WO2019188718A1 - Surface shape monitoring device, abrasion loss measuring system, and surface shape monitoring system - Google Patents

Surface shape monitoring device, abrasion loss measuring system, and surface shape monitoring system Download PDF

Info

Publication number
WO2019188718A1
WO2019188718A1 PCT/JP2019/011884 JP2019011884W WO2019188718A1 WO 2019188718 A1 WO2019188718 A1 WO 2019188718A1 JP 2019011884 W JP2019011884 W JP 2019011884W WO 2019188718 A1 WO2019188718 A1 WO 2019188718A1
Authority
WO
WIPO (PCT)
Prior art keywords
conveyor belt
surface shape
pattern
shape monitoring
thickness
Prior art date
Application number
PCT/JP2019/011884
Other languages
French (fr)
Japanese (ja)
Inventor
永谷 修一
荒木 伸介
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2019536611A priority Critical patent/JPWO2019188718A1/en
Publication of WO2019188718A1 publication Critical patent/WO2019188718A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G15/00Conveyors having endless load-conveying surfaces, i.e. belts and like continuous members, to which tractive effort is transmitted by means other than endless driving elements of similar configuration
    • B65G15/30Belts or like endless load-carriers
    • B65G15/32Belts or like endless load-carriers made of rubber or plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/02Control devices, e.g. for safety, warning or fault-correcting detecting dangerous physical condition of load carriers, e.g. for interrupting the drive in the event of overheating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined

