WO2019188196A1 - Grip control device - Google Patents

Grip control device Download PDF

Info

Publication number
WO2019188196A1
WO2019188196A1 PCT/JP2019/009719 JP2019009719W WO2019188196A1 WO 2019188196 A1 WO2019188196 A1 WO 2019188196A1 JP 2019009719 W JP2019009719 W JP 2019009719W WO 2019188196 A1 WO2019188196 A1 WO 2019188196A1
Authority
WO
WIPO (PCT)
Prior art keywords
gripping
linear object
robot
grip
control device
Prior art date
Application number
PCT/JP2019/009719
Other languages
French (fr)
Japanese (ja)
Inventor
基善 北井
Original Assignee
倉敷紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 倉敷紡績株式会社 filed Critical 倉敷紡績株式会社
Priority to JP2020509819A priority Critical patent/JP7140826B2/en
Publication of WO2019188196A1 publication Critical patent/WO2019188196A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/28Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for wire processing before connecting to contact members, not provided for in groups H01R43/02 - H01R43/26

Definitions

  • the present invention relates to a grip control device for gripping a linear object using a robot hand.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2014-176917
  • Patent Document 2 a robot apparatus for assembling a linear object, in which the fixed end of the linear object with one end fixed is fixed.
  • An apparatus is described in which after gripping the vicinity, the gripper is slid along a predetermined locus and moved to the other end. Accordingly, it is possible to quickly grasp the other end that is difficult to accurately estimate with a hook or the like attached to an electric wire that is an example of a linear object.
  • Patent Document 2 discloses an invention relating to a method for manufacturing a wire harness and an image processing method, and in the course of manufacturing the wire harness, the three-dimensional shape of the wire assembly is measured. A processing position specifying process is performed in which the processing position is specified.
  • control is performed such that a wire harness or the like is gripped as a linear object at the grip portion of the robot hand and the tip of the wire harness is moved to a predetermined target position.
  • tip of the wire harness into the through-hole provided in the target object is assumed.
  • the wire harness since the rigidity of the wire harness is relatively low in many cases, if the wire harness is gripped only at one place using the grip portion of the robot hand, the tip side becomes unstable from the grip portion. Furthermore, the wire harness may be continuously connected to the opposite side (rear end side) of the wire harness held by the holding unit. In this case, there is a concern that the weight of the wire harness on the rear end side is added to the grip portion of the robot hand, so that the grip of the wire harness by the grip portion becomes unstable.
  • An object of the present invention is to solve the above-described problems.
  • a gripping control device having a configuration capable of stably gripping a linear object when the linear object is gripped by a gripping portion of a robot hand. It is to provide.
  • the gripping control device is a gripping control device that notifies the robot of gripping information of the linear object to a robot having a linear object gripping device capable of gripping the linear object.
  • a three-dimensional camera that obtains the three-dimensional shape, and a first gripping position is recognized based on the three-dimensional shape, the second gripping position is calculated by a predetermined method, and the first gripping position and the second gripping position are calculated.
  • a processing unit for notifying the robot is a gripping control device that notifies the robot of gripping information of the linear object to a robot having a linear object gripping device capable of gripping the linear object.
  • the second gripping position is calculated based on at least one of the three-dimensional shape, the shape of the linear object gripping device, and the movable range of the linear object gripping device.
  • the processing unit further notifies a gripping posture when the linear object gripping device grips the first gripping position and the second gripping position.
  • the gripping posture is a posture in which the linear object and the gripping part of the linear object gripping device are orthogonal to each other at the first gripping position.
  • the linear object is a multi-core wire in which a plurality of fine wires are covered with a covering material, an exposed fine wire portion in which the plurality of fine wires are exposed, and a covering bundle portion covered with a covering material;
  • the first grip position is located in the exposed thin line portion, and the second grip position is located in the covering bundle portion.
  • the robot is a single articulated robot
  • the processing unit sets the first gripping position and the second gripping position that can be gripped by a robot hand provided in the articulated robot to the multi-joint robot. Notify the joint robot.
  • this grip control device it is possible to provide a grip control device having a configuration capable of stably gripping a linear object when the linear object is gripped by the grip portion of the robot hand.
  • an electric wire is used as an example of a linear object, but the present invention is not limited to an electric wire.
  • the linear object in this description may be anything as long as it has an elongated shape.
  • yarn, a fiber, glass fiber, an optical fiber, a tube, dry noodles, etc. are mentioned. It is not limited to the electric wire which bundled the thin wire, The electric wire etc. which consist of a single wire are also included.
  • the effect of the present embodiment appears more remarkably.
  • the overall system 10 for carrying out the linear object gripping method includes a robot 20, a three-dimensional camera 31, and a control device 32.
  • a wire harness W composed of an electric wire W1, an electric wire W2, and an electric wire W3 is disposed.
  • a robot hand 22 is provided at the tip of the robot arm 21, and a linear object is gripped by a pair of gripping portions 23, 23 of the robot hand 22.
  • the three-dimensional camera 31 is not particularly limited as long as it can measure the three-dimensional shape of the electric wire W1, the electric wire W2, and the electric wire W3.
  • a stereo camera is preferably used.
  • the stereo camera is preferable for measuring the three-dimensional shape of the linear object at high speed.
  • a stereo camera includes two cameras, finds corresponding points of points to be measured on two images taken from different viewpoints, and determines the three-dimensional measurement points according to the principle of triangulation from the positional relationship of the two cameras. Calculate the position.
  • Japanese Patent Laid-Open No. 2-309202 discloses that a large number of linear objects are imaged by two cameras, and the inclination of the bright lines in the two images and the distance between the bright lines. It is described that the corresponding point is determined by collating the distances as features, and the processing time for determining the corresponding point can be shortened.
  • a straight line obtained by projecting a line connecting the viewpoint of one image and a measurement point onto the other image is called an epipolar line, and the other line corresponding to the point on one image The corresponding point on the image is always projected on the epipolar line on the other image.
  • the intersection of the linear object and the epipolar line can be obtained on the other image, and the three-dimensional shape of the linear object can be obtained at high speed. Can be measured.
  • the color camera is used to extract the corresponding color from the image and then obtain the corresponding points, thereby making the three-dimensional shape of each linear object faster. Can be requested.
  • the control device 32 communicates with the three-dimensional camera 31 through a communication unit (not shown), and acquires the three-dimensional shapes of the electric wire W1, the electric wire W2, and the electric wire W3 from the stereo camera.
  • the control device determines whether or not the robot hand 22 interferes with another linear object when the robot hand 22 grips the linear object, based on the three-dimensional shape acquired from the stereo camera, using an arithmetic unit (not shown). Various calculations are performed to determine the target linear object.
  • the control device notifies the robot 20 of the gripping position of the target linear object to be gripped based on the calculation result via the communication unit.
  • another device for example, a robot controller or a control personal computer for controlling the operation of the robot is provided between the control device 32 and the robot 20. Notification may be made.
  • the related-art linear object gripping method includes a step of measuring a three-dimensional shape of a plurality of electric wires W1, electric wires W2, and electric wires W3 (S1), and the robot hand 22 detects a linear object based on the measured three-dimensional shape.
  • the step S1 of measuring the three-dimensional shape of the plurality of electric wires W1, the electric wires W2, and the electric wires W3 is performed by the three-dimensional camera 31.
  • the stereo camera captures a work space with a linear object, and performs arithmetic processing on the two images to acquire the three-dimensional shapes of the electric wire W1, the electric wire W2, and the electric wire W3.
  • the three-dimensional shape of the linear object is represented by an orthogonal coordinate system or an oblique coordinate system, and is preferably represented by an orthogonal coordinate.
  • Determination step S2 is performed by the control device 32. Details of the determination step will be described later.
  • the step S3 for gripping the target linear object is performed by the robot 20.
  • the robot is notified of the gripping position of the target linear object to be gripped from the control device 32, and moves the robot arm 21 and the robot hand 22 to execute a gripping operation.
  • the determination step S2 will be described in detail below. Referring to FIG. 3, in the determination step S2 of the related technology, acquisition of a three-dimensional shape of a linear object (S21), selection of a target linear object (S22), determination of a gripping position of the target linear object (S23) ), Obtaining the robot hand standby position (S24), setting various interference areas (S51 to S54), and various interference determinations (S61 to S64).
  • control device 32 acquires the three-dimensional shapes of the electric wire W1, the electric wire W2, and the electric wire W3 from the three-dimensional camera 31 (S21).
  • the control device 32 selects a line-of-interest to be gripped by the robot hand 22 (S22).
  • the wire of interest W1, the wire W2 and the wire W3, which are intended to grip the electric wire W1 will be described as a wire (other wire) other than the wire of interest.
  • the control device may receive a designation such as the color of the electric wire from the outside and determine the target linear object based on the instruction.
  • the control device selects a line-of-interest for the autonomous reference number (see Japanese Patent Application No. 2017-221045).
