JP2016003389A - Steel plate for hot pressing, hot pressing molding using steel plate and production method of hot pressing molding - Google Patents

Steel plate for hot pressing, hot pressing molding using steel plate and production method of hot pressing molding Download PDF

Info

Publication number
JP2016003389A
JP2016003389A JP2014126777A JP2014126777A JP2016003389A JP 2016003389 A JP2016003389 A JP 2016003389A JP 2014126777 A JP2014126777 A JP 2014126777A JP 2014126777 A JP2014126777 A JP 2014126777A JP 2016003389 A JP2016003389 A JP 2016003389A
Authority
JP
Japan
Prior art keywords
less
hot pressing
hot
steel sheet
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014126777A
Other languages
Japanese (ja)
Inventor
村上 俊夫
Toshio Murakami
俊夫 村上
純也 内藤
Junya Naito
純也 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014126777A priority Critical patent/JP2016003389A/en
Priority to PCT/JP2015/067363 priority patent/WO2015194571A1/en
Publication of JP2016003389A publication Critical patent/JP2016003389A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel plate for hot pressing which realizes excellent ductility after hot pressing without addition of large amounts of expensive elements, such as Ni, or an additional step in cooling after press forming with a die.SOLUTION: A steel plate for hot pressing comprises 0.10-0.4% of C, 2.0% or less of Si, 0.5% or less of Mn, 0.8-2.0% of Cr, 0.015 or less of P, 0.01% or less of S, 0.001-0.1% of Al, 0.01-0.1% of Ti, 0.0005-0.005% of B and N in a content giving [Ti]/[N] of 3.3 or higher and has a carbon equivalent Ceq of 0.43-0.7% and an Ms point of 415°C or higher. (1) Ceq=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14; and (2) Ms(°C)=550-361[C]-39[Mn]-10[Cu]-17[Ni]-20[Cr]-5[Mo]+30[Al].

Description

本発明は、熱間プレス用鋼板、並びに該鋼板を用いた熱間プレス成形品及びその製造方法に関する。以下では、上記熱間プレス用鋼板の代表例である自動車用鋼板を中心に説明するが、本発明はこれに限定されない。   The present invention relates to a steel sheet for hot pressing, a hot press-formed product using the steel sheet, and a method for producing the same. Below, although it demonstrates centering on the steel plate for motor vehicles which is a representative example of the said steel plate for hot presses, this invention is not limited to this.

近年、自動車の燃費向上および衝突安全性の向上を両立させるため、自動車用鋼板を出来るだけ高強度化することが要請されている。しかしながら、鋼板を高強度化すると、伸びや、板材の深絞り性を示すランクフォード値が低下し、プレス成形性や形状凍結性が劣化する。   In recent years, it has been demanded to increase the strength of automobile steel plates as much as possible in order to achieve both improved fuel economy and improved collision safety. However, when the strength of the steel plate is increased, the Rankford value indicating the elongation and the deep drawability of the plate material decreases, and the press formability and the shape freezeability deteriorate.

このような課題を解決するために、熱間プレス成形法が採用されている。熱間プレス成形法は、鋼板をオーステナイト単相となる温度に加熱して強度を低下させて、成形を容易にした状態で、金型にてプレス成形を行う方法である。具体的には例えば、鋼板に比べて低温、例えば室温の金型で成形することによって鋼板に形状を付与すると同時に、両者の温度差を利用した焼入れを行って、プレス成形後の部品の強度を確保する。   In order to solve such a problem, a hot press molding method is employed. The hot press forming method is a method in which a steel plate is heated to a temperature at which it becomes an austenite single phase to reduce the strength and press forming with a mold in a state in which forming is facilitated. Specifically, for example, the shape of the steel sheet is imparted by molding with a mold at a lower temperature than that of the steel sheet, for example, room temperature, and at the same time, quenching using the temperature difference between the two is performed to increase the strength of the part after press forming. Secure.

このように熱間プレス成形法で製造した部品は高強度を示すため、バンパービーム、ドアビームなどの衝突部品への適用が進められている。衝突部品は高強度に加えて、延性や靭性が要求されることから、熱間プレス成形法を用いて、熱間プレス後の部品の延靭性を高めるための研究開発が進められている。   Thus, since the parts manufactured by the hot press molding method exhibit high strength, application to collision parts such as bumper beams and door beams is being promoted. Collision parts are required to have ductility and toughness in addition to high strength. Therefore, research and development are being conducted to increase the toughness of parts after hot pressing using a hot press forming method.

例えば特許文献1には、質量%で、Niを1%超〜5%含有させることで、熱間プレス後の硬化能および衝撃特性を高めることができる熱間プレス用鋼板が提案されている。   For example, Patent Document 1 proposes a steel sheet for hot pressing that can improve the hardenability and impact characteristics after hot pressing by containing Ni in an amount of 1% by mass over 1%.

また、特許文献2には、質量%で、C:0.33%以上0.40%以下、Ni:2.0以上5.0%以下、Mn:0.01%以上0.5%未満を含み、選択成分としてCrを0.5%以下の範囲で含み、旧オーステナイト平均粒径が5μm以上であるマルテンサイトからなる鋼組織とすることで、延靭性を改善した熱間プレス成形品が提案されている。   Patent Document 2 includes, in mass%, C: 0.33% to 0.40%, Ni: 2.0 to 5.0%, Mn: 0.01% to less than 0.5%. In addition, a hot press-molded product with improved ductility is proposed by making it a steel structure consisting of martensite containing Cr as a selective component in a range of 0.5% or less and having a prior austenite average particle size of 5 μm or more. Has been.

しかしながら、上記特許文献1、2の技術では、高価なNiを多量に添加する必要があるため、コストが増加する。   However, the techniques of Patent Documents 1 and 2 require a large amount of expensive Ni, which increases the cost.

また、特許文献3には、鋼板をAc変態点以上の温度に加熱し、400℃以上550℃以下の温度に加熱した金型でプレス成形を行い、400℃以上550℃以下の温度で5秒以上保定し、続いて室温まで空冷以下の速度で冷却することで、靭性を改善する熱間プレス方法が提案されている。 In Patent Document 3, a steel sheet is heated to a temperature not lower than the Ac 3 transformation point, press-molded with a mold heated to a temperature not lower than 400 ° C. and not higher than 550 ° C., and 5 at a temperature not lower than 400 ° C. and not higher than 550 ° C. There has been proposed a hot pressing method that improves toughness by holding for more than a second and then cooling to room temperature at a rate less than air cooling.

また、特許文献4には、鋼板をAC変態点以上の温度に加熱し、400℃以上550℃以下の温度に加熱した金型でプレス成形を行い、400℃以上550℃以下の温度範囲に5秒以上保持し、550℃以上590℃以下の温度に加熱して軟窒化処理を行い、続いて室温まで20℃/秒以上の速度で冷却することで、靭性及び疲労特性を改善する熱間プレス方法が提案されている。 Patent Document 4 discloses that a steel sheet is heated to a temperature not lower than the AC 3 transformation point, press-molded with a mold heated to a temperature not lower than 400 ° C. and not higher than 550 ° C., and brought to a temperature range of 400 ° C. to 550 ° C. Hold for 5 seconds or more, heat to 550 ° C or more and 590 ° C or less, perform soft nitriding, and then cool to room temperature at a rate of 20 ° C / second or more to improve toughness and fatigue properties A pressing method has been proposed.

しかしながら、上記特許文献3、4の技術では、400℃以上550℃以下の温度に加熱した金型でプレス成形するため、金型冷却の速度が低下して生産性が低下するという問題がある。更に上記特許文献3、4の技術では、400℃以上550℃以下での5秒以上維持した後、室温まで空冷以下の速度での冷却、または550℃以上590℃以下の温度での軟窒化処理が必要になるため、生産性が極端に低下する。   However, the techniques disclosed in Patent Documents 3 and 4 have a problem that the mold cooling rate decreases and the productivity decreases because the mold is heated to a temperature of 400 ° C. or higher and 550 ° C. or lower. Furthermore, in the techniques of Patent Documents 3 and 4 above, after maintaining at 400 ° C. or higher and 550 ° C. or lower for 5 seconds or longer, cooling to room temperature at a rate of air cooling or lower, or soft nitriding at a temperature of 550 ° C. or higher and 590 ° C. or lower. Therefore, productivity is extremely reduced.

また、特許文献5には、Ni、Cu、Snの1種または2種以上の合計を0.005〜2%、Ca、Mg、Y、As、Sb、REMの1種または2種以上の合計を0.0005〜0.05含有させることで、熱間プレス後の衝撃特性・遅れ破壊特性を高めることができる熱間プレス用鋼板が提案されている。   In Patent Document 5, the total of one or more of Ni, Cu, and Sn is 0.005 to 2%, and the total of one or more of Ca, Mg, Y, As, Sb, and REM is added. By adding 0.0005 to 0.05, a steel sheet for hot pressing that can improve impact characteristics and delayed fracture characteristics after hot pressing has been proposed.

また、特許文献6には、C:0.25〜0.45%およびMn+Cr:0.5〜3.0%を含有し、さらにSi:0.5%以下、Ni:2%以下、Cu:1%以下、V:1%以下およびAl:1%以下の1種または2種以上を含有し、残部Fe及び不純物からなる化学組成を有し、鋼組織が、旧オーステナイト平均粒径が10μm以下である自動焼き戻しマルテンサイトにより構成され、かつ引張強さが1.8GPa以上とすることで、靭性を改善した熱間プレス成形品と、その元になる熱間プレス用鋼板が提案されている。   Patent Document 6 contains C: 0.25 to 0.45% and Mn + Cr: 0.5 to 3.0%, Si: 0.5% or less, Ni: 2% or less, Cu: 1% or less, V: 1% or less, and Al: 1% or less, containing a chemical composition consisting of Fe and impurities, steel structure has a prior austenite average grain size of 10 μm or less A hot press-formed product with improved toughness and a steel plate for hot press that is the basis of the hot-tempered martensite and tensile strength of 1.8 GPa or more have been proposed. .

上記特許文献5、6の技術によれば、介在物の制御や粒径の微細化により一定の改善効果が期待できるものの、十分な延靭性が確保できないため、更なる改善が必要である。   According to the techniques of Patent Documents 5 and 6, although a certain improvement effect can be expected by controlling inclusions and making the particle size finer, sufficient ductility cannot be ensured, so further improvement is necessary.

