WO2019188895A1 - Unsaturated-group-containing alkali-soluble resin, photosensitive resin composition including unsaturated-group-containing alkali-soluble resin as essential ingredient, and cured product of photosensitive resin composition including unsaturated-group-containing alkali-soluble resin as essential ingredient - Google Patents

Unsaturated-group-containing alkali-soluble resin, photosensitive resin composition including unsaturated-group-containing alkali-soluble resin as essential ingredient, and cured product of photosensitive resin composition including unsaturated-group-containing alkali-soluble resin as essential ingredient Download PDF

Info

Publication number
WO2019188895A1
WO2019188895A1 PCT/JP2019/012349 JP2019012349W WO2019188895A1 WO 2019188895 A1 WO2019188895 A1 WO 2019188895A1 JP 2019012349 W JP2019012349 W JP 2019012349W WO 2019188895 A1 WO2019188895 A1 WO 2019188895A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid
resin composition
soluble resin
alkali
Prior art date
Application number
PCT/JP2019/012349
Other languages
French (fr)
Japanese (ja)
Inventor
滑川 崇平
正臣 高野
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Priority to CN201980020737.0A priority Critical patent/CN111886274B/en
Priority to KR1020207027875A priority patent/KR102673645B1/en
Priority to JP2020510026A priority patent/JP7311493B2/en
Publication of WO2019188895A1 publication Critical patent/WO2019188895A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers

