WO2019188503A1 - Hot-dip galvanizing bath facility - Google Patents

Hot-dip galvanizing bath facility Download PDF

Info

Publication number
WO2019188503A1
WO2019188503A1 PCT/JP2019/011194 JP2019011194W WO2019188503A1 WO 2019188503 A1 WO2019188503 A1 WO 2019188503A1 JP 2019011194 W JP2019011194 W JP 2019011194W WO 2019188503 A1 WO2019188503 A1 WO 2019188503A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
steel plate
angle
rectifying
entry
Prior art date
Application number
PCT/JP2019/011194
Other languages
French (fr)
Japanese (ja)
Inventor
祐輔 入江
川村 三喜夫
功太郎 大野
晋平 吉田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN201980005952.3A priority Critical patent/CN111406125B/en
Priority to JP2019526027A priority patent/JP6624348B1/en
Publication of WO2019188503A1 publication Critical patent/WO2019188503A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • the present invention relates to hot dip galvanizing equipment used in hot dip galvanizing lines for steel sheets.
  • the hot dip galvanizing equipment used in the hot dip galvanizing line for steel plates is provided with a sink roll and a support roll in the hot dip galvanizing bath. Then, the traveling direction is changed upward, and it is pulled up vertically from the molten zinc bath while being guided by the support roll, and during this time, the molten zinc adheres to the surface of the steel sheet.
  • the Al concentration in the molten zinc bath In order to stabilize the quality of the galvanized steel sheet, it is necessary to strictly control the Al concentration in the molten zinc bath. For example, when the Al concentration is too high, poor alloying occurs, and when the Al concentration is too low, bottom dross is generated and accumulated in the bath and adheres to the steel sheet, thereby generating dross soot.
  • the Al concentration in the molten zinc bath is adjusted by introducing a small ingot of Zn—Al alloy from a specific location.
  • the region called the V zone surrounded by the steel plate on the sink roll in the molten zinc bath is surrounded by the steel plate, the substitution rate of the bath inside and outside the V zone is poor, and the bath tends to stay, And Al is consumed by steel plate passage, and Al concentration tends to become relatively low. Therefore, it can be said that the bottom dross that is the cause of dross trapping is easily generated and accumulated.
  • Patent Document 1 proposes a technique for arranging a rectifying plate in the V zone above the sink roll to promote bath replacement inside and outside the V zone.
  • the current plate of Patent Document 1 is obtained by bending or curving a flat plate with a center line as a boundary, and the center line is disposed along the traveling direction of the steel sheet on the side entering the molten zinc bath.
  • the accompanying flow generated along the steel sheet traveling obliquely downward collides with the sink roll to become an upward zinc flow, but this zinc flow is applied to the current plate and directed outward in the sheet width direction of the steel sheet. It is intended to promote bath replacement inside and outside the V zone.
  • an object of the present invention is to solve the above-mentioned conventional problems and to provide a molten zinc bath facility having an excellent bath replacement effect inside and outside the V zone.
  • the molten zinc bath facility of the present invention which has been made to solve the above problems, is provided between the molten zinc bath and the inside of the molten zinc bath, between the snout and the sink roll, on the side entering the molten zinc bath.
  • an angle ⁇ 2 of 45 ° or more and 135 ° or less and a cross section parallel to the surface of the entry-side steel plate forms an angle ⁇ 1 of more than 0 ° and less than 90 ° with respect to the plate width direction of the entry-side steel plate.
  • the angle ⁇ 2 is preferably 60 ° or more and 120 ° or less, and the angle ⁇ 1 is preferably 20 ° or more and 60 ° or less.
  • the plurality of rectifying pieces are preferably symmetric with respect to the center of the sink roll in the cylinder length direction.
  • FIG. 3 is a view taken in the direction of arrows III-III in FIG. 1. It is the figure which looked at the molten zinc bath baffle plate and a part of steel plate from the IV-IV arrow direction of FIG.
  • FIG. 5 is a view taken along arrow VV in FIG. 3. It is a figure explaining the structure of the molten zinc bath baffle plate of 1st Embodiment. It is a figure explaining the structure of the molten zinc bath baffle plate of 2nd Embodiment.
  • FIG. 1 is a schematic cross-sectional view showing a molten zinc bath facility of the first embodiment
  • FIG. 2 is a plan view showing an essential part thereof, and is a view taken along the line II-II in FIG. 1
  • FIG. 4 is a view of a part of the molten zinc bath rectifying plate 8 and the steel plate 5 from the direction of arrows IV-IV in FIG. 3, and
  • FIG. 5 is a view taken along arrows VV in FIG.
  • 1 is a molten zinc bath
  • 2 is a molten zinc bath inside
  • 3 is a sink roll installed in the molten zinc bath 2
  • 4 is a support roll.
  • the steel plate 5 enters the molten zinc bath 2 obliquely downward from the snout 6, turns upward around the lower surface of the sink roll 3, is guided by the support roll 4, and is pulled upward vertically.
  • a region 7 called a V zone surrounded by the steel plate 5 is formed above the sink roll 3.
  • an orthogonal coordinate system is set in the figure.
  • An x axis is provided in the horizontal direction perpendicular to the axis 30 of the sink roll 3, and a y axis is provided in the vertical direction.
  • the upper side in the vertical direction is the y-axis positive direction.
  • a z-axis is provided in the horizontal direction along the axis 30 of the sink roll 3.
  • an X axis is provided in parallel with the traveling direction of the entry side steel plate 5, and The direction opposite to the traveling direction is taken as the X-axis positive direction.
  • a Y-axis orthogonal to the surface of the entry-side steel plate 5 is provided, and in a region 7 called a V zone surrounded by the steel plate 5, the side away from the surface of the entry-side steel plate 5 is defined as the Y-axis positive direction.
  • a Z-axis is provided along the axis 30 of the sink roll 3.
  • the molten zinc bath 2 contains Al in addition to zinc.
  • the Al concentration in the molten zinc bath 2 is adjusted by introducing a small ingot of a Zn—Al alloy from a specific location, but the V zone surrounded by the steel plate 5 above the sink roll 3. Since the region 7 called is surrounded by the steel plate 5 on both sides, the substitution rate of the bath 2 is poor, and the Al concentration is lowered and causes bottom dross. Therefore, in the present embodiment, the molten zinc bath rectifying plate 8 is disposed between the snout 6 and the sink roll 3 and above the contact portion Q between the entry-side steel plate 5 and the sink roll 3.
  • the molten zinc bath baffle plate 8 can be supported inside the molten zinc tank 1 by, for example, a member connected to a gantry that supports the sink roll 3 and the like.
  • the molten zinc bath rectifying plate 8 of the present embodiment is composed of a plurality of plate-like rectifying pieces 12, and the upward zinc flow 11 is rectified so as to face the outer side in the steel plate width direction, and the replacement rate of the bath 2. Has a role to enhance.
  • each plate-like rectifying piece 12 is formed of a rectangular flat plate having a width W and a length L, and the upper side (that is, the X-axis positive direction side) is the outer side in the steel plate width direction. It is arranged in a form that opens upward (that is, as it goes toward the X axis positive direction side).
  • the width W refers to the width of the plate-like rectifying piece 12 in a direction (Y-axis direction) orthogonal to the surface of the entry-side steel plate 5.
  • the length L refers to the length of the plate-like rectifying piece 12 in the traveling direction of the entry-side steel plate 5 (X-axis direction which is the plate passing direction).
  • FIG. 6 is a view for explaining the structure of the molten zinc bath rectifying plate 8 of the first embodiment, in which each plate-like rectifying piece 12 is cut along a plane parallel to the surface of the entry-side steel plate 5, that is, each plate.
  • the cross section parallel to the surface of the entrance side steel plate 5 of the rectifying piece 12 is shown.
  • Each plate-like rectifying piece 12 is arranged symmetrically (that is, symmetrical in the Z-axis direction) with respect to the center in the trunk length direction (that is, the Z-axis direction) of the sink roll 3 indicated as CL.
  • the plate-like rectifying pieces 12 are arranged at equal intervals with respect to the axis 30 (see FIGS. 1 and 3) of the sink roll 3 at an angle ⁇ 1 and a distance P1.
  • the angle ⁇ 1 corresponds to an angle formed by a cross section of each plate-like rectifying piece 12 parallel to the surface of the entry-side steel plate 5 with respect to the plate width direction (Z-axis direction) of the entry-side steel plate 5.
  • the interval P1 between the plate-like rectifying pieces 12 is a distance in the direction of the axis 30 (Z-axis direction) of the sink roll 3 between the two plate-like rectifying pieces 12 that are adjacent to each other and face each other.
  • each plate-like rectifying piece 12 is arranged at an angle ⁇ 2 of 45 ° to 135 ° with respect to the surface of the entry-side steel plate 5 as shown in FIG.
  • the value of ⁇ 2 is preferably 90 °, but it may be inclined with respect to the surface of the entry-side steel plate 5 in the range of ⁇ 45 ° centering on 90 °.
  • Each plate-like rectifying piece 12 is disposed so as to be inclined (in other words, to be opened) toward the outer side in the plate width direction of the approaching side steel plate 5 as it goes from the approaching side steel plate 5 side to the bath surface 20 side (in the positive y-axis direction).
  • the angle ⁇ 2 is smaller than 90 °.
  • the angle ⁇ 2 of the plate-like rectifying piece 12 inclined 30 ° outward in the plate width direction with respect to the normal line of the entry-side steel plate 5 is 60 °.
  • the angle ⁇ 2 is greater than 90 °.
  • the angle ⁇ 2 of the plate-like rectifying piece 12 inclined by 30 ° inward in the plate width direction with respect to the normal line of the entry-side steel plate 5 is 120 °.
  • each plate-like rectifying piece 12 is curved with a radius of curvature R that is curved so as to swell on the opposite side (X-axis positive direction side) of the entry-side steel plate 5. It is a face plate, and may be symmetrically arranged at equal intervals. Further, as in the third embodiment shown in FIG.
  • each plate-like rectifying piece 12 may be a curved plate curved in the opposite direction to FIG. 7 (that is, so as to swell in the negative direction of the X axis). .
  • the interval between the upper portions (X-axis positive direction ends) and the lower portion (X-axis negative direction ends) are equal.
  • the angle ⁇ 1 is such that a virtual straight line connecting the longitudinal ends of the cross section of each plate-like rectifying piece 12 is in the plate width direction (Z-axis direction) of the entry-side steel plate 5. It can be calculated as an angle formed with respect to it.
  • each plate-like rectifying piece 12 is made of a rectangular flat plate, and is arranged at equal intervals, but is asymmetrical in the left-right direction.
  • the center of the plurality of plate-like rectifying pieces 12 (specifically, the apex 120 of the plate-like rectifying pieces 12A) in the direction of the axis 30 (Z-axis direction) of the sink roll 3 is the trunk length direction of the sink roll 3 It is offset by a distance D with respect to the center CL.
  • the plate-like rectifying pieces 12 are made of rectangular flat plates, are inclined in the same direction, and are arranged at equal intervals.
  • each plate-like rectifying piece 12 is made of a rectangular flat plate and is symmetric, but is arranged at unequal intervals P1 and P2.
  • the arrangement of the plurality of plate-like rectifying pieces 12 is different at any position in the direction of the axis 30 (Z-axis direction) of the sink roll 3 (for example, a plurality of plate-like rectifying pieces with respect to the above position) 12 is symmetrically arranged
  • the interval between the plate-like rectifying pieces 12 for example, two flat plates constituting the plate-like rectifying piece 12A facing each other across the position is not considered as the intervals P1 and P2.
  • the arrangement of the plate-like rectifying pieces 12 can be variously changed in addition to the first embodiment.
  • the angle ⁇ 1 or the angle ⁇ 2 may not be the same value between the plate-like rectifying pieces 12.
  • the adjacent plate-like rectifying pieces 12 may not be parallel to each other.
  • the plate-like rectifying pieces 12A in which the portions on both sides are connected to each other with the apex 120 interposed therebetween may be separated from each other on both sides.
  • the number N of the plate-like rectifying pieces 12 may be plural (two or more), and is not limited to 6, and may be 4, 5, 7, 8, or the like.
  • the molten zinc bath rectifying plate 8 configured in this way is arranged in a region 7 called a V zone, it is generated by the collision between the accompanying flow 9 of the approach-side steel plate 5 and the sink roll 3 and the accompanying flow 10 of the sink roll 3.
  • the upward zinc flow 11 can be efficiently rectified by the plate-like rectifying pieces 12 to the outside in the steel plate width direction.
  • the installation range of the molten zinc bath rectifying plate 8 in the region 7 may be a range in which the upward zinc flow 11 hits at least a part of each plate-like rectifying piece 12. As surrounded by a one-dot chain line in FIG.
  • each plate-like rectifying piece 12 may be arranged within a predetermined range (for example, within ⁇ 1000 mm) in the direction).
  • each plate-like rectifying piece 12 is arranged at an angle ⁇ 2 of 45 ° or more and 135 ° or less with respect to the surface of the entry-side steel plate 5, and on the surface of the entry-side steel plate 5 of each plate-like rectification piece 12.
  • the parallel cross section By arranging the parallel cross section at an angle ⁇ 1 of more than 0 ° and less than 90 ° with respect to the plate width direction of the entry side steel plate 5, the center line of the straightening or bending of the rectifying plate is along the traveling direction of the entry side steel plate.
  • the upward zinc flow 11 can be applied to each plate-like rectifying piece 12 at a larger angle than the conventional rectifying plate arranged in this manner, and the replacement rate of the bath 2 can be increased as compared with the conventional rectifying plate.
  • a decrease in the Al concentration in the region 7 called the V zone can be prevented, and defects in the hot dip galvanized steel sheet due to bottom dross can be suppressed.
  • the amount of bottom dross was reduced to less than half of the conventional amount. Examples of the above embodiments will be described below.
  • the plate-shaped rectifying piece 12 is changed in size W, L, angle ⁇ 1, curvature radius R, number N, intervals P1, P2, center offset D, angle ⁇ 2, and the replacement rate ⁇ of the bath 2 is changed to FULL (CFD simulation software). ) was used for numerical calculation.
  • the substitution rate ⁇ is a ratio of the volume of the bath 2 newly introduced after passing the steel plate 5 for 2 minutes to the volume of the bath 2 before passing the steel plate 5 in the region 7 called V zone.
  • the plate speed of the steel plate 5 was 120 m / min, and the plate width was 1600 mm. The results are shown in Table 1.
  • the substitution rate ⁇ of the bath 2 was 31%. However, according to each example, the substitution rate ⁇ was 41 to 88%. Was able to greatly increase. In the simulation, the substitution rate ⁇ can be increased to 95%.
  • Comparative Example 2 is similar to the rectifying plate described in FIG. 2 of the above Japanese Patent Application Laid-Open No. 2016-1556077, and the flat plate is bent around its center line, and this center line is along the traveling direction of the entry side steel plate 5.
  • the angle ⁇ 2 is 20 ° (that is, less than 45 °), and the angle ⁇ 1 is 90 °.
  • the substitution rate ⁇ was as small as 36%. This is because the angle at which the upward zinc flow 11 hits the plate-like rectifying piece 12 is shallow, and thus the rectification action of directing the upward zinc flow 11 outward in the plate width direction of the steel plate 5 is weak, and Al in the region 7 called the V zone This is probably because the decrease in density cannot be sufficiently eliminated.
  • the substitution rate ⁇ of Comparative Example 4 in which the angle ⁇ 2 is 150 ° (ie, more than 135 °) and the substitution rate ⁇ of Comparative Example 5 in which the angle ⁇ 2 is 30 ° (ie, less than 45 °) are both 39% and small. It was.
  • the substitution rate ⁇ of Example 24 in which the angle ⁇ 2 is 135 ° and the substitution rate ⁇ in Example 26 in which the angle ⁇ 2 is 45 ° are both 50% and large.
  • the replacement of the bath 2 in the region 7 called the V zone can be promoted by setting the angle ⁇ 2 to 45 ° or more and 135 ° or less.
  • the substitution rate ⁇ was maximized when the angle ⁇ 2 was 90 ° (77% of Example 21).
  • the increase rate of the substitution rate ⁇ with respect to the increase of the angle ⁇ 2 is smaller than when the angle ⁇ 2 is 45 ° to 60 °.
  • the increase rate of the substitution rate ⁇ with respect to the decrease of the angle ⁇ 2 is smaller than when the angle ⁇ 2 is 120 ° to 135 °.
  • the substitution rate ⁇ of Comparative Example 2 where the angle ⁇ 1 is 90 ° was as small as 36%. This is considered to be because it is difficult for the upward zinc flow 11 to hit the plate-like rectifying piece 12 when viewed in the direction along the surface of the entry-side steel plate 5.
  • the substitution rate ⁇ of Comparative Example 3 in which the angle ⁇ 1 was 0 ° was as small as 32%. This is because the upward zinc flow 11 hits the plate-like rectifying piece 12 in a direction perpendicular to the surface of the entry-side steel plate 5 so that the zinc flow 11 is directed to the outside in the plate width direction of the steel plate 5. This is thought to be because the action is rather weakened.
  • the substitution rate ⁇ of Example 22 in which the angle ⁇ 1 is 45 ° was as large as 53%.
  • the replacement of the bath 2 in the region 7 called the V zone can be promoted by setting the angle ⁇ 1 within the range of more than 0 ° and less than 90 °. This is considered to be because, when viewed in the direction along the surface of the entry-side steel plate 5, it is possible to efficiently generate a rectification action that directs the upward zinc flow 11 toward the outside in the plate width direction of the steel plate 5.
  • the substitution rate ⁇ was maximized (75% of Example 11).
  • the increase rate of the substitution rate ⁇ relative to the increase of the angle ⁇ 1 was smaller than when the angle ⁇ 1 was 10 ° to 20 °.
  • the increase rate of the substitution rate ⁇ with respect to the decrease of the angle ⁇ 1 was smaller when the angle ⁇ 1 was 30 ° to 60 ° than when the angle ⁇ 1 was 60 ° to 70 °.
  • the replacement rate ⁇ of Comparative Example 3 in which the number N of the plate-like rectifying pieces 12 is 1 was as small as 32%.
  • the replacement rate ⁇ of Example 22 in which the number N of the plate-like rectifying pieces 12 is 2 was as large as 53%. Therefore, it was found that a large substitution rate ⁇ can be obtained by setting the number N of the plate-like rectifying pieces 12 to 2 or more.
  • the replacement rate ⁇ is 66% (Example 15), and when the number N is 4, the replacement rate ⁇ is 75% (Example 11).
  • the substitution rate ⁇ is 85% (Example 16), and when the number N is 8, the substitution rate ⁇ is 88% (Example 17). Therefore, it was found that when the number N is 4 or more, a large substitution rate ⁇ of 75% or more can be obtained. It was also found that the greater the number N, the greater the obtained substitution rate ⁇ . However, when the number N is too large, there is a high possibility that the plate-like rectifying pieces 12 interfere with each other due to space limitations in the facility. From this viewpoint, it can be said that the upper limit of N is preferably 6 to 8, for example.
  • the substitution rate ⁇ (63% of Example 4) when the width W was 350 mm was the same as the substitution rate ⁇ (63% of Example 3) when the width W was 250 mm.
  • the plate-like rectifying piece 12 approaches the steel plate 5 in the region 7 called the V zone, so that the possibility of interference between the plate-like rectifying piece 12 and the steel plate 5 increases.
  • the upper limit of the width W to, for example, 250 mm, interference between the plate-like rectifying piece 12 and the steel plate 5 can be suppressed while obtaining a large substitution rate ⁇ .
  • the substitution rate ⁇ (63% of Example 3) when the length L of the plate-like rectifying piece 12 is 200 mm is larger than the substitution rate ⁇ (61% of Example 5) when the length L is 100 mm. It was a little big.
  • the substitution rate ⁇ (63% of Example 6) when the length L was 300 mm was slightly larger than the substitution rate ⁇ (60% of Example 7) when the length L was 400 mm.
  • a large substitution rate ⁇ can be stably obtained by setting the length L to 100 mm or more. It was also found that a large substitution rate ⁇ can be obtained more stably by setting the length L to 200 to 300 mm.
  • the substitution rate ⁇ (70%) of Example 28 which is an example of the third embodiment shown in FIG. 8 is the substitution rate ⁇ (61%) of Example 27 which is an example of the second embodiment shown in FIG. It was bigger than.
  • the flow path cross-sectional area between adjacent plate-like rectifying pieces 12 is more on the outlet side (X-axis positive direction) than on the inlet side (X-axis negative direction side) of the flow path.
  • the flow path cross-sectional area is smaller on the outlet side (X-axis positive direction) than on the inlet side (X-axis negative direction side) of the flow path. It is considered that the upward zinc flow 11 can flow more smoothly along the plate-like rectifying piece 12 by becoming larger on the side).
  • the substitution rate ⁇ (75% of Example 11) when the interval P1 between the plate-like rectifying pieces 12 is 300 mm is the substitution rate ⁇ (70% of Example 18) and the interval P1 when the interval P1 is 200 mm.
  • the substitution rate ⁇ (72% of Example 19) when 400 mm was slightly larger than the substitution rate ⁇ (72% of Example 19) when 400 mm.
  • a large substitution rate ⁇ can be stably obtained by setting the interval P1 to 200 to 400 mm.
  • a large substitution rate ⁇ can be obtained more stably by setting the interval P1 to 300 mm or in the vicinity thereof.
  • the substitution rate ⁇ (75% of Example 20 and 77% of Example 21) when the spacing between the plate-like rectifying pieces 12 is the same is the substitution rate ⁇ (72% of Example 31) when the spacing is different. ). Therefore, it may be advantageous that the intervals are the same, but even if the intervals are somewhat different, the influence on the substitution rate ⁇ is considered to be small.
  • the substitution rate ⁇ (77% of Example 21) when the plate-like rectifying pieces 12 are arranged symmetrically with respect to the body length direction center CL of the sink roll is that the plate-like rectifying pieces 12 are arranged asymmetrically. It was larger than the substitution rate ⁇ (63% of Example 29). Thus, it was found that a larger replacement rate ⁇ can be obtained by arranging the plate-like rectifying pieces 12 symmetrically with respect to the center length CL of the sink roll.
  • each plate-shaped rectification piece 12 is arrange
  • the substitution rate ⁇ (77% of Example 21) when each plate-like rectifying piece 12 is arranged in a different direction is the same as when each plate-like rectifying piece 12 is arranged in the same direction.
  • the substitution rate ⁇ (66% of Example 30) has been found that a larger replacement rate ⁇ can be obtained by arranging the plate-like rectifying pieces 12 to be inclined in different directions.
  • each plate-like rectifying piece 12 is arranged to be inclined in a different direction, it is possible to suppress the upward zinc flow 11 from being biased to one side in the plate width direction of the steel plate 5. It is thought that it can suppress that this occurs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