特開2004−211197号公報Japanese Patent Laid-Open No. 2004-211197 特開2012−1802号公報JP 2012-1802 A 特開2005−177805号公報JP 2005-177805 A 特開2006−224162号公報JP 2006-224162 A 特開2005−139485号公報JP-A-2005-139485 特開2006−152427号公報JP 2006-152427 A

本発明は上記事情に着目してなされたものであり、その目的は、Niなどの高価な元素を多量に添加することなく、また、金型でのプレス成形後の冷却の際に追加の工程も必要とすることなく、熱間プレス後に優れた延性を実現し得る熱間プレス用鋼板、並びに熱間プレス成形品及びその製造方法を提供することにある。   The present invention has been made paying attention to the above circumstances, and the object thereof is to add an additional step without adding a large amount of expensive elements such as Ni and at the time of cooling after press molding in a mold. It is another object of the present invention to provide a hot-press steel sheet, a hot-press formed product, and a method for producing the same that can realize excellent ductility after hot pressing.

本発明者らは、上記課題を解決するために熱間プレス用鋼板の組成を中心に検討した。その結果、熱間プレス用鋼板におけるMnの量を0.5%以下に低減すると共に、Mnの低減分をCrで補完してCrを0.8%以上に多量添加すれば、プレス成形後の延性が向上することを突き止めた。   In order to solve the above-mentioned problems, the present inventors have studied mainly on the composition of a steel sheet for hot pressing. As a result, if the amount of Mn in the hot-press steel sheet is reduced to 0.5% or less, and if the amount of Mn is supplemented with Cr and a large amount of Cr is added to 0.8% or more, We found that ductility was improved.

すなわち、熱間プレス時の金型冷却による鋼板の焼入れ性を確保するため、従来はMnを活用しており、例えば後記する表1の鋼種1の従来材に示すように、Crに比べてMnを多量添加していた。ところが、上記従来材を用いた熱間プレス成形品は、表2の試験No.1に示すように曲げ角度などの延性に劣り、改善の余地があった。   That is, in order to ensure the hardenability of the steel sheet by die cooling during hot pressing, Mn is conventionally used. For example, as shown in the conventional material of steel type 1 in Table 1 to be described later, Mn compared to Cr A large amount of was added. However, the hot press-molded product using the above-mentioned conventional material has a test No. in Table 2. As shown in FIG. 1, the ductility such as the bending angle was inferior, and there was room for improvement.

そこで本発明者らは上記課題を達成するため、Mnと同じ焼入れ性向上作用を有し、フェライトやベイナイトなどの形成を抑制し得る元素であって、炭化物の粗大化抑制効果に優れるCrに着目した。MnとCrの最も大きな相違点は、マルテンサイトの形成が開始されるMs点の低下幅にある。Ms点は後記する式(2)で規定されるが、上記式(2)において、Mnの係数が−39であるのに対し、Crの係数は−20であり、Mnに比べてCrは、Ms点の低下幅が小さい。よって、Mnに比べてCrを多量添加すると、フェライトやベイナイトの形成を抑制しつつ、Ms点を高めることができる。Ms点が低いと固溶C量が増加して鋼材の変形能に対して悪影響を及ぼすようになり、特に延靱性が低下する。これに対し、Ms点が上昇すると、マルテンサイトが形成される温度が高くなり、生成したマルテンサイトの金型冷却中に鋼材中に固溶しているCが炭化物として析出し、いわゆる自己焼戻しが促進される。   Therefore, in order to achieve the above-mentioned problems, the present inventors pay attention to Cr which has the same hardenability improving effect as Mn and can suppress the formation of ferrite, bainite and the like, and is excellent in the effect of suppressing the coarsening of carbides. did. The biggest difference between Mn and Cr lies in the decrease in the Ms point at which martensite formation starts. The Ms point is defined by the following formula (2). In the above formula (2), the coefficient of Mn is −39, whereas the coefficient of Cr is −20. Compared to Mn, Cr is The decrease width of the Ms point is small. Therefore, when a large amount of Cr is added compared with Mn, the Ms point can be increased while suppressing the formation of ferrite and bainite. If the Ms point is low, the amount of dissolved C increases, which adversely affects the deformability of the steel material, and in particular the ductility decreases. On the other hand, when the Ms point rises, the temperature at which martensite is formed increases, and C dissolved in the steel material precipitates as carbide during the mold cooling of the generated martensite, so-called self-tempering. Promoted.

そして本発明では、炭化物の粗大化抑制効果の高いCrを多量に含有しているため、炭化物の成長速度が大幅に抑制される。その結果、自己焼戻しにより形成される炭化物の粗大化が防止されて、破壊の起点となる炭化物を微細化できるため、熱間プレス成形品の延性を高めつつ、熱間プレス成形品の強度および靭性も確保することができる。   And in this invention, since the carbide | carbonized_material coarsening suppression effect with a large amount is contained, the growth rate of a carbide | carbonized_material is suppressed significantly. As a result, coarsening of the carbide formed by self-tempering is prevented, and the carbide that becomes the starting point of fracture can be refined, so that the strength and toughness of the hot press-formed product are improved while increasing the ductility of the hot press-formed product. Can also be secured.

本発明は、上記観点に基づきMn量およびCr量を決定すると共に、Ms点および焼き入れ性の指標であるCeq量も適切な範囲に制御すれば所期の目的が達成されることを見出し、本発明を完成した。   The present invention finds that the intended purpose can be achieved by determining the Mn amount and the Cr amount based on the above viewpoint, and controlling the Ms point and the Ceq amount that is an index of hardenability to an appropriate range, The present invention has been completed.

すなわち、上記課題を解決し得た本発明の熱間プレス用鋼板は、成分組成が、質量%で、C:0.10〜0.4%、Si:0%以上2.0%以下、Mn:0%以上0.5%以下、Cr:0.8〜2.0%、P:0%超0.015%以下、S:0%超0.01%以下、Al:0.001〜0.1%、Ti:0.01〜0.1%、B:0.0005〜0.005%、N:[Ti]/[N]が3.3以上となる含有量をそれぞれ含み、残部が鉄および不可避的不純物からなるとともに、下記式(1)で規定される炭素当量Ceqが0.43〜0.7%であり、且つ、下記(2)で規定されるMs点が415℃以上であるところに要旨を有する。
Ceq=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14・・・(1)
Ms(℃)=550−361×[C]−39×[Mn]−10×[Cu]−17×[Ni]−20×[Cr]−5×[Mo]+30×[Al]・・・(2)
ただし、[X]は元素Xの含有量を意味し、単位は質量%である。
That is, the steel sheet for hot pressing according to the present invention that has solved the above-mentioned problems has a component composition of mass%, C: 0.10 to 0.4%, Si: 0% or more and 2.0% or less, Mn : 0% to 0.5%, Cr: 0.8 to 2.0%, P: more than 0% to 0.015% or less, S: more than 0% to 0.01% or less, Al: 0.001 to 0 0.1%, Ti: 0.01 to 0.1%, B: 0.0005 to 0.005%, N: [Ti] / [N] each including a content of 3.3 or more, the balance being The carbon equivalent Ceq defined by the following formula (1) is 0.43 to 0.7%, and the Ms point defined by the following (2) is 415 ° C. or higher. It has a gist at some point.
Ceq = [C] + [Mn] / 6 + [Si] / 24 + [Ni] / 40 + [Cr] / 5 + [Mo] / 4 + [V] / 14 (1)
Ms (° C.) = 550-361 × [C] −39 × [Mn] −10 × [Cu] −17 × [Ni] −20 × [Cr] −5 × [Mo] + 30 × [Al]. (2)
However, [X] means content of the element X and a unit is the mass%.

本発明の好ましい実施形態において、上記熱間プレス用鋼板は、更に質量%で、Mo:0%超0.5%以下、Cu:0%超0.5%以下、およびNi:0%超0.5%以下よりなる群から選択される少なくとも一種を含む。   In a preferred embodiment of the present invention, the steel sheet for hot pressing is further mass%, Mo: more than 0% and 0.5% or less, Cu: more than 0% and 0.5% or less, and Ni: more than 0% and 0%. And at least one selected from the group consisting of 5% or less.

本発明の好ましい実施形態において、上記熱間プレス用鋼板は、更に質量%で、V:0%超0.1%以下、およびNb:0%超0.1%以下の少なくとも一種を含む。   In a preferred embodiment of the present invention, the hot-press steel sheet further includes at least one of mass%, V: more than 0% and 0.1% or less, and Nb: more than 0% and 0.1% or less.

本発明の好ましい実施形態において、上記熱間プレス用鋼板は、更に質量%で、Ca:0%超0.005%以下、およびREM:0%超0.005%以下の少なくとも一種を含む。   In a preferred embodiment of the present invention, the steel sheet for hot pressing further includes at least one of Ca: more than 0% and 0.005% or less and REM: more than 0% and 0.005% or less.

また、上記課題を解決し得た本発明に係る熱間プレス成形品の製造方法は、上記のいずれかに記載の熱間プレス用鋼板を、下記式(3)で規定されるAc点以上の温度に加熱した後、金型により前記鋼板のプレス成形を開始し、プレス成形の開始後、下記式(2)で規定されるMs点の範囲までを、前記金型内で20〜300℃/sの平均冷却速度で冷却するところに要旨を有する。
Ms(℃)=550−361×[C]−39×[Mn]−10×[Cu]−17×[Ni]−20×[Cr]−5×[Mo]+30×[Al]・・・(2)
Ac(℃)=910−203×[C]1/2+44.7×[Si]−30×[Mn]+700×[P]+400×[Al]+400×[Ti]+104×[V]−11×[Cr]+31.5×[Mo]−20×[Cu]−15.2×[Ni]・・・(3)
ただし、[X]は元素Xの含有量を意味し、単位は質量%である。
Moreover, the manufacturing method of the hot press-formed product according to the present invention that has solved the above-mentioned problems is a hot press steel sheet according to any one of the above, with Ac 3 or more defined by the following formula (3): Then, the steel sheet is press-molded with a mold, and after the press molding is started, the range up to the Ms point defined by the following formula (2) is 20 to 300 ° C. in the mold. It has a gist in that it is cooled at an average cooling rate of / s.
Ms (° C.) = 550-361 × [C] −39 × [Mn] −10 × [Cu] −17 × [Ni] −20 × [Cr] −5 × [Mo] + 30 × [Al]. (2)
Ac 3 (° C.) = 910−203 × [C] 1/2 + 44.7 × [Si] −30 × [Mn] + 700 × [P] + 400 × [Al] + 400 × [Ti] + 104 × [V] − 11 × [Cr] + 31.5 × [Mo] −20 × [Cu] −15.2 × [Ni] (3)
However, [X] means content of the element X and a unit is the mass%.