Definitions

  • the present invention relates to an unsaturated group-containing alkali-soluble resin, a photosensitive resin composition containing it as an essential component, and a cured product obtained by curing the same.
  • the photosensitive resin composition and the cured product thereof according to the present invention include a solder resist, a plating resist, an etching resist for manufacturing a circuit board, an insulating film for multilayering a wiring board on which a semiconductor element is mounted, and a semiconductor gate insulating film. It can be applied to photosensitive adhesives.
  • a method of patterning by exposure and development is known as an effective means for fine processing of an insulating material, and a photosensitive resin composition has been used there, but high sensitivity, adhesion to a substrate, reliability, Many characteristics such as heat resistance and chemical resistance have been demanded.
  • a conventional insulating material made of a photosensitive resin composition uses a photocuring reaction by a reaction between a photoreactive alkali-soluble resin and a photopolymerization initiator, and mainly uses a mercury lamp as an exposure wavelength for photocuring.
  • I line 365 nm
  • the i-line is absorbed by the photosensitive resin itself or the colorant, and the photocuring degree is lowered.
  • the amount of absorption increases if the film is thick. Therefore, the exposed portion has a difference in crosslink density with respect to the film thickness direction.
  • a photosensitive resin composition for such an application includes a polyfunctional photocurable monomer having a polymerizable unsaturated bond, an alkali-soluble binder resin, a photopolymerization initiator, and the like.
  • a photosensitive resin composition that is technically disclosed as an application as a color filter material can be applied.
  • Patent Literature 1 and Patent Literature 2 disclose copolymers of (meth) acrylic acid or (meth) acrylic acid ester having a carboxyl group as a binder resin, maleic anhydride, and other polymerizable monomers.
  • Patent Document 3 discloses that an alkali-soluble unsaturated compound having a polymerizable unsaturated group and a carboxyl group in one molecule is effective for forming a negative pattern such as a color filter.
  • Patent Document 4 Patent Document 5
  • Patent Document 6 and Patent Document 7 disclose liquid resins using a reaction product of an epoxy (meth) acrylate having a bisphenolfluorene structure and an acid anhydride.
  • Patent Document 8 discloses polyfunctionalization of an alkali-soluble resin composition that increases the molecular weight of a carboxyl group-containing copolymer.
  • Japanese Patent Laid-Open No. 61-213213 Japanese Unexamined Patent Publication No. 1-152449 JP-A-4-340965 JP-A-4-345673 JP-A-4-345608 JP-A-4-355450 JP-A-4-3631111 Japanese Patent Laid-Open No. 9-325494
  • the alkali-soluble unsaturated compound described in Patent Document 3 is insolubilized by light irradiation, it is expected to be highly sensitive compared to the combination of the binder resin and the polyfunctional polymerizable monomer described above.
  • examples of the compound described in Patent Document 3 include those obtained by arbitrarily adding a polymerizable unsaturated bond acrylic acid and an acid anhydride to the hydroxyl group of the phenol oligomer.
  • the alkali dissolution rate distribution of the alkali-soluble resin becomes wide, so that it is difficult to form a fine negative pattern. is there.
  • examples of the resins described in Patent Document 4, Patent Document 5, Patent Document 6, and Patent Document 7 include a reaction product of epoxy (meth) acrylate and acid monoanhydride. Since this reaction product has a low molecular weight, it is difficult to increase the difference in alkali solubility between the exposed area and the unexposed area, so that a fine pattern cannot be formed.
  • the copolymer described in Patent Document 8 since the copolymer described in Patent Document 8 has a low number of polymerizable unsaturated bonds and thus a sufficient crosslinking density cannot be obtained, the copolymer has an increased ratio of polymerizable unsaturated bonds in one molecule. There is room for structural improvements.
  • An object of the present invention is to provide a photosensitive resin composition capable of patterning with excellent resolution by alkali development. Furthermore, the cured product has a low coefficient of thermal expansion even when heat is applied in the processing process after pattern formation in a semiconductor process, etc., and has excellent chemical resistance when undergoing a processing process such as electrode formation. It is to provide a cured film having the characteristics shown.
  • a photosensitive resin composition using an alkali-soluble resin obtained by reacting a dicarboxylic acid, a tricarboxylic acid or an acid monoanhydride with a polyhydric alcohol having a polymerizable unsaturated group is an insulating material that requires photopatterning. It has been found that it is suitable for forming a cured film pattern such as a film.
  • the embodiment of the present invention relates to (i) an alkali-soluble resin represented by the following general formula (1) and having a carboxyl group and a polymerizable unsaturated group in one molecule.
  • (X represents a divalent hydrocarbon group having 1 to 20 carbon atoms.
  • the divalent hydrocarbon group may be linear or branched, and may have an aromatic ring in the main chain or branched chain.
  • Y is a hydrocarbon group R having 1 to 5 carbon atoms or a substituent Z having a polymerizable unsaturated group and a carboxyl group in the molecule represented by the general formula (2), and the number of moles of R CR ,
  • the number of moles of Z is C Z
  • the value of C R / C Z is 0.05 to 2.0
  • the average value of n is 1 to 20.
  • the number of hydrogen atoms of the naphthalene ring A part thereof may be substituted with R 1
  • R 1 represents a hydrocarbon group having 1 to 5 carbon atoms, a halogen atom or a phenyl group.
  • R 3 represents a hydrogen atom or a methyl group.
  • L represents a substituent represented by the general formula (3).
  • M represents a divalent or trivalent carboxylic acid residue, and p is 1 or 2.
  • the embodiment of the present invention comprises (i) an alkali-soluble resin having a carboxyl group and a polymerizable unsaturated group in one molecule, and (ii) a photopolymerizable monomer having at least one polymerizable unsaturated group. And (iii) a photopolymerization initiator as an essential component.
  • a photosensitive resin composition capable of forming a fine cured film pattern by photolithography can be provided by including the alkali-soluble resin represented by the general formula (1). Furthermore, according to the present invention, it is possible to provide a cured film pattern that has low thermal expansion and excellent chemical resistance (alkali resistance and the like) and exhibits excellent properties such as adhesion to a substrate, heat resistance, and electrical reliability. it can.
  • the present invention relates to a photosensitive resin composition containing an alkali-soluble resin represented by the general formula (1) as a main component, and a cured product obtained by curing the photosensitive resin composition.
  • the alkali-soluble resin represented by the general formula (1) is obtained by reacting (meth) acrylic acid with an epoxy compound having two or more glycidyl ether groups derived from a polymer of naphthols. It is obtained by reacting a polyhydric alcohol having a saturated group with a dicarboxylic acid, a tricarboxylic acid or an acid monoanhydride thereof.
  • the alkali-soluble resin represented by the general formula (1) has both a polymerizable unsaturated group and a carboxyl group, it has excellent photocurability, good developability, and patterning characteristics as an alkali-developable photosensitive resin composition. Have. Further, when the photosensitive resin composition is cured, it can contribute to low thermal expansion and alkali resistance.
  • the alkali-soluble resin of the general formula (1) has a naphthalene skeleton represented by the general formula (4) having two or more glycidyl ether groups obtained by converting a phenolic hydroxyl group of a naphthol polymer into glycidyl ether. It is derived from a polyhydric alcohol containing a polymerizable unsaturated group obtained by reacting an epoxy compound with (meth) acrylic acid.
  • the production method described in JP-A-2006-160868 can be referred to.
  • X represents a divalent hydrocarbon group having 1 to 20 carbon atoms.
  • the divalent hydrocarbon group may have a straight chain or a branch, and may have an aromatic ring in the main chain or the branched chain.
  • a bivalent coupling group is General formula (5), General formula (6), and General formula (7).
  • W represents a hydrocarbon group R or a glycidyl group G, of 1-5 carbon atoms, moles C R of R, when the number of moles C G of G, C value of R / C G 0.05-2 .0.
  • R is preferably a methyl group or an ethyl group.
  • R 1 and R 2 independently represent a hydrocarbon group having 1 to 5 carbon atoms, a halogen atom or a phenyl group.
  • the polymerization method of naphthols can be referred to general methods for producing phenol resins and phenol aralkyl resins, but is derived from a compound of the general formula (4) characterized by having a hydrocarbon group R.
  • a method for producing the above the method described in JP-A-2006-160868 can be referred to.
  • naphthols and a crosslinking agent are condensed in the presence of an acidic catalyst.
  • 1-naphthol and / or 2-naphthol is used as a naphthol, and as a crosslinking agent, formaldehyde, acetaldehyde, Aldehyde compounds such as benzaldehyde; 1,4-bis (chloromethyl) benzene, 1,4-bis (chloroethyl) benzene, 4,4′-bis (chloromethyl) biphenyl, 4,4′-bis (chloromethylbiphenyl) Halogenated alkyl compounds such as ether; p-xylylene glycol, p-di (hydroxyethyl) benzene, 4,4′-bis (hydroxymethyl) biphenyl, 2,6-bis (hydroxymethyl) naphthalene, 2,2 ′ Alcohols such as bis (hydroxymethyl) diphenyl ether; p-xy Alcohols dialkyl ethers such as glycol dimethyl ether: divinyl benzene, divinyl compounds
  • the crosslinking agent used is 1,4-bis (chloromethyl) benzene, 1,4-bis (chloroethyl) benzene, 4,4′-bis (chloromethyl) biphenyl, p-xylylene glycol, p- Di (hydroxyethyl) benzene, p-xylylene glycol dimethyl ether, and 4,4′-bis (hydroxymethyl) biphenyl are preferred.
  • the acidic catalyst can be appropriately selected from known inorganic acids and organic acids.
  • inorganic acids such as hydrochloric acid and sulfuric acid, organic acids such as formic acid, oxalic acid and p-toluenesulfonic acid, and Lewis acids such as aluminum chloride.
  • the naphthol polymer of the present invention can be obtained by reacting the resin obtained in the first step with an alcohol under an acidic catalyst.
  • the alcohol to be used include methanol, ethanol, propanol, butanol, pentanol and the like, and the catalyst exemplified in the first stage can be used as the acidic catalyst.
  • alkoxy You may use the manufacturing method of using a naphthalene together.
  • alkoxynaphthalene include 1-methoxynaphthalene, 2-methoxynaphthalene, 1-ethoxynaphthalene, 2-ethoxynaphthalene, 1-propoxynaphthalene and 2-propoxynaphthalene.
  • An epoxy compound having a naphthalene skeleton represented by the general formula (4) having two or more glycidyl ether groups can be obtained by converting a phenolic hydroxyl group of a polymer of naphthols into glycidyl ether.
  • the production method can be carried out in the same manner as a normal hydroxyl group epoxidation reaction. For example, there is a method in which a polymer of naphthols is dissolved in excess epichlorohydrin and then reacted at 20 to 150 ° C. for 1 to 10 hours in the presence of an alkali metal hydroxide such as sodium hydroxide.
  • (meth) acrylic acid a known method can be used for the reaction between such an epoxy compound and (meth) acrylic acid.
  • 2 mol of (meth) acrylic acid is used for 1 mol of epoxy group. Since (meth) acrylic acid is reacted with all of the epoxy groups, (meth) acrylic acid may be used in an amount slightly more than an equimolar amount of the epoxy group and the carboxyl group.
  • the reaction product obtained by this reaction is an epoxy (meth) acrylate represented by the general formula (8).
  • R 3 represents a hydrogen atom or a methyl group.
  • the solvent, catalyst and other reaction conditions used at this time are not particularly limited.
  • the solvent preferably does not have a hydroxyl group and has a boiling point higher than the reaction temperature.
  • examples of such solvents include cellosolve solvents including ethyl cellosolve acetate and butyl cellosolve acetate; high boiling ethers or ester systems including diglyme, ethyl carbitol acetate, butyl carbitol acetate and propylene glycol monomethyl ether acetate.
  • ketone solvents including cyclohexanone and diisobutyl ketone.
  • the catalyst examples include known catalysts such as ammonium salts including tetraethylammonium bromide and triethylbenzylammonium chloride; phosphines including triphenylphosphine and tris (2,6-dimethoxyphenyl) phosphine.
  • ammonium salts including tetraethylammonium bromide and triethylbenzylammonium chloride
  • phosphines including triphenylphosphine and tris (2,6-dimethoxyphenyl) phosphine.
  • An alkali-soluble resin represented by the general formula (1) can be obtained by reacting the hydroxyl group of the compound represented by the general formula (8) with a dicarboxylic acid, a tricarboxylic acid or an acid monoanhydride thereof. Usually, since it reacts using an acid monoanhydride, it illustrates as an acid monoanhydride. Each hydrocarbon residue (structure excluding the carboxyl group) of these acid monoanhydrides may be further substituted with a substituent such as an alkyl group, a cycloalkyl group, or an aromatic group.
  • saturated chain hydrocarbon dicarboxylic acids or tricarboxylic acid monoanhydrides include succinic acid, acetyl succinic acid, adipic acid, azelaic acid, citral malic acid, malonic acid, glutaric acid, citric acid, tartaric acid, oxoglutaric acid, Acid monoanhydrides such as pimelic acid, sebacic acid, suberic acid and diglycolic acid are included.
  • Examples of acid monoanhydrides of saturated cyclic hydrocarbon dicarboxylic acids or tricarboxylic acids include acid monoanhydrides such as hexahydrophthalic acid, cyclobutane dicarboxylic acid, cyclopentane dicarboxylic acid, norbornane dicarboxylic acid, and hexahydrotrimellitic acid. Things are included.
  • Examples of the acid monoanhydride of unsaturated dicarboxylic acid or tricarboxylic acid include acid monoanhydrides such as maleic acid, itaconic acid, tetrahydrophthalic acid, methylendomethylenetetrahydrophthalic acid, and chlorendic acid.
  • examples of the acid monoanhydride of the aromatic hydrocarbon dicarboxylic acid or tricarboxylic acid include acid anhydrides such as phthalic acid and trimellitic acid.
  • the acid monoanhydride is preferably an acid monoanhydride of succinic acid, itaconic acid, tetrahydrophthalic acid, hexahydrotrimellitic acid, phthalic acid, trimellitic acid, succinic acid, itaconic acid, More preferred is acid monoanhydride of tetrahydrophthalic acid.
  • These acid monoanhydrides can be used alone or in combination of two or more.
  • the hydroxyl group of the compound represented by the general formula (8) is reacted with dicarboxylic acid or tricarboxylic acid or their acid monoanhydrides.
  • the reaction temperature for synthesizing the compound represented by the general formula (1) is preferably 20 to 120 ° C., more preferably 40 to 90 ° C.
  • the molar ratio of the acid monoanhydride when synthesizing the compound represented by the general formula (1) can be arbitrarily changed for the purpose of adjusting the acid value of the alkali-soluble resin represented by the general formula (1).
  • the photosensitive resin composition of the present invention comprises an alkali-soluble resin represented by the general formula (1) in (i) in a solid content excluding a solvent (the solid content includes a monomer that becomes a solid content after curing). It is preferable to contain 30 mass% or more, and it is more preferable to contain 50 mass% or more.
  • the photosensitive resin composition it is preferable to contain the following components (i) to (iii) as essential components, and it is more preferable to contain the component (iv) as essential components.
  • a photopolymerization initiator (Iv) Epoxy compound
  • examples of the photopolymerizable monomer having at least one polymerizable unsaturated group as component (ii) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy Monomers having a hydroxyl group such as ethylhexyl (meth) acrylate; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, tetramethylene glycol di ( (Meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaeerythritol tri (meth) acrylate, pentaeerythri
  • a photopolymerizable monomer having two or more polymerizable unsaturated groups, and three or more polymerizable unsaturated groups it is preferable to use a photopolymerizable monomer having These compounds can be used alone or in combination of two or more.
  • the blending ratio [(i) / (ii)] of the component (ii) and the alkali-soluble resin [component (i)] represented by the general formula (1) is 20/80 to 90/10. Preferably, it is 40/60 to 80/20.
  • cured material after photocuring reaction will become weak.
  • the acid value of a coating film is low and the solubility with respect to an alkaline developing solution falls in an unexposed part, the problem that a pattern edge does not become shaky and sharp arises.
  • the blending ratio of the alkali-soluble resin is larger than the above range, the ratio of the photoreactive functional group in the resin is decreased, so that the formation of the crosslinked structure by the photocuring reaction may be insufficient.
  • the acid value in the resin component is too high, the exposed portion is highly soluble in an alkaline developer, so that the formed pattern is likely to be narrower than the target line width, and pattern loss is likely to occur. Problems may arise.
  • Examples of the photopolymerization initiator (iii) include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, p-dimethylaminopropiophenone, dichloroacetophenone, trichloroacetophenone, p-tert-butylacetophenone.
  • Benzophenones such as benzophenone, 2-chlorobenzophenone, p, p'-bisdimethylaminobenzophenone; benzoin ethers such as benzyl, benzoin, benzoin methyl ether, benzoin isopropyl ether, benzoin isobutyl ether; 2- ( O-chlorophenyl) -4,5-phenylbiimidazole, 2- (O-chlorophenyl) -4,5-di (m-methoxyphenyl)) biimidazole, 2- (O-fluoropheny ) -4,5-diphenylbiimidazole, 2- (O-methoxyphenyl) -4,5-diphenylbiimidazole, biimidazole compounds such as 2,4,5-triarylbiimidazole; 2-trichloromethyl- 5-styryl-1,3,4-oxadiazole, 2-trichloromethyl-5- (p-
  • the addition amount of the photopolymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of (i) alkali-soluble resin and (ii) photopolymerizable monomer, and 2 to 5 parts by mass. More preferably, it is a part.
  • the addition amount of the photopolymerization initiator is less than 0.1 parts by mass, sufficient sensitivity cannot be obtained, and when the addition amount of the photopolymerization initiator exceeds 10 parts by mass, a taper shape (film of development pattern cross section) is obtained. The halation in which the shape in the thickness direction does not become sharp and the hem is pulled is likely to occur. Furthermore, decomposition gas may be generated when exposed to a high temperature in a subsequent process.
  • Examples of the epoxy compound (iv) include phenol novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, biphenyl type epoxy resins, and alicyclic rings.
  • An epoxy resin such as a formula epoxy resin, a compound having at least one epoxy group such as phenyl glycidyl ether, p-butylphenol glycidyl ether, triglycidyl isocyanurate, diglycidyl isocyanurate, allyl glycidyl ether, glycidyl methacrylate, and the like are included.
  • a compound having at least two epoxy groups is preferable.
  • the addition amount is preferably in the range of 10 to 40 parts by mass with respect to 100 parts by mass in total of the components (i) and (ii).
  • one purpose of adding an epoxy compound is to reduce the amount of carboxyl groups remaining when a cured film is formed after patterning in order to increase the reliability of the cured film. If the amount of the epoxy compound used is less than 10 parts by mass, the moisture resistance reliability when used as an insulating film may not be ensured. Moreover, when there are more usage-amounts of an epoxy compound than 40 mass parts, there exists a possibility that the quantity for the photosensitive group in the resin component in the photosensitive resin composition may reduce, and the sensitivity for patterning may not fully be obtained. .
  • Photosensitivity comprising, as essential components, an alkali-soluble resin represented by general formula (1) of (i), (ii) a photopolymerizable monomer, (iii) a photopolymerization initiator, and (iv) an epoxy compound.
  • the resin composition can be used by dissolving it in a solvent or blending various additives as required. That is, when the photosensitive resin composition of the present invention is used for insulating materials, it is preferable to use a solvent in addition to the essential components (i) to (iv).
  • solvents include alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol, propylene glycol; terpenes such as ⁇ - or ⁇ -terpineol; acetone, methyl ethyl ketone, cyclohexanone, N-methyl-2-pyrrolidone Ketones such as toluene; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; cellosolve, methyl cellosolve, ethyl cellosolve, carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glycol Monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monomethyl ether, triethylene Glycol ethers such as glycol monoe
  • the photosensitive resin composition of the present invention includes a curing accelerator, a thermal polymerization inhibitor, an antioxidant, a plasticizer, a filler, a leveling agent, an antifoaming agent, a coupling agent, and a surfactant as necessary. Etc. can be mix
  • the curing accelerator for example, a known compound known as a curing accelerator, a curing catalyst, a latent curing agent and the like which are usually applied to an epoxy compound can be used, and a tertiary amine, a quaternary ammonium salt, a tertiary Examples include phosphine, quaternary phosphonium salts, boric acid esters, Lewis acids, organometallic compounds, imidazoles, diazabicyclo compounds, and the like.
  • thermal polymerization inhibitor and the antioxidant examples include hydroquinone, hydroquinone monomethyl ether, pyrogallol, tert-butylcatechol, phenothiazine, hindered phenol compounds, phosphorus heat stabilizers and the like.
  • plasticizer examples include dibutyl phthalate, dioctyl phthalate, tricresyl phosphate, and the like.
  • filler examples include glass fiber, silica, mica, alumina, precipitated barium sulfate, precipitated calcium carbonate and the like.
  • antifoaming agents and leveling agents include silicone-based, fluorine-based, and acrylic compounds.
  • Examples of coupling agents include vinyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3- (glycidyloxy) propyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-aminopropyltriethoxysilane, 3- (phenylamino) propyltrimethoxysilane, 3-ureidopropyltriethoxysilane are included.
  • Examples of the surfactant include a fluorine-based surfactant, a silicone-based surfactant, and the like.
  • the photosensitive resin composition of the present invention comprises (i) an alkali-soluble resin represented by the general formula (1) in a solid content excluding a solvent (the solid content includes a monomer that becomes a solid content after curing). , (Ii) a photopolymerizable monomer, (iii) a photopolymerization initiator, and (iv) an epoxy compound in total of 70% by mass or more, preferably 80% by mass, more preferably 90% by mass or more. .
  • the amount of the solvent varies depending on the target viscosity, but is preferably 10 to 80% by mass with respect to the total amount.
  • the coating film (cured product) of the present invention is cured by, for example, applying a solution of a photosensitive resin composition to a substrate or the like, drying the solvent, and irradiating light (including ultraviolet rays and radiation). It is obtained by. Using a photomask or the like to provide a portion that is exposed to light and a portion that is not exposed to light, only the portion that is exposed to light is cured, and the other portion is dissolved in an alkaline solution to obtain a coating film having a desired pattern. .
  • each step of the film forming method by application and drying of the photosensitive resin composition is as follows.
  • a known solution dipping method, spray method, roller coater machine Any method such as a method using a land coater, a slit coater or a spinner can be adopted.
  • the film is formed by removing the solvent (pre-baking).
  • pre-baking is performed by heating with an oven, a hot plate or the like, vacuum drying, or a combination thereof.
  • the heating temperature and heating time in the pre-baking can be appropriately selected depending on the solvent to be used, but for example, it is preferably performed at 80 to 120 ° C. for 1 to 10 minutes.
  • the radiation used for the exposure for example, visible light, ultraviolet light, far ultraviolet light, electron beam, X-ray or the like can be used, and the wavelength range of the radiation is preferably 250 to 450 nm.
  • a developer suitable for this alkali development for example, an aqueous solution of sodium carbonate, potassium carbonate, potassium hydroxide, diethanolamine, tetramethylammonium hydroxide, or the like can be used. These developing solutions can be appropriately selected in accordance with the characteristics of the resin layer, but it is also effective to add a surfactant if necessary.
  • the development temperature is preferably 20 to 35 ° C., and a fine image can be precisely formed using a commercially available developing machine, ultrasonic cleaner or the like.
  • a development processing method a shower development method, a spray development method, a dip (immersion) development method, a paddle (liquid accumulation) development method, or the like can be applied.
  • a heat treatment is performed at 120 to 250 ° C. for 20 to 100 minutes. This post-baking is performed for the purpose of improving the adhesion between the patterned coating film and the substrate. This is performed by heating with an oven, a hot plate or the like, as in the pre-bake.
  • the patterned coating film of this invention is formed through each process by the photolithographic method. Then, polymerization or curing (sometimes referred to as curing together) is completed by heat to obtain a cured film such as an insulating film having a desired pattern.
  • the curing temperature at this time is preferably 140 to 250 ° C.
  • the photosensitive resin composition of the present invention has more polymerizable unsaturated groups in one molecule than conventional ones, photocurability is improved, and the crosslinking density after curing without increasing the amount of photopolymerization initiator. Can be increased. That is, when ultraviolet rays or electron beams are irradiated with a thick film, the cured portion is cured to the bottom, so that the difference in solubility with respect to the alkaline developer in the exposed portion and the unexposed portion is increased, so that pattern dimension stability, development margin, Pattern adhesion is improved, and a pattern can be formed with high resolution. Even in the case of a thin film, the sensitivity can be improved and the amount of remaining film in the exposed area can be greatly improved and peeling during development can be suppressed.
  • the photosensitive composition of the present invention includes a solder resist, a plating resist, an etching resist for manufacturing a circuit board, an insulating film for multilayering a wiring board on which a semiconductor element is mounted, a semiconductor gate insulating film, a photosensitive adhesive (In particular, it is extremely useful for adhesives that require heat bonding performance even after pattern formation by photolithography.
  • the acid value was determined by dissolving the resin solution in dioxane and titrating with a 1/10 N-KOH aqueous solution using a potentiometric titrator “COM-1600” (manufactured by Hiranuma Sangyo Co., Ltd.). Was the acid value.
  • the molecular weight is determined by gel permeation chromatography (GPC) ("HLC-8220GPC" manufactured by Tosoh Corporation, column: TSKgelSuperH2000 (2) + TSKgelSuperH3000 (1) + TSKgelSuperH4000 (1) + TSKgelSuperH5000 (1 east) (Made by company), solvent: tetrahydrofuran, temperature: 40 ° C., speed: 0.6 ml / min), and a value obtained as a converted value of standard polystyrene (“PS-oligomer kit” manufactured by Tosoh Corporation) is a weight average molecular weight. (Mw).
  • GPC gel permeation chromatography
  • NAMMEA Compound obtained by reacting methanol with a reaction product of 1-naphthol and p-xylylene glycol dimethyl ether (naphthol aralkyl resin) to methoxylate a part of hydroxyl groups (the ratio of methoxy groups to the total amount of hydroxyl groups and methoxy groups is 28 %)
  • Epoxy compound obtained by reacting chloromethyloxirane epoxy equivalent 406, in general formula (4), X is general formula (5), W is methyl group (R) and glycidyl group (G)) the C R / C value of G is 0.39)
  • the compound was further obtained by reacting acrylic acid (equal equivalent reaction product of the epoxy group and a carboxyl group)
  • THPA 1,2,3,6-tetrahydrophthalic anhydride
  • TEAB tetraethylammonium bromide
  • PEGMEA propylene glycol monomethyl
  • Example 1 is a synthesis example of an alkali-soluble resin represented by the general formula (1) and having a carboxyl group and a polymerizable unsaturated group in one molecule.
  • Comparative Example 1 is an alkali-soluble resin having a structure different from that of the alkali-soluble resin of the general formula (1).
  • Example 1 Synthesis of alkali-soluble resin
  • 50% PEGMEA solution 337.2 g
  • THPA 49.1 g
  • TEAB TEAB (0.90 g)
  • PEGMEA 5.4 g
  • the obtained resin had a solid content concentration of 56.0% by mass, an acid value (in terms of solid content) of 88.0 mgKOH / g, and a molecular weight (Mw) of 1000.
  • the mixture was stirred at 75 to 80 ° C. for 6 hours. Further, THPA (21.0 g) was charged and stirred at 90 to 95 ° C. for 6 hours to obtain an alkali-soluble resin solution (i) -2.
  • the obtained resin had a solid content concentration of 66.5% by mass, an acid value (in terms of solid content) of 38.4 mgKOH / g, and a molecular weight (Mw) of 12,220.
  • Example 2 and Comparative Example 2 for the production and evaluation of the photosensitive resin composition and its cured product, but the present invention is not limited thereto.
  • the raw materials and abbreviations used in Example 2 and Comparative Example 2 below are as follows.
  • Example 2 The photosensitive resin compositions of Example 2 and Comparative Example 2 were prepared by blending each component at the ratio shown in Table 1. In addition, all the numerical values in Table 1 represent mass%.
  • this exposed coated plate is further developed for 30 seconds from the time when the pattern started to appear in a 0.8 mass% tetramethylammonium hydroxide (TMAH) aqueous solution and 23 ° C. shower development, and further washed with spray water. The unexposed part of the coating film was removed. Thereafter, heat curing treatment was performed at 230 ° C. for 30 minutes using a hot air dryer, and cured films according to Example 2 and Comparative Example 2 were obtained.
  • TMAH tetramethylammonium hydroxide
  • the film thickness was measured using a stylus step shape measuring device “P-10” (manufactured by KLA-Tencor Corporation) after shaving a part of the applied film.
  • Alkali resistance test In the alkali resistance test, a glass substrate with a cured film was immersed in a solution kept at 80 ° C. of a mixed solution of 30 parts by mass of 2-aminoethanol and 70 parts by mass of glycol ether, pulled up after 10 minutes, washed with pure water, and dried. Then, a chemical-immersed sample was prepared and the adhesion was evaluated. A crosscut was put on the film of the sample immersed in the chemical so as to form at least 100 grids, and then a peeling test was performed using a cellophane tape, and the grids were visually evaluated. A: No peeling at all ⁇ : A slight peeling can be confirmed on the coating film ⁇ : A peeling can be confirmed on a part of the coating film ⁇ : The film is almost peeled off
  • Heat resistance test In the heat resistance test, the photosensitive resin composition shown in Table 1 was applied on a glass substrate on which a 125 mm ⁇ 125 mm release film was pasted using a spin coater so that the film thickness after post-baking was 30 ⁇ m, A coated plate was prepared by pre-baking at 110 ° C. for 5 minutes. Thereafter, ultraviolet light having a wavelength of 365 nm was irradiated through a photomask for pattern formation with a high-pressure mercury lamp of 500 W / cm 2 to carry out photocuring reaction of the exposed portion.
  • the exposed coated plate is further developed for 30 seconds from the time when the pattern started to appear by a 0.8% by weight tetramethylammonium hydroxide (TMAH) aqueous solution and 23 ° C. shower development, and further washed with spray water. The unexposed part of the coating film was removed. Thereafter, heat curing treatment was performed at 230 ° C. for 30 minutes using a hot air dryer, and the obtained pattern was peeled from the release film to obtain cured films according to Example 2 and Comparative Example 2.
  • TMAH tetramethylammonium hydroxide
  • thermomechanical analyzer TMA
  • the photosensitive resin composition containing the alkali-soluble resin prepared in Example 2 and the cured product thereof show good results for the alkali resistance test, acid resistance test, and heat resistance test. I understood. Therefore, it is considered that the photosensitive resin composition containing the alkali-soluble resin of the present invention and the cured product thereof can form a fine cured film pattern by photolithography.
  • the photosensitive resin composition of the present invention and the cured product thereof are a solder resist, a plating resist, an etching resist for circuit board production, an insulating film for multilayering a wiring board on which a semiconductor element is mounted, a semiconductor It can be applied to a gate insulating film, a photosensitive adhesive, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)

Abstract

An alkali-soluble resin that is represented by general formula (1) and has a carboxyl group and a polymerizable unsaturated group in each molecule thereof. A photosensitive resin composition that contains: (i) the alkali-soluble resin of general formula (1); (ii) a photopolymerizable monomer that has at least one polymerizable unsaturated group; (iii) a photopolymerization initiator; and (iv) an optional epoxy compound.

