WO2019188622A1 - Steel plate for hot stamping - Google Patents

Steel plate for hot stamping Download PDF

Info

Publication number
WO2019188622A1
WO2019188622A1 PCT/JP2019/011606 JP2019011606W WO2019188622A1 WO 2019188622 A1 WO2019188622 A1 WO 2019188622A1 JP 2019011606 W JP2019011606 W JP 2019011606W WO 2019188622 A1 WO2019188622 A1 WO 2019188622A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
mass
steel sheet
hot stamping
content
Prior art date
Application number
PCT/JP2019/011606
Other languages
French (fr)
Japanese (ja)
Inventor
晴香 荒木
紗江 濱本
浅井 達也
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019029207A external-priority patent/JP7353768B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020207030386A priority Critical patent/KR102409015B1/en
Priority to CN201980021455.2A priority patent/CN111902558A/en
Priority to CN202211151222.4A priority patent/CN115404409A/en
Priority to BR112020019522-7A priority patent/BR112020019522A2/en
Priority to MX2020009944A priority patent/MX2020009944A/en
Priority to US17/041,223 priority patent/US20210054488A1/en
Priority to EP19775683.6A priority patent/EP3760755A4/en
Priority to CA3094926A priority patent/CA3094926C/en
Priority to RU2020134949A priority patent/RU2766947C1/en
Publication of WO2019188622A1 publication Critical patent/WO2019188622A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to a steel sheet for hot stamping.
  • Non-Patent Document 1 proposes improving the balance between strength and toughness of a steel sheet by refining old austenite grains after hot stamping.
  • the cooling rate inside the steel sheet may decrease due to an increase in the mold temperature and the clearance between the mold and the steel sheet.
  • the cooling rate of the steel sheet is equal to or lower than the critical cooling rate, a soft phase such as ferrite and bainite precipitates, and the hardness of the steel sheet is reduced.
  • the autotemper is promoted by a decrease in the cooling rate below the Ms point, which causes a decrease in the hardness of the steel sheet.
  • Non-Patent Document 2 discusses the change in cooling rate when the clearance between the mold and the steel plate is changed. When this clearance is 0.4 mm, the cooling rate is up to about 15 ° C./s. It has been shown to decline.
  • Non-Patent Document 1 there is a method of refining the crystal grains of steel as a general structure design technique for hot stamping steel plates, thereby obtaining a steel plate with an excellent balance between strength and toughness. it can.
  • a method of refining crystal grains there is a method of adding an element such as Nb, Ni, Ti, etc. In this case, the economic efficiency of the steel sheet is deteriorated. Moreover, since the hardenability deteriorates, the steel plate which refined the crystal grain lacks hardness stability.
  • the conventional hot stamping steel plate has a problem that it is difficult to obtain a member (molded product) having an excellent balance between strength and toughness and excellent hardness stability without increasing labor and cost.
  • An object of the present invention is to provide a steel sheet for hot stamping capable of obtaining a molded product excellent in hardness stability in addition to a balance between strength and toughness while suppressing an increase in labor and cost in the hot stamping process. It is.
  • the steel sheet for hot stamping is % By mass C: 0.25% or more, 0.4% or less, Si: 1.05% or more, 1.4% or less, Mn: 0% or more, 1.4% or less, Cr: 0.6% or more, 3.0% or less, P: 0% or more, 0.03% or less, S: 0% or more, 0.02% or less, Al: 0.01% or more, 1% or less, N: 0% or more, 0.01% or less, B: 0.0005% or more and 0.005% or less, and Ti: 0.005% or more and 0.1% or less, with the balance being iron and inevitable impurities.
  • This hot stamping steel sheet has the following relational expression (1) when the C content is [C], the Si content is [Si], the Mn content is [Mn], and the Cr content is [Cr].
  • a hot stamping steel plate capable of obtaining a molded product having excellent hardness stability in addition to a balance between strength and toughness while suppressing an increase in labor and cost in the hot stamping process. Can do.
  • the steel sheet for hot stamping is % By mass C: 0.25% or more, 0.4% or less, Si: 1.05% or more, 1.4% or less, Mn: 0% or more, 1.4% or less, Cr: 0.6% or more, 3.0% or less, P: 0% or more, 0.03% or less, S: 0% or more, 0.02% or less, Al: 0.01% or more, 1% or less, N: 0% or more, 0.01% or less, B: 0.0005% or more and 0.005% or less, and Ti: 0.005% or more and 0.1% or less, with the balance being iron and inevitable impurities.
  • This hot stamping steel sheet has the following relational expression (1) when the C content is [C], the Si content is [Si], the Mn content is [Mn], and the Cr content is [Cr].
  • Non-Patent Document 2 in the hot stamping process, the normal member is cooled in the range of 30 ° C./s to 10 ° C./s due to the clearance between the die and the steel plate and the rise of the die temperature. Speed fluctuations were expected to occur. For this reason, in addition to the balance between strength and toughness, the present inventors have focused on suppressing variation in hardness even if fluctuations in the cooling rate occur, and details on the component system of the steel sheet to achieve this The examination was done.
  • the present inventors adjust the balance of the contents of C, Si, Mn and Cr so that each component composition in the steel sheet satisfies the above range and the relational expression (1) is satisfied.
  • the inventors have newly found that it is possible to achieve both a balance between strength and toughness and hardness stability, and have arrived at the present invention.
  • C content determines the intensity
  • the C content is 0.25% by mass or more, preferably 0.255% by mass or more, and more preferably 0.260% by mass or more.
  • C content is 0.4 mass% or less, it is preferable that it is 0.38 mass% or less, and it is more preferable that it is 0.36 mass% or less.
  • Si silicon: 1.05 mass% or more, 1.4 mass% or less
  • Si contributes to the hardness stability of the steel sheet by increasing the temper softening resistance.
  • Si also has an effect of preventing scale peeling after cooling the mold when the surface of the steel sheet is not plated. In order to exert these effects, the Si content is 1.05% by mass or more.
  • Si facilitates the formation of retained austenite ( ⁇ ) and promotes a decrease in yield strength (YS) and segregation of Mn.
  • Si content is 1.4 mass% or less, and it is preferable that it is 1.35 mass% or less.
  • Mn manganese: 0% by mass or more and 1.4% by mass or less
  • Mn is one of the important elements contained in the steel sheet for hot stamping according to the present embodiment, and contributes to increasing the strength of the steel sheet after cooling the mold by enhancing the hardenability of the steel sheet.
  • the Mn content is preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and further preferably 0.8% by mass or more. .
  • Mn content is 1.4 mass% or less, it is preferable that it is 1.35 mass% or less, and it is more preferable that it is 1.30 mass% or less.
  • Cr Cr (chromium): 0.6 mass% or more, 3.0 mass% or less
  • Cr is one of important elements in the hot stamping steel plate according to the present embodiment.
  • Cr contributes to securing hardness at a low cooling rate (for example, 10 ° C./s) and precipitates coarse carbides during mold cooling. It was confirmed that brittle fracture was suppressed when impact stress was applied in a low-temperature environment.
  • the Cr content is 0.6% by mass or more, preferably 0.8% by mass or more, and more preferably 1.05% by mass or more.
  • Cr content is 3.0 mass% or less, and it is preferable that it is 2.5 mass% or less.
  • P phosphorus: 0 mass% or more, 0.03 mass% or less
  • P needs to prescribe
  • S sulfur: 0 mass% or more, 0.02 mass% or less
  • S produces MnS, thereby lowering the uniformity of the Mn concentration distribution and degrading the weldability of the steel sheet. For this reason, S content is 0.02 mass% or less, it is preferable that it is 0.018 mass% or less, and it is more preferable that it is 0.015 mass% or less.
  • Al is an element that acts as a deoxidizer. In order to exhibit this effect, the Al content is 0.01% by mass or more, and preferably 0.015% by mass or more.
  • Al content is 1 mass% or less, it is preferable that it is 0.8 mass% or less, and it is more preferable that it is 0.1 mass% or less.
  • Al content here means content of Al (sol.Al) of a solid solution state.
  • N nitrogen: 0% by mass or more and 0.01% by mass or less
  • N is an element inevitably mixed in the steel sheet. If N is excessively contained in the steel sheet, N forms boride, thereby reducing the amount of solute B in the steel sheet, resulting in deterioration of hardenability. For this reason, N content is 0.01 mass% or less, it is preferable that it is 0.008 mass% or less, and it is more preferable that it is 0.005 mass% or less.
  • B (boron): 0.0005 mass% or more, 0.005 mass% or less]
  • B is an important element for improving the hardenability of the steel sheet.
  • the B content is 0.0005% by mass or more, preferably 0.0010% by mass or more, and more preferably 0.0015% by mass or more.
  • B content is 0.0050 mass% or less, it is preferable that it is 0.0045 mass% or less, and it is more preferable that it is 0.0030 mass% or less.
  • Ti titanium (titanium): 0.005 mass% or more, 0.1 mass% or less] Ti reduces the amount of BN produced in the steel sheet by producing TiN. Thereby, the quantity of the solid solution B in a steel plate increases, and the effect of the hardenability improvement by B can be heightened. In order to exert this effect, the Ti content is 0.0050% by mass or more, preferably 0.010% by mass or more, and more preferably 0.015% by mass or more.
  • Ti content is 0.1 mass% or less, it is preferable that it is 0.08 mass% or less, and it is more preferable that it is 0.06 mass% or less.
  • the steel sheet for hot stamping according to this embodiment may further contain one or more selected from the group consisting of Mo, Nb and V in addition to the above component composition, or from the group consisting of Cu and Ni. One or more selected may further be contained. The range of these component compositions will be described below. These elements are not essential elements in the hot stamping steel sheet of the present invention, and may not be added.
  • Mo molybdenum: 0% by mass or more and 1.0% by mass or less
  • Mo is an element that contributes to improving the hardenability of the steel sheet.
  • the Mo content is preferably 0.01% by mass or more.
  • the Mo content is preferably 1.0% by mass or less.
  • Nb and V have the effect of forming fine carbides and refining the steel structure by the pinning effect. V also has the effect of secondary curing by precipitating during tempering. In order to exert these effects, the Nb and V contents are each preferably 0.0008% by mass or more.
  • the Nb and V contents are each preferably 0.1% by mass or less, more preferably 0.08% by mass or less, and further preferably 0.07% by mass or less.
  • Cu and Ni are preferably added when it is necessary to improve the delayed fracture characteristics of the member.
  • Cu and Ni are excessively contained in the steel plate, it may cause wrinkles on the surface of the steel plate, and finally on the surface of the member.
  • each content of Cu and Ni is 0.5 mass% or less, and it is more preferable that the total content is 0.5 mass% or less.
  • the steel sheet for hot stamping according to this embodiment is excellent in hardness stability in addition to the balance of strength and toughness by satisfying the relational expression (1) below by adjusting the balance of the contents of C, Si, Mn and Cr. It has become.
  • [C] represents the C content (mass%) of the hot stamping steel plate.
  • [Si] indicates the Si content (mass%) of the steel sheet for hot stamping.
  • [Mn] indicates the Mn content (% by mass) of the steel sheet for hot stamping.
  • Cr] indicates the Cr content (mass%) of the steel sheet for hot stamping.
  • the steel sheet for hot stamping according to the present embodiment has an excellent balance between strength after quenching by mold cooling and low temperature toughness. In addition to being a steel plate, it has excellent hardness stability. Specifically, the absorbed energy in a Charpy impact test at ⁇ 40 ° C. when quenching a flat plate using a mold is A (J / cm 2 ), and the steel sheet for hot stamping is heated to the austenite region and then 10 ° C./s.
  • the above relational expression (2) is an index of the balance between strength and toughness of the steel plate newly devised by the present inventors, and is an important concept in considering the balance between strength and toughness of the steel plate for hot stamping. is there.
  • the present inventors paid attention to the hardness when the cooling rate was 10 ° C./s and the toughness after cooling the flat plate.
  • Flat plate mold cooling takes into account ideal cooling conditions in which no clearance is generated between the mold and the steel plate in the hot stamping process.
  • the graph of FIG. 1 shows the absorbed energy A in a Charpy impact test at ⁇ 40 ° C. when a flat plate is quenched using a mold (horizontal axis) and the hardness B of the steel plate when quenched at a cooling rate of 10 ° C./s. (Vertical axis), and the straight line (1) in the graph corresponds to the relational expression (2).
  • the horizontal axis (A) in the graph of FIG. 1 assumes the toughness of the most brittle part in the member after mold cooling. That is, when the flat plate is die-cooled, the die and the steel plate come into contact with each other in an ideal state, so that the cooling rate is increased. For this reason, the strength after cooling increases, but on the other hand it becomes very brittle. That is, this horizontal axis has a meaning as toughness in the most brittle part when the hot stamping steel plate is formed into a member (molded product).
  • the vertical axis (B) of the graph of FIG. 1 assumes the hardness of the most softened portion of the member after cooling the mold.
  • the member after mold cooling has a portion with low hardness (strength) cooled at a low cooling rate.
  • the minimum cooling rate during mold cooling is assumed to be about 10 ° C./s. Therefore, this vertical axis has the meaning as the hardness (strength) at the most softened portion of the member (molded product) after cooling the mold. Therefore, by using these two axes, the toughness of the weakest part when impact stress is applied to the molded member and the strength of the weakest part when static stress is applied to the member Can be evaluated.
  • the strength and toughness of the steel sheet are in a trade-off relationship, and therefore the toughness tends to deteriorate when the strength of the steel sheet is improved. That is, it is difficult to improve both the strength and toughness of the steel sheet, and it is normal that the A / B distribution exists in the region below the straight line (1) in the graph of FIG.
  • the straight line (2) is one index indicating hardness stability.
  • the temperature of the mold rises and there may be a clearance between the mold and the steel plate. Due to these factors, the cooling rate of the steel plate during quenching decreases, and the hardness of the steel plate after quenching decreases as the cooling rate decreases.
  • the hardness range of 516 Hv or higher when quenched in a low cooling rate region (10 ° C./s). . Therefore, even in a steel sheet in which the balance between strength and toughness is improved by refining crystal grains, it is normal that the distribution of A and B exists in the region below the straight line (2) in FIG. .
  • the hot stamping steel plate according to this embodiment has excellent hardness stability in addition to the balance between strength and toughness. That is, this hot stamping steel sheet has an excellent balance between strength and toughness satisfying the above relational expression (2), and has a certain hardness or more even when cooled at a cooling rate of 10 ° C./s. It is feasible.
  • the above relational expression (4) is an index of hardness stability of another steel plate.
  • the cooling rate of the steel sheet may decrease, and the hardness of the steel sheet after quenching may become unstable. Further, as described above, since the hardness stability decreases when the crystal grains are refined, it is usually difficult to satisfy the relational expression (4).
  • the steel sheet for hot stamping satisfying the relational expression (1) and satisfying the component ranges of the claims has a cooling rate of 10 ° C./s. It was clarified that hardness after quenching exceeding 516 Hv can be obtained even in the low cooling rate region, and the hardness difference between the cooling rate of 30 ° C./s and 10 ° C./s can be suppressed to 35 Hv or less. . 30 ° C./s is an ideal cooling rate at the time of mold cooling confirmed by experiments and the like, while 10 ° C./s is the minimum cooling rate expected as described above.
  • the relational expression (4) is an index indicating that the hardness difference (variation) after quenching is small between the upper and lower limits of the cooling rate assumed in the hot stamp.
  • the hardness of the steel sheet after quenching to the extent that the above relational expression (4) is satisfied regardless of the temperature rise of the mold and the occurrence of clearance between the mold and the steel sheet. Can be stabilized.
  • the steel sheet for hot stamping of the present invention may be a base steel sheet that has not been subjected to plating treatment, or a plated steel sheet that has been subjected to plating treatment.
  • the slab manufacturing process is performed.
  • a slab is obtained by melting steel according to a conventional method, pouring molten steel into a mold and continuously casting the steel.
  • the component composition of the steel is adjusted during melting so that each component composition contained in the slab satisfies the above range and the contents of C, Si, Mn, and Cr satisfy the relational expression (1).
  • a hot rolling process is performed.
  • the slab obtained in the above step is placed in a heating furnace, heated to a predetermined temperature (eg, 1200 ° C.), and held at the heating temperature for a predetermined time (eg, 30 minutes).
  • a predetermined temperature eg, 1200 ° C.
  • the heated slab is placed upstream of the hot rolling line. And the said slab is rolled into the steel plate which has predetermined
  • a cold rolling process is performed.
  • the scale (iron oxide) generated on the surface of the steel plate in the hot rolling step is washed off with acid (pickling), and then the hot-rolled steel plate is further rolled so that the plate thickness is further reduced.
  • the hot-rolled steel sheet after pickling is passed between rolls of a rolling stand so that the hot-rolled steel sheet is further thinned.
  • the cold-rolled steel sheet obtained by the above process is the hot stamping steel sheet according to the present embodiment.
  • the hot stamp using the steel plate manufactured by the said process is demonstrated with reference to FIG.
  • the hot stamping steel plate 1 manufactured by the above process is heated in the predetermined heating furnace 2 to the austenite transformation temperature or higher.
  • the heated hot stamping steel plate 1 is placed between the dies 3 and 4, and the hot stamping steel plate 1 is press-formed into a desired shape by the dies 3 and 4.
  • the hot stamping steel plate 1 is cooled by coming into contact with the molds 3 and 4, and quenching is performed simultaneously with the forming.
  • the steel plate after hardening is taken out from the metal mold
  • the molded product 5 has the same component composition as the hot stamping steel plate 1 according to this embodiment described above, and the balance of the contents of C, Si, Mn and Cr is adjusted so as to satisfy the relational expression (1). It has been done. Therefore, the molded product 5 is excellent in hardness stability in addition to the balance between strength and toughness, and can be used for various applications including automobile members.
  • the steel sheet for hot stamping according to the above embodiment is % By mass C: 0.25% or more, 0.4% or less, Si: 1.05% or more, 1.4% or less, Mn: 0% or more, 1.4% or less, Cr: 0.6% or more, 3.0% or less, P: 0% or more, 0.03% or less, S: 0% or more, 0.02% or less, Al: 0.01% or more, 1% or less, N: 0% or more, 0.01% or less, B: 0.0005% or more and 0.005% or less, and Ti: 0.005% or more and 0.1% or less, with the balance being iron and inevitable impurities.
  • This hot stamping steel sheet has the following relational expression (1) when the C content is [C], the Si content is [Si], the Mn content is [Mn], and the Cr content is [Cr].
  • Test piece height h1 10 mm ⁇ 0.05 mm
  • Test piece length L 55 mm ⁇ 0.6 mm
  • Test piece width b 1.4 mm ⁇ 0.05 mm
  • Notch shape V notch Notch angle: 45 ° ⁇ 2 °
  • Notch bottom radius 0.25 mm ⁇ 0.025 mm
  • Notch height h2 8mm ⁇ 0.05mm
  • Angle between adjacent surfaces to remove fracture surface 90 ° ⁇ 2 °
  • test piece having the above dimensions was placed in liquid nitrogen adjusted to a temperature of ⁇ 40 ° C. ⁇ 1 ° C. and held for at least 10 minutes. Thereafter, the test piece was taken out of the liquid nitrogen and placed on a support table, and an impact was applied to the test piece. At this time, after putting a test piece on a support stand, time until giving an impact was made into 5 seconds or less.
  • JIS Charpy impact tester 300J was used as a tester, and an impact blade having a radius of 2 mm was used. The number of test pieces was two, and evaluation was performed using the average value of the two measured values.
  • Rate of temperature rise when austenitizing 10 ° C / s
  • High temperature hold hold at 900 ° C. for 100 seconds
  • Cooling rate constant cooling from 900 ° C. to room temperature at 10 ° C./s or 30 ° C./s
  • the hardness test based on the “Vickers hardness test method” defined in JIS Z 2244 was performed using the specimen after quenching. In this test, five-point measurement was performed at a test load of 9.8 N at a position 1/4 of the plate thickness from the surface of the test piece, and the average value thereof was used for evaluation.
  • Tables 1 and 2 below show No. For each of the steel plates 1 to 17, the composition (mass%), the absorbed energy A (J / cm 2 ) in the Charpy impact test at ⁇ 40 ° C., and the Vickers hardness B (Hv when the cooling rate is 10 ° C./s) ), Vickers hardness C (Hv) when the cooling rate is 30 ° C./s, hardness difference (Hv) when the cooling rate is 10 ° C./s and 30 ° C./s, and the above relational expression ( The value of the left side of 1), the value when the right side is subtracted from the left side of the relational expression (2), and the evaluation of scale adhesion are shown.
  • No. 1 to 9 and 14 to 17 are the contents of C, Si, Mn, Cr, P, S, Al, N, B and Ti in the steel sheet satisfy the scope of the present invention, respectively, and C, Si, Mn and The Cr content satisfied the relational expression (1).
  • the value of “B + 4A ⁇ 627” was a positive value and satisfied the relational expression (2), so that the steel sheet had an excellent balance between strength and toughness.
  • no. In 1 to 9 and 14 to 17, “B ⁇ 516” and “CB ⁇ 35” were satisfied, and the above relational expressions (3) and (4) were satisfied, so that the steel sheet was excellent in hardness stability. This is because in the graph of FIG. It is clear from the fact that the data (black circles) 1 to 9 and 14 to 17 are present in the region above the straight lines (1) and (2). In addition, all the evaluations of scale adhesion were “ ⁇ ”.
  • the Si content is less than 1.05% by mass, and the value of [[C] +2/9 [Si] +7/9 [Mn] +8/9 [Cr] ⁇ 7/4] is a negative value. Therefore, the value of “B + 4A ⁇ 627” became a negative value, and the balance between strength and toughness was inferior.
  • the hardness B when the cooling rate is 10 ° C./s is less than 516 Hv, and the difference in hardness between the cooling rate of 10 ° C./s and 30 ° C./s exceeds 35 Hv, which also improves the hardness stability. inferior.
  • the evaluation of scale adhesion was also “x”.
  • the Cr content is less than 0.6% by mass, and the value of “[C] +2/9 [Si] +7/9 [Mn] +8/9 [Cr] ⁇ 7/4” is negative. Therefore, the value of “B + 4A ⁇ 627” was a negative value, and the balance between strength and toughness was inferior.
  • the hardness B when the cooling rate is 10 ° C./s is less than 516 Hv, and the difference in hardness between the cooling rate of 10 ° C./s and 30 ° C./s exceeds 35 Hv, which also improves the hardness stability. inferior.