また、上記課題を解決し得た本発明の熱間プレス成形品は、上記のいずれかに記載の成分組成からなり、マルテンサイト:全組織に対する面積率で95%以上、残部:フェライト、およびベイナイトの少なくとも一種からなり、鋼中に分散する炭化物の平均粒径が1μm以下である組織を有するところに要旨を有する。   Moreover, the hot press-formed product of the present invention that has solved the above-mentioned problems has the component composition described in any of the above, and martensite: 95% or more in area ratio with respect to the entire structure, the balance: ferrite, and bainite And having a structure in which the average particle size of the carbide dispersed in the steel is 1 μm or less.

本発明によれば、Mnの一部を比較的安価なCrに代えて、Mnに比べてCrを多量に含有する熱間プレス用鋼板を用いているため、Niなどの高価な元素を多量に添加することなく、また金型でのプレス成形後の冷却の際に追加の工程も必要とすることなく生産性に優れた方法により、熱間プレス後に優れた延性を実現し得る熱間プレス成形品を提供することができる。   According to the present invention, a part of Mn is replaced with relatively inexpensive Cr, and a hot-press steel sheet containing a larger amount of Cr than Mn is used. Therefore, a large amount of expensive elements such as Ni are contained. Hot press forming that can realize excellent ductility after hot pressing by a method with excellent productivity without adding, and without requiring additional steps when cooling after press forming in the mold Goods can be provided.

まず、本発明の熱間プレス用鋼板について説明する。上述したとおり、本発明の熱間プレス用鋼板は、成分組成が、C:0.10〜0.4%、Si:0%以上2.0%以下、Mn:0%以上0.5%以下、Cr:0.8〜2.0%、P:0%超0.015%以下、S:0%超0.01%以下、Al:0.001〜0.1%、Ti:0.01〜0.1%、B:0.0005〜0.005%、N:[Ti]/[N]が3.3以上となる含有量をそれぞれ含み、残部が鉄および不可避的不純物からなると共に、下記式(1)で規定される炭素当量Ceqが0.43〜0.7%であり、且つ、下記式(2)で規定されるMs点が415℃以上であることを特徴とする。
Ceq=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14・・・(1)
Ms(℃)=550−361×[C]−39×[Mn]−10×[Cu]−17×[Ni]−20×[Cr]−5×[Mo]+30×[Al]・・・(2)
First, the hot press steel sheet of the present invention will be described. As described above, the steel sheet for hot pressing of the present invention has a component composition of C: 0.10 to 0.4%, Si: 0% to 2.0%, Mn: 0% to 0.5%. Cr: 0.8 to 2.0%, P: more than 0% and 0.015% or less, S: more than 0% and 0.01% or less, Al: 0.001 to 0.1%, Ti: 0.01 -0.1%, B: 0.0005-0.005%, N: [Ti] / [N] each include a content of 3.3 or more, the balance is made of iron and inevitable impurities, The carbon equivalent Ceq defined by the following formula (1) is 0.43 to 0.7%, and the Ms point defined by the following formula (2) is 415 ° C. or higher.
Ceq = [C] + [Mn] / 6 + [Si] / 24 + [Ni] / 40 + [Cr] / 5 + [Mo] / 4 + [V] / 14 (1)
Ms (° C.) = 550-361 × [C] −39 × [Mn] −10 × [Cu] −17 × [Ni] −20 × [Cr] −5 × [Mo] + 30 × [Al]. (2)

以下、本発明に係る熱間プレス用鋼板の成分組成について、詳しく説明する。   Hereinafter, the component composition of the steel sheet for hot pressing according to the present invention will be described in detail.

C:0.10〜0.4%
Cは、熱間プレスの際における焼入れ時の強度を確保するうえで重要な元素である。特にマルテンサイトを生成して熱間プレス成形品の高強度化を達成するためには必須の元素である。所望とする1180MPa以上の強度を得るためには、C量の下限を0.10%以上、好ましくは0.15%以上、より好ましくは0.2%以上とする。ただし、Cを過剰に含有させると、必要以上に強度が増加して熱間加工性が低下するだけでなく、溶接性等も劣化するので、C量の上限を0.4%以下、好ましくは0.3%以下とする。
C: 0.10 to 0.4%
C is an important element for ensuring the strength at the time of quenching during hot pressing. In particular, it is an essential element for producing martensite and achieving high strength of a hot press-formed product. In order to obtain the desired strength of 1180 MPa or more, the lower limit of the C content is 0.10% or more, preferably 0.15% or more, more preferably 0.2% or more. However, when C is excessively contained, not only the strength is increased more than necessary, but the hot workability is deteriorated, but also the weldability is deteriorated, so the upper limit of the C amount is 0.4% or less, preferably 0.3% or less.

Si:0%以上2.0%以下
Siは、固溶強化能が高く、セメンタイトの粗大化を抑制するが、延性の向上に有用な微細な炭化物の形成自体も抑制する傾向がある。更にSiは、金型焼入れ時におけるマルテンサイトの自己焼戻し作用を阻害して延性の低下を招く。そのため、Si量は出来るだけ少ないことが望ましい。Si量は2.0%以下、好ましくは0.5%以下、より好ましくは0.1%以下とする。Si量は0%であっても良い。
Si: 0% or more and 2.0% or less Si has a high solid solution strengthening ability and suppresses coarsening of cementite, but also tends to suppress formation of fine carbides useful for improving ductility. Further, Si inhibits the self-tempering action of martensite at the time of mold quenching and causes a decrease in ductility. Therefore, it is desirable that the amount of Si is as small as possible. The amount of Si is 2.0% or less, preferably 0.5% or less, more preferably 0.1% or less. The amount of Si may be 0%.

Mn:0%以上0.5%以下
Mnは、焼入れ性向上効果は非常に大きい反面、Ms点を大きく低下させる元素である。そのため、Mnを過剰に含有させると自己焼戻しが十分に起こらなくなり、延性が低下する。よって、本発明ではMn量の上限を、焼入れ性の確保に必要最小限の含有量に止める。Mn量は0.5%以下、好ましくは0.3%以下とする。なお、Mn量の好ましい下限は0.05%以上であり、より好ましくは0.1%以上である。
Mn: 0% or more and 0.5% or less Mn is an element that greatly reduces the Ms point, while the effect of improving hardenability is very large. Therefore, when Mn is contained excessively, self-tempering does not occur sufficiently and ductility is lowered. Therefore, in the present invention, the upper limit of the amount of Mn is limited to the minimum content necessary for ensuring hardenability. The amount of Mn is 0.5% or less, preferably 0.3% or less. In addition, the minimum with the preferable amount of Mn is 0.05% or more, More preferably, it is 0.1% or more.

Cr:0.8〜2.0%
Crは、Mnと同様に焼入れ性向上効果を有するが、Mnに比べてMs点の低下幅が小さいため、自己焼戻しの促進による延性の向上と焼入れ性の向上による高強度化とを両立させることができる。更にCrは、焼戻し時に形成される炭化物の粗大化抑制効果が高く、熱間プレス成形品における破壊の起点となる炭化物を微細化して破壊を防止し、延性の向上に有用な元素である。これらの効果を有効に発揮させるため、Cr量は0.8%以上、好ましくは1.0%以上、より好ましくは1.2%以上とする。ただし、Crを過剰に含有しても上記効果が飽和してしまい、コストが上昇するため、Cr量の上限を2.0%以下、好ましくは1.8%以下、より好ましくは1.5%以下とする。
Cr: 0.8 to 2.0%
Cr has the effect of improving hardenability like Mn, but since the decrease in Ms point is smaller than that of Mn, it is necessary to achieve both improvement in ductility by promoting self-tempering and increase in strength by improving hardenability. Can do. Furthermore, Cr has a high effect of suppressing the coarsening of carbides formed during tempering, and is an element useful for improving ductility by minimizing carbides that are the starting point of fracture in hot press-formed products to prevent fracture. In order to effectively exhibit these effects, the Cr content is 0.8% or more, preferably 1.0% or more, more preferably 1.2% or more. However, even if Cr is contained excessively, the above effect is saturated and the cost increases, so the upper limit of Cr content is 2.0% or less, preferably 1.8% or less, more preferably 1.5%. The following.

なお、前述した特許文献6の請求項1では、Mn+Cr:0.5〜3.0%を含有する熱間プレス鋼板部材を規定しているが、本発明とは以下の点で相違している。まず、上記特許文献6では、MnとCrを、焼入れ性向上作用を有する同効元素としての認識しかなく、本発明のようにMn量の一部をCr量に代えて、プレス成形後の延性を向上させるという思想は全くない。よって、上記特許文献6では、本発明のようにMnの上限を0.5%以下に低減し、Crを0.8%以上添加することは開示されていない。実際のところ、上記特許文献6の表1には、Mn量を1.10%以上含む実施例しか開示されていない。また、Cr量にしても、上記実施例の殆どが0.48%以下であり、唯一、0.80%のCrを含む例でもMn量は1.10%と多く、本発明の要件を満足していない。   In addition, in Claim 1 of the patent document 6 mentioned above, although the hot-pressed steel plate member containing Mn + Cr: 0.5-3.0% is prescribed | regulated, it differs from this invention by the following points. . First, in the above-mentioned Patent Document 6, Mn and Cr are only recognized as synergistic elements having an effect of improving hardenability, and a part of Mn amount is replaced with Cr amount as in the present invention, and ductility after press forming is performed. There is no idea of improving the quality. Therefore, in the said patent document 6, reducing the upper limit of Mn to 0.5% or less like this invention, and adding 0.8% or more of Cr is not indicated. Actually, Table 1 of the above-mentioned Patent Document 6 discloses only an example including an amount of Mn of 1.10% or more. Even in the case of the Cr content, most of the above examples are 0.48% or less, and even in the case of containing only 0.80% Cr, the Mn content is as high as 1.10%, which satisfies the requirements of the present invention. Not done.

P:0%超0.015%以下
Pは、鋼中で粒界偏析を起こして熱間加工性やプレス成形性に悪影響を及ぼす有害元素である。したがって、P量は0.015%以下、好ましくは0.010%以下、より好ましくは0.005%以下とする。
P: more than 0% and not more than 0.015% P is a harmful element that causes grain boundary segregation in steel and adversely affects hot workability and press formability. Therefore, the P content is 0.015% or less, preferably 0.010% or less, more preferably 0.005% or less.

S:0%超0.01%以下
Sは、MnS等の硫化物系介在物を形成し、割れ発生の原因となり得る。したがって、S量は0.01%以下、好ましくは0.005%以下、より好ましくは0.002%以下とする。
S: more than 0% and 0.01% or less S forms sulfide inclusions such as MnS and can cause cracks. Therefore, the S content is 0.01% or less, preferably 0.005% or less, more preferably 0.002% or less.