Definitions

  • the present invention relates to a surface shape monitoring device, a wear amount measuring system, and a surface shape monitoring system.
  • an endless belt (endless belt) in which both ends are joined is used as a main body belt for a conveyor belt for conveying an object. Since the main body belt is repeatedly loaded with the conveyed product, the cover rubber constituting the outer surface of the main body belt is worn as it is used. If this amount of wear exceeds a certain value, cores such as canvases and steel cords embedded in the main body belt may be exposed and cut, and further, the main body belt may be cut. When the main belt is cut, it takes a lot of time and money to recover. For this reason, the amount of wear (remaining thickness) of the main body belt of the conveyor belt is regularly inspected. If the amount of wear is large, the wear position of the main body belt is specified and repaired, or the main body belt is replaced. Maintenance work is required.
  • a wear visualizing member whose cross-sectional area gradually changes along the thickness direction of the main body belt is embedded in a cover rubber layer, and an image of a portion where the wear visualizing member is exposed on the surface of the conveyor belt is imaged.
  • a wear amount measuring device that detects the wear amount of a conveyor belt based on the image information is known (see Japanese Patent Application Laid-Open No. 2015-202933).
  • an alarm is notified by controlling the notification device according to the detected amount of wear of the conveyor belt, and maintenance work of the main body belt is performed based on this alarm.
  • This maintenance work needs to be performed with the conveyor belt stopped.
  • erroneous determination is likely to occur in the determination based on the image information, and when the conveyor belt is stopped and checked, there is a case where no abnormality is found. Since it takes a relatively long time to stop and restart the conveyor belt, an operation loss caused by such an erroneous determination cannot be ignored, and a reduction in the operation loss is required.
  • abnormalities of the main body belt that require maintenance work can include deposits on the main body belt, cracks in the main body belt, vertical tearing, biting, etc. in addition to wear of the main body belt.
  • a conventional wear amount measuring apparatus cannot detect these abnormalities. Therefore, in order to detect various abnormalities, it is necessary to prepare a large number of separate detection devices, and a place for installation and device costs are required. For this reason, there is a need for a surface shape monitoring device that can detect abnormalities in various body belts.
  • the present invention has been made based on the above-mentioned circumstances, and can detect various conveyor belt surface abnormalities with a single inexpensive device, and reduce operation loss caused by erroneous determination of conveyor belt surface abnormalities.
  • An object of the present invention is to provide a wearable surface shape monitoring device and a wear amount measuring system using the surface shape monitoring device.
  • the invention made in order to solve the above-mentioned problems is a conveyor belt surface shape monitoring device, which irradiates a laser at a wide angle in the width direction of the surface of the conveyor belt, and the above-mentioned from the surface of the conveyor belt.
  • a camera that captures the reflected light of the line laser, a pattern extraction unit that extracts a specific pattern drawn by the reflected light from a captured image of the camera, and the pattern extracted by the pattern extraction unit based on the extraction timing
  • a position specifying mechanism for specifying a position on the surface of the conveyor belt; and an image acquisition unit for acquiring a surface image of the conveyor belt at the position specified by the position specifying mechanism.
  • the surface shape monitoring device can detect unevenness in the width direction of the conveyor belt surface by a so-called optical cutting method using the reflected light of the line laser irradiated on the surface of the conveyor belt.
  • the surface shape monitoring device can detect various abnormalities such as wear, deposit accumulation, cracks, vertical tearing and biting caused by the pattern extraction unit on the surface of the conveyor belt by the uneven pattern on the surface of the conveyor belt.
  • the position specifying mechanism specifies the position of the pattern on the surface of the conveyor belt
  • the image acquisition unit acquires the surface image of the conveyor belt at the position specified by the position specifying mechanism.
  • the surface shape monitoring apparatus even when abnormality is observed in the surface of a conveyor belt, the state of a surface can be confirmed, without stopping a conveyor belt. Therefore, by using the surface shape monitoring device, it is possible to reduce operation loss caused by erroneous determination of abnormality on the conveyor belt surface. Furthermore, the surface shape monitoring device can be configured at a low cost with a small number of devices.
  • the above camera may be used for image acquisition by the image acquisition unit. Since the number of devices constituting the surface shape monitoring device can be further reduced by using the camera for image acquisition of the image acquisition unit, the manufacturing cost of the surface shape monitoring device can be reduced.
  • Another invention made to solve the above-mentioned problems is that the surface shape monitoring device and at least one belt thickness in the width direction of the conveyor belt can be continuously measured in the conveying direction of the conveyor belt.
  • a wear amount calculation unit that calculates the wear amount of the conveyor belt using a thickness measuring device and a belt thickness of the conveyor belt measured by the thickness measuring device and a pattern extracted by the surface shape monitoring device A wear amount measuring system.
  • the wear amount measuring system the thickness of the belt is measured at least at one location in the width direction of the conveyor belt by the thickness measuring device. For this reason, when the conveyor belt is uniformly worn in the width direction, the wear amount measuring system can detect wear from the measurement result of the thickness measuring device. Moreover, since the said abrasion amount measuring system is equipped with the said surface shape monitoring apparatus of this invention, it can detect the unevenness
  • the wear amount measuring system includes the surface shape monitoring device of the present invention, the surface state can be confirmed without stopping the conveyor belt when the wear of the conveyor belt is observed. Therefore, by using the wear amount measuring system, it is possible to reduce an operation loss caused by erroneous determination of abnormality on the conveyor belt surface. Further, the wear amount measuring system can be configured inexpensively with a small number of required devices.
  • Still another invention made in order to solve the above-described problems is a conveyor system having a pair of pulleys, a conveyor belt that is spanned between the pair of pulleys and configured to be able to travel, and the surface shape monitoring of the present invention.
  • the surface shape monitoring system further includes a display unit for displaying an image.
  • the laser beam irradiation position of the line laser is set to a position facing the pulley. Since the position of the conveyor belt is easily fixed by a pulley, the thickness of the conveyor belt at the laser beam irradiation position can be calculated even when the surface shape is measured from one side of the conveyor belt. Thus, the surface shape monitoring system can detect even when the surface is evenly worn.
  • the surface shape monitoring system displays the pattern extracted by the pattern extraction unit as a grayscale distribution image based on the thickness of the conveyor belt, so that visibility is improved and the surface state of the conveyor belt is confirmed on the image. Can be made easier.
  • the “conveying direction” of the conveyor belt refers to the direction in which the conveyed product loaded on the surface of the operating conveyor belt travels.
  • the surface shape monitoring device of the present invention can detect abnormalities on various conveyor belt surfaces with one inexpensive device. Moreover, the surface shape monitoring apparatus of this invention and the wear amount measuring system using this surface shape monitoring apparatus can reduce the operation loss which arises by misjudgment of the abnormality of the conveyor belt surface.
  • FIG. 1 is a schematic side view showing a surface shape monitoring apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic top view of the surface shape monitoring apparatus of FIG.
  • FIG. 3 is a pattern showing that the conveyor belt is worn.
  • FIG. 4 is a pattern showing that deposits are deposited on the conveyor belt.
  • FIG. 5 is a pattern showing that the conveyor belt is cracked.
  • FIG. 6 is a pattern showing that a longitudinal crack has occurred in the conveyor belt.
  • FIG. 7 is a pattern showing that the conveyor belt is in a state of biting.
  • FIG. 8 is a schematic side view showing a wear amount measuring system according to an embodiment of the present invention.
  • FIG. 9 is a schematic top view of the wear amount measuring system of FIG. FIG.
  • FIG. 10 is a schematic side view showing a wear amount measuring system according to an embodiment of the present invention different from FIG.
  • FIG. 11 is a schematic cross-sectional view taken along line AA in FIG.
  • FIG. 12 is an explanatory diagram showing a method of calculating the thickness of the conveyor belt in the wear amount measuring system of FIG.
  • FIG. 13 is a schematic side view showing a surface shape monitoring system according to an embodiment of the present invention.
  • FIG. 14 is an example of a pattern in which distortion occurs.
  • FIG. 15 is an example of a pattern in which distortion different from that in FIG. 14 occurs.
  • FIG. 16 is an explanatory diagram showing an example of a grayscale distribution image displayed by the display unit of FIG.
  • a surface shape monitoring apparatus 1 shown in FIGS. 1 and 2 is a surface shape monitoring apparatus for a conveyor belt X1 used as a main body belt of a conveyor system X, and is a line for irradiating a laser at a wide angle in the width direction of the surface of the conveyor belt X1.
  • the position specifying mechanism 14 for specifying the position of the pattern extracted by the pattern extracting unit 13 on the surface of the conveyor belt X1 based on the above, and the image acquisition for acquiring the surface image of the conveyor belt X1 at the position specified by the position specifying mechanism 14 Part 15.
  • the camera 12 is used for the image acquisition unit 15.
  • the conveyor system X is configured such that a conveyor belt X1 is stretched between a pair of pulleys X2 and can run. Moreover, as shown in FIG.1 and FIG.2, the conveyor system X is provided with the support roller X3 which supports the conveyor belt X1 from the downward direction between the pulleys X2 as needed.
  • the conveyor belt X1 is configured as an endless belt in which both ends of a belt-like flat belt are joined at a joint Z.
  • the conveyor belt X1 may have a core such as canvas inside, but at least the outer surface and the inner surface are made of cover rubber.
  • the material of the cover rubber of the conveyor belt X1 is not particularly limited as long as it has flexibility and elasticity.
  • natural rubber butadiene rubber (BR), styrene-butadiene rubber (SBR), ethylene-propylene rubber (EPM, EPDM) ), Isoprene rubber (IR), acrylonitrile-butadiene rubber (NBR, NIR, etc.) and the like can be used alone or in combination.
  • BR butadiene rubber
  • SBR styrene-butadiene rubber
  • EPM ethylene-propylene rubber
  • IR Isoprene rubber
  • NBR acrylonitrile-butadiene rubber
  • NBR acrylonitrile-butadiene rubber
  • the width of the conveyor belt X1 is appropriately determined according to the size of the conveyed product Y, the amount of conveyance per hour, and the like, and can be, for example, 300 mm to 3000 mm. Moreover, although the length of the conveyor belt X1 is suitably determined by the distance which conveys the conveyed product Y, it can be 10 m or more and 40000 m or less, for example.
  • the upper limit of the average thickness of the conveyor belt X1 is preferably 50 mm, and more preferably 30 mm. If the average thickness of the conveyor belt X1 is less than the lower limit, the strength of the conveyor belt X1 may be insufficient. Conversely, if the average thickness of the conveyor belt X1 exceeds the above upper limit, the flexibility of the conveyor belt X1 may be insufficient, and it may be difficult to wrap around the outer periphery of the pulley X2.
  • a plurality of steel cords or the like may be embedded in the conveyor belt X1 so as to be parallel to the transport direction (the direction of the arrow in FIG. 1).
  • the tension applied to the conveyor belt X1 can be maintained, and a wide belt or a belt for carrying a long distance can be realized.
  • the material of the pulley X2 and the support roller X3 is not particularly limited as long as the conveyor belt X1 can be driven or supported.
  • a metal such as steel can be used.
  • the diameter of the pulley X2 is appropriately determined according to the use of the conveyor system X and the like, but the lower limit of the diameter of the pulley X2 is preferably 80 mm, and more preferably 100 mm.
  • the upper limit of the diameter of the pulley X2 is preferably 3000 mm, and more preferably 2500 mm. If the diameter of the pulley X2 is less than the above lower limit, high speed rotation is required to increase the traveling speed of the conveyor belt X1, so that energy consumption may increase unnecessarily. On the other hand, if the diameter of the pulley X2 exceeds the above upper limit, the height of the conveyor system X becomes unnecessarily high, which may make installation difficult.
  • the conveyor system X may include a blade type cleaner X4 on the return side behind the transfer completion point of the transfer object Y as shown in FIG.
  • the conveyed product Y is placed on the outer surface on the upper side of the conveyed conveyor belt X1 and downstream (to the right in FIG. 1) of the conveyor belt X1. Be transported. Then, when the conveyor belt X1 is folded back by the pulley X2 on the downstream side, the conveyed product Y separates downward like the conveyed product Y1 shown in FIG. 1, and the conveyance is completed. However, like the conveyed product Y2 shown in FIG. 1, the conveyed product Y does not detach from the conveyor belt X1 in the vicinity of the downstream pulley X2, but directly adheres to the surface of the conveyor belt X1 and moves upstream. . The blade-type cleaner X4 prevents such adhesion of the conveyed product Y.
  • the blade-type cleaner X4 can remove the conveyed product Y2 and the like adhering to the conveyor belt X1 by being pressed against the conveyor belt X1 traveling on one or a plurality of blades (one blade in FIG. 1).
  • the line laser 11 irradiates the surface of the conveyor belt X1 with a laser beam in a line shape.
  • a known line laser can be used as the line laser 11.
  • the line drawn by irradiating the surface of the conveyor belt X1 with the line laser 11 is preferably formed by continuous straight lines, but may be formed by a plurality of intermittent straight lines or a plurality of bright spots. .
  • the interval is preferably 0.5 mm or less from the viewpoint of the surface shape extraction system.
  • the irradiation direction of the line laser 11 is preferably not inclined with respect to the conveying direction of the surface of the conveyor belt X1. That is, it is preferable that the line laser 11 irradiates the laser from the normal direction of the conveyor belt X1. By irradiating the laser beam in this way, even if the flaw is short in the conveying direction and deep in the belt thickness direction, for example, a crack, the laser beam can easily reach the inside of the flaw. Can accurately capture various abnormalities.
  • the angle formed by the central axis of the irradiation direction of the line laser 11 and the contact surface of the conveyor belt X 1 at the irradiation position of the laser beam includes a range from 80 degrees to 90 degrees.
  • the “center axis in the irradiation direction of the line laser” refers to the central axis for laser irradiation at the center position of the scanned range. .
  • the line formed by the laser beam and the conveying direction of the conveyor belt X1 are perpendicular to each other.
  • the surface of the conveyor belt X1 is irradiated with laser light in a line shape, and the line formed by the laser light and the conveying direction of the conveyor belt X1 are perpendicular to each other, so that the width of the conveyor belt X1 is increased. It is possible to more reliably determine abnormalities that occur automatically with a short line length.
  • the lower limit of the line length of the laser beam is preferably 50% of the width of the conveyor belt X1, and more preferably 70%.
  • the upper limit of the line length of the laser beam is preferably 100% of the width of the conveyor belt X1, and more preferably 90%.
  • the laser beam irradiation position of the line laser 11 is preferably a position facing the pulley X2. Since the position of the conveyor belt X1 passing through the pulley X2 is easily fixed by the pulley X2, the possibility that the surface shape monitoring device 1 erroneously determines abnormality of the surface of the conveyor belt X1 due to vibration of the conveyor belt X1 or the like can be reduced.
  • the laser beam irradiation position of the line laser 11 is more preferably a position facing the upstream pulley X2 of the pair of pulleys X2, and facing the central axis of the pulley X2 in the horizontal direction or above the horizontal direction. More preferably, the position facing the central axis of the pulley X2 in the horizontal direction is particularly preferable.
  • the conveyor belt X1 passing through the upstream pulley X2 has the surface shape formed by setting the laser beam irradiation position to a position facing the upstream pulley X2 because the deposits are removed by the blade type cleaner X4. The possibility that the monitoring device 1 erroneously determines abnormality of the surface of the conveyor belt X1 can be reduced.
  • the conveyor belt X1 is normally driven by a pulley X2 on the downstream side
  • the pulley X2 on the upstream side is not attached with a driving device or the like, and the line laser 11 can be easily installed.
  • the shooting direction of the camera 12 does not face upward by making the laser beam irradiation position face the central axis of the pulley X2 in the horizontal direction or above the horizontal direction, dust or the like accumulates on the lens of the camera 12. , It is possible to prevent the photographing ability from being lowered.
  • the upper limit of the line width of the laser beam is preferably 5 mm, and more preferably 3 mm. If the line width of the laser beam exceeds the upper limit, the output of the line laser 11 becomes unnecessarily large, and the monitoring cost of the surface shape monitoring device 1 may increase.
  • the lower limit of the line width of the laser beam is not particularly limited as long as the unevenness on the surface of the conveyor belt X1 can be confirmed, but may be, for example, 0.1 mm.
  • the wavelength of the laser beam is not particularly limited as long as it can be taken by the camera 12, but for example, the lower limit of the wavelength of the laser beam is preferably 500 nm, and more preferably 550 nm.
  • the upper limit of the wavelength of the laser beam is preferably 800 nm, and more preferably 750 nm.
  • the laser beam may be irradiated at a wide angle in the width direction of the conveyor X1 by one line laser 11.
  • a plurality of (two in FIG. 2) line lasers 11 are used to convey the conveyor belt X1.
  • Laser irradiation may be performed at a wide angle in the width direction.
  • the irradiation angle of laser light approaches a right angle with respect to the surface of the conveyor belt X 1 even at the end in the width direction irradiated by one line laser 11. 1 can capture various abnormalities more accurately.
  • the camera 12 captures the reflected light of the line laser 11 from the surface of the conveyor belt X1 from a position inclined in the conveying direction of the conveyor belt X1. By photographing from the inclined position in this way, it is possible to obtain an image in which the reflected light of the line laser 11 is shaded by the unevenness of the surface of the conveyor belt X1.
  • a known imaging device such as a CCD camera or a CMOS camera can be used.
  • a smart camera that can perform high-speed image capturing and can also perform image data analysis of the pattern extraction unit 13 described later can be used.
  • the central axis of the image capturing direction of the camera 12 is preferably overlapped with the irradiation position of the line laser 11 on the surface of the conveyor belt X1 in a side view.
  • the lower limit of the angle formed by the central axis of the image capturing direction of the camera 12 and the central axis of the irradiation direction of the line laser 11 ( ⁇ in FIG. 1, hereinafter also simply referred to as “angle ⁇ ”) is preferably 20 degrees, 30 The degree is more preferable.
  • the upper limit of the angle ⁇ is preferably 60 degrees, and preferably 45 degrees. If the angle ⁇ is less than the lower limit, for example, the influence of irregular reflection of laser light due to water wetting on the surface of the conveyor belt X1 may easily occur. Conversely, if the angle ⁇ exceeds the upper limit, the extraction accuracy of the uneven shape on the surface of the conveyor belt X1 may be reduced.
  • the camera 12 is preferably arranged so that at least the entire line formed by the line laser 11 can be photographed.
  • the entire line can be photographed by adjusting the distance between the camera 12 and the surface of the conveyor belt X1.
  • the entire line may be photographed by a plurality of cameras 12, but it is preferable to photograph by one camera 12.
  • the pattern extraction unit 13 can be realized by, for example, a microcontroller that receives the captured image data of the camera 12 and performs analysis.
  • the pattern extraction unit 13 acquires the unevenness of the surface of the conveyor belt X1 from the image data captured by the camera 12 by a light cutting method. Specifically, the following procedure is followed. From the shade of the captured image data of the camera 12, the incident angle to the camera 12 of the reflected light from the line laser 11 at each coordinate position of the image can be obtained. Since the incident angle of the line laser 11 at the corresponding position on the surface of the conveyor belt X1 is known, the distance from the line laser 11 or the camera 12 at the corresponding position can be known by the principle of triangulation. Therefore, by calculating the distance in the width direction of the conveyor belt X1 using the reflected light of the line laser 11, a pattern representing the unevenness of the surface of the conveyor belt X1 can be obtained.
  • FIG. 3 An example of the pattern thus obtained is shown in FIG. 3 together with the conveyor belt X1.
  • the conveyor belt X1 in FIG. 3 is worn and recessed at the center of the surface.
  • the pattern extraction unit 13 calculates that the distance from the line laser 11 or the camera 12 is large, that is, the surface of the conveyor belt X1 is away from the line laser 11 or the camera 12 and is thin. Since the degree is specified by the distance from the line laser 11 or the camera 12, the pattern extraction unit 13 extracts a pattern L1 having a gently recessed central portion as shown in FIG. Therefore, since the shape of the pattern L1 corresponds to the unevenness on the surface of the conveyor belt X1, it can be determined that the conveyor belt X1 is worn at the center of the surface.
  • the depth of the dent (D in FIG. 3) is calculated from the obtained pattern, and if the depth D is equal to or greater than a certain value, it is specified that the conveyor belt X1 has a wear abnormality pattern. It is preferable to provide a threshold value such as.
  • the pattern L2 shown in FIG. 4 is a pattern in which the central portion of the surface of the conveyor belt X1 swells gently. This pattern L2 means that deposits that cannot be removed by the blade cleaner X4 are deposited on the surface of the conveyor belt X1.
  • the pattern L3 shown in FIG. 5 is a pattern in which a sharp cut having a triangular cross section is formed in a part of the surface of the conveyor belt X1.
  • the triangular cross section means that the cut from the front surface does not reach the back surface of the conveyor belt X1. That is, this pattern L3 is a pattern indicating that the surface of the conveyor belt X1 is cracked.
  • a pattern L4 shown in FIG. 6 is a pattern in which a part of the surface of the conveyor belt X1 has a trapezoidal cut.
  • a trapezoidal cross section means that the cut from the front surface reaches the back surface. That is, this pattern L4 is a pattern indicating that a longitudinal crack has occurred on the surface of the conveyor belt X1.
  • the pattern L5 shown in FIG. 7 is a pattern in which convex portions are generated in a narrow range on the surface of the conveyor belt X1. This pattern L5 occurs when a part of the conveyor belt X1 is bitten and turned up.
  • the position specifying mechanism 14 includes a reflective displacement meter.
  • the reflective displacement meter can measure the distance to the detection position on the surface of the conveyor belt X1 relatively easily and accurately using laser light.
  • the conveyor belt X1 has irregularities on the surface particularly near the joint Z. For this reason, it is possible to recognize the joint Z, for example, by measuring and analyzing the unevenness of the surface of the conveyor belt X1 with a reflective displacement meter. Since the conveyor belt X1 is traveling at a constant speed, the position specifying mechanism 14 recognizes the joint portion Z at a constant time interval. The traveling speed of the conveyor belt X1 can be calculated from the cycle.
  • the position specifying mechanism 14 can calculate the traveling speed of the conveyor belt X1 and the position of the joint Z at the extraction timing, the joint Z at the position where the abnormality is extracted in the conveyor belt X1 from these information.
  • the relative position with respect to can be specified. That is, the position specifying mechanism 14 can specify the position of the pattern extracted by the pattern extracting unit 13 on the surface of the conveyor belt X1 based on the extraction timing.
  • the surface shape monitoring apparatus 1 can be used for an existing conveyor belt, for example, and versatility can be improved.
  • the position identification mechanism 14 recognized the position of the junction part Z and demonstrated the method of identifying the position on the surface of the conveyor belt X1 of the pattern extracted on the basis of the position of the junction part Z, other methods were demonstrated. You may specify a position by. For example, a method may be used in which the position specifying mechanism 14 directly recognizes a repeated pattern of unevenness on the entire surface of the conveyor belt X1.
  • the position of the position specifying mechanism 14 is not particularly limited as long as the unevenness of the surface of the conveyor belt X1 can be measured, but is preferably in the vicinity of the image acquisition unit 15 and upstream in the transport direction. By disposing at a certain distance upstream of the image acquisition unit 15, it is easy to absorb the time lag that occurs when the image acquisition unit 15, which will be described later, recognizes the image acquisition position and takes a picture with the image acquisition unit 15. . In addition, since the time from the position specifying mechanism 14 specifying the position to the image acquisition position is relatively short by being arranged in the vicinity of the image acquisition unit 15, a change in the traveling speed of the conveyor belt X1, etc. Thus, it is possible to prevent an error from occurring in the image acquisition position.
  • the camera 12 is used for image acquisition by the image acquisition unit 15. Since the number of devices constituting the surface shape monitoring device 1 can be reduced by using the camera 12 for image acquisition by the image acquisition unit 15 in this way, the manufacturing cost of the surface shape monitoring device 1 can be reduced.
  • the surface of the conveyor belt X1 specified by the position specifying mechanism 14 is photographed by the camera 12.
  • the photographed image may be confirmed by an operator on the spot, for example, but may be transmitted to a predetermined place in real time using a communication facility such as a well-known LAN for centralized management.
  • the image obtained by the image acquisition unit 15 can be confirmed, and when an abnormality is recognized on the surface of the conveyor belt X1, the conveyor belt X1 can be stopped to perform maintenance work.
  • the surface shape monitoring device 1 can detect the unevenness in the width direction of the surface of the conveyor belt X1 by a so-called light cutting method using the reflected light of the line laser 11 irradiated on the surface of the conveyor belt X1.
  • the surface shape monitoring device 1 detects various abnormalities such as wear, deposit accumulation, cracks, vertical tearing and biting caused by the pattern extraction unit 13 on the surface of the conveyor belt X1 by the uneven pattern on the surface of the conveyor belt X1. can do.
