 (en) | Self-position estimation device, self-position estimation method, program, and recording medium | |
WO2018212290A1 (ja) | 情報処理装置、制御方法、プログラム及び記憶媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19777416 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020510866 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019777416 Country of ref document: EP Effective date: 20201028 |