Al:0.001〜0.1%
Alは、溶鋼の脱酸材として有用であると共に、後記するBの添加による焼入れ性向上作用を阻害するNを固定する元素でもある。このような効果を有効に発揮させるため、Al量の下限を0.001%以上、好ましくは0.01%以上、より好ましくは0.02%以上とする。ただし、Alを過剰に含有させると、非金属介在物が多くなり、表面疵が発生し易くなるので、Al量の上限を0.1%以下、好ましくは0.07%以下、より好ましくは0.04%以下とする。
Al: 0.001 to 0.1%
Al is useful as a deoxidizing material for molten steel, and is also an element that fixes N, which inhibits the effect of improving hardenability by adding B described later. In order to effectively exhibit such an effect, the lower limit of the Al content is 0.001% or more, preferably 0.01% or more, more preferably 0.02% or more. However, if Al is contained excessively, non-metallic inclusions increase and surface defects are likely to occur. Therefore, the upper limit of Al content is 0.1% or less, preferably 0.07% or less, more preferably 0. 0.04% or less.

Ti:0.01〜0.1%
Tiは、Bに優先して鋼中のNと結合してTiNとなってNを固定することで、BがBNとなって浪費されることを抑制し、Bによる焼入れ性向上効果を向上させる。このような効果を有効に発揮させるため、Ti量の下限を0.01%以上、好ましくは0.015%以上とする。ただし、Tiを過剰に含有させると、Ti系析出物が鋼中に多量に生成してしまい、靭性が劣化するので、Ti量の上限を0.1%以下、好ましくは0.06%以下、より好ましくは0.04%以下とする。
Ti: 0.01 to 0.1%
Ti binds to N in steel in preference to B and becomes TiN to fix N, thereby suppressing B from being wasted as BN and improving the hardenability improvement effect by B . In order to effectively exhibit such an effect, the lower limit of the Ti amount is set to 0.01% or more, preferably 0.015% or more. However, if Ti is excessively contained, Ti-based precipitates are produced in a large amount in the steel and the toughness is deteriorated, so the upper limit of the Ti amount is 0.1% or less, preferably 0.06% or less. More preferably, it is 0.04% or less.

B:0.0005〜0.005%
Bは、焼入れ性を向上させるのに有用な元素である。このため、B量の下限を0.0005%以上、好ましくは0.001%以上とする。ただし、Bを過剰に含有させると、熱間での割れの懸念があるほか、上記効果が飽和する。よって、B量の上限を0.005%以下、好ましくは0.004%以下、より好ましくは0.003%以下とする。
B: 0.0005 to 0.005%
B is an element useful for improving hardenability. For this reason, the lower limit of the B amount is set to 0.0005% or more, preferably 0.001% or more. However, when B is contained excessively, there is a concern of hot cracking and the above effect is saturated. Therefore, the upper limit of the B amount is 0.005% or less, preferably 0.004% or less, and more preferably 0.003% or less.

N:[Ti]/[N]が3.3以上となる含有量
Nは、上述したようにBと結合してBNとなってBを浪費させ、Bによる焼入れ性向上効果を劣化させる。そのため、Nを、Bに優先してTiNとして固定し得るよう、Tiの原子%を超えないようにNの原子%を制限する。上記観点から、Nは、[Ti]/[N]が3.3以上となる含有量とする。なお、3.3はTiとNの原子量比である。好ましいN量は、[Ti]/[N]が3.5以上となる量であり、より好ましいN量は、[Ti]/[N]が3.8以上となる量である。なお、その上限は、上記観点からは特に限定されないが、[Ti]/[N]が大き過ぎると、粗大なTiNが形成され、曲げ性が劣化することなどを考慮すると、[Ti]/[N]の上限は10以下であり、より好ましくは7以下である。
N: Content at which [Ti] / [N] is 3.3 or more N, as described above, binds to B to become BN, wastes B, and deteriorates the effect of improving hardenability by B. Therefore, the atomic% of N is limited so as not to exceed the atomic% of Ti so that N can be fixed as TiN in preference to B. From the above viewpoint, N is a content such that [Ti] / [N] is 3.3 or more. Note that 3.3 is an atomic weight ratio of Ti and N. A preferable N amount is an amount such that [Ti] / [N] is 3.5 or more, and a more preferable N amount is an amount such that [Ti] / [N] is 3.8 or more. The upper limit is not particularly limited from the above viewpoint, but considering that [Ti] / [N] is too large, coarse TiN is formed and the bendability is deteriorated. The upper limit of N] is 10 or less, more preferably 7 or less.

炭素当量Ceq:0.43〜0.7%
Ceq=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14・・・(1)
後述するように本発明では、熱間プレスの工程で金型焼入れを行う。金型焼入れでは、例えば水焼入れ、油焼入れなどの一般的な焼入れ方法に比べて焼入れ速度が小さい。そのため、金型焼入れによる熱間プレス後に十分な硬さを得るには、熱間プレス用鋼板の焼入れ性を十分に確保する必要がある。また、硬さの低下が無くとも、微量なフェライトが形成されると、そのフェライトがき裂の伝播経路となって局部延性が劣化する。このような観点からも、焼入れ性を確保することが必要である。よって、本発明では、焼入れ性の指標である炭素当量Ceqを0.43%以上、好ましくは0.45%以上、より好ましくは0.46%以上とする。ただし、焼入れ性を高くし過ぎると、硬くなり過ぎて延性が劣化するので、Ceqの上限を0.7%以下、好ましくは0.67%以下、より好ましくは0.65%以下とする。なお、上記式(1)は、JIS G 0203に基づく。
Carbon equivalent Ceq: 0.43-0.7%
Ceq = [C] + [Mn] / 6 + [Si] / 24 + [Ni] / 40 + [Cr] / 5 + [Mo] / 4 + [V] / 14 (1)
As will be described later, in the present invention, die quenching is performed in a hot pressing process. In the mold quenching, for example, the quenching speed is low as compared with general quenching methods such as water quenching and oil quenching. Therefore, in order to obtain sufficient hardness after hot pressing by mold quenching, it is necessary to sufficiently secure the hardenability of the steel sheet for hot pressing. Even if there is no decrease in hardness, if a small amount of ferrite is formed, the ferrite becomes a crack propagation path and local ductility deteriorates. Also from such a viewpoint, it is necessary to ensure hardenability. Therefore, in the present invention, the carbon equivalent Ceq, which is an index of hardenability, is 0.43% or more, preferably 0.45% or more, more preferably 0.46% or more. However, if the hardenability is too high, it becomes too hard and the ductility deteriorates, so the upper limit of Ceq is 0.7% or less, preferably 0.67% or less, more preferably 0.65% or less. The above equation (1) is based on JIS G 0203.

Ms点:415℃以上
Ms(℃)=550−361×[C]−39×[Mn]−10×[Cu]−17×[Ni]−20×[Cr]−5×[Mo]+30×[Al]・・・(2)
上述したように熱間プレス工程での金型焼入れの冷却速度は一般的な焼入れ方法に比べて小さい。そのため、マルテンサイト形成後の冷却過程で該マルテンサイトの自己焼戻しを促進させることが、熱間プレスままで焼戻しを促進するための有効な手段となる。自己焼戻しを促進して延性を高めるためには、冷却速度を低下させて自己焼戻しの時間を確保するよりも、冷却中にマルテンサイトが形成される温度、すなわちMs点を高めて、より高温域で自己焼戻しが起こるようにする方法が効果的である。これにより、生産性の劣化を招くことなく延性などの特性を向上させることができる。そのため、本発明では、Ms点の下限を415℃以上、好ましくは420℃以上、より好ましくは425℃以上とする。Ms点の上限は、上記観点からは特に限定されないが、Ms点が高くなると、自己焼戻しが促進し過ぎて炭化物が粗大になり、曲げ性が劣化する懸念があるため、好ましくは550℃以下であり、より好ましくは500℃以下である。
Ms point: 415 ° C. or higher Ms (° C.) = 550-361 × [C] −39 × [Mn] −10 × [Cu] −17 × [Ni] −20 × [Cr] −5 × [Mo] + 30 × [Al] (2)
As described above, the cooling rate of the mold quenching in the hot pressing process is smaller than that of a general quenching method. Therefore, promoting self-tempering of martensite in the cooling process after the formation of martensite is an effective means for promoting tempering while still being hot pressed. In order to promote self-tempering and increase ductility, the temperature at which martensite is formed during cooling, that is, the Ms point, is increased by lowering the cooling rate and securing the self-tempering time. It is effective to use self-tempering at Thereby, characteristics, such as ductility, can be improved, without causing productivity deterioration. Therefore, in the present invention, the lower limit of the Ms point is set to 415 ° C. or higher, preferably 420 ° C. or higher, more preferably 425 ° C. or higher. The upper limit of the Ms point is not particularly limited from the above viewpoint, but if the Ms point is increased, self-tempering is promoted too much and the carbide becomes coarse and there is a concern that the bendability is deteriorated. Yes, more preferably 500 ° C. or less.

本発明の熱間プレス用鋼板は上記成分を基本的に含有し、残部は鉄および不可避的不純物である。更に本発明の熱間プレス用鋼板は、本発明の作用を損なわない範囲で、更に以下の許容成分を選択的に含有することができる。   The steel sheet for hot pressing of the present invention basically contains the above components, and the balance is iron and inevitable impurities. Furthermore, the steel sheet for hot pressing of the present invention can further selectively contain the following permissible components as long as the effects of the present invention are not impaired.

Mo:0%超0.5%以下、Cu:0%超0.5%以下、およびNi:0%超0.5%以下よりなる群から選択される少なくとも一種の元素
これらの元素は、フェライト変態、パーライト変態、及びベイナイト変態を抑制するため、加熱後の金型での冷却中に、フェライト、パーライト、ベイナイトの形成を防止し、高強度化に寄与するマルテンサイトの確保に有効に作用する。これらの元素は単独で添加しても良いし、二種以上を含有しても良い。こうした作用を有効に発揮させるためには、各元素とも、その下限を好ましくは0.01%以上、より好ましくは0.02%以上、更に好ましくは0.05%以上とする。上記作用のみを考慮すると、各元素の含有量は多いほうが良いが、コストが上昇するため、各元素とも、その上限を好ましくは0.5%以下、より好ましくは0.4%以下、更に好ましくは0.3%以下とする。
At least one element selected from the group consisting of Mo: more than 0% to 0.5% or less, Cu: more than 0% to 0.5% or less, and Ni: more than 0% to 0.5% or less. In order to suppress transformation, pearlite transformation, and bainite transformation, it effectively prevents the formation of ferrite, pearlite and bainite during cooling in the mold after heating, and effectively acts to secure martensite contributing to high strength. . These elements may be added alone or in combination of two or more. In order to effectively exhibit such an action, the lower limit of each element is preferably 0.01% or more, more preferably 0.02% or more, and still more preferably 0.05% or more. Considering only the above action, it is better that the content of each element is large. However, since the cost increases, the upper limit of each element is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably. Is 0.3% or less.