  • the highest position that is, the uppermost linear object is selected as the target linear object based on the acquired three-dimensional shape. Can do. This is because even when linear objects are placed in an overlapping manner, the higher the linear object, the lower the probability that another linear object will interfere when the linear object is gripped.
  • the control device 32 determines a gripping position of the wire W1 to be noted (S23). For example, based on a predetermined condition such as how many mm from the tip of the noticeable linear object, the control device calculates the grip position of the noticeable linear object as three-dimensional coordinates.
  • the control device 32 acquires the standby position of the robot hand 22 (S24). If the standby position of the robot hand 22 is predetermined, the coordinates are acquired as the standby position. When the standby position is determined based on the three-dimensional shape of the linear object, for example, when it is determined above a predetermined distance away from the linear object, the standby position is obtained by calculation.
  • the control device 32 acquires the current position of the robot hand 22 from the robot 20 and moves the robot hand 22 to the standby position when the current position of the robot hand 22 is different from the standby position.
  • a line segment connecting the standby position of the robot hand 22 and the gripping position of the electric wire W1 provides an approximate movement path when the robot hand 22 executes the gripping operation.
  • the control device 32 sets several interference areas including the gripping position of the target linear object in order to determine the interference between the robot hand 22 and the other electric wires W2 and W3.
  • the first interference area, the first extended interference area, the second interference area, and the second extended interference area are set in this order.
  • interference determination is performed to determine whether or not the other linear object is included in each of the interference regions.
  • Interference judgment for each linear object is to determine whether the point is in the interference area or whether the line segment intersects the interference area while shifting the point or line segment on the linear object in the length direction. Can be done.
  • the second preliminary determination for the second extended interference region, the second determination for the second interference region, the first preliminary determination for the first extended interference region, and the first determination for the first interference region are performed in this order.
  • each interference region and interference determination for the region will be described.
  • the robot hand 22 in the first determination step S61 for the first interference region 51, it is determined whether or not the robot hand 22 interferes with the other electric wires W2 and W3 when holding the electric wire W1.
  • the first interference area 51 is a planar area including the gripping position P of the electric wire W1 and having a predetermined shape and a predetermined size.
  • the first interference region preferably includes the grip position P at the center thereof.
  • the shape of the first interference region is not particularly limited, but is preferably a polygon, a circle, or an ellipse. When the first interference region is a polygon, it is preferably a quadrangle, more preferably a square. This is because the calculation load is reduced and high-speed determination is possible.
  • the first interference region is a polygon
  • a square having sides parallel to a plane formed by any two axes of a coordinate system (hereinafter simply referred to as a “coordinate system”) representing a three-dimensional shape of the linear object is
  • coordinate system a coordinate system representing a three-dimensional shape of the linear object
  • the efficiency of the first preliminary determination can be improved by reducing the first extended interference region described later. If the first interference area is not a polygon, it is preferably a circle. Similarly, the calculation load is reduced and high-speed determination is possible.
  • the first interference region is preferably included in a circle having a diameter 2.0 times that of the circle C1. More preferably, the size is contained in a circle having the same size as the circle C1.
  • the first interference region is preferably a circle C2. It is a size that can contain a circle of the same size as that of Japanese Patent Application No. 2017-221405.
  • the first interference region 51 is preferably orthogonal to the electric wire W1. That the first interference region is orthogonal to the target linear object means that the direction in which the target linear object extends at the gripping position P is perpendicular to the first interference region. This is because a plane equation including the first interference region can be easily obtained.
  • the linear object is often gripped from the side, that is, from a direction perpendicular to the linear object. If there is another linear object in the first interference region orthogonal to the target linear object, even if the robot hand 22 does not grip the target linear object from the side, the robot hand 22 This is because there is a high probability of interference with the linear object.
  • the first determination step S ⁇ b> 61 can be performed by determining the intersection of the line segment L on the other target electric wire W ⁇ b> 2 and the first interference region 51.
  • the line segment L can be a line segment between two adjacent points S and T in the point group representing the three-dimensional shape of the electric wire W2. If the line segment L intersects the first interference area, some point on the line segment L is included in the first interference area.
  • the intersection determination can be performed by a known method. For example, when the inner product of the normal vector N of the plane U including the first interference region 51 and the vectors PS and PT from the gripping position P to both ends S and T of the line segment L is taken, the signs of the two inner products are different.
  • the line segment L intersects the plane U. When the line segment L and the plane U intersect, it may be determined whether or not the intersection is in the first interference region 51.
  • the first preliminary determination step S62 for the first extended interference region 52 is performed prior to the first determination, and faster calculation is performed when the robot hand 22 does not interfere with the other electric wires W2, W3. To find out.
  • the first extended interference region 52 is a spatial region that includes the first interference region 51.
  • the shape and size of the first extended interference region are not particularly limited, but preferably the smallest one of the hexahedrons including the first interference region and having all sides parallel to any axis of the coordinate system is the first. Set as one extended interference area.
  • the coordinate system is an orthogonal coordinate system
  • the hexahedron is a rectangular parallelepiped.
  • the coordinates of the eight vertices A to H of the first extended interference region 52 are as shown in FIG. 8, and the coordinates of one end point S of the line segment L are (xS, yS, zS), if x1 ⁇ xS ⁇ x2, y1 ⁇ yS ⁇ y2, and z1 ⁇ zS ⁇ z2, the point S is in the first extended interference region; otherwise, the point S is 1 Outside the extended interference area.
  • the first determination can be omitted if the result of the first preliminary determination indicates that the hand and other linear objects do not interfere with each other.
  • the second interference region 53 is a planar region that includes a line segment PQ that connects the gripping position P of the electric wire W1 and the standby position Q of the robot hand 22, and has a predetermined width extending on both sides of the line segment PQ.
  • the second interference region preferably includes a line segment PQ at the center in the width direction.
  • the shape of the second interference region is not particularly limited, but is preferably a rectangle or a parallelogram, and more preferably a rectangle having a line segment PQ as an axis of symmetry of line symmetry. This is because the calculation load is reduced and the determination is made at a higher speed.
  • the width of the second interference region 53 is preferably equal to or smaller than the diameter of the circle C1 in FIG.
  • the width of the second interference region is preferably equal to or larger than the diameter of the circle C2 in FIG.
  • the second interference region 53 is preferably set so that the intersection angle with the electric wire W1 is maximized. This is because, when the robot hand 22 approaches the electric wire W1, the gripping portions 23 and 23 often travel in such a plane.
  • 2nd determination process S63 can be performed by the intersection determination of the line segment L on the other electric wire W2 made into object, and the 2nd interference area
  • the second preliminary determination step (S64) for the second extended interference area 54 is performed prior to the second determination, and the case where the robot hand 22 does not interfere with the other electric wires W2 and W3 is found by faster calculation. To do.
  • the second extended interference area 54 is a spatial area that includes the second interference area 53.
  • the shape and size of the second extended interference region are not particularly limited, but preferably the smallest one of the hexahedrons including the second interference region and having all sides parallel to any axis of the coordinate system is the second. 2 Set as an extended interference area.
  • the coordinate system is an orthogonal coordinate system
  • the hexahedron is a rectangular parallelepiped. Thereby, the second preliminary determination can be performed only by comparing the size of the coordinates.
  • the second determination can be omitted when the second preliminary determination shows that the hand and other linear objects do not interfere with each other.
  • the control device 32 interferes with other linear objects when the robot hand 22 holds the holding position of the electric wire W1. Judge that there is no. Then, the electric wire W1 is set as the target linear object, and the grip position is notified to the robot 20.
  • the control device 32 grips the gripping position of the electric wire W1 with the robot hand 22. It is determined that there is interference from other linear objects. The subsequent determination process is omitted, and the process returns to step S22, and the same processing is repeated while changing the target linear object.
  • the control device 32 autonomously selects the next linear object of interest, for example, based on the three-dimensional shape of the electric wires W1 to W3 previously obtained from the three-dimensional camera 31, the linear object at the next higher position is used. An object can be selected as a noticeable linear object.
  • each step may be performed again after changing the positional relationship between the linear objects.
  • the distance from the gripping position of each target linear object to the nearest other linear object may be calculated as the interference distance, and the linear object having a long interference distance may be gripped.
  • the interference distance can be easily calculated by using the distance from the intersection between the first interference region or the second interference region and another linear object in the interference determination to the gripping position.
  • the presence or absence of interference with other linear objects of the robot hand 22 is implemented by calculating the presence or absence of intersection with the polyhedron using the CAD data on the robot hand 22 side and the three-dimensional shape data of the linear object. Also good. However, this method is excellent in accuracy of determination, but is a time-consuming process.
  • whether or not a linear object other than the target linear object exists in the first interference region can be determined by the intersection determination between the planar first interference region and the linear object. And the presence or absence of interference can be determined at high speed. When there is no linear object other than the target linear object in the first interference region, there is a high probability that the robot hand 22 can grip the target linear object without interfering with other linear objects. The same applies to the second interference region.