[Problem] To provide a hot-dip galvanizing bath facility having excellent bath substitution effect inside and outside a V-zone. [Solution] A straightening plate in a hot-dip galvanizing bath has a plurality of plate-shaped straightening pieces 12 disposed above a contact part Q of a sink roll 3 and an entry-side steel plate 5, which is a steel plate on an entry side of a hot-dip galvanizing bath 2, between a snout 6 and the sink roll 3. Each of the plate-shaped straightening pieces 12 forms an angle θ2 of 45° to 135° with the surface of the entry-side steel plate 5 and is disposed so that a cross section thereof parallel to the surface of the entry-side steel plate 5 forms an angle θ1 of more than 0° and less than 90° with respect to the plate width direction of the entry-side steel plate 5.

Description

溶融亜鉛浴設備Molten zinc bath equipment
 本発明は、鋼板の溶融亜鉛めっきラインに用いられる溶融亜鉛浴設備に関するものである。 The present invention relates to hot dip galvanizing equipment used in hot dip galvanizing lines for steel sheets.
 鋼板の溶融亜鉛めっきラインに用いられる溶融亜鉛浴設備は、溶融亜鉛浴中にシンクロールとサポートロールとを設け、鋼板をスナウトから溶融亜鉛浴中に斜め下向きに進入させ、シンクロールの下面に沿って進行方向を上向きに変換し、サポートロールでガイドしつつ溶融亜鉛浴から垂直に引き上げ、この間に鋼板の表面に溶融亜鉛を付着させるようにしたものである。 The hot dip galvanizing equipment used in the hot dip galvanizing line for steel plates is provided with a sink roll and a support roll in the hot dip galvanizing bath. Then, the traveling direction is changed upward, and it is pulled up vertically from the molten zinc bath while being guided by the support roll, and during this time, the molten zinc adheres to the surface of the steel sheet.
 亜鉛めっき鋼板の品質を安定化させるためには、溶融亜鉛浴中のAl濃度を厳格管理する必要がある。例えばAl濃度が高過ぎると合金化不良が発生し、Al濃度が低過ぎると浴中でボトムドロスが生成・蓄積し鋼板に付着することでドロス疵が発生する。 In order to stabilize the quality of the galvanized steel sheet, it is necessary to strictly control the Al concentration in the molten zinc bath. For example, when the Al concentration is too high, poor alloying occurs, and when the Al concentration is too low, bottom dross is generated and accumulated in the bath and adheres to the steel sheet, thereby generating dross soot.
 現在、溶融亜鉛浴中のAl濃度は、Zn-Al合金の小型インゴットを特定箇所から投入することで調整をしている。しかし、溶融亜鉛浴内でシンクロール上の鋼板で囲まれた、通称Vゾーンと呼ばれる領域は、鋼板で囲まれているため、Vゾーン内外の浴の置換率が悪く、浴が滞留しやすく、かつ鋼板通過によりAlが消費され、相対的にAl濃度が低くなり易い。そのため、ドロス疵の原因であるボトムドロスが生成・蓄積しやすい領域といえる。 Currently, the Al concentration in the molten zinc bath is adjusted by introducing a small ingot of Zn—Al alloy from a specific location. However, since the region called the V zone surrounded by the steel plate on the sink roll in the molten zinc bath is surrounded by the steel plate, the substitution rate of the bath inside and outside the V zone is poor, and the bath tends to stay, And Al is consumed by steel plate passage, and Al concentration tends to become relatively low. Therefore, it can be said that the bottom dross that is the cause of dross trapping is easily generated and accumulated.
 そこでドロス疵を発生させないように、前述のZn-Al合金の小型インゴット投入量を増加させると、逆に合金化不良を招いてしまう。また、Vゾーン内外のAl濃度差を解消するために、Vゾーン内にZn-Al合金の小型インゴットを投入すれば、Alの局所濃化による合金化不良の発生を招いたり、投入箇所が増えることにより操業オペレーターの作業負荷が増加してしまう。 Therefore, increasing the amount of the small ingot of the Zn—Al alloy mentioned above so as not to cause dross soot leads to poor alloying. In order to eliminate the difference in Al concentration between the inside and outside of the V zone, if a small ingot of Zn—Al alloy is introduced into the V zone, an alloying failure may occur due to local concentration of Al, and the number of places to be added increases. This increases the workload of the operator.
 そこで特許文献1には、シンクロールの上方のVゾーン内に整流板を配置し、Vゾーン内外の浴置換を促進する技術が提案されている。この特許文献1の整流板は、平板をその中心線を境として屈曲又は湾曲させたものであり、この中心線を溶融亜鉛浴に進入する側の鋼板の進行方向に沿って配置している。シンクロールの入側では斜め下向きに進む鋼板に沿って生じる随伴流がシンクロールに衝突して上向きの亜鉛流れとなるが、この亜鉛流れを整流板に当てて鋼板の板幅方向外側に向け、Vゾーン内外の浴置換を促進しようとするものである。 Therefore, Patent Document 1 proposes a technique for arranging a rectifying plate in the V zone above the sink roll to promote bath replacement inside and outside the V zone. The current plate of Patent Document 1 is obtained by bending or curving a flat plate with a center line as a boundary, and the center line is disposed along the traveling direction of the steel sheet on the side entering the molten zinc bath. On the entrance side of the sink roll, the accompanying flow generated along the steel sheet traveling obliquely downward collides with the sink roll to become an upward zinc flow, but this zinc flow is applied to the current plate and directed outward in the sheet width direction of the steel sheet. It is intended to promote bath replacement inside and outside the V zone.
 しかしこの整流板では、整流板に対して上記の上向きの亜鉛流れが当たる角度が浅いため、上向きの流れを板幅方向外側に向ける整流化作用が弱く、Vゾーン内のAl濃度の低下を十分に解消できない。このためボトムドロスを抑制する効果に乏しいという問題があった。 However, in this current plate, since the angle at which the upward zinc flow hits the current plate is shallow, the rectification action of directing the upward flow outward in the plate width direction is weak, and the Al concentration in the V zone is sufficiently lowered. It cannot be resolved. For this reason, there existed a problem that the effect which suppresses bottom dross was scarce.
特開2016-156077号公報Japanese Unexamined Patent Publication No. 2016-156077
 従って本発明の目的は、上記した従来の問題点を解決し、Vゾーン内外の浴置換効果に優れた溶融亜鉛浴設備を提供することである。 Therefore, an object of the present invention is to solve the above-mentioned conventional problems and to provide a molten zinc bath facility having an excellent bath replacement effect inside and outside the V zone.
 上記の課題を解決するためになされた本発明の溶融亜鉛浴設備は、溶融亜鉛浴と、溶融亜鉛浴の内部に、スナウトとシンクロールとの間であって、溶融亜鉛浴に進入する側の鋼板である進入側鋼板とシンクロールとの接触部の上方に配置された複数の板状の整流片を有する溶融亜鉛浴整流板と、を備え、整流片のそれぞれは、進入側鋼板の面に対して45°以上、135°以下の角度θ2をなし、かつ、進入側鋼板の面に平行な断面が、進入側鋼板の板幅方向に対して0°超、90°未満の角度θ1をなすように配置されている。 The molten zinc bath facility of the present invention, which has been made to solve the above problems, is provided between the molten zinc bath and the inside of the molten zinc bath, between the snout and the sink roll, on the side entering the molten zinc bath. A molten zinc bath rectifying plate having a plurality of plate-like rectifying pieces disposed above the contact portion between the entry side steel plate and the sink roll, which is a steel plate, and each of the rectification pieces is on the surface of the entry side steel plate In contrast, an angle θ2 of 45 ° or more and 135 ° or less and a cross section parallel to the surface of the entry-side steel plate forms an angle θ1 of more than 0 ° and less than 90 ° with respect to the plate width direction of the entry-side steel plate. Are arranged as follows.
 なお、角度θ2は、60°以上、120°以下であることが好ましく、角度θ1は、20°以上、60°以下であることが好ましい。また、複数の整流片は、シンクロールの胴長方向中心に対して対称であることが好ましい。 The angle θ2 is preferably 60 ° or more and 120 ° or less, and the angle θ1 is preferably 20 ° or more and 60 ° or less. The plurality of rectifying pieces are preferably symmetric with respect to the center of the sink roll in the cylinder length direction.
 本発明によれば、進入側鋼板の随伴流と、シンクロール及びシンクロールの随伴流との衝突により発生する上向きの亜鉛流れを、効率よく整流して鋼板幅方向の外側向きの流れに変換できるので、Vゾーンと呼ばれるシンクロール上の鋼板で囲まれた領域の浴置換を促進し、この領域のAl濃度の低下を防止することができる。この結果、溶融亜鉛浴中のボトムドロス量を低減し、ボトムドロスに起因する溶融亜鉛めっき鋼板の欠陥を抑制することができる。 ADVANTAGE OF THE INVENTION According to this invention, the upward zinc flow generate | occur | produced by the collision with the accompanying flow of an entrance side steel plate, and the accompanying flow of a sink roll and a sink roll can be efficiently rectified, and can be converted into the outward flow of a steel plate width direction. Therefore, the bath replacement in the region surrounded by the steel plate on the sink roll called the V zone can be promoted, and the decrease in the Al concentration in this region can be prevented. As a result, the amount of bottom dross in the molten zinc bath can be reduced, and defects in the hot dip galvanized steel sheet due to the bottom dross can be suppressed.
第1の実施形態の溶融亜鉛浴設備を示す断面模式図である。It is a cross-sectional schematic diagram which shows the molten zinc bath equipment of 1st Embodiment. 第1の実施形態の溶融亜鉛浴設備の要部を示す平面図である。It is a top view which shows the principal part of the molten zinc bath equipment of 1st Embodiment. 図1のIII-III矢視図である。FIG. 3 is a view taken in the direction of arrows III-III in FIG. 1. 図3のIV-IV矢視方向から溶融亜鉛浴整流板及び鋼板の一部を見た図である。It is the figure which looked at the molten zinc bath baffle plate and a part of steel plate from the IV-IV arrow direction of FIG. 図3のV-V矢視図である。FIG. 5 is a view taken along arrow VV in FIG. 3. 第1の実施形態の溶融亜鉛浴整流板の構造を説明する図である。It is a figure explaining the structure of the molten zinc bath baffle plate of 1st Embodiment. 第2の実施形態の溶融亜鉛浴整流板の構造を説明する図である。It is a figure explaining the structure of the molten zinc bath baffle plate of 2nd Embodiment. 第3の実施形態の溶融亜鉛浴整流板の構造を説明する図である。It is a figure explaining the structure of the molten zinc bath baffle plate of 3rd Embodiment. 第4の実施形態の溶融亜鉛浴整流板の構造を説明する図である。It is a figure explaining the structure of the molten zinc bath baffle plate of 4th Embodiment. 第5の実施形態の溶融亜鉛浴整流板の構造を説明する図である。It is a figure explaining the structure of the molten zinc bath baffle plate of 5th Embodiment. 第6の実施形態の溶融亜鉛浴整流板の構造を説明する図である。It is a figure explaining the structure of the molten zinc bath baffle plate of 6th Embodiment.