V:0%超0.1%以下、およびNb:0%超0.1%以下の少なくとも一種
VおよびNbは、微細な炭化物を形成し、ピン止め効果により組織を微細にする効果がある。こうした効果を有効に発揮させるためには、いずれの元素とも、その下限を好ましくは0.001%以上とする。しかしながら、これらの元素の含有量が過剰になると、粗大な炭化物が形成され、破壊の起点になることで却って延性を劣化させる。よって、いずれの元素とも、その上限を好ましくは0.1%以下、より好ましくは0.08%以下、更に好ましくは0.05%以下とする。
At least one of V: more than 0% and 0.1% or less and Nb: more than 0% and 0.1% or less V and Nb have the effect of forming fine carbides and making the structure fine by the pinning effect. In order to effectively exhibit such an effect, the lower limit of any element is preferably 0.001% or more. However, when the content of these elements becomes excessive, coarse carbides are formed, and the ductility is deteriorated by becoming the starting point of destruction. Therefore, the upper limit of any element is preferably 0.1% or less, more preferably 0.08% or less, and still more preferably 0.05% or less.

Ca:0%超0.005%以下、およびREM:0%超0.005%以下の少なくとも一種
CaおよびREM(希土類元素)は、いずれも鋼中介在物の形態を微細化する作用を有し、介在物による熱間プレス時の割れを防止するのに有効な元素である。こうした効果を有効に発揮させるためには、いずれの元素とも、その下限を好ましくは0.0002%以上、より好ましくは0.0005%以上とする。しかしながら、これらの元素を過剰に含有させても上記効果が飽和してしまい、コストの増加を招くだけである。よって、いずれの元素とも、その上限を好ましくは0.005%以下、より好ましくは0.004%以下、更に好ましくは0.003%以下とする。
Ca: more than 0% to 0.005% or less, and REM: more than 0% to 0.005% or less Ca and REM (rare earth elements) both have the effect of refining the form of inclusions in steel. It is an element effective for preventing cracking during hot pressing due to inclusions. In order to effectively exhibit such an effect, the lower limit of any element is preferably 0.0002% or more, more preferably 0.0005% or more. However, even if these elements are contained excessively, the above effect is saturated and only the cost is increased. Therefore, the upper limit of any element is preferably 0.005% or less, more preferably 0.004% or less, and still more preferably 0.003% or less.

本発明に係る熱間プレス用鋼板の表面形態は特に限定されず、表面にめっきが施されていない裸材である熱延材および冷延材;これらの熱延材または冷延材にめっきが施されたるめっき材の両方が含まれる。   The surface form of the steel sheet for hot pressing according to the present invention is not particularly limited, and a hot-rolled material and a cold-rolled material which are bare materials whose surfaces are not plated; Both plated materials applied are included.

上記熱間プレス用鋼板の製造方法は特に限定されない。例えば、常法により、上記成分組成の鋼を溶製して鋼片に鋳造し、この鋼片を熱間圧延して熱延材に加工して熱間プレス用鋼板を得ることができる。必要により、更に冷間圧延して冷延材に加工しても良い。本発明の熱間プレス用鋼板は、後記する表1の裸材のように、このようにして得られる熱延板や冷延板を、そのまま用いて、熱間プレス成形品とすることもできる。或いは、本発明の熱間プレス用鋼板は、例えば後記する表1のZnめっき材やAl−Siめっき材のように、これらの熱延板や冷延板にZnめっきやAl−Siめっきなどのめっきを施しても良い。但し、めっきの種類はこれに限定されない。   The manufacturing method of the said steel plate for hot presses is not specifically limited. For example, a steel sheet for hot pressing can be obtained by melting a steel having the above component composition and casting it into a steel slab by a conventional method, hot rolling the steel slab and processing it into a hot rolled material. If necessary, it may be further cold-rolled and processed into a cold-rolled material. The hot-press steel sheet of the present invention can be made into a hot press-formed product by using the hot-rolled sheet and the cold-rolled sheet obtained as described above as in the bare material of Table 1 described later. . Alternatively, the hot-press steel sheet according to the present invention is made of, for example, Zn plating or Al-Si plating on these hot-rolled sheets and cold-rolled sheets, such as Zn plated materials and Al-Si plated materials shown in Table 1 described later. Plating may be performed. However, the type of plating is not limited to this.

次に、本発明に係る熱間プレス成形品の製造方法について説明する。   Next, a method for producing a hot press-formed product according to the present invention will be described.

上述したとおり、本発明に係る熱間プレス成形品の製造方法は、上記熱間プレス用鋼板を、Ac点以上の温度に加熱した後、金型により前記鋼板のプレス成形を開始し、プレス成形の開始後、下記式(2)で規定されるMs点の範囲までを、前記金型内で20〜300℃/sの平均冷却速度を確保しつつ冷却することを特徴とする。
Ac(℃)=910−203×[C]1/2+44.7×[Si]−30×[Mn]+700×[P]+400×[Al]+400×[Ti]+104×[V]−11×[Cr]+31.5×[Mo]−20×[Cu]−15.2×[Ni]・・・(3)
As described above, in the method for producing a hot press-formed product according to the present invention, the steel sheet for hot pressing is heated to a temperature of Ac 3 or higher, and then press forming of the steel sheet is started by a mold. It is characterized by cooling after the start of molding to the range of Ms point defined by the following formula (2) while securing an average cooling rate of 20 to 300 ° C./s in the mold.
Ac 3 (° C.) = 910−203 × [C] 1/2 + 44.7 × [Si] −30 × [Mn] + 700 × [P] + 400 × [Al] + 400 × [Ti] + 104 × [V] − 11 × [Cr] + 31.5 × [Mo] −20 × [Cu] −15.2 × [Ni] (3)

以下、各工程ごとに説明する。   Hereinafter, each step will be described.

<上記熱間プレス用鋼板をAc点以上の温度に加熱>
熱間プレス成形品の組織をマルテンサイト主体の組織とするため、加熱温度はオーステナイト単相域であるAc点以上とする。好ましくはAc点+15℃以上であり、より好ましくはAc点+30℃以上である。なお、その上限は特に限定されず、加熱温度が高くても、得られる熱間プレス用鋼板の特性に問題はないが、燃料費等が上昇し、コストが増加する。そのため、加熱温度の上限は、好ましくは1000℃以下とする。
<Heating steel sheet for hot pressing to a temperature of Ac 3 points or higher>
In order to make the structure of the hot press-molded product mainly composed of martensite, the heating temperature is set to Ac 3 points or more which is an austenite single phase region. Preferably it is Ac 3 point +15 degreeC or more, More preferably, it is Ac 3 point +30 degreeC or more. The upper limit is not particularly limited, and even if the heating temperature is high, there is no problem in the characteristics of the obtained steel sheet for hot pressing, but the fuel cost and the like increase and the cost increases. Therefore, the upper limit of the heating temperature is preferably 1000 ° C. or less.

本発明の製造方法は、上記のように加熱温度を制御することが重要であり、上記加熱温度までの平均加熱速度は特に限定されない。但し、生産性の観点からは遅すぎないこと、制御性の観点からは速すぎないことが望ましい。これらを考慮して、上記加熱温度までの平均加熱速度は、例えば、好ましくは1〜200℃/s、より好ましくは2〜150℃/sである。   In the production method of the present invention, it is important to control the heating temperature as described above, and the average heating rate up to the heating temperature is not particularly limited. However, it is desirable that it is not too slow from the viewpoint of productivity and not too fast from the viewpoint of controllability. In consideration of these, the average heating rate up to the heating temperature is, for example, preferably 1 to 200 ° C./s, more preferably 2 to 150 ° C./s.

また、加熱温度到達後の加熱保持時間は特に限定されないが、例えば、1s以上保持することが好ましい。より好ましくは3s以上である。なお、加熱保持時間の上限は特に限定されず、加熱保持時間が長くても、得られる熱間プレス用鋼板の特性には問題はない。但し、加熱保持時間が長過ぎると、燃料費等が上昇し、コストが増加する。そのため、加熱保持時間は、好ましくは1800秒以下とする。より好ましくは1200s以下である。   Further, the heating and holding time after reaching the heating temperature is not particularly limited, but for example, it is preferable to hold for 1 s or longer. More preferably, it is 3 s or more. The upper limit of the heating and holding time is not particularly limited, and even if the heating and holding time is long, there is no problem with the characteristics of the obtained hot-press steel sheet. However, if the heating and holding time is too long, the fuel cost increases and the cost increases. Therefore, the heating and holding time is preferably 1800 seconds or less. More preferably, it is 1200 s or less.

<金型によりプレス成形を開始し、プレス成形中およびプレス成形終了後は前記金型内で20〜300℃/sの平均冷却速度を確保しつつMs点以下まで冷却>
本発明では、金型によりプレス成形を開始する。プレス成形前の金型の温度は通常、室温であり、せいぜい、数十℃程度である。
<Start press molding with a mold, and cool to below the Ms point while ensuring an average cooling rate of 20 to 300 ° C./s in the mold during and after press molding>
In the present invention, press molding is started with a mold. The temperature of the mold before press molding is usually room temperature, which is at most about several tens of degrees Celsius.

本発明では、上記加熱工程で形成されたオーステナイトを、フェライトおよびベイナイトの生成を阻止しつつマルテンサイト主体の組織とするため、プレス成形の開始から、Ms点までの範囲における平均冷却速度を20℃/s以上、好ましくは30℃/s以上、より好ましくは40℃/s以上に制御して冷却する。一方、上記範囲における平均冷却速度が大き過ぎると、マルテンサイト変態後の自己焼戻しを促進させるのに十分な時間が確保できず、延性が低下する。そのため、本発明では、上記平均冷却速度の上限を300℃/s以下、好ましくは200℃/s以下、より好ましくは100℃/s以下とする。   In the present invention, since the austenite formed in the heating step is a martensite-based structure while preventing the formation of ferrite and bainite, the average cooling rate in the range from the start of press molding to the Ms point is 20 ° C. / S or higher, preferably 30 ° C./s or higher, more preferably 40 ° C./s or higher. On the other hand, if the average cooling rate in the above range is too large, sufficient time cannot be secured to promote self-tempering after martensitic transformation, and ductility is lowered. Therefore, in this invention, the upper limit of the said average cooling rate shall be 300 degrees C / s or less, Preferably it is 200 degrees C / s or less, More preferably, you may be 100 degrees C / s or less.