  • each determination step is not particularly limited, except that the first preliminary determination is performed prior to the first determination and the second preliminary determination is performed prior to the second determination.
  • the 1st determination process was implemented after the 2nd determination process first, you may reverse this order.
  • all determination processes are performed for each line segment while shifting the line segment L in the length direction of the linear object.
  • one determination process for example, the second preliminary determination
  • another determination step for example, a second determination step
  • the attention linear object is selected prior to the acquisition of the standby position of the robot hand 22 (S24) (S22), but the standby position of the robot hand 22 is acquired first, and the attention line is based on the standby position.
  • a shape may be selected.
  • the linear object that is closest to the standby position can be selected as the target linear object.
  • a linear object having the shortest distance between the coordinates of the standby position and the coordinates of the gripping position of the linear object may be selected. This is preferable in that a linear object that is unlikely to interfere with other linear objects can be preferentially selected when gripped.
  • the posture (gripping posture) when the robot hand 22 grips the linear object is preferably gripped so that the grip portion and the linear object are substantially perpendicular. This is because if the orientation of the linear object from the gripping position to the gripping portion is substantially perpendicular to the gripping part, the robot can be easily controlled even when it is inserted into a processing machine after gripping.
  • the posture of the robot hand 22 is adjusted so that the gripping portion and the linear object are oriented at right angles when gripped. Thereafter, the robot hand 22 moves along the second interference region from the standby position toward the gripping position. Thereby, since the posture of the robot hand 22, the moving direction of the robot hand 22, and the orientation of the planes of the first and second interference areas coincide, it is possible to perform highly accurate interference determination.
  • the robot hand 22 that holds the linear object may convey the linear object to various manufacturing apparatuses and processing apparatuses.
  • the tip of the gripped electric wire may be moved by the robot hand 22 and inserted into a film peeling machine or a terminal crimping device. You may use for the process of inserting the front-end
  • a gripping control device 40 a device that controls the gripping posture and gripping position of the linear object by the gripping portion 23 of the robot hand 22 is referred to as a gripping control device 40.
  • the grip control device 40 recognizes the first grip position H1 based on the three-dimensional camera 31 that acquires the three-dimensional shape of the wire harness W and the three-dimensional shape, and will be described below.
  • a processing unit that calculates the second gripping position H2 by a predetermined method and notifies the robot 20 of the first gripping position H1 and the second gripping position H2.
  • This processing unit may be included in the control device 32 or may be configured as a separate device.
  • the control device 32 includes a processing unit.
  • the processing unit acquires the three-dimensional shape of the linear object (wire harness W) from the three-dimensional camera 31 that acquires the three-dimensional shape of the linear object W1, and acquires the position of the tip of the linear object from the three-dimensional shape. It is assumed that the robot 20 having the robot hand 22 is notified of the gripping posture and the gripping position information based on the position of the tip of the linear object.
  • the control device 32 may be any of a control device independent of the robot 20 and the three-dimensional camera 31, a control device provided in the robot 20, and a control device provided in the three-dimensional camera 31.
  • the vicinity of the tip of the linear object is gripped at one place. It is possible to do.
  • the linear object has a relatively low rigidity in many cases, if the linear object is gripped only at one place using the grip part 23, the tip side from the grip part 23 may become unstable. . In such a case, there is a concern that even if the linear object is gripped and moved so as to be inserted into a predetermined processing hole, the tip end side is unstable, so that it cannot be inserted.
  • the linear object may be continuously connected to the opposite side (rear end side) of the linear object gripped by the grip part 23.
  • the weight of the linear object on the rear end side is added to the grip part 23 of the robot hand, so that the grip of the linear object by the grip part 23 becomes unstable.
  • the linear object When gripping and moving a linear object to a predetermined position, there is a concern that the linear object may come into contact with other parts or obstacles during the movement due to the deflection of the linear object.
  • the robot grips a linear object and stores it in a predetermined case, the linear object may not be stored in the predetermined case if the shape of the linear object becomes an unexpected shape during the gripping. .
  • a grip control device and a linear object gripping device having a configuration capable of gripping the linear object in two places so that the linear object can be gripped and moved stably.
  • FIG. 9 is a schematic diagram showing the gripping position of the linear object
  • FIG. 10 is a schematic diagram showing the configuration of the linear object gripping device 220.
  • the wire harness W in which the electric wire W1, the electric wire W2, and the electric wire W3 are bundled is used as the linear object used in the present embodiment.
  • the electric wire W1, the electric wire W2, and the electric wire W3 are in an exposed state (exposed thin wire portion) after the coating is removed from the distal end portion of the covering bundle portion W10 of the wire harness W.
  • the tip of the electric wire W1 is transported to a predetermined position.
  • the linear object gripping device 220 is farther from the distal end side of the wire harness W than the position of the exposed thin wire portion (first gripping position H1) at a predetermined distance L1 from the distal end side of the electric wire W1 and the first gripping position H1.
  • the covering bundle portion W10 at the position L1 + L2 (second holding position H2) is held.
  • the distance L1 from the tip of the electric wire W1 is set to about 10 mm as the first gripping position H1.
  • the distance L2 between the first grip position H1 and the second grip position H2 was set to about 100 mm.
  • the distance L1 and the distance L2 can be appropriately set to optimum distances according to the type, weight, etc. of the linear object.
  • the linear object gripping device 220 includes a first gripping device 22A that grips the first gripping position H1 of the electric wire W1 and a second gripping device 22B that grips the second gripping position H2 of the wire harness W. Including.
  • the first gripping device 22A and the second gripping device 22B are connected by a bridge member 25 so as to be integrated. Further, a connecting member 26 connected to the distal end side of the robot arm 21 is attached to the bridge member 25.
  • the first gripping device 22A has a first main body device 24A.
  • a pair of grip hands 23a and 23a for gripping the first gripping position H1 of the electric wire W1 are provided at the distal end portion of the first main body device 24A.
  • the pair of grip hands 23a, 23a are provided so as to be opened and closed in the direction of arrow P in the drawing by an actuator (not shown) provided in the first main body device 24A.
  • the opening / closing operation of the grip hands 23a, 23a is controlled by the control device 32 described above.
  • a flat plate member is used for the pair of grip hands 23a and 23a. Thereby, even the electric wire W1 having a relatively thin wire diameter can be stably held.
  • the second gripping device 22B also has a second main body device 24B.
  • a pair of grip hands 23b and 23b for gripping the second gripping position H2 of the covering bundle portion W10 are provided at the distal end portion of the second main body device 24B.
  • the pair of grip hands 23b, 23b is provided so as to be opened and closed in the direction of arrow P in the drawing by an actuator (not shown) provided inside the second main body device 24B.
  • the opening / closing operation of the pair of grip hands 23b, 23b is controlled by the control device 32 described above.
  • the direction in which the first gripping device 22A and the second gripping device 22B are located is the Z direction orthogonal to the X direction. That is, the gripping posture of the wire harness is a posture in which the wire harness and the grip hands 23a, 23a and 23b, 23b that are gripping portions are orthogonal to each other at the first gripping position and the second gripping position.
  • the arrow P direction in the figure where the pair of grip hands 23a, 23a and the pair of grip hands 23b, 23b open and close is the Y direction orthogonal to both the X direction and the Z direction.
  • the orthogonal is not 90 degrees in a strict sense, it includes some errors within a range where the effects of the present embodiment shown below can be obtained.
  • a flat plate member is used for the pair of grip hands 23b and 23b. Thereby, even the electric wire W1 having a relatively thin wire diameter can be stably held.
  • the first gripping position H1 of the electric wire W1 is gripped by the first gripping device 22A, and the covering bundle portion W10 is gripped by the second gripping device 22B. .
  • gripping apparatus 220 will hold
  • the wire harness W can be stably held and the tip of the electric wire W1 can be accurately conveyed to a predetermined position using the robot hand 22.
  • the second gripping position H2 is determined by providing the second gripping device 22B at a predetermined distance from the first gripping position H1, but is not limited to this determination method. For example, when another robot arm has already grasped a linear object (when receiving a wire harness from another robot arm), the second grasping position H2 is determined from position information grasped by the other robot arm. May be.
  • the second gripping position H2 may be calculated based on at least one of the three-dimensional shape of the wire harness W, the shape of the linear object gripping device 220, and the movable range of the linear object gripping device 220.
  • the determination based on the movable range of the linear object gripping device 220 means that a movable region determination is made to determine whether or not the second gripping position H2 is within the operating range of the robot 20 and the linear object gripping device 220. Do. If the determination result is out of the movable region, another determination may be made with the second gripping position as the second gripping position, and information (rotation, movement, etc.) for changing the posture of the wire harness W is notified to the robot 20. May be.
  • the linear object to be grasped is not limited to the wire harness W.
  • Examples thereof include electric wires, solder, strings, threads, fibers, glass fibers, optical fibers, tubes, and dry noodles.