  • the position specifying mechanism 14 specifies the position of the pattern on the surface of the conveyor belt X1
  • the image acquisition unit 15 determines the surface image of the conveyor belt X1 at the position specified by the position specifying mechanism 14. To get.
  • the surface shape monitoring apparatus 1 even when abnormality is observed in the surface of the conveyor belt X1, the surface state can be confirmed without stopping the conveyor belt X1. Therefore, by using the surface shape monitoring device 1, it is possible to reduce an operation loss caused by erroneous determination of abnormality on the surface of the conveyor belt X1. Furthermore, the surface shape monitoring device 1 can be configured at a low cost with a small number of required devices.
  • the wear amount measuring system 2 shown in FIG. 8 and FIG. 9 has the surface shape monitoring device 1 shown in FIG. 1 and FIG. 2 and the belt thickness at one place in the width direction of the conveyor belt X1 in the conveying direction of the conveyor belt X1.
  • a wear amount calculation unit 30 for calculating for calculating.
  • the conveyor belt X1 and the surface shape monitoring device 1 can be configured in the same manner as the conveyor belt X1 and the surface shape monitoring device 1 shown in FIGS. 1 and 2, the same reference numerals are given and description thereof is omitted.
  • the thickness measuring device 20 includes a pair of reflective displacement meters 21 facing each other with the conveyor belt X1 interposed therebetween.
  • the reflection displacement meter 21 can accurately measure the distance to the irradiation position by irradiating the surface of the conveyor belt X1 with laser light and detecting the reflected light at the laser irradiation position.
  • the pair of reflective displacement meters 21 are arranged to face each other so that the irradiation axes of the laser beams overlap.
  • the distance to the front and back surfaces of the conveyor belt X1 can be measured by the pair of reflective displacement gauges 21 and the distance between the pair of reflective displacement gauges 21 is known.
  • the belt thickness of the conveyor belt X1 can be calculated. Further, since the conveyor belt X1 travels in the transport direction, the belt thickness of the conveyor belt X1 can be continuously measured in the transport direction of the conveyor belt X1 by the pair of reflective displacement meters 21.
  • the arrangement position of the thickness measuring device 20 in the conveying direction of the conveyor belt X1 is preferably behind the blade cleaner X4 on the return side behind the conveyance completion point of the conveyed product. Behind the blade type cleaner X4 is the position where there is the least amount of deposits on the conveyor belt X1, so the belt thickness of the conveyor belt X1 can be measured with relatively high accuracy.
  • the measurement position of the thickness measuring device 20 in the width direction of the conveyor belt X1 is set within the laser beam irradiation range of the line laser 11.
  • the said measurement position is not specifically limited, It is preferable to avoid the edge part which is easy to receive the influence of skewing or meandering of the conveyor belt X1. Specifically, it is preferable to be 10% or more away from the end of the envelope belt X1 in the width direction.
  • the said measurement position can also be made into the center of the conveyor belt X1, it is preferable to set it as the position which is comparatively hard to wear, ie, the position of 30% or less of the full width from the edge part of the width direction of the conveyor belt X1.
  • the irradiation axis of the laser beam of the pair of reflective displacement gauges 21 may be orthogonal to the surface of the conveyor belt X1 at the laser beam irradiation position, but is inclined in the transport direction from the normal direction of the surface of the conveyor belt X1. Also good. By tilting the irradiation axis of the laser beam of the pair of reflection displacement meters 21 in the conveyance direction, the reflection displacement meter 21 can be easily disposed in a narrow space between the conveyance side and the return side of the conveyor belt X1. It may become.
  • the reflective displacement meter 21 that is located on the lower side and irradiates the laser beam upward, it is possible to prevent dust or the like that can fall from the lower surface of the return side belt of the conveyor belt X1 from being accumulated on the laser emission surface. can do.
  • the tilt angle from the normal direction is preferably 30 ° or less.
  • the wear amount calculation unit 30 is realized by, for example, a microcontroller that performs analysis by inputting the belt thickness of the conveyor belt X1 measured by the thickness measurement device 20 and the pattern extracted by the pattern extraction unit 13 of the surface shape monitoring device 1. it can.
  • a microcontroller is used for the pattern extraction unit 13
  • the microcontroller of the pattern extraction unit 13 and the microcontroller of the wear amount calculation unit 30 may be the same microcontroller.
  • the wear amount calculation unit 30 calculates the belt thickness in the width direction of the conveyor belt X1 according to the following procedure. First, the wear amount calculation unit 30 can obtain unevenness information in the width direction of the surface of the conveyor belt X1 by the pattern extraction unit 13. Further, the wear amount calculation unit 30 can obtain the belt thickness of the conveyor belt X1 at the position corresponding to this pattern by the thickness measuring device 20. Here, since the back surface of the conveyor belt X1 can be assumed to be flat with almost no wear, the wear amount calculation unit 30 corrects the amount of unevenness in the width direction from the belt thickness at a specific point, thereby making the conveyor The belt thickness in the width direction of the belt X1 can be calculated.
  • the wear amount measuring system 2 can directly determine the wear of the conveyor belt X1 based on the belt thickness of the conveyor belt X1 in the width direction. For this reason, even if the belt thickness of the conveyor belt X1 is evenly worn and the surface is not uneven, it can be detected that the belt is worn.
  • the wear amount measuring system 2 the belt thickness at one location in the width direction of the conveyor belt X1 is measured by the thickness measuring device 20. For this reason, when the conveyor belt X1 is uniformly worn in the width direction, the wear amount measuring system 2 can detect wear from the measurement result of the thickness measuring device 20. Moreover, since the said abrasion amount measuring system 2 is provided with the said surface shape monitoring apparatus 1 of this invention, it can detect the unevenness
  • the wear amount measuring system 2 can detect the wear of the conveyor belt X1 regardless of the wear pattern. Moreover, since the said wear amount measuring system 2 is provided with the surface shape monitoring apparatus 1 of this invention, when abrasion of the conveyor belt X1 is observed, it can confirm the state of a surface, without stopping the conveyor belt X1. Therefore, by using the wear amount measuring system 2, it is possible to reduce operation loss caused by erroneous determination of abnormality on the surface of the conveyor belt X1. Further, the wear amount measuring system 2 can be configured at a low cost with a small number of required devices.
  • the wear amount measuring system 3 shown in FIG. 10 and FIG. 11 is a surface shape monitoring device 1 and a thickness capable of continuously measuring the belt thickness at one position in the width direction of the conveyor belt X1 in the conveying direction of the conveyor belt X1.
  • a wear amount calculating unit that calculates the wear amount of the conveyor belt X1 using the thickness measuring device 40 and the pattern extracted by the belt thickness and surface shape monitoring device 1 of the conveyor belt X1 measured by the thickness measuring device 40 30.
  • the surface shape monitoring device 1 and the wear amount calculating unit 30 of the wear amount measuring system 3 are the same as the surface shape monitoring device 1 and the wear amount calculating unit 30 shown in FIGS. For this reason, the same code
  • the thickness measuring device 40 of the wear amount measuring system 3 irradiates a pair of reflective displacement meters 41 that measure the optical path length by receiving reflected light of the irradiated laser light and the pair of reflective displacement meters 41.
  • a pair of mirrors 42 that reflect the laser light and a frame 43 that supports the pair of reflective displacement meters 41 and the pair of mirrors 42 are configured to be able to stand on the floor surface G on the side of the conveyor belt X1.
  • the pair of reflective displacement gauges 41 are horizontally irradiated with the laser beam Q1 of one reflective displacement gauge 41 on the inner surface side of the conveyor belt X1 outside the conveyor belt X1 in plan view, and the other reflective displacement gauge 41 Are arranged side by side in the vertical direction so that the laser beam Q2 is irradiated horizontally to the outer surface side of the conveyor belt X1.
  • the pair of mirrors 42 are respectively attached to a pair of support bars 43a extending from the frame 43 in the horizontal direction.
  • One mirror 42 is arranged so that the reflected light of the laser beam Q1 irradiated horizontally on the inner surface side of the conveyor belt X1 irradiates the inner surface side of the thickness measurement position P of the conveyor belt X1 from the vertical direction.
  • the other mirror 42 is provided so that the reflected light of the laser beam Q2 that is irradiated horizontally on the outer surface side of the conveyor belt X1 is irradiated from the vertical direction on the outer surface side of the thickness measurement position P of the conveyor belt X1. Arranged.
  • the lower limit of the distance between the mirror 42 and the conveyor belt X1 is preferably 70 mm, and more preferably 150 mm.
  • the upper limit of the distance between the mirror 42 and the conveyor belt X1 is preferably 2500 mm, and more preferably 2000 mm. If the distance between the mirror 42 and the conveyor belt X1 is less than the lower limit, the end of the mirror 42 may come into contact with the conveyor belt X1 due to vibration of the conveyor belt X1 or the like. On the contrary, if the distance between the mirror 42 and the conveyor belt X1 exceeds the upper limit, it may be difficult to dispose the mirror 42 on the inner surface side of the conveyor belt X1 spanned over the pulley X2.
  • the distance between the mirror 42 used for measurement on the outer surface side of the conveyor belt X1 and the conveyor belt X1 and the distance between the mirror 42 used for measurement on the inner surface side of the conveyor belt X1 and the conveyor belt X1 may be different. , Preferably equal. By equalizing the distance between the two, the time required for the reciprocation of the laser beam is balanced, so that the measurement timing can be easily synchronized.
  • the measurement position P of the thickness measuring device 40 in the width direction of the conveyor belt X1 can be the same as that of the wear amount measuring system 2 of FIGS.
  • the reflection type displacement meter 41 used for measurement on the inner surface side of the conveyor belt X1 passes through the mirror 42 and reaches the inner surface side of the thickness measuring position P of the conveyor belt X1.
  • the distance (H1 + W1) and the distance (H2 + W2) from the reflective displacement meter 41 used for the measurement on the outer surface side of the conveyor belt X1 through the mirror 42 to the outer surface side of the thickness measurement position P of the conveyor belt X1 are measured.
  • the distance H1 between the reflective displacement meter 41 and the mirror 42 used for measurement on the inner surface side of the conveyor belt X1 and the distance between the reflective displacement meter 41 and the mirror 42 used for measurement on the outer surface side of the conveyor belt X1.
  • the reflected light of the mirror 42 is irradiated from the vertical direction to the thickness measuring position P of the conveyor belt X1 has been described.
  • the reflected light has a known angle. Even if irradiated, the thickness T of the conveyor belt X1 can be similarly obtained by calculating the length in the vertical direction.
  • the reflected light is preferably applied to the thickness measurement position P from the vertical direction.
  • the reflective displacement meter 41 measures the optical path length by detecting the reflected light at the thickness measurement position P at the laser irradiation position.
  • the thickness measurement position P By irradiating the thickness measurement position P from the vertical direction in this way, the reflected light from the thickness measurement position P can easily reach the reflective displacement meter 41, so that the measurement accuracy can be improved.
  • the thickness T of the conveyor belt X1 can be obtained even when the laser light emitted from the reflective displacement meter 41 is emitted with a certain depression angle, for example.
  • the laser light emitted by the reflection-type displacement meter 41 is in the horizontal direction.
  • the reflective displacement meter 41 irradiates the laser beam horizontally and detects the reflected light at the laser irradiation position. That is, in the wear amount measuring system 3, since the laser light irradiation surface and the sensor surface are provided sideways, dust and the like can be prevented from being deposited on the laser light irradiation surface and the sensor surface. Further, since the pair of reflective displacement gauges 41 are disposed outside the conveyor belt X1 in plan view, the maintenance of the thickness measuring device 40 is facilitated.
  • the thickness measuring device 40 of the wear amount measuring system 3 is configured to be able to stand on the floor G on the side of the conveyor belt X1 by the frame 43, the thickness measuring device 40 is used as the wear amount measuring system.
  • the mirror 42 can be easily cleaned by taking it out of 3.
  • the surface shape monitoring system 4 shown in FIG. 13 includes a conveyor system 5 and a surface shape monitoring device 6.
  • the conveyor system 5 includes a pair of pulleys 51 and a conveyor belt 52 that is spanned between the pair of pulleys 51 and configured to be able to travel.
  • the pair of pulleys 51 and the conveyor belt 52 are the same as the pair of pulleys X2 and the conveyor belt X1 of FIG. 1 described in the first embodiment. Moreover, since the other structure of the conveyor system 5 shown in FIG. 13 can be comprised similarly to the conveyor system X of FIG. 1 demonstrated in 1st embodiment, it attaches
  • the surface shape monitoring device 6 is a surface shape monitoring device for the conveyor belt 52. As shown in FIG. 13, the surface shape monitoring device 6 includes a line laser 61 that irradiates a laser at a wide angle in the width direction of the surface of the conveyor belt 52, and the conveyor belt 52. A camera 12 that captures the reflected light of the line laser 61 from the surface, a pattern extraction unit 62 that extracts a specific pattern drawn by the reflected light from an image captured by the camera 12, and a pattern extraction unit 62 based on the extraction timing.
  • a position specifying mechanism 14 that specifies the position of the extracted pattern on the surface of the conveyor belt 52
  • an image acquisition unit 15 that acquires a surface image of the conveyor belt 52 at a position specified by the position specifying mechanism 14, and a pattern extraction unit 62.
  • the display unit 63 displays the pattern extracted by a gray-scale distribution image based on the thickness of the conveyor belt 52.
  • the camera 12, the position specifying mechanism 14, and the image acquisition unit 15 can be configured in the same manner as the surface shape monitoring device 1 of FIG. 1 described in the first embodiment, the same reference numerals are given and description thereof is omitted.
  • the laser beam irradiation position of the line laser 61 is a position facing the pulley 51.
  • the laser beam irradiation position of the line laser 61 is more preferably a position facing the upstream pulley 51 of the pair of pulleys 51 and facing the central axis of the pulley 51 in the horizontal direction or above the horizontal direction. More preferably, the position facing the central axis of the pulley 51 in the horizontal direction is particularly preferable.
  • the “upstream pulley” refers to a pulley located on the starting side with respect to the direction in which the conveyed product Y is conveyed.
  • the line laser 61 is configured in the same manner as the line laser 11 of FIG. 1 described in the first embodiment except that the laser beam irradiation position is as described above, and thus other description is omitted.
  • the pattern extraction unit 62 acquires the unevenness on the surface of the conveyor belt 52 from the imaged image data of the camera 12 by a light cutting method.
  • the unevenness can be known as, for example, the distance between the camera 12 and the laser beam irradiation position of the line laser 61 (the distance is A).
  • the laser beam irradiation position of the line laser 61 is a position facing the pulley 51.
  • the distance between the position of the pulley 51 facing this laser beam irradiation position and the camera 12 is known (the distance is B), and the conveyor belt 52 moves so that the back side is in contact with this position.
  • the distance (BA) is the thickness of the conveyor belt 52 at the laser beam irradiation position.
  • the pattern extraction unit 62 can obtain a pattern representing the unevenness of the surface of the conveyor belt 52 using the thickness of the conveyor belt 52 at the laser light irradiation position.
  • the display unit 63 can be configured by an arithmetic device and a display device, for example.
  • a known microcontroller or the like can be used as the arithmetic device, and a known liquid crystal display or the like can be used as the display device.
  • the display unit 63 creates gradation distribution image data by the arithmetic device and displays this image data on the display device.
  • the procedure for creating the grayscale distribution image data will be described in detail.
  • the display unit 63 may create the density distribution image data using only the pattern extracted by the pattern extraction unit 13, but it is preferable to use the image of the conveyor belt 52 captured by the camera 12 that also serves as the image acquisition unit 15. When using the image of the conveyor belt 52 together, the display unit 63 refers to the image of the image acquisition unit 15.
  • the display unit 63 when the display unit 63 is configured to refer to the image of the image acquisition unit 15, the display unit 63 may have an image adjustment function.
  • the display unit 63 may include an exposure sensor that detects the illuminance at the laser irradiation position of the conveyor belt 52, and may have an adjustment function of adjusting shooting conditions such as a diaphragm of the camera 12 according to the measured illuminance.
  • the adjustment function may detect an extreme change in illuminance such as day and night, and may control the presence or absence of display of the grayscale distribution image. That is, the adjustment function may be controlled to display a grayscale distribution image when the illuminance is greater than a predetermined value. Whether day or night may be determined based on the illuminance measured by the exposure sensor, but a clock may be provided instead of the exposure sensor, and management may be performed according to time.
  • the adjustment function may perform control to increase the output of the line laser 61.
  • the unit output of the line laser 61 may not be sufficiently increased due to safety restrictions or the like. In such a case, it is preferable to provide a plurality of line lasers 61 that can collect light at one place and adjust the intensity of the reflected light of the line laser 61 by the number of the line lasers 61 that emit light.
  • a transmission filter that selectively transmits the wavelength region of the line laser 61 may be used.
  • the camera 12 may detect the reflected light of the line laser 61 through the transmission filter regardless of the illuminance.
  • the adjustment function performs control using a transmission filter when the illuminance is larger than a predetermined value.
  • the pattern extracted by the pattern extraction unit 13 may be distorted due to the relative relationship between the pulley 51 facing the laser beam irradiation position of the line laser 61 and the installation position of the line laser 61 and the camera 12. This distortion is likely to occur when a wide-angle lens, a diagonal fisheye lens, an omnidirectional lens, or the like is mounted as a lens of the camera 12. On the other hand, these lenses have an advantage that the surface shape of the conveyor belt 52 can be monitored with a small number of cameras.
  • this distortion occurs uniformly, this pattern may be directly converted into grayscale distribution image data, but the display unit 63 preferably has a function of correcting the distortion of the pattern extracted by the pattern extraction unit 13.
  • This distortion correction function can be realized by an arithmetic device.
  • FIG. 14 shows a pattern L6 in which distortion occurs.
  • the distortion which the whole inclined was easy to produce when the parallelism of the camera 12 has shifted
  • FIG. FIG. 15 shows a pattern L7 in which a distortion different from that in FIG. 14 occurs.
  • Such distortion that is curved as a whole is likely to occur when the parallelism of the line laser 61 is deviated from the pulley 51.
  • the low height portions (L61 in FIG. 14, L71 in FIG. 15) at both ends are patterns indicating pulley portions.
  • the pulley pattern L61, L71 is a reference line of thickness 0, and should be a straight line extending in the horizontal direction. Therefore, distortion correction can be performed by correcting the pattern so that the pulley portion patterns L61 and L71 are horizontal.
  • the display unit 63 converts the thickness of the conveyor belt 52 at the laser light irradiation position extracted by the pattern extraction unit 62 into a grayscale image using an arithmetic device. Specifically, it is preferable to create gray scale data such that when the thickness of the conveyor belt 52 is large and black when the thickness of the conveyor belt 52 is small, a predetermined value (for example, the initial thickness of the conveyor belt 52) is used as a reference. . This is merely an example, and black and white may be reversed, or color data corresponding to the type of pattern may be used.
  • the grayscale data is created by superimposing the gray scale data on the image of the conveyor belt 52. Since the surface shape monitoring device 6 includes the position specifying mechanism 14, the position of the pattern extracted by the pattern extracting unit 62 on the conveyor belt 52 can be specified. Therefore, it is possible to easily align and superimpose the gray scale data on the image of the conveyor belt 52.
  • the grayscale distribution image data created as described above is displayed on the display device.
  • the display device may be disposed in the vicinity of the conveyor system 5, but may be displayed by disposing the display device in a remote place and transferring the grayscale distribution image data by wireless communication or the like. That is, the display unit 63 may include a wireless communication device.
  • FIG. 16 An example of the light and shade distribution image obtained in this way will be described with reference to FIG.
  • the gray scale density distribution image is originally shown, and the difference in density is indicated by the difference in the type of hatching.
  • the base portion that is not hatched (white portion in FIG. 16) is a reference gray.
  • the hatching of K1 represents a black portion.
  • a black colored portion means that the conveyor belt 52 is thick, and K1 occupies a certain area, so that it is understood that the protrusion is attached.
  • the hatching of K2, K3, and K4 represents a white portion.
  • the white portion means that the conveyor belt 52 is thin, and K2, K3, and K4 are streaks, which is a damage. From the direction, etc., the damage K2 is longitudinally split, and the damage K3 is transversely cracked. The damage K4 is classified as a skew crack.
  • K5 and K6 represent the white part. Since K5 and K6 occupy a certain area, it can be seen that they are worn. From the length in the conveying direction, the wear K5 is scraped and the wear K6 is classified as wear.
  • K7 and K8 represents dark gray (lighter than black of K1 and darker than the gray of the base portion). These K7 and K8 appear periodically, and both have the same period.
  • the time obtained by dividing this cycle by the conveying speed of the conveyor belt 52 (the time required to pass this cycle) is equal to the time required for the pulley 51 to make one revolution.
  • K7 and K8 appear to be thick as a result of the conveyor belt 52 being pushed to the outer peripheral side due to foreign matter adhering to the pulley.
  • the period in which K7 and K8 appear and the circumference of the pulley 51 are approximately the same, and therefore may be determined based on the coincidence.
  • the surface shape monitoring system 4 may include a period detection mechanism that measures the time for which the pulley 51 makes one revolution, and the display unit 63 may delete a pattern generated in synchronization with the time measured by the period detection mechanism. . By having such a function, a pattern caused by the pulley 51 can be excluded.
  • K9 hatching indicates a portion where the color is black at the center in the transport direction and the color approaches the gray of the base portion as it approaches the boundary of the base portion.
  • K9 crosses the conveyor belt 52 at an angle.
  • K9 is a joint portion of the conveyor belt 52.
  • the surface shape monitoring system 4 sets the laser beam irradiation position of the line laser 61 to a position facing the pulley 51. Since the position of the conveyor belt 52 is easily fixed by the pulley 51, the thickness of the conveyor belt 52 at the laser beam irradiation position can be calculated even when the surface shape is measured from one side of the conveyor belt 52. . Thus, the surface shape monitoring system 4 can detect even when the surface is evenly worn. Further, in the surface shape monitoring system 4, the pattern extracted by the pattern extraction unit 62 is displayed as a grayscale distribution image based on the thickness of the conveyor belt 52, so that the visibility is improved and the surface state of the conveyor belt 52 is changed. It can be easily confirmed on the image.
  • the present invention is not limited to the above-described embodiment, and can be implemented in a mode in which various changes and improvements are made in addition to the above-described mode.
  • the case where the camera that captures the reflected light of the line laser is used for image acquisition of the image acquisition unit of the surface shape monitoring device has been described.
  • a camera different from the camera is used for image acquisition of the image acquisition unit.
  • the structure to be provided is also intended by the present invention.
  • the position specifying mechanism includes a position transmitter embedded in a specific position of the conveyor belt, and a receiver that detects a signal from the position transmitter. By detecting a signal transmitted from the position transmitter, the conveyor The position on the surface of the belt may be specified.
  • a position transmitter an RFID tag, a photoelectric sensor, an eddy potential sensor, or the like can be used.
  • a reflective mark is embedded at a specific position on the conveyor belt so that it is exposed on the surface of the conveyor belt, and the reflected position of the line laser from this reflective mark is detected by the difference in brightness and color. You may go.
  • the thickness measuring device of the wear amount measuring system measures the belt thickness at one place in the width direction of the conveyor belt
  • the thickness at two or more places may be measured.
  • the measurement accuracy of the belt thickness in the width direction of the conveyor belt can be increased.
  • the number of measurement locations is one, the number of thickness measurement devices can be reduced, and thus the manufacturing cost of the wear amount measurement system can be reduced.
  • the thickness measuring device is a pair of reflective type. It is not limited to a displacement meter.
  • a contact-type thickness measuring device that contacts both surfaces of the conveyor belt and measures the belt thickness based on the distance between the contacts can be used.
  • the surface shape monitoring device of the present invention can detect various conveyor belt surface abnormalities with one inexpensive device. Moreover, the surface shape monitoring apparatus of this invention and the wear amount measuring system using this surface shape monitoring apparatus can reduce the operation loss which arises by misjudgment of the abnormality of the conveyor belt surface.
  • the surface shape monitoring device and wear amount measuring system of the present invention are effective for preventive maintenance of conveyor belts that are continuously operated in steelworks, thermal power plants, mines, and the like.
  • the surface shape monitoring device of the present invention can detect various abnormalities, it can also be used for detecting abnormalities such as transmission belt wear, synchro tooth wear, meandering, riding on, and cutting.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Control Of Conveyors (AREA)