上記範囲に冷却速度を制御する方法は特に限定されず、例えば、プレス成形時に金型ではさみ込み、そのまま金型による抜熱で冷却する方法;プレス成形後、金型から取り出して、風、ミスト、水等の冷媒を吹きかけて冷却するなどの方法が用いられる。   The method for controlling the cooling rate within the above range is not particularly limited. For example, a method in which the mold is sandwiched by a mold at the time of press molding and is cooled by heat removal by the mold as it is; A method of cooling by blowing a coolant such as water is used.

上述したように本発明では、プレス成形の開始から、少なくともMs点までの範囲における平均冷却速度を上記範囲に制御して冷却することが重要であって、Ms点以降の冷却速度は特に限定されない。一般にプレス成形終了温度はMs点未満であり、例えば、プレス成形の開始からプレス成形終了温度までの範囲を、上記の冷却速度で冷却しても良い。好ましくは、プレス成形の開始から300℃の範囲を上記の冷却速度で冷却する。より好ましくは、プレス成形の開始から200℃の範囲を上記の冷却速度で冷却する。   As described above, in the present invention, it is important to cool by controlling the average cooling rate in the range from the start of press molding to at least the Ms point within the above range, and the cooling rate after the Ms point is not particularly limited. . Generally, the press molding end temperature is lower than the Ms point. For example, the range from the start of press molding to the press molding end temperature may be cooled at the above cooling rate. Preferably, the range of 300 ° C. from the start of press molding is cooled at the above cooling rate. More preferably, the range of 200 ° C. from the start of press molding is cooled at the above cooling rate.

上記のように冷却した後は、室温までの範囲を、おおむね、0.1〜300℃/sの平均冷却速度で冷却する。このようにして本発明の熱間プレス成形品が得られる。   After cooling as described above, the range up to room temperature is generally cooled at an average cooling rate of 0.1 to 300 ° C./s. In this way, the hot press-formed product of the present invention is obtained.

次に、本発明の熱間プレス成形品について説明する。上述したとおり、本発明の熱間プレス成形品は、上述した熱間プレス用鋼板と同じ成分組成からなり、マルテンサイト:全組織に対する面積率で95%以上、残部:フェライト、およびベイナイトの少なくとも一種からなり、鋼中に分散する炭化物の平均粒径が1μm以下である組織を有することを特徴とする。   Next, the hot press-formed product of the present invention will be described. As described above, the hot press-formed product of the present invention has the same component composition as that of the above-described hot-press steel plate, martensite: 95% or more in area ratio with respect to the entire structure, and the balance: at least one of ferrite and bainite. And having a structure in which the average particle size of carbides dispersed in the steel is 1 μm or less.

このうち、上記成分組成は、前述した熱間プレス用鋼板の欄で詳しく説明したので、説明を省略する。以下、本発明の熱間プレス成形品を特徴付ける組織について説明する。   Among these, since the said component composition was demonstrated in detail in the column of the steel plate for hot press mentioned above, description is abbreviate | omitted. Hereinafter, the structure characterizing the hot press-formed product of the present invention will be described.

<マルテンサイト:全組織に対する面積率で95%以上、残部:フェライト、およびベイナイトの少なくとも一種>
本発明の熱間プレス成形品は、高強度を実現しつつ、変形時に破壊の起点になる硬質相と軟質相の界面を極力少なくして延性を確保するため、できるだけマルテンサイト単相の組織にすることが望ましい。全組織に対するマルテンサイトの面積率は95%以上、好ましくは98%以上、より好ましくは100%である。なお、マルテンサイト以外の残部組織は、フェライト、およびベイナイトの少なくとも一種である。
<Martensite: 95% or more in area ratio to the entire structure, remaining: at least one of ferrite and bainite>
The hot press-molded product of the present invention has a martensite single-phase structure as much as possible in order to ensure ductility by minimizing the interface between the hard phase and the soft phase that becomes the starting point of fracture during deformation while achieving high strength. It is desirable to do. The area ratio of martensite with respect to the whole structure is 95% or more, preferably 98% or more, and more preferably 100%. The remaining structure other than martensite is at least one of ferrite and bainite.

上述した各組織は、熱間プレス成形品の表面を鏡面研磨した後、ナイタール腐食を行って光学顕微鏡(倍率1000倍)で観察し、マルテンサイト、フェライト、ベイナイト、パーライトの各組織を同定して各組織の面積率を算出すれば良い。   Each of the above-mentioned structures is mirror-polished on the surface of the hot press-molded product, then subjected to nital corrosion and observed with an optical microscope (magnification 1000 times) to identify each structure of martensite, ferrite, bainite, and pearlite. What is necessary is just to calculate the area ratio of each structure | tissue.

<炭化物の平均粒径が1μm以下>
前述したように自己焼戻しにより形成された炭化物は、熱間プレス成形品の変形時に破壊の起点となるため、微細化する必要がある。微細化された炭化物は延性の向上に寄与する。そのため、炭化物の平均粒径は1μm以下、好ましくは0.7μm以下、より好ましくは0.4μm以下とする。なお、炭化物の平均粒径の下限は特に限定されないが、おおむね、0.01μm以上である。
<Average particle size of carbide is 1 μm or less>
As described above, the carbide formed by self-tempering becomes a starting point of fracture when the hot press-molded product is deformed, and thus needs to be refined. The refined carbide contributes to the improvement of ductility. Therefore, the average particle size of the carbide is 1 μm or less, preferably 0.7 μm or less, more preferably 0.4 μm or less. The lower limit of the average particle size of the carbide is not particularly limited, but is generally 0.01 μm or more.

炭化物の平均粒径は以下のようにして測定することができる。まず、抽出レプリカ法により析出した炭化物を抽出し、透過型電子顕微鏡にて、150000倍の倍率で1μm×1μmの領域を観察して撮影する。観察された炭化物のうち円相当直径に換算して2nm以上のものを画像解析して、各炭化物粒子の面積を求める。その面積から円相当直径を求めて平均値を算出し、これを炭化物の平均粒径とする。   The average particle size of the carbide can be measured as follows. First, carbides precipitated by the extraction replica method are extracted, and a 1 μm × 1 μm region is observed and photographed with a transmission electron microscope at a magnification of 150,000 times. Of the observed carbides, those having a diameter equivalent to a circle of 2 nm or more are subjected to image analysis to determine the area of each carbide particle. From the area, the equivalent circle diameter is obtained to calculate an average value, which is defined as the average particle size of the carbide.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples, and can be implemented with modifications within a range that can meet the purpose described above and below. They are all included in the technical scope of the present invention.

常法により、表1に示す成分組成の鋼材を溶製して熱間圧延および冷間圧延を施した後、板厚1.4mmの冷延鋼板を作製した。表1中、「―」は無添加を意味する。本実施例では、表面状態の異なる下記3種類の熱間プレス用鋼板サンプルを用いた。
・上記冷延鋼板を、そのまま熱間プレスに供する裸材
・めっきシミュレータにて溶融亜鉛めっきを付与したZnめっき材
・Al−Siめっきを付与したAl−Siめっき材。
A steel material having the composition shown in Table 1 was melted and subjected to hot rolling and cold rolling by a conventional method, and then a cold-rolled steel plate having a thickness of 1.4 mm was produced. In Table 1, “-” means no addition. In this example, the following three types of hot-press steel plate samples having different surface states were used.
-Bare material that is subjected to hot pressing as it is with the cold-rolled steel sheet-Zn plating material that has been hot dip galvanized with a plating simulator-Al-Si plating material that has been provided with Al-Si plating.

上記Znめっき材は、不活性雰囲気下にて750℃で60秒加熱した後、480℃に冷却し、480℃のZn−0.1%Alめっき浴に浸漬後、取り出して、550℃に加熱して10秒保持した後、冷却して製造した。   The Zn plating material is heated at 750 ° C. for 60 seconds in an inert atmosphere, cooled to 480 ° C., immersed in a 480 ° C. Zn-0.1% Al plating bath, taken out, and heated to 550 ° C. And kept for 10 seconds, and then cooled to produce.

また、上記Al−Siめっき材は、不活性雰囲気下にて750℃で60秒加熱した後、650℃に冷却し、650℃のZn−10%Siめっき浴に浸漬後、取り出してから冷却して製造した。   The Al—Si plating material was heated at 750 ° C. for 60 seconds in an inert atmosphere, then cooled to 650 ° C., immersed in a Zn-10% Si plating bath at 650 ° C., taken out, and then cooled. Manufactured.

次いで、上記の各熱間プレス用鋼板サンプルを用い、熱間プレス成形を想定して表2に示す製造条件で熱間プレス成形品サンプルを得た。詳細には、上記の各熱間プレス用鋼板サンプルを大気炉へ装入するか通電加熱することにより、表2に記載の平均加熱速度で所定の加熱温度まで昇温した後、当該加熱温度で所定時間加熱保持した。次に、冷却用の金型に挟み込んでプレス成形を開始し、プレス成形開始後からMs点以下の温度までを表2に記載の平均冷却速度で冷却した後、上記温度から室温までを放冷し、約2℃/sの平均冷却速度で冷却して熱間プレス成形品サンプルを得た。   Subsequently, using each of the hot-press steel plate samples described above, a hot-press molded product sample was obtained under the manufacturing conditions shown in Table 2 assuming hot press-forming. Specifically, each steel sheet for hot pressing is charged into an atmospheric furnace or energized and heated to a predetermined heating temperature at the average heating rate shown in Table 2, and then at the heating temperature. Heated and held for a predetermined time. Next, it is sandwiched between cooling molds and press molding is started. After the press molding is started, the temperature is cooled to the temperature below the Ms point at the average cooling rate shown in Table 2, and then the temperature is allowed to cool to the room temperature. Then, it was cooled at an average cooling rate of about 2 ° C./s to obtain a hot press molded product sample.

このようにして得られた各熱間プレス成形品サンプルについて、上述した方法により、各組織の面積率および炭化物の平均粒径を測定した。後記する表2の「マルテンサイトの面積率」には、マルテンサイトの面積率のみ記載しているが、マルテンサイト以外の残部組織は、フェライトまたはベイナイトである。   About each hot press-molded product sample thus obtained, the area ratio of each structure and the average particle size of carbides were measured by the method described above. In “Martensite area ratio” in Table 2 described later, only the martensite area ratio is described, but the remaining structure other than martensite is ferrite or bainite.