Abstract

A steel plate for hot stamping according to the present invention contains, in terms of % by mass, 0.25% to 0.4% C, 1.05% to 1.4% Si, 0% to 1.4% Mn, 0.6% to 3.0% Cr, 0% to 0.03% P, 0% to 0.02% S, 0.01% to 1% Al, 0% to 0.01% N, 0.0005% to 0.005% B, and 0.005% to 0.1% Ti, the remainder being iron and unavoidable impurities. By satisfying the relational expression [C] + 2/9[Si] + 7/9[Mn] + 8/9[Cr] – 7/4 > 0, this steel plate for hot stamping has excellent hardness stability in addition to a balance between strength and toughness.

Description

ホットスタンプ用鋼板Steel sheet for hot stamping
 本発明は、ホットスタンプ用鋼板に関する。 The present invention relates to a steel sheet for hot stamping.
 近年、自動車の衝突安全性の向上が求められており、それに伴って、自動車において剛性が必要となる部位に用いられるホットスタンプ用鋼板にもさらなる高強度化が求められている。しかし、鋼板の強度を向上させると低温靱性が劣化してしまうため、強度と靱性のバランスに欠けることになる。これに対し、非特許文献1には、ホットスタンプ後の旧オーステナイト粒を微細化することにより、鋼板の強度と靱性のバランスを改善することについて提案されている。 In recent years, there has been a demand for improved collision safety of automobiles, and accordingly, even higher strength is required for hot stamping steel sheets used in parts that require rigidity in automobiles. However, when the strength of the steel sheet is improved, the low-temperature toughness deteriorates, so that the balance between strength and toughness is lacking. In contrast, Non-Patent Document 1 proposes improving the balance between strength and toughness of a steel sheet by refining old austenite grains after hot stamping.
 またホットスタンプでは、金型温度の上昇や金型と鋼板との間のクリアランスに起因して、鋼板の内部での冷却速度が低下することがある。鋼板の冷却速度が臨界冷却速度以下になると、フェライトやベイナイトなどの軟質相が析出するため、鋼板の硬度が低下する。また特に、Ms点以下での冷却速度が低下することによりオートテンパーが促進され、これが鋼板の硬度低下の要因となる。 In the case of hot stamping, the cooling rate inside the steel sheet may decrease due to an increase in the mold temperature and the clearance between the mold and the steel sheet. When the cooling rate of the steel sheet is equal to or lower than the critical cooling rate, a soft phase such as ferrite and bainite precipitates, and the hardness of the steel sheet is reduced. In particular, the autotemper is promoted by a decrease in the cooling rate below the Ms point, which causes a decrease in the hardness of the steel sheet.
 非特許文献2では、金型と鋼板との間のクリアランスを変化させたときの冷却速度の変化について検討されており、このクリアランスが0.4mmである場合に冷却速度が約15℃/sまで低下することが示されている。 Non-Patent Document 2 discusses the change in cooling rate when the clearance between the mold and the steel plate is changed. When this clearance is 0.4 mm, the cooling rate is up to about 15 ° C./s. It has been shown to decline.
 非特許文献1に記載されるように、ホットスタンプ用鋼板の一般的な組織設計技術として鋼の結晶粒を微細化する方法があり、これにより強度と靱性のバランスに優れた鋼板を得ることはできる。結晶粒を微細化する方法としては、Nb、Ni、Ti等の元素を添加する方法があるが、この場合には鋼板の経済性が悪化する。また結晶粒を微細化した鋼板は、焼入れ性が劣化するため、硬度安定性に欠けることになる。 As described in Non-Patent Document 1, there is a method of refining the crystal grains of steel as a general structure design technique for hot stamping steel plates, thereby obtaining a steel plate with an excellent balance between strength and toughness. it can. As a method of refining crystal grains, there is a method of adding an element such as Nb, Ni, Ti, etc. In this case, the economic efficiency of the steel sheet is deteriorated. Moreover, since the hardenability deteriorates, the steel plate which refined the crystal grain lacks hardness stability.
 この課題に対して、金型温度の上昇や金型と鋼板との間のクリアランスといった硬度低下の要因となるプロセス上の課題を改善することも考えられる。しかし、その場合には、金型を繰り返し修正することや特別な金型を用意することが必要となり、多大な労力、費用を要する。したがって、従来のホットスタンプ用鋼板では、強度と靱性のバランスに優れ且つ硬度安定性にも優れた部材(成形品)を、労力や費用を増加させずに得るのが難しいという課題がある。 In response to this problem, it is also conceivable to improve process problems that cause a decrease in hardness, such as an increase in mold temperature and a clearance between the mold and the steel sheet. However, in that case, it is necessary to modify the mold repeatedly or to prepare a special mold, which requires a great deal of labor and cost. Therefore, the conventional hot stamping steel plate has a problem that it is difficult to obtain a member (molded product) having an excellent balance between strength and toughness and excellent hardness stability without increasing labor and cost.
 本発明の目的は、ホットスタンプ工程における労力や費用の増大を抑制しつつ、強度と靱性のバランスに加えて硬度安定性にも優れた成形品を得ることができるホットスタンプ用鋼板を提供することである。 An object of the present invention is to provide a steel sheet for hot stamping capable of obtaining a molded product excellent in hardness stability in addition to a balance between strength and toughness while suppressing an increase in labor and cost in the hot stamping process. It is.
 本発明の一局面に係るホットスタンプ用鋼板は、
 質量%で、
 C:0.25%以上、0.4%以下、
 Si:1.05%以上、1.4%以下、
 Mn:0%以上、1.4%以下、
 Cr:0.6%以上、3.0%以下、
 P:0%以上、0.03%以下、
 S:0%以上、0.02%以下、
 Al:0.01%以上、1%以下、
 N:0%以上、0.01%以下、
 B:0.0005%以上、0.005%以下、および
 Ti:0.005%以上、0.1%以下
を含有し、残部が鉄および不可避不純物である。このホットスタンプ用鋼板は、C含有量を[C]、Si含有量を[Si]、Mn含有量を[Mn]、Cr含有量を[Cr]としたときに、下記(1)の関係式を満たすことにより、強度と靱性のバランスに加えて硬度安定性に優れるものである。
The steel sheet for hot stamping according to one aspect of the present invention is
% By mass
C: 0.25% or more, 0.4% or less,
Si: 1.05% or more, 1.4% or less,
Mn: 0% or more, 1.4% or less,
Cr: 0.6% or more, 3.0% or less,
P: 0% or more, 0.03% or less,
S: 0% or more, 0.02% or less,
Al: 0.01% or more, 1% or less,
N: 0% or more, 0.01% or less,
B: 0.0005% or more and 0.005% or less, and Ti: 0.005% or more and 0.1% or less, with the balance being iron and inevitable impurities. This hot stamping steel sheet has the following relational expression (1) when the C content is [C], the Si content is [Si], the Mn content is [Mn], and the Cr content is [Cr]. By satisfying the above, in addition to the balance between strength and toughness, hardness stability is excellent.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 本発明によれば、ホットスタンプ工程における労力や費用の増大を抑制しつつ、強度と靱性のバランスに加えて硬度安定性にも優れた成形品を得ることができるホットスタンプ用鋼板を提供することができる。 According to the present invention, there is provided a hot stamping steel plate capable of obtaining a molded product having excellent hardness stability in addition to a balance between strength and toughness while suppressing an increase in labor and cost in the hot stamping process. Can do.
金型を用いて平板を焼入れしたときのシャルピー衝撃試験における吸収エネルギーと10℃/sの冷却速度で焼入れしたときの硬度との関係を示すグラフである。It is a graph which shows the relationship between the absorption energy in the Charpy impact test when quenching a flat plate using a metal mold, and the hardness when quenched at a cooling rate of 10 ° C./s. ホットスタンプのプロセスを模式的に示す図である。It is a figure which shows the process of a hot stamp typically. シャルピー振り子式衝撃試験に用いた試験片の各寸法を示す模式図である。It is a schematic diagram which shows each dimension of the test piece used for the Charpy pendulum type impact test. 硬度試験に用いた試験片の各寸法を示す模式図である。It is a schematic diagram which shows each dimension of the test piece used for the hardness test.
 以下、本発明の実施形態に係るホットスタンプ用鋼板について詳細に説明する。 Hereinafter, the hot stamping steel plate according to the embodiment of the present invention will be described in detail.
 (ホットスタンプ用鋼板)
 本実施形態に係るホットスタンプ用鋼板は、
 質量%で、
 C:0.25%以上、0.4%以下、
 Si:1.05%以上、1.4%以下、
 Mn:0%以上、1.4%以下、
 Cr:0.6%以上、3.0%以下、
 P:0%以上、0.03%以下、
 S:0%以上、0.02%以下、
 Al:0.01%以上、1%以下、
 N:0%以上、0.01%以下、
 B:0.0005%以上、0.005%以下、および
 Ti:0.005%以上、0.1%以下を含有し、残部が鉄および不可避不純物である。このホットスタンプ用鋼板は、C含有量を[C]、Si含有量を[Si]、Mn含有量を[Mn]、Cr含有量を[Cr]としたときに、下記(1)の関係式を満たすことにより、強度と靱性のバランスに加えて硬度安定性に優れるものである。
(Steel plate for hot stamping)
The steel sheet for hot stamping according to this embodiment is
% By mass
C: 0.25% or more, 0.4% or less,
Si: 1.05% or more, 1.4% or less,
Mn: 0% or more, 1.4% or less,
Cr: 0.6% or more, 3.0% or less,
P: 0% or more, 0.03% or less,
S: 0% or more, 0.02% or less,
Al: 0.01% or more, 1% or less,
N: 0% or more, 0.01% or less,
B: 0.0005% or more and 0.005% or less, and Ti: 0.005% or more and 0.1% or less, with the balance being iron and inevitable impurities. This hot stamping steel sheet has the following relational expression (1) when the C content is [C], the Si content is [Si], the Mn content is [Mn], and the Cr content is [Cr]. By satisfying the above, in addition to the balance between strength and toughness, hardness stability is excellent.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 本発明者らは、強度と靱性のバランス及び硬度安定性の両方に優れたホットスタンプ用鋼板を得るため、鋼板の成分組成について鋭意研究を行った。非特許文献2の記載から、ホットスタンプ工程では、金型と鋼板との間のクリアランスや金型温度の上昇に起因して、通常の部材で30℃/s~10℃/sの範囲で冷却速度の変動が発生することが予想された。このため、本発明者らは、強度と靱性のバランスに加えて、冷却速度の変動が発生しても硬度のばらつきを抑制することに着目し、これを達成するための鋼板の成分系について詳細な検討を行った。その結果、本発明者らは、鋼板中の各成分組成が上記範囲を満たすと共に、上記(1)の関係式が満たされるようにC、Si、Mn及びCrの含有量のバランスを調整することにより、強度と靱性のバランス及び硬度安定性を両立することができることを新たに知見し、本発明に想到した。 In order to obtain a steel sheet for hot stamping excellent in both strength and toughness balance and hardness stability, the present inventors have conducted intensive research on the composition of the steel sheet. According to the description of Non-Patent Document 2, in the hot stamping process, the normal member is cooled in the range of 30 ° C./s to 10 ° C./s due to the clearance between the die and the steel plate and the rise of the die temperature. Speed fluctuations were expected to occur. For this reason, in addition to the balance between strength and toughness, the present inventors have focused on suppressing variation in hardness even if fluctuations in the cooling rate occur, and details on the component system of the steel sheet to achieve this The examination was done. As a result, the present inventors adjust the balance of the contents of C, Si, Mn and Cr so that each component composition in the steel sheet satisfies the above range and the relational expression (1) is satisfied. Thus, the inventors have newly found that it is possible to achieve both a balance between strength and toughness and hardness stability, and have arrived at the present invention.
 まず、本実施形態に係るホットスタンプ用鋼板における各成分組成について詳細に説明する。 First, each component composition in the steel sheet for hot stamping according to the present embodiment will be described in detail.
 [C(炭素):0.25質量%以上、0.4質量%以下]
 C含有量は、金型冷却後における鋼板の強度を決定する。鋼板の十分な強度を得るために、C含有量は、0.25質量%以上となっており、0.255質量%以上であることが好ましく、0.260質量%以上であることがより好ましい。
[C (carbon): 0.25 mass% or more, 0.4 mass% or less]