Abstract

The purpose of the present invention is to provide a surface shape monitoring device which can detect defects in various conveyor belt surfaces with a single inexpensive device, and can reduce operation loss arising from the faulty determination of defects in the conveyor belt surfaces. A surface shape monitoring device according to the present invention, which is a device for monitoring the surface shape of a conveyor belt, is provided with: a line laser which emits a laser beam at a wide angle in the widthwise direction of the surface of the conveyor belt; a camera which captures reflective light of the line laser from the surface of the conveyor belt; a pattern extracting unit which extracts, from the image captured by the camera, a specific pattern drawn by the reflective light; and a location specifying mechanism which specifies the location of a pattern, on the surface of the conveyor belt, which is extracted by the pattern extracting unit, on the basis on an extraction timing, wherein the location specifying mechanism acquires a surface image of the conveyor belt at the specified location.

Description

表面形状監視装置、摩耗量測定システム及び表面形状監視システムSurface shape monitoring device, wear amount measuring system, and surface shape monitoring system
 本発明は、表面形状監視装置、摩耗量測定システム及び表面形状監視システムに関する。 The present invention relates to a surface shape monitoring device, a wear amount measuring system, and a surface shape monitoring system.
 例えば物を搬送するコンベヤベルトには、両端を接合したエンドレスベルト(無端ベルト)が本体ベルトとして用いられる。この本体ベルトは、搬送物が表面に繰り返し積載されるため、使用するにつれ本体ベルトの外面を構成するカバーゴムが摩耗していく。この摩耗量が一定値を超えると、本体ベルト内部に埋設されている帆布、スチールコード等の芯体が露出し、切断され、さらには本体ベルトが切断してしまうおそれがある。本体ベルトが切断するとその復旧に多くの時間と費用とを要する。このため、コンベヤベルトの本体ベルトの摩耗量(残存厚)を定期的に検査し、摩耗量が大きい場合は、本体ベルトの摩耗位置を特定して補修したり、本体ベルトの交換を行ったりするメンテナンス作業が必要である。 For example, an endless belt (endless belt) in which both ends are joined is used as a main body belt for a conveyor belt for conveying an object. Since the main body belt is repeatedly loaded with the conveyed product, the cover rubber constituting the outer surface of the main body belt is worn as it is used. If this amount of wear exceeds a certain value, cores such as canvases and steel cords embedded in the main body belt may be exposed and cut, and further, the main body belt may be cut. When the main belt is cut, it takes a lot of time and money to recover. For this reason, the amount of wear (remaining thickness) of the main body belt of the conveyor belt is regularly inspected. If the amount of wear is large, the wear position of the main body belt is specified and repaired, or the main body belt is replaced. Maintenance work is required.
 コンベヤベルトの摩耗量測定装置としては、本体ベルトの厚さ方向に沿って断面積が次第に変化する摩耗視認部材をカバーゴム層に埋め込み、この摩耗視認部材がコンベヤベルト表面に露出する部分を撮像して、その画像情報に基づいてコンベヤベルトの摩耗量を検出する摩耗量測定装置が公知である(特開2015-202933号公報参照)。 As an apparatus for measuring the amount of wear of a conveyor belt, a wear visualizing member whose cross-sectional area gradually changes along the thickness direction of the main body belt is embedded in a cover rubber layer, and an image of a portion where the wear visualizing member is exposed on the surface of the conveyor belt is imaged. A wear amount measuring device that detects the wear amount of a conveyor belt based on the image information is known (see Japanese Patent Application Laid-Open No. 2015-202933).
 上記従来の摩耗量測定装置では、検出されたコンベヤベルトの摩耗量の大きさに応じて報知装置を制御することにより警報を報知し、この警報に基づいて本体ベルトのメンテナンス作業が行われる。このメンテナンス作業は、コンベヤベルトを停止して行う必要がある。ところが、一般に画像情報に基づいた判定では誤判定が生じ易く、コンベヤベルトを停止して確認したところ、異常が発見されないという場合がある。コンベヤベルトの停止及び再開には、比較的時間を要するため、このような誤判定により発生する操業損失は無視できず、操業損失の低減が求められている。 In the conventional wear amount measuring device, an alarm is notified by controlling the notification device according to the detected amount of wear of the conveyor belt, and maintenance work of the main body belt is performed based on this alarm. This maintenance work needs to be performed with the conveyor belt stopped. However, in general, erroneous determination is likely to occur in the determination based on the image information, and when the conveyor belt is stopped and checked, there is a case where no abnormality is found. Since it takes a relatively long time to stop and restart the conveyor belt, an operation loss caused by such an erroneous determination cannot be ignored, and a reduction in the operation loss is required.
 さらに、メンテナンス作業が必要となる本体ベルトの異常は、本体ベルトの摩耗以外にも、本体ベルトへの付着物の堆積、本体ベルトの亀裂、縦裂きや噛込等を挙げることができるが、上記従来の摩耗量測定装置では、これらの異常を検出することができない。従って、種々の異常を検知するためには、別に多数の検出装置を用意しなければならず、設置するための場所や装置コストが必要となる。このため、種々の本体ベルトの異常を検出できる表面形状監視装置が求められている。 Furthermore, abnormalities of the main body belt that require maintenance work can include deposits on the main body belt, cracks in the main body belt, vertical tearing, biting, etc. in addition to wear of the main body belt. A conventional wear amount measuring apparatus cannot detect these abnormalities. Therefore, in order to detect various abnormalities, it is necessary to prepare a large number of separate detection devices, and a place for installation and device costs are required. For this reason, there is a need for a surface shape monitoring device that can detect abnormalities in various body belts.
特開2015-202933号公報Japanese Patent Laying-Open No. 2015-202933
 本発明は、上述のような事情に基づいてなされたものであり、種々のコンベヤベルト表面の異常を1つの安価な装置で検出でき、コンベヤベルト表面の異常の誤判定により発生する操業損失を低減できる表面形状監視装置及びこの表面形状監視装置を用いた摩耗量測定システムの提供を目的とする。 The present invention has been made based on the above-mentioned circumstances, and can detect various conveyor belt surface abnormalities with a single inexpensive device, and reduce operation loss caused by erroneous determination of conveyor belt surface abnormalities. An object of the present invention is to provide a wearable surface shape monitoring device and a wear amount measuring system using the surface shape monitoring device.
 上記課題を解決するためになされた発明は、コンベヤベルトの表面形状監視装置であって、上記コンベヤベルトの表面の幅方向に広角でレーザを照射するラインレーザと、上記コンベヤベルトの表面からの上記ラインレーザの反射光を撮影するカメラと、上記カメラの撮影画像から上記反射光が描く特定のパターンを抽出するパターン抽出部と、上記抽出タイミングに基づいて上記パターン抽出部で抽出されたパターンの上記コンベヤベルトの表面での位置を特定する位置特定機構と、上記位置特定機構が特定した位置の上記コンベヤベルトの表面画像を取得する画像取得部とを備える。 The invention made in order to solve the above-mentioned problems is a conveyor belt surface shape monitoring device, which irradiates a laser at a wide angle in the width direction of the surface of the conveyor belt, and the above-mentioned from the surface of the conveyor belt. A camera that captures the reflected light of the line laser, a pattern extraction unit that extracts a specific pattern drawn by the reflected light from a captured image of the camera, and the pattern extracted by the pattern extraction unit based on the extraction timing A position specifying mechanism for specifying a position on the surface of the conveyor belt; and an image acquisition unit for acquiring a surface image of the conveyor belt at the position specified by the position specifying mechanism.
 当該表面形状監視装置は、コンベヤベルトの表面に照射したラインレーザの反射光を用いた、いわゆる光切断法によりコンベヤベルト表面の幅方向の凹凸を検出することができる。当該表面形状監視装置は、このコンベヤベルト表面の凹凸のパターンによりパターン抽出部がコンベヤベルト表面に生じる摩耗、付着物の堆積、亀裂、縦裂きや噛込等の種々の異常を検知することができる。また、当該表面形状監視装置は、位置特定機構が上記パターンのコンベヤベルトの表面での位置を特定し、画像取得部が上記位置特定機構が特定した位置の上記コンベヤベルトの表面画像を取得する。このため、当該表面形状監視装置では、コンベヤベルトの表面に異常が観測された場合においても、コンベヤベルトを停止することなく、表面の状態を確認できる。従って、当該表面形状監視装置を用いることでコンベヤベルト表面の異常の誤判定により発生する操業損失を低減できる。さらに、当該表面形状監視装置は、必要とする装置の数が少なく安価に構成することができる。 The surface shape monitoring device can detect unevenness in the width direction of the conveyor belt surface by a so-called optical cutting method using the reflected light of the line laser irradiated on the surface of the conveyor belt. The surface shape monitoring device can detect various abnormalities such as wear, deposit accumulation, cracks, vertical tearing and biting caused by the pattern extraction unit on the surface of the conveyor belt by the uneven pattern on the surface of the conveyor belt. . In the surface shape monitoring device, the position specifying mechanism specifies the position of the pattern on the surface of the conveyor belt, and the image acquisition unit acquires the surface image of the conveyor belt at the position specified by the position specifying mechanism. For this reason, in the said surface shape monitoring apparatus, even when abnormality is observed in the surface of a conveyor belt, the state of a surface can be confirmed, without stopping a conveyor belt. Therefore, by using the surface shape monitoring device, it is possible to reduce operation loss caused by erroneous determination of abnormality on the conveyor belt surface. Furthermore, the surface shape monitoring device can be configured at a low cost with a small number of devices.
 上記画像取得部の画像取得に上記カメラを用いるとよい。上記画像取得部の画像取得に上記カメラを用いることで、当該表面形状監視装置を構成する装置の数をさらに削減できるので、当該表面形状監視装置の製造コストを低減できる。 The above camera may be used for image acquisition by the image acquisition unit. Since the number of devices constituting the surface shape monitoring device can be further reduced by using the camera for image acquisition of the image acquisition unit, the manufacturing cost of the surface shape monitoring device can be reduced.
 上記課題を解決するためになされた別の発明は、当該表面形状監視装置と、上記コンベヤベルトの幅方向の少なくとも1箇所のベルト厚さを、上記コンベヤベルトの搬送方向に連続的に測定可能な厚さ測定装置と、上記厚さ測定装置により測定される上記コンベヤベルトのベルト厚さ及び上記表面形状監視装置により抽出されるパターンを用いて、上記コンベヤベルトの摩耗量を算出する摩耗量算出部とを備える摩耗量測定システムである。 Another invention made to solve the above-mentioned problems is that the surface shape monitoring device and at least one belt thickness in the width direction of the conveyor belt can be continuously measured in the conveying direction of the conveyor belt. A wear amount calculation unit that calculates the wear amount of the conveyor belt using a thickness measuring device and a belt thickness of the conveyor belt measured by the thickness measuring device and a pattern extracted by the surface shape monitoring device A wear amount measuring system.
 当該摩耗量測定システムは、厚さ測定装置により、コンベヤベルトの幅方向の少なくとも1箇所のベルト厚さが測定される。このため、コンベヤベルトが幅方向に一様に摩耗した場合、当該摩耗量測定システムは、この厚さ測定装置の測定結果から摩耗を検出することができる。また、当該摩耗量測定システムは、本発明の当該表面形状監視装置を備えるので、コンベヤベルト表面の幅方向の凹凸を検出することができる。このため、当該摩耗量測定システムは、コンベヤベルトの幅方向の一部が摩耗した場合、コンベヤベルト表面の幅方向の凹凸から摩耗を検出することができる。このように当該摩耗量測定システムは、摩耗のパターンによらずコンベヤベルトの摩耗を検出することができる。また、当該摩耗量測定システムは、本発明の当該表面形状監視装置を備えるので、コンベヤベルトの摩耗が観測された場合において、コンベヤベルトを停止することなく、表面の状態を確認できる。従って、当該摩耗量測定システムを用いることでコンベヤベルト表面の異常の誤判定により発生する操業損失を低減できる。さらに、当該摩耗量測定システムは、必要とする装置の数が少なく安価に構成することができる。 In the wear amount measuring system, the thickness of the belt is measured at least at one location in the width direction of the conveyor belt by the thickness measuring device. For this reason, when the conveyor belt is uniformly worn in the width direction, the wear amount measuring system can detect wear from the measurement result of the thickness measuring device. Moreover, since the said abrasion amount measuring system is equipped with the said surface shape monitoring apparatus of this invention, it can detect the unevenness | corrugation of the width direction of the conveyor belt surface. For this reason, the said abrasion amount measuring system can detect wear from the unevenness | corrugation of the width direction of the conveyor belt surface, when a part of the width direction of a conveyor belt wears. Thus, the wear amount measuring system can detect the wear of the conveyor belt regardless of the wear pattern. Further, since the wear amount measuring system includes the surface shape monitoring device of the present invention, the surface state can be confirmed without stopping the conveyor belt when the wear of the conveyor belt is observed. Therefore, by using the wear amount measuring system, it is possible to reduce an operation loss caused by erroneous determination of abnormality on the conveyor belt surface. Further, the wear amount measuring system can be configured inexpensively with a small number of required devices.
 上記課題を解決するためになされたさらに別の発明は、一対のプーリ、及び上記一対のプーリ間に架け渡され、走行可能に構成されるコンベヤベルトを有するコンベヤシステムと、本発明の表面形状監視装置とを備え、上記ラインレーザのレーザ光照射位置が、上記プーリと対向する位置であり、上記表面形状監視装置が、上記パターン抽出部が抽出するパターンを上記コンベヤベルトの厚さに基づく濃淡分布画像で表示する表示部をさらに備える表面形状監視システムである。 Still another invention made in order to solve the above-described problems is a conveyor system having a pair of pulleys, a conveyor belt that is spanned between the pair of pulleys and configured to be able to travel, and the surface shape monitoring of the present invention. A light distribution position based on the thickness of the conveyor belt, wherein the surface shape monitoring device extracts a pattern extracted by the pattern extraction unit. The surface shape monitoring system further includes a display unit for displaying an image.
 当該表面形状監視システムは、ラインレーザのレーザ光照射位置を上記プーリと対向する位置とする。コンベヤベルトは、プーリにより位置が固定され易いので、コンベヤベルトの片側から表面形状を測定する場合であっても、レーザ光照射位置でのコンベヤベルトの厚さを算出することができる。これにより当該表面形状監視システムは、表面が均等に摩耗している場合であっても検知することができる。また、当該表面形状監視システムでは、パターン抽出部が抽出するパターンをこのコンベヤベルトの厚さに基づいた濃淡分布画像として表示するので、視認性が高まり、コンベヤベルトの表面の状態を画像上で確認し易くすることができる。 In the surface shape monitoring system, the laser beam irradiation position of the line laser is set to a position facing the pulley. Since the position of the conveyor belt is easily fixed by a pulley, the thickness of the conveyor belt at the laser beam irradiation position can be calculated even when the surface shape is measured from one side of the conveyor belt. Thus, the surface shape monitoring system can detect even when the surface is evenly worn. In addition, the surface shape monitoring system displays the pattern extracted by the pattern extraction unit as a grayscale distribution image based on the thickness of the conveyor belt, so that visibility is improved and the surface state of the conveyor belt is confirmed on the image. Can be made easier.
 ここで、コンベヤベルトの「搬送方向」とは、稼働しているコンベヤベルトの表面に積載された搬送物が進行する方向を指す。 Here, the “conveying direction” of the conveyor belt refers to the direction in which the conveyed product loaded on the surface of the operating conveyor belt travels.
 以上説明したように、本発明の表面形状監視装置は、種々のコンベヤベルト表面の異常を1つの安価な装置で検出できる。また、本発明の表面形状監視装置及びこの表面形状監視装置を用いた摩耗量測定システムは、コンベヤベルト表面の異常の誤判定により発生する操業損失を低減できる。 As described above, the surface shape monitoring device of the present invention can detect abnormalities on various conveyor belt surfaces with one inexpensive device. Moreover, the surface shape monitoring apparatus of this invention and the wear amount measuring system using this surface shape monitoring apparatus can reduce the operation loss which arises by misjudgment of the abnormality of the conveyor belt surface.
図1は、本発明の一実施形態に係る表面形状監視装置を示す模式的側面図である。FIG. 1 is a schematic side view showing a surface shape monitoring apparatus according to an embodiment of the present invention. 図2は、図1の表面形状監視装置の模式的上面図である。FIG. 2 is a schematic top view of the surface shape monitoring apparatus of FIG. 図3は、コンベヤベルトが摩耗した状態にあることを示すパターンである。FIG. 3 is a pattern showing that the conveyor belt is worn. 図4は、コンベヤベルトに付着物が堆積した状態にあることを示すパターンである。FIG. 4 is a pattern showing that deposits are deposited on the conveyor belt. 図5は、コンベヤベルトに亀裂が生じた状態にあることを示すパターンである。FIG. 5 is a pattern showing that the conveyor belt is cracked. 図6は、コンベヤベルトに縦裂が生じた状態にあることを示すパターンである。FIG. 6 is a pattern showing that a longitudinal crack has occurred in the conveyor belt. 図7は、コンベヤベルトに噛込が生じた状態にあることを示すパターンである。FIG. 7 is a pattern showing that the conveyor belt is in a state of biting. 図8は、本発明の一実施形態に係る摩耗量測定システムを示す模式的側面図である。FIG. 8 is a schematic side view showing a wear amount measuring system according to an embodiment of the present invention. 図9は、図8の摩耗量測定システムの模式的上面図である。FIG. 9 is a schematic top view of the wear amount measuring system of FIG. 図10は、図8とは異なる本発明の一実施形態に係る摩耗量測定システムを示す模式的側面図である。FIG. 10 is a schematic side view showing a wear amount measuring system according to an embodiment of the present invention different from FIG. 図11は、図10のA-A線での模式的断面図である。FIG. 11 is a schematic cross-sectional view taken along line AA in FIG. 図12は、図8の摩耗量測定システムのコンベヤベルトの厚さの算出方法を示す説明図である。FIG. 12 is an explanatory diagram showing a method of calculating the thickness of the conveyor belt in the wear amount measuring system of FIG. 図13は、本発明の一実施形態に係る表面形状監視システムを示す模式的側面図である。FIG. 13 is a schematic side view showing a surface shape monitoring system according to an embodiment of the present invention. 図14は、歪みが生じているパターンの一例である。FIG. 14 is an example of a pattern in which distortion occurs. 図15は、図14とは異なる歪みが生じているパターンの一例である。FIG. 15 is an example of a pattern in which distortion different from that in FIG. 14 occurs. 図16は、図13の表示部が表示する濃淡分布画像の一例を示す説明図である。FIG. 16 is an explanatory diagram showing an example of a grayscale distribution image displayed by the display unit of FIG.
[第一実施形態]
 以下、本発明の表面形状監視装置及び摩耗量測定システムの第一実施形態について適宜図面を参照しつつ詳説する。
[First embodiment]
Hereinafter, a first embodiment of a surface shape monitoring device and a wear amount measuring system of the present invention will be described in detail with reference to the drawings as appropriate.
〔表面形状監視装置〕
 図1及び図2に示す表面形状監視装置1は、コンベヤシステムXの本体ベルトとして用いられるコンベヤベルトX1の表面形状監視装置であり、コンベヤベルトX1の表面の幅方向に広角でレーザを照射するラインレーザ11と、コンベヤベルトX1の表面からのラインレーザ11の反射光を撮影するカメラ12と、カメラ12の撮影画像から上記反射光が描く特定のパターンを抽出するパターン抽出部13と、上記抽出タイミングに基づいてパターン抽出部13で抽出されたパターンのコンベヤベルトX1の表面での位置を特定する位置特定機構14と、位置特定機構14が特定した位置のコンベヤベルトX1の表面画像を取得する画像取得部15とを備える。なお、当該表面形状監視装置1では、画像取得部15にカメラ12を用いる。
[Surface shape monitoring device]
A surface shape monitoring apparatus 1 shown in FIGS. 1 and 2 is a surface shape monitoring apparatus for a conveyor belt X1 used as a main body belt of a conveyor system X, and is a line for irradiating a laser at a wide angle in the width direction of the surface of the conveyor belt X1. A laser 11, a camera 12 that captures the reflected light of the line laser 11 from the surface of the conveyor belt X1, a pattern extraction unit 13 that extracts a specific pattern drawn by the reflected light from a captured image of the camera 12, and the extraction timing The position specifying mechanism 14 for specifying the position of the pattern extracted by the pattern extracting unit 13 on the surface of the conveyor belt X1 based on the above, and the image acquisition for acquiring the surface image of the conveyor belt X1 at the position specified by the position specifying mechanism 14 Part 15. In the surface shape monitoring apparatus 1, the camera 12 is used for the image acquisition unit 15.
<コンベヤシステム>
 コンベヤシステムXは、コンベヤベルトX1が一対のプーリX2間に架け渡され、走行可能に構成される。また、図1及び図2に示すようにコンベヤシステムXは、必要に応じてプーリX2間に、コンベヤベルトX1を下方から支持する支持ローラX3を備える。
<Conveyor system>
The conveyor system X is configured such that a conveyor belt X1 is stretched between a pair of pulleys X2 and can run. Moreover, as shown in FIG.1 and FIG.2, the conveyor system X is provided with the support roller X3 which supports the conveyor belt X1 from the downward direction between the pulleys X2 as needed.
 コンベヤベルトX1は、帯状の平ベルトの両端が接合部Zで接合された無端ベルトとして構成される。コンベヤベルトX1は、内部に帆布等の芯体を有してもよいが、少なくとも外面及び内面がカバーゴムで構成される。 The conveyor belt X1 is configured as an endless belt in which both ends of a belt-like flat belt are joined at a joint Z. The conveyor belt X1 may have a core such as canvas inside, but at least the outer surface and the inner surface are made of cover rubber.
 コンベヤベルトX1のカバーゴムの材質としては、可撓性及び弾性を有する限り特に限定されないが、例えば天然ゴム、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、エチレン-プロピレンゴム(EPM、EPDM)、イソプレンゴム(IR)、アクリロニトリル-ブタジエン系ゴム(NBR、NIR等)等を単独又は混合して用いることができる。また、コンベヤベルトX1は多層構造としてもよい。 The material of the cover rubber of the conveyor belt X1 is not particularly limited as long as it has flexibility and elasticity. For example, natural rubber, butadiene rubber (BR), styrene-butadiene rubber (SBR), ethylene-propylene rubber (EPM, EPDM) ), Isoprene rubber (IR), acrylonitrile-butadiene rubber (NBR, NIR, etc.) and the like can be used alone or in combination. The conveyor belt X1 may have a multilayer structure.
 コンベヤベルトX1の幅は、搬送物Yの大きさや時間当たりの搬送量等により適宜決定されるが、例えば300mm以上3000mm以下とできる。また、コンベヤベルトX1の長さは、搬送物Yを搬送する距離により適宜決定されるが、例えば10m以上40000m以下とできる。 The width of the conveyor belt X1 is appropriately determined according to the size of the conveyed product Y, the amount of conveyance per hour, and the like, and can be, for example, 300 mm to 3000 mm. Moreover, although the length of the conveyor belt X1 is suitably determined by the distance which conveys the conveyed product Y, it can be 10 m or more and 40000 m or less, for example.
 コンベヤベルトX1の平均厚さの下限としては、8mmが好ましく、10mmがより好ましい。一方、コンベヤベルトX1の平均厚さの上限としては、50mmが好ましく、30mmがより好ましい。コンベヤベルトX1の平均厚さが上記下限未満であると、コンベヤベルトX1の強度が不足するおそれがある。逆に、コンベヤベルトX1の平均厚さが上記上限を超えると、コンベヤベルトX1の可撓性が不足し、プーリX2の外周に巻き付けることが困難となるおそれがある。 As a minimum of average thickness of conveyor belt X1, 8 mm is preferred and 10 mm is more preferred. On the other hand, the upper limit of the average thickness of the conveyor belt X1 is preferably 50 mm, and more preferably 30 mm. If the average thickness of the conveyor belt X1 is less than the lower limit, the strength of the conveyor belt X1 may be insufficient. Conversely, if the average thickness of the conveyor belt X1 exceeds the above upper limit, the flexibility of the conveyor belt X1 may be insufficient, and it may be difficult to wrap around the outer periphery of the pulley X2.
 また、コンベヤベルトX1には、例えば複数のスチールコード等が搬送方向(図1の矢印の方向)と平行になるように埋設されていてもよい。このように複数のスチールコードを埋設することでコンベヤベルトX1に加わる張力を保持でき、幅広のベルトや長距離搬送を行うベルトが実現できる。 Further, for example, a plurality of steel cords or the like may be embedded in the conveyor belt X1 so as to be parallel to the transport direction (the direction of the arrow in FIG. 1). By embedding a plurality of steel cords in this way, the tension applied to the conveyor belt X1 can be maintained, and a wide belt or a belt for carrying a long distance can be realized.
 プーリX2及び支持ローラX3の材質としては、コンベヤベルトX1を駆動又は支持できる限り特に限定されないが、例えば鋼等の金属を用いることができる。 The material of the pulley X2 and the support roller X3 is not particularly limited as long as the conveyor belt X1 can be driven or supported. For example, a metal such as steel can be used.
 プーリX2の径は、コンベヤシステムXの用途等に応じて適宜決定されるが、プーリX2の径の下限としては、80mmが好ましく、100mmがより好ましい。一方、プーリX2の径の上限としては、3000mmが好ましく、2500mmがより好ましい。プーリX2の径が上記下限未満であると、コンベヤベルトX1の走行速度を高めるには高速回転が必要となるため、エネルギー消費が不要に増大するおそれがある。一方、プーリX2の径が上記上限を超えると、コンベヤシステムXの高さが不要に高くなり、設置が困難となるおそれがある。 The diameter of the pulley X2 is appropriately determined according to the use of the conveyor system X and the like, but the lower limit of the diameter of the pulley X2 is preferably 80 mm, and more preferably 100 mm. On the other hand, the upper limit of the diameter of the pulley X2 is preferably 3000 mm, and more preferably 2500 mm. If the diameter of the pulley X2 is less than the above lower limit, high speed rotation is required to increase the traveling speed of the conveyor belt X1, so that energy consumption may increase unnecessarily. On the other hand, if the diameter of the pulley X2 exceeds the above upper limit, the height of the conveyor system X becomes unnecessarily high, which may make installation difficult.
 コンベヤシステムXは、図1に示すように搬送物Yの搬送完了地点より後方のリターン側にブレード型クリーナX4を備えてもよい。 The conveyor system X may include a blade type cleaner X4 on the return side behind the transfer completion point of the transfer object Y as shown in FIG.
 コンベヤシステムXの稼働中(コンベヤベルトX1の走行中)、搬送物Yは架け渡されたコンベヤベルトX1の上側の外面に載置され、コンベヤベルトX1の下流側へ(図1では右方向へ)搬送される。そして、下流側のプーリX2でコンベヤベルトX1が折り返される際に、搬送物Yは図1に示す搬送物Y1のように下方へ離脱し、搬送が完了する。しかしながら、図1に示す搬送物Y2のように搬送物Yが下流側のプーリX2付近でコンベヤベルトX1から脱離せず、そのままコンベヤベルトX1表面に付着し、上流側へ移動していくものがある。ブレード型クリーナX4は、このような搬送物Yの付着を防止する。 During the operation of the conveyor system X (while the conveyor belt X1 is running), the conveyed product Y is placed on the outer surface on the upper side of the conveyed conveyor belt X1 and downstream (to the right in FIG. 1) of the conveyor belt X1. Be transported. Then, when the conveyor belt X1 is folded back by the pulley X2 on the downstream side, the conveyed product Y separates downward like the conveyed product Y1 shown in FIG. 1, and the conveyance is completed. However, like the conveyed product Y2 shown in FIG. 1, the conveyed product Y does not detach from the conveyor belt X1 in the vicinity of the downstream pulley X2, but directly adheres to the surface of the conveyor belt X1 and moves upstream. . The blade-type cleaner X4 prevents such adhesion of the conveyed product Y.