Abstract

This grip control device (40) notifies a robot (20), having a linear object gripping device capable of gripping a linear object, of gripping information of a wire harness (W). The robot (20) includes: a three-dimensional camera (31) for acquiring the three-dimensional geometry of the wire harness (W); and a processing unit that recognizes a first gripping position on the basis of the three-dimensional geometry, calculates a second gripping position with a prescribed method, and notifies the robot (20) of the first gripping position and the second gripping position.

Description

把持制御装置Grip control device
 本発明はロボットハンドを用いて線状物を把持する場合の把持制御装置に関する。 The present invention relates to a grip control device for gripping a linear object using a robot hand.
 対象物を3次元カメラ等で認識して自律的に把持するロボットの普及が進んでいる。線状物を把持することについては、たとえば特開2014-176917号公報(特許文献1)に、線状体の組み付け作業を行なうロボット装置であって、一端が固定された線状体の固定端近傍を把持したのち、把持部を所定の軌跡でスライドさせて他端に移動させる装置が記載されている。これにより、線状物の一例である電線に付いた癖等により正確に推定することが困難な他端を素早く把持できるとされる。 ロ ボ ッ ト Robots that recognize objects with a three-dimensional camera or the like and hold them autonomously are spreading. Regarding gripping a linear object, for example, in Japanese Patent Application Laid-Open No. 2014-176917 (Patent Document 1), a robot apparatus for assembling a linear object, in which the fixed end of the linear object with one end fixed is fixed. An apparatus is described in which after gripping the vicinity, the gripper is slid along a predetermined locus and moved to the other end. Accordingly, it is possible to quickly grasp the other end that is difficult to accurately estimate with a hook or the like attached to an electric wire that is an example of a linear object.
 特開2016-192138号公報(特許文献2)には、ワイヤーハーネスの製造方法および画像処理方法に関する発明が開示され、ワイヤーハーネスを製造する過程において、電線集合体の3次元形状が測定されることによって加工位置が特定される加工位置特定処理が実施される。 Japanese Patent Laying-Open No. 2016-192138 (Patent Document 2) discloses an invention relating to a method for manufacturing a wire harness and an image processing method, and in the course of manufacturing the wire harness, the three-dimensional shape of the wire assembly is measured. A processing position specifying process is performed in which the processing position is specified.
特開2014-176917号公報Japanese Patent Application Laid-Open No. 2014-176917 特開2016-192138号公報JP 2016-192138 A
 ロボットハンドの把持部で線状物としてたとえばワイヤーハーネス等を把持し、所定のターゲット位置にワイヤーハーネスの先端を移動させる制御を行なう場合が考えられる。たとえば、対象物に設けられた貫通孔に、そのワイヤーハーネスの先端を挿入する制御が想定される。 It is conceivable that control is performed such that a wire harness or the like is gripped as a linear object at the grip portion of the robot hand and the tip of the wire harness is moved to a predetermined target position. For example, the control which inserts the front-end | tip of the wire harness into the through-hole provided in the target object is assumed.
 この場合に、ワイヤーハーネスは比較的その剛性が低い場合が多いため、ワイヤーハーネスをロボットハンドの把持部を用いて一箇所のみ把持したのでは、その把持部から先端側は不安定となる。さらに、把持部で把持したワイヤーハーネスの先端側とは反対側(後端側)にはワイヤーハーネスが連続して繋がっている場合がある。この場合には、後端側のワイヤーハーネスの重量がロボットハンドの把持部に加わることで、把持部によるワイヤーハーネスの把持が不安定になることが懸念される。 In this case, since the rigidity of the wire harness is relatively low in many cases, if the wire harness is gripped only at one place using the grip portion of the robot hand, the tip side becomes unstable from the grip portion. Furthermore, the wire harness may be continuously connected to the opposite side (rear end side) of the wire harness held by the holding unit. In this case, there is a concern that the weight of the wire harness on the rear end side is added to the grip portion of the robot hand, so that the grip of the wire harness by the grip portion becomes unstable.
 この発明は、上記課題を解決することを目的としており、ロボットハンドの把持部で線状物を把持した場合、安定的に線状物を把持することが可能な構成を備える、把持制御装置を提供することにある。 An object of the present invention is to solve the above-described problems. A gripping control device having a configuration capable of stably gripping a linear object when the linear object is gripped by a gripping portion of a robot hand. It is to provide.
 この把持制御装置においては、線状物を把持可能な線状物把持装置を備えたロボットに対して前記線状物の把持情報を上記ロボットに通知する把持制御装置であって、上記線状物の3次元形状を取得する3次元カメラと、上記3次元形状に基づいて第1把持位置を認識し、所定の方法で第2把持位置を計算し、上記第1把持位置および上記第2把持位置を上記ロボットに通知する処理部と、を有する。 The gripping control device is a gripping control device that notifies the robot of gripping information of the linear object to a robot having a linear object gripping device capable of gripping the linear object. A three-dimensional camera that obtains the three-dimensional shape, and a first gripping position is recognized based on the three-dimensional shape, the second gripping position is calculated by a predetermined method, and the first gripping position and the second gripping position are calculated. And a processing unit for notifying the robot.
 他の形態においては、上記第2把持位置は、上記3次元形状、上記線状物把持装置の形状および上記線状物把持装置の可動域のうち少なくとも1つに基づいて計算される。 In another embodiment, the second gripping position is calculated based on at least one of the three-dimensional shape, the shape of the linear object gripping device, and the movable range of the linear object gripping device.
 他の形態においては、上記処理部は、上記線状物把持装置が上記第1把持位置および上記第2把持位置を把持する際の把持姿勢もさらに通知する。 In another embodiment, the processing unit further notifies a gripping posture when the linear object gripping device grips the first gripping position and the second gripping position.
 他の形態においては、上記把持姿勢は、上記第1把持位置において上記線状物と上記線状物把持装置の把持部とが直交する姿勢である。 In another embodiment, the gripping posture is a posture in which the linear object and the gripping part of the linear object gripping device are orthogonal to each other at the first gripping position.
 他の形態においては、上記線状物は、複数の細線が被覆材で覆われた多芯線であるとともに、複数の上記細線が露出した露出細線部と、被覆材により覆われた被覆束部とを含み、上記第1把持位置は、上記露出細線部に位置し、上記第2把持位置は、上記被覆束部に位置する。 In another embodiment, the linear object is a multi-core wire in which a plurality of fine wires are covered with a covering material, an exposed fine wire portion in which the plurality of fine wires are exposed, and a covering bundle portion covered with a covering material; The first grip position is located in the exposed thin line portion, and the second grip position is located in the covering bundle portion.
 他の形態においては、上記ロボットは1台の多関節ロボットであり、上記処理部は、上記多関節ロボットに設けたロボットハンドで把持可能な上記第1把持位置および上記第2把持位置を上記多関節ロボットに通知する。 In another aspect, the robot is a single articulated robot, and the processing unit sets the first gripping position and the second gripping position that can be gripped by a robot hand provided in the articulated robot to the multi-joint robot. Notify the joint robot.
 この把持制御装置によれば、ロボットハンドの把持部で線状物を把持した場合、安定的に線状物を把持すうことが可能な構成を備える、把持制御装置の提供を可能とする。 According to this grip control device, it is possible to provide a grip control device having a configuration capable of stably gripping a linear object when the linear object is gripped by the grip portion of the robot hand.
関連技術における線状物把持方法を実行する全体システムを示す図である。It is a figure which shows the whole system which performs the linear object holding | grip method in related technology. 関連技術における線状物把持方法の工程フロー図である。It is a process flow figure of a linear thing grasping method in related technology. 関連技術における線状物把持方法の判定工程の工程フロー図である。It is a process flow figure of a judgment process of a linear thing grasping method in related technology. 関連技術における第1干渉領域および第1拡張干渉領域を示す図である。It is a figure which shows the 1st interference area | region and 1st extended interference area | region in related technology. 関連技術における第2干渉領域および第2拡張干渉領域を示す図である。It is a figure which shows the 2nd interference area and 2nd extended interference area in related technology. 関連技術における第1干渉領域の大きさを説明するための図である。It is a figure for demonstrating the magnitude | size of the 1st interference area | region in related technology. 関連技術における第1判定工程を説明するための図である。It is a figure for demonstrating the 1st determination process in related technology. 関連技術における第1予備判定工程を説明するための図である。It is a figure for demonstrating the 1st preliminary determination process in related technology. 線状物の把持位置を示す模式図である。It is a schematic diagram which shows the holding position of a linear object. 実施の形態における線状物把持装置の構成を示す概略図である。It is the schematic which shows the structure of the linear object holding | grip apparatus in embodiment.
 本発明に基づいた実施の形態の把持制御装置について、以下、図を参照しながら説明する。以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。実施の形態における構成を適宜組み合わせて用いることは当初から予定されていることである。図においては、実際の寸法比率では記載しておらず、構造の理解を容易にするために、一部比率を異ならせて記載している。 DETAILED DESCRIPTION Hereinafter, a grip control device according to an embodiment of the present invention will be described with reference to the drawings. In the embodiments described below, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. The same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated. It is planned from the beginning to use the structures in the embodiments in appropriate combinations. In the drawings, the actual dimensional ratios are not described, and some ratios are described in order to facilitate understanding of the structure.