C content determines the intensity | strength of the steel plate after metal mold | die cooling. In order to obtain sufficient strength of the steel sheet, the C content is 0.25% by mass or more, preferably 0.255% by mass or more, and more preferably 0.260% by mass or more. .
 しかし、C含有量が過剰になると、熱延後における鋼板の強度が上昇し、冷延時の割れや溶接性の低下を招く場合がある。このため、C含有量は、0.4質量%以下であり、0.38質量%以下であることが好ましく、0.36質量%以下であることがより好ましい。 However, when the C content is excessive, the strength of the steel sheet after hot rolling is increased, which may cause cracking during cold rolling and deterioration of weldability. For this reason, C content is 0.4 mass% or less, it is preferable that it is 0.38 mass% or less, and it is more preferable that it is 0.36 mass% or less.
 [Si(珪素):1.05質量%以上、1.4質量%以下]
 Siは、焼戻し軟化抵抗を高めることにより、鋼板の硬度安定性に寄与する。またSiは、鋼板の表面にめっきを施さない場合には、金型冷却後におけるスケール剥がれを防止する効果も有する。これらの効果を発揮させるために、Si含有量は、1.05質量%以 上となっている。
[Si (silicon): 1.05 mass% or more, 1.4 mass% or less]
Si contributes to the hardness stability of the steel sheet by increasing the temper softening resistance. Si also has an effect of preventing scale peeling after cooling the mold when the surface of the steel sheet is not plated. In order to exert these effects, the Si content is 1.05% by mass or more.
 一方、Siは、残留オーステナイト(γ)を生成し易くすると共に、降伏強度(YS)の低下やMnの偏析を助長する。このため、Si含有量は、1.4質量%以下となっており、1.35質量%以下であることが好ましい。 On the other hand, Si facilitates the formation of retained austenite (γ) and promotes a decrease in yield strength (YS) and segregation of Mn. For this reason, Si content is 1.4 mass% or less, and it is preferable that it is 1.35 mass% or less.
 [Mn(マンガン):0質量%以上、1.4質量%以下]
 Mnは、本実施形態に係るホットスタンプ用鋼板に含まれる重要な元素の1つであり、鋼板の焼入れ性を高めることにより金型冷却後の鋼板の高強度化に寄与する。この効果を発揮させるために、Mn含有量は、0.5質量%以上であることが好ましく、0.6質量%以上であることがより好ましく、0.8質量%以上であることがさらに好ましい。
[Mn (manganese): 0% by mass or more and 1.4% by mass or less]
Mn is one of the important elements contained in the steel sheet for hot stamping according to the present embodiment, and contributes to increasing the strength of the steel sheet after cooling the mold by enhancing the hardenability of the steel sheet. In order to exert this effect, the Mn content is preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and further preferably 0.8% by mass or more. .
 一方、金型冷却後の鋼板の強度と靱性を両立させる検討の中で、Mnが過剰であると金型冷却中に粗大な炭化物が析出し、低温環境での衝撃的な応力を負荷された場合、脆性的な破壊を引き起こす要因となることを確認した。このため、Mn含有量は、1.4質量%以下となっており、1.35質量%以下であることが好ましく、1.30質量%以下であることがより好ましい。 On the other hand, in the study to balance the strength and toughness of the steel sheet after cooling the mold, if Mn is excessive, coarse carbides were precipitated during the mold cooling, and impact stress was applied in a low temperature environment. In this case, it was confirmed that it causes a brittle fracture. For this reason, Mn content is 1.4 mass% or less, it is preferable that it is 1.35 mass% or less, and it is more preferable that it is 1.30 mass% or less.
 なお、Mnは、鋼板中に不可避的に混入する元素であるため、含有量を0質量%にすることは困難である。 In addition, since Mn is an element inevitably mixed in the steel sheet, it is difficult to make the content 0 mass%.
 [Cr(クロム):0.6質量%以上、3.0質量%以下]
 Crは、本実施形態に係るホットスタンプ用鋼板における重要な元素の1つである。金型冷却後の鋼板の強度と靱性を両立させる検討の中で、Crは低冷却速度(例えば10℃/s)での硬度の確保に寄与するとともに、金型冷却中において粗大な炭化物の析出の抑制に寄与することで、低温環境での衝撃的な応力を負荷された場合の脆性的な破壊を抑制していることが確認された。これらの効果を発揮させるために、Cr含有量は、0.6質量%以上となっており、0.8質量%以上であることが好ましく、1.05質量%以上であることがより好ましい。
[Cr (chromium): 0.6 mass% or more, 3.0 mass% or less]
Cr is one of important elements in the hot stamping steel plate according to the present embodiment. In the study of balancing the strength and toughness of the steel sheet after mold cooling, Cr contributes to securing hardness at a low cooling rate (for example, 10 ° C./s) and precipitates coarse carbides during mold cooling. It was confirmed that brittle fracture was suppressed when impact stress was applied in a low-temperature environment. In order to exhibit these effects, the Cr content is 0.6% by mass or more, preferably 0.8% by mass or more, and more preferably 1.05% by mass or more.
 一方、鋼板中にCrが過剰に含まれると、熱延後の鋼板の強度が上昇し、冷延時の鋼板の割れや熱延後の酸洗性の劣化を招く。このため、Cr含有量は、3.0質量%以下となっており、2.5質量%以下であることが好ましい。 On the other hand, if Cr is excessively contained in the steel sheet, the strength of the steel sheet after hot rolling increases, which causes cracking of the steel sheet during cold rolling and deterioration of pickling properties after hot rolling. For this reason, Cr content is 3.0 mass% or less, and it is preferable that it is 2.5 mass% or less.
 [P(リン):0質量%以上、0.03質量%以下]
 Pは、部材の溶接性、靱性及び表面疵防止の観点から、含有量の上限を規定する必要がある。このため、P含有量は、0.03質量%以下となっており、0.025質量%以下であることが好ましく、0.02質量%以下であることがより好ましい。
[P (phosphorus): 0 mass% or more, 0.03 mass% or less]
P needs to prescribe | regulate the upper limit of content from a viewpoint of the weldability of a member, toughness, and surface flaw prevention. For this reason, P content is 0.03 mass% or less, it is preferable that it is 0.025 mass% or less, and it is more preferable that it is 0.02 mass% or less.
 なお、Pは、鋼板中に不可避的に混入する元素であるため、含有量を0質量%にすることは困難である。 In addition, since P is an element inevitably mixed in the steel sheet, it is difficult to make the content 0 mass%.
 [S(硫黄):0質量%以上、0.02質量%以下]
 Sは、MnSを生成することによりMnの濃度分布の均一性を低下させ、また鋼板の溶接性を劣化させる。このため、S含有量は、0.02質量%以下となっており、0.018質量%以下であることが好ましく、0.015質量%以下であることがより好ましい。
[S (sulfur): 0 mass% or more, 0.02 mass% or less]
S produces MnS, thereby lowering the uniformity of the Mn concentration distribution and degrading the weldability of the steel sheet. For this reason, S content is 0.02 mass% or less, it is preferable that it is 0.018 mass% or less, and it is more preferable that it is 0.015 mass% or less.
 なお、Sは、Pと同様に鋼板中に不可避的に混入する元素であるため、含有量を0質量%にすることは困難である。 In addition, since S is an element inevitably mixed in the steel plate like P, it is difficult to make the content 0 mass%.
 [Al(アルミニウム):0.01質量%以上、1質量%以下]
 Alは、脱酸剤として作用する元素である。この効果を発揮させるために、Al含有量は、0.01質量%以上となっており、0.015質量%以上であることが好ましい。
[Al (aluminum): 0.01 mass% or more, 1 mass% or less]
Al is an element that acts as a deoxidizer. In order to exhibit this effect, the Al content is 0.01% by mass or more, and preferably 0.015% by mass or more.
 しかし、鋼板中にAlが過剰に含まれると、金型冷却後の硬度が低下し、またAlが過剰に生成することにより低温靱性が劣化する。このため、Al含有量は、1質量%以下となっており、0.8質量%以下であることが好ましく、0.1質量%以下であることがより好ましい。なお、ここでいうAl含有量は、固溶状態のAl(sol.Al)の含有量を意味する。 However, when Al is excessively contained in the steel sheet, the hardness after cooling the mold is lowered, and the low temperature toughness is deteriorated due to excessive generation of Al 2 O 3 . For this reason, Al content is 1 mass% or less, it is preferable that it is 0.8 mass% or less, and it is more preferable that it is 0.1 mass% or less. In addition, Al content here means content of Al (sol.Al) of a solid solution state.
 [N(窒素):0質量%以上、0.01質量%以下]
 Nは、鋼板中に不可避的に混入する元素である。鋼板中にNが過剰に含まれると、Nがホウ化物を生成することにより鋼板中の固溶Bの量が低下し、焼入れ性の劣化を招く。このため、N含有量は、0.01質量%以下となっており、0.008質量%以下であることが好ましく、0.005質量%以下であることがより好ましい。
[N (nitrogen): 0% by mass or more and 0.01% by mass or less]
N is an element inevitably mixed in the steel sheet. If N is excessively contained in the steel sheet, N forms boride, thereby reducing the amount of solute B in the steel sheet, resulting in deterioration of hardenability. For this reason, N content is 0.01 mass% or less, it is preferable that it is 0.008 mass% or less, and it is more preferable that it is 0.005 mass% or less.
 [B(ホウ素):0.0005質量%以上、0.005質量%以下]
 Bは、鋼板の焼入れ性を向上させるために重要な元素である。鋼板にBを適量添加して焼入れ性を高めることにより、金型冷却後における鋼板の強度を安定して高めることができる。この効果を発揮させるために、B含有量は、0.0005質量%以上となっており、0.0010質量%以上であることが好ましく、0.0015質量%以上であることがより好ましい。
[B (boron): 0.0005 mass% or more, 0.005 mass% or less]
B is an important element for improving the hardenability of the steel sheet. By adding an appropriate amount of B to the steel sheet to enhance the hardenability, the strength of the steel sheet after cooling the mold can be stably increased. In order to exhibit this effect, the B content is 0.0005% by mass or more, preferably 0.0010% by mass or more, and more preferably 0.0015% by mass or more.
 一方、鋼板中にBが過剰に含まれると、粗大な鉄ボロン化合物が析出し、靱性の低下を招く。このため、B含有量は、0.0050質量%以下となっており、0.0045質量%以下であることが好ましく、0.0030質量%以下であることがより好ましい。 On the other hand, if B is excessively contained in the steel sheet, a coarse iron boron compound is precipitated, resulting in a decrease in toughness. For this reason, B content is 0.0050 mass% or less, it is preferable that it is 0.0045 mass% or less, and it is more preferable that it is 0.0030 mass% or less.
 [Ti(チタン):0.005質量%以上、0.1質量%以下]
 Tiは、TiNを生成することにより鋼板中におけるBNの生成量を少なくする。これにより、鋼板中における固溶Bの量が増加し、Bによる焼入れ性向上の効果を高めることができる。この効果を発揮させるために、Ti含有量は、0.0050質量%以上となっており、0.010質量%以上であることが好ましく、0.015質量%以上であることがより好ましい。
[Ti (titanium): 0.005 mass% or more, 0.1 mass% or less]
Ti reduces the amount of BN produced in the steel sheet by producing TiN. Thereby, the quantity of the solid solution B in a steel plate increases, and the effect of the hardenability improvement by B can be heightened. In order to exert this effect, the Ti content is 0.0050% by mass or more, preferably 0.010% by mass or more, and more preferably 0.015% by mass or more.
 一方、鋼板中にTiが過剰に含まれると、結晶粒界に炭化物が析出し、鋼板の焼入れ性が劣化する。このため、Ti含有量は、0.1質量%以下となっており、0.08質量%以下であることが好ましく、0.06質量%以下であることがより好ましい。 On the other hand, if Ti is excessively contained in the steel plate, carbides are precipitated at the grain boundaries, and the hardenability of the steel plate is deteriorated. For this reason, Ti content is 0.1 mass% or less, it is preferable that it is 0.08 mass% or less, and it is more preferable that it is 0.06 mass% or less.
 本実施形態に係るホットスタンプ用鋼板は、上記の成分組成に加えて、Mo、NbおよびVよりなる群から選ばれる1種以上をさらに含有していてもよいし、CuおよびNiよりなる群から選ばれる1種以上をさらに含有していてもよい。これらの成分組成の範囲について以下説明する。なお、これらの元素は、本発明のホットスタンプ用鋼板における必須元素ではなく、添加されなくてもよい。 The steel sheet for hot stamping according to this embodiment may further contain one or more selected from the group consisting of Mo, Nb and V in addition to the above component composition, or from the group consisting of Cu and Ni. One or more selected may further be contained. The range of these component compositions will be described below. These elements are not essential elements in the hot stamping steel sheet of the present invention, and may not be added.