 ブレード型クリーナX4は、1枚又は複数枚のブレード(図1では1枚のブレード)を走行するコンベヤベルトX1に圧接することで、コンベヤベルトX1に付着する搬送物Y2等を取り除くことができる。 The blade-type cleaner X4 can remove the conveyed product Y2 and the like adhering to the conveyor belt X1 by being pressed against the conveyor belt X1 traveling on one or a plurality of blades (one blade in FIG. 1).
<ラインレーザ>
 ラインレーザ11は、レーザ光をコンベヤベルトX1の表面にライン状に照射する。ラインレーザ11としては、公知のラインレーザを用いることができる。
<Line laser>
The line laser 11 irradiates the surface of the conveyor belt X1 with a laser beam in a line shape. As the line laser 11, a known line laser can be used.
 コンベヤベルトX1の表面へのラインレーザ11の照射により描かれるラインは、連続的な直線で形成されていることが好ましいが、断続的な複数の直線や、複数の輝点により形成されてもよい。上記ラインが複数の直線や、複数の輝点により形成される場合、表面形状の抽出制度の観点から、その間隔としては0.5mm以下が好ましい。 The line drawn by irradiating the surface of the conveyor belt X1 with the line laser 11 is preferably formed by continuous straight lines, but may be formed by a plurality of intermittent straight lines or a plurality of bright spots. . When the line is formed by a plurality of straight lines or a plurality of bright spots, the interval is preferably 0.5 mm or less from the viewpoint of the surface shape extraction system.
 上記ラインレーザ11の照射方向は、コンベヤベルトX1の表面の搬送方向に対して傾斜していないことが好ましい。つまり、ラインレーザ11は、コンベヤベルトX1の法線方向からレーザを照射することが好ましい。このように上記レーザ光を照射することで、搬送方向に短く、ベルト厚さ方向に深い傷、例えば亀裂であっても、その傷の内側までレーザ光が届き易いので、当該表面形状監視装置1が種々の異常を的確に捉えることができる。ここで、ラインレーザ11の照射方向である「コンベヤベルトの法線方向」には、ラインレーザ11の照射方向の中心軸が、上記レーザ光の照射位置でのコンベヤベルトX1の接面となす角度が80度以上90度以下の範囲を含むものとする。なお、ラインレーザ11がレーザ光を幅方向へスキャンしながら照射する場合、「ラインレーザの照射方向の中心軸」とは、スキャンされる範囲の中央位置におけるレーザ照射に対する中心軸を指すものとする。 The irradiation direction of the line laser 11 is preferably not inclined with respect to the conveying direction of the surface of the conveyor belt X1. That is, it is preferable that the line laser 11 irradiates the laser from the normal direction of the conveyor belt X1. By irradiating the laser beam in this way, even if the flaw is short in the conveying direction and deep in the belt thickness direction, for example, a crack, the laser beam can easily reach the inside of the flaw. Can accurately capture various abnormalities. Here, in the “normal direction of the conveyor belt” that is the irradiation direction of the line laser 11, the angle formed by the central axis of the irradiation direction of the line laser 11 and the contact surface of the conveyor belt X 1 at the irradiation position of the laser beam. Includes a range from 80 degrees to 90 degrees. When the line laser 11 irradiates the laser beam while scanning in the width direction, the “center axis in the irradiation direction of the line laser” refers to the central axis for laser irradiation at the center position of the scanned range. .
 上記レーザ光が形成するラインとコンベヤベルトX1の搬送方向とは垂直である。このようにレーザ光をコンベヤベルトX1の表面にライン状に照射し、上記レーザ光が形成するラインとコンベヤベルトX1の搬送方向とを垂直にすることで、コンベヤベルトX1の幅方向に対して局所的に発生する異常について短いライン長でより確実に判定することができる。 The line formed by the laser beam and the conveying direction of the conveyor belt X1 are perpendicular to each other. In this way, the surface of the conveyor belt X1 is irradiated with laser light in a line shape, and the line formed by the laser light and the conveying direction of the conveyor belt X1 are perpendicular to each other, so that the width of the conveyor belt X1 is increased. It is possible to more reliably determine abnormalities that occur automatically with a short line length.
 上記レーザ光のライン長の下限としては、コンベヤベルトX1の幅の50%が好ましく、70%がより好ましい。一方、上記レーザ光のライン長の上限としては、コンベヤベルトX1の幅の100%が好ましく、90%がより好ましい。上記レーザ光のライン長を上記範囲内とすることで、コンベヤベルトX1に局所的に発生する異常を見逃し難くすることができる。 The lower limit of the line length of the laser beam is preferably 50% of the width of the conveyor belt X1, and more preferably 70%. On the other hand, the upper limit of the line length of the laser beam is preferably 100% of the width of the conveyor belt X1, and more preferably 90%. By setting the line length of the laser light within the above range, it is possible to make it difficult to overlook abnormalities that occur locally on the conveyor belt X1.
 ラインレーザ11のレーザ光照射位置は、プーリX2と対向する位置が好ましい。プーリX2を通過するコンベヤベルトX1は、プーリX2により位置が固定され易いので、コンベヤベルトX1の振動等により当該表面形状監視装置1がコンベヤベルトX1表面の異常を誤判定する可能性を低減できる。 The laser beam irradiation position of the line laser 11 is preferably a position facing the pulley X2. Since the position of the conveyor belt X1 passing through the pulley X2 is easily fixed by the pulley X2, the possibility that the surface shape monitoring device 1 erroneously determines abnormality of the surface of the conveyor belt X1 due to vibration of the conveyor belt X1 or the like can be reduced.
 上記ラインレーザ11のレーザ光照射位置は、一対のプーリX2のうち、上流側のプーリX2と対向する位置とすることがより好ましく、プーリX2の中心軸と水平方向又は上記水平方向より上方で対向する位置がさらに好ましく、プーリX2の中心軸と水平方向で対向する位置が特に好ましい。上流側のプーリX2を通過するコンベヤベルトX1は、ブレード型クリーナX4により付着物が除去されているため、上記レーザ光照射位置を上流側のプーリX2と対向する位置とすることで、当該表面形状監視装置1がコンベヤベルトX1表面の異常を誤判定する可能性を低減できる。また、コンベヤベルトX1は、通常下流側のプーリX2により駆動されるため、上流側のプーリX2には駆動装置等が付帯しておらず、ラインレーザ11を容易に設置することができる。また、上記レーザ光照射位置をプーリX2の中心軸と水平方向又は上記水平方向より上方で対向させることで、カメラ12の撮影方向が上方を向かないため、カメラ12のレンズに粉塵等が堆積し、撮影能力が低下することを抑止できる。さらに、プーリX2の中心軸と水平方向に対向する位置は、コンベヤベルトX1に加わる搬送方向の張力が最も大きくなるため、コンベヤベルトX1の振動等が特に発生し難く、当該表面形状監視装置1がコンベヤベルトX1表面の異常を誤判定する可能性をさらに低減できる。 The laser beam irradiation position of the line laser 11 is more preferably a position facing the upstream pulley X2 of the pair of pulleys X2, and facing the central axis of the pulley X2 in the horizontal direction or above the horizontal direction. More preferably, the position facing the central axis of the pulley X2 in the horizontal direction is particularly preferable. The conveyor belt X1 passing through the upstream pulley X2 has the surface shape formed by setting the laser beam irradiation position to a position facing the upstream pulley X2 because the deposits are removed by the blade type cleaner X4. The possibility that the monitoring device 1 erroneously determines abnormality of the surface of the conveyor belt X1 can be reduced. Further, since the conveyor belt X1 is normally driven by a pulley X2 on the downstream side, the pulley X2 on the upstream side is not attached with a driving device or the like, and the line laser 11 can be easily installed. Further, since the shooting direction of the camera 12 does not face upward by making the laser beam irradiation position face the central axis of the pulley X2 in the horizontal direction or above the horizontal direction, dust or the like accumulates on the lens of the camera 12. , It is possible to prevent the photographing ability from being lowered. Furthermore, since the tension in the conveying direction applied to the conveyor belt X1 is the largest at the position facing the central axis of the pulley X2 in the horizontal direction, vibration of the conveyor belt X1 is particularly difficult to occur. The possibility of erroneously determining an abnormality on the surface of the conveyor belt X1 can be further reduced.
 上記レーザ光のライン幅の上限としては、5mmが好ましく、3mmがより好ましい。上記レーザ光のライン幅が上記上限を超えると、ラインレーザ11の出力が不必要に大きくなり、当該表面形状監視装置1の監視コストが上昇するおそれがある。一方、上記レーザ光のライン幅の下限としては、コンベヤベルトX1表面の凹凸が確認できる限り特に限定されないが、例えば0.1mmとできる。 The upper limit of the line width of the laser beam is preferably 5 mm, and more preferably 3 mm. If the line width of the laser beam exceeds the upper limit, the output of the line laser 11 becomes unnecessarily large, and the monitoring cost of the surface shape monitoring device 1 may increase. On the other hand, the lower limit of the line width of the laser beam is not particularly limited as long as the unevenness on the surface of the conveyor belt X1 can be confirmed, but may be, for example, 0.1 mm.
 上記レーザ光の波長は、カメラ12で撮影できる限り特に限定されないが、例えば上記レーザ光の波長の下限としては、500nmが好ましく、550nmがより好ましい。一方、上記レーザ光の波長の上限としては、800nmが好ましく、750nmがより好ましい。上記レーザ光の波長が上記範囲内であると、特に黒色系のコンベヤベルトX1に対して強い反射光を得易い。 The wavelength of the laser beam is not particularly limited as long as it can be taken by the camera 12, but for example, the lower limit of the wavelength of the laser beam is preferably 500 nm, and more preferably 550 nm. On the other hand, the upper limit of the wavelength of the laser beam is preferably 800 nm, and more preferably 750 nm. When the wavelength of the laser beam is within the above range, it is easy to obtain strong reflected light particularly with respect to the black conveyor belt X1.
 なお、1本のラインレーザ11によりコンベヤX1の幅方向に広角でレーザを照射してもよいが、図2に示すように複数本(図2では2本)のラインレーザ11によりコンベヤベルトX1の幅方向に広角でレーザを照射してもよい。複数本のラインレーザ11を用いる方が、1つのラインレーザ11が照射する幅方向の端部においてもレーザ光の照射角度がコンベヤベルトX1の表面に対して直角に近づくため、当該表面形状監視装置1が種々の異常をさらに的確に捉えることができる。 The laser beam may be irradiated at a wide angle in the width direction of the conveyor X1 by one line laser 11. However, as shown in FIG. 2, a plurality of (two in FIG. 2) line lasers 11 are used to convey the conveyor belt X1. Laser irradiation may be performed at a wide angle in the width direction. In the case of using a plurality of line lasers 11, the irradiation angle of laser light approaches a right angle with respect to the surface of the conveyor belt X 1 even at the end in the width direction irradiated by one line laser 11. 1 can capture various abnormalities more accurately.
<カメラ>
 カメラ12は、上述のようにコンベヤベルトX1の表面からのラインレーザ11の反射光をコンベヤベルトX1の搬送方向に傾斜した位置から撮影する。このように傾斜位置から撮影することで、コンベヤベルトX1の表面の凹凸によりラインレーザ11の反射光に陰影が生じた画像を得ることが得ることができる。カメラ12としては、公知の撮像装置、例えばCCDカメラ、CMOSカメラ等を用いることができる。また、高速画像撮影が行え、後述するパターン抽出部13の画像データ解析も行えるスマートカメラを用いることもできる。
<Camera>
As described above, the camera 12 captures the reflected light of the line laser 11 from the surface of the conveyor belt X1 from a position inclined in the conveying direction of the conveyor belt X1. By photographing from the inclined position in this way, it is possible to obtain an image in which the reflected light of the line laser 11 is shaded by the unevenness of the surface of the conveyor belt X1. As the camera 12, a known imaging device such as a CCD camera or a CMOS camera can be used. In addition, a smart camera that can perform high-speed image capturing and can also perform image data analysis of the pattern extraction unit 13 described later can be used.
 カメラ12の画像撮影方向の中心軸は、側面視で、コンベヤベルトX1の表面においてラインレーザ11の照射位置と重なることが好ましい。カメラ12の画像撮影方向の中心軸とラインレーザ11の照射方向の中心軸とのなす角度(図1のθで以下、単に「角度θ」ともいう)の下限としては、20度が好ましく、30度がより好ましい。一方、上記角度θの上限としては、60度が好ましく、45度が好ましい。上記角度θが上記下限未満であると、例えばコンベヤベルトX1の表面の水濡れ等によるレーザ光の乱反射の影響が発生し易くなるおそれがある。逆に、上記角度θが上記上限を超えると、コンベヤベルトX1の表面の凹凸形状の抽出精度が低下するおそれがある。 The central axis of the image capturing direction of the camera 12 is preferably overlapped with the irradiation position of the line laser 11 on the surface of the conveyor belt X1 in a side view. The lower limit of the angle formed by the central axis of the image capturing direction of the camera 12 and the central axis of the irradiation direction of the line laser 11 (θ in FIG. 1, hereinafter also simply referred to as “angle θ”) is preferably 20 degrees, 30 The degree is more preferable. On the other hand, the upper limit of the angle θ is preferably 60 degrees, and preferably 45 degrees. If the angle θ is less than the lower limit, for example, the influence of irregular reflection of laser light due to water wetting on the surface of the conveyor belt X1 may easily occur. Conversely, if the angle θ exceeds the upper limit, the extraction accuracy of the uneven shape on the surface of the conveyor belt X1 may be reduced.
 カメラ12は、少なくともラインレーザ11により形成されるライン全体が撮影可能となるように配設されるとよい。例えばカメラ12とコンベヤベルトX1表面との距離を調整することで、上記ライン全体を撮影可能とできる。 The camera 12 is preferably arranged so that at least the entire line formed by the line laser 11 can be photographed. For example, the entire line can be photographed by adjusting the distance between the camera 12 and the surface of the conveyor belt X1.
 複数台のカメラ12により上記ライン全体を撮影してもよいが、1台のカメラ12で撮影することが好ましい。1台のカメラ12で撮影することで、異なるカメラで撮影された画像の合成や輝度の調整等を行う必要がなくなるため、パターン抽出部13でのパターン抽出が容易化できる。 The entire line may be photographed by a plurality of cameras 12, but it is preferable to photograph by one camera 12. By shooting with one camera 12, it is not necessary to synthesize images shot with different cameras, adjust the brightness, and the like, so that pattern extraction by the pattern extraction unit 13 can be facilitated.
<パターン抽出部>
 パターン抽出部13は、例えばカメラ12の撮影画像データを入力とし、解析を行うマイクロコントローラにより実現できる。
<Pattern extraction unit>
The pattern extraction unit 13 can be realized by, for example, a microcontroller that receives the captured image data of the camera 12 and performs analysis.
 パターン抽出部13は、カメラ12の撮影画像データから光切断法によりコンベヤベルトX1表面の凹凸を取得する。具体的には、以下の手順による。カメラ12の撮影画像データの陰影から、画像の各座標位置におけるラインレーザ11からの反射光のカメラ12への入射角を求めることができる。ラインレーザ11のコンベヤベルトX1表面への該当位置における入射角は既知であるから、三角測量の原理により該当位置のラインレーザ11あるいはカメラ12からの距離を知ることができる。従って、ラインレーザ11の反射光を用いて、コンベヤベルトX1の幅方向に距離を算出することで、コンベヤベルトX1の表面の凹凸を表すパターンを得ることができる。 The pattern extraction unit 13 acquires the unevenness of the surface of the conveyor belt X1 from the image data captured by the camera 12 by a light cutting method. Specifically, the following procedure is followed. From the shade of the captured image data of the camera 12, the incident angle to the camera 12 of the reflected light from the line laser 11 at each coordinate position of the image can be obtained. Since the incident angle of the line laser 11 at the corresponding position on the surface of the conveyor belt X1 is known, the distance from the line laser 11 or the camera 12 at the corresponding position can be known by the principle of triangulation. Therefore, by calculating the distance in the width direction of the conveyor belt X1 using the reflected light of the line laser 11, a pattern representing the unevenness of the surface of the conveyor belt X1 can be obtained.
 このようにして取得したパターンの一例をコンベヤベルトX1とともに図3に示す。図3のコンベヤベルトX1は表面の中央部が摩耗し、凹んでいる。この場合、パターン抽出部13により、ラインレーザ11あるいはカメラ12からの距離が大きい、つまりコンベヤベルトX1の表面がラインレーザ11あるいはカメラ12から遠ざかり薄くなった状態であることが算出される。その程度はラインレーザ11あるいはカメラ12からの距離により特定されるから、パターン抽出部13は、図3に示すように中央部がなだらかに凹んだパターンL1を抽出する。従って、このパターンL1の形状がコンベヤベルトX1の表面の凹凸に対応するから、コンベヤベルトX1は表面中央部が摩耗した状態にあると判定することができる。 An example of the pattern thus obtained is shown in FIG. 3 together with the conveyor belt X1. The conveyor belt X1 in FIG. 3 is worn and recessed at the center of the surface. In this case, the pattern extraction unit 13 calculates that the distance from the line laser 11 or the camera 12 is large, that is, the surface of the conveyor belt X1 is away from the line laser 11 or the camera 12 and is thin. Since the degree is specified by the distance from the line laser 11 or the camera 12, the pattern extraction unit 13 extracts a pattern L1 having a gently recessed central portion as shown in FIG. Therefore, since the shape of the pattern L1 corresponds to the unevenness on the surface of the conveyor belt X1, it can be determined that the conveyor belt X1 is worn at the center of the surface.
 実際には、コンベヤベルトX1表面の異常と判断する必要がない軽微な摩耗である場合も考えられる。このため、例えば得られたパターンから凹みの深さ(図3のD)を算出し、その深さDが一定値以上であれば、コンベヤベルトX1に摩耗の異常があるパターンであると特定する等の閾値を設けることが好ましい。 Actually, it may be a slight wear that does not need to be judged as an abnormality on the surface of the conveyor belt X1. For this reason, for example, the depth of the dent (D in FIG. 3) is calculated from the obtained pattern, and if the depth D is equal to or greater than a certain value, it is specified that the conveyor belt X1 has a wear abnormality pattern. It is preferable to provide a threshold value such as.
 以下、上述の摩耗以外にコンベヤベルトX1表面の異常と判断できる特定のパターンについて、説明する。なお、以下の説明は例示であって、ここで説明した以外の異常が検出できないことを意味するものではない。また、各パターンにおいて軽微なものと区別するため、上述の摩耗と同様に各パターンの形状に応じて閾値を設けることが好ましい。上記閾値は、検出する異常の種類やコンベヤベルトX1の仕様によって適宜決定される。 Hereinafter, specific patterns that can be determined to be abnormal on the surface of the conveyor belt X1 other than the above-described wear will be described. In addition, the following description is an illustration and does not mean that an abnormality other than the one described here cannot be detected. Further, in order to distinguish each pattern from minor ones, it is preferable to provide a threshold according to the shape of each pattern as in the above-described wear. The threshold value is appropriately determined depending on the type of abnormality to be detected and the specifications of the conveyor belt X1.
 図4に示すパターンL2は、コンベヤベルトX1の表面の中央部がなだらかに膨らんでいるパターンである。このパターンL2は、ブレード型クリーナX4によっても除去することができない堆積物がコンベヤベルトX1の表面に堆積していることを意味する。 The pattern L2 shown in FIG. 4 is a pattern in which the central portion of the surface of the conveyor belt X1 swells gently. This pattern L2 means that deposits that cannot be removed by the blade cleaner X4 are deposited on the surface of the conveyor belt X1.
 図5に示すパターンL3は、コンベヤベルトX1表面の一部に断面が三角形状の鋭い切れ込みが入っているパターンである。断面が三角形状であることは、表面からの切れ込みがコンベヤベルトX1の裏面まで達していないことを意味する。つまり、このパターンL3は、コンベヤベルトX1表面に亀裂が生じた状態にあることを示すパターンである。 The pattern L3 shown in FIG. 5 is a pattern in which a sharp cut having a triangular cross section is formed in a part of the surface of the conveyor belt X1. The triangular cross section means that the cut from the front surface does not reach the back surface of the conveyor belt X1. That is, this pattern L3 is a pattern indicating that the surface of the conveyor belt X1 is cracked.
 図6に示すパターンL4は、コンベヤベルトX1表面の一部に断面が台形状の切れ込みが入っているパターンである。断面が台形状であることは、表面からの切れ込みが裏面にまで達していることを意味する。つまり、このパターンL4は、コンベヤベルトX1表面に縦裂が生じた状態にあることを示すパターンである。 A pattern L4 shown in FIG. 6 is a pattern in which a part of the surface of the conveyor belt X1 has a trapezoidal cut. A trapezoidal cross section means that the cut from the front surface reaches the back surface. That is, this pattern L4 is a pattern indicating that a longitudinal crack has occurred on the surface of the conveyor belt X1.
 図7に示すパターンL5は、コンベヤベルトX1表面の狭い範囲に凸部が生じているパターンである。このパターンL5は、コンベヤベルトX1の一部に噛込が生じて、めくれ上がっている場合に生じる。 The pattern L5 shown in FIG. 7 is a pattern in which convex portions are generated in a narrow range on the surface of the conveyor belt X1. This pattern L5 occurs when a part of the conveyor belt X1 is bitten and turned up.
<位置特定機構>
 位置特定機構14は、反射型変位計を備えている。反射型変位計は、レーザ光を用いてコンベヤベルトX1表面の検知位置までの距離を比較的容易かつ精度よく計測できる。コンベヤベルトX1は、特に接合部Z付近の表面に凹凸を有する。このため、反射型変位計によりコンベヤベルトX1の表面の凹凸を測定し、解析することで、例えば接合部Zを認識することが可能である。コンベヤベルトX1は一定の速度で走行しているので、位置特定機構14は、この接合部Zを一定の時間間隔で認識する。その周期からコンベヤベルトX1の走行速度を算出することができる。
<Positioning mechanism>
The position specifying mechanism 14 includes a reflective displacement meter. The reflective displacement meter can measure the distance to the detection position on the surface of the conveyor belt X1 relatively easily and accurately using laser light. The conveyor belt X1 has irregularities on the surface particularly near the joint Z. For this reason, it is possible to recognize the joint Z, for example, by measuring and analyzing the unevenness of the surface of the conveyor belt X1 with a reflective displacement meter. Since the conveyor belt X1 is traveling at a constant speed, the position specifying mechanism 14 recognizes the joint portion Z at a constant time interval. The traveling speed of the conveyor belt X1 can be calculated from the cycle.
 ここで、パターン抽出部13によりコンベヤベルトX1に異常が抽出された場合を考える。カメラ12と位置特定機構14との距離は、表面形状監視装置1の各装置の配置により決まり既知である。一方、位置特定機構14は、コンベヤベルトX1の走行速度と、上記抽出タイミングでの接合部Zの位置とを算出できるので、これらの情報からコンベヤベルトX1に異常が抽出された位置の接合部Zに対する相対位置を特定可能である。つまり、位置特定機構14は、上記抽出タイミングに基づいてパターン抽出部13で抽出されたパターンのコンベヤベルトX1の表面での位置を特定することができる。 Here, a case where an abnormality is extracted from the conveyor belt X1 by the pattern extraction unit 13 is considered. The distance between the camera 12 and the position specifying mechanism 14 is determined by the arrangement of each device of the surface shape monitoring device 1 and is known. On the other hand, since the position specifying mechanism 14 can calculate the traveling speed of the conveyor belt X1 and the position of the joint Z at the extraction timing, the joint Z at the position where the abnormality is extracted in the conveyor belt X1 from these information. The relative position with respect to can be specified. That is, the position specifying mechanism 14 can specify the position of the pattern extracted by the pattern extracting unit 13 on the surface of the conveyor belt X1 based on the extraction timing.
 このように凹凸周期に基づき、上記パターンの位置特定を行うことができるので、コンベヤベルトX1に位置特定のための特別な構成を設ける必要がない。従って、当該表面形状監視装置1を例えば既存のコンベヤベルトにも用いることができ、汎用性を高めることができる。 As described above, since the position of the pattern can be specified based on the uneven period, it is not necessary to provide a special configuration for specifying the position on the conveyor belt X1. Therefore, the surface shape monitoring apparatus 1 can be used for an existing conveyor belt, for example, and versatility can be improved.
 なお、位置特定機構14が接合部Zの位置を認識し、その接合部Zの位置を基準に抽出されたパターンのコンベヤベルトX1の表面での位置を特定する方法を説明したが、他の手法により位置を特定してもよい。例えば、位置特定機構14がコンベヤベルトX1表面全体の凹凸の繰り返しパターンを直接認識する方法を用いてもよい。 In addition, although the position identification mechanism 14 recognized the position of the junction part Z and demonstrated the method of identifying the position on the surface of the conveyor belt X1 of the pattern extracted on the basis of the position of the junction part Z, other methods were demonstrated. You may specify a position by. For example, a method may be used in which the position specifying mechanism 14 directly recognizes a repeated pattern of unevenness on the entire surface of the conveyor belt X1.
 位置特定機構14の配設位置は、コンベヤベルトX1の表面の凹凸が計測できる限り特に限定されないが、画像取得部15の近傍で、搬送方向上流側が好ましい。画像取得部15の上流側に一定の距離をおいて配設することで、後述する画像取得部15での画像取得位置を認識し、画像取得部15により撮影する際に生じるタイムラグを吸収し易い。また、画像取得部15の近傍に配設することで、位置特定機構14が位置を特定してから画像取得位置に至るまでの時間が比較的短くなるため、コンベヤベルトX1の走行速度の変動等により画像取得位置に誤差が生じることを抑止できる。 The position of the position specifying mechanism 14 is not particularly limited as long as the unevenness of the surface of the conveyor belt X1 can be measured, but is preferably in the vicinity of the image acquisition unit 15 and upstream in the transport direction. By disposing at a certain distance upstream of the image acquisition unit 15, it is easy to absorb the time lag that occurs when the image acquisition unit 15, which will be described later, recognizes the image acquisition position and takes a picture with the image acquisition unit 15. . In addition, since the time from the position specifying mechanism 14 specifying the position to the image acquisition position is relatively short by being arranged in the vicinity of the image acquisition unit 15, a change in the traveling speed of the conveyor belt X1, etc. Thus, it is possible to prevent an error from occurring in the image acquisition position.
<画像取得部>
 当該表面形状監視装置1では、画像取得部15の画像取得にカメラ12を用いる。このように画像取得部15の画像取得にカメラ12を用いることで、当該表面形状監視装置1を構成する装置の数を削減できるので、当該表面形状監視装置1の製造コストを低減できる。
<Image acquisition unit>
In the surface shape monitoring apparatus 1, the camera 12 is used for image acquisition by the image acquisition unit 15. Since the number of devices constituting the surface shape monitoring device 1 can be reduced by using the camera 12 for image acquisition by the image acquisition unit 15 in this way, the manufacturing cost of the surface shape monitoring device 1 can be reduced.
 具体的には、位置特定機構14により特定されたコンベヤベルトX1の表面をカメラ12により撮影する。撮影された画像は、例えばその場で作業者が確認してもよいが、例えば公知のLAN等の通信設備を用いて、リアルタイムに所定の場所に送信し、集中管理を行ってもよい。 Specifically, the surface of the conveyor belt X1 specified by the position specifying mechanism 14 is photographed by the camera 12. The photographed image may be confirmed by an operator on the spot, for example, but may be transmitted to a predetermined place in real time using a communication facility such as a well-known LAN for centralized management.
 当該表面形状監視装置1では、画像取得部15で得られた画像を確認し、さらにコンベヤベルトX1表面に異常が認められる場合に、コンベヤベルトX1を停止してメンテナンス作業を行うことができる。 In the surface shape monitoring device 1, the image obtained by the image acquisition unit 15 can be confirmed, and when an abnormality is recognized on the surface of the conveyor belt X1, the conveyor belt X1 can be stopped to perform maintenance work.
<利点>
 当該表面形状監視装置1は、コンベヤベルトX1の表面に照射したラインレーザ11の反射光を用いた、いわゆる光切断法によりコンベヤベルトX1表面の幅方向の凹凸を検出することができる。当該表面形状監視装置1は、このコンベヤベルトX1表面の凹凸のパターンによりパターン抽出部13がコンベヤベルトX1表面に生じる摩耗、付着物の堆積、亀裂、縦裂きや噛込等の種々の異常を検知することができる。また、当該表面形状監視装置1は、位置特定機構14が上記パターンのコンベヤベルトX1の表面での位置を特定し、画像取得部15が位置特定機構14が特定した位置のコンベヤベルトX1の表面画像を取得する。このため、当該表面形状監視装置1では、コンベヤベルトX1の表面に異常が観測された場合においても、コンベヤベルトX1を停止することなく、表面の状態を確認できる。従って、当該表面形状監視装置1を用いることでコンベヤベルトX1表面の異常の誤判定により発生する操業損失を低減できる。さらに、当該表面形状監視装置1は、必要とする装置の数が少なく安価に構成することができる。
<Advantages>