Description

不飽和基含有アルカリ可溶性樹脂、それを必須成分とする感光性樹脂組成物およびその硬化物Unsaturated group-containing alkali-soluble resin, photosensitive resin composition containing the same, and cured product thereof
 本発明は、不飽和基含有アルカリ可溶性樹脂、それを必須成分とする感光性樹脂組成物およびこれを硬化してなる硬化物に関する。本発明の感光性樹脂組成物およびその硬化物は、回路基板作製のためのソルダーレジスト、メッキレジスト、エッチングレジストや、半導体素子を搭載する配線基板の多層化用の絶縁膜、半導体のゲート絶縁膜、感光性接着剤等に適用可能である。 The present invention relates to an unsaturated group-containing alkali-soluble resin, a photosensitive resin composition containing it as an essential component, and a cured product obtained by curing the same. The photosensitive resin composition and the cured product thereof according to the present invention include a solder resist, a plating resist, an etching resist for manufacturing a circuit board, an insulating film for multilayering a wiring board on which a semiconductor element is mounted, and a semiconductor gate insulating film. It can be applied to photosensitive adhesives.
 近年の電子機器や表示部材等の高性能化、高精細化に伴い、そこに使用される電子部品においては小型化や高密度化が要求されている。そして、それらに使用されている絶縁材料の加工性においても微細化および加工したパターンの断面形状の適正化が要求されるようになってきている。絶縁材料の微細加工の有効な手段として露光、現像によってパターニングする方法が知られており、そこには感光性樹脂組成物が用いられてきたが、高感度化、基板に対する密着性、信頼性、耐熱性、耐薬品性等の多くの諸特性が要求されるようになってきている。また、有機TFT用のゲート絶縁膜において有機絶縁材料を使用する検討も種々行われてきているが、ゲート絶縁膜を薄膜化して有機TFTの動作電圧を低減する必要性がある。ここで、絶縁材料の絶縁耐圧が1MV/cm程度の有機絶縁材料の場合、絶縁膜の膜厚は0.2μm程度の薄膜の適用が検討されている。 With recent high performance and high definition of electronic devices and display members, electronic components used there are required to be downsized and high density. And in the workability of the insulating material used for them, refinement | miniaturization and optimization of the cross-sectional shape of the processed pattern have come to be requested | required. A method of patterning by exposure and development is known as an effective means for fine processing of an insulating material, and a photosensitive resin composition has been used there, but high sensitivity, adhesion to a substrate, reliability, Many characteristics such as heat resistance and chemical resistance have been demanded. In addition, various studies have been made to use an organic insulating material in a gate insulating film for an organic TFT, but it is necessary to reduce the operating voltage of the organic TFT by reducing the thickness of the gate insulating film. Here, in the case of an organic insulating material having a dielectric breakdown voltage of about 1 MV / cm, application of a thin film having an insulating film thickness of about 0.2 μm is under consideration.
 従来の感光性樹脂組成物からなる絶縁材料は、光反応性を有するアルカリ可溶性樹脂と光重合開始剤との反応による光硬化反応が利用されており、光硬化させるための露光波長として主に水銀灯の線スペクトルの一つであるi線(365nm)が使用されている。しかし、このi線は感光性樹脂そのもの自身や着色剤により吸収され光硬化度の低下が発生する。しかも、厚膜であればその吸収量は増大する。そのため、露光された部分は膜厚方向に対する架橋密度に差が生じる。これにより、塗膜表面で十分に光硬化していても、塗膜底面では光硬化し難いため、露光部分と未露光部分における架橋密度の差をつけることは著しく困難である。それにより、所望するパターン寸法安定性、現像マージン、パターン密着性、パターンのエッジ形状および断面形状を有する高解像度で現像できる感光性絶縁材料を得ることは困難である。 A conventional insulating material made of a photosensitive resin composition uses a photocuring reaction by a reaction between a photoreactive alkali-soluble resin and a photopolymerization initiator, and mainly uses a mercury lamp as an exposure wavelength for photocuring. I line (365 nm), which is one of the line spectra, is used. However, the i-line is absorbed by the photosensitive resin itself or the colorant, and the photocuring degree is lowered. Moreover, the amount of absorption increases if the film is thick. Therefore, the exposed portion has a difference in crosslink density with respect to the film thickness direction. Thereby, even if it is sufficiently photocured on the surface of the coating film, it is difficult to photocure on the bottom surface of the coating film, so that it is extremely difficult to make a difference in crosslink density between the exposed part and the unexposed part. Accordingly, it is difficult to obtain a photosensitive insulating material that can be developed with high resolution having desired pattern dimension stability, development margin, pattern adhesion, pattern edge shape and cross-sectional shape.
 一般に、このような用途における感光性樹脂組成物には、重合性不飽和結合を持った多官能光硬化性モノマー、アルカリ可溶性のバインダー樹脂、光重合開始剤等を含んだものが用いられており、カラーフィルター用材料としての応用として技術開示されている感光性樹脂組成物を適用することができる。例えば、特許文献1および特許文献2には、バインダー樹脂としてカルボキシル基を有する(メタ)アクリル酸または(メタ)アクリル酸エステルと、無水マレイン酸と、他の重合性モノマーとの共重合体が開示されている。また、特許文献3には、1分子中に重合性不飽和基とカルボキシル基とを有するアルカリ可溶性不飽和化合物が、カラーフィルター等のネガ型パターン形成に有効であることについて開示されている。 In general, a photosensitive resin composition for such an application includes a polyfunctional photocurable monomer having a polymerizable unsaturated bond, an alkali-soluble binder resin, a photopolymerization initiator, and the like. A photosensitive resin composition that is technically disclosed as an application as a color filter material can be applied. For example, Patent Literature 1 and Patent Literature 2 disclose copolymers of (meth) acrylic acid or (meth) acrylic acid ester having a carboxyl group as a binder resin, maleic anhydride, and other polymerizable monomers. Has been. Patent Document 3 discloses that an alkali-soluble unsaturated compound having a polymerizable unsaturated group and a carboxyl group in one molecule is effective for forming a negative pattern such as a color filter.
 一方、特許文献4、特許文献5、特許文献6および特許文献7には、ビスフェノールフルオレン構造を有するエポキシ(メタ)アクリレートと酸無水物との反応生成物を用いた液状樹脂が開示されている。 On the other hand, Patent Document 4, Patent Document 5, Patent Document 6 and Patent Document 7 disclose liquid resins using a reaction product of an epoxy (meth) acrylate having a bisphenolfluorene structure and an acid anhydride.
 さらに、特許文献8には、カルボキシル基含有共重合体の分子量を増加させるアルカリ可溶性樹脂組成物の多官能化が開示されている。 Furthermore, Patent Document 8 discloses polyfunctionalization of an alkali-soluble resin composition that increases the molecular weight of a carboxyl group-containing copolymer.
特開昭61-213213号公報Japanese Patent Laid-Open No. 61-213213 特開平1-152449号公報Japanese Unexamined Patent Publication No. 1-152449 特開平4-340965号公報JP-A-4-340965 特開平4-345673号公報JP-A-4-345673 特開平4-345608号公報JP-A-4-345608 特開平4-355450号公報JP-A-4-355450 特開平4-363311号公報JP-A-4-3631111 特開平9-325494号公報Japanese Patent Laid-Open No. 9-325494
 しかしながら、特許文献1および特許文献2に開示された共重合体は、それがランダム共重合体であるために、光照射部分内ならびに光未照射部分内でアルカリ溶解速度の分布が生じ、現像操作時のマージンが狭くなるため、鋭角のパターン形状や微細パターンを得ることが困難である。 However, since the copolymer disclosed in Patent Document 1 and Patent Document 2 is a random copolymer, a distribution of alkali dissolution rate occurs in the light-irradiated part and in the light-unirradiated part. Since the time margin becomes narrow, it is difficult to obtain an acute-angle pattern shape or a fine pattern.
 また、特許文献3に記載されたアルカリ可溶性不飽和化合物は、光照射により不溶化することから、前述のバインダー樹脂と多官能重合性モノマーとの組み合わせと比較して高感度となることが予測される。ここで、特許文献3に記載されている化合物の例には、フェノールオリゴマーの水酸基に重合性不飽和結基のアクリル酸と酸無水物とを任意に付加させたものが含まれる。特許文献3の化合物においても、各分子の分子量およびカルボキシル基の量に広い分布が生じることからアルカリ可溶性樹脂のアルカリ溶解速度の分布が広くなるので、微細なネガ型パターンを形成することが困難である。 Moreover, since the alkali-soluble unsaturated compound described in Patent Document 3 is insolubilized by light irradiation, it is expected to be highly sensitive compared to the combination of the binder resin and the polyfunctional polymerizable monomer described above. . Here, examples of the compound described in Patent Document 3 include those obtained by arbitrarily adding a polymerizable unsaturated bond acrylic acid and an acid anhydride to the hydroxyl group of the phenol oligomer. Also in the compound of Patent Document 3, since a wide distribution occurs in the molecular weight of each molecule and the amount of carboxyl groups, the alkali dissolution rate distribution of the alkali-soluble resin becomes wide, so that it is difficult to form a fine negative pattern. is there.
 また、特許文献4、特許文献5、特許文献6および特許文献7に記載の樹脂の例には、エポキシ(メタ)アクリレートと酸一無水物との反応生成物が含まれる。この反応生成物は分子量が小さいことから、露光部と未露光部のアルカリ溶解度差を大きくすることが困難であるため、微細なパターンを形成することができない。 Also, examples of the resins described in Patent Document 4, Patent Document 5, Patent Document 6, and Patent Document 7 include a reaction product of epoxy (meth) acrylate and acid monoanhydride. Since this reaction product has a low molecular weight, it is difficult to increase the difference in alkali solubility between the exposed area and the unexposed area, so that a fine pattern cannot be formed.
 また、特許文献8に記載の共重合体は、重合性不飽和結合数が少ないため架橋密度が十分に得られないため、1分子中の重合性不飽和結合の割合を高める等の共重合体構造の改良の余地がある。 In addition, since the copolymer described in Patent Document 8 has a low number of polymerizable unsaturated bonds and thus a sufficient crosslinking density cannot be obtained, the copolymer has an increased ratio of polymerizable unsaturated bonds in one molecule. There is room for structural improvements.
 本発明の目的は、アルカリ現像による解像度に優れるパターニングが可能な感光性樹脂組成物を提供することである。さらに、その硬化物は半導体プロセス等でパターン形成後の加工プロセスにおいて熱がかかるような場合にも低熱膨張率の特徴を有するとともに、電極形成等の加工プロセスを経る場合に優れた耐薬品性を示す特徴を有する硬化膜を提供することである。 An object of the present invention is to provide a photosensitive resin composition capable of patterning with excellent resolution by alkali development. Furthermore, the cured product has a low coefficient of thermal expansion even when heat is applied in the processing process after pattern formation in a semiconductor process, etc., and has excellent chemical resistance when undergoing a processing process such as electrode formation. It is to provide a cured film having the characteristics shown.
 本発明者らは、上記課題を解決するために鋭意検討した結果、ナフトール類の重合物から誘導される2個以上のグリシジルエーテル基を有するエポキシ化合物に(メタ)アクリル酸を反応させ、得られた重合性不飽和基を有する多価アルコールに、ジカルボン酸類、トリカルボン酸類またはその酸一無水物を反応させて得られるアルカリ可溶性樹脂を用いた感光性樹脂組成物が、光パターニングを必要とする絶縁膜等の硬化膜パターンの形成に好適であることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors obtained (meth) acrylic acid by reacting with an epoxy compound having two or more glycidyl ether groups derived from a polymer of naphthols. A photosensitive resin composition using an alkali-soluble resin obtained by reacting a dicarboxylic acid, a tricarboxylic acid or an acid monoanhydride with a polyhydric alcohol having a polymerizable unsaturated group is an insulating material that requires photopatterning. It has been found that it is suitable for forming a cured film pattern such as a film.
 すなわち、本発明の実施形態は、(i)下記一般式(1)で表されて、1分子内にカルボキシル基および重合性不飽和基を有するアルカリ可溶性樹脂に関する。
Figure JPOXMLDOC01-appb-C000004
 (Xは炭素数1~20の2価の炭化水素基を示す。上記2価の炭化水素基は直鎖または分岐を有してもよく、主鎖または分岐鎖に芳香環を有してもよい。Yは炭素数1~5の炭化水素基Rまたは一般式(2)で表される分子内に重合性不飽和基とカルボキシル基を有する置換基Zであり、Rのモル数C、Zのモル数Cとしたとき、C/Cの値は0.05~2.0である。平均値としてのnの値は1~20である。さらに、ナフタレン環の水素原子の一部はRで置換されていてもよく、Rは炭素数1~5の炭化水素基、ハロゲン原子またはフェニル基を示す。)
Figure JPOXMLDOC01-appb-C000005
 (Rは水素原子またはメチル基を示す。Lは一般式(3)で表される置換基を示す。)
Figure JPOXMLDOC01-appb-C000006
 (Mは2または3価のカルボン酸残基を示し、pは1または2である。)
That is, the embodiment of the present invention relates to (i) an alkali-soluble resin represented by the following general formula (1) and having a carboxyl group and a polymerizable unsaturated group in one molecule.
Figure JPOXMLDOC01-appb-C000004
(X represents a divalent hydrocarbon group having 1 to 20 carbon atoms. The divalent hydrocarbon group may be linear or branched, and may have an aromatic ring in the main chain or branched chain. Y is a hydrocarbon group R having 1 to 5 carbon atoms or a substituent Z having a polymerizable unsaturated group and a carboxyl group in the molecule represented by the general formula (2), and the number of moles of R CR , When the number of moles of Z is C Z , the value of C R / C Z is 0.05 to 2.0, the average value of n is 1 to 20. Further, the number of hydrogen atoms of the naphthalene ring A part thereof may be substituted with R 1 , and R 1 represents a hydrocarbon group having 1 to 5 carbon atoms, a halogen atom or a phenyl group.)
Figure JPOXMLDOC01-appb-C000005
(R 3 represents a hydrogen atom or a methyl group. L represents a substituent represented by the general formula (3).)
Figure JPOXMLDOC01-appb-C000006
(M represents a divalent or trivalent carboxylic acid residue, and p is 1 or 2.)
 また、本発明の実施形態は、(i)上記1分子内にカルボキシル基および重合性不飽和基を有するアルカリ可溶性樹脂と、(ii)少なくとも1個の重合性不飽和基を有する光重合性モノマーと、(iii)光重合開始剤と、を必須成分として含有することを特徴とする感光性樹脂組成物に関する。 Moreover, the embodiment of the present invention comprises (i) an alkali-soluble resin having a carboxyl group and a polymerizable unsaturated group in one molecule, and (ii) a photopolymerizable monomer having at least one polymerizable unsaturated group. And (iii) a photopolymerization initiator as an essential component.
 また、本発明の他の実施形態は、上記感光性樹脂組成物を硬化してなる硬化物に関する。 Moreover, other embodiment of this invention is related with the hardened | cured material formed by hardening | curing the said photosensitive resin composition.
 本発明によれば、一般式(1)で表されるアルカリ可溶性樹脂を含むことにより、フォトリソグラフィーにより微細な硬化膜パターンを形成できる感光性樹脂組成物を提供することができる。さらに、本発明によれば、低熱膨張性で耐薬品性(耐アルカリ性等)に優れ、基板に対する密着性、耐熱性、電気的信頼性等について優れた特性を示す硬化膜パターンも提供することができる。 According to the present invention, a photosensitive resin composition capable of forming a fine cured film pattern by photolithography can be provided by including the alkali-soluble resin represented by the general formula (1). Furthermore, according to the present invention, it is possible to provide a cured film pattern that has low thermal expansion and excellent chemical resistance (alkali resistance and the like) and exhibits excellent properties such as adhesion to a substrate, heat resistance, and electrical reliability. it can.
 以下、本発明の感光性樹脂組成物について詳細に説明する。本発明は、一般式(1)で表されるアルカリ可溶性樹脂を主成分として含有する感光性樹脂組成物、および当該感光性樹脂組成物を硬化してなる硬化物に関する。 Hereinafter, the photosensitive resin composition of the present invention will be described in detail. The present invention relates to a photosensitive resin composition containing an alkali-soluble resin represented by the general formula (1) as a main component, and a cured product obtained by curing the photosensitive resin composition.
 一般式(1)で表されるアルカリ可溶性樹脂は、ナフトール類の重合物から誘導される2個以上のグリシジルエーテル基を有するエポキシ化合物に(メタ)アクリル酸を反応させ、得られた重合性不飽和基を有する多価アルコールに、ジカルボン酸類、トリカルボン酸類またはその酸一無水物を反応させて得られる。 The alkali-soluble resin represented by the general formula (1) is obtained by reacting (meth) acrylic acid with an epoxy compound having two or more glycidyl ether groups derived from a polymer of naphthols. It is obtained by reacting a polyhydric alcohol having a saturated group with a dicarboxylic acid, a tricarboxylic acid or an acid monoanhydride thereof.
 一般式(1)で表されるアルカリ可溶性樹脂は、重合性不飽和基とカルボキシル基とを併せ持つため、アルカリ現像型感光性樹脂組成物に優れた光硬化性、良現像性、およびパターニング特性を有する。また、感光性樹脂組成物を硬化物にしたときに、低熱膨張性や耐アルカリ性に寄与することができる。 Since the alkali-soluble resin represented by the general formula (1) has both a polymerizable unsaturated group and a carboxyl group, it has excellent photocurability, good developability, and patterning characteristics as an alkali-developable photosensitive resin composition. Have. Further, when the photosensitive resin composition is cured, it can contribute to low thermal expansion and alkali resistance.