 以下に本発明の実施形態を説明する。図1は第1の実施形態の溶融亜鉛浴設備を示す断面模式図、図2はその要部を示す平面図であり図1のII-II矢視図、図3は要部のIII-III矢視図、図4は図3のIV-IV矢視方向から溶融亜鉛浴整流板8及び鋼板5の一部を見た図、図5は図3のV-V矢視図である。図1において、1は溶融亜鉛槽、2はその内部の溶融亜鉛浴、3は溶融亜鉛浴2中に設置されたシンクロール、4はサポートロールである。鋼板5はスナウト6から溶融亜鉛浴2中に斜め下向きに進入し、シンクロール3の下面を回って上向きとなり、サポートロール4にガイドされて垂直上向きに引き上げられる。シンクロール3より上には、鋼板5で囲まれたVゾーンと呼ばれる領域7が形成される。 Embodiments of the present invention will be described below. FIG. 1 is a schematic cross-sectional view showing a molten zinc bath facility of the first embodiment, FIG. 2 is a plan view showing an essential part thereof, and is a view taken along the line II-II in FIG. 1, and FIG. 4 is a view of a part of the molten zinc bath rectifying plate 8 and the steel plate 5 from the direction of arrows IV-IV in FIG. 3, and FIG. 5 is a view taken along arrows VV in FIG. In FIG. 1, 1 is a molten zinc bath, 2 is a molten zinc bath inside, 3 is a sink roll installed in the molten zinc bath 2, and 4 is a support roll. The steel plate 5 enters the molten zinc bath 2 obliquely downward from the snout 6, turns upward around the lower surface of the sink roll 3, is guided by the support roll 4, and is pulled upward vertically. A region 7 called a V zone surrounded by the steel plate 5 is formed above the sink roll 3.
 以下、説明のため、図中に直交座標系を設定する。シンクロール3の軸線30に対し直交する水平方向にx軸を設け、垂直方向にy軸を設ける。垂直方向上側をy軸正方向とする。シンクロール3の軸線30に沿って水平方向にz軸を設ける。また、溶融亜鉛浴2に進入する側の鋼板5(以下、進入側鋼板5ともいう。)の面に沿って、進入側鋼板5の進行方向と平行にX軸を設け、進入側鋼板5の進行方向と反対側をX軸正方向とする。進入側鋼板5の面に直交するY軸を設け、鋼板5で囲まれたVゾーンと呼ばれる領域7において、進入側鋼板5の面から離れる側をY軸正方向とする。シンクロール3の軸線30に沿ってZ軸を設ける。 Hereafter, for the sake of explanation, an orthogonal coordinate system is set in the figure. An x axis is provided in the horizontal direction perpendicular to the axis 30 of the sink roll 3, and a y axis is provided in the vertical direction. The upper side in the vertical direction is the y-axis positive direction. A z-axis is provided in the horizontal direction along the axis 30 of the sink roll 3. Further, along the surface of the steel plate 5 on the side entering the molten zinc bath 2 (hereinafter also referred to as the entry side steel plate 5), an X axis is provided in parallel with the traveling direction of the entry side steel plate 5, and The direction opposite to the traveling direction is taken as the X-axis positive direction. A Y-axis orthogonal to the surface of the entry-side steel plate 5 is provided, and in a region 7 called a V zone surrounded by the steel plate 5, the side away from the surface of the entry-side steel plate 5 is defined as the Y-axis positive direction. A Z-axis is provided along the axis 30 of the sink roll 3.
 溶融亜鉛浴2は亜鉛の他にAlを含有するものである。前記した通り、溶融亜鉛浴2中のAl濃度は、Zn-Al合金の小型インゴットを特定箇所から投入することで調整をしているが、シンクロール3より上の鋼板5で囲まれたVゾーンと呼ばれる領域7は両側が鋼板5で囲まれているために浴2の置換率が悪く、Al濃度が低下してボトムドロスを発生させる原因となっている。そこで本実施形態では、スナウト6とシンクロール3との間であって、進入側鋼板5とシンクロール3との接触部Qの上方に溶融亜鉛浴整流板8を配置した。なお、溶融亜鉛浴整流板8は、例えば、シンクロール3等を支持する架台に接続された部材により、溶融亜鉛槽1の内部に支持されうる。 The molten zinc bath 2 contains Al in addition to zinc. As described above, the Al concentration in the molten zinc bath 2 is adjusted by introducing a small ingot of a Zn—Al alloy from a specific location, but the V zone surrounded by the steel plate 5 above the sink roll 3. Since the region 7 called is surrounded by the steel plate 5 on both sides, the substitution rate of the bath 2 is poor, and the Al concentration is lowered and causes bottom dross. Therefore, in the present embodiment, the molten zinc bath rectifying plate 8 is disposed between the snout 6 and the sink roll 3 and above the contact portion Q between the entry-side steel plate 5 and the sink roll 3. In addition, the molten zinc bath baffle plate 8 can be supported inside the molten zinc tank 1 by, for example, a member connected to a gantry that supports the sink roll 3 and the like.
 図1に示すように、Vゾーンと呼ばれる領域7においては、進入側鋼板5の随伴流9と、シンクロール3の回転に随伴する随伴流10との衝突により、上向きの亜鉛流れ11が発生する。本実施形態の溶融亜鉛浴整流板8は、複数枚の板状整流片12からなるものであり、この上向きの亜鉛流れ11を鋼板幅方向の外側に向くように整流し、浴2の置換率を高める役割を持つ。 As shown in FIG. 1, in a region 7 called a V zone, an upward zinc flow 11 is generated due to a collision between the accompanying flow 9 of the approach-side steel plate 5 and the accompanying flow 10 accompanying the rotation of the sink roll 3. . The molten zinc bath rectifying plate 8 of the present embodiment is composed of a plurality of plate-like rectifying pieces 12, and the upward zinc flow 11 is rectified so as to face the outer side in the steel plate width direction, and the replacement rate of the bath 2. Has a role to enhance.
 図1~図6に示す第1の実施形態においては、各板状整流片12は幅W、長さLの四角形の平板からなり、上側(すなわちX軸正方向側)が鋼板幅方向の外側に向くように、上向きに(すなわちX軸正方向側へ向かうにつれて)開く形態で配置されている。ここで幅Wは、進入側鋼板5の面に対して直交する方向(Y軸方向)における板状整流片12の幅をいう。長さLは、進入側鋼板5の進行方向(通板方向であるX軸方向)における板状整流片12の長さをいう。 In the first embodiment shown in FIGS. 1 to 6, each plate-like rectifying piece 12 is formed of a rectangular flat plate having a width W and a length L, and the upper side (that is, the X-axis positive direction side) is the outer side in the steel plate width direction. It is arranged in a form that opens upward (that is, as it goes toward the X axis positive direction side). Here, the width W refers to the width of the plate-like rectifying piece 12 in a direction (Y-axis direction) orthogonal to the surface of the entry-side steel plate 5. The length L refers to the length of the plate-like rectifying piece 12 in the traveling direction of the entry-side steel plate 5 (X-axis direction which is the plate passing direction).
 図6は、第1の実施形態の溶融亜鉛浴整流板8の構造を説明する図であり、進入側鋼板5の面に平行な面で各板状整流片12を切った断面、すなわち各板状整流片12の、進入側鋼板5の面に平行な断面を示す。各板状整流片12は、CLと表示されたシンクロール3の胴長方向(すなわちZ軸方向)の中心に対して左右対称(すなわちZ軸方向で対称)に配置されている。各板状整流片12は、シンクロール3の軸線30(図1,3参照)に対して角度θ1、間隔P1で等間隔に配置されている。角度θ1は、各板状整流片12の、進入側鋼板5の面に平行な断面が、進入側鋼板5の板幅方向(Z軸方向)に対してなす角度に相当する。各板状整流片12同士の間隔P1は、互いに隣接し対向する2枚の板状整流片12の間の、シンクロール3の軸線30の方向(Z軸方向)における距離である。板状整流片12の枚数Nを数える際、角度θ1が0°超である2つの部分がつながっている板状整流片12Aについては、これを2枚と数える。よって、板状整流片12の枚数Nは6である。 FIG. 6 is a view for explaining the structure of the molten zinc bath rectifying plate 8 of the first embodiment, in which each plate-like rectifying piece 12 is cut along a plane parallel to the surface of the entry-side steel plate 5, that is, each plate. The cross section parallel to the surface of the entrance side steel plate 5 of the rectifying piece 12 is shown. Each plate-like rectifying piece 12 is arranged symmetrically (that is, symmetrical in the Z-axis direction) with respect to the center in the trunk length direction (that is, the Z-axis direction) of the sink roll 3 indicated as CL. The plate-like rectifying pieces 12 are arranged at equal intervals with respect to the axis 30 (see FIGS. 1 and 3) of the sink roll 3 at an angle θ1 and a distance P1. The angle θ1 corresponds to an angle formed by a cross section of each plate-like rectifying piece 12 parallel to the surface of the entry-side steel plate 5 with respect to the plate width direction (Z-axis direction) of the entry-side steel plate 5. The interval P1 between the plate-like rectifying pieces 12 is a distance in the direction of the axis 30 (Z-axis direction) of the sink roll 3 between the two plate-like rectifying pieces 12 that are adjacent to each other and face each other. When counting the number N of the plate-like rectifying pieces 12, the plate-like rectifying pieces 12A in which two portions having an angle θ1 of more than 0 ° are connected are counted as two pieces. Therefore, the number N of the plate-like rectifying pieces 12 is 6.
 さらに各板状整流片12は、図4に示すように進入側鋼板5の面に対して45°~135°の角度θ2で配置されている。θ2の値は90°であることが好ましいが、90°を中心として±45°の範囲で進入側鋼板5の面に対して傾斜させてもよい。各板状整流片12が進入側鋼板5の側から浴面20の側に(y軸正方向に)向かうにつれて進入側鋼板5の板幅方向外側へ傾く(言い換えると、いわば開く)ように配置される場合、角度θ2は90°より小さくなる。例えば、進入側鋼板5の法線に対し板幅方向外側へ30°傾いた板状整流片12の角度θ2は、60°である。一方、各板状整流片12が進入側鋼板5の側から浴面20の側に向かうにつれて進入側鋼板5の板幅方向内側へ傾く(言い換えると、いわば閉じる)ように配置される場合、角度θ2は90°より大きくなる。例えば、進入側鋼板5の法線に対し板幅方向内側へ30°傾いた板状整流片12の角度θ2は、120°である。 Further, each plate-like rectifying piece 12 is arranged at an angle θ2 of 45 ° to 135 ° with respect to the surface of the entry-side steel plate 5 as shown in FIG. The value of θ2 is preferably 90 °, but it may be inclined with respect to the surface of the entry-side steel plate 5 in the range of ± 45 ° centering on 90 °. Each plate-like rectifying piece 12 is disposed so as to be inclined (in other words, to be opened) toward the outer side in the plate width direction of the approaching side steel plate 5 as it goes from the approaching side steel plate 5 side to the bath surface 20 side (in the positive y-axis direction). When the angle θ2 is set, the angle θ2 is smaller than 90 °. For example, the angle θ2 of the plate-like rectifying piece 12 inclined 30 ° outward in the plate width direction with respect to the normal line of the entry-side steel plate 5 is 60 °. On the other hand, when each plate-like rectifying piece 12 is disposed so as to tilt toward the inner side in the plate width direction of the approaching side steel plate 5 from the approaching side steel plate 5 side toward the bath surface 20 (in other words, to close in other words), the angle θ2 is greater than 90 °. For example, the angle θ2 of the plate-like rectifying piece 12 inclined by 30 ° inward in the plate width direction with respect to the normal line of the entry-side steel plate 5 is 120 °.