次に、各熱間プレス成形品サンプルの強度および延性を評価するため、以下のようにして引張試験と曲げ試験を実施した。   Next, in order to evaluate the strength and ductility of each hot press-formed product sample, a tensile test and a bending test were performed as follows.

引張試験はJIS5号試験片を用いて、ひずみ速度10mm/sで行い、強度の評価指標として引張強度を測定した。本実施例では、引張強度が1180MPa以上のものを合格とした。   The tensile test was performed using a JIS No. 5 test piece at a strain rate of 10 mm / s, and the tensile strength was measured as an evaluation index of strength. In this example, those having a tensile strength of 1180 MPa or more were accepted.

曲げ試験は、VDA規格238−100に規定された条件で行い、延性の評価指標として曲げ角度を測定した。なお、曲げ角度は鋼板の表面状態に強く依存するため、本実施例では、鋼板の表面状態が同じもの同士;すなわち、裸材、Znめっき材、Al−Siめっき材のそれぞれについて、延性の改善効果を相対的に評価した。具体的には、従来の熱間プレス用鋼板として典型的な成分組成を有する表1の鋼種1を用いた試験No.1の裸材を基準1;上記鋼種1を用いた試験No.2のZnめっき材を基準2;上記鋼種1を用いた試験No.3のAl−Siめっき材を基準3として、それぞれの曲げ角度を基準として、曲げ角度が10%以上上昇したものを合格とした。表2の曲げ角度の欄には「各基準値との比較」の欄を設けて、それぞれの基準値に対する上昇率も併記した。   The bending test was performed under the conditions specified in VDA standard 238-100, and the bending angle was measured as an evaluation index of ductility. Since the bending angle strongly depends on the surface condition of the steel sheet, in this example, the ductility is improved for each of the same steel sheet surface conditions; that is, for each of the bare material, the Zn plating material, and the Al-Si plating material. The effect was relatively evaluated. Specifically, test No. 1 using steel type 1 of Table 1 having a typical composition as a conventional steel sheet for hot pressing. No. 1 bare material as reference 1; Test No. 1 using the above steel type 1 No. 2 Zn plating material 2; test No. 2 using the above steel type 1 3 with the Al-Si plating material of 3 as the standard, and those with the bending angle increased by 10% or more with the respective bending angles as the standard, were regarded as acceptable. In the column of bending angle in Table 2, a column “Comparison with each reference value” is provided, and the rate of increase with respect to each reference value is also shown.

これらの測定結果を表2に併記する。表2中、TSは引張強度を意味する。また、表2中、「炭化物の平均粒径」の欄に記載の「−」は、観察時に明確な炭化物が観察されなかったために当該炭化物の平均粒径を測定しなかったことを意味する。   These measurement results are also shown in Table 2. In Table 2, TS means tensile strength. In Table 2, “-” described in the column of “average particle size of carbide” means that the average particle size of the carbide was not measured because no clear carbide was observed at the time of observation.

表2の試験No.4〜7、11〜13、15〜17、22〜31はいずれも、本発明の要件を満足する熱間プレス用鋼板を用い、本発明の製造条件にて本発明の熱間プレス成形品を製造した例である。このようにして得られた本発明の熱間プレス成形品は、引張強度TS、曲げ角度の両方が合格基準を満たしている。よって、本発明によれば、Niなどの高価な元素を多量に添加することなく、また金型でのプレス成形後の冷却の際に追加の工程も必要とすることなく、強度と延性に優れた熱間プレス成形品を効率よく得られることが確認できた。   Test No. in Table 2 4-7, 11-13, 15-17, 22-31 all use the steel sheet for hot pressing that satisfies the requirements of the present invention, and the hot press-formed product of the present invention under the production conditions of the present invention. This is a manufactured example. The hot press-formed product of the present invention thus obtained satisfies both acceptance criteria for both tensile strength TS and bending angle. Therefore, according to the present invention, it is excellent in strength and ductility without adding a large amount of expensive elements such as Ni, and without requiring an additional step in cooling after press molding with a mold. It was confirmed that a hot press-formed product could be obtained efficiently.

これに対し、本発明で規定する製造条件のいずれかを満足せずに製造した表2の試験No.8〜10、14、18〜21は、引張強度TS、曲げ角度のうち少なくともいずれかが合格基準を満たしていない。   On the other hand, the test No. in Table 2 produced without satisfying any of the production conditions defined in the present invention. As for 8-10, 14, 18-21, at least any one among the tensile strength TS and the bending angle does not satisfy the acceptance criteria.

詳細には、表2の試験No.8は、本発明の要件を満足する表1の鋼種No.2を用いたが、熱間プレス時の加熱温度が低いため、マルテンサイトの面積率が少なくなり、曲げ性が低下した。   For details, see Test No. in Table 2. No. 8 is a steel grade No. in Table 1 that satisfies the requirements of the present invention. However, since the heating temperature at the time of hot pressing was low, the area ratio of martensite was reduced and the bendability was lowered.

表2の試験No.9は、上記No.8と同様、本発明の要件を満足する表1の鋼種No.2を用いたが、加熱後の平均冷却速度が遅いため、マルテンサイトの面積率が少なくなり、引張強度および曲げ性の両方が低下した。   Test No. in Table 2 9 is the above-mentioned No. 9. As with No. 8, the steel type No. 1 in Table 1 satisfying the requirements of the present invention. However, since the average cooling rate after heating was slow, the area ratio of martensite was reduced, and both the tensile strength and the bendability were reduced.

表2の試験No.10は、上記No.8と同様、本発明の要件を満足する表1の鋼種No.2を用いたが、加熱後の平均冷却速度が速いため、曲げ性が低下した。   Test No. in Table 2 10 is the above-mentioned No. 10. As with No. 8, the steel type No. 1 in Table 1 satisfying the requirements of the present invention. However, since the average cooling rate after heating was fast, the bendability deteriorated.

表2の試験No.14は、Si量が多い表1の鋼種No.6を用いたため、マルテンサイトの面積率が少なくなり、曲げ性が低下した。   Test No. in Table 2 No. 14 is a steel type No. 1 in Table 1 with a large amount of Si. 6 was used, the area ratio of martensite decreased, and the bendability deteriorated.

表2の試験No.18は、Cr量が少ない表1の鋼種No.10を用いたため、炭化物の平均粒径が粗大化し、曲げ性が低下した。   Test No. in Table 2 No. 18 is a steel type No. 1 in Table 1 with a small amount of Cr. Since 10 was used, the average particle diameter of the carbides became coarse and the bendability was lowered.

表2の試験No.19は、Mn量が多く、Ms点が低い表1の鋼種No.11を用いたため、自己焼戻しが不足して母材の延性が劣化し、曲げ性が低下した。   Test No. in Table 2 No. 19 has a high Mn content and a low Ms point. 11 was used, the self-tempering was insufficient, the ductility of the base material was deteriorated, and the bendability was lowered.

表2の試験No.20は、C量が少なく、且つ、Ceqが小さい表1の鋼種No.12を用いたため、マルテンサイトの面積率が少なくなり、引張強度が低下した。   Test No. in Table 2 No. 20 is a steel grade No. in Table 1 with a small amount of C and a small Ceq. 12 was used, the martensite area ratio decreased and the tensile strength decreased.

表2の試験No.21は、Ceqが小さい表1の鋼種No.13を用いたため、マルテンサイトの面積率が少なくなり、曲げ性が低下した。   Test No. in Table 2 No. 21 is a steel grade No. in Table 1 having a small Ceq. Since 13 was used, the area ratio of martensite decreased and the bendability deteriorated.

Claims (6)