 一般式(1)で表されるアルカリ可溶性樹脂の製造方法について詳細に説明する。まず、一般式(1)のアルカリ可溶性樹脂は、ナフトール類の重合物のフェノール性水酸基をグリシジルエーテルに変換した2個以上のグリシジルエーテル基を有する一般式(4)で表されるナフタレン骨格を有するエポキシ化合物と(メタ)アクリル酸とを反応させて得られる重合性不飽和基を含有する多価アルコールから誘導される。このナフトール骨格を有するエポキシ化合物の製造方法は、例えば、特開2006-160868号公報に記載の製造方法を参考にすることができる。 The method for producing the alkali-soluble resin represented by the general formula (1) will be described in detail. First, the alkali-soluble resin of the general formula (1) has a naphthalene skeleton represented by the general formula (4) having two or more glycidyl ether groups obtained by converting a phenolic hydroxyl group of a naphthol polymer into glycidyl ether. It is derived from a polyhydric alcohol containing a polymerizable unsaturated group obtained by reacting an epoxy compound with (meth) acrylic acid. For the production method of the epoxy compound having a naphthol skeleton, for example, the production method described in JP-A-2006-160868 can be referred to.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(4)において、Xは炭素数1~20の2価の炭化水素基を示す。上記2価の炭化水素基は直鎖または分岐を有してもよく、主鎖または分岐鎖に芳香環を有してもよい。具体的には、-CH-、-CH(CH)-、-CH(C)-、-CH(C)-、一般式(5)、一般式(6)および一般式(7)で表される2価の結合基である。ここで、2価の結合基は、一般式(5)、一般式(6)、一般式(7)であることが好ましい。Wは炭素数1~5の炭化水素基R、またはグリシジル基Gを示し、Rのモル数C、Gのモル数Cとしたとき、C/Cの値は0.05~2.0である。Rはメチル基またはエチル基であることが好ましい。一般式(4)の樹脂を製造する場合、通常、数値nの異なる分子の混合物として得られるが、平均値としてのnの値は1~20であることが好ましく、1~10であることがより好ましく、1~6であることが特に好ましい。さらに、一般式(4)のナフタレン環の水素原子の一部は置換基Rで置換されていてもよく、一般式(5)~(7)のベンゼン環の水素原子の一部は置換基Rで置換されていてもよい。R、Rは独立に炭素数1~5の炭化水素基、ハロゲン原子またはフェニル基を示す。 In the general formula (4), X represents a divalent hydrocarbon group having 1 to 20 carbon atoms. The divalent hydrocarbon group may have a straight chain or a branch, and may have an aromatic ring in the main chain or the branched chain. Specifically, —CH 2 —, —CH (CH 3 ) —, —CH (C 2 H 5 ) —, —CH (C 6 H 5 ) —, general formula (5), general formula (6) and It is a bivalent coupling group represented by General formula (7). Here, it is preferable that a bivalent coupling group is General formula (5), General formula (6), and General formula (7). W represents a hydrocarbon group R or a glycidyl group G, of 1-5 carbon atoms, moles C R of R, when the number of moles C G of G, C value of R / C G 0.05-2 .0. R is preferably a methyl group or an ethyl group. When the resin of the general formula (4) is produced, it is usually obtained as a mixture of molecules having different numerical values n. The average value of n is preferably 1 to 20, and preferably 1 to 10. More preferred is 1-6. Furthermore, a part of the hydrogen atoms of the naphthalene ring of the general formula (4) may be substituted with the substituent R 1 , and a part of the hydrogen atoms of the benzene ring of the general formulas (5) to (7) It may be substituted with R 2 . R 1 and R 2 independently represent a hydrocarbon group having 1 to 5 carbon atoms, a halogen atom or a phenyl group.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 ナフトール類の重合方法は、一般的なフェノール樹脂、フェノールアラルキル樹脂の製造方法を参考にすることができるが、炭化水素基Rを有することを特徴とする一般式(4)の化合物に誘導するための製造方法としては、特開2006-160868号公報に記載の方法を参考にすることができる。具体的には、第一段階として、ナフトール類と架橋剤とを酸性触媒存在下で縮合させるが、ナフトール類として1-ナフトールおよび/または2-ナフトールを用い、架橋剤としては、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等のアルデヒド化合物;1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(クロロエチル)ベンゼン、4,4’-ビス(クロロメチル)ビフェニル、4,4’-ビス(クロロメチルビフェニル)エーテル等のハロゲン化アルキル化合物;p-キシリレングリコール、p-ジ(ヒドロキシエチル)ベンゼン、4,4’-ビス(ヒドロキシメチル)ビフェニル、2,6-ビス(ヒドロキシメチル)ナフタレン、2,2’-ビス(ヒドロキシメチル)ジフェニルエーテル等のアルコール類;p-キシリレングリコールジメチルエーテル等のアルコール類のジアルキルエーテル類:ジビニルベンゼン、ジビニルビフェニル等のジビニル化合物を例示することができる。ここで、使用する架橋剤は、1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(クロロエチル)ベンゼン、4,4’-ビス(クロロメチル)ビフェニル、p-キシリレングリコール、p-ジ(ヒドロキシエチル)ベンゼン、p-キシリレングリコールジメチルエーテル、4,4’-ビス(ヒドロキシメチル)ビフェニルであることが好ましい。酸性触媒としては、周知の無機酸、有機酸から適宜選択することができ、例えば、塩酸、硫酸等の無機酸、ギ酸、シュウ酸、p-トルエンスルホン酸等の有機酸、塩化アルミニウム等のルイス酸、活性白土、ゼオライト等の固体酸等を例示することができる。第二段階として、このナフトール類と架橋剤を反応させて得られた樹脂の水酸基の一部をアルコキシ化する。例えば、第一段階で得られた樹脂に、酸性触媒下アルコール類と反応させることにより、本発明のナフトール類の重合物を得ることができる。用いるアルコール類としては、メタノール、エタノール、プロパノール、ブタノール、ペンタノール等を挙げることができ、酸性触媒は第一段階で例示した触媒を用いることができる。本発明のナフトール類の重合物を得る別の方法としては、ナフトール類と架橋剤とを酸性触媒存在下で縮合させる際に、ナフトール類として1-ナフトールおよび/または2-ナフトールに加えて、アルコキシナフタレンを併用するという製造方法を用いてもよい。アルコキシナフタレンの例には、1-メトキシナフタレン、2-メトキシナフタレン、1-エトキシナフタレン、2-エトキシナフタレン、1-プロポキシナフタレン、2-プロポキシナフタレンが含まれる。 The polymerization method of naphthols can be referred to general methods for producing phenol resins and phenol aralkyl resins, but is derived from a compound of the general formula (4) characterized by having a hydrocarbon group R. As a method for producing the above, the method described in JP-A-2006-160868 can be referred to. Specifically, as a first step, naphthols and a crosslinking agent are condensed in the presence of an acidic catalyst. 1-naphthol and / or 2-naphthol is used as a naphthol, and as a crosslinking agent, formaldehyde, acetaldehyde, Aldehyde compounds such as benzaldehyde; 1,4-bis (chloromethyl) benzene, 1,4-bis (chloroethyl) benzene, 4,4′-bis (chloromethyl) biphenyl, 4,4′-bis (chloromethylbiphenyl) Halogenated alkyl compounds such as ether; p-xylylene glycol, p-di (hydroxyethyl) benzene, 4,4′-bis (hydroxymethyl) biphenyl, 2,6-bis (hydroxymethyl) naphthalene, 2,2 ′ Alcohols such as bis (hydroxymethyl) diphenyl ether; p-xy Alcohols dialkyl ethers such as glycol dimethyl ether: divinyl benzene, divinyl compounds such as divinyl biphenyl can be exemplified. Here, the crosslinking agent used is 1,4-bis (chloromethyl) benzene, 1,4-bis (chloroethyl) benzene, 4,4′-bis (chloromethyl) biphenyl, p-xylylene glycol, p- Di (hydroxyethyl) benzene, p-xylylene glycol dimethyl ether, and 4,4′-bis (hydroxymethyl) biphenyl are preferred. The acidic catalyst can be appropriately selected from known inorganic acids and organic acids. For example, inorganic acids such as hydrochloric acid and sulfuric acid, organic acids such as formic acid, oxalic acid and p-toluenesulfonic acid, and Lewis acids such as aluminum chloride. Examples thereof include solid acids such as acid, activated clay, and zeolite. As a second step, a part of the hydroxyl groups of the resin obtained by reacting the naphthols with a crosslinking agent is alkoxylated. For example, the naphthol polymer of the present invention can be obtained by reacting the resin obtained in the first step with an alcohol under an acidic catalyst. Examples of the alcohol to be used include methanol, ethanol, propanol, butanol, pentanol and the like, and the catalyst exemplified in the first stage can be used as the acidic catalyst. As another method for obtaining a polymer of naphthols according to the present invention, when naphthols and a crosslinking agent are condensed in the presence of an acidic catalyst, in addition to 1-naphthol and / or 2-naphthol as naphthols, alkoxy You may use the manufacturing method of using a naphthalene together. Examples of the alkoxynaphthalene include 1-methoxynaphthalene, 2-methoxynaphthalene, 1-ethoxynaphthalene, 2-ethoxynaphthalene, 1-propoxynaphthalene and 2-propoxynaphthalene.
 ナフトール類の重合物のフェノール性水酸基をグリシジルエーテルに変換して、2個以上のグリシジルエーテル基を有する一般式(4)で表されるナフタレン骨格を有するエポキシ化合物を得ることができる。その製造方法は、通常のヒドロキシル基のエポキシ化反応と同様に行うことができる。例えば、ナフトール類の重合物を過剰のエピクロルヒドリンに溶解した後、水酸化ナトリウム等のアルカリ金属水酸化物の存在下に、20~150℃で、1~10時間反応させる方法がある。 An epoxy compound having a naphthalene skeleton represented by the general formula (4) having two or more glycidyl ether groups can be obtained by converting a phenolic hydroxyl group of a polymer of naphthols into glycidyl ether. The production method can be carried out in the same manner as a normal hydroxyl group epoxidation reaction. For example, there is a method in which a polymer of naphthols is dissolved in excess epichlorohydrin and then reacted at 20 to 150 ° C. for 1 to 10 hours in the presence of an alkali metal hydroxide such as sodium hydroxide.
 次に、このようなエポキシ化合物と(メタ)アクリル酸との反応は、公知の方法を使用することができる。例えば、エポキシ基1モルに対し、2モルの(メタ)アクリル酸を使用して行う。すべてのエポキシ基に(メタ)アクリル酸を反応させるため、エポキシ基とカルボキシル基の等モルよりも若干過剰に(メタ)アクリル酸を使用してもよい。この反応で得られる反応物は、一般式(8)で表されるようなエポキシ(メタ)アクリレートである。 Next, a known method can be used for the reaction between such an epoxy compound and (meth) acrylic acid. For example, 2 mol of (meth) acrylic acid is used for 1 mol of epoxy group. Since (meth) acrylic acid is reacted with all of the epoxy groups, (meth) acrylic acid may be used in an amount slightly more than an equimolar amount of the epoxy group and the carboxyl group. The reaction product obtained by this reaction is an epoxy (meth) acrylate represented by the general formula (8).
Figure JPOXMLDOC01-appb-C000011
 (X、nの定義は一般式(7)の化合物と同様であり、Qは炭素数1~5の炭化水素基または一般式(9)で表される分子内に重合性不飽和基を有する置換基を示す。)
Figure JPOXMLDOC01-appb-C000011
(The definitions of X and n are the same as in the compound of the general formula (7), and Q has a hydrocarbon group having 1 to 5 carbon atoms or a polymerizable unsaturated group in the molecule represented by the general formula (9). Indicates a substituent.)
Figure JPOXMLDOC01-appb-C000012
 (Rは水素原子またはメチル基を示す。)
Figure JPOXMLDOC01-appb-C000012
(R 3 represents a hydrogen atom or a methyl group.)
 このとき使用する溶媒、触媒およびその他の反応条件は、特に制限されない。例えば、溶媒は、水酸基を持たず、反応温度より高い沸点を有することが好ましい。このような溶媒の例には、エチルセロソルブアセテートおよびブチルセロソルブアセテートなどを含むセロソルブ系溶媒;ジグライム、エチルカルビトールアセテート、ブチルカルビトールアセテートおよびプロピレングリコールモノメチルエーテルアセテートなどを含む高沸点のエーテル系またはエステル系の溶媒;シクロヘキサノンおよびジイソブチルケトンなどを含むケトン系溶媒が含まれる。触媒の例には、テトラエチルアンモニウムブロマイドおよびトリエチルベンジルアンモニウムクロライドなどを含むアンモニウム塩;トリフェニルホスフィンおよびトリス(2、6-ジメトキシフェニル)ホスフィンなどを含むホスフィン類などの公知の触媒が含まれる。 The solvent, catalyst and other reaction conditions used at this time are not particularly limited. For example, the solvent preferably does not have a hydroxyl group and has a boiling point higher than the reaction temperature. Examples of such solvents include cellosolve solvents including ethyl cellosolve acetate and butyl cellosolve acetate; high boiling ethers or ester systems including diglyme, ethyl carbitol acetate, butyl carbitol acetate and propylene glycol monomethyl ether acetate. And ketone solvents including cyclohexanone and diisobutyl ketone. Examples of the catalyst include known catalysts such as ammonium salts including tetraethylammonium bromide and triethylbenzylammonium chloride; phosphines including triphenylphosphine and tris (2,6-dimethoxyphenyl) phosphine.
 一般式(8)で表される化合物の水酸基とジカルボン酸、トリカルボン酸またはそれらの酸一無水物とを反応させることにより、一般式(1)で表されるアルカリ可溶性樹脂を得ることができる。通常は、酸一無水物を使用して反応を行うので、酸一無水物として例示する。これらの酸一無水物の各炭化水素残基(カルボキシル基を除いた構造)は、さらにアルキル基、シクロアルキル基、芳香族基等の置換基により置換されていてもよい。飽和鎖式炭化水素ジカルボン酸またはトリカルボン酸の酸一無水物の例には、コハク酸、アセチルコハク酸、アジピン酸、アゼライン酸、シトラリンゴ酸、マロン酸、グルタル酸、クエン酸、酒石酸、オキソグルタル酸、ピメリン酸、セバシン酸、スベリン酸、ジグリコール酸等の酸一無水物が含まれる。また、飽和環式炭化水素ジカルボン酸またはトリカルボン酸の酸一無水物の例には、ヘキサヒドロフタル酸、シクロブタンジカルボン酸、シクロペンタンジカルボン酸、ノルボルナンジカルボン酸、ヘキサヒドロトリメリット酸等の酸一無水物が含まれる。また、不飽和ジカルボン酸またはトリカルボン酸の酸一無水物の例には、マレイン酸、イタコン酸、テトラヒドロフタル酸、メチルエンドメチレンテトラヒドロフタル酸、クロレンド酸等の酸一無水物が含まれる。さらに、芳香族炭化水素ジカルボン酸またはトリカルボン酸の酸一無水物の例には、フタル酸、トリメリット酸等の酸無水物が含まれる。これらのなかで、酸一無水物は、コハク酸、イタコン酸、テトラヒドロフタル酸、ヘキサヒドロトリメリット酸、フタル酸、トリメリット酸の酸一無水物であることが好ましく、コハク酸、イタコン酸、テトラヒドロフタル酸の酸一無水物であることがより好ましい。なお、これら酸一無水物は1種類で使用することも、2種類以上を併用することもできる。 An alkali-soluble resin represented by the general formula (1) can be obtained by reacting the hydroxyl group of the compound represented by the general formula (8) with a dicarboxylic acid, a tricarboxylic acid or an acid monoanhydride thereof. Usually, since it reacts using an acid monoanhydride, it illustrates as an acid monoanhydride. Each hydrocarbon residue (structure excluding the carboxyl group) of these acid monoanhydrides may be further substituted with a substituent such as an alkyl group, a cycloalkyl group, or an aromatic group. Examples of saturated chain hydrocarbon dicarboxylic acids or tricarboxylic acid monoanhydrides include succinic acid, acetyl succinic acid, adipic acid, azelaic acid, citral malic acid, malonic acid, glutaric acid, citric acid, tartaric acid, oxoglutaric acid, Acid monoanhydrides such as pimelic acid, sebacic acid, suberic acid and diglycolic acid are included. Examples of acid monoanhydrides of saturated cyclic hydrocarbon dicarboxylic acids or tricarboxylic acids include acid monoanhydrides such as hexahydrophthalic acid, cyclobutane dicarboxylic acid, cyclopentane dicarboxylic acid, norbornane dicarboxylic acid, and hexahydrotrimellitic acid. Things are included. Examples of the acid monoanhydride of unsaturated dicarboxylic acid or tricarboxylic acid include acid monoanhydrides such as maleic acid, itaconic acid, tetrahydrophthalic acid, methylendomethylenetetrahydrophthalic acid, and chlorendic acid. Furthermore, examples of the acid monoanhydride of the aromatic hydrocarbon dicarboxylic acid or tricarboxylic acid include acid anhydrides such as phthalic acid and trimellitic acid. Among these, the acid monoanhydride is preferably an acid monoanhydride of succinic acid, itaconic acid, tetrahydrophthalic acid, hexahydrotrimellitic acid, phthalic acid, trimellitic acid, succinic acid, itaconic acid, More preferred is acid monoanhydride of tetrahydrophthalic acid. These acid monoanhydrides can be used alone or in combination of two or more.
 一般式(8)で表される化合物の水酸基と、ジカルボン酸またはトリカルボン酸またはそれらの酸一無水物とを反応させる。一般式(1)で表される化合物を合成する際の反応温度は、20~120℃であることが好ましく、40~90℃であることがより好ましい。一般式(1)で表される化合物を合成する際の酸一無水物のモル比は、一般式(1)で表されるアルカリ可溶性樹脂の酸価を調整する目的で任意に変更できる。 The hydroxyl group of the compound represented by the general formula (8) is reacted with dicarboxylic acid or tricarboxylic acid or their acid monoanhydrides. The reaction temperature for synthesizing the compound represented by the general formula (1) is preferably 20 to 120 ° C., more preferably 40 to 90 ° C. The molar ratio of the acid monoanhydride when synthesizing the compound represented by the general formula (1) can be arbitrarily changed for the purpose of adjusting the acid value of the alkali-soluble resin represented by the general formula (1).
 本発明の感光性樹脂組成物は、溶剤を除いた固形分(固形分には硬化後に固形分となるモノマーを含む)中に、(i)の一般式(1)で表されるアルカリ可溶性樹脂を30質量%以上含有することが好ましく、50質量%以上含有することがより好ましい。 The photosensitive resin composition of the present invention comprises an alkali-soluble resin represented by the general formula (1) in (i) in a solid content excluding a solvent (the solid content includes a monomer that becomes a solid content after curing). It is preferable to contain 30 mass% or more, and it is more preferable to contain 50 mass% or more.
 感光性樹脂組成物としての特徴を生かすためには、下記(i)~(iii)成分を必須成分として含有することが好ましく、さらに(iv)成分を必須成分として含有することがより好ましい。
 (i)一般式(1)で表される1分子内にカルボキシル基および重合性不飽和基を有するアルカリ可溶性樹脂、
 (ii)少なくとも1個の重合性不飽和基を有する光重合性モノマー、
 (iii)光重合開始剤、
 (iv)エポキシ化合物
In order to take advantage of the characteristics of the photosensitive resin composition, it is preferable to contain the following components (i) to (iii) as essential components, and it is more preferable to contain the component (iv) as essential components.
(I) an alkali-soluble resin having a carboxyl group and a polymerizable unsaturated group in one molecule represented by the general formula (1);
(Ii) a photopolymerizable monomer having at least one polymerizable unsaturated group,
(Iii) a photopolymerization initiator,
(Iv) Epoxy compound
 このなかで、(ii)成分である少なくとも1個の重合性不飽和基を有する光重合性モノマーの例には、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の水酸基を有するモノマー;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、グリセロール(メタ)アクリレート等の(メタ)アクリル酸エステル類が含まれる。アルカリ可溶性樹脂の分子同士の架橋構造を形成する必要性がある場合には、2個以上の重合性不飽和基を有する光重合性モノマーを用いることが好ましく、3個以上の重合性不飽和基を有する光重合性モノマーを用いることがより好ましい。なお、これらの化合物は、1種類で使用することも、2種類以上を併用することもできる。 Among these, examples of the photopolymerizable monomer having at least one polymerizable unsaturated group as component (ii) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy Monomers having a hydroxyl group such as ethylhexyl (meth) acrylate; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, tetramethylene glycol di ( (Meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentae Examples include (meth) acrylic acid esters such as lithitol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and glycerol (meth) acrylate. When it is necessary to form a crosslinked structure between molecules of the alkali-soluble resin, it is preferable to use a photopolymerizable monomer having two or more polymerizable unsaturated groups, and three or more polymerizable unsaturated groups. It is more preferable to use a photopolymerizable monomer having These compounds can be used alone or in combination of two or more.
 これら(ii)成分と一般式(1)で表されるアルカリ可溶性樹脂〔(i)成分〕との配合割合[(i)/(ii)]は、20/80~90/10であることが好ましく、40/60~80/20であることがより好ましい。ここで、アルカリ可溶性樹脂の配合割合が少ないと、光硬化反応後の硬化物が脆くなる。また、未露光部は、塗膜の酸価が低いためにアルカリ現像液に対する溶解性が低下するため、パターンエッジががたつきシャープにならないといった問題が生じる。反対に、アルカリ可溶性樹脂の配合割合が上記範囲より多くなると、樹脂に占める光反応性官能基の割合が少なくなるため、光硬化反応による架橋構造の形成が不十分となるおそれがある。また、樹脂成分における酸価が高過ぎる場合、露光部は、アルカリ現像液に対する溶解性が高くなるため、形成されたパターンが目標とする線幅より細くなりやすく、パターンの欠落が生じやすくなるといった問題が生じるおそれがある。 The blending ratio [(i) / (ii)] of the component (ii) and the alkali-soluble resin [component (i)] represented by the general formula (1) is 20/80 to 90/10. Preferably, it is 40/60 to 80/20. Here, when there are few compounding ratios of alkali-soluble resin, the hardened | cured material after photocuring reaction will become weak. Moreover, since the acid value of a coating film is low and the solubility with respect to an alkaline developing solution falls in an unexposed part, the problem that a pattern edge does not become shaky and sharp arises. On the contrary, when the blending ratio of the alkali-soluble resin is larger than the above range, the ratio of the photoreactive functional group in the resin is decreased, so that the formation of the crosslinked structure by the photocuring reaction may be insufficient. In addition, when the acid value in the resin component is too high, the exposed portion is highly soluble in an alkaline developer, so that the formed pattern is likely to be narrower than the target line width, and pattern loss is likely to occur. Problems may arise.