 [Mo(モリブデン):0質量%以上、1.0質量%以下]
 Moは、鋼板の焼入れ性の向上に寄与する元素である。この効果を発揮させるために、Mo含有量は、0.01質量%以上であることが好ましい。しかし、鋼板中にMoが過剰に含まれると、熱間成形前の鋼板の強度を上昇させてしまう。これを防ぐために、Mo含有量は、1.0質量%以下であることが好ましい。
[Mo (molybdenum): 0% by mass or more and 1.0% by mass or less]
Mo is an element that contributes to improving the hardenability of the steel sheet. In order to exhibit this effect, the Mo content is preferably 0.01% by mass or more. However, when Mo is excessively contained in the steel sheet, the strength of the steel sheet before hot forming is increased. In order to prevent this, the Mo content is preferably 1.0% by mass or less.
 [Nb(ニオブ)、V(バナジウム):0質量%以上、0.1質量%以下]
 NbおよびVは、微細な炭化物を形成し、ピン止め効果により鋼の組織を微細化する効果を有する。またVは、焼戻し時に析出することにより二次硬化の作用も有する。これらの効果を発揮させるために、Nb,V含有量は、いずれも、0.0008質量%以上であることが好ましい。
[Nb (niobium), V (vanadium): 0 mass% or more, 0.1 mass% or less]
Nb and V have the effect of forming fine carbides and refining the steel structure by the pinning effect. V also has the effect of secondary curing by precipitating during tempering. In order to exert these effects, the Nb and V contents are each preferably 0.0008% by mass or more.
 しかし、鋼板中にNbおよびVが過剰に含まれると、粗大な炭化物が形成され、これが破壊の起点となって靱性の劣化を招く。したがって、Nb,V含有量は、いずれも、0.1質量%以下であることが好ましく、0.08質量%以下であることがより好ましく、0.07質量%以下であることがさらに好ましい。 However, when Nb and V are excessively contained in the steel sheet, coarse carbides are formed, which becomes a starting point of fracture and causes deterioration of toughness. Accordingly, the Nb and V contents are each preferably 0.1% by mass or less, more preferably 0.08% by mass or less, and further preferably 0.07% by mass or less.
 [Cu(銅)、Ni(ニッケル):0質量%以上、0.5質量%以下]
 CuおよびNiは、部材の遅れ破壊特性を改善する必要がある場合に添加することが好ましい。しかし、鋼板中にCuおよびNiが過剰に含まれると、鋼板の表面、最終的には部材の表面における疵発生の原因となり得る。このため、CuおよびNiは、単独の含有量がそれぞれ0.5質量%以下であることが好ましく、合計の含有量が0.5質量%以下であることがより好ましい。
[Cu (copper), Ni (nickel): 0 mass% or more, 0.5 mass% or less]
Cu and Ni are preferably added when it is necessary to improve the delayed fracture characteristics of the member. However, if Cu and Ni are excessively contained in the steel plate, it may cause wrinkles on the surface of the steel plate, and finally on the surface of the member. For this reason, it is preferable that each content of Cu and Ni is 0.5 mass% or less, and it is more preferable that the total content is 0.5 mass% or less.
 本実施形態に係るホットスタンプ用鋼板は、C、Si、MnおよびCrの含有量のバランス調整によって下記(1)の関係式を満たすことにより、強度と靱性のバランスに加えて硬度安定性に優れたものとなっている。この関係式(1)において、[C]は、ホットスタンプ用鋼板のC含有量(質量%)を示している。[Si]は、ホットスタンプ用鋼板のSi含有量(質量%)を示している。[Mn]は、ホットスタンプ用鋼板のMn含有量(質量%)を示している。[Cr]は、ホットスタンプ用鋼板のCr含有量(質量%)を示している。 The steel sheet for hot stamping according to this embodiment is excellent in hardness stability in addition to the balance of strength and toughness by satisfying the relational expression (1) below by adjusting the balance of the contents of C, Si, Mn and Cr. It has become. In this relational expression (1), [C] represents the C content (mass%) of the hot stamping steel plate. [Si] indicates the Si content (mass%) of the steel sheet for hot stamping. [Mn] indicates the Mn content (% by mass) of the steel sheet for hot stamping. [Cr] indicates the Cr content (mass%) of the steel sheet for hot stamping.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 各成分組成が請求項の成分範囲を満たすと共に上記の関係式(1)を満たすことにより、本実施形態に係るホットスタンプ用鋼板は、金型冷却による焼入れ後の強度と低温靱性のバランスに優れる鋼板となっていると共に、硬度安定性にも優れたものとなっている。具体的には、金型を用いて平板を焼入れしたときの-40℃のシャルピー衝撃試験における吸収エネルギーをA(J/cm)、ホットスタンプ用鋼板をオーステナイト域まで加熱した後10℃/sの冷却速度で室温まで冷却して焼入れしたときの硬度をB(Hv)、ホットスタンプ用鋼板をオーステナイト域まで加熱した後30℃/sの冷却速度で室温まで冷却して焼入れした時の硬度をC(Hv)としたときに、下記(2)、(3)および(4)の関係式が全て満たされる。 When each component composition satisfies the component range of the claims and satisfies the relational expression (1), the steel sheet for hot stamping according to the present embodiment has an excellent balance between strength after quenching by mold cooling and low temperature toughness. In addition to being a steel plate, it has excellent hardness stability. Specifically, the absorbed energy in a Charpy impact test at −40 ° C. when quenching a flat plate using a mold is A (J / cm 2 ), and the steel sheet for hot stamping is heated to the austenite region and then 10 ° C./s. Hardness when quenched to room temperature at a cooling rate of B (Hv), hardness when quenched and quenched to room temperature at a cooling rate of 30 ° C / s after heating the steel sheet for hot stamping to the austenite region When C (Hv) is satisfied, the following relational expressions (2), (3), and (4) are all satisfied.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 上記関係式(2)は、本発明者らが新たに考案した鋼板の強度と靱性のバランスの指標となるものであり、ホットスタンプ用鋼板の強度と靱性のバランスを考える上で重要な概念である。本発明者らは、強度と靱性のバランスを検討する中で、冷却速度が10℃/sである時の硬さと平板を金型冷却した後の靱性に着目した。平板の金型冷却は、ホットスタンプ工程において金型と鋼板との間にクリアランスが発生しない理想的な冷却条件を考慮したものである。上記関係式(2)を用いることにより、ホットスタンプ用鋼板が部材(成形品)に加工された時の強度と靱性のバランスをより忠実に評価することができる。 The above relational expression (2) is an index of the balance between strength and toughness of the steel plate newly devised by the present inventors, and is an important concept in considering the balance between strength and toughness of the steel plate for hot stamping. is there. In examining the balance between strength and toughness, the present inventors paid attention to the hardness when the cooling rate was 10 ° C./s and the toughness after cooling the flat plate. Flat plate mold cooling takes into account ideal cooling conditions in which no clearance is generated between the mold and the steel plate in the hot stamping process. By using the relational expression (2), it is possible to more faithfully evaluate the balance between strength and toughness when the hot stamping steel plate is processed into a member (formed product).
 図1のグラフは、金型を用いて平板を焼入れしたときの-40℃のシャルピー衝撃試験における吸収エネルギーAと(横軸)、10℃/sの冷却速度で焼入れしたときの鋼板の硬度Bと(縦軸)、の関係を示しており、同グラフ中の直線(1)が関係式(2)に相当する。また同グラフ中の直線(2)は、B=516の式に相当する。 The graph of FIG. 1 shows the absorbed energy A in a Charpy impact test at −40 ° C. when a flat plate is quenched using a mold (horizontal axis) and the hardness B of the steel plate when quenched at a cooling rate of 10 ° C./s. (Vertical axis), and the straight line (1) in the graph corresponds to the relational expression (2). A straight line (2) in the graph corresponds to an equation of B = 516.
 図1のグラフの横軸(A)は、金型冷却後の部材における最も脆い部分の靱性を想定したものである。すなわち、平板を金型冷却した場合には、金型と鋼板とが理想的な状態で接触するため、冷却速度が高くなる。このため、冷却後の強度は高くなるが、一方で非常に脆くなる。つまり、この横軸は、ホットスタンプ用鋼板が部材(成形品)に成形された時の最も脆い部分における靱性としての意味を有する。 The horizontal axis (A) in the graph of FIG. 1 assumes the toughness of the most brittle part in the member after mold cooling. That is, when the flat plate is die-cooled, the die and the steel plate come into contact with each other in an ideal state, so that the cooling rate is increased. For this reason, the strength after cooling increases, but on the other hand it becomes very brittle. That is, this horizontal axis has a meaning as toughness in the most brittle part when the hot stamping steel plate is formed into a member (molded product).
 一方、図1のグラフの縦軸(B)は、金型冷却後の部材における最も軟化した部分の硬さを想定したものである。上述の通り、ホットスタンプ工程では、金型と鋼板との間にクリアランスが発生し、また金型温度が上昇する場合がある。このため、金型冷却後の部材には、低冷却速度により冷却された硬さ(強度)が低い部分が存在する。非特許文献2の記載から、金型冷却時における最低冷却速度は10℃/s程度と想定される。したがって、この縦軸は、金型冷却後の部材(成形品)における最も軟化した部分における硬さ(強度)としての意味を有する。したがって、これらの2つの軸を用いることにより、成形後の部材に衝撃的な応力を付加したときの最も弱い部分の靱性、及び当該部材に静的な応力を付加したときの最も弱い部分の強度を評価することができる。 On the other hand, the vertical axis (B) of the graph of FIG. 1 assumes the hardness of the most softened portion of the member after cooling the mold. As described above, in the hot stamping process, a clearance may be generated between the mold and the steel plate, and the mold temperature may increase. For this reason, the member after mold cooling has a portion with low hardness (strength) cooled at a low cooling rate. From the description of Non-Patent Document 2, the minimum cooling rate during mold cooling is assumed to be about 10 ° C./s. Therefore, this vertical axis has the meaning as the hardness (strength) at the most softened portion of the member (molded product) after cooling the mold. Therefore, by using these two axes, the toughness of the weakest part when impact stress is applied to the molded member and the strength of the weakest part when static stress is applied to the member Can be evaluated.
 通常、Bが516Hv以上となる硬度領域では、鋼板の強度と靱性がトレードオフの関係にあるため、鋼板の強度を向上させると靱性が劣化する傾向にある。つまり、鋼板の強度と靱性の両方を向上させることは困難であり、図1のグラフ中の直線(1)よりも下側の領域にA・Bの分布が存在するのが通常である。 Usually, in the hardness region where B is 516 Hv or more, the strength and toughness of the steel sheet are in a trade-off relationship, and therefore the toughness tends to deteriorate when the strength of the steel sheet is improved. That is, it is difficult to improve both the strength and toughness of the steel sheet, and it is normal that the A / B distribution exists in the region below the straight line (1) in the graph of FIG.
 また直線(2)は、硬度安定性を示す1つの指標となるものである。ホットスタンプ工程における金型の連続操業中では、金型の温度が上昇し、また金型と鋼板との間にクリアランスが生じる場合がある。これらの要因により焼入れ時の鋼板の冷却速度が低下し、焼入れ後の鋼板の硬度が冷却速度の低下に伴って低くなる。通常、結晶粒の微細化によって強度と靱性のバランスが向上した鋼板であっても、低冷却速度領域(10℃/s)で焼入れしたときの硬度が516Hv以上の範囲を満たすことは困難である。したがって、結晶粒の微細化により強度と靱性のバランスが向上した鋼板であっても、図1中の直線(2)よりも下側の領域にA・Bの分布が存在するのが通常である。 Also, the straight line (2) is one index indicating hardness stability. During continuous operation of the mold in the hot stamping process, the temperature of the mold rises and there may be a clearance between the mold and the steel plate. Due to these factors, the cooling rate of the steel plate during quenching decreases, and the hardness of the steel plate after quenching decreases as the cooling rate decreases. Usually, even a steel sheet whose balance between strength and toughness is improved by refining crystal grains, it is difficult to satisfy the hardness range of 516 Hv or higher when quenched in a low cooling rate region (10 ° C./s). . Therefore, even in a steel sheet in which the balance between strength and toughness is improved by refining crystal grains, it is normal that the distribution of A and B exists in the region below the straight line (2) in FIG. .