The surface shape monitoring device 1 can detect the unevenness in the width direction of the surface of the conveyor belt X1 by a so-called light cutting method using the reflected light of the line laser 11 irradiated on the surface of the conveyor belt X1. The surface shape monitoring device 1 detects various abnormalities such as wear, deposit accumulation, cracks, vertical tearing and biting caused by the pattern extraction unit 13 on the surface of the conveyor belt X1 by the uneven pattern on the surface of the conveyor belt X1. can do. In the surface shape monitoring device 1, the position specifying mechanism 14 specifies the position of the pattern on the surface of the conveyor belt X1, and the image acquisition unit 15 determines the surface image of the conveyor belt X1 at the position specified by the position specifying mechanism 14. To get. For this reason, in the said surface shape monitoring apparatus 1, even when abnormality is observed in the surface of the conveyor belt X1, the surface state can be confirmed without stopping the conveyor belt X1. Therefore, by using the surface shape monitoring device 1, it is possible to reduce an operation loss caused by erroneous determination of abnormality on the surface of the conveyor belt X1. Furthermore, the surface shape monitoring device 1 can be configured at a low cost with a small number of required devices.
〔摩耗量測定システム〕
 図8及び図9に示す摩耗量測定システム2は、図1及び図2に示す表面形状監視装置1と、コンベヤベルトX1の幅方向の1箇所のベルト厚さを、コンベヤベルトX1の搬送方向に連続的に測定可能な厚さ測定装置20と、厚さ測定装置20により測定されるコンベヤベルトX1のベルト厚さ及び表面形状監視装置1により抽出されるパターンを用いて、コンベヤベルトX1の摩耗量を算出する摩耗量算出部30とを備える。
[Abrasion measurement system]
The wear amount measuring system 2 shown in FIG. 8 and FIG. 9 has the surface shape monitoring device 1 shown in FIG. 1 and FIG. 2 and the belt thickness at one place in the width direction of the conveyor belt X1 in the conveying direction of the conveyor belt X1. The amount of wear of the conveyor belt X1 using the thickness measuring device 20 that can be continuously measured, and the belt thickness of the conveyor belt X1 measured by the thickness measuring device 20 and the pattern extracted by the surface shape monitoring device 1 And a wear amount calculation unit 30 for calculating.
 コンベヤベルトX1及び表面形状監視装置1は、図1及び図2に示すコンベヤベルトX1及び表面形状監視装置1と同様に構成できるため、同一符号を付して説明を省略する。 Since the conveyor belt X1 and the surface shape monitoring device 1 can be configured in the same manner as the conveyor belt X1 and the surface shape monitoring device 1 shown in FIGS. 1 and 2, the same reference numerals are given and description thereof is omitted.
<厚さ測定装置>
 厚さ測定装置20は、コンベヤベルトX1を挟んで対向する一対の反射型変位計21を備える。
<Thickness measuring device>
The thickness measuring device 20 includes a pair of reflective displacement meters 21 facing each other with the conveyor belt X1 interposed therebetween.
 反射型変位計21は、レーザ光をコンベヤベルトX1表面に照射し、その反射光をレーザ照射位置で検知することで、照射位置までの距離を精度よく計測することができる。一対の反射型変位計21は、そのレーザ光の照射軸が重なるように対向して配設されている。この一対の反射型変位計21によりそれぞれコンベヤベルトX1の表面及び裏面までの距離が測定でき、一対の反射型変位計21間の距離は既知であるので、これらの距離からレーザ光照射位置でのコンベヤベルトX1のベルト厚さを算出することができる。また、コンベヤベルトX1は、搬送方向に走行しているので、一対の反射型変位計21によりコンベヤベルトX1のベルト厚さをコンベヤベルトX1の搬送方向に連続的に測定することができる。 The reflection displacement meter 21 can accurately measure the distance to the irradiation position by irradiating the surface of the conveyor belt X1 with laser light and detecting the reflected light at the laser irradiation position. The pair of reflective displacement meters 21 are arranged to face each other so that the irradiation axes of the laser beams overlap. The distance to the front and back surfaces of the conveyor belt X1 can be measured by the pair of reflective displacement gauges 21 and the distance between the pair of reflective displacement gauges 21 is known. The belt thickness of the conveyor belt X1 can be calculated. Further, since the conveyor belt X1 travels in the transport direction, the belt thickness of the conveyor belt X1 can be continuously measured in the transport direction of the conveyor belt X1 by the pair of reflective displacement meters 21.
 厚さ測定装置20のコンベヤベルトX1の搬送方向に対する配設位置としては、搬送物の搬送完了地点より後方のリターン側でブレード型クリーナX4より後方が好ましい。ブレード型クリーナX4より後方はコンベヤベルトX1に対する付着物が最も少ない位置であるため、コンベヤベルトX1のベルト厚さを比較的精度よく測定することができる。 The arrangement position of the thickness measuring device 20 in the conveying direction of the conveyor belt X1 is preferably behind the blade cleaner X4 on the return side behind the conveyance completion point of the conveyed product. Behind the blade type cleaner X4 is the position where there is the least amount of deposits on the conveyor belt X1, so the belt thickness of the conveyor belt X1 can be measured with relatively high accuracy.
 厚さ測定装置20のコンベヤベルトX1の幅方向に対する測定位置は、ラインレーザ11のレーザ光照射範囲内に設定される。上記測定位置は、特に限定されないが、コンベヤベルトX1の斜行や蛇行の影響を受け易い端部を避けることが好ましい。具体的には、ンベヤベルトX1の幅方向の端部から全幅の10%以上離れていることが好ましい。一方、上記測定位置は、コンベヤベルトX1の中央とすることもできるが、比較的摩耗し難い位置、すなわちコンベヤベルトX1の幅方向の端部から全幅の30%以下の位置とすることが好ましい。 The measurement position of the thickness measuring device 20 in the width direction of the conveyor belt X1 is set within the laser beam irradiation range of the line laser 11. Although the said measurement position is not specifically limited, It is preferable to avoid the edge part which is easy to receive the influence of skewing or meandering of the conveyor belt X1. Specifically, it is preferable to be 10% or more away from the end of the envelope belt X1 in the width direction. On the other hand, although the said measurement position can also be made into the center of the conveyor belt X1, it is preferable to set it as the position which is comparatively hard to wear, ie, the position of 30% or less of the full width from the edge part of the width direction of the conveyor belt X1.
 一対の反射型変位計21のレーザ光の照射軸は、レーザ光照射位置におけるコンベヤベルトX1表面に対して直交してもよいが、コンベヤベルトX1表面の法線方向から搬送方向に傾斜していてもよい。一対の反射型変位計21のレーザ光の照射軸を搬送方向に傾斜させることで、コンベヤベルトX1の搬送側とリターン側との間の狭い空間に反射型変位計21を配設することが容易となる場合がある。また、特に下方側に位置し、上方に向かってレーザ光を照射する反射型変位計21では、コンベヤベルトX1のリターン側ベルトの下面から落下し得る粉塵等がレーザ放射面に堆積することを抑止することができる。 The irradiation axis of the laser beam of the pair of reflective displacement gauges 21 may be orthogonal to the surface of the conveyor belt X1 at the laser beam irradiation position, but is inclined in the transport direction from the normal direction of the surface of the conveyor belt X1. Also good. By tilting the irradiation axis of the laser beam of the pair of reflection displacement meters 21 in the conveyance direction, the reflection displacement meter 21 can be easily disposed in a narrow space between the conveyance side and the return side of the conveyor belt X1. It may become. Further, in the reflective displacement meter 21 that is located on the lower side and irradiates the laser beam upward, it is possible to prevent dust or the like that can fall from the lower surface of the return side belt of the conveyor belt X1 from being accumulated on the laser emission surface. can do.
 反射型変位計21のレーザ光の照射軸を搬送方向に傾斜させる場合、法線方向からの傾斜角としては、30°以下が好ましい。上記傾斜角を上記上限以下とすることで、コンベヤベルトX1のベルト厚さを精度よく測定することができる。 When tilting the irradiation axis of the laser beam of the reflective displacement meter 21 in the transport direction, the tilt angle from the normal direction is preferably 30 ° or less. By setting the tilt angle to be equal to or less than the upper limit, the belt thickness of the conveyor belt X1 can be accurately measured.
<摩耗量算出部>
 摩耗量算出部30は、例えば厚さ測定装置20により測定されるコンベヤベルトX1のベルト厚さ及び表面形状監視装置1のパターン抽出部13により抽出されるパターンを入力とし解析を行うマイクロコントローラにより実現できる。なお、パターン抽出部13にマイクロコントローラを用いる場合、パターン抽出部13のマイクロコントローラと摩耗量算出部30のマイクロコントローラとは、同一のマイクロコントローラとすることもできる。
<Abrasion amount calculation unit>
The wear amount calculation unit 30 is realized by, for example, a microcontroller that performs analysis by inputting the belt thickness of the conveyor belt X1 measured by the thickness measurement device 20 and the pattern extracted by the pattern extraction unit 13 of the surface shape monitoring device 1. it can. When a microcontroller is used for the pattern extraction unit 13, the microcontroller of the pattern extraction unit 13 and the microcontroller of the wear amount calculation unit 30 may be the same microcontroller.
 具体的には、摩耗量算出部30は、以下の手順によりコンベヤベルトX1の幅方向のベルト厚さを算出する。まず、摩耗量算出部30は、パターン抽出部13によりコンベヤベルトX1表面の幅方向の凹凸情報を得ることができる。また、摩耗量算出部30は、厚さ測定装置20によりこのパターンで対応する位置のコンベヤベルトX1のベルト厚さを得ることができる。ここで、コンベヤベルトX1裏面はほとんど摩耗せず平らであると仮定できるので、摩耗量算出部30は、特定の一点のベルト厚さから、幅方向の凹凸量を補正していくことで、コンベヤベルトX1の幅方向のベルト厚さを算出できる。 Specifically, the wear amount calculation unit 30 calculates the belt thickness in the width direction of the conveyor belt X1 according to the following procedure. First, the wear amount calculation unit 30 can obtain unevenness information in the width direction of the surface of the conveyor belt X1 by the pattern extraction unit 13. Further, the wear amount calculation unit 30 can obtain the belt thickness of the conveyor belt X1 at the position corresponding to this pattern by the thickness measuring device 20. Here, since the back surface of the conveyor belt X1 can be assumed to be flat with almost no wear, the wear amount calculation unit 30 corrects the amount of unevenness in the width direction from the belt thickness at a specific point, thereby making the conveyor The belt thickness in the width direction of the belt X1 can be calculated.
 当該摩耗量測定システム2は、この幅方向のコンベヤベルトX1のベルト厚さにより直接コンベヤベルトX1の摩耗を判断することができる。このため、仮にコンベヤベルトX1のベルト厚さが一様に摩耗し、表面に凹凸が生じない摩耗であっても、摩耗したことを検出できる。 The wear amount measuring system 2 can directly determine the wear of the conveyor belt X1 based on the belt thickness of the conveyor belt X1 in the width direction. For this reason, even if the belt thickness of the conveyor belt X1 is evenly worn and the surface is not uneven, it can be detected that the belt is worn.
<利点>
 当該摩耗量測定システム2は、厚さ測定装置20により、コンベヤベルトX1の幅方向の1箇所のベルト厚さが測定される。このため、コンベヤベルトX1が幅方向に一様に摩耗した場合、当該摩耗量測定システム2は、この厚さ測定装置20の測定結果から摩耗を検出することができる。また、当該摩耗量測定システム2は、本発明の当該表面形状監視装置1を備えるので、コンベヤベルトX1表面の幅方向の凹凸を検出することができる。このため、当該摩耗量測定システム2は、コンベヤベルトX1の幅方向の一部が摩耗した場合、コンベヤベルトX1表面の幅方向の凹凸から摩耗を検出することができる。このように当該摩耗量測定システム2は、摩耗のパターンによらずコンベヤベルトX1の摩耗を検出することができる。また、当該摩耗量測定システム2は、本発明の表面形状監視装置1を備えるので、コンベヤベルトX1の摩耗が観測された場合において、コンベヤベルトX1を停止することなく、表面の状態を確認できる。従って、当該摩耗量測定システム2を用いることでコンベヤベルトX1表面の異常の誤判定により発生する操業損失を低減できる。さらに、当該摩耗量測定システム2は、必要とする装置の数が少なく安価に構成することができる。
<Advantages>
In the wear amount measuring system 2, the belt thickness at one location in the width direction of the conveyor belt X1 is measured by the thickness measuring device 20. For this reason, when the conveyor belt X1 is uniformly worn in the width direction, the wear amount measuring system 2 can detect wear from the measurement result of the thickness measuring device 20. Moreover, since the said abrasion amount measuring system 2 is provided with the said surface shape monitoring apparatus 1 of this invention, it can detect the unevenness | corrugation of the width direction of the conveyor belt X1 surface. Therefore, the wear amount measuring system 2 can detect wear from the unevenness in the width direction of the surface of the conveyor belt X1 when a part of the width of the conveyor belt X1 is worn. As described above, the wear amount measuring system 2 can detect the wear of the conveyor belt X1 regardless of the wear pattern. Moreover, since the said wear amount measuring system 2 is provided with the surface shape monitoring apparatus 1 of this invention, when abrasion of the conveyor belt X1 is observed, it can confirm the state of a surface, without stopping the conveyor belt X1. Therefore, by using the wear amount measuring system 2, it is possible to reduce operation loss caused by erroneous determination of abnormality on the surface of the conveyor belt X1. Further, the wear amount measuring system 2 can be configured at a low cost with a small number of required devices.
[第二実施形態]
 以下、本発明の摩耗量測定システムの第二実施形態について適宜図面を参照しつつ詳説する。
[Second Embodiment]
Hereinafter, a second embodiment of the wear amount measuring system of the present invention will be described in detail with reference to the drawings as appropriate.
 図10及び図11に示す摩耗量測定システム3は、表面形状監視装置1と、コンベヤベルトX1の幅方向の1箇所のベルト厚さを、コンベヤベルトX1の搬送方向に連続的に測定可能な厚さ測定装置40と、厚さ測定装置40により測定されるコンベヤベルトX1のベルト厚さ及び表面形状監視装置1により抽出されるパターンを用いて、コンベヤベルトX1の摩耗量を算出する摩耗量算出部30とを備える。 The wear amount measuring system 3 shown in FIG. 10 and FIG. 11 is a surface shape monitoring device 1 and a thickness capable of continuously measuring the belt thickness at one position in the width direction of the conveyor belt X1 in the conveying direction of the conveyor belt X1. A wear amount calculating unit that calculates the wear amount of the conveyor belt X1 using the thickness measuring device 40 and the pattern extracted by the belt thickness and surface shape monitoring device 1 of the conveyor belt X1 measured by the thickness measuring device 40 30.
 当該摩耗量測定システム3の表面形状監視装置1及び摩耗量算出部30は、図8及び図9に示す表面形状監視装置1及び摩耗量算出部30とそれぞれ同様である。このため、同一符号を付して、詳細な説明は省略する。 The surface shape monitoring device 1 and the wear amount calculating unit 30 of the wear amount measuring system 3 are the same as the surface shape monitoring device 1 and the wear amount calculating unit 30 shown in FIGS. For this reason, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
<厚さ測定装置>
 当該摩耗量測定システム3の厚さ測定装置40は、照射したレーザ光の反射光の受光によりその光路長を測定する一対の反射型変位計41と、上記一対の反射型変位計41が照射するレーザ光を反射する一対の鏡42と、コンベヤベルトX1の側方の床面Gに自立可能に構成され、一対の反射型変位計41及び一対の鏡42を支持するフレーム43とを備える。
<Thickness measuring device>
The thickness measuring device 40 of the wear amount measuring system 3 irradiates a pair of reflective displacement meters 41 that measure the optical path length by receiving reflected light of the irradiated laser light and the pair of reflective displacement meters 41. A pair of mirrors 42 that reflect the laser light and a frame 43 that supports the pair of reflective displacement meters 41 and the pair of mirrors 42 are configured to be able to stand on the floor surface G on the side of the conveyor belt X1.
 一対の反射型変位計41は、平面視でコンベヤベルトX1の外側で、一方の反射型変位計41のレーザ光Q1がコンベヤベルトX1の内面側へ水平に照射され、他方の反射型変位計41のレーザ光Q2がコンベヤベルトX1の外面側へ水平に照射されるように鉛直方向に並べて配設される。 The pair of reflective displacement gauges 41 are horizontally irradiated with the laser beam Q1 of one reflective displacement gauge 41 on the inner surface side of the conveyor belt X1 outside the conveyor belt X1 in plan view, and the other reflective displacement gauge 41 Are arranged side by side in the vertical direction so that the laser beam Q2 is irradiated horizontally to the outer surface side of the conveyor belt X1.
 上記一対の鏡42は、それぞれフレーム43から水平方向へ延びる一対の支持棒43aに取り付けられている。また、一方の鏡42は、コンベヤベルトX1の内面側に水平に照射される上記レーザ光Q1の反射光がコンベヤベルトX1の厚さ測定位置Pの内面側を鉛直方向から照射されるように配設され、他方の鏡42が、コンベヤベルトX1の外面側に水平に照射される上記レーザ光Q2の反射光がコンベヤベルトX1の厚さ測定位置Pの外面側を鉛直方向から照射されるように配設される。 The pair of mirrors 42 are respectively attached to a pair of support bars 43a extending from the frame 43 in the horizontal direction. One mirror 42 is arranged so that the reflected light of the laser beam Q1 irradiated horizontally on the inner surface side of the conveyor belt X1 irradiates the inner surface side of the thickness measurement position P of the conveyor belt X1 from the vertical direction. The other mirror 42 is provided so that the reflected light of the laser beam Q2 that is irradiated horizontally on the outer surface side of the conveyor belt X1 is irradiated from the vertical direction on the outer surface side of the thickness measurement position P of the conveyor belt X1. Arranged.
 鏡42とコンベヤベルトX1との距離の下限としては、70mmが好ましく、150mmがより好ましい。一方、鏡42とコンベヤベルトX1との距離の上限としては、2500mmが好ましく、2000mmがより好ましい。鏡42とコンベヤベルトX1との距離が上記下限未満であると、コンベヤベルトX1の振動等により鏡42の端部がコンベヤベルトX1に接触するおそれがある。逆に、上記鏡42とコンベヤベルトX1との距離が上記上限を超えると、鏡42をプーリX2に架け渡されたコンベヤベルトX1の内面側に配設することが困難となるおそれがある。 The lower limit of the distance between the mirror 42 and the conveyor belt X1 is preferably 70 mm, and more preferably 150 mm. On the other hand, the upper limit of the distance between the mirror 42 and the conveyor belt X1 is preferably 2500 mm, and more preferably 2000 mm. If the distance between the mirror 42 and the conveyor belt X1 is less than the lower limit, the end of the mirror 42 may come into contact with the conveyor belt X1 due to vibration of the conveyor belt X1 or the like. On the contrary, if the distance between the mirror 42 and the conveyor belt X1 exceeds the upper limit, it may be difficult to dispose the mirror 42 on the inner surface side of the conveyor belt X1 spanned over the pulley X2.
 コンベヤベルトX1の外面側の測定に用いられる鏡42とコンベヤベルトX1との距離と、コンベヤベルトX1の内面側の測定に用いられる鏡42とコンベヤベルトX1との距離とは、異なってもよいが、等しくすることが好ましい。両者の距離を等しくすることで、レーザ光の往復に要する時間がバランスするので、測定タイミングの同期がとり易くなる。 The distance between the mirror 42 used for measurement on the outer surface side of the conveyor belt X1 and the conveyor belt X1 and the distance between the mirror 42 used for measurement on the inner surface side of the conveyor belt X1 and the conveyor belt X1 may be different. , Preferably equal. By equalizing the distance between the two, the time required for the reciprocation of the laser beam is balanced, so that the measurement timing can be easily synchronized.
 コンベヤベルトX1の幅方向に対する厚さ測定装置40の測定位置Pは、図8及び図9の摩耗量測定システム2と同様とできる。 The measurement position P of the thickness measuring device 40 in the width direction of the conveyor belt X1 can be the same as that of the wear amount measuring system 2 of FIGS.
 この厚さ測定装置40では、図12に示すように、コンベヤベルトX1の内面側の測定に用いられる反射型変位計41から鏡42を経てコンベヤベルトX1の厚さ測定位置Pの内面側に至る距離(H1+W1)と、コンベヤベルトX1の外面側の測定に用いられる反射型変位計41から鏡42を経てコンベヤベルトX1の厚さ測定位置Pの外面側に至る距離(H2+W2)が計測される。ここで、コンベヤベルトX1の内面側の測定に用いられる反射型変位計41と鏡42との間隔H1、及びコンベヤベルトX1の外面側の測定に用いられる反射型変位計41と鏡42との間隔H2は既知であるから、鏡42とコンベヤベルトX1の厚さ測定位置Pの内面側との距離W1及び鏡42とコンベヤベルトX1の厚さ測定位置Pの外面側との距離W2が算出可能である。さらに、一対の反射型変位計41の間隔Dも基地であるから、コンベヤベルトX1の厚さTは、下記式(1)で算出できる。
 T=D-(W1+W2) ・・・(1)
In this thickness measuring device 40, as shown in FIG. 12, the reflection type displacement meter 41 used for measurement on the inner surface side of the conveyor belt X1 passes through the mirror 42 and reaches the inner surface side of the thickness measuring position P of the conveyor belt X1. The distance (H1 + W1) and the distance (H2 + W2) from the reflective displacement meter 41 used for the measurement on the outer surface side of the conveyor belt X1 through the mirror 42 to the outer surface side of the thickness measurement position P of the conveyor belt X1 are measured. Here, the distance H1 between the reflective displacement meter 41 and the mirror 42 used for measurement on the inner surface side of the conveyor belt X1, and the distance between the reflective displacement meter 41 and the mirror 42 used for measurement on the outer surface side of the conveyor belt X1. Since H2 is known, the distance W1 between the mirror 42 and the inner surface side of the thickness measurement position P of the conveyor belt X1 and the distance W2 between the mirror 42 and the outer surface side of the thickness measurement position P of the conveyor belt X1 can be calculated. is there. Furthermore, since the distance D between the pair of reflective displacement gauges 41 is also a base, the thickness T of the conveyor belt X1 can be calculated by the following equation (1).
T = D- (W1 + W2) (1)
 なお、上述の厚さ測定装置40では、鏡42の反射光が、コンベヤベルトX1の厚さ測定位置Pに鉛直方向から照射される場合を説明したが、この反射光は既知の角度を持って照射されても、その鉛直方向の長さを算出することで同様にコンベヤベルトX1の厚さTを求めることができる。ただし、反射光は、上記厚さ測定位置Pに鉛直方向から照射されることが好ましい。反射型変位計41では、上記厚さ測定位置Pでの反射光をレーザ照射位置で検知することで、光路長を測定する。このように上記厚さ測定位置Pに鉛直方向から照射することで、厚さ測定位置Pからの反射光が反射型変位計41に届き易くなるため、測定精度を高められる。同様に、反射型変位計41が照射するレーザ光は、例えば一定の俯角をもって照射されても、コンベヤベルトX1の厚さTを求めることができる。ただし、測定精度の観点から、反射型変位計41が照射するレーザ光は水平方向とすることが好ましい。 In the thickness measuring device 40 described above, the case where the reflected light of the mirror 42 is irradiated from the vertical direction to the thickness measuring position P of the conveyor belt X1 has been described. However, the reflected light has a known angle. Even if irradiated, the thickness T of the conveyor belt X1 can be similarly obtained by calculating the length in the vertical direction. However, the reflected light is preferably applied to the thickness measurement position P from the vertical direction. The reflective displacement meter 41 measures the optical path length by detecting the reflected light at the thickness measurement position P at the laser irradiation position. By irradiating the thickness measurement position P from the vertical direction in this way, the reflected light from the thickness measurement position P can easily reach the reflective displacement meter 41, so that the measurement accuracy can be improved. Similarly, the thickness T of the conveyor belt X1 can be obtained even when the laser light emitted from the reflective displacement meter 41 is emitted with a certain depression angle, for example. However, from the viewpoint of measurement accuracy, it is preferable that the laser light emitted by the reflection-type displacement meter 41 is in the horizontal direction.
<利点>
 当該摩耗量測定システム3の厚さ測定装置40では、反射型変位計41がレーザ光を水平に照射し、その反射光をレーザ照射位置で検知する。つまり、当該摩耗量測定システム3では、レーザ光の照射面やセンサ面が横向きに設けられるので、レーザ光の照射面やセンサ面に粉塵等が堆積することを抑止できる。また、一対の反射型変位計41が平面視でコンベヤベルトX1の外側に配設されるので、厚さ測定装置40のメンテナンスが容易化される。さらに、当該摩耗量測定システム3の厚さ測定装置40は、フレーム43によりコンベヤベルトX1の側方の床面Gに自立可能に構成されているので、厚さ測定装置40を当該摩耗量測定システム3から取り出すことで、鏡42の清掃も容易に行える。
<Advantages>
In the thickness measuring device 40 of the wear amount measuring system 3, the reflective displacement meter 41 irradiates the laser beam horizontally and detects the reflected light at the laser irradiation position. That is, in the wear amount measuring system 3, since the laser light irradiation surface and the sensor surface are provided sideways, dust and the like can be prevented from being deposited on the laser light irradiation surface and the sensor surface. Further, since the pair of reflective displacement gauges 41 are disposed outside the conveyor belt X1 in plan view, the maintenance of the thickness measuring device 40 is facilitated. Furthermore, since the thickness measuring device 40 of the wear amount measuring system 3 is configured to be able to stand on the floor G on the side of the conveyor belt X1 by the frame 43, the thickness measuring device 40 is used as the wear amount measuring system. The mirror 42 can be easily cleaned by taking it out of 3.
[第三実施形態]
 以下、本発明の表面形状監視システムについて適宜図面を参照しつつ詳説する。
[Third embodiment]
Hereinafter, the surface shape monitoring system of the present invention will be described in detail with reference to the drawings as appropriate.
 図13に示す表面形状監視システム4は、コンベヤシステム5と、表面形状監視装置6とを備える。 The surface shape monitoring system 4 shown in FIG. 13 includes a conveyor system 5 and a surface shape monitoring device 6.
〔コンベヤシステム〕
 コンベヤシステム5は、一対のプーリ51と、一対のプーリ51間に架け渡され、走行可能に構成されるコンベヤベルト52とを有する。
[Conveyor system]
The conveyor system 5 includes a pair of pulleys 51 and a conveyor belt 52 that is spanned between the pair of pulleys 51 and configured to be able to travel.
 一対のプーリ51及びコンベヤベルト52は、第一実施形態で説明した図1の一対のプーリX2及びコンベヤベルトX1とそれぞれ同様である。また、図13に示すコンベヤシステム5の他の構成は、第一実施形態で説明した図1のコンベヤシステムXと同様に構成できるので、同一符号を付して説明を省略する。 The pair of pulleys 51 and the conveyor belt 52 are the same as the pair of pulleys X2 and the conveyor belt X1 of FIG. 1 described in the first embodiment. Moreover, since the other structure of the conveyor system 5 shown in FIG. 13 can be comprised similarly to the conveyor system X of FIG. 1 demonstrated in 1st embodiment, it attaches | subjects the same code | symbol and abbreviate | omits description.
〔表面形状監視装置〕
 表面形状監視装置6は、コンベヤベルト52の表面形状監視装置であって、図13に示すように、コンベヤベルト52の表面の幅方向に広角でレーザを照射するラインレーザ61と、コンベヤベルト52の表面からのラインレーザ61の反射光を撮影するカメラ12と、カメラ12の撮影画像から上記反射光が描く特定のパターンを抽出するパターン抽出部62と、上記抽出タイミングに基づいてパターン抽出部62で抽出されたパターンのコンベヤベルト52の表面での位置を特定する位置特定機構14と、位置特定機構14が特定した位置のコンベヤベルト52の表面画像を取得する画像取得部15と、パターン抽出部62が抽出するパターンをコンベヤベルト52の厚さに基づく濃淡分布画像で表示する表示部63とを備える。
[Surface shape monitoring device]