 また、(iii)の光重合開始剤の例には、アセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、p-ジメチルアミノプロピオフェノン、ジクロロアセトフェノン、トリクロロアセトフェノン、p-tert-ブチルアセトフェノン等のアセトフェノン類;ベンゾフェノン、2-クロロベンゾフェノン、p,p’-ビスジメチルアミノベンゾフェノン等のベンゾフェノン類;ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインエーテル類;2-(O-クロロフェニル)-4,5-フェニルビイミダゾール、2-(O-クロロフェニル)-4,5-ジ(m-メトキシフェニル))ビイミダゾール、2-(O-フルオロフェニル)-4,5-ジフェニルビイミダゾール、2-(O-メトキシフェニル)-4,5-ジフェニルビイミダゾール、2,4,5-トリアリールビイミダゾール等のビイミダゾール系化合物類;2-トリクロロメチル-5-スチリル-1,3,4-オキサジアゾール、2-トリクロロメチル-5-(p-シアノスチリル)-1,3,4-オキサジアゾール、2-トリクロロメチル-5-(p-メトキシスチリル)-1,3,4-オキサジアゾール等のハロメチルチアゾール化合物類;2,4,6-トリス(トリクロロメチル)-1,3,5-トリアジン、2-メチル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-クロロフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシナフチル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシスチリル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(3,4,5-トリメトキシスチリル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メチルチオスチリル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン等のハロメチル-s-トリアジン系化合物類;1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(O-ベンゾイルオキシム)、1-(4-フェニルスルファニルフェニル)ブタン-1,2-ジオン-2-オキシム-O-ベンゾアート、1-(4-メチルスルファニルフェニル)ブタン-1,2-ジオン-2-オキシム-O-アセタート、1-(4-メチルスルファニルフェニル)ブタン-1-オンオキシム-O-アセタート等のO-アシルオキシム系化合物類;ベンジルジメチルケタール、チオキサンソン、2-クロロチオキサンソン、2,4-ジエチルチオキサンソン、2-メチルチオキサンソン、2-イソプロピルチオキサンソン等のイオウ化合物;2-エチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ジフェニルアントラキノン等のアントラキノン類;アゾビスイソブチルニトリル、ベンゾイルパーオキサイド、クメンパーオキシド等の有機過酸化物;2-メルカプトベンゾイミダゾール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾチアゾール等のチオール化合物;トリエタノールアミン、トリエチルアミン等の第3級アミンが含まれる。なお、これらの光重合開始剤は、1種類で使用することも、2種類以上を併用することもできる。 Examples of the photopolymerization initiator (iii) include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, p-dimethylaminopropiophenone, dichloroacetophenone, trichloroacetophenone, p-tert-butylacetophenone. Benzophenones such as benzophenone, 2-chlorobenzophenone, p, p'-bisdimethylaminobenzophenone; benzoin ethers such as benzyl, benzoin, benzoin methyl ether, benzoin isopropyl ether, benzoin isobutyl ether; 2- ( O-chlorophenyl) -4,5-phenylbiimidazole, 2- (O-chlorophenyl) -4,5-di (m-methoxyphenyl)) biimidazole, 2- (O-fluoropheny ) -4,5-diphenylbiimidazole, 2- (O-methoxyphenyl) -4,5-diphenylbiimidazole, biimidazole compounds such as 2,4,5-triarylbiimidazole; 2-trichloromethyl- 5-styryl-1,3,4-oxadiazole, 2-trichloromethyl-5- (p-cyanostyryl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (p-methoxystyryl) ) -1,3,4-oxadiazole and other halomethylthiazole compounds; 2,4,6-tris (trichloromethyl) -1,3,5-triazine, 2-methyl-4,6-bis (trichloro) Methyl) -1,3,5-triazine, 2-phenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-chlorophenyl)- , 6-Bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxy Naphthyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxystyryl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (3,4,5-trimethoxystyryl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methylthiostyryl) -4,6-bis (trichloromethyl) -1 Halomethyl-s-triazine compounds such as 1,3,5-triazine; 1,2-octanedione, 1- [4- (phenylthio) phenyl]-, 2- (O-benzoyloxime), 1- (4- Phenyls Fanylphenyl) butane-1,2-dione-2-oxime-O-benzoate, 1- (4-methylsulfanylphenyl) butane-1,2-dione-2-oxime-O-acetate, 1- (4- O-acyloxime compounds such as methylsulfanylphenyl) butan-1-oneoxime-O-acetate; benzyldimethyl ketal, thioxanthone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, 2-methylthioxanthone Sulfur compounds such as 2-isopropylthioxanthone; anthraquinones such as 2-ethylanthraquinone, octamethylanthraquinone, 1,2-benzanthraquinone, 2,3-diphenylanthraquinone; azobisisobutylnitrile, benzoyl peroxide, cumeneper Such as oxide Organic peroxides; thiol compounds such as 2-mercaptobenzimidazole, 2-mercaptobenzoxazole, 2-mercaptobenzothiazole; and tertiary amines such as triethanolamine and triethylamine. These photopolymerization initiators may be used alone or in combination of two or more.
 光重合開始剤の添加量は、(i)アルカリ可溶性樹脂と(ii)光重合性モノマーの合計量100質量部に対して、0.1~10質量部であることが好ましく、2~5質量部であることがより好ましい。ここで、光重合開始剤の添加量が0.1質量部未満であると感度が十分に得られず、光重合開始剤の添加量が10質量部を超えるとテーパー形状(現像パターン断面の膜厚方向形状)がシャープにならないで裾を引いた状態になるハレーションが起こりやすくなる。さらに、後工程で高温に暴露した場合に分解ガスが発生するおそれがある。 The addition amount of the photopolymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of (i) alkali-soluble resin and (ii) photopolymerizable monomer, and 2 to 5 parts by mass. More preferably, it is a part. Here, when the addition amount of the photopolymerization initiator is less than 0.1 parts by mass, sufficient sensitivity cannot be obtained, and when the addition amount of the photopolymerization initiator exceeds 10 parts by mass, a taper shape (film of development pattern cross section) is obtained. The halation in which the shape in the thickness direction does not become sharp and the hem is pulled is likely to occur. Furthermore, decomposition gas may be generated when exposed to a high temperature in a subsequent process.
 また、(iv)のエポキシ化合物の例には、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、脂環式エポキシ樹脂等のエポキシ樹脂、フェニルグリシジルエーテル、p-ブチルフェノールグリシジルエーテル、トリグリシジルイソシアヌレート、ジグリシジルイソシアヌレート、アリルグリシジルエーテル、グリシジルメタクリレート等のエポキシ基を少なくとも1個有する化合物が含まれる。アルカリ可溶性樹脂の架橋密度を上げる必要性がある場合は、エポキシ基を少なくとも2個以上を有する化合物であることが好ましい。 Examples of the epoxy compound (iv) include phenol novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, biphenyl type epoxy resins, and alicyclic rings. An epoxy resin such as a formula epoxy resin, a compound having at least one epoxy group such as phenyl glycidyl ether, p-butylphenol glycidyl ether, triglycidyl isocyanurate, diglycidyl isocyanurate, allyl glycidyl ether, glycidyl methacrylate, and the like are included. When there is a need to increase the crosslinking density of the alkali-soluble resin, a compound having at least two epoxy groups is preferable.
 (iv)のエポキシ化合物を使用する場合の添加量は、(i)成分と(ii)成分の合計100質量部に対して10~40質量部の範囲であることが好ましい。ここで、エポキシ化合物を添加する1つの目的としては、硬化膜の信頼性を高めるためにパターニング後に硬化膜を形成した際に残存するカルボキシル基の量を少なくすることがあり、この目的の場合はエポキシ化合物の使用量が10質量部より少ないと、絶縁膜として使用する際の耐湿信頼性が確保できないおそれがある。また、エポキシ化合物の使用量が40質量部より多い場合は、感光性樹脂組成物中の樹脂成分における感光性基の量が減少して、パターニングするための感度が十分に得られないおそれがある。 When the epoxy compound (iv) is used, the addition amount is preferably in the range of 10 to 40 parts by mass with respect to 100 parts by mass in total of the components (i) and (ii). Here, one purpose of adding an epoxy compound is to reduce the amount of carboxyl groups remaining when a cured film is formed after patterning in order to increase the reliability of the cured film. If the amount of the epoxy compound used is less than 10 parts by mass, the moisture resistance reliability when used as an insulating film may not be ensured. Moreover, when there are more usage-amounts of an epoxy compound than 40 mass parts, there exists a possibility that the quantity for the photosensitive group in the resin component in the photosensitive resin composition may reduce, and the sensitivity for patterning may not fully be obtained. .
 (i)の一般式(1)で表されるアルカリ可溶性樹脂と、(ii)光重合性モノマーと、(iii)光重合開始剤と、(iv)エポキシ化合物と、を必須成分として含む感光性樹脂組成物は、必要により溶剤に溶解させたり、各種添加剤を配合して用いることもできる。すなわち、本発明の感光性樹脂組成物を絶縁材料用途等に使用する場合においては、(i)~(iv)の必須成分の他に溶剤を使用することが好ましい。溶剤の例には、メタノール、エタノール、n-プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール等のアルコール類;α-もしくはβ-テルピネオール等のテルペン類;アセトン、メチルエチルケトン、シクロヘキサノン、N-メチル-2-ピロリドン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等の酢酸エステル類が含まれる。これらを単独または2種類以上を併用して溶解、混合させることにより、均一な溶液状の組成物とすることができる。 Photosensitivity comprising, as essential components, an alkali-soluble resin represented by general formula (1) of (i), (ii) a photopolymerizable monomer, (iii) a photopolymerization initiator, and (iv) an epoxy compound. The resin composition can be used by dissolving it in a solvent or blending various additives as required. That is, when the photosensitive resin composition of the present invention is used for insulating materials, it is preferable to use a solvent in addition to the essential components (i) to (iv). Examples of solvents include alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol, propylene glycol; terpenes such as α- or β-terpineol; acetone, methyl ethyl ketone, cyclohexanone, N-methyl-2-pyrrolidone Ketones such as toluene; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; cellosolve, methyl cellosolve, ethyl cellosolve, carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glycol Monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monomethyl ether, triethylene Glycol ethers such as glycol monoethyl ether; ethyl acetate, butyl acetate, cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, carbitol acetate, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl Acetic esters such as ether acetate are included. By dissolving and mixing these alone or in combination of two or more, a uniform solution-like composition can be obtained.
 また、本発明の感光性樹脂組成物には、必要に応じて硬化促進剤、熱重合禁止剤、酸化防止剤、可塑剤、充填材、レベリング剤、消泡剤、カップリング剤、界面活性剤等の添加剤を配合することができる。このうち、硬化促進剤としては、例えばエポキシ化合物に通常適用される硬化促進剤、硬化触媒、潜在性硬化剤等として知られる公知の化合物を利用でき、三級アミン、四級アンモニウム塩、三級ホスフィン、四級ホスホニウム塩、ホウ酸エステル、ルイス酸、有機金属化合物、イミダゾール類、ジアザビシクロ系化合物等が含まれる。熱重合禁止剤および酸化防止剤の例には、ハイドロキノン、ハイドロキノンモノメチルエーテル、ピロガロール、tert-ブチルカテコール、フェノチアジン、ヒンダードフェノール系化合物、リン系熱安定剤等が含まれる。可塑剤の例には、ジブチルフタレート、ジオクチルフタレート、リン酸トリクレジル等が含まれる。充填材の例には、グラスファイバー、シリカ、マイカ、アルミナ、沈降性硫酸バリウム、沈降性炭酸カルシウム等が含まれる。また、消泡剤およびレベリング剤の例には、シリコーン系、フッ素系、アクリル系の化合物等が含まれる。カップリング剤の例には、ビニルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-(グリシジルオキシ)プロピルトリメトキシシラン、3-イソシアナトプロピルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、3-(フェニルアミノ)プロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシランが含まれる。界面活性剤の例には、フッ素系界面活性剤、シリコーン系界面活性剤等が含まれる。 Further, the photosensitive resin composition of the present invention includes a curing accelerator, a thermal polymerization inhibitor, an antioxidant, a plasticizer, a filler, a leveling agent, an antifoaming agent, a coupling agent, and a surfactant as necessary. Etc. can be mix | blended. Among these, as the curing accelerator, for example, a known compound known as a curing accelerator, a curing catalyst, a latent curing agent and the like which are usually applied to an epoxy compound can be used, and a tertiary amine, a quaternary ammonium salt, a tertiary Examples include phosphine, quaternary phosphonium salts, boric acid esters, Lewis acids, organometallic compounds, imidazoles, diazabicyclo compounds, and the like. Examples of the thermal polymerization inhibitor and the antioxidant include hydroquinone, hydroquinone monomethyl ether, pyrogallol, tert-butylcatechol, phenothiazine, hindered phenol compounds, phosphorus heat stabilizers and the like. Examples of the plasticizer include dibutyl phthalate, dioctyl phthalate, tricresyl phosphate, and the like. Examples of the filler include glass fiber, silica, mica, alumina, precipitated barium sulfate, precipitated calcium carbonate and the like. Examples of antifoaming agents and leveling agents include silicone-based, fluorine-based, and acrylic compounds. Examples of coupling agents include vinyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3- (glycidyloxy) propyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-aminopropyltriethoxysilane, 3- (phenylamino) propyltrimethoxysilane, 3-ureidopropyltriethoxysilane are included. Examples of the surfactant include a fluorine-based surfactant, a silicone-based surfactant, and the like.
 本発明の感光性樹脂組成物は、溶剤を除いた固形分(固形分には硬化後に固形分となるモノマーを含む)中に、(i)一般式(1)で表されるアルカリ可溶性樹脂と、(ii)光重合性モノマーと、(iii)光重合開始剤と、(iv)エポキシ化合物が合計で70質量%以上、好ましくは80質量%、より好ましくは90質量%以上含まれることが好ましい。溶剤の量は、目標とする粘度によって変化するが、全体量に対して10~80質量%であることが好ましい。 The photosensitive resin composition of the present invention comprises (i) an alkali-soluble resin represented by the general formula (1) in a solid content excluding a solvent (the solid content includes a monomer that becomes a solid content after curing). , (Ii) a photopolymerizable monomer, (iii) a photopolymerization initiator, and (iv) an epoxy compound in total of 70% by mass or more, preferably 80% by mass, more preferably 90% by mass or more. . The amount of the solvent varies depending on the target viscosity, but is preferably 10 to 80% by mass with respect to the total amount.
 また、本発明の塗膜(硬化物)は、例えば、感光性樹脂組成物の溶液を基板等に塗布し、溶剤を乾燥し、光(紫外線、放射線等を含む)を照射して硬化させることで得られる。フォトマスク等を使用して光が当たる部分と当たらない部分とを設けて、光が当たる部分だけを硬化させ、他の部分をアルカリ溶液で溶解させれば、所望のパターンの塗膜が得られる。 Moreover, the coating film (cured product) of the present invention is cured by, for example, applying a solution of a photosensitive resin composition to a substrate or the like, drying the solvent, and irradiating light (including ultraviolet rays and radiation). It is obtained by. Using a photomask or the like to provide a portion that is exposed to light and a portion that is not exposed to light, only the portion that is exposed to light is cured, and the other portion is dissolved in an alkaline solution to obtain a coating film having a desired pattern. .
 感光性樹脂組成物の塗布・乾燥による成膜方法の各工程について、具体的に例示すると、感光性樹脂組成物を基板に塗布する際には、公知の溶液浸漬法、スプレー法、ローラーコーター機、ランドコーター機、スリットコート機やスピナー機を用いる方法等の何れの方法をも採用することができる。これらの方法によって、所望の厚さに塗布した後、溶剤を除去する(プレベーク)ことにより、被膜が形成される。プレベークはオーブン、ホットプレート等による加熱、真空乾燥またはこれらの組み合わせることによって行われる。プレベークにおける加熱温度および加熱時間は使用する溶剤に応じて適宜選択されうるが、例えば、80~120℃で、1~10分間行われることが好ましい。 Specific examples of each step of the film forming method by application and drying of the photosensitive resin composition are as follows. When applying the photosensitive resin composition to the substrate, a known solution dipping method, spray method, roller coater machine Any method such as a method using a land coater, a slit coater or a spinner can be adopted. After applying to a desired thickness by these methods, the film is formed by removing the solvent (pre-baking). Pre-baking is performed by heating with an oven, a hot plate or the like, vacuum drying, or a combination thereof. The heating temperature and heating time in the pre-baking can be appropriately selected depending on the solvent to be used, but for example, it is preferably performed at 80 to 120 ° C. for 1 to 10 minutes.
 露光に使用される放射線としては、例えば、可視光線、紫外線、遠紫外線、電子線、X線等を使用することができるが、放射線の波長の範囲は、250~450nmであることが好ましい。また、このアルカリ現像に適した現像液としては、例えば、炭酸ナトリウム、炭酸カリウム、水酸化カリウム、ジエタノールアミン、テトラメチルアンモニウムヒドロキシド等の水溶液を用いることができる。これらの現像液は、樹脂層の特性に合わせて適宜選択されうるが、必要に応じて界面活性剤を添加することも有効である。現像温度は、20~35℃であることが好ましく、市販の現像機や超音波洗浄機等を用いて微細な画像を精密に形成することができる。なお、アルカリ現像後は、通常、水洗される。現像処理法としては、シャワー現像法、スプレー現像法、ディップ(浸漬)現像法、パドル(液盛り)現像法等を適用することができる。 As the radiation used for the exposure, for example, visible light, ultraviolet light, far ultraviolet light, electron beam, X-ray or the like can be used, and the wavelength range of the radiation is preferably 250 to 450 nm. As a developer suitable for this alkali development, for example, an aqueous solution of sodium carbonate, potassium carbonate, potassium hydroxide, diethanolamine, tetramethylammonium hydroxide, or the like can be used. These developing solutions can be appropriately selected in accordance with the characteristics of the resin layer, but it is also effective to add a surfactant if necessary. The development temperature is preferably 20 to 35 ° C., and a fine image can be precisely formed using a commercially available developing machine, ultrasonic cleaner or the like. In addition, after alkali development, it is usually washed with water. As a development processing method, a shower development method, a spray development method, a dip (immersion) development method, a paddle (liquid accumulation) development method, or the like can be applied.
 このようにして現像した後、120~250℃で、20~100分間、熱処理(ポストベーク)が行われる。このポストベークは、パターニングされた塗膜と基板との密着性を高めるため等の目的で行われる。これはプレベークと同様に、オーブン、ホットプレート等により加熱することによって行われる。本発明のパターニングされた塗膜は、フォトリソグラフィー法による各工程を経て形成される。そして、熱により重合または硬化(両者を合わせて硬化ということがある)を完結させ、所望のパターンの絶縁膜等の硬化膜とする。このときの硬化温度は140~250℃であることが好ましい。 After the development as described above, a heat treatment (post-bake) is performed at 120 to 250 ° C. for 20 to 100 minutes. This post-baking is performed for the purpose of improving the adhesion between the patterned coating film and the substrate. This is performed by heating with an oven, a hot plate or the like, as in the pre-bake. The patterned coating film of this invention is formed through each process by the photolithographic method. Then, polymerization or curing (sometimes referred to as curing together) is completed by heat to obtain a cured film such as an insulating film having a desired pattern. The curing temperature at this time is preferably 140 to 250 ° C.