 これに対し、本発明者らが鋭意研究を行った結果、上記関係式(1)を満たすホットスタンプ用鋼板においては、A・Bの分布が図1中の直線(1)及び直線(2)よりも上側の領域に位置することが明らかとなった。したがって、本実施形態に係るホットスタンプ 用鋼板は、強度と靱性のバランスに加えて硬度安定性にも優れたものとなっている。すなわち、このホットスタンプ用鋼板は、上記関係式(2)を満たす強度と靱性のバランスに優れたものであり、且つ最低冷却速度である10℃/sで冷却された時でも一定以上の硬度を実現可能なものである。 On the other hand, as a result of intensive studies by the present inventors, in the hot stamping steel sheet satisfying the relational expression (1), the distribution of A and B has a straight line (1) and a straight line (2) in FIG. It became clear that it is located in the upper region. Therefore, the hot stamping steel plate according to this embodiment has excellent hardness stability in addition to the balance between strength and toughness. That is, this hot stamping steel sheet has an excellent balance between strength and toughness satisfying the above relational expression (2), and has a certain hardness or more even when cooled at a cooling rate of 10 ° C./s. It is feasible.
 上記関係式(4)は、もう1つの鋼板の硬度安定性の指標となるものである。ホットスタンプにおいて金型温度が上昇し又は金型と鋼板との間にクリアランスが発生した場合には、鋼板の冷却速度が低下し、焼入れ後の鋼板の硬度が不安定になる場合がある。また上述の通り、結晶粒を微細化すると硬度安定性が低下するため、上記関係式(4)を満たすことは通常困難である。 The above relational expression (4) is an index of hardness stability of another steel plate. When the mold temperature rises in the hot stamping or a clearance is generated between the mold and the steel sheet, the cooling rate of the steel sheet may decrease, and the hardness of the steel sheet after quenching may become unstable. Further, as described above, since the hardness stability decreases when the crystal grains are refined, it is usually difficult to satisfy the relational expression (4).
 これに対し、本発明者らが鋭意研究を行った結果、上記関係式(1)を満たすと共に、各成分が請求項の成分範囲を満たすホットスタンプ用鋼板においては、冷却速度が10℃/sの低冷却速度域でも516Hvを超える焼入れ後の硬度が得られると共に、冷却速度が30℃/sの場合と10℃/sの場合との硬度差を35Hv以下に抑えられることが明らかとなった。30℃/sは実験等により確認された金型冷却時の理想的な冷却速度であり、一方で10℃/sは上述の通り予想される最低冷却速度である。つまり、上記関係式(4)は、ホットスタンプにおいて想定される冷却速度の上下限の間で焼入れ後の硬さの差(ばらつき)が小さいことを示す指標である。本実施形態に係るホットスタンプ用鋼板によれば、金型の温度上昇や金型と鋼板との間のクリアランスの発生に関わらず、上記関係式(4)を満たす程度に焼入れ後の鋼板の硬度を安定させることが可能になる。 On the other hand, as a result of intensive studies by the present inventors, the steel sheet for hot stamping satisfying the relational expression (1) and satisfying the component ranges of the claims has a cooling rate of 10 ° C./s. It was clarified that hardness after quenching exceeding 516 Hv can be obtained even in the low cooling rate region, and the hardness difference between the cooling rate of 30 ° C./s and 10 ° C./s can be suppressed to 35 Hv or less. . 30 ° C./s is an ideal cooling rate at the time of mold cooling confirmed by experiments and the like, while 10 ° C./s is the minimum cooling rate expected as described above. That is, the relational expression (4) is an index indicating that the hardness difference (variation) after quenching is small between the upper and lower limits of the cooling rate assumed in the hot stamp. According to the steel sheet for hot stamping according to the present embodiment, the hardness of the steel sheet after quenching to the extent that the above relational expression (4) is satisfied regardless of the temperature rise of the mold and the occurrence of clearance between the mold and the steel sheet. Can be stabilized.
 なお、本発明のホットスタンプ用鋼板は、めっき処理が表面に施されていない素地鋼板であってもよいし、めっき処理が表面に施されためっき鋼板であってもよい。 The steel sheet for hot stamping of the present invention may be a base steel sheet that has not been subjected to plating treatment, or a plated steel sheet that has been subjected to plating treatment.
 (ホットスタンプ用鋼板の製造方法)
 次に、上記本実施形態に係るホットスタンプ用鋼板を製造するための方法について説明する。
(Method for manufacturing hot stamping steel sheet)
Next, a method for manufacturing the hot stamping steel plate according to the present embodiment will be described.
 まず、スラブ製造工程が行われる。この工程では、常法に従って鋼を溶製し、溶融状態の鋼を鋳型に流し込んで連続鋳造することにより、スラブが得られる。この工程では、スラブに含まれる各成分組成が上記範囲を満たすと共にC、Si、MnおよびCrの含有量が上記関係式(1)を満たすように、溶製時に鋼の成分組成を調整する。 First, the slab manufacturing process is performed. In this step, a slab is obtained by melting steel according to a conventional method, pouring molten steel into a mold and continuously casting the steel. In this step, the component composition of the steel is adjusted during melting so that each component composition contained in the slab satisfies the above range and the contents of C, Si, Mn, and Cr satisfy the relational expression (1).
 次に、熱間圧延工程が行われる。この工程では、まず、上記工程で得られたスラブを加熱炉内に配置して所定の温度(例えば1200℃)に加熱し、当該加熱温度で所定時間(例えば30分間)保持する。 Next, a hot rolling process is performed. In this step, first, the slab obtained in the above step is placed in a heating furnace, heated to a predetermined temperature (eg, 1200 ° C.), and held at the heating temperature for a predetermined time (eg, 30 minutes).
 次に、加熱状態のスラブが熱延ラインの上流に載せられる。そして、当該スラブを粗圧延機および仕上げ圧延機の圧延スタンドのロール間に順次通過させつつ下流に向かって流すことにより、当該スラブが所定の板厚を有する鋼板に圧延加工される。そして、熱延後の鋼板が冷却装置において所定の温度まで冷却された後、コイラーにより巻き取られる。 Next, the heated slab is placed upstream of the hot rolling line. And the said slab is rolled into the steel plate which has predetermined | prescribed plate | board thickness by flowing toward the downstream, passing the said slab between the rolls of the rolling stand of a rough rolling mill and a finish rolling mill sequentially. And after the steel plate after hot rolling is cooled to predetermined temperature in a cooling device, it is wound up with a coiler.
 次に、冷間圧延工程が行われる。この工程では、まず、上記熱間圧延工程において鋼板の表面に生じたスケール(鉄の酸化物)を酸によって洗い落とした後(酸洗)、板厚がさらに小さくなるように熱延鋼板をさらに圧延加工する。具体的には、酸洗後の熱延鋼板を圧延スタンドのロール間に通過させることにより、当該熱延鋼板をさらに薄くするように加工する。以上のプロセスにより得られる冷延鋼板が、上記本実施形態に係るホットスタンプ用鋼板である。 Next, a cold rolling process is performed. In this step, first, the scale (iron oxide) generated on the surface of the steel plate in the hot rolling step is washed off with acid (pickling), and then the hot-rolled steel plate is further rolled so that the plate thickness is further reduced. Process. Specifically, the hot-rolled steel sheet after pickling is passed between rolls of a rolling stand so that the hot-rolled steel sheet is further thinned. The cold-rolled steel sheet obtained by the above process is the hot stamping steel sheet according to the present embodiment.
 (ホットスタンプ)
 次に、上記プロセスにより製造された鋼板を用いたホットスタンプについて、図2を参照して説明する。まず、上記プロセスにより製造されたホットスタンプ用鋼板1を、所定の加熱炉2内においてオーステナイト変態温度以上にまで加熱する。そして、当該加熱後のホットスタンプ用鋼板1を金型3,4の間に設置し、当該ホットスタンプ用鋼板1を金型3,4により所望の形状にプレス成形する。この時、ホットスタンプ用鋼板1が金型3,4と接触することにより冷却され、成形と同時に焼入れが行われる。そして、焼入れ後の鋼板が、成形品5(成形部材)として金型3,4から取り出される。
(Hot Stamp)
Next, the hot stamp using the steel plate manufactured by the said process is demonstrated with reference to FIG. First, the hot stamping steel plate 1 manufactured by the above process is heated in the predetermined heating furnace 2 to the austenite transformation temperature or higher. Then, the heated hot stamping steel plate 1 is placed between the dies 3 and 4, and the hot stamping steel plate 1 is press-formed into a desired shape by the dies 3 and 4. At this time, the hot stamping steel plate 1 is cooled by coming into contact with the molds 3 and 4, and quenching is performed simultaneously with the forming. And the steel plate after hardening is taken out from the metal mold | dies 3 and 4 as the molded article 5 (molded member).
 成形品5は、上述した本実施形態に係るホットスタンプ用鋼板1と同じ成分組成を有し、且つ上記関係式(1)を満たすようにC、Si、Mn及びCrの含有量のバランスが調整されたものである。このため、当該成形品5は、強度と靱性のバランスに加えて硬度安定性にも優れたものであり、自動車用部材をはじめとした種々の用途に利用することができる。 The molded product 5 has the same component composition as the hot stamping steel plate 1 according to this embodiment described above, and the balance of the contents of C, Si, Mn and Cr is adjusted so as to satisfy the relational expression (1). It has been done. Therefore, the molded product 5 is excellent in hardness stability in addition to the balance between strength and toughness, and can be used for various applications including automobile members.
 なお、上記実施形態を概説すると、以下の通りである。 The outline of the above embodiment is as follows.
 上記実施形態に係るホットスタンプ用鋼板は、
 質量%で、
 C:0.25%以上、0.4%以下、
 Si:1.05%以上、1.4%以下、
 Mn:0%以上、1.4%以下、
 Cr:0.6%以上、3.0%以下、
 P:0%以上、0.03%以下、
 S:0%以上、0.02%以下、
 Al:0.01%以上、1%以下、
 N:0%以上、0.01%以下、
 B:0.0005%以上、0.005%以下、および
 Ti:0.005%以上、0.1%以下
を含有し、残部が鉄および不可避不純物である。このホットスタンプ用鋼板は、C含有量を[C]、Si含有量を[Si]、Mn含有量を[Mn]、Cr含有量を[Cr]としたときに、下記(1)の関係式を満たすことにより、強度と靱性のバランスに加えて硬度安定性に優れるものである。
The steel sheet for hot stamping according to the above embodiment is
% By mass
C: 0.25% or more, 0.4% or less,
Si: 1.05% or more, 1.4% or less,
Mn: 0% or more, 1.4% or less,
Cr: 0.6% or more, 3.0% or less,
P: 0% or more, 0.03% or less,
S: 0% or more, 0.02% or less,
Al: 0.01% or more, 1% or less,
N: 0% or more, 0.01% or less,
B: 0.0005% or more and 0.005% or less, and Ti: 0.005% or more and 0.1% or less, with the balance being iron and inevitable impurities. This hot stamping steel sheet has the following relational expression (1) when the C content is [C], the Si content is [Si], the Mn content is [Mn], and the Cr content is [Cr]. By satisfying the above, in addition to the balance between strength and toughness, hardness stability is excellent.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 上記ホットスタンプ用鋼板は、
 質量%で、
 Mo:0%以上、1.0%以下、
 Nb:0%以上、0.1%以下、および
 V:0%以上、0.1%以下よりなる群から選ばれる1種以上を含有していてもよい。
The hot stamping steel plate
% By mass
Mo: 0% or more, 1.0% or less,
Nb: 0% or more, 0.1% or less, and V: 1% or more selected from the group consisting of 0% or more, 0.1% or less may be contained.
 上記ホットスタンプ用鋼板は、
 質量%で、
 Cu:0%以上、0.5%以下、および
 Ni:0%以上、0.5%以下よりなる群から選ばれる1種以上を含有していてもよい。
The hot stamping steel plate
% By mass
Cu: 0% or more, 0.5% or less, and Ni: 1% or more selected from the group consisting of 0% or more, 0.5% or less may be contained.
 以下、実施例に基づいて本発明をより詳細に説明する。しかし、本発明は、以下の実施例により制限されるものではなく、前後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited by the following examples, and can be implemented with appropriate modifications within a range that can meet the gist of the preceding and following descriptions. To be included in the scope.
 <ホットスタンプ用鋼板の製造>
 まず、下記の表1のNo.1~17に示す成分組成を有する鋼(残部は鉄および不可避不純物)を溶製することにより、スラブを製造した。この溶製スラブを1200℃まで加熱した後30分間保持し、その後熱間圧延を行った。仕上温度は900±20℃とし、仕上板厚は2.8mmとした。その後、熱延鋼板を巻取温度(CT温度)まで20~30℃/sの冷却速度で冷却し、650℃で30分間保持した後、炉冷を行った。その後、熱延鋼板の酸洗を行い、冷間圧延により板厚が1.4mmとなるように鋼板を加工した。