The surface shape monitoring device 6 is a surface shape monitoring device for the conveyor belt 52. As shown in FIG. 13, the surface shape monitoring device 6 includes a line laser 61 that irradiates a laser at a wide angle in the width direction of the surface of the conveyor belt 52, and the conveyor belt 52. A camera 12 that captures the reflected light of the line laser 61 from the surface, a pattern extraction unit 62 that extracts a specific pattern drawn by the reflected light from an image captured by the camera 12, and a pattern extraction unit 62 based on the extraction timing. A position specifying mechanism 14 that specifies the position of the extracted pattern on the surface of the conveyor belt 52, an image acquisition unit 15 that acquires a surface image of the conveyor belt 52 at a position specified by the position specifying mechanism 14, and a pattern extraction unit 62. The display unit 63 displays the pattern extracted by a gray-scale distribution image based on the thickness of the conveyor belt 52.
 なお、カメラ12、位置特定機構14及び画像取得部15については、第一実施形態で説明した図1の表面形状監視装置1と同様に構成できるので、同一符号を付し、説明を省略する。 Since the camera 12, the position specifying mechanism 14, and the image acquisition unit 15 can be configured in the same manner as the surface shape monitoring device 1 of FIG. 1 described in the first embodiment, the same reference numerals are given and description thereof is omitted.
<ラインレーザ>
 表面形状監視装置6は、ラインレーザ61のレーザ光照射位置が、プーリ51と対向する位置である。上記ラインレーザ61のレーザ光照射位置は、一対のプーリ51のうち、上流側のプーリ51と対向する位置とすることがより好ましく、プーリ51の中心軸と水平方向又は上記水平方向より上方で対向する位置がさらに好ましく、プーリ51の中心軸と水平方向で対向する位置が特に好ましい。上記ラインレーザ61のレーザ光照射位置をこのような位置とすることで、後述するコンベヤベルト52の厚さの測定精度が向上する。なお、「上流側のプーリ」とは、搬送物Yが搬送される方向に対して起点側に位置するプーリを指す。
<Line laser>
In the surface shape monitoring device 6, the laser beam irradiation position of the line laser 61 is a position facing the pulley 51. The laser beam irradiation position of the line laser 61 is more preferably a position facing the upstream pulley 51 of the pair of pulleys 51 and facing the central axis of the pulley 51 in the horizontal direction or above the horizontal direction. More preferably, the position facing the central axis of the pulley 51 in the horizontal direction is particularly preferable. By setting the laser beam irradiation position of the line laser 61 to such a position, the thickness measurement accuracy of the conveyor belt 52 described later is improved. The “upstream pulley” refers to a pulley located on the starting side with respect to the direction in which the conveyed product Y is conveyed.
 ラインレーザ61は、レーザ光照射位置が上述の通りである点を除き、第一実施形態で説明した図1のラインレーザ11と同様に構成されるので、他の説明は省略する。 The line laser 61 is configured in the same manner as the line laser 11 of FIG. 1 described in the first embodiment except that the laser beam irradiation position is as described above, and thus other description is omitted.
<パターン抽出部>
 パターン抽出部62は、カメラ12の撮影画像データから光切断法によりコンベヤベルト52表面の凹凸を取得する。この凹凸は、第一実施形態で説明したように、例えばカメラ12とラインレーザ61のレーザ光照射位置との距離(その距離をAとする)として知ることができる。上述のようにラインレーザ61のレーザ光照射位置は、プーリ51と対向する位置である。このレーザ光照射位置が対向するプーリ51の位置とカメラ12との距離は既知であり(その距離をBとする)、コンベヤベルト52は、裏面側がこの位置と接するように移動していくから、距離(B-A)が、レーザ光照射位置におけるコンベヤベルト52の厚さであると分かる。このようにしてパターン抽出部62では、レーザ光照射位置におけるコンベヤベルト52の厚さを用いて、コンベヤベルト52の表面の凹凸を表すパターンを得ることができる。
<Pattern extraction unit>
The pattern extraction unit 62 acquires the unevenness on the surface of the conveyor belt 52 from the imaged image data of the camera 12 by a light cutting method. As described in the first embodiment, the unevenness can be known as, for example, the distance between the camera 12 and the laser beam irradiation position of the line laser 61 (the distance is A). As described above, the laser beam irradiation position of the line laser 61 is a position facing the pulley 51. The distance between the position of the pulley 51 facing this laser beam irradiation position and the camera 12 is known (the distance is B), and the conveyor belt 52 moves so that the back side is in contact with this position. It can be seen that the distance (BA) is the thickness of the conveyor belt 52 at the laser beam irradiation position. In this way, the pattern extraction unit 62 can obtain a pattern representing the unevenness of the surface of the conveyor belt 52 using the thickness of the conveyor belt 52 at the laser light irradiation position.
 パターン抽出部62は、レーザ光照射位置におけるコンベヤベルト52の厚さを用いてコンベヤベルト52の表面の凹凸を表すパターンを得る点を除き、第一実施形態で説明した図1のパターン抽出部13と同様に構成されるので、他の説明は省略する。 The pattern extraction unit 62 of FIG. 1 described in the first embodiment except that the pattern representing the irregularities on the surface of the conveyor belt 52 is obtained using the thickness of the conveyor belt 52 at the laser light irradiation position. Since the configuration is the same as the above, other description is omitted.
<表示部>
 表示部63は、例えば演算装置と表示装置とにより構成できる。上記演算装置としては、公知のマイクロコントローラ等を用いることができ、上記表示装置としては、公知の液晶ディスプレイ等を用いることができる。この構成の場合、表示部63では、演算装置により濃淡分布画像データを作成し、この画像データを表示装置に表示する。以下、濃淡分布画像データを作成する手順について詳説する。
<Display section>
The display unit 63 can be configured by an arithmetic device and a display device, for example. A known microcontroller or the like can be used as the arithmetic device, and a known liquid crystal display or the like can be used as the display device. In the case of this configuration, the display unit 63 creates gradation distribution image data by the arithmetic device and displays this image data on the display device. Hereinafter, the procedure for creating the grayscale distribution image data will be described in detail.
(画像の調整)
 表示部63は、パターン抽出部13が抽出するパターンのみを用いて濃淡分布画像データを作成してもよいが、画像取得部15を兼ねるカメラ12の撮影するコンベヤベルト52の画像を併用するとよい。コンベヤベルト52の画像を併用する場合、表示部63は、画像取得部15の画像を参照する。
(Image adjustment)
The display unit 63 may create the density distribution image data using only the pattern extracted by the pattern extraction unit 13, but it is preferable to use the image of the conveyor belt 52 captured by the camera 12 that also serves as the image acquisition unit 15. When using the image of the conveyor belt 52 together, the display unit 63 refers to the image of the image acquisition unit 15.
 このように表示部63が画像取得部15の画像を参照する構成とする場合、表示部63は画像の調整機能を有してもよい。 Thus, when the display unit 63 is configured to refer to the image of the image acquisition unit 15, the display unit 63 may have an image adjustment function.
 例えば表示部63が、コンベヤベルト52のレーザ照射位置での照度を検出する露光センサを備え、測定される照度によりカメラ12の絞り等の撮影条件を調整する調整機能を有してもよい。 For example, the display unit 63 may include an exposure sensor that detects the illuminance at the laser irradiation position of the conveyor belt 52, and may have an adjustment function of adjusting shooting conditions such as a diaphragm of the camera 12 according to the measured illuminance.
 また、照度の高い昼間においては表示部63により表示される画像での確認がより有効であり、逆に照度の低い夜間においては位置特定機構14による位置特定がより有効である。このため、上記調整機能は、昼夜のような極端な照度の変化を検出し、濃淡分布画像の表示の有無を制御してもよい。つまり、上記調整機能は、照度が所定値より大きい場合に濃淡分布画像を表示するように制御してもよい。なお、昼夜の別は露光センサが測定する照度によって判断してもよいが、露光センサに代えて時計を備え、時刻によって管理してもよい。 Also, confirmation in the image displayed by the display unit 63 is more effective during daytime when the illuminance is high, and conversely, position specification by the position specifying mechanism 14 is more effective during nighttime when the illuminance is low. For this reason, the adjustment function may detect an extreme change in illuminance such as day and night, and may control the presence or absence of display of the grayscale distribution image. That is, the adjustment function may be controlled to display a grayscale distribution image when the illuminance is greater than a predetermined value. Whether day or night may be determined based on the illuminance measured by the exposure sensor, but a clock may be provided instead of the exposure sensor, and management may be performed according to time.
 照度が高い場合にはカメラ12でラインレーザ61の反射光を検出し難いことがある。このため、照度が所定値より大きい場合に、上記調整機能はラインレーザ61の出力を高める制御を行ってもよい。なお、安全上の制約等によりラインレーザ61の単体出力を十分に高められない場合がある。このような場合にあっては、1箇所に集光可能な複数のラインレーザ61を設け、出光するラインレーザ61の本数でラインレーザ61の反射光の強度を調整するとよい。 When the illuminance is high, it may be difficult to detect the reflected light of the line laser 61 with the camera 12. For this reason, when the illuminance is larger than a predetermined value, the adjustment function may perform control to increase the output of the line laser 61. Note that the unit output of the line laser 61 may not be sufficiently increased due to safety restrictions or the like. In such a case, it is preferable to provide a plurality of line lasers 61 that can collect light at one place and adjust the intensity of the reflected light of the line laser 61 by the number of the line lasers 61 that emit light.
 また、照度が高く、カメラ12でラインレーザ61の反射光を検出し難い場合に、ラインレーザ61の波長域を選択的に透過させる透過フィルタを用いてもよい。カメラ12が照度に関係なく透過フィルタを通じてラインレーザ61の反射光を検出してもよいが、照度が低い場合には、利得が下がるおそれがある。このため、上記調整機能は、照度が所定値より大きい場合に透過フィルタを用いる制御を行うことが好ましい。 Further, when the illuminance is high and it is difficult for the camera 12 to detect the reflected light of the line laser 61, a transmission filter that selectively transmits the wavelength region of the line laser 61 may be used. The camera 12 may detect the reflected light of the line laser 61 through the transmission filter regardless of the illuminance. However, when the illuminance is low, the gain may decrease. For this reason, it is preferable that the adjustment function performs control using a transmission filter when the illuminance is larger than a predetermined value.
(歪み補正)
 ラインレーザ61のレーザ光照射位置が対向するプーリ51と、ラインレーザ61及びカメラ12の設置位置の相対関係によりパターン抽出部13が抽出するパターンに歪みが生じる場合がある。この歪みはカメラ12のレンズとして広角レンズ、対角魚眼レンズ、全天球レンズ等を搭載している場合に生じ易い。一方、これらのレンズには少ないカメラ数でコンベヤベルト52の表面形状を監視できる利点がある。
(Distortion correction)
The pattern extracted by the pattern extraction unit 13 may be distorted due to the relative relationship between the pulley 51 facing the laser beam irradiation position of the line laser 61 and the installation position of the line laser 61 and the camera 12. This distortion is likely to occur when a wide-angle lens, a diagonal fisheye lens, an omnidirectional lens, or the like is mounted as a lens of the camera 12. On the other hand, these lenses have an advantage that the surface shape of the conveyor belt 52 can be monitored with a small number of cameras.
 この歪みは一様に生じるため、このパターンをそのまま濃淡分布画像データに変換してもよいが、表示部63が、パターン抽出部13が抽出するパターンの歪み補正機能を有するとよい。この歪み補正機能は、演算装置により実現できる。 Since this distortion occurs uniformly, this pattern may be directly converted into grayscale distribution image data, but the display unit 63 preferably has a function of correcting the distortion of the pattern extracted by the pattern extraction unit 13. This distortion correction function can be realized by an arithmetic device.
 まず、パターンの歪みについて説明する。図14に歪みが生じているパターンL6を示す。このように全体が傾斜した歪みは、プーリ51に対してカメラ12の平行度がずれている場合に生じ易い。また、図15に図14とは異なる歪みが生じているパターンL7を示す。このように全体が湾曲した歪みは、プーリ51に対してラインレーザ61の平行度がずれている場合に生じ易い。 First, pattern distortion will be described. FIG. 14 shows a pattern L6 in which distortion occurs. Thus, the distortion which the whole inclined was easy to produce when the parallelism of the camera 12 has shifted | deviated with respect to the pulley 51. FIG. FIG. 15 shows a pattern L7 in which a distortion different from that in FIG. 14 occurs. Such distortion that is curved as a whole is likely to occur when the parallelism of the line laser 61 is deviated from the pulley 51.
 ここで、図14及び図15で、両端にある高さの低い部分(図14のL61、図15のL71)は、プーリ部を示すパターンである。このプーリ部パターンL61、L71は、厚さ0の基準となる線であり、水平方向に延びる直線となるべきものである。従って、このプーリ部パターンL61、L71が水平となるようにパターンを補正することで、歪み補正をすることができる。 Here, in FIG. 14 and FIG. 15, the low height portions (L61 in FIG. 14, L71 in FIG. 15) at both ends are patterns indicating pulley portions. The pulley pattern L61, L71 is a reference line of thickness 0, and should be a straight line extending in the horizontal direction. Therefore, distortion correction can be performed by correcting the pattern so that the pulley portion patterns L61 and L71 are horizontal.
(濃淡分布画像)
 表示部63は、演算装置により、パターン抽出部62が抽出したレーザ光照射位置におけるコンベヤベルト52の厚さを濃淡画像に変換する。具体的には、所定の値(例えばコンベヤベルト52の初期の厚さ)を基準として、コンベヤベルト52の厚さが大きい場合を黒、小さい場合を白となるようなグレースケールデータを作成するとよい。なお、これは一例であって、白黒は逆の割り付けであってもよいし、パターンの種類に応じたカラーデータとしてもよい。
(Tint distribution image)
The display unit 63 converts the thickness of the conveyor belt 52 at the laser light irradiation position extracted by the pattern extraction unit 62 into a grayscale image using an arithmetic device. Specifically, it is preferable to create gray scale data such that when the thickness of the conveyor belt 52 is large and black when the thickness of the conveyor belt 52 is small, a predetermined value (for example, the initial thickness of the conveyor belt 52) is used as a reference. . This is merely an example, and black and white may be reversed, or color data corresponding to the type of pattern may be used.
 また、コンベヤベルト52の画像を併用している場合は、コンベヤベルト52の画像に上記グレースケールデータを重ね合わせて濃淡画像データを作成する。面形状監視装置6は、位置特定機構14を備えているので、パターン抽出部62が抽出したパターンのコンベヤベルト52上での位置が特定できる。従って、容易に位置合わせを行ってコンベヤベルト52の画像に上記グレースケールデータを重ね合わせることができる。 Also, when the image of the conveyor belt 52 is used together, the grayscale data is created by superimposing the gray scale data on the image of the conveyor belt 52. Since the surface shape monitoring device 6 includes the position specifying mechanism 14, the position of the pattern extracted by the pattern extracting unit 62 on the conveyor belt 52 can be specified. Therefore, it is possible to easily align and superimpose the gray scale data on the image of the conveyor belt 52.
 上述のようにして作成した濃淡分布画像データは、表示装置に表示される。表示装置はコンベヤシステム5の近傍に配設されていてもよいが、表示装置を遠隔地に配設し、濃淡分布画像データを無線通信等により転送することで表示してもよい。つまり、表示部63は無線通信装置を備えていてもよい。 The grayscale distribution image data created as described above is displayed on the display device. The display device may be disposed in the vicinity of the conveyor system 5, but may be displayed by disposing the display device in a remote place and transferring the grayscale distribution image data by wireless communication or the like. That is, the display unit 63 may include a wireless communication device.
 このようにして得られる濃淡分布画像の一例を、図16を用いて説明する。なお、図16で、本来グレースケールの濃淡分布画像となるところ、濃淡の相違はハッチングの種類の相違で示している。ハッチングが施されていないベース部分(図16で白い部分)は、基準となるグレーである。 An example of the light and shade distribution image obtained in this way will be described with reference to FIG. In FIG. 16, the gray scale density distribution image is originally shown, and the difference in density is indicated by the difference in the type of hatching. The base portion that is not hatched (white portion in FIG. 16) is a reference gray.
 図16において、K1のハッチングは、色が黒い部分を表す。色が黒い部分は、コンベヤベルト52が厚いことを意味し、K1は一定の領域を占めていることから、突起付着であることが分かる。 In FIG. 16, the hatching of K1 represents a black portion. A black colored portion means that the conveyor belt 52 is thick, and K1 occupies a certain area, so that it is understood that the protrusion is attached.
 K2、K3及びK4のハッチングは、色が白い部分を表す。色が白い部分は、コンベヤベルト52が薄いことを意味し、K2、K3及びK4は筋状であることから、損傷であり、その方向等から、損傷K2は縦裂き、損傷K3は横割れ、損傷K4は斜行割れに分類される。 * The hatching of K2, K3, and K4 represents a white portion. The white portion means that the conveyor belt 52 is thin, and K2, K3, and K4 are streaks, which is a damage. From the direction, etc., the damage K2 is longitudinally split, and the damage K3 is transversely cracked. The damage K4 is classified as a skew crack.
 同様にK5及びK6のハッチングは、色が白い部分を表す。K5及びK6は一定の領域を占めていることから、損耗であることが分かる。その搬送方向の長さから、損耗K5は削れ、損耗K6は摩耗に分類される。 Similarly, the hatching of K5 and K6 represents the white part. Since K5 and K6 occupy a certain area, it can be seen that they are worn. From the length in the conveying direction, the wear K5 is scraped and the wear K6 is classified as wear.
 K7及びK8のハッチングは、濃い灰色(K1の黒より薄く、ベース部分の灰色より濃い)を表す。このK7及びK8は、周期的に現れ、両者でその周期が一致している。そして、この周期をコンベヤベルト52の搬送速度で除した時間(この周期を通過するのに要する時間)は、プーリ51が1周する時間と等しい。つまり、このK7及びK8は、プーリの異物付着によりコンベヤベルト52が外周側へ押し出された結果、見かけ上コンベヤベルト52が厚く見えていることが分かる。なお、K7及びK8が現れる周期と、プーリ51の周長は概略一致するため、その一致性で判断してもよいが、コンベヤベルト52の厚みの分だけK7及びK8が現れる周期の方が長いこと、コンベヤベルト52とプーリ51との間に滑りによるロスがあることなどにより誤差が生じ易い。このため、上述のようにプーリ51が1周する時間との対比で判断することが好ましい。 The hatching of K7 and K8 represents dark gray (lighter than black of K1 and darker than the gray of the base portion). These K7 and K8 appear periodically, and both have the same period. The time obtained by dividing this cycle by the conveying speed of the conveyor belt 52 (the time required to pass this cycle) is equal to the time required for the pulley 51 to make one revolution. In other words, it can be seen that K7 and K8 appear to be thick as a result of the conveyor belt 52 being pushed to the outer peripheral side due to foreign matter adhering to the pulley. Note that the period in which K7 and K8 appear and the circumference of the pulley 51 are approximately the same, and therefore may be determined based on the coincidence. However, the period in which K7 and K8 appear is longer by the thickness of the conveyor belt 52. In addition, errors are likely to occur due to slippage loss between the conveyor belt 52 and the pulley 51. For this reason, it is preferable to judge by contrast with the time for the pulley 51 to make one round as described above.
 プーリ51はモータにより回転する場合が一般的であるため、プーリ51が1周する時間は、このモータの磁力の変化から容易に測定することができる。表面形状監視システム4が、このようなプーリ51が1周する時間を測定する周期検出機構を備え、表示部63がこの周期検出機構により測定される時間と同期して発生するパターンを削除するとよい。このような機能を有することで、プーリ51に起因するパターンを除外することができる。 Since the pulley 51 is generally rotated by a motor, the time for the pulley 51 to make one revolution can be easily measured from the change in the magnetic force of the motor. The surface shape monitoring system 4 may include a period detection mechanism that measures the time for which the pulley 51 makes one revolution, and the display unit 63 may delete a pattern generated in synchronization with the time measured by the period detection mechanism. . By having such a function, a pattern caused by the pulley 51 can be excluded.
 なお、K9のハッチングは、搬送方向の中央部で色が黒く、ベース部分の境界に近づくにつれて色がベース部分の灰色に近づく部分を表す。またK9は、コンベヤベルト52を斜めに横断している。このK9はコンベヤベルト52のジョイント部である。 Note that the K9 hatching indicates a portion where the color is black at the center in the transport direction and the color approaches the gray of the base portion as it approaches the boundary of the base portion. K9 crosses the conveyor belt 52 at an angle. K9 is a joint portion of the conveyor belt 52.
<利点>
 当該表面形状監視システム4は、ラインレーザ61のレーザ光照射位置をプーリ51と対向する位置とする。コンベヤベルト52は、プーリ51により位置が固定され易いので、コンベヤベルト52の片側から表面形状を測定する場合であっても、レーザ光照射位置でのコンベヤベルト52の厚さを算出することができる。これにより当該表面形状監視システム4は、表面が均等に摩耗している場合であっても検知することができる。また、当該表面形状監視システム4では、パターン抽出部62が抽出するパターンをこのコンベヤベルト52の厚さに基づいた濃淡分布画像として表示するので、視認性が高まり、コンベヤベルト52の表面の状態を画像上で確認し易くすることができる。
<Advantages>
The surface shape monitoring system 4 sets the laser beam irradiation position of the line laser 61 to a position facing the pulley 51. Since the position of the conveyor belt 52 is easily fixed by the pulley 51, the thickness of the conveyor belt 52 at the laser beam irradiation position can be calculated even when the surface shape is measured from one side of the conveyor belt 52. . Thus, the surface shape monitoring system 4 can detect even when the surface is evenly worn. Further, in the surface shape monitoring system 4, the pattern extracted by the pattern extraction unit 62 is displayed as a grayscale distribution image based on the thickness of the conveyor belt 52, so that the visibility is improved and the surface state of the conveyor belt 52 is changed. It can be easily confirmed on the image.
[その他の実施形態]
 本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment, and can be implemented in a mode in which various changes and improvements are made in addition to the above-described mode.
 上記実施形態では、表面形状監視装置の画像取得部の画像取得にラインレーザの反射光を撮影するカメラを流用する場合を説明したが、画像取得部の画像取得に上記カメラとは別のカメラを設ける構成も本発明の意図するところである。 In the above embodiment, the case where the camera that captures the reflected light of the line laser is used for image acquisition of the image acquisition unit of the surface shape monitoring device has been described. However, a camera different from the camera is used for image acquisition of the image acquisition unit. The structure to be provided is also intended by the present invention.
 上記実施形態では、表面形状監視装置の位置特定機構に反射型変位計を用いる場合を説明したが、他の方法により位置特定を行ってもよい。例えば位置特定機構が、コンベヤベルトの特定位置に埋め込まれた位置発信機と、この位置発信機からの信号を検出する受信機とを備え、位置発信機から発信する信号を検出することで、コンベヤベルトの表面での位置を特定してもよい。このような位置発信機としては、RFIDタグ、光電センサ、渦電位センサ等を用いることができる。また、コンベヤベルトの特定位置に、コンベヤベルトの表面に露出するように反射マークを埋設し、この反射マークからのラインレーザの反射光を、その輝度や色の違いにより検出することで位置特定を行ってもよい。 In the above embodiment, the case where the reflective displacement meter is used for the position specifying mechanism of the surface shape monitoring device has been described, but the position may be specified by another method. For example, the position specifying mechanism includes a position transmitter embedded in a specific position of the conveyor belt, and a receiver that detects a signal from the position transmitter. By detecting a signal transmitted from the position transmitter, the conveyor The position on the surface of the belt may be specified. As such a position transmitter, an RFID tag, a photoelectric sensor, an eddy potential sensor, or the like can be used. In addition, a reflective mark is embedded at a specific position on the conveyor belt so that it is exposed on the surface of the conveyor belt, and the reflected position of the line laser from this reflective mark is detected by the difference in brightness and color. You may go.
 上記実施形態では、摩耗量測定システムの厚さ測定装置がコンベヤベルトの幅方向の1箇所のベルト厚さを測定する場合を説明したが、2箇所以上の厚さを測定してもよい。複数箇所のベルト厚さを測定することで、コンベヤベルトの幅方向のベルト厚さの測定精度を高めることができる。一方、測定箇所を1箇所とする場合は、厚さ測定装置の装置数を減らすことができるので、摩耗量測定システムの製造コストを低減できる。 In the above embodiment, the case where the thickness measuring device of the wear amount measuring system measures the belt thickness at one place in the width direction of the conveyor belt has been described, but the thickness at two or more places may be measured. By measuring the belt thickness at a plurality of locations, the measurement accuracy of the belt thickness in the width direction of the conveyor belt can be increased. On the other hand, when the number of measurement locations is one, the number of thickness measurement devices can be reduced, and thus the manufacturing cost of the wear amount measurement system can be reduced.
 上記実施形態では、摩耗量測定システムの厚さ測定装置として、一対の反射型変位計を用いる場合を説明したが、コンベヤベルトのベルト厚さが測定できる限り、厚さ測定装置は一対の反射型変位計に限定されない。例えば、コンベヤベルトの両面に接触してその接触子間の距離によりベルト厚さを測定する接触型の厚さ測定装置を用いることもできる。 In the above embodiment, the case where a pair of reflective displacement meters is used as the thickness measuring device of the wear amount measuring system has been described. However, as long as the belt thickness of the conveyor belt can be measured, the thickness measuring device is a pair of reflective type. It is not limited to a displacement meter. For example, a contact-type thickness measuring device that contacts both surfaces of the conveyor belt and measures the belt thickness based on the distance between the contacts can be used.
 本発明の表面形状監視装置は、種々のコンベヤベルト表面の異常を1つの安価な装置で検出できる。また、本発明の表面形状監視装置及びこの表面形状監視装置を用いた摩耗量測定システムは、コンベヤベルト表面の異常の誤判定により発生する操業損失を低減できる。 The surface shape monitoring device of the present invention can detect various conveyor belt surface abnormalities with one inexpensive device. Moreover, the surface shape monitoring apparatus of this invention and the wear amount measuring system using this surface shape monitoring apparatus can reduce the operation loss which arises by misjudgment of the abnormality of the conveyor belt surface.
 従って、本発明の表面形状監視装置及び摩耗量測定システムは、製鉄所、火力発電所、採掘所等の連続稼働を行うコンベヤベルトの予防保全に有効である。また、本発明の表面形状監視装置は、種々の異常を検知できるので、伝動ベルトの摩耗、シンクロ歯部摩耗、蛇行、乗り上げ、切断等の異常検知に用いることもできる。 Therefore, the surface shape monitoring device and wear amount measuring system of the present invention are effective for preventive maintenance of conveyor belts that are continuously operated in steelworks, thermal power plants, mines, and the like. In addition, since the surface shape monitoring device of the present invention can detect various abnormalities, it can also be used for detecting abnormalities such as transmission belt wear, synchro tooth wear, meandering, riding on, and cutting.
1、6 表面形状監視装置
2、3 摩耗量測定システム
4 表面形状監視システム
5 コンベヤシステム
11 ラインレーザ
12 カメラ
13 パターン抽出部
14 位置特定機構
15 画像取得部
20 厚さ測定装置
21 反射型変位計
30 摩耗量算出部
40 厚さ測定装置
41 反射型変位計
42 鏡
43 フレーム
43a 支持棒
51 プーリ
52 コンベヤベルト
61 ラインレーザ
62 パターン抽出部
63 表示部
X コンベヤシステム
X1 コンベヤベルト
X2 プーリ
X3 支持ローラ
X4 ブレード型クリーナ
Y、Y1、Y2 搬送物
Z 接合部
L1、L2、L3、L4、L5、L6、L7 パターン
L61、L71 プーリ部パターン
K1 突起付着
K2、K3、K4 損傷
K5、K6 摩耗
K7、K8 プーリ異物付着
K9 ジョイント部
P 測定位置
Q1、Q2 レーザ光
 