成分組成が、質量%で、
C :0.10〜0.4%、
Si:0%以上2.0%以下、
Mn:0%以上0.5%以下、
Cr:0.8〜2.0%、
P :0%超0.015%以下、
S :0%超0.01%以下、
Al:0.001〜0.1%、
Ti:0.01〜0.1%、
B :0.0005〜0.005%、
N :[Ti]/[N]が3.3以上となる含有量
をそれぞれ含み、残部が鉄および不可避的不純物からなると共に、
下記式(1)で規定される炭素当量Ceqが0.43〜0.7%であり、且つ、
下記式(2)で規定されるMs点が415℃以上である
ことを特徴とする熱間プレス用鋼板。
Ceq=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14・・・(1)
Ms(℃)=550−361×[C]−39×[Mn]−10×[Cu]−17×[Ni]−20×[Cr]−5×[Mo]+30×[Al]・・・(2)
ただし、[X]は元素Xの含有量を意味し、単位は質量%である。
Ingredient composition is mass%,
C: 0.10 to 0.4%,
Si: 0% or more and 2.0% or less,
Mn: 0% to 0.5%,
Cr: 0.8 to 2.0%,
P: more than 0% and 0.015% or less,
S: more than 0% and 0.01% or less,
Al: 0.001 to 0.1%,
Ti: 0.01 to 0.1%,
B: 0.0005 to 0.005%,
N: [Ti] / [N] each includes a content of 3.3 or more, and the balance is made of iron and inevitable impurities,
The carbon equivalent Ceq defined by the following formula (1) is 0.43 to 0.7%, and
A steel sheet for hot pressing, wherein the Ms point defined by the following formula (2) is 415 ° C or higher.
Ceq = [C] + [Mn] / 6 + [Si] / 24 + [Ni] / 40 + [Cr] / 5 + [Mo] / 4 + [V] / 14 (1)
Ms (° C.) = 550-361 × [C] −39 × [Mn] −10 × [Cu] −17 × [Ni] −20 × [Cr] −5 × [Mo] + 30 × [Al]. (2)
However, [X] means content of the element X and a unit is the mass%.
成分組成が、更に質量%で、
Mo:0%超0.5%以下、
Cu:0%超0.5%以下、および
Ni:0%超0.5%以下よりなる群から選択される少なくとも一種を含むものである請求項1に記載の熱間プレス用鋼板。
Ingredient composition is further mass%,
Mo: more than 0% and 0.5% or less,
The steel sheet for hot pressing according to claim 1, comprising at least one selected from the group consisting of Cu: more than 0% and 0.5% or less, and Ni: more than 0% and 0.5% or less.
成分組成が、更に質量%で、
V :0%超0.1%以下、および
Nb:0%超0.1%以下
の少なくとも一種を含むものである請求項1または2に記載の熱間プレス用鋼板。
Ingredient composition is further mass%,
The steel sheet for hot pressing according to claim 1 or 2, comprising at least one of V: more than 0% and 0.1% or less and Nb: more than 0% and 0.1% or less.
成分組成が、更に質量%で、
Ca :0%超0.005%以下、および
REM:0%超0.005%以下
の少なくとも一種を含むものである請求項1〜3のいずれか1項に記載の熱間プレス用鋼板。
Ingredient composition is further mass%,
The steel sheet for hot press according to any one of claims 1 to 3, which contains at least one of Ca: more than 0% and 0.005% or less, and REM: more than 0% and 0.005% or less.
請求項1〜4のいずれか1項に記載の熱間プレス用鋼板を、下記式(3)で規定されるAc点以上の温度に加熱した後、金型により前記鋼板のプレス成形を開始し、プレス成形の開始後、下記式(2)で規定されるMs点の範囲までを、前記金型内で20〜300℃/sの平均冷却速度で冷却することを特徴とする熱間プレス成形品の製造方法。
Ms(℃)=550−361×[C]−39×[Mn]−10×[Cu]−17×[Ni]−20×[Cr]−5×[Mo]+30×[Al]・・・(2)
Ac(℃)=910−203×[C]1/2+44.7×[Si]−30×[Mn]+700×[P]+400×[Al]+400×[Ti]+104×[V]−11×[Cr]+31.5×[Mo]−20×[Cu]−15.2×[Ni]・・・(3)
ただし、[X]は元素Xの含有量を意味し、単位は質量%である。
The steel sheet for hot pressing according to any one of claims 1 to 4 is heated to a temperature of Ac 3 or more defined by the following formula (3), and then press forming of the steel sheet is started by a mold. Then, after the start of press molding, the hot press is cooled to an Ms point range defined by the following formula (2) at an average cooling rate of 20 to 300 ° C./s in the mold. Manufacturing method of molded products.
Ms (° C.) = 550-361 × [C] −39 × [Mn] −10 × [Cu] −17 × [Ni] −20 × [Cr] −5 × [Mo] + 30 × [Al]. (2)
Ac 3 (° C.) = 910−203 × [C] 1/2 + 44.7 × [Si] −30 × [Mn] + 700 × [P] + 400 × [Al] + 400 × [Ti] + 104 × [V] − 11 × [Cr] + 31.5 × [Mo] −20 × [Cu] −15.2 × [Ni] (3)
However, [X] means content of the element X and a unit is the mass%.
請求項1〜4のいずれか1項に記載の成分組成からなり、
マルテンサイト:全組織に対する面積率で95%以上、
残部:フェライト、およびベイナイトの少なくとも一種からなり、
鋼中に分散する炭化物の平均粒径が1μm以下である組織を有することを特徴とする熱間プレス成形品。
The component composition according to any one of claims 1 to 4,
Martensite: 95% or more in area ratio for all tissues,
The balance: at least one of ferrite and bainite,
A hot press-formed product having a structure in which an average particle size of carbides dispersed in steel is 1 µm or less.
JP2014126777A 2014-06-20 2014-06-20 Steel plate for hot pressing, hot pressing molding using steel plate and production method of hot pressing molding Pending JP2016003389A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014126777A JP2016003389A (en) 2014-06-20 2014-06-20 Steel plate for hot pressing, hot pressing molding using steel plate and production method of hot pressing molding
PCT/JP2015/067363 WO2015194571A1 (en) 2014-06-20 2015-06-16 Steel sheet for hot pressing, hot-press-molded article in which said steel sheet is used, and method for manufacturing said article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014126777A JP2016003389A (en) 2014-06-20 2014-06-20 Steel plate for hot pressing, hot pressing molding using steel plate and production method of hot pressing molding

Publications (1)

Publication Number Publication Date
JP2016003389A true JP2016003389A (en) 2016-01-12

Family

ID=54935553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014126777A Pending JP2016003389A (en) 2014-06-20 2014-06-20 Steel plate for hot pressing, hot pressing molding using steel plate and production method of hot pressing molding

Country Status (2)

Country Link
JP (1) JP2016003389A (en)
WO (1) WO2015194571A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093384A1 (en) * 2017-11-13 2019-05-16 Jfeスチール株式会社 Hot press steel sheet member and manufacturing method therefor
WO2019093376A1 (en) * 2017-11-13 2019-05-16 Jfeスチール株式会社 Hot-pressed steel sheet member and method for producing same
WO2019188622A1 (en) * 2018-03-27 2019-10-03 株式会社神戸製鋼所 Steel plate for hot stamping
JP2019173158A (en) * 2018-03-27 2019-10-10 株式会社神戸製鋼所 Steel sheet for hot stamp
WO2023120985A1 (en) * 2021-12-22 2023-06-29 주식회사 포스코 Steel material for hot forming, hot formed part, and method for manufacturing thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3053659A1 (en) * 2017-02-20 2018-08-23 Nippon Steel Corporation Hot stamped body
EP3584338A4 (en) * 2017-02-20 2020-08-05 Nippon Steel Corporation Hot stamp moulded body
US11180824B2 (en) * 2018-03-29 2021-11-23 Nippon Steel Corporation Hot stamped article
JP6515360B1 (en) * 2018-03-29 2019-05-22 日本製鉄株式会社 Hot stamped molded body
EP3778951A4 (en) * 2018-03-29 2021-10-27 Nippon Steel Corporation Hot-stamped formed product
WO2020189761A1 (en) 2019-03-20 2020-09-24 日本製鉄株式会社 Hot-stamp-molded article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092365A (en) * 2010-10-25 2012-05-17 Nippon Steel Corp Manufacturing method of high-strength automobile component and high-strength component
JP2013040390A (en) * 2011-08-18 2013-02-28 Nippon Steel & Sumitomo Metal Corp Method for manufacturing hot-pressed member
JP2013151708A (en) * 2010-12-27 2013-08-08 Nippon Steel & Sumitomo Metal Corp Method for manufacturing hot stamped body having small variation in hardness, and the hot stamped body
JP2013194249A (en) * 2012-03-15 2013-09-30 Kobe Steel Ltd Hot-press molded article and method for producing the same
JP2013224490A (en) * 2013-05-07 2013-10-31 Nippon Steel & Sumitomo Metal Corp Method of manufacturing hot-pressed steel sheet member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513608B2 (en) * 2004-10-29 2010-07-28 住友金属工業株式会社 Hot-pressed steel sheet member and its manufacturing method
EP2684972B1 (en) * 2011-03-09 2017-09-27 Nippon Steel & Sumitomo Metal Corporation Steel sheets for hot stamping, method for manufacturing the same, and use for manufacturing high-strength hot-stamped parts
WO2012137687A1 (en) * 2011-04-01 2012-10-11 新日本製鐵株式会社 Hot stamp-molded high-strength component having excellent corrosion resistance after coating, and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092365A (en) * 2010-10-25 2012-05-17 Nippon Steel Corp Manufacturing method of high-strength automobile component and high-strength component
JP2013151708A (en) * 2010-12-27 2013-08-08 Nippon Steel & Sumitomo Metal Corp Method for manufacturing hot stamped body having small variation in hardness, and the hot stamped body
JP2013040390A (en) * 2011-08-18 2013-02-28 Nippon Steel & Sumitomo Metal Corp Method for manufacturing hot-pressed member
JP2013194249A (en) * 2012-03-15 2013-09-30 Kobe Steel Ltd Hot-press molded article and method for producing the same
JP2013224490A (en) * 2013-05-07 2013-10-31 Nippon Steel & Sumitomo Metal Corp Method of manufacturing hot-pressed steel sheet member

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093384A1 (en) * 2017-11-13 2019-05-16 Jfeスチール株式会社 Hot press steel sheet member and manufacturing method therefor
WO2019093376A1 (en) * 2017-11-13 2019-05-16 Jfeスチール株式会社 Hot-pressed steel sheet member and method for producing same
JP6569841B1 (en) * 2017-11-13 2019-09-04 Jfeスチール株式会社 Hot-pressed steel sheet member and manufacturing method thereof
JP6573050B1 (en) * 2017-11-13 2019-09-11 Jfeスチール株式会社 Hot-pressed steel sheet member and manufacturing method thereof
US11339452B2 (en) 2017-11-13 2022-05-24 Jfe Steel Corporation Hot-pressed steel sheet member and method for producing same
WO2019188622A1 (en) * 2018-03-27 2019-10-03 株式会社神戸製鋼所 Steel plate for hot stamping
JP2019173158A (en) * 2018-03-27 2019-10-10 株式会社神戸製鋼所 Steel sheet for hot stamp
JP7353768B2 (en) 2018-03-27 2023-10-02 株式会社神戸製鋼所 Steel plate for hot stamping
WO2023120985A1 (en) * 2021-12-22 2023-06-29 주식회사 포스코 Steel material for hot forming, hot formed part, and method for manufacturing thereof

Also Published As

Publication number Publication date
WO2015194571A1 (en) 2015-12-23

Similar Documents

Publication Publication Date Title
JP6428970B1 (en) Hot-pressed member and manufacturing method thereof
JP6931396B2 (en) Hot-formed plated steel sheets with excellent impact characteristics, hot-formed members, and their manufacturing methods
JP2016003389A (en) Steel plate for hot pressing, hot pressing molding using steel plate and production method of hot pressing molding
JP6260676B2 (en) Hot press steel plate and method for manufacturing the same, and hot press member and method for manufacturing the same
JP5958666B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP6234845B2 (en) High strength galvannealed steel sheet with excellent bake hardenability and bendability
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
WO2014171062A1 (en) High-strength hot-rolled steel sheet and method for manufacturing same
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP2011195958A (en) Steel material to be hot-pressed, hot-pressed steel material, and method for producing hot-pressed steel material
JP2005290547A (en) High carbon hot-rolled steel sheet having excellent ductility and stretch-flange formability, and production method therefor
JP5979326B1 (en) High strength plated steel sheet and method for producing the same
WO2016093316A1 (en) Steel plate for hot stamping, and hot stamping molded component using said steel plate
JP5641086B2 (en) High-strength hot-rolled steel sheet excellent in mass production punchability and manufacturing method thereof
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP7277837B2 (en) hot stamped body
CN116555668A (en) Plated steel sheet for thermoforming excellent in impact properties after thermoforming, thermoformed part, and method for producing same
JP5857913B2 (en) Hot-formed steel plate member, method for producing the same, and hot-formed steel plate
JP5978614B2 (en) High-strength hot-rolled steel sheet excellent in punchability and manufacturing method thereof
JPWO2019069938A1 (en) Hot stamping molded article, hot stamping steel plate and method for producing them
JP2015024414A (en) Method of manufacturing high-strength press component
JP5641087B2 (en) High-strength hot-rolled steel sheet excellent in mass production punchability and manufacturing method thereof
JP5979325B1 (en) High strength plated steel sheet and method for producing the same
JP6589928B2 (en) Hot-pressed member and manufacturing method thereof
JP2010174293A (en) Steel sheet to be die-quenched superior in hot-punchability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180327