<Manufacture of steel sheets for hot stamping>
First, No. 1 in Table 1 below. Slabs were produced by melting steel having the composition shown in 1 to 17 (the balance being iron and inevitable impurities). The molten slab was heated to 1200 ° C. and held for 30 minutes, and then hot rolled. The finishing temperature was 900 ± 20 ° C., and the finishing plate thickness was 2.8 mm. Thereafter, the hot-rolled steel sheet was cooled to a coiling temperature (CT temperature) at a cooling rate of 20 to 30 ° C./s, held at 650 ° C. for 30 minutes, and then cooled in a furnace. Thereafter, the hot-rolled steel sheet was pickled, and the steel sheet was processed by cold rolling so that the sheet thickness became 1.4 mm.
 <シャルピー衝撃試験>
 まず、上記手順で作製した冷延鋼板を切断し、焼入れを行った。焼入れは、金型を模擬した平板を用いたダイクエンチ法を用いて下記の条件で行った(試験機:JISシャルピー衝撃試験機(300J))。
<Charpy impact test>
First, the cold-rolled steel sheet produced by the above procedure was cut and quenched. Quenching was performed under the following conditions using a die quench method using a flat plate simulating a mold (testing machine: JIS Charpy impact testing machine (300J)).
 [焼入れ条件]
 焼き入れ前鋼板寸法:1.4mm×70mm×150mm
 鋼板温度:900℃
 鋼板が900℃に達した後の鋼板温度保持時間:100秒
 放冷時間:約15秒
 ダイクエンチ開始温度:700℃
 ダイクエンチ荷重:2000kgf
 下死点保持時間:30秒
[Hardening conditions]
Steel plate dimensions before quenching: 1.4mm x 70mm x 150mm
Steel plate temperature: 900 ° C
Steel plate temperature holding time after the steel plate reaches 900 ° C .: 100 seconds Cooling time: about 15 seconds Die quench start temperature: 700 ° C.
Die quench load: 2000kgf
Bottom dead center retention time: 30 seconds
 次に、上記焼入れ後の冷延鋼板を用いて、シャルピー振り子式衝撃試験を行った。この試験は、試験片の寸法を除いてJIS 2242の「金属材用のシャルピー衝撃試験方法」に準拠して行った。本試験において用いた試験片の寸法は、下記の通りである。なお、各寸法を示す符号は、図3中に示した符号に対応する。 Next, a Charpy pendulum impact test was performed using the cold-rolled steel sheet after quenching. This test was performed in accordance with “Charpy impact test method for metal materials” of JIS 2242 except for the dimensions of the test pieces. The dimensions of the test pieces used in this test are as follows. In addition, the code | symbol which shows each dimension respond | corresponds to the code | symbol shown in FIG.
 [試験片寸法]
 試験片高さh1:10mm±0.05mm
 試験片長さL:55mm±0.6mm
 試験片幅b:1.4mm±0.05mm
 ノッチ形状:Vノッチ
 ノッチ角度:45°±2°
 ノッチ底半径:0.25mm±0.025mm
 ノッチ下高さh2:8mm±0.05mm
 試験片長手方向とノッチ対称面との角度:90°±2°
 破面を取り除く隣り合う面間の角度:90°±2°
[Test specimen dimensions]
Test piece height h1: 10 mm ± 0.05 mm
Test piece length L: 55 mm ± 0.6 mm
Test piece width b: 1.4 mm ± 0.05 mm
Notch shape: V notch Notch angle: 45 ° ± 2 °
Notch bottom radius: 0.25 mm ± 0.025 mm
Notch height h2: 8mm ± 0.05mm
Angle between specimen longitudinal direction and notch symmetry plane: 90 ° ± 2 °
Angle between adjacent surfaces to remove fracture surface: 90 ° ± 2 °
 上記寸法の試験片を-40℃±1℃の温度に調整された液体窒素中に配置し、少なくとも10分間保持した。その後、試験片を液体窒素中から取り出して支持台上に載置し、試験片に衝撃を与えた。このとき、試験片を支持台上に載置した後衝撃を与えるまでの時間を5秒以下とした。 The test piece having the above dimensions was placed in liquid nitrogen adjusted to a temperature of −40 ° C. ± 1 ° C. and held for at least 10 minutes. Thereafter, the test piece was taken out of the liquid nitrogen and placed on a support table, and an impact was applied to the test piece. At this time, after putting a test piece on a support stand, time until giving an impact was made into 5 seconds or less.
 試験機としてはJISシャルピー衝撃試験機(300J)を使用し、衝撃刃は半径2mmのものを用いた。また試験片の数は2つとし、2つの測定値の平均値を用いて評価した。 JIS Charpy impact tester (300J) was used as a tester, and an impact blade having a radius of 2 mm was used. The number of test pieces was two, and evaluation was performed using the average value of the two measured values.
 <スケール密着性の評価>
 上記シャルピー衝撃試験の時と同じ条件でダイクエンチ法による焼入れを行った後、鋼板の表面におけるスケールの剥がれ具合を目視確認することにより、スケールの密着性を評価した。鋼板の表面においてスケール剥がれが生じた面積率が14%以下である場合は「○」と評価し、当該面積率が14%を超える場合は「×」と評価した。
<Evaluation of scale adhesion>
After quenching by the die quench method under the same conditions as in the Charpy impact test, the adhesion of the scale was evaluated by visually confirming the degree of scale peeling on the surface of the steel sheet. When the area ratio at which scale peeling occurred on the surface of the steel sheet was 14% or less, it was evaluated as “◯”, and when the area ratio exceeded 14%, it was evaluated as “x”.
 <硬度試験>
 まず、上記手順で作製した冷延鋼板を、図4に示す形状の試験片に加工した。図4中のL1が10mm、L2が2mm、L3が1.4mm、L4が0.7mm、L5が3mm、L6が1mmである。この試験片を用いて、下記の条件で焼入れを行った。
<Hardness test>
First, the cold-rolled steel sheet produced by the above procedure was processed into a test piece having the shape shown in FIG. In FIG. 4, L1 is 10 mm, L2 is 2 mm, L3 is 1.4 mm, L4 is 0.7 mm, L5 is 3 mm, and L6 is 1 mm. Using this test piece, quenching was performed under the following conditions.
 [焼入れ条件]
 オーステナイト化するときの昇温速度:10℃/s
 高温保持:900℃で100秒間保持
 冷却速度:900℃から室温まで10℃/sまたは30℃/sで等速冷却
[Hardening conditions]
Rate of temperature rise when austenitizing: 10 ° C / s
High temperature hold: hold at 900 ° C. for 100 seconds Cooling rate: constant cooling from 900 ° C. to room temperature at 10 ° C./s or 30 ° C./s
 上記焼入れ後の試験片を用いて、JIS Z 2244に規定される「ビッカース硬さ試験方法」に準拠した硬度試験を行った。この試験では、試験片の表面から板厚の1/4の位置において9.8Nの試験荷重で5点測定を行い、それらの平均値を用いて評価した。 The hardness test based on the “Vickers hardness test method” defined in JIS Z 2244 was performed using the specimen after quenching. In this test, five-point measurement was performed at a test load of 9.8 N at a position 1/4 of the plate thickness from the surface of the test piece, and the average value thereof was used for evaluation.
 下記の表1および表2は、No.1~17の各鋼板について、成分組成(質量%)、-40℃のシャルピー衝撃試験における吸収エネルギーA(J/cm)、冷却速度が10℃/sである場合のビッカース硬さB(Hv)、冷却速度が30℃/sである場合のビッカース硬さC(Hv)、冷却速度が10℃/sである場合と30℃/sである場合の硬度差(Hv)、上記関係式(1)の左辺の値、上記関係式(2)の左辺から右辺を引いた時の値、及びスケール密着性の評価をそれぞれ示している。 Tables 1 and 2 below show No. For each of the steel plates 1 to 17, the composition (mass%), the absorbed energy A (J / cm 2 ) in the Charpy impact test at −40 ° C., and the Vickers hardness B (Hv when the cooling rate is 10 ° C./s) ), Vickers hardness C (Hv) when the cooling rate is 30 ° C./s, hardness difference (Hv) when the cooling rate is 10 ° C./s and 30 ° C./s, and the above relational expression ( The value of the left side of 1), the value when the right side is subtracted from the left side of the relational expression (2), and the evaluation of scale adhesion are shown.
 また図1のグラフ中、No.1~17の鋼板の各データをプロットしている。No.1~9および14~17のデータは黒丸で記し、No.10~13のデータは白丸で記している。 In the graph of FIG. Each data of steel plates 1 to 17 is plotted. No. The data of 1 to 9 and 14 to 17 are marked with black circles. The data of 10 to 13 are marked with white circles.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 <考察>
 上記表1および表2に基づいて、以下の通り考察することができる。
<Discussion>
Based on Table 1 and Table 2 above, the following can be considered.
 No.1~9および14~17は、鋼板中のC、Si、Mn、Cr、P、S、Al、N、BおよびTiの含有量がそれぞれ本発明の範囲を満たすと共に、C、Si、Mnおよび Crの含有量が上記関係式(1)を満たすものであった。この場合、「B+4A-627」の値が正の値となり、上記関係式(2)を満たすため、強度と靱性のバランスに優れた鋼板となった。しかも、No.1~9および14~17では、「B≧516」および「C-B≦35」となり、上記関係式(3)、(4)も満たすため、硬度安定性にも優れる鋼板となった。これは、図1のグラフにおいて、No.1~9および14~17のデータ(黒丸)が直線(1),(2)よりも上側の領域に存在していることから明らかである。またスケール密着性の評価についても全て「○」であった。 No. 1 to 9 and 14 to 17 are the contents of C, Si, Mn, Cr, P, S, Al, N, B and Ti in the steel sheet satisfy the scope of the present invention, respectively, and C, Si, Mn and The Cr content satisfied the relational expression (1). In this case, the value of “B + 4A−627” was a positive value and satisfied the relational expression (2), so that the steel sheet had an excellent balance between strength and toughness. Moreover, no. In 1 to 9 and 14 to 17, “B ≧ 516” and “CB ≦ 35” were satisfied, and the above relational expressions (3) and (4) were satisfied, so that the steel sheet was excellent in hardness stability. This is because in the graph of FIG. It is clear from the fact that the data (black circles) 1 to 9 and 14 to 17 are present in the region above the straight lines (1) and (2). In addition, all the evaluations of scale adhesion were “◯”.
 これに対し、本発明で規定した要件を満たさないNo.10~13では、以下の通り強度と靱性のバランスおよび硬度安定性の両方に優れた鋼板は得られなかった。図1のグラフの通り、No.10~13のデータ(白丸)は、全て直線(1),(2)よりも下側の領域に存在していた。 On the other hand, No. that does not meet the requirements defined in the present invention. In 10 to 13, a steel plate excellent in both strength and toughness balance and hardness stability was not obtained as described below. As shown in the graph of FIG. Data 10 to 13 (white circles) were all present in the area below the straight lines (1) and (2).
 No.10では、Si含有量が1.05質量%未満であり、且つ「[C]+2/9[Si]+7/9[Mn]+8/9[Cr]-7/4」の値が負の値となったため、「B+4A-627」の値が負の値となり、強度と靱性のバランスに劣った。また冷却速度が10℃/sの場合の硬度Bが516Hvに満たず、冷却速度が10℃/sの場合と30℃/sの場合の硬度差も35Hvを超えており、硬度安定性にも劣った。またスケール密着性の評価も「×」であった。 No. 10, the Si content is less than 1.05% by mass, and the value of [[C] +2/9 [Si] +7/9 [Mn] +8/9 [Cr] −7/4] is a negative value. Therefore, the value of “B + 4A−627” became a negative value, and the balance between strength and toughness was inferior. In addition, the hardness B when the cooling rate is 10 ° C./s is less than 516 Hv, and the difference in hardness between the cooling rate of 10 ° C./s and 30 ° C./s exceeds 35 Hv, which also improves the hardness stability. inferior. The evaluation of scale adhesion was also “x”.
 No.11~13では、Cr含有量が0.6質量%未満であり、「[C]+2/9[Si]+7/9[Mn]+8/9[Cr]-7/4」の値が負の値となったため、「B+4A-627」の値が負の値となり、強度と靱性のバランスに劣った。また冷却速度が10℃/sの場合の硬度Bが516Hvに満たず、冷却速度が10℃/sの場合と30℃/sの場合の硬度差も35Hvを超えており、硬度安定性にも劣った。 No. 11 to 13, the Cr content is less than 0.6% by mass, and the value of “[C] +2/9 [Si] +7/9 [Mn] +8/9 [Cr] −7/4” is negative. Therefore, the value of “B + 4A−627” was a negative value, and the balance between strength and toughness was inferior. In addition, the hardness B when the cooling rate is 10 ° C./s is less than 516 Hv, and the difference in hardness between the cooling rate of 10 ° C./s and 30 ° C./s exceeds 35 Hv, which also improves the hardness stability. inferior.
 今回開示された実施形態及び実施例は、全ての点で例示であって、制限的なものではないと解されるべきである。本発明の範囲は、上記した説明ではなくて請求の範囲により示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (3)