DESCRIPTION OF SYMBOLS 1, 6 Surface shape monitoring apparatus 2, 3 Wear amount measuring system 4 Surface shape monitoring system 5 Conveyor system 11 Line laser 12 Camera 13 Pattern extraction part 14 Position specifying mechanism 15 Image acquisition part 20 Thickness measurement apparatus 21 Reflective displacement meter 30 Wear calculation unit 40 Thickness measuring device 41 Reflective displacement meter 42 Mirror 43 Frame 43a Support bar 51 Pulley 52 Conveyor belt 61 Line laser 62 Pattern extraction unit 63 Display unit X Conveyor system X1 Conveyor belt X2 Pulley X3 Support roller X4 Blade type Cleaner Y, Y1, Y2 Conveyed object Z Joint L1, L2, L3, L4, L5, L6, L7 Pattern L61, L71 Pulley pattern K1 Protrusion adhesion K2, K3, K4 Damage K5, K6 Wear K7, K8 Pulley foreign matter adhesion K9 Joint part P Measurement position Q1, Q2 Light

Claims (4)

  1.  コンベヤベルトの表面形状監視装置であって、
     上記コンベヤベルトの表面の幅方向に広角でレーザを照射するラインレーザと、
     上記コンベヤベルトの表面からの上記ラインレーザの反射光を撮影するカメラと、
     上記カメラの撮影画像から上記反射光が描く特定のパターンを抽出するパターン抽出部と、
     上記抽出タイミングに基づいて上記パターン抽出部で抽出されたパターンの上記コンベヤベルトの表面での位置を特定する位置特定機構と、
     上記位置特定機構が特定した位置の上記コンベヤベルトの表面画像を取得する画像取得部と
     を備える表面形状監視装置。
    A conveyor belt surface shape monitoring device,
    A line laser that emits a laser at a wide angle in the width direction of the surface of the conveyor belt;
    A camera that captures the reflected light of the line laser from the surface of the conveyor belt;
    A pattern extraction unit for extracting a specific pattern drawn by the reflected light from the captured image of the camera;
    A position specifying mechanism for specifying the position on the surface of the conveyor belt of the pattern extracted by the pattern extraction unit based on the extraction timing;
    A surface shape monitoring apparatus comprising: an image acquisition unit that acquires a surface image of the conveyor belt at a position specified by the position specifying mechanism.
  2.  上記画像取得部の画像取得に上記カメラを用いる請求項1に記載の表面形状監視装置。 The surface shape monitoring device according to claim 1, wherein the camera is used for image acquisition by the image acquisition unit.
  3.  請求項1又は請求項2に記載の表面形状監視装置と、
     上記コンベヤベルトの幅方向の少なくとも1箇所のベルト厚さを、上記コンベヤベルトの搬送方向に連続的に測定可能な厚さ測定装置と、
     上記厚さ測定装置により測定される上記コンベヤベルトのベルト厚さ及び上記表面形状監視装置により抽出されるパターンを用いて、上記コンベヤベルトの摩耗量を算出する摩耗量算出部と
     を備える摩耗量測定システム。
    The surface shape monitoring device according to claim 1 or 2,
    A thickness measuring device capable of continuously measuring at least one belt thickness in the width direction of the conveyor belt in the conveying direction of the conveyor belt;
    A wear amount measurement unit comprising: a wear amount calculating unit that calculates a wear amount of the conveyor belt using a belt thickness of the conveyor belt measured by the thickness measuring device and a pattern extracted by the surface shape monitoring device. system.
  4.  一対のプーリ、及び上記一対のプーリ間に架け渡され、走行可能に構成されるコンベヤベルトを有するコンベヤシステムと、
     請求項1に記載の表面形状監視装置と
     を備え、
     上記ラインレーザのレーザ光照射位置が、上記プーリと対向する位置であり、
     上記表面形状監視装置が、上記パターン抽出部が抽出するパターンを上記コンベヤベルトの厚さに基づく濃淡分布画像で表示する表示部をさらに備える表面形状監視システム。
     
     
    A conveyor system having a pair of pulleys and a conveyor belt that is spanned between the pair of pulleys and configured to run;
    A surface shape monitoring device according to claim 1,
    The laser beam irradiation position of the line laser is a position facing the pulley,
    The surface shape monitoring system further includes a display unit that displays a pattern extracted by the pattern extraction unit as a grayscale distribution image based on the thickness of the conveyor belt.

PCT/JP2019/011884 2018-03-28 2019-03-20 Surface shape monitoring device, abrasion loss measuring system, and surface shape monitoring system WO2019188718A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019536611A JPWO2019188718A1 (en) 2018-03-28 2019-03-20 Surface shape monitoring device, wear amount measuring system and surface shape monitoring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018061262 2018-03-28
JP2018-061262 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019188718A1 true WO2019188718A1 (en) 2019-10-03

Family

ID=68060042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011884 WO2019188718A1 (en) 2018-03-28 2019-03-20 Surface shape monitoring device, abrasion loss measuring system, and surface shape monitoring system

Country Status (2)

Country Link
JP (2) JPWO2019188718A1 (en)
WO (1) WO2019188718A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111532711A (en) * 2020-05-22 2020-08-14 无锡宝通智能物联科技有限公司 Conveying system with wear detection device
JP2020148549A (en) * 2019-03-12 2020-09-17 東日本旅客鉄道株式会社 Method for extracting deteriorated area on tunnel ancillary structure
JP2021070587A (en) * 2019-10-29 2021-05-06 ファスン エクスウィル カンパニー リミテッドHwaseung Exwill Co., Ltd. Conveyor belt abrasion check device, conveyor belt fire prediction system, and conveyor belt safety control system using the same
CN113588659A (en) * 2021-07-23 2021-11-02 西安华光信息技术有限责任公司 Belt conveyor longitudinal tearing detection method, device and system based on video image
CN114199128A (en) * 2021-12-07 2022-03-18 合肥欣畅源光电科技有限公司 Real-time estimation method for material flow volume of conveying belt
WO2022062521A1 (en) * 2020-09-28 2022-03-31 北京天玛智控科技股份有限公司 Positioning method and system for fully mechanized mining face
US20230092684A1 (en) * 2021-09-17 2023-03-23 Martin Engineering Company Conveyor belt thickness measurement systems and methods for detecting changes in conveyor belt thicknesses
CN116147504A (en) * 2023-04-18 2023-05-23 领视科技成都有限公司 Vehicle-mounted non-contact line abrasion measurement method and system
CN116188459A (en) * 2023-04-23 2023-05-30 合肥金星智控科技股份有限公司 Line laser rapid identification method and system for belt tearing detection
WO2023238425A1 (en) * 2022-06-07 2023-12-14 横浜ゴム株式会社 Conveyor belt operation management system and method
KR20240008932A (en) 2021-07-13 2024-01-19 제이에프이 스틸 가부시키가이샤 Surface shape measuring device, surface shape measuring method, and conveyor belt management method
JP7452752B2 (en) 2021-12-02 2024-03-19 Jfeスチール株式会社 Surface profile measurement method, surface profile measurement device, and belt management method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2749576C1 (en) * 2020-03-11 2021-06-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Оренбургский государственный аграрный университет" Imitation stand for configuration of non-contact sensors
WO2023199679A1 (en) * 2022-04-11 2023-10-19 Jfeスチール株式会社 Surface shape measurement device, surface shape measurement method, and belt management method
WO2023199681A1 (en) * 2022-04-11 2023-10-19 Jfeスチール株式会社 Surface shape measuring device, surface shape measuring method, and belt management method
JP7327720B1 (en) * 2022-04-11 2023-08-16 Jfeスチール株式会社 SURFACE PROFILE MEASURING DEVICE, SURFACE PROFILE MEASURING METHOD, AND BELT MANAGEMENT METHOD
WO2023199680A1 (en) * 2022-04-11 2023-10-19 Jfeスチール株式会社 Surface shape measurement apparatus, surface shape measurement method, and belt management method
CN115760685B (en) * 2022-09-23 2023-07-28 北京珞安科技有限责任公司 Hidden threat perception system and method for industrial production
WO2024111352A1 (en) * 2022-11-22 2024-05-30 Jfeスチール株式会社 Surface shape measurement device and surface shape measurement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350713A (en) * 1986-08-20 1988-03-03 Nippon Kokan Kk <Nkk> Method for detecting abrasion quantity of belt
JP2003057004A (en) * 2001-08-09 2003-02-26 Central Japan Railway Co Method for detecting utility pole and apparatus for recording abnormal place of route as image using the same
JP2005083820A (en) * 2003-09-05 2005-03-31 Toshiba Corp Plate thickness measuring device and chatter mark detection system
JP2014109452A (en) * 2012-11-30 2014-06-12 Keyence Corp Optical microscope
JP2014222156A (en) * 2013-05-13 2014-11-27 パナソニック株式会社 Thickness inspection method and thickness inspection device
JP2014240800A (en) * 2013-06-12 2014-12-25 株式会社ブリヂストン Inspection auxiliary device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6480860B2 (en) 2013-03-29 2019-03-13 富士電機株式会社 Semiconductor device and method of manufacturing semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350713A (en) * 1986-08-20 1988-03-03 Nippon Kokan Kk <Nkk> Method for detecting abrasion quantity of belt
JP2003057004A (en) * 2001-08-09 2003-02-26 Central Japan Railway Co Method for detecting utility pole and apparatus for recording abnormal place of route as image using the same
JP2005083820A (en) * 2003-09-05 2005-03-31 Toshiba Corp Plate thickness measuring device and chatter mark detection system
JP2014109452A (en) * 2012-11-30 2014-06-12 Keyence Corp Optical microscope
JP2014222156A (en) * 2013-05-13 2014-11-27 パナソニック株式会社 Thickness inspection method and thickness inspection device
JP2014240800A (en) * 2013-06-12 2014-12-25 株式会社ブリヂストン Inspection auxiliary device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020148549A (en) * 2019-03-12 2020-09-17 東日本旅客鉄道株式会社 Method for extracting deteriorated area on tunnel ancillary structure
JP2021070587A (en) * 2019-10-29 2021-05-06 ファスン エクスウィル カンパニー リミテッドHwaseung Exwill Co., Ltd. Conveyor belt abrasion check device, conveyor belt fire prediction system, and conveyor belt safety control system using the same
CN111532711A (en) * 2020-05-22 2020-08-14 无锡宝通智能物联科技有限公司 Conveying system with wear detection device
CN111532711B (en) * 2020-05-22 2021-10-08 无锡宝通智能物联科技有限公司 Conveying system with wear detection device
WO2022062521A1 (en) * 2020-09-28 2022-03-31 北京天玛智控科技股份有限公司 Positioning method and system for fully mechanized mining face
KR20240008932A (en) 2021-07-13 2024-01-19 제이에프이 스틸 가부시키가이샤 Surface shape measuring device, surface shape measuring method, and conveyor belt management method
CN113588659A (en) * 2021-07-23 2021-11-02 西安华光信息技术有限责任公司 Belt conveyor longitudinal tearing detection method, device and system based on video image
WO2023043592A3 (en) * 2021-09-17 2023-04-27 Martin Engineering Company Conveyor belt thickness measurement systems and methods for detecting changes in conveyor belt thicknesses
US20230092684A1 (en) * 2021-09-17 2023-03-23 Martin Engineering Company Conveyor belt thickness measurement systems and methods for detecting changes in conveyor belt thicknesses
JP7452752B2 (en) 2021-12-02 2024-03-19 Jfeスチール株式会社 Surface profile measurement method, surface profile measurement device, and belt management method
CN114199128A (en) * 2021-12-07 2022-03-18 合肥欣畅源光电科技有限公司 Real-time estimation method for material flow volume of conveying belt
CN114199128B (en) * 2021-12-07 2024-03-19 合肥欣畅源光电科技有限公司 Real-time estimating method for material flow volume of conveyer belt
WO2023238425A1 (en) * 2022-06-07 2023-12-14 横浜ゴム株式会社 Conveyor belt operation management system and method
CN116147504A (en) * 2023-04-18 2023-05-23 领视科技成都有限公司 Vehicle-mounted non-contact line abrasion measurement method and system
CN116188459A (en) * 2023-04-23 2023-05-30 合肥金星智控科技股份有限公司 Line laser rapid identification method and system for belt tearing detection
CN116188459B (en) * 2023-04-23 2023-09-15 合肥金星智控科技股份有限公司 Line laser rapid identification method and system for belt tearing detection

Also Published As

Publication number Publication date
JPWO2019188718A1 (en) 2020-04-30
JP7165114B2 (en) 2022-11-02
JP2020076767A (en) 2020-05-21

Similar Documents

Publication Publication Date Title
WO2019188718A1 (en) Surface shape monitoring device, abrasion loss measuring system, and surface shape monitoring system
CN110596131B (en) Sheet glass edge flaw detection method based on image acquisition
CA2615117C (en) Apparatus and methods for inspecting a composite structure for inconsistencies
JP5659540B2 (en) Steel plate surface defect inspection method and apparatus
JP6554355B2 (en) Belt conveyor monitoring system
CN114348581B (en) Belt tearing detection method and system
AU2017351752B2 (en) Continuous belt conveyor monitoring systems and methods
JP2007291535A (en) Apparatus and method for inspecting carbon fiber fabric
US20130058539A1 (en) Method and a system to detect and to determine geometrical, dimensional and positional features of products transported by a continuous conveyor, particularly of raw, roughly shaped, roughed or half-finished steel products
JP2006349432A (en) Slider inspection device of pantograph
CN110402386B (en) Cylindrical body surface inspection device and cylindrical body surface inspection method
JP4901578B2 (en) Surface inspection system and diagnostic method for inspection performance of surface inspection system
WO2018168700A1 (en) Method and device for measuring meandering amount of belt-like body, and method and device for detecting meandering abnormality of belt-like body
JP7317286B2 (en) Defect detection device with rubber on topping rubber sheet
JPH09305737A (en) Laser number counter
JP2012173194A (en) Surface inspection device, surface inspection method, and film manufacturing devise
JP4756299B2 (en) Surface defect inspection equipment
WO2023047866A1 (en) Sheet-like material unevenness measuring device, and sheet-like material unevenness measuring method
JP4216784B2 (en) Pantograph sliding plate inspection device
JP7483267B2 (en) Rolling monitoring system for pipe conveyors
KR20100077582A (en) Apparatus and methof of detecting for strip position
KR101243126B1 (en) Apparatus for detecting defects of strip edge by using visible ray and thereof detecting method
JP2022107202A (en) Rolling monitoring system for pipe conveyor
JPH11304435A (en) Length measuring method of overlapped sheet joint part
JP2022108461A (en) Device for detecting rubber adhesion failure on topping rubber sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019536611

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775980

Country of ref document: EP

Kind code of ref document: A1