 以下の説明においては、線状物の一例として電線を用いた場合について説明しているが、電線に限定されるものではない。この説明での線状物とは、細長い形状を有する物体であれば何でもよい。線状物の一例としては、電線、ワイヤーハーネス、はんだ、紐、糸、繊維、ガラス繊維、光ファイバ、チューブ、乾麺等が挙げられる。細線を束にした電線に限定されず、一本線から構成される電線等も含まれる。特に、たわみが生じるなどして形状が変化する線状物や、直線ではない線状物の場合、本実施の形態の効果がより顕著に表れる。 In the following description, a case where an electric wire is used as an example of a linear object is described, but the present invention is not limited to an electric wire. The linear object in this description may be anything as long as it has an elongated shape. As an example of a linear thing, an electric wire, a wire harness, solder, a string, a thread | yarn, a fiber, glass fiber, an optical fiber, a tube, dry noodles, etc. are mentioned. It is not limited to the electric wire which bundled the thin wire, The electric wire etc. which consist of a single wire are also included. In particular, in the case of a linear object whose shape changes due to deflection or a linear object that is not a straight line, the effect of the present embodiment appears more remarkably.
 (関連技術:線状物把持方法および制御装置)
 以下、図1から図8を参照して、関連技術として、線状物把持方法および制御装置の一例について説明する。
(Related technology: Linear object gripping method and control device)
Hereinafter, an example of a linear object gripping method and a control device will be described as a related technique with reference to FIGS.
 図1において、線状物把持方法を実施するための全体システム10は、ロボット20と、3次元カメラ31と、制御装置32とを有する。作業空間には、電線W1、電線W2、電線W3から構成されるワイヤーハーネスWが配置されている。 1, the overall system 10 for carrying out the linear object gripping method includes a robot 20, a three-dimensional camera 31, and a control device 32. In the work space, a wire harness W composed of an electric wire W1, an electric wire W2, and an electric wire W3 is disposed.
 ロボット20としては、公知の多関節ロボットを好適に利用することができる。ロボットアーム21の先端にはロボットハンド22が備えられており、ロボットハンド22の一対の把持部23、23で線状物を把持する。 As the robot 20, a known articulated robot can be suitably used. A robot hand 22 is provided at the tip of the robot arm 21, and a linear object is gripped by a pair of gripping portions 23, 23 of the robot hand 22.
 3次元カメラ31は、電線W1、電線W2、電線W3の3次元形状を計測できるものであれば特に限定されない。好ましくはステレオカメラを用いる。ステレオカメラは線状物の3次元形状を高速に計測するのに好ましい。 The three-dimensional camera 31 is not particularly limited as long as it can measure the three-dimensional shape of the electric wire W1, the electric wire W2, and the electric wire W3. A stereo camera is preferably used. The stereo camera is preferable for measuring the three-dimensional shape of the linear object at high speed.
 ステレオカメラは2台のカメラを含み、異なる視点から撮像された2枚の画像上で計測したい点の対応点を求め、2台のカメラの位置関係から3角測量の原理によって計測点の3次元位置を算出する。ステレオ方式による線状物の3次元計測に関しては、たとえば、特開平2-309202号公報には、多数の線状物を2台のカメラで撮像し、2つの画像中の輝線の傾きと輝線間の距離を特徴として照合することにより対応点を決定することが記載されており、これによって、対応点の決定にかかる処理時間を短縮できるとされる。 A stereo camera includes two cameras, finds corresponding points of points to be measured on two images taken from different viewpoints, and determines the three-dimensional measurement points according to the principle of triangulation from the positional relationship of the two cameras. Calculate the position. Regarding the three-dimensional measurement of a linear object by the stereo method, for example, Japanese Patent Laid-Open No. 2-309202 discloses that a large number of linear objects are imaged by two cameras, and the inclination of the bright lines in the two images and the distance between the bright lines. It is described that the corresponding point is determined by collating the distances as features, and the processing time for determining the corresponding point can be shortened.
 ステレオ方式において、一方の画像の視点と計測点を結ぶ直線を他方の画像上に(特願2017―221045号参照)投影した直線をエピポーラ線といい、一方の画像上の点に対応する他方の画像上の対応点は必ず他方の画像上のエピポーラ線上に投影されている。 In the stereo system, a straight line obtained by projecting a line connecting the viewpoint of one image and a measurement point onto the other image (see Japanese Patent Application No. 2017-221405) is called an epipolar line, and the other line corresponding to the point on one image The corresponding point on the image is always projected on the epipolar line on the other image.
 このことを利用して、線状物の上のある点の対応点を求めるには、他方の画像上で線状物とエピポーラ線の交点を求めればよく、高速に線状物の3次元形状を計測できる。線状物が互いに異なる色に色分けされている場合には、カラーカメラを用いることにより、画像から該当する色を抽出してから対応点を求めることで、各線状物の3次元形状をより高速に求めることができる。 In order to obtain the corresponding point of a certain point on the linear object by using this fact, the intersection of the linear object and the epipolar line can be obtained on the other image, and the three-dimensional shape of the linear object can be obtained at high speed. Can be measured. When the linear objects are color-coded in different colors, the color camera is used to extract the corresponding color from the image and then obtain the corresponding points, thereby making the three-dimensional shape of each linear object faster. Can be requested.
 制御装置32は、図示しない通信部によって3次元カメラ31と通信し、ステレオカメラから電線W1、電線W2、電線W3の3次元形状を取得する。制御装置は図示しない演算部によって、ステレオカメラから取得した3次元形状に基づいて、ロボットハンド22が線状物を把持する際に他の線状物と干渉するか否かを判定し、把持すべき目標線状物を決定するための各種演算を行なう。 The control device 32 communicates with the three-dimensional camera 31 through a communication unit (not shown), and acquires the three-dimensional shapes of the electric wire W1, the electric wire W2, and the electric wire W3 from the stereo camera. The control device determines whether or not the robot hand 22 interferes with another linear object when the robot hand 22 grips the linear object, based on the three-dimensional shape acquired from the stereo camera, using an arithmetic unit (not shown). Various calculations are performed to determine the target linear object.
 制御装置は上記通信部を介して、演算結果に基づいて、把持すべき目標線状物の把持位置をロボット20に通知する。把持位置をロボット20に直接通知するだけでなく、制御装置32とロボット20との間にロボットの動作を制御する別の装置(たとえば、ロボットコントローラや制御用パソコン等)を設け、それらの装置に対して通知しても良い。 The control device notifies the robot 20 of the gripping position of the target linear object to be gripped based on the calculation result via the communication unit. In addition to notifying the gripping position directly to the robot 20, another device (for example, a robot controller or a control personal computer) for controlling the operation of the robot is provided between the control device 32 and the robot 20. Notification may be made.
 図2を参照して、本関連技術の線状物把持方法を以下に説明する。この関連技術の線状物把持方法は、複数の電線W1、電線W2、電線W3の3次元形状を計測する工程(S1)、計測された3次元形状に基づいてロボットハンド22が線状物を把持する際に他の線状物が干渉するか否かを判定する判定工程(S2)、判定工程S2における判定結果に基づいて決定された目標線状物を把持する工程(S3)を含む。 Referring to FIG. 2, the linear object gripping method of the related technology will be described below. The related-art linear object gripping method includes a step of measuring a three-dimensional shape of a plurality of electric wires W1, electric wires W2, and electric wires W3 (S1), and the robot hand 22 detects a linear object based on the measured three-dimensional shape. A determination step (S2) for determining whether or not another linear object interferes when gripping, and a step (S3) for gripping the target linear object determined based on the determination result in the determination step S2.
 複数の電線W1、電線W2、電線W3の3次元形状を計測する工程S1は3次元カメラ31によって実施される。ステレオカメラは線状物のある作業空間を撮像し、2枚の画像を演算処理して電線W1、電線W2、電線W3のそれぞれの3次元形状を取得する。線状物の3次元形状は、直交座標系または斜交座標系で表され、好ましくは直交座標で表される。 The step S1 of measuring the three-dimensional shape of the plurality of electric wires W1, the electric wires W2, and the electric wires W3 is performed by the three-dimensional camera 31. The stereo camera captures a work space with a linear object, and performs arithmetic processing on the two images to acquire the three-dimensional shapes of the electric wire W1, the electric wire W2, and the electric wire W3. The three-dimensional shape of the linear object is represented by an orthogonal coordinate system or an oblique coordinate system, and is preferably represented by an orthogonal coordinate.
 判定工程S2は制御装置32によって実施される。判定工程については詳細を後述する。 Determination step S2 is performed by the control device 32. Details of the determination step will be described later.