 本発明の感光性樹脂組成物は、従来のものに比べて1分子内の重合性不飽和基数が多いために光硬化性が向上し、光重合開始剤を増量することなく硬化後の架橋密度を高めることができる。すなわち、厚膜で紫外線または電子線を照射した場合、硬化部は底部まで硬化するため、露光部と未露光部分におけるアルカリ現像液に対する溶解度差が大きくなることから、パターン寸法安定性、現像マージン、パターン密着性が向上し、高解像度でパターン形成することができる。そして、薄膜の場合にも、高感度化されたことにより、露光部の残膜量の大幅な改善や現像時の剥離を抑制することができる。 Since the photosensitive resin composition of the present invention has more polymerizable unsaturated groups in one molecule than conventional ones, photocurability is improved, and the crosslinking density after curing without increasing the amount of photopolymerization initiator. Can be increased. That is, when ultraviolet rays or electron beams are irradiated with a thick film, the cured portion is cured to the bottom, so that the difference in solubility with respect to the alkaline developer in the exposed portion and the unexposed portion is increased, so that pattern dimension stability, development margin, Pattern adhesion is improved, and a pattern can be formed with high resolution. Even in the case of a thin film, the sensitivity can be improved and the amount of remaining film in the exposed area can be greatly improved and peeling during development can be suppressed.
 本発明の感光性組成物は回路基板作製のためのソルダーレジスト、メッキレジスト、エッチングレジストや、半導体素子を搭載する配線基板の多層化用の絶縁膜、半導体のゲート絶縁膜、感光性接着剤(特にフォトリスグラフィーによるパターン形成後にも加熱接着性能を必要とするような接着剤)等に極めて有用である。 The photosensitive composition of the present invention includes a solder resist, a plating resist, an etching resist for manufacturing a circuit board, an insulating film for multilayering a wiring board on which a semiconductor element is mounted, a semiconductor gate insulating film, a photosensitive adhesive ( In particular, it is extremely useful for adhesives that require heat bonding performance even after pattern formation by photolithography.
 以下に、一般式(1)で表されるアルカリ可溶性樹脂の実施例等に基づいて本発明をさらに詳細に説明する。なお、本発明はこれらの実施例等によりその範囲を限定されるものではない。また、これらの実施例における樹脂の評価は、断りのない限り以下のとおりに行った。 Hereinafter, the present invention will be described in more detail based on examples of the alkali-soluble resin represented by the general formula (1). The scope of the present invention is not limited by these examples. Moreover, evaluation of the resin in these Examples was performed as follows unless otherwise indicated.
 [固形分濃度]
 固形分濃度は、実施例1(および比較例1)中で得られた樹脂溶液、感光性樹脂組成物等(1g)をガラスフィルター〔質量:W0(g)〕に含浸させて秤量し〔W1(g)〕、160℃で2時間加熱した後の質量〔W2(g)〕の値を用いて下記式より算出した。
固形分濃度(質量%)=100×(W2-W0)/(W1-W0)
[Solid content]
The solid content concentration was measured by impregnating a glass filter [mass: W0 (g)] with the resin solution, photosensitive resin composition, etc. (1 g) obtained in Example 1 (and Comparative Example 1) [W1 (G)] was calculated from the following formula using the value of mass [W2 (g)] after heating at 160 ° C. for 2 hours.
Solid content concentration (mass%) = 100 × (W2-W0) / (W1-W0)
 [酸価]
 酸価は、樹脂溶液をジオキサンに溶解させ、電位差滴定装置「COM-1600」(平沼産業株式会社製)を用いて1/10N-KOH水溶液で滴定して、固形分1gあたりに必要としたKOHの量を酸価とした。
[Acid value]
The acid value was determined by dissolving the resin solution in dioxane and titrating with a 1/10 N-KOH aqueous solution using a potentiometric titrator “COM-1600” (manufactured by Hiranuma Sangyo Co., Ltd.). Was the acid value.
 [分子量]
 分子量は、ゲルパーミュエーションクロマトグラフィー(GPC)(「HLC-8220GPC」東ソー株式会社製、カラム:TSKgelSuperH2000(2本)+TSKgelSuperH3000(1本)+TSKgelSuperH4000(1本)+TSKgelSuperH5000(1本)(いずれも東ソー株式会社製)、溶媒:テトラヒドロフラン、温度:40℃、速度:0.6ml/min)にて測定し、標準ポリスチレン(「PS-オリゴマーキット」東ソー株式会社製)換算値として求めた値を重量平均分子量(Mw)とした。
[Molecular weight]
The molecular weight is determined by gel permeation chromatography (GPC) ("HLC-8220GPC" manufactured by Tosoh Corporation, column: TSKgelSuperH2000 (2) + TSKgelSuperH3000 (1) + TSKgelSuperH4000 (1) + TSKgelSuperH5000 (1 east) (Made by company), solvent: tetrahydrofuran, temperature: 40 ° C., speed: 0.6 ml / min), and a value obtained as a converted value of standard polystyrene (“PS-oligomer kit” manufactured by Tosoh Corporation) is a weight average molecular weight. (Mw).
 また、実施例1および比較例1で使用する略号は次のとおりである。
 NAMMEA:1-ナフトールとp-キシリレングリコールジメチルエーテルの反応物(ナフトールアラルキル樹脂)にメタノールを反応させて水酸基の一部をメトキシ化した化合物(水酸基とメトキシ基の合計量に対するメトキシ基の割合は28%)にクロロメチルオキシランを反応させて得られたエポキシ化合物(エポキシ当量406、一般式(4)において、Xが一般式(5)、Wがメチル基(R)およびグリシジル基(G)でありC/Cの値が0.39)に、さらにアクリル酸を反応させて得られた化合物(エポキシ基とカルボキシル基の等当量反応物)
 THPA:1,2,3,6-テトラヒドロフタル酸無水物
 TEAB:臭化テトラエチルアンモニウム
 PEGMEA:プロピレングリコールモノメチルエーテルアセテート
Abbreviations used in Example 1 and Comparative Example 1 are as follows.
NAMMEA: Compound obtained by reacting methanol with a reaction product of 1-naphthol and p-xylylene glycol dimethyl ether (naphthol aralkyl resin) to methoxylate a part of hydroxyl groups (the ratio of methoxy groups to the total amount of hydroxyl groups and methoxy groups is 28 %) Epoxy compound obtained by reacting chloromethyloxirane (epoxy equivalent 406, in general formula (4), X is general formula (5), W is methyl group (R) and glycidyl group (G)) the C R / C value of G is 0.39), the compound was further obtained by reacting acrylic acid (equal equivalent reaction product of the epoxy group and a carboxyl group)
THPA: 1,2,3,6-tetrahydrophthalic anhydride TEAB: tetraethylammonium bromide PEGMEA: propylene glycol monomethyl ether acetate
 以下の実施例1は、一般式(1)で表されて、1分子内にカルボキシル基および重合性不飽和基を有するアルカリ可溶性樹脂の合成例である。また、比較例1は一般式(1)のアルカリ可溶性樹脂と構造を異にするアルカリ可溶性樹脂である。 Example 1 below is a synthesis example of an alkali-soluble resin represented by the general formula (1) and having a carboxyl group and a polymerizable unsaturated group in one molecule. Comparative Example 1 is an alkali-soluble resin having a structure different from that of the alkali-soluble resin of the general formula (1).
 [実施例1]
 (アルカリ可溶性樹脂の合成)
 還留冷却器付き1000ml四つ口フラスコ中にNAMMEAの50%PEGMEA溶液(337.2g)と、THPA(49.1g)と、TEAB(0.90g)と、PEGMEA(5.4g)とを仕込み、120~125℃で6時間撹拌し、アルカリ可溶性樹脂(i)-1を得た。得られた樹脂の固形分濃度は56.0質量%、酸価(固形分換算)は88.0mgKOH/g、および分子量(Mw)は1000であった。
[Example 1]
(Synthesis of alkali-soluble resin)
Into a 1000 ml four-necked flask equipped with a reflux condenser, 50% PEGMEA solution (337.2 g), THPA (49.1 g), TEAB (0.90 g), and PEGMEA (5.4 g) were charged. The mixture was stirred at 120 to 125 ° C. for 6 hours to obtain an alkali-soluble resin (i) -1. The obtained resin had a solid content concentration of 56.0% by mass, an acid value (in terms of solid content) of 88.0 mgKOH / g, and a molecular weight (Mw) of 1000.
 [比較例1]
 (アルカリ可溶性樹脂の合成)
 還留冷却器付き1000ml四つ口フラスコ中にビスフェノールA型エポキシ化合物(エポキシ当量=182)とアクリル酸との当量反応物(エポキシ基とカルボキシル基が当量)の50%PGMEA溶液(291.0g)と、ジメチロールプロピオン酸(4.0g)と、1,6-ヘキサンジオール(11.8g)と、およびPGMEA(84g)とを仕込み、45℃に昇温した。次に、イソホロンジイソシアネート(61.8g)をフラスコ内の温度に注意しながら滴下した。滴下終了後、75~80℃で6時間撹拌した。更に、THPA(21.0g)を仕込み、90~95℃で6時間撹拌し、アルカリ可溶性樹脂溶液(i)-2を得た。得られた樹脂の固形分濃度は66.5質量%、酸価(固形分換算)は38.4mgKOH/gおよび分子量(Mw)は12220であった。
[Comparative Example 1]
(Synthesis of alkali-soluble resin)
50% PGMEA solution (291.0 g) of bisphenol A type epoxy compound (epoxy equivalent = 182) and equivalent reaction product of acrylic acid (epoxy group and carboxyl group are equivalent) in a 1000 ml four-necked flask with a reflux condenser Then, dimethylolpropionic acid (4.0 g), 1,6-hexanediol (11.8 g), and PGMEA (84 g) were charged, and the temperature was raised to 45 ° C. Next, isophorone diisocyanate (61.8 g) was added dropwise while paying attention to the temperature in the flask. After completion of dropping, the mixture was stirred at 75 to 80 ° C. for 6 hours. Further, THPA (21.0 g) was charged and stirred at 90 to 95 ° C. for 6 hours to obtain an alkali-soluble resin solution (i) -2. The obtained resin had a solid content concentration of 66.5% by mass, an acid value (in terms of solid content) of 38.4 mgKOH / g, and a molecular weight (Mw) of 12,220.
 次に、感光性樹脂組成物とその硬化物の製造と評価について、実施例2および比較例2に基づいて、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。ここで、以降の実施例2および比較例2で用いた原料および略号は以下の通りである。 Next, the present invention will be specifically described based on Example 2 and Comparative Example 2 for the production and evaluation of the photosensitive resin composition and its cured product, but the present invention is not limited thereto. . Here, the raw materials and abbreviations used in Example 2 and Comparative Example 2 below are as follows.
 (i)-1:実施例1で得られたアルカリ可溶性樹脂
 (i)-2:比較例1で得られたアルカリ可溶性樹脂
 (ii):ジペンタエリスリトールヘキサアクリレート
 (iii)-1:イルガキュア184(BASF社製、「イルガキュア」は同社の登録商標である。)
 (iii)-2:4,4’-ビス(ジメチルアミノ)ベンゾフェノン(ミヒラーケトン)
 (iv):クレゾールノボラック型エポキシ樹脂
 溶剤:プロピレングリコールモノメチルエーテルアセテート
(i) -1: Alkali-soluble resin obtained in Example 1 (i) -2: Alkali-soluble resin obtained in Comparative Example 1 (ii): Dipentaerythritol hexaacrylate (iii) -1: Irgacure 184 ( "BASF's" Irgacure "is a registered trademark of the company.)
(iii) -2: 4,4'-bis (dimethylamino) benzophenone (Michler's ketone)
(iv): Cresol novolac type epoxy resin Solvent: Propylene glycol monomethyl ether acetate
 表1に示す割合で各成分を配合して、実施例2および比較例2の感光性樹脂組成物を調製した。なお、表1中の数値はすべて質量%を表す。 The photosensitive resin compositions of Example 2 and Comparative Example 2 were prepared by blending each component at the ratio shown in Table 1. In addition, all the numerical values in Table 1 represent mass%.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 [実施例2および比較例2の感光性樹脂組成物の評価]
 表1に示した感光性樹脂組成物を、スピンコーターを用いて125mm×125mmのガラス基板上にポストベーク後の膜厚が30μmとなるように塗布し、110℃で5分間プリベークして塗布板を作製した。その後、パターン形成用のフォトマスクを通して500W/cmの高圧水銀ランプで波長365nmの紫外線を照射し、露光部分の光硬化反応を行った。次に、この露光済み塗板を0.8質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液、23℃のシャワー現像にてパターンが現われ始めた時間からさらに30秒間の現像を行い、さらにスプレー水洗を行い、塗膜の未露光部を除去した。その後、熱風乾燥機を用いて230℃、30分間加熱硬化処理を行って、実施例2および比較例2に係る硬化膜を得た。
[Evaluation of Photosensitive Resin Compositions of Example 2 and Comparative Example 2]
The photosensitive resin composition shown in Table 1 was coated on a 125 mm × 125 mm glass substrate using a spin coater so that the film thickness after post-baking was 30 μm, and pre-baked at 110 ° C. for 5 minutes to be coated. Was made. Thereafter, ultraviolet light having a wavelength of 365 nm was irradiated through a photomask for pattern formation with a high-pressure mercury lamp of 500 W / cm 2 to carry out photocuring reaction of the exposed portion. Next, this exposed coated plate is further developed for 30 seconds from the time when the pattern started to appear in a 0.8 mass% tetramethylammonium hydroxide (TMAH) aqueous solution and 23 ° C. shower development, and further washed with spray water. The unexposed part of the coating film was removed. Thereafter, heat curing treatment was performed at 230 ° C. for 30 minutes using a hot air dryer, and cured films according to Example 2 and Comparative Example 2 were obtained.
 上記の条件で得られた硬化膜について次に示す評価を行った。なお、膜厚試験、アルカリ耐性試験、酸耐性試験用の硬化膜の作製時にはフォトマスクを通さない全面露光後、現像、水洗、加熱硬化処理を行った。 The following evaluation was performed on the cured film obtained under the above conditions. In the preparation of a cured film for a film thickness test, an alkali resistance test, and an acid resistance test, development, washing with water, and heat curing treatment were performed after the entire surface exposure without passing through a photomask.
 [膜厚]
 膜厚は、塗布した膜の一部を削り、触針式段差形状測定装置「P-10」(ケーエルエー・テンコール株式会社製)を用いて測定した。
[Film thickness]
The film thickness was measured using a stylus step shape measuring device “P-10” (manufactured by KLA-Tencor Corporation) after shaving a part of the applied film.
 [アルカリ耐性試験]
 アルカリ耐性試験は、硬化膜付きガラス基板を、2-アミノエタノール30質量部、グリコールエーテル70質量部の混合液の80℃に保持した溶液に浸漬し、10分後に引き上げて純水で洗浄、乾燥して、薬品浸漬したサンプルを作製して密着性を評価した。薬品浸漬したサンプルの膜上に少なくとも100個の碁盤目状になるようにクロスカットを入れて、次いでセロハンテープを用いてピーリング試験を行い、碁盤目の状態を目視によって評価した。
 ◎:全く剥離がみられないもの
 ○:僅かに塗膜に剥離が確認できるもの
 △:一部塗膜に剥離が確認できるもの
 ×:膜が殆ど剥離してしまうもの
[Alkali resistance test]
In the alkali resistance test, a glass substrate with a cured film was immersed in a solution kept at 80 ° C. of a mixed solution of 30 parts by mass of 2-aminoethanol and 70 parts by mass of glycol ether, pulled up after 10 minutes, washed with pure water, and dried. Then, a chemical-immersed sample was prepared and the adhesion was evaluated. A crosscut was put on the film of the sample immersed in the chemical so as to form at least 100 grids, and then a peeling test was performed using a cellophane tape, and the grids were visually evaluated.
A: No peeling at all ○: A slight peeling can be confirmed on the coating film Δ: A peeling can be confirmed on a part of the coating film ×: The film is almost peeled off
 [酸耐性試験]
 酸耐性試験は、硬化膜付きガラス基板を、王水(塩酸:硝酸=7:3)の50℃に保持した溶液に浸漬し、10分後に引き上げて純水で洗浄、乾燥して、薬品浸漬したサンプルを作製して密着性を評価した。薬品浸漬したサンプルの膜上に少なくとも100個の碁盤目状になるようにクロスカットを入れて、次いでセロハンテープを用いてピーリング試験を行い、碁盤目の状態を目視によって評価した。
 ◎:全く剥離がみられないもの
 ○:僅かに塗膜に剥離が確認できるもの
 △:一部塗膜に剥離が確認できるもの
 ×:膜が殆ど剥離してしまうもの
[Acid resistance test]
In the acid resistance test, the glass substrate with a cured film was immersed in a solution of aqua regia (hydrochloric acid: nitric acid = 7: 3) held at 50 ° C., pulled up after 10 minutes, washed with pure water, dried, and immersed in chemicals. Samples prepared were evaluated for adhesion. A crosscut was put on the film of the sample immersed in the chemical so as to form at least 100 grids, and then a peeling test was performed using a cellophane tape, and the grids were visually evaluated.
A: No peeling at all ○: A slight peeling can be confirmed on the coating film Δ: A peeling can be confirmed on a part of the coating film ×: The film is almost peeled off
 [耐熱性試験]
 耐熱性試験は、表1に示した感光性樹脂組成物を、スピンコーターを用いて125mm×125mmの剥離フィルムを貼ったガラス基板上にポストベーク後の膜厚が30μmとなるように塗布し、110℃で5分間プリベークして塗布板を作製した。その後、パターン形成用のフォトマスクを通して500W/cmの高圧水銀ランプで波長365nmの紫外線を照射し、露光部分の光硬化反応を行った。次に、この露光済み塗板を0.8質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液、23℃のシャワー現像にてパターンが現われ始めた時間からさらに30秒間の現像を行い、さらにスプレー水洗を行い、塗膜の未露光部を除去した。その後、熱風乾燥機を用いて230℃、30分間加熱硬化処理を行い、得られたパターンを剥離フィルムから剥がして実施例2および比較例2に係る硬化膜を得た。
[Heat resistance test]
In the heat resistance test, the photosensitive resin composition shown in Table 1 was applied on a glass substrate on which a 125 mm × 125 mm release film was pasted using a spin coater so that the film thickness after post-baking was 30 μm, A coated plate was prepared by pre-baking at 110 ° C. for 5 minutes. Thereafter, ultraviolet light having a wavelength of 365 nm was irradiated through a photomask for pattern formation with a high-pressure mercury lamp of 500 W / cm 2 to carry out photocuring reaction of the exposed portion. Next, the exposed coated plate is further developed for 30 seconds from the time when the pattern started to appear by a 0.8% by weight tetramethylammonium hydroxide (TMAH) aqueous solution and 23 ° C. shower development, and further washed with spray water. The unexposed part of the coating film was removed. Thereafter, heat curing treatment was performed at 230 ° C. for 30 minutes using a hot air dryer, and the obtained pattern was peeled from the release film to obtain cured films according to Example 2 and Comparative Example 2.
 上記の条件で得られた絶縁フィルムの耐熱性は、熱機械分析装置(TMA)を用いて線膨張係数(α1)を測定することで評価した。 The heat resistance of the insulating film obtained under the above conditions was evaluated by measuring the linear expansion coefficient (α1) using a thermomechanical analyzer (TMA).
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 実施例2で調製したアルカリ可溶性樹脂を含む感光性樹脂組成物およびその硬化物は、表2で示されるように、アルカリ耐性試験、酸耐性試験および耐熱性試験に対して良好な結果を示すことがわかった。したがって、本発明のアルカリ可溶性樹脂を含む感光性樹脂組成物およびその硬化物は、フォトリソグラフィーにより微細な硬化膜パターンを形成できると考えられる。 As shown in Table 2, the photosensitive resin composition containing the alkali-soluble resin prepared in Example 2 and the cured product thereof show good results for the alkali resistance test, acid resistance test, and heat resistance test. I understood. Therefore, it is considered that the photosensitive resin composition containing the alkali-soluble resin of the present invention and the cured product thereof can form a fine cured film pattern by photolithography.
 以上より、本発明の感光性樹脂組成物およびその硬化物は、回路基板作製のためのソルダーレジスト、メッキレジスト、エッチングレジストや、半導体素子を搭載する配線基板の多層化用の絶縁膜、半導体のゲート絶縁膜、感光性接着剤等に適用可能である。 From the above, the photosensitive resin composition of the present invention and the cured product thereof are a solder resist, a plating resist, an etching resist for circuit board production, an insulating film for multilayering a wiring board on which a semiconductor element is mounted, a semiconductor It can be applied to a gate insulating film, a photosensitive adhesive, and the like.
 本出願は、2018年3月27日出願の特願2018-060780に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2018-060780 filed on Mar. 27, 2018. All the contents described in the application specification are incorporated herein by reference.