 以下、溶融亜鉛浴整流板8の構造について第2~第6の実施形態を説明する。これら第2~第6の実施形態の溶融亜鉛浴整流板8をシンクロール3の軸線30の方向(Z軸方向)から見ると、第1の実施形態と同じく、図5のようになる。図7に示す第2の実施形態のように、各板状整流片12は、進入側鋼板5の進行方向と反対側(X軸正方向側)に膨らむように湾曲した、曲率半径Rの曲面板であり、左右対称、かつ互いに等間隔に配置されていてもよい。また図8に示す第3の実施形態のように、各板状整流片12は、図7とは逆方向に(すなわちX軸負方向側に膨らむように)湾曲した曲面板であってもよい。何れの場合にも、各板状整流片12は、互いの上部(X軸正方向端)の間隔と下部(X軸負方向端)の間隔とが等しくなっている。また、図7及び図8に示すように、角度θ1は、各板状整流片12の断面の長手方向両端を結ぶ仮想的な直線が、進入側鋼板5の板幅方向(Z軸方向)に対してなす角度として算出可能である。 Hereinafter, second to sixth embodiments of the structure of the molten zinc bath rectifying plate 8 will be described. When the molten zinc bath rectifying plate 8 of the second to sixth embodiments is viewed from the direction of the axis 30 of the sink roll 3 (Z-axis direction), it is as shown in FIG. 5 as in the first embodiment. As in the second embodiment shown in FIG. 7, each plate-like rectifying piece 12 is curved with a radius of curvature R that is curved so as to swell on the opposite side (X-axis positive direction side) of the entry-side steel plate 5. It is a face plate, and may be symmetrically arranged at equal intervals. Further, as in the third embodiment shown in FIG. 8, each plate-like rectifying piece 12 may be a curved plate curved in the opposite direction to FIG. 7 (that is, so as to swell in the negative direction of the X axis). . In any case, in each plate-like rectifying piece 12, the interval between the upper portions (X-axis positive direction ends) and the lower portion (X-axis negative direction ends) are equal. Further, as shown in FIGS. 7 and 8, the angle θ1 is such that a virtual straight line connecting the longitudinal ends of the cross section of each plate-like rectifying piece 12 is in the plate width direction (Z-axis direction) of the entry-side steel plate 5. It can be calculated as an angle formed with respect to it.
 また図9に示す第4の実施形態では、各板状整流片12が、四角形の平板からなり、互いに等間隔であるが、左右非対称に配置されている。言い換えると、シンクロール3の軸線30の方向(Z軸方向)で、複数の板状整流片12の中心(具体的には板状整流片12Aの頂点120)が、シンクロール3の胴長方向中心CLに対して距離Dだけオフセットしている。また図10に示す第5の実施形態では、各板状整流片12が、四角形の平板からなり、互いに同一方向に傾斜して、互いに等間隔で配置されている。さらに図11に示す第6の実施形態では、各板状整流片12が、四角形の平板からなり、左右対称であるが、互いに不等間隔P1、P2で配置されている。なお、シンクロール3の軸線30の方向(Z軸方向)におけるいずれかの位置を境に複数の板状整流片12の配列が異なっている場合(例えば上記位置に対して複数の板状整流片12が対称に配置されている場合)、上記位置を跨いで対向する板状整流片12(例えば板状整流片12Aを構成する2つの平板)同士の間隔は、間隔P1、P2として考慮しない。 Further, in the fourth embodiment shown in FIG. 9, each plate-like rectifying piece 12 is made of a rectangular flat plate, and is arranged at equal intervals, but is asymmetrical in the left-right direction. In other words, the center of the plurality of plate-like rectifying pieces 12 (specifically, the apex 120 of the plate-like rectifying pieces 12A) in the direction of the axis 30 (Z-axis direction) of the sink roll 3 is the trunk length direction of the sink roll 3 It is offset by a distance D with respect to the center CL. Further, in the fifth embodiment shown in FIG. 10, the plate-like rectifying pieces 12 are made of rectangular flat plates, are inclined in the same direction, and are arranged at equal intervals. Further, in the sixth embodiment shown in FIG. 11, each plate-like rectifying piece 12 is made of a rectangular flat plate and is symmetric, but is arranged at unequal intervals P1 and P2. When the arrangement of the plurality of plate-like rectifying pieces 12 is different at any position in the direction of the axis 30 (Z-axis direction) of the sink roll 3 (for example, a plurality of plate-like rectifying pieces with respect to the above position) 12 is symmetrically arranged), the interval between the plate-like rectifying pieces 12 (for example, two flat plates constituting the plate-like rectifying piece 12A) facing each other across the position is not considered as the intervals P1 and P2.
 これらの実施形態に示したように、各板状整流片12の配置については第1の実施形態以外にも様々な変更が可能である。これらの実施形態において、角度θ1又は角度θ2は、各板状整流片12同士で同じ値でなくてもよい。言い換えると、隣接する板状整流片12同士が平行でなくてもよい。また、頂点120を挟んで両側の部分が互いにつながっている板状整流片12Aは、上記両側の部分が互いに切り離されていてもよい。さらに、板状整流片12の枚数Nは、複数(2以上)であればよく、6に限らず、4、5、7、8等であってもよい。 As shown in these embodiments, the arrangement of the plate-like rectifying pieces 12 can be variously changed in addition to the first embodiment. In these embodiments, the angle θ1 or the angle θ2 may not be the same value between the plate-like rectifying pieces 12. In other words, the adjacent plate-like rectifying pieces 12 may not be parallel to each other. Further, the plate-like rectifying pieces 12A in which the portions on both sides are connected to each other with the apex 120 interposed therebetween may be separated from each other on both sides. Furthermore, the number N of the plate-like rectifying pieces 12 may be plural (two or more), and is not limited to 6, and may be 4, 5, 7, 8, or the like.
 このように構成された溶融亜鉛浴整流板8をVゾーンと呼ばれる領域7に配置すれば、進入側鋼板5の随伴流9と、シンクロール3及びシンクロール3の随伴流10との衝突により発生する上向きの亜鉛流れ11を、各板状整流片12により、効率よく鋼板幅方向の外側に整流することができる。なお、領域7における溶融亜鉛浴整流板8の設置範囲は、上向きの亜鉛流れ11が各板状整流片12の少なくとも一部に当たる範囲であればよい。図1に一点鎖線で囲んで示すように、進入側鋼板5とシンクロール3との接触部Qから上方(y軸正方向)に所定範囲内(例えば1000mm以内)、接触部Qからスナウト6の側へ水平方向(x軸正方向)に所定範囲内(例えば500mm以内)、かつ、鋼板5の板幅方向の中心(又はシンクロール3の胴長方向の中心CL)から板幅方向(z軸方向)に所定範囲内(例えば±1000mm以内)に、各板状整流片12の少なくとも一部が配置されるようにしてもよい。 If the molten zinc bath rectifying plate 8 configured in this way is arranged in a region 7 called a V zone, it is generated by the collision between the accompanying flow 9 of the approach-side steel plate 5 and the sink roll 3 and the accompanying flow 10 of the sink roll 3. The upward zinc flow 11 can be efficiently rectified by the plate-like rectifying pieces 12 to the outside in the steel plate width direction. In addition, the installation range of the molten zinc bath rectifying plate 8 in the region 7 may be a range in which the upward zinc flow 11 hits at least a part of each plate-like rectifying piece 12. As surrounded by a one-dot chain line in FIG. 1, within a predetermined range (for example, within 1000 mm) upward from the contact portion Q between the approach side steel plate 5 and the sink roll 3 (for example, within 1000 mm), from the contact portion Q to the snout 6 In the horizontal direction (x-axis positive direction) within a predetermined range (for example, within 500 mm) and from the center in the plate width direction of the steel plate 5 (or the center CL in the trunk length direction of the sink roll 3) to the plate width direction (z axis) At least a part of each plate-like rectifying piece 12 may be arranged within a predetermined range (for example, within ± 1000 mm) in the direction).
 特に、各板状整流片12を、進入側鋼板5の面に対して45°以上、135°以下の角度θ2で配置し、かつ、各板状整流片12の、進入側鋼板5の面に平行な断面を、進入側鋼板5の板幅方向に対して0°超、90°未満の角度θ1で配置することで、整流板の屈曲又は湾曲の中心線を進入側鋼板の進行方向に沿って配置していた従来の整流板よりも、上向きの亜鉛流れ11を各板状整流片12に対して大きい角度で当てることができ、従来よりも浴2の置換率を高めることができる。その結果、Vゾーンと呼ばれる領域7のAl濃度の低下を防止することができ、ボトムドロスに起因する溶融亜鉛めっき鋼板の欠陥を抑制することができる。出願人会社の実績によれば、ボトムドロスの発生量を従来の半分以下にまで低減させることができた。以下に上記各実施形態の実施例を説明する。 In particular, each plate-like rectifying piece 12 is arranged at an angle θ2 of 45 ° or more and 135 ° or less with respect to the surface of the entry-side steel plate 5, and on the surface of the entry-side steel plate 5 of each plate-like rectification piece 12. By arranging the parallel cross section at an angle θ1 of more than 0 ° and less than 90 ° with respect to the plate width direction of the entry side steel plate 5, the center line of the straightening or bending of the rectifying plate is along the traveling direction of the entry side steel plate. Thus, the upward zinc flow 11 can be applied to each plate-like rectifying piece 12 at a larger angle than the conventional rectifying plate arranged in this manner, and the replacement rate of the bath 2 can be increased as compared with the conventional rectifying plate. As a result, a decrease in the Al concentration in the region 7 called the V zone can be prevented, and defects in the hot dip galvanized steel sheet due to bottom dross can be suppressed. According to the results of the applicant company, the amount of bottom dross was reduced to less than half of the conventional amount. Examples of the above embodiments will be described below.
 板状整流片12のサイズW、L、角度θ1、曲率半径R、枚数N、間隔P1、P2、中心オフセットD、角度θ2を様々に変化させ、浴2の置換率ηをFLUENT(CFDシミュレーションソフト)を用いて数値計算した。ここで置換率ηは、Vゾーンと呼ばれる領域7における、鋼板5を通板する前の浴2の体積に対する、鋼板5を2分間通板した後に新たに流入した浴2の体積の割合である。なお、鋼板5の通板速度は120m/min、板幅は1600mmとした。その結果を表1に示す。 The plate-shaped rectifying piece 12 is changed in size W, L, angle θ1, curvature radius R, number N, intervals P1, P2, center offset D, angle θ2, and the replacement rate η of the bath 2 is changed to FULL (CFD simulation software). ) Was used for numerical calculation. Here, the substitution rate η is a ratio of the volume of the bath 2 newly introduced after passing the steel plate 5 for 2 minutes to the volume of the bath 2 before passing the steel plate 5 in the region 7 called V zone. . In addition, the plate speed of the steel plate 5 was 120 m / min, and the plate width was 1600 mm. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、溶融亜鉛浴整流板8がない比較例1では、浴2の置換率ηは31%であったが、各実施例によれば置換率ηを41~88%にまで大幅に高めることができた。なお、シミュレーション上では、置換率ηを95%まで高めることが可能であった。 As shown in Table 1, in Comparative Example 1 without the molten zinc bath rectifying plate 8, the substitution rate η of the bath 2 was 31%. However, according to each example, the substitution rate η was 41 to 88%. Was able to greatly increase. In the simulation, the substitution rate η can be increased to 95%.