 目標線状物を把持する工程S3はロボット20によって実施される。ロボットは、把持すべき目標線状物の把持位置を制御装置32から通知され、ロボットアーム21およびロボットハンド22を移動させて把持動作を実行する。 The step S3 for gripping the target linear object is performed by the robot 20. The robot is notified of the gripping position of the target linear object to be gripped from the control device 32, and moves the robot arm 21 and the robot hand 22 to execute a gripping operation.
 以下に判定工程S2を詳細に説明する。
 図3を参照して、本関連技術の判定工程S2では、線状物の3次元形状の取得(S21)、注目線状物の選択(S22)、注目線状物の把持位置の決定(S23)、ロボットハンド待機位置の取得(S24)、各種干渉領域の設定(S51~S54)と各種干渉判定(S61~S64)を実施する。
The determination step S2 will be described in detail below.
Referring to FIG. 3, in the determination step S2 of the related technology, acquisition of a three-dimensional shape of a linear object (S21), selection of a target linear object (S22), determination of a gripping position of the target linear object (S23) ), Obtaining the robot hand standby position (S24), setting various interference areas (S51 to S54), and various interference determinations (S61 to S64).
 制御装置32はまず、3次元カメラ31から電線W1、電線W2、電線W3の3次元形状を取得する(S21)。 First, the control device 32 acquires the three-dimensional shapes of the electric wire W1, the electric wire W2, and the electric wire W3 from the three-dimensional camera 31 (S21).
 次に、制御装置32は、ロボットハンド22で把持しようとする注目線状物を選択する(S22)。以下において、電線W1を把持しようとする注目線状物、電線W2と電線W3を注目線状物以外の線状物(他の線状物)として説明する。制御装置は、電線の色などの指定を外部から受けて、その指示に基づいて注目線状物を決定してもよい。好ましくは、制御装置は自律的整理番号(特願2017-221045号参照)に注目線状物を選択する。 Next, the control device 32 selects a line-of-interest to be gripped by the robot hand 22 (S22). In the following description, the wire of interest W1, the wire W2 and the wire W3, which are intended to grip the electric wire W1, will be described as a wire (other wire) other than the wire of interest. The control device may receive a designation such as the color of the electric wire from the outside and determine the target linear object based on the instruction. Preferably, the control device selects a line-of-interest for the autonomous reference number (see Japanese Patent Application No. 2017-221045).
 たとえば、電線W1、電線W2、電線W3が台の上に置かれている場合、取得した3次元形状に基づいて最も高い位置、すなわち最も上にある線状物を注目線状物として選択することができる。線状物が重なり合って置かれている場合でも、上にある線状物ほど、その線状物を把持するときに他の線状物が干渉する確率が低いからである。 For example, when the electric wire W1, the electric wire W2, and the electric wire W3 are placed on a table, the highest position, that is, the uppermost linear object is selected as the target linear object based on the acquired three-dimensional shape. Can do. This is because even when linear objects are placed in an overlapping manner, the higher the linear object, the lower the probability that another linear object will interfere when the linear object is gripped.
 次に、制御装置32は、注目すべき電線W1の把持位置を決定する(S23)。たとえば、注目線状物の先端から何mmというような予め定められた条件に基づいて、制御装置が注目線状物の把持位置を3次元座標として算出する。 Next, the control device 32 determines a gripping position of the wire W1 to be noted (S23). For example, based on a predetermined condition such as how many mm from the tip of the noticeable linear object, the control device calculates the grip position of the noticeable linear object as three-dimensional coordinates.
 次に、制御装置32は、ロボットハンド22の待機位置を取得する(S24)。ロボットハンド22の待機位置が予め定められている場合は、その座標を待機位置として取得する。待機位置を線状物の3次元形状に基づいて決定する場合、たとえば線状物から所定距離離れた上方に決定するなどの場合は、演算により待機位置を取得する。 Next, the control device 32 acquires the standby position of the robot hand 22 (S24). If the standby position of the robot hand 22 is predetermined, the coordinates are acquired as the standby position. When the standby position is determined based on the three-dimensional shape of the linear object, for example, when it is determined above a predetermined distance away from the linear object, the standby position is obtained by calculation.
 制御装置32はロボットハンド22の現在位置をロボット20から取得し、ロボットハンド22の現在位置が待機位置と異なる場合は、ロボットハンド22を待機位置に移動させる。ロボットハンド22の待機位置と電線W1の把持位置を結ぶ線分が、ロボットハンド22が把持動作を実行するときのおおよその移動経路を与える。 The control device 32 acquires the current position of the robot hand 22 from the robot 20 and moves the robot hand 22 to the standby position when the current position of the robot hand 22 is different from the standby position. A line segment connecting the standby position of the robot hand 22 and the gripping position of the electric wire W1 provides an approximate movement path when the robot hand 22 executes the gripping operation.
 次に、制御装置32は、ロボットハンド22と他の電線W2、電線W3との干渉判定のために、注目線状物の把持位置を含むいくつかの干渉領域を設定する。図3では、第1干渉領域、第1拡張干渉領域、第2干渉領域、第2拡張干渉領域の順に設定している。すべての他の線状物の1本毎に、当該他の線状物が上記それぞれの干渉領域に含まれるか否かを判定する干渉判定を行なう。 Next, the control device 32 sets several interference areas including the gripping position of the target linear object in order to determine the interference between the robot hand 22 and the other electric wires W2 and W3. In FIG. 3, the first interference area, the first extended interference area, the second interference area, and the second extended interference area are set in this order. For each one of all other linear objects, interference determination is performed to determine whether or not the other linear object is included in each of the interference regions.
 各線状物についての干渉判定は、線状物上の点または線分を長さ方向にずらしながら、その点が干渉領域内にあるかまたはその線分が干渉領域と交差するかを判定することによって行なうことができる。図3では、第2拡張干渉領域に対する第2予備判定、第2干渉領域に対する第2判定、第1拡張干渉領域に対する第1予備判定、第1干渉領域に対する第1判定の順に実施している。以下に、図3の順番とは異なるが、各干渉領域とその領域に対する干渉判定とについて説明する。 Interference judgment for each linear object is to determine whether the point is in the interference area or whether the line segment intersects the interference area while shifting the point or line segment on the linear object in the length direction. Can be done. In FIG. 3, the second preliminary determination for the second extended interference region, the second determination for the second interference region, the first preliminary determination for the first extended interference region, and the first determination for the first interference region are performed in this order. Hereinafter, although different from the order of FIG. 3, each interference region and interference determination for the region will be described.
 図4を参照して、第1干渉領域51に対する第1判定工程S61は、ロボットハンド22が電線W1を把持するときに他の電線W2、W3と干渉するか否かを判定する。 Referring to FIG. 4, in the first determination step S61 for the first interference region 51, it is determined whether or not the robot hand 22 interferes with the other electric wires W2 and W3 when holding the electric wire W1.
 第1干渉領域51は、電線W1の把持位置Pを含み、所定の形状および所定の大きさを有する平面状の領域である。第1干渉領域は、その中心に把持位置Pを含むことが好ましい。第1干渉領域の形状は特に限定されないが、好ましくは、多角形、円または楕円とする。第1干渉領域が多角形の場合は、好ましくは4角形、より好ましくは正方形である。計算の負荷が軽くなり、高速な判定が可能となるからである。第1干渉領域が多角形の場合、線状物の3次元形状を表す座標系(以下、単に「座標系」という)のいずれか2本の軸がなす平面に平行な辺を有する正方形を第1干渉領域とするのが特に好ましい。 The first interference area 51 is a planar area including the gripping position P of the electric wire W1 and having a predetermined shape and a predetermined size. The first interference region preferably includes the grip position P at the center thereof. The shape of the first interference region is not particularly limited, but is preferably a polygon, a circle, or an ellipse. When the first interference region is a polygon, it is preferably a quadrangle, more preferably a square. This is because the calculation load is reduced and high-speed determination is possible. When the first interference region is a polygon, a square having sides parallel to a plane formed by any two axes of a coordinate system (hereinafter simply referred to as a “coordinate system”) representing a three-dimensional shape of the linear object is One interference region is particularly preferable.
 後述する第1拡張干渉領域をより小さくして第1予備判定の効率を向上できるからである。第1干渉領域が多角形でない場合は、好ましくは円である。同じく、計算の負荷が軽くなり、高速な判定が可能となるからである。 This is because the efficiency of the first preliminary determination can be improved by reducing the first extended interference region described later. If the first interference area is not a polygon, it is preferably a circle. Similarly, the calculation load is reduced and high-speed determination is possible.
 第1干渉領域51の大きさは、大きすぎると実際には干渉しないのに干渉すると誤判定する確率が増大する。図6を参照して、ロボットハンド22の最大断面に外接する最小の円を円C1とすると、第1干渉領域は、好ましくは、円C1の2.0倍の直径を有する円に内包される大きさであり、より好ましくは、円C1と同じ大きさの円に内包される大きさである。 If the size of the first interference area 51 is too large, the probability of misjudgment that interference does not actually occur increases. Referring to FIG. 6, when the smallest circle circumscribing the largest cross section of the robot hand 22 is defined as a circle C1, the first interference region is preferably included in a circle having a diameter 2.0 times that of the circle C1. More preferably, the size is contained in a circle having the same size as the circle C1.