  1.  質量%で、
     C:0.25%以上、0.4%以下、
     Si:1.05%以上、1.4%以下、
     Mn:0%以上、1.4%以下、
     Cr:0.6%以上、3.0%以下、
     P:0%以上、0.03%以下、
     S:0%以上、0.02%以下、
     Al:0.01%以上、1%以下、
     N:0%以上、0.01%以下、
     B:0.0005%以上、0.005%以下、および
     Ti:0.005%以上、0.1%以下
     を含有し、残部が鉄および不可避不純物であり、
     C含有量を[C]、Si含有量を[Si]、Mn含有量を[Mn]、Cr含有量を[Cr]としたときに、下記(1)の関係式を満たすことにより、強度と靱性のバランスに加えて硬度安定性に優れることを特徴とする、ホットスタンプ用鋼板。
    Figure JPOXMLDOC01-appb-M000001
    % By mass
    C: 0.25% or more, 0.4% or less,
    Si: 1.05% or more, 1.4% or less,
    Mn: 0% or more, 1.4% or less,
    Cr: 0.6% or more, 3.0% or less,
    P: 0% or more, 0.03% or less,
    S: 0% or more, 0.02% or less,
    Al: 0.01% or more, 1% or less,
    N: 0% or more, 0.01% or less,
    B: 0.0005% or more, 0.005% or less, and Ti: 0.005% or more, 0.1% or less, the balance being iron and inevitable impurities,
    When the C content is [C], the Si content is [Si], the Mn content is [Mn], and the Cr content is [Cr], by satisfying the relational expression (1) below, the strength and A steel sheet for hot stamping characterized by excellent hardness stability in addition to a balance of toughness.
    Figure JPOXMLDOC01-appb-M000001
  2.  質量%で、
     Mo:0%以上、1.0%以下、
     Nb:0%以上、0.1%以下、および
     V:0%以上、0.1%以下よりなる群から選ばれる1種以上を含有することを特徴とする、請求項1に記載のホットスタンプ用鋼板。
    % By mass
    Mo: 0% or more, 1.0% or less,
    2. The hot stamp according to claim 1, comprising at least one selected from the group consisting of Nb: 0% or more and 0.1% or less and V: 0% or more and 0.1% or less. Steel plate.
  3.  質量%で、
     Cu:0%以上、0.5%以下、および
     Ni:0%以上、0.5%以下よりなる群から選ばれる1種以上を含有することを特徴とする、請求項1または2に記載のホットスタンプ用鋼板。
    % By mass
    It contains 1 or more types chosen from the group which consists of Cu: 0% or more and 0.5% or less, and Ni: 0% or more and 0.5% or less, The Claim 1 or 2 characterized by the above-mentioned. Steel sheet for hot stamping.
PCT/JP2019/011606 2018-03-27 2019-03-19 Steel plate for hot stamping WO2019188622A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020207030386A KR102409015B1 (en) 2018-03-27 2019-03-19 Steel plate for hot stamping
CN201980021455.2A CN111902558A (en) 2018-03-27 2019-03-19 Steel sheet for hot stamping
CN202211151222.4A CN115404409A (en) 2018-03-27 2019-03-19 Steel sheet for hot stamping
BR112020019522-7A BR112020019522A2 (en) 2018-03-27 2019-03-19 STEEL SHEET FOR HOT STAMPING
MX2020009944A MX2020009944A (en) 2018-03-27 2019-03-19 Steel plate for hot stamping.
US17/041,223 US20210054488A1 (en) 2018-03-27 2019-03-19 Steel plate for hot stamping
EP19775683.6A EP3760755A4 (en) 2018-03-27 2019-03-19 Steel plate for hot stamping
CA3094926A CA3094926C (en) 2018-03-27 2019-03-19 Steel plate for hot stamping
RU2020134949A RU2766947C1 (en) 2018-03-27 2019-03-19 Steel sheet for die forging