 比較例2は、上記の特開2016-156077号公報の図2に記載された整流板と同様、平板をその中心線を中心として屈曲させ、この中心線を進入側鋼板5の進行方向に沿って配置したものであり、角度θ2が20°(すなわち45°未満)であって、角度θ1が90°である。この比較例2では、置換率ηが36%と小さかった。これは、上向きの亜鉛流れ11が板状整流片12にあたる角度が浅いため、上向きの亜鉛流れ11を鋼板5の板幅方向外側に向ける整流化作用が弱く、Vゾーンと呼ばれる領域7内のAl濃度の低下を十分に解消できないためであると考えられる。 Comparative Example 2 is similar to the rectifying plate described in FIG. 2 of the above Japanese Patent Application Laid-Open No. 2016-1556077, and the flat plate is bent around its center line, and this center line is along the traveling direction of the entry side steel plate 5. The angle θ2 is 20 ° (that is, less than 45 °), and the angle θ1 is 90 °. In Comparative Example 2, the substitution rate η was as small as 36%. This is because the angle at which the upward zinc flow 11 hits the plate-like rectifying piece 12 is shallow, and thus the rectification action of directing the upward zinc flow 11 outward in the plate width direction of the steel plate 5 is weak, and Al in the region 7 called the V zone This is probably because the decrease in density cannot be sufficiently eliminated.
 角度θ2が150°(すなわち135°超)である比較例4の置換率η、及び角度θ2が30°(すなわち45°未満)である比較例5の置換率ηは、ともに39%であり小さかった。これに対し、角度θ2が135°である実施例24の置換率η、及び角度θ2が45°である実施例26の置換率ηは、ともに50%であり大きかった。このように、角度θ2を45°以上、135°以下に設定することで、Vゾーンと呼ばれる領域7の浴2の置換を促進できることがわかる。これは、角度θ2の値が45°~135°の範囲外である場合、図1,2に示す上向きの亜鉛流れ11が各板状整流片12にあたる角度が浅いために、上向きの亜鉛流れ11を鋼板5の板幅方向外側に向ける整流化作用が弱いのに対し、角度θ2の値が45°~135°の範囲内である場合、上向きの亜鉛流れ11を効率よく整流して板幅方向の外側向きの流れに変換できるからであると考えられる。 The substitution rate η of Comparative Example 4 in which the angle θ2 is 150 ° (ie, more than 135 °) and the substitution rate η of Comparative Example 5 in which the angle θ2 is 30 ° (ie, less than 45 °) are both 39% and small. It was. On the other hand, the substitution rate η of Example 24 in which the angle θ2 is 135 ° and the substitution rate η in Example 26 in which the angle θ2 is 45 ° are both 50% and large. Thus, it can be seen that the replacement of the bath 2 in the region 7 called the V zone can be promoted by setting the angle θ2 to 45 ° or more and 135 ° or less. This is because when the angle θ2 is outside the range of 45 ° to 135 °, the upward zinc flow 11 shown in FIGS. However, when the value of the angle θ2 is within the range of 45 ° to 135 °, the upward zinc flow 11 is efficiently rectified to efficiently rectify the steel plate 5 toward the outside in the plate width direction. This is thought to be because it can be converted into a flow that faces outward.
 角度θ2が60°であるときの置換率η(実施例25の66%)は、角度θ2が45°であるときの置換率η(実施例26の50%)よりも大きかった。角度θ2が120°であるときの置換率η(実施例23の66%)は、角度θ2が135°であるときの置換率η(実施例24の50%)よりも大きかった。角度θ2が90°であるときに置換率ηは最大となった(実施例21の77%)。角度θ2が45°~60°のときよりも、角度θ2が60°~90°のときのほうが、角度θ2の増加に対する置換率ηの増加割合が、小さかった。角度θ2が120°~135°のときよりも、角度θ2が90°~120°のときのほうが、角度θ2の減少に対する置換率ηの増加割合が、小さかった。このように、角度θ2を60°以上、120°以下に設定することで、大きな置換率ηが安定的に得られることが分かった。 The substitution rate η when the angle θ2 was 60 ° (66% of Example 25) was larger than the substitution rate η when the angle θ2 was 45 ° (50% of Example 26). The substitution rate η (66% of Example 23) when the angle θ2 was 120 ° was larger than the substitution rate η (50% of Example 24) when the angle θ2 was 135 °. The substitution rate η was maximized when the angle θ2 was 90 ° (77% of Example 21). When the angle θ2 is 60 ° to 90 °, the increase rate of the substitution rate η with respect to the increase of the angle θ2 is smaller than when the angle θ2 is 45 ° to 60 °. When the angle θ2 is 90 ° to 120 °, the increase rate of the substitution rate η with respect to the decrease of the angle θ2 is smaller than when the angle θ2 is 120 ° to 135 °. Thus, it was found that by setting the angle θ2 to 60 ° or more and 120 ° or less, a large substitution rate η can be stably obtained.
 角度θ1が90°である比較例2の置換率ηは、36%と小さかった。これは、進入側鋼板5の面に沿う方向で見たとき、上向きの亜鉛流れ11が板状整流片12に当たることが難しいためであると考えられる。また、角度θ1が0°である比較例3の置換率ηは、32%と小さかった。これは、進入側鋼板5の面に沿う方向で見たとき、上向きの亜鉛流れ11が板状整流片12に直角方向に当たることで、亜鉛流れ11を鋼板5の板幅方向外側に向ける整流化作用がかえって弱められるためであると考えられる。これに対し、角度θ1が45°である実施例22の置換率ηは、53%と大きかった。このように角度θ1を0°超、90°未満の範囲内に設定することで、Vゾーンと呼ばれる領域7の浴2の置換を促進できることがわかる。これは、進入側鋼板5の面に沿う方向で見たとき、上向きの亜鉛流れ11を鋼板5の板幅方向外側に向ける整流化作用を効率的に発生できるためであると考えられる。 The substitution rate η of Comparative Example 2 where the angle θ1 is 90 ° was as small as 36%. This is considered to be because it is difficult for the upward zinc flow 11 to hit the plate-like rectifying piece 12 when viewed in the direction along the surface of the entry-side steel plate 5. Moreover, the substitution rate η of Comparative Example 3 in which the angle θ1 was 0 ° was as small as 32%. This is because the upward zinc flow 11 hits the plate-like rectifying piece 12 in a direction perpendicular to the surface of the entry-side steel plate 5 so that the zinc flow 11 is directed to the outside in the plate width direction of the steel plate 5. This is thought to be because the action is rather weakened. On the other hand, the substitution rate η of Example 22 in which the angle θ1 is 45 ° was as large as 53%. Thus, it can be seen that the replacement of the bath 2 in the region 7 called the V zone can be promoted by setting the angle θ1 within the range of more than 0 ° and less than 90 °. This is considered to be because, when viewed in the direction along the surface of the entry-side steel plate 5, it is possible to efficiently generate a rectification action that directs the upward zinc flow 11 toward the outside in the plate width direction of the steel plate 5.
 角度θ1が20°であるときの置換率η(実施例9の59%)は、角度θ1が10°であるときの置換率η(実施例8の41%)よりも大きかった。角度θ1が60°であるときの置換率η(実施例13の55%)は、角度θ1が70°であるときの置換率η(実施例14の45%)よりも大きかった。角度θ1が30°であるときに置換率ηは最大となった(実施例11の75%)。角度θ1が10°~20°のときよりも、角度θ1が20°~30°のときのほうが、角度θ1の増加に対する置換率ηの増加割合が、小さかった。角度θ1が60°~70°のときよりも、角度θ1が30°~60°のときのほうが、角度θ1の減少に対する置換率ηの増加割合が、小さかった。 The substitution rate η (59% of Example 9) when the angle θ1 is 20 ° was larger than the substitution rate η (41% of Example 8) when the angle θ1 was 10 °. The substitution rate η (55% of Example 13) when the angle θ1 was 60 ° was larger than the substitution rate η (45% of Example 14) when the angle θ1 was 70 °. When the angle θ1 was 30 °, the substitution rate η was maximized (75% of Example 11). When the angle θ1 was 20 ° to 30 °, the increase rate of the substitution rate η relative to the increase of the angle θ1 was smaller than when the angle θ1 was 10 ° to 20 °. The increase rate of the substitution rate η with respect to the decrease of the angle θ1 was smaller when the angle θ1 was 30 ° to 60 ° than when the angle θ1 was 60 ° to 70 °.
 このように角度θ1を20°以上、60°以下に設定することで、大きな置換率ηを安定的に得られることが分かった。これは、角度θ1の下限値を20°に設定することで、進入側鋼板5の面に沿う方向で見たとき、上向きの亜鉛流れ11が板状整流片12に当たる角度が大きくなりすぎることを抑制して整流化作用を確保できるからだけでなく、複数の板状整流片12同士が近接しすぎることを抑制してそれらの間の流路断面積をある程度確保できるからである、と考えられる。また、角度θ1の上限値を60°に設定することで、進入側鋼板5の面に沿う方向で見たとき、上向きの亜鉛流れ11が板状整流片12に当たる量をある程度確保し、上向きの亜鉛流れ11を鋼板5の板幅方向外側へ向かわせることができるからである、と考えられる。さらに、角度θ1を25°以上、40°以下に設定することで、70%以上の置換率ηを安定的に得られることが分かった(実施例10の70%、実施例12の72%)。これは、上記作用がより効果的に得られるからである、と考えられる。 Thus, it was found that a large substitution rate η can be stably obtained by setting the angle θ1 to 20 ° or more and 60 ° or less. This means that by setting the lower limit value of the angle θ1 to 20 °, the angle at which the upward zinc flow 11 hits the plate-like rectifying piece 12 becomes too large when viewed in the direction along the surface of the entry-side steel plate 5. This is not only because the rectifying action can be secured by suppressing, but also because the cross-sectional area between the plurality of plate-like rectifying pieces 12 can be restrained and the flow path cross-sectional area between them can be secured to some extent. . Further, by setting the upper limit value of the angle θ1 to 60 °, when viewed in the direction along the surface of the entry-side steel plate 5, a certain amount of the upward zinc flow 11 hits the plate-like rectifying piece 12 is ensured to some extent. This is considered to be because the zinc flow 11 can be directed outward in the plate width direction of the steel plate 5. Furthermore, it was found that the substitution rate η of 70% or more can be stably obtained by setting the angle θ1 to 25 ° or more and 40 ° or less (70% of Example 10 and 72% of Example 12). . This is thought to be because the above action can be obtained more effectively.
 板状整流片12の枚数Nが1である比較例3の置換率ηは、32%と小さかった。これに対し、板状整流片12の枚数Nが2である実施例22の置換率ηは、53%と大きかった。よって、板状整流片12の枚数Nを2以上とすることで、大きな置換率ηを得られることが分かった。 The replacement rate η of Comparative Example 3 in which the number N of the plate-like rectifying pieces 12 is 1 was as small as 32%. On the other hand, the replacement rate η of Example 22 in which the number N of the plate-like rectifying pieces 12 is 2 was as large as 53%. Therefore, it was found that a large substitution rate η can be obtained by setting the number N of the plate-like rectifying pieces 12 to 2 or more.