Claims (6)

  1.  下記一般式(1)で表されて、1分子内にカルボキシル基および重合性不飽和基を有するアルカリ可溶性樹脂。
    Figure JPOXMLDOC01-appb-C000001
     (Xは炭素数1~20の2価の炭化水素基を示す。上記2価の炭化水素基は直鎖または分岐を有してもよく、主鎖または分岐鎖に芳香環を有してもよい。Yは炭素数1~5の炭化水素基Rまたは一般式(2)で表される分子内に重合性不飽和基とカルボキシル基を有する置換基Zであり、Rのモル数C、Zのモル数Cとしたとき、C/Cの値は0.05~2.0である。平均値としてのnの値は1~20である。さらに、ナフタレン環の水素原子の一部はRで置換されていてもよく、Rは炭素数1~5の炭化水素基、ハロゲン原子またはフェニル基を示す。)
    Figure JPOXMLDOC01-appb-C000002
     (Rは水素原子またはメチル基を示す。Lは一般式(3)で表される置換基を示す。)
    Figure JPOXMLDOC01-appb-C000003
     (Mは2または3価のカルボン酸残基を示し、pは1または2である。)
    An alkali-soluble resin represented by the following general formula (1) and having a carboxyl group and a polymerizable unsaturated group in one molecule.
    Figure JPOXMLDOC01-appb-C000001
    (X represents a divalent hydrocarbon group having 1 to 20 carbon atoms. The divalent hydrocarbon group may be linear or branched, and may have an aromatic ring in the main chain or branched chain. Y is a hydrocarbon group R having 1 to 5 carbon atoms or a substituent Z having a polymerizable unsaturated group and a carboxyl group in the molecule represented by the general formula (2), and the number of moles of R CR , When the number of moles of Z is C Z , the value of C R / C Z is 0.05 to 2.0, the average value of n is 1 to 20. Further, the number of hydrogen atoms of the naphthalene ring A part thereof may be substituted with R 1 , and R 1 represents a hydrocarbon group having 1 to 5 carbon atoms, a halogen atom or a phenyl group.)
    Figure JPOXMLDOC01-appb-C000002
    (R 3 represents a hydrogen atom or a methyl group. L represents a substituent represented by the general formula (3).)
    Figure JPOXMLDOC01-appb-C000003
    (M represents a divalent or trivalent carboxylic acid residue, and p is 1 or 2.)
  2.  (i)請求項1に記載の1分子内にカルボキシル基および重合性不飽和基を有するアルカリ可溶性樹脂と、
     (ii)少なくとも1個の重合性不飽和基を有する光重合性モノマーと、
     (iii)光重合開始剤と、
     を必須成分として含有することを特徴とする感光性樹脂組成物。
    (I) an alkali-soluble resin having a carboxyl group and a polymerizable unsaturated group in one molecule according to claim 1;
    (Ii) a photopolymerizable monomer having at least one polymerizable unsaturated group;
    (Iii) a photopolymerization initiator;
    Is contained as an essential component.
  3.  請求項2に記載の感光性樹脂組成物に、さらに(iv)エポキシ化合物を必須成分として含有することを特徴とする感光性樹脂組成物。 3. The photosensitive resin composition according to claim 2, further comprising (iv) an epoxy compound as an essential component.
  4.  (i)成分と(ii)成分の合計100質量部に対して、(iii)成分を0.1~10質量部含有することを特徴とする、請求項2または請求項3に記載の感光性樹脂組成物。 The photosensitive property according to claim 2 or 3, wherein 0.1 to 10 parts by mass of component (iii) is contained with respect to 100 parts by mass in total of component (i) and component (ii). Resin composition.
  5.  (i)成分と(ii)成分の合計100質量部に対して、(iii)成分を0.1~10質量部、(iv)成分を10~40質量部含有することを特徴とする、請求項3に記載の感光性樹脂組成物。 (iii) 0.1 to 10 parts by mass of component (iii) and 10 to 40 parts by mass of component (iv) with respect to 100 parts by mass in total of component (i) and component (ii), Item 4. The photosensitive resin composition according to Item 3.
  6.  請求項2~5のいずれか一項に記載の感光性樹脂組成物を硬化してなる硬化物。 A cured product obtained by curing the photosensitive resin composition according to any one of claims 2 to 5.
PCT/JP2019/012349 2018-03-27 2019-03-25 Unsaturated-group-containing alkali-soluble resin, photosensitive resin composition including unsaturated-group-containing alkali-soluble resin as essential ingredient, and cured product of photosensitive resin composition including unsaturated-group-containing alkali-soluble resin as essential ingredient WO2019188895A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980020737.0A CN111886274B (en) 2018-03-27 2019-03-25 Alkali-soluble resin containing unsaturated group, photosensitive resin composition containing the same as essential component, and cured product thereof
KR1020207027875A KR102673645B1 (en) 2018-03-27 2019-03-25 Alkali-soluble resin containing an unsaturated group, a photosensitive resin composition containing it as an essential ingredient, and its cured product
JP2020510026A JP7311493B2 (en) 2018-03-27 2019-03-25 Unsaturated group-containing alkali-soluble resin, photosensitive resin composition containing same as essential component, and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018060780 2018-03-27
JP2018-060780 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019188895A1 true WO2019188895A1 (en) 2019-10-03