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018059814 2018-03-27
JP2018-059814 2018-03-27
JP2019029207A JP7353768B2 (en) 2018-03-27 2019-02-21 Steel plate for hot stamping
JP2019-029207 2019-02-21

Publications (1)

Publication Number Publication Date
WO2019188622A1 true WO2019188622A1 (en) 2019-10-03

Family

ID=68059905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011606 WO2019188622A1 (en) 2018-03-27 2019-03-19 Steel plate for hot stamping

Country Status (4)

Country Link
CN (1) CN115404409A (en)
MX (1) MX2020009944A (en)
RU (1) RU2766947C1 (en)
WO (1) WO2019188622A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156653A (en) * 2013-01-18 2014-08-28 Kobe Steel Ltd Method of manufacturing hot press molded steel member having high strength and excellent strength-ductility balance
JP2016003389A (en) * 2014-06-20 2016-01-12 株式会社神戸製鋼所 Steel plate for hot pressing, hot pressing molding using steel plate and production method of hot pressing molding
WO2016158961A1 (en) * 2015-03-31 2016-10-06 新日鐵住金株式会社 Steel sheet for hot stamping, method for manufacturing same, and hot stamp molded article
JP2017155329A (en) * 2016-02-29 2017-09-07 株式会社神戸製鋼所 Steel sheet for hardening and manufacturing method therefor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5742697B2 (en) * 2011-12-12 2015-07-01 新日鐵住金株式会社 Hot stamping molded body excellent in balance between strength and toughness, manufacturing method thereof, and manufacturing method of steel sheet for hot stamping molded body
CN104160050B (en) * 2012-03-07 2016-05-18 新日铁住金株式会社 Steel plate and manufacture method and drop stamping steel for drop stamping
CA2908356C (en) * 2013-04-02 2017-11-28 Nippon Steel & Sumitomo Metal Corporation Hot-stamped steel, cold-rolled steel sheet and method for producing hot-stamped steel
JP5852690B2 (en) * 2013-04-26 2016-02-03 株式会社神戸製鋼所 Alloyed hot-dip galvanized steel sheet for hot stamping
US10301699B2 (en) * 2013-09-18 2019-05-28 Nippon Steel & Sumitomo Metal Corporation Hot-stamped part and method of manufacturing the same
TWI544091B (en) * 2013-11-29 2016-08-01 新日鐵住金股份有限公司 Hot-formed steel sheet member, method for producing the same, and steel sheet for hot-forming
JP5852728B2 (en) * 2013-12-25 2016-02-03 株式会社神戸製鋼所 Steel sheet for hot forming and manufacturing method of hot press formed steel member
IN201617022707A (en) * 2014-01-06 2016-08-31 Nippon Steel & Sumitomo Metal Corp
JP2017066508A (en) * 2015-10-02 2017-04-06 株式会社神戸製鋼所 Galvanized steel sheet for hot press and method of producing hot press formed article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156653A (en) * 2013-01-18 2014-08-28 Kobe Steel Ltd Method of manufacturing hot press molded steel member having high strength and excellent strength-ductility balance
JP2016003389A (en) * 2014-06-20 2016-01-12 株式会社神戸製鋼所 Steel plate for hot pressing, hot pressing molding using steel plate and production method of hot pressing molding
WO2016158961A1 (en) * 2015-03-31 2016-10-06 新日鐵住金株式会社 Steel sheet for hot stamping, method for manufacturing same, and hot stamp molded article
JP2017155329A (en) * 2016-02-29 2017-09-07 株式会社神戸製鋼所 Steel sheet for hardening and manufacturing method therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KATSUJI NAKASHIMA: "Hardening Technology of Steel by Die Quenching and Application to Body Parts", CAMP-ISIJ, vol. 17, 2004, pages 980 - 983
KAZUO HIKIDA ET AL.: "Development of TS 1800 MPa Grade Hot Stamping Steel Sheet", MATERIA, vol. 52, no. 2, 2013, pages 68 - 70

Also Published As

Publication number Publication date
RU2766947C1 (en) 2022-03-16
MX2020009944A (en) 2020-10-16
CN115404409A (en) 2022-11-29

Similar Documents

Publication Publication Date Title
US10253388B2 (en) Steel sheet for hot press formed product having superior bendability and ultra-high strength, hot press formed product using same, and method for manufacturing same
CN110042321B9 (en) HPF molded member having bendability and method for producing same
JP2017514989A (en) Method for producing cold rolled flat steel product with high yield strength and cold rolled flat steel product
CN111218620B (en) High-yield-ratio cold-rolled dual-phase steel and manufacturing method thereof
US11655518B2 (en) Steel material for taylor welded blank and method for manufacturing hot-stamped part using same steel
EP3556895A1 (en) High-carbon hot-rolled steel sheet having excellent surface quality and manufacturing method therefor
JP7353768B2 (en) Steel plate for hot stamping
KR101518588B1 (en) Precipitation hardening steel sheet having excellent yield strength and yield ratio and method for manufacturing the same
CN107541663A (en) A kind of beverage can ferrostan and its production method
JP5626388B2 (en) High strength hot stamping molded article excellent in toughness and hydrogen embrittlement resistance and method for producing the same
JP5228963B2 (en) Cold rolled steel sheet and method for producing the same
WO2019188622A1 (en) Steel plate for hot stamping
KR20230056822A (en) Ultra-high strength steel sheet having excellent ductility and mathod of manufacturing the same
EP3708691B1 (en) Manufacturing method for ultrahigh-strength and high-ductility steel sheet having excellent cold formability
JP4740021B2 (en) Cr-containing thin steel sheet having excellent shape freezing property and method for producing the same
US20230416860A1 (en) High yield ratio and high strength steel sheet having excellent thermal stability, and manufacturing method therefor
JPS63213620A (en) Manufacture of high strength steel pipe joint
US20240141454A1 (en) Ultra high strength steel sheet having high yield ratio and excellent bendability and method of manufacturing same
CN115198176A (en) Martensite steel for ultrahigh-strength carriage and preparation method thereof
TWI513832B (en) Brake disc of stainless steel and its manufacturing method
JP2024500150A (en) Ultra-high strength steel plate with high yield ratio and excellent thermal stability and its manufacturing method
KR20160078807A (en) Hot press forming parts having superior ductility and impact toughness and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3094926

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019775683

Country of ref document: EP

Effective date: 20201001

ENP Entry into the national phase

Ref document number: 20207030386

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020019522

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020019522

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200925