 板状整流片12の枚数Nが2のときの置換率ηは66%(実施例15)であり、枚数Nが4のときの置換率ηは75%(実施例11)であり、枚数Nが6のときの置換率ηは85%(実施例16)であり、枚数Nが8のときの置換率ηは88%(実施例17)であった。よって、枚数Nが4以上では、75%以上の大きな置換率ηを得られることが分かった。また、枚数Nが大きくなるほど、得られる置換率ηが大きくなることがわかった。しかし、枚数Nが多すぎると、設備内におけるスペースの制限上、板状整流片12同士が干渉するおそれが高くなる。この観点からは、Nの上限値は、例えば6~8が好ましいと言える。 When the number N of plate-like rectifying pieces 12 is 2, the replacement rate η is 66% (Example 15), and when the number N is 4, the replacement rate η is 75% (Example 11). When the number N is 6, the substitution rate η is 85% (Example 16), and when the number N is 8, the substitution rate η is 88% (Example 17). Therefore, it was found that when the number N is 4 or more, a large substitution rate η of 75% or more can be obtained. It was also found that the greater the number N, the greater the obtained substitution rate η. However, when the number N is too large, there is a high possibility that the plate-like rectifying pieces 12 interfere with each other due to space limitations in the facility. From this viewpoint, it can be said that the upper limit of N is preferably 6 to 8, for example.
 板状整流片12の幅Wが150mmであるときの置換率η(実施例2の59%)は、幅Wが50mmであるときの置換率η(実施例1の50%)よりも大きかった。幅Wが250mmであるときの置換率η(実施例3の63%)は、幅Wが150mmであるときの置換率η(実施例2の59%)よりも大きかった。幅Wが350mmであるときの置換率η(実施例4の63%)は、幅Wが250mmであるときの置換率η(実施例3の63%)と同じだった。 The substitution rate η (59% of Example 2) when the width W of the plate-like rectifying piece 12 was 150 mm was larger than the substitution rate η (50% of Example 1) when the width W was 50 mm. . The substitution rate η (63% of Example 3) when the width W was 250 mm was larger than the substitution rate η (59% of Example 2) when the width W was 150 mm. The substitution rate η (63% of Example 4) when the width W was 350 mm was the same as the substitution rate η (63% of Example 3) when the width W was 250 mm.
 このように幅Wを50mm以上に設定することで、大きな置換率ηが安定的に得られることが分かった。幅Wが小さすぎると、上向きの亜鉛流れ11が板状整流片12に当たりにくくなり、上向きの亜鉛流れ11を鋼板5の板幅方向外側へ向かわせる整流化作用が弱くなると考えられる。幅Wの下限を50mmに設定することで、上向きの亜鉛流れ11が板状整流片12に当たる量をある程度確保し、鋼板5の板幅方向外側へ向かわせることができる。一方、幅Wが大きすぎると、Vゾーンと呼ばれる領域7内で板状整流片12が鋼板5に近づくことで、板状整流片12と鋼板5との干渉が生じるおそれが高くなると考えられる。幅Wの上限を例えば250mmに設定することで、大きな置換率ηを得つつ、板状整流片12と鋼板5との干渉を抑制することができる。 It was found that a large substitution rate η can be stably obtained by setting the width W to 50 mm or more. If the width W is too small, the upward zinc flow 11 is less likely to hit the plate-like rectifying piece 12, and the rectification action that directs the upward zinc flow 11 toward the outside in the plate width direction of the steel plate 5 is considered to be weak. By setting the lower limit of the width W to 50 mm, a certain amount of the upward zinc flow 11 hits the plate-like rectifying piece 12 can be secured to the outside in the plate width direction of the steel plate 5. On the other hand, if the width W is too large, the plate-like rectifying piece 12 approaches the steel plate 5 in the region 7 called the V zone, so that the possibility of interference between the plate-like rectifying piece 12 and the steel plate 5 increases. By setting the upper limit of the width W to, for example, 250 mm, interference between the plate-like rectifying piece 12 and the steel plate 5 can be suppressed while obtaining a large substitution rate η.
 板状整流片12の長さLが200mmであるときの置換率η(実施例3の63%)は、長さLが100mmであるときの置換率η(実施例5の61%)よりも若干大きかった。長さLが300mmであるときの置換率η(実施例6の63%)は、長さLが400mmであるときの置換率η(実施例7の60%)よりも若干大きかった。このように、長さLを100mm以上に設定することで、大きな置換率ηが安定的に得られることが分かった。また、長さLを200~300mmに設定することで、大きな置換率ηがより安定的に得られることが分かった。 The substitution rate η (63% of Example 3) when the length L of the plate-like rectifying piece 12 is 200 mm is larger than the substitution rate η (61% of Example 5) when the length L is 100 mm. It was a little big. The substitution rate η (63% of Example 6) when the length L was 300 mm was slightly larger than the substitution rate η (60% of Example 7) when the length L was 400 mm. Thus, it was found that a large substitution rate η can be stably obtained by setting the length L to 100 mm or more. It was also found that a large substitution rate η can be obtained more stably by setting the length L to 200 to 300 mm.
 図8に示す第3の実施形態の一例である実施例28の置換率η(70%)は、図7に示す第2の実施形態の一例である実施例27の置換率η(61%)よりも大きかった。これは、第2の実施形態(図7)では、隣接する板状整流片12間の流路断面積が、流路の入口側(X軸負方向側)よりも出口側(X軸正方向側)のほうで小さくなるのに対し、第3の実施形態(図8)では、上記流路断面積が、流路の入口側(X軸負方向側)よりも出口側(X軸正方向側)のほうで大きくなることで、上向きの亜鉛流れ11が、板状整流片12に沿って、より円滑に流れ得るからである、と考えられる。 The substitution rate η (70%) of Example 28 which is an example of the third embodiment shown in FIG. 8 is the substitution rate η (61%) of Example 27 which is an example of the second embodiment shown in FIG. It was bigger than. This is because, in the second embodiment (FIG. 7), the flow path cross-sectional area between adjacent plate-like rectifying pieces 12 is more on the outlet side (X-axis positive direction) than on the inlet side (X-axis negative direction side) of the flow path. On the other hand, in the third embodiment (FIG. 8), the flow path cross-sectional area is smaller on the outlet side (X-axis positive direction) than on the inlet side (X-axis negative direction side) of the flow path. It is considered that the upward zinc flow 11 can flow more smoothly along the plate-like rectifying piece 12 by becoming larger on the side).
 板状整流片12同士の間隔P1が300mmであるときの置換率η(実施例11の75%)は、間隔P1が200mmであるときの置換率η(実施例18の70%)及び間隔P1が400mmであるときの置換率η(実施例19の72%)よりも若干大きかった。このように、間隔P1を200~400mmに設定することで、大きな置換率ηを安定的に得られることが分かった。また、間隔P1を300mm又はその近傍に設定することで、大きな置換率ηをより安定的に得られることが分かった。 The substitution rate η (75% of Example 11) when the interval P1 between the plate-like rectifying pieces 12 is 300 mm is the substitution rate η (70% of Example 18) and the interval P1 when the interval P1 is 200 mm. Was slightly larger than the substitution rate η (72% of Example 19) when 400 mm. Thus, it was found that a large substitution rate η can be stably obtained by setting the interval P1 to 200 to 400 mm. It was also found that a large substitution rate η can be obtained more stably by setting the interval P1 to 300 mm or in the vicinity thereof.
 板状整流片12同士の間隔が互いに同じであるときの置換率η(実施例20の75%、実施例21の77%)は、間隔が異なるときの置換率η(実施例31の72%)よりも若干大きかった。よって、間隔が同じであるほうが有利な可能性はあるが、間隔がある程度異なっていても置換率ηに与える影響は少ないと考えられる。 The substitution rate η (75% of Example 20 and 77% of Example 21) when the spacing between the plate-like rectifying pieces 12 is the same is the substitution rate η (72% of Example 31) when the spacing is different. ). Therefore, it may be advantageous that the intervals are the same, but even if the intervals are somewhat different, the influence on the substitution rate η is considered to be small.
 シンクロールの胴長方向中心CLに対して、各板状整流片12が対称に配置されているときの置換率η(実施例21の77%)は、各板状整流片12が非対称に配置されているときの置換率η(実施例29の63%)よりも大きかった。このように各板状整流片12がシンクロールの胴長方向中心CLに対して対称に配置されていることで、より大きな置換率ηが得られることが分かった。また、各板状整流片12が対称に配置されている場合、上向きの亜鉛流れ11が鋼板5の板幅方向の片側に偏ることが抑制されるため、鋼板5に模様欠陥が生じることを抑制できると考えられる。 The substitution rate η (77% of Example 21) when the plate-like rectifying pieces 12 are arranged symmetrically with respect to the body length direction center CL of the sink roll is that the plate-like rectifying pieces 12 are arranged asymmetrically. It was larger than the substitution rate η (63% of Example 29). Thus, it was found that a larger replacement rate η can be obtained by arranging the plate-like rectifying pieces 12 symmetrically with respect to the center length CL of the sink roll. Moreover, when each plate-shaped rectification piece 12 is arrange | positioned symmetrically, since it suppresses that the upward zinc flow 11 is biased to the one side of the plate width direction of the steel plate 5, it suppresses that a pattern defect arises in the steel plate 5. It is considered possible.
 各板状整流片12が異方向に傾斜して配置されているときの置換率η(実施例21の77%)は、各板状整流片12が同方向に傾斜して配置されているときの置換率η(実施例30の66%)よりも大きかった。このように各板状整流片12が異方向に傾斜して配置されていることで、より大きな置換率ηが得られることが分かった。また、各板状整流片12が異方向に傾斜して配置されていることで、上向きの亜鉛流れ11が鋼板5の板幅方向の片側に偏ることが抑制されるため、鋼板5に模様欠陥が生じることを抑制できると考えられる。 The substitution rate η (77% of Example 21) when each plate-like rectifying piece 12 is arranged in a different direction is the same as when each plate-like rectifying piece 12 is arranged in the same direction. Was greater than the substitution rate η (66% of Example 30). Thus, it has been found that a larger replacement rate η can be obtained by arranging the plate-like rectifying pieces 12 to be inclined in different directions. Further, since each plate-like rectifying piece 12 is arranged to be inclined in a different direction, it is possible to suppress the upward zinc flow 11 from being biased to one side in the plate width direction of the steel plate 5. It is thought that it can suppress that this occurs.
 1 溶融亜鉛槽
 2 溶融亜鉛浴
 3 シンクロール
 4 サポートロール
 5 鋼板
 6 スナウト
 7 Vゾーンと呼ばれる領域
 8 溶融亜鉛浴整流板
 9 鋼板の随伴流
10 シンクロールの随伴流
11 上向きの亜鉛流れ
12 板状整流片
DESCRIPTION OF SYMBOLS 1 Molten zinc tank 2 Molten zinc bath 3 Sink roll 4 Support roll 5 Steel plate 6 Snout 7 Area called V zone 8 Molten zinc bath current plate 9 The accompanying flow 10 of a steel plate The accompanying flow 11 of a sink roll 12 Zinc flow 12 Fragment