 一方、第1干渉領域が小さすぎると、実施には干渉するのに干渉しないと誤判定する確率が増大する。図6を参照して、ロボットハンド22が線状物を把持するために動作させる把持部23の最大断面に外接する最小の円を円C2とすると、第1干渉領域は、好ましくは、円C2(特願2017―221045号参照)と同じ大きさの円を内包できる大きさである。 On the other hand, if the first interference area is too small, the probability of misjudging that it does not interfere increases although it interferes with implementation. Referring to FIG. 6, when the minimum circle circumscribing the maximum cross section of the grip portion 23 that is operated by the robot hand 22 to grip the linear object is a circle C2, the first interference region is preferably a circle C2. It is a size that can contain a circle of the same size as that of Japanese Patent Application No. 2017-221405.
 第1干渉領域51は、好ましくは、電線W1と直交する。第1干渉領域が注目線状物と直交するとは、把持位置Pにおいて注目線状物が伸びる方向が第1干渉領域と直角をなすことをいう。第1干渉領域を含む平面の方程式が容易に求められるからである。また、ロボットハンド22で線状物を把持する場合、線状物を真横から、つまり線状物と直角の方向から把持することが多いからである。注目線状物と直交する第1干渉領域内に他の線状物が存在する場合には、ロボットハンド22が注目線状物を真横から把持しない場合であっても、ロボットハンド22が当該他の線状物と干渉する蓋然性が高いからである。 The first interference region 51 is preferably orthogonal to the electric wire W1. That the first interference region is orthogonal to the target linear object means that the direction in which the target linear object extends at the gripping position P is perpendicular to the first interference region. This is because a plane equation including the first interference region can be easily obtained. In addition, when a linear object is gripped by the robot hand 22, the linear object is often gripped from the side, that is, from a direction perpendicular to the linear object. If there is another linear object in the first interference region orthogonal to the target linear object, even if the robot hand 22 does not grip the target linear object from the side, the robot hand 22 This is because there is a high probability of interference with the linear object.
 図7を参照して、第1判定工程S61は、対象とする他の電線W2上の線分Lと第1干渉領域51との交差判定によって行なうことができる。線分Lは、電線W2の3次元形状を表す点群のうち隣り合う2点S、T間の線分とすることができる。線分Lが第1干渉領域と交差するなら、線分L上のどこかの点が第1干渉領域に含まれる。交差判定は公知の方法で行なうことができる。たとえば、第1干渉領域51を含む平面Uの法線ベクトルNと、把持位置Pから線分Lの両端S、TへのベクトルPSおよびPTとの内積を取り、2つの内積の符号が異なる場合は線分Lは平面Uと交差する。線分Lと平面Uが交差する場合は、その交点が第1干渉領域51内にあるか否かを判定すればよい。 Referring to FIG. 7, the first determination step S <b> 61 can be performed by determining the intersection of the line segment L on the other target electric wire W <b> 2 and the first interference region 51. The line segment L can be a line segment between two adjacent points S and T in the point group representing the three-dimensional shape of the electric wire W2. If the line segment L intersects the first interference area, some point on the line segment L is included in the first interference area. The intersection determination can be performed by a known method. For example, when the inner product of the normal vector N of the plane U including the first interference region 51 and the vectors PS and PT from the gripping position P to both ends S and T of the line segment L is taken, the signs of the two inner products are different The line segment L intersects the plane U. When the line segment L and the plane U intersect, it may be determined whether or not the intersection is in the first interference region 51.
 図4を参照して、第1拡張干渉領域52に対する第1予備判定工程S62は、第1判定に先だって実施され、ロボットハンド22と他の電線W2、W3が干渉しない場合を、より高速な計算で発見するために行なう。 Referring to FIG. 4, the first preliminary determination step S62 for the first extended interference region 52 is performed prior to the first determination, and faster calculation is performed when the robot hand 22 does not interfere with the other electric wires W2, W3. To find out.
 第1拡張干渉領域52は第1干渉領域51を内包する空間領域である。第1拡張干渉領域の形状や大きさは特に限定されないが、好ましくは、第1干渉領域を内包し、すべての辺が座標系のいずれかの軸に平行な6面体のうち最小のものを第1拡張干渉領域として設定する。座標系が直交座標系の場合は、この6面体は直方体である。これにより、座標の大小比較を行なうだけで、第1予備判定が実施できる。 The first extended interference region 52 is a spatial region that includes the first interference region 51. The shape and size of the first extended interference region are not particularly limited, but preferably the smallest one of the hexahedrons including the first interference region and having all sides parallel to any axis of the coordinate system is the first. Set as one extended interference area. When the coordinate system is an orthogonal coordinate system, the hexahedron is a rectangular parallelepiped. Thus, the first preliminary determination can be performed only by comparing the coordinates.
 具体的には、図8を参照して、第1拡張干渉領域52の8つの頂点A~Hの座標を図8のとおりとし、線分Lの一方の端点Sの座標を(xS,yS,zS)とすると、x1≦xS≦x2、かつ、y1≦yS≦y2、かつ、z1≦zS≦z2、であれば点Sは第1拡張干渉領域内にあり、そうでなければ点Sは第1拡張干渉領域外にある。 Specifically, referring to FIG. 8, the coordinates of the eight vertices A to H of the first extended interference region 52 are as shown in FIG. 8, and the coordinates of one end point S of the line segment L are (xS, yS, zS), if x1 ≦ xS ≦ x2, y1 ≦ yS ≦ y2, and z1 ≦ zS ≦ z2, the point S is in the first extended interference region; otherwise, the point S is 1 Outside the extended interference area.
 第1拡張干渉領域52が第1干渉領域51を内包するので、第1予備判定によってハンドと他の線状物が干渉しないとの結果が得られた場合は、第1判定を省略できる。 Since the first extended interference region 52 includes the first interference region 51, the first determination can be omitted if the result of the first preliminary determination indicates that the hand and other linear objects do not interfere with each other.
 図5を参照して、第2干渉領域53に対する第2判定工程(S63)は、ロボットハンド22が電線W1の把持位置Pまで移動する経路で、他の電線W2、電線W3と干渉するか否かを判定する。 Referring to FIG. 5, in the second determination step (S63) for the second interference region 53, whether or not the robot hand 22 interferes with the other electric wires W2 and W3 on the path along which the robot hand 22 moves to the gripping position P of the electric wires W1. Determine whether.
 第2干渉領域53は、電線W1の把持位置Pとロボットハンド22の待機位置Qとを結ぶ線分PQを含み、線分PQの両側に広がり所定の幅を有する平面状の領域である。第2干渉領域は、その幅方向の中心に線分PQを含むことが好ましい。第2干渉領域の形状は、特に限定されないが、好ましくは長方形または平行四辺形であり、より好ましくは、線分PQを線対称の対称軸とする長方形である。計算の負荷を軽くして、より高速に判定するためである。 The second interference region 53 is a planar region that includes a line segment PQ that connects the gripping position P of the electric wire W1 and the standby position Q of the robot hand 22, and has a predetermined width extending on both sides of the line segment PQ. The second interference region preferably includes a line segment PQ at the center in the width direction. The shape of the second interference region is not particularly limited, but is preferably a rectangle or a parallelogram, and more preferably a rectangle having a line segment PQ as an axis of symmetry of line symmetry. This is because the calculation load is reduced and the determination is made at a higher speed.
 第2干渉領域53の幅は、広すぎると実際には干渉しないのに干渉すると誤判定する確率が増大する。第2干渉領域の幅は、好ましくは、図6の円C1の直径以下である。一方、第2干渉領域の幅が狭すぎると、実施には干渉するのに干渉しないと誤判定する確率が(特願2017―221045号参照)増大する。第2干渉領域の幅は、好ましくは、図6の円C2の直径以上である。 If the width of the second interference region 53 is too wide, the probability of misjudgment that interference does not actually occur increases. The width of the second interference region is preferably equal to or smaller than the diameter of the circle C1 in FIG. On the other hand, if the width of the second interference region is too narrow, the probability of misjudgment that it interferes with the implementation but does not interfere increases (see Japanese Patent Application No. 2017-221405). The width of the second interference region is preferably equal to or larger than the diameter of the circle C2 in FIG.
 第2干渉領域53は、好ましくは、電線W1との交角が最大となるように設定される。ロボットハンド22が電線W1に接近する際に、把持部23、23がそのような平面内を進むことが多いからである。 The second interference region 53 is preferably set so that the intersection angle with the electric wire W1 is maximized. This is because, when the robot hand 22 approaches the electric wire W1, the gripping portions 23 and 23 often travel in such a plane.
 第2判定工程S63は、第1判定工程S61と同様に、対象とする他の電線W2上の線分Lと第2干渉領域53との交差判定によって行なうことができる。 2nd determination process S63 can be performed by the intersection determination of the line segment L on the other electric wire W2 made into object, and the 2nd interference area | region 53 similarly to 1st determination process S61.