Family

ID=68059225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012349 WO2019188895A1 (en) 2018-03-27 2019-03-25 Unsaturated-group-containing alkali-soluble resin, photosensitive resin composition including unsaturated-group-containing alkali-soluble resin as essential ingredient, and cured product of photosensitive resin composition including unsaturated-group-containing alkali-soluble resin as essential ingredient

Country Status (4)

Country Link
JP (1) JP7311493B2 (en)
CN (1) CN111886274B (en)
TW (1) TW201942160A (en)
WO (1) WO2019188895A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174559A (en) * 2018-03-27 2019-10-10 日鉄ケミカル&マテリアル株式会社 Photosensitive resin composition containing unsaturated group-containing alkali-soluble resin as essential component, and cured product thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680760A (en) * 1992-09-02 1994-03-22 Dai Ichi Kogyo Seiyaku Co Ltd Production of unsaturated polycarboxylic acid resin, and photosolder resist resin composition containing same
JPH1060087A (en) * 1996-08-26 1998-03-03 Nippon Steel Chem Co Ltd Photopolymerizable unsaturated compound containing carboxylic group and alkali-developing type photosensitive resin composition
JP2001089644A (en) * 1999-09-22 2001-04-03 Dainippon Ink & Chem Inc Interlaminar insulating material for multilayer printed- wiring board
JP2006160868A (en) * 2004-12-07 2006-06-22 Nippon Steel Chem Co Ltd Naphthol resin, epoxy resin, method for producing the same and epoxy resin composition and cured product thereof using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680760A (en) * 1992-09-02 1994-03-22 Dai Ichi Kogyo Seiyaku Co Ltd Production of unsaturated polycarboxylic acid resin, and photosolder resist resin composition containing same
JPH1060087A (en) * 1996-08-26 1998-03-03 Nippon Steel Chem Co Ltd Photopolymerizable unsaturated compound containing carboxylic group and alkali-developing type photosensitive resin composition
JP2001089644A (en) * 1999-09-22 2001-04-03 Dainippon Ink & Chem Inc Interlaminar insulating material for multilayer printed- wiring board
JP2006160868A (en) * 2004-12-07 2006-06-22 Nippon Steel Chem Co Ltd Naphthol resin, epoxy resin, method for producing the same and epoxy resin composition and cured product thereof using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174559A (en) * 2018-03-27 2019-10-10 日鉄ケミカル&マテリアル株式会社 Photosensitive resin composition containing unsaturated group-containing alkali-soluble resin as essential component, and cured product thereof
JP7089914B2 (en) 2018-03-27 2022-06-23 日鉄ケミカル&マテリアル株式会社 A photosensitive resin composition containing an unsaturated group-containing alkali-soluble resin as an essential component and a cured product thereof.

Also Published As

Publication number Publication date
TW201942160A (en) 2019-11-01
CN111886274B (en) 2024-01-09
JP7311493B2 (en) 2023-07-19
JPWO2019188895A1 (en) 2021-04-08
KR20200135969A (en) 2020-12-04
CN111886274A (en) 2020-11-03

Similar Documents

Publication Publication Date Title
JP6482176B2 (en) Photosensitive resin composition for insulating film and cured product
JP7479130B2 (en) Epoxy acrylate resin, alkali-soluble resin, resin composition containing same, and cured product thereof
WO2021235299A1 (en) Polymerizable-unsaturated-group-containing alkali-soluble resin, method for producing same, photosensive resin composition, and cured product thereof
TWI793289B (en) Process for producing alkali-soluble resin containing polymerizable unsaturated group, alkali-soluble resin containing polymerizable unsaturated group, photosensitive resin composition containing it as an essential component, and cured film thereof
JP7311493B2 (en) Unsaturated group-containing alkali-soluble resin, photosensitive resin composition containing same as essential component, and cured product thereof
JP7376978B2 (en) Photosensitive resin composition, method for producing cured product, and method for producing display device
WO2011024836A1 (en) Alkali-soluble resin containing silicone resin, light-sensitive resin composition, and cured object using light-sensitive resin composition
JP5431224B2 (en) Photosensitive alkali-soluble resin composition containing cyclic silicone resin and cured product using the same
KR102673645B1 (en) Alkali-soluble resin containing an unsaturated group, a photosensitive resin composition containing it as an essential ingredient, and its cured product
WO2022092281A1 (en) Polymerizable unsaturated group-containing alkali-soluble resin, photosensitive resin composition containing same as essential component, and cured product thereof
JP7368162B2 (en) Polymerizable unsaturated group-containing alkali-soluble resin, method for producing the same, photosensitive resin composition, and cured film thereof.
JP2005215035A (en) Photosensitive resin composition and cured object
TW202146505A (en) Epoxy acrylate resin, alkali-soluble resin, resin composition including same, and cured product thereof
KR102162595B1 (en) Photosensitive resin composition for insulation layer, and cured product thereof
JP7089914B2 (en) A photosensitive resin composition containing an unsaturated group-containing alkali-soluble resin as an essential component and a cured product thereof.
JP2021161402A (en) Polymerizable unsaturated group-containing alkali-soluble resin, photosensitive resin composition containing the same as essential component, and cured product of the composition
CN112538157A (en) Epoxy acrylate resin, alkali-soluble resin and method for producing the same, curable and photosensitive resin composition and cured product thereof
JP5603170B2 (en) Photosensitive resin composition containing silicone resin and cured product using the same
TW202337927A (en) Curable resin composition, cured resin material thereof, semiconductor package and display device with that cured material
TW202313754A (en) Photosensitive resin composition, cured resin film thereof, and semiconductor package and printed wiring board with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19774493

Country of ref document: EP

Kind code of ref document: A1