Claims (4)

  1.  溶融亜鉛浴と、
     前記溶融亜鉛浴の内部に、スナウトとシンクロールとの間であって、前記溶融亜鉛浴に進入する側の鋼板である進入側鋼板と前記シンクロールとの接触部の上方に配置された、複数の板状の整流片を有する溶融亜鉛浴整流板と、を備え、
     前記整流片のそれぞれは、前記進入側鋼板の面に対して45°以上、135°以下の角度θ2をなし、かつ、前記進入側鋼板の面に平行な断面が、前記進入側鋼板の板幅方向に対して0°超、90°未満の角度θ1をなすように配置されている、
    溶融亜鉛浴設備。
    A molten zinc bath;
    Inside the molten zinc bath, a plurality of disposed between the snout and the sink roll and above the contact portion between the entrance side steel plate and the sink roll, which is a steel plate on the side entering the molten zinc bath. A molten zinc bath rectifying plate having a plate-like rectifying piece of
    Each of the rectifying pieces has an angle θ2 of 45 ° or more and 135 ° or less with respect to the surface of the entry-side steel plate, and a cross section parallel to the surface of the entry-side steel plate has a plate width of the entry-side steel plate. Arranged to form an angle θ1 of more than 0 ° and less than 90 ° with respect to the direction,
    Molten zinc bath equipment.
  2.  前記角度θ2は、60°以上、120°以下である、請求項1に記載の溶融亜鉛浴設備。 The molten zinc bath facility according to claim 1, wherein the angle θ2 is not less than 60 ° and not more than 120 °.
  3.  前記角度θ1は、20°以上、60°以下である、請求項1又は請求項2に記載の溶融亜鉛浴設備。 The molten zinc bath facility according to claim 1 or 2, wherein the angle θ1 is not less than 20 ° and not more than 60 °.
  4.  前記複数の整流片は、前記シンクロールの胴長方向中心に対して対称である、請求項1~3のいずれか1項に記載の溶融亜鉛浴設備。
     
    The molten zinc bath facility according to any one of claims 1 to 3, wherein the plurality of rectifying pieces are symmetrical with respect to a center in a cylinder length direction of the sink roll.
PCT/JP2019/011194 2018-03-26 2019-03-18 Hot-dip galvanizing bath facility WO2019188503A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980005952.3A CN111406125B (en) 2018-03-26 2019-03-18 Molten zinc bath equipment
JP2019526027A JP6624348B1 (en) 2018-03-26 2019-03-18 Molten zinc bath equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018057553 2018-03-26
JP2018-057553 2018-03-26

Publications (1)

Publication Number Publication Date
WO2019188503A1 true WO2019188503A1 (en) 2019-10-03

Family

ID=68061473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011194 WO2019188503A1 (en) 2018-03-26 2019-03-18 Hot-dip galvanizing bath facility

Country Status (3)

Country Link
JP (1) JP6624348B1 (en)
CN (1) CN111406125B (en)
WO (1) WO2019188503A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021127483A (en) * 2020-02-13 2021-09-02 日本製鉄株式会社 Molten zinc bath equipment and method for manufacturing hot-dip metal coated steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119829A (en) * 1998-10-12 2000-04-25 Nkk Corp Dross defect suppressing device of device for continuously plating molten metal on steel strip and its method
JP2013224457A (en) * 2012-04-20 2013-10-31 Jfe Steel Corp Apparatus for producing hot dip galvanized steel sheet
JP2016156077A (en) * 2015-02-26 2016-09-01 Jfeスチール株式会社 Apparatus for manufacturing hot-dip galvanized steel sheet
JP2018119188A (en) * 2017-01-26 2018-08-02 新日鐵住金株式会社 Apparatus for hot-dip galvanizing steel strip

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020051514A (en) * 2000-12-22 2002-06-29 이구택 Method for plating steel sheet to preventing dross defect

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119829A (en) * 1998-10-12 2000-04-25 Nkk Corp Dross defect suppressing device of device for continuously plating molten metal on steel strip and its method
JP2013224457A (en) * 2012-04-20 2013-10-31 Jfe Steel Corp Apparatus for producing hot dip galvanized steel sheet
JP2016156077A (en) * 2015-02-26 2016-09-01 Jfeスチール株式会社 Apparatus for manufacturing hot-dip galvanized steel sheet
JP2018119188A (en) * 2017-01-26 2018-08-02 新日鐵住金株式会社 Apparatus for hot-dip galvanizing steel strip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021127483A (en) * 2020-02-13 2021-09-02 日本製鉄株式会社 Molten zinc bath equipment and method for manufacturing hot-dip metal coated steel sheet
JP7440750B2 (en) 2020-02-13 2024-02-29 日本製鉄株式会社 Hot-dip zinc bath equipment and method for manufacturing hot-dip metal-plated steel sheets

Also Published As

Publication number Publication date
CN111406125A (en) 2020-07-10
JPWO2019188503A1 (en) 2020-04-30
CN111406125B (en) 2022-10-28
JP6624348B1 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
JP5817340B2 (en) Hot dipping equipment
JP6222136B2 (en) Hot-dip galvanized steel sheet manufacturing equipment
WO2019188503A1 (en) Hot-dip galvanizing bath facility
EP3333278B1 (en) Molten metal plating facility and method
KR20100052553A (en) Apparatus for producing molten metal plated steel strip and process for producing molten metal plated steel strip
WO2013005732A1 (en) Method and apparatus for removing metallurgical fumes in snout in consecutive molten plating facilities
KR101082541B1 (en) Device for preventing winding-up of sheet metal in continuous hot-dipping bath
JP5224006B2 (en) Rectifying member for molten metal plating tank and continuous molten metal plating apparatus
JP5418550B2 (en) Manufacturing method of molten metal plated steel strip
JP4734081B2 (en) Method for producing hot-dip galvanized steel sheet
JP7440750B2 (en) Hot-dip zinc bath equipment and method for manufacturing hot-dip metal-plated steel sheets
JP4816105B2 (en) Manufacturing method of molten metal plated steel strip
JP6007764B2 (en) Floating scum removal device in snout in hot dip galvanizing line
JP2000119829A (en) Dross defect suppressing device of device for continuously plating molten metal on steel strip and its method
WO2012096401A1 (en) Flow regulation member for molten metal plating tank, and continuous molten metal plating device
JP5556286B2 (en) Gas wiping equipment for molten metal plated steel strip
JP2014080673A (en) Method and apparatus for suppressing splash scattering
KR20190073568A (en) Elevator device
KR101859036B1 (en) Baffle plate for plating high-anticorosive
JP2596240B2 (en) Continuous hot metal plating equipment
JP2010144189A (en) Hot dip metal plated steel strip production apparatus
JPH04247861A (en) Continuous galvanizing method and device
JP6094362B2 (en) Gas wiping apparatus and wiping method for molten metal plated steel strip
JP2013192964A (en) Elbow separator
JP2005171362A (en) Gas wiping device and method for adjusting plating coating weight of steel strip

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019526027

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775133

Country of ref document: EP

Kind code of ref document: A1