 第2拡張干渉領域54に対する第2予備判定工程(S64)は、第2判定に先だって実施され、ロボットハンド22と他の電線W2、電線W3が干渉しない場合を、より高速な計算で発見するために行なう。 The second preliminary determination step (S64) for the second extended interference area 54 is performed prior to the second determination, and the case where the robot hand 22 does not interfere with the other electric wires W2 and W3 is found by faster calculation. To do.
 第2拡張干渉領域54は第2干渉領域53を内包する空間領域である。第2拡張干渉領域の形状や大きさは特に限定されないが、好ましくは、第2干渉領域を内包し、すべての辺が座標系のいずれかの軸に平行な6面体のうち最小のものを第2拡張干渉領域として設定する。座標系が直交座標系の場合は、この6面体は直方体である。これにより、座標の大小比較を行なうだけで、第2予備判定が実施できる。 The second extended interference area 54 is a spatial area that includes the second interference area 53. The shape and size of the second extended interference region are not particularly limited, but preferably the smallest one of the hexahedrons including the second interference region and having all sides parallel to any axis of the coordinate system is the second. 2 Set as an extended interference area. When the coordinate system is an orthogonal coordinate system, the hexahedron is a rectangular parallelepiped. Thereby, the second preliminary determination can be performed only by comparing the size of the coordinates.
 第2拡張干渉領域54が第2干渉領域53を内包するので、第2予備判定によってハンドと他の線状物が干渉しないとの結果が得られた場合は、第2判定を省略できる。 Since the second extended interference region 54 includes the second interference region 53, the second determination can be omitted when the second preliminary determination shows that the hand and other linear objects do not interfere with each other.
 判定の対象とする線分Lを電線W2の長さ方向にずらしながら上記判定工程S61~S64を繰り返して、他の電線W2との干渉判定が完了したら、次の他の電線W3について同じ処理を行なう。 The above determination steps S61 to S64 are repeated while shifting the line segment L to be determined in the length direction of the electric wire W2, and when the interference determination with the other electric wire W2 is completed, the same processing is performed for the next other electric wire W3. Do.
 すべての他の電線W2、W3が干渉領域51~54に含まれないと判定された場合は、制御装置32は電線W1の把持位置をロボットハンド22で把持する際に他の線状物の干渉がないと判定する。その後、電線W1を目標線状物として、その把持位置をロボット20に通知する。 When it is determined that all the other electric wires W2 and W3 are not included in the interference areas 51 to 54, the control device 32 interferes with other linear objects when the robot hand 22 holds the holding position of the electric wire W1. Judge that there is no. Then, the electric wire W1 is set as the target linear object, and the grip position is notified to the robot 20.
 いずれかの第1判定または第2判定で線分Lが第1干渉領域または第2干渉領域に含まれると判定された場合は、制御装置32は電線W1の把持位置をロボットハンド22で把持する際に他の線状物の干渉があると判定する。以後の判定工程を省略して工程S22に戻り、注目線状物を変えて同じ処理を繰り返す。制御装置32が自律的に次の注目線状物を選択する場合は、たとえば、先に3次元カメラ31から取得した電線W1~W3の3次元形状に基づいて、次に高い位置にある線状物を注目線状物として選択することができる。 When it is determined by any of the first determination or the second determination that the line segment L is included in the first interference region or the second interference region, the control device 32 grips the gripping position of the electric wire W1 with the robot hand 22. It is determined that there is interference from other linear objects. The subsequent determination process is omitted, and the process returns to step S22, and the same processing is repeated while changing the target linear object. When the control device 32 autonomously selects the next linear object of interest, for example, based on the three-dimensional shape of the electric wires W1 to W3 previously obtained from the three-dimensional camera 31, the linear object at the next higher position is used. An object can be selected as a noticeable linear object.
 何れの線状物に注目しても他の線状物と「干渉あり」と判定された場合は、線状物全体を回転させて向きを変えたり、線状物を振ったり振動させたりして線状物同士の位置関係を変化させてから、再度各工程を実施してもよい。各注目線状物の把持位置から最も近い他の線状物までの距離を干渉距離として計算しておき、干渉距離の長い線状物から把持するようにしてもよい。これにより、把持が成功しやすい順番で把持動作を実行するようロボットに指示することができる。干渉距離は、干渉判定における第1干渉領域または第2干渉領域と他の線状物との交点から把持位置までの距離を用いることで簡易に計算することができる。 If it is determined that there is interference with any other linear object regardless of which linear object, the entire linear object is rotated to change its orientation, or the linear object is shaken or vibrated. Then, each step may be performed again after changing the positional relationship between the linear objects. The distance from the gripping position of each target linear object to the nearest other linear object may be calculated as the interference distance, and the linear object having a long interference distance may be gripped. As a result, it is possible to instruct the robot to execute the gripping operation in the order in which gripping is likely to succeed. The interference distance can be easily calculated by using the distance from the intersection between the first interference region or the second interference region and another linear object in the interference determination to the gripping position.
 以上のとおり、本関連技術の線状物把持方法によれば、線状物と他の線状物が干渉するか否かの判定結果に基づいて把持動作を実行するので、複数の線状物から1本の線状物を(特願2017―221045号参照)選んでロボットハンド22で把持することが可能となる。 As described above, according to the linear object gripping method of the related technology, since the gripping operation is executed based on the determination result of whether or not the linear object and other linear objects interfere, a plurality of linear objects Thus, it is possible to select one linear object (see Japanese Patent Application No. 2017-221405) and grip it with the robot hand 22.
 ロボットハンド22の他の線状物との干渉の有無は、ロボットハンド22側のCADデータと線状物の3次元形状データを用いて、多面体との交差の有無を計算することによって実施してもよい。しかしこの方法は判定の正確さにおいて優れるが、時間のかかる処理である。 The presence or absence of interference with other linear objects of the robot hand 22 is implemented by calculating the presence or absence of intersection with the polyhedron using the CAD data on the robot hand 22 side and the three-dimensional shape data of the linear object. Also good. However, this method is excellent in accuracy of determination, but is a time-consuming process.
 この関連技術では、注目線状物以外の線状物が第1干渉領域内に存在するか否かを、平面状の第1干渉領域と線状物との交差判定によって判定できるので、計算量が少なく、干渉の有無を高速に判定できる。第1干渉領域内に注目線状物以外の線状物が存在しない場合は、ロボットハンド22が他の線状物と干渉しないで注目線状物を把持できる蓋然性が高い。第2干渉領域についても同様である。 In this related technique, whether or not a linear object other than the target linear object exists in the first interference region can be determined by the intersection determination between the planar first interference region and the linear object. And the presence or absence of interference can be determined at high speed. When there is no linear object other than the target linear object in the first interference region, there is a high probability that the robot hand 22 can grip the target linear object without interfering with other linear objects. The same applies to the second interference region.
 各判定工程を実施する順番は、第1予備判定を第1判定に先立って行ない、第2予備判定を第2判定に先立って行なう以外は、特に限定されない。上記実施形態では、第2判定工程を先に、第1判定工程を後で実施したが、この順番を逆にしてもよい。上記関連技術では、線分Lを線状物の長さ方向にずらしながら、1つの線分毎にすべての判定工程を実施したが、ある線状物について一つの判定工程(たとえば第2予備判定工程)を終えてから、改めて同じ線状物について他の判定工程(たとえば第2判定工程)を実施してもよい。 The order of performing each determination step is not particularly limited, except that the first preliminary determination is performed prior to the first determination and the second preliminary determination is performed prior to the second determination. In the said embodiment, although the 1st determination process was implemented after the 2nd determination process first, you may reverse this order. In the related technology, all determination processes are performed for each line segment while shifting the line segment L in the length direction of the linear object. However, one determination process (for example, the second preliminary determination) is performed for a certain linear object. After completing the step, another determination step (for example, a second determination step) may be performed on the same linear object.
 上記関連技術では、ロボットハンド22の待機位置取得(S24)に先立って注目線状物を選択したが(S22)、先にロボットハンド22の待機位置を取得し、その待機位置に基づいて注目線状物を選択してもよい。その場合は、注目線状物として最も待機位置側にある線状物を選択できる。最も待機位置側にある線状物として、待機位置の座標と当該線状物の把持位置の座標との距離が最も短い線状物を選択してもよい。これにより、把持する際に他の線状物と干渉する可能性の低い線状物を優先的に選択できる点で好ましい。 In the related technology, the attention linear object is selected prior to the acquisition of the standby position of the robot hand 22 (S24) (S22), but the standby position of the robot hand 22 is acquired first, and the attention line is based on the standby position. A shape may be selected. In this case, the linear object that is closest to the standby position can be selected as the target linear object. As the linear object closest to the standby position, a linear object having the shortest distance between the coordinates of the standby position and the coordinates of the gripping position of the linear object may be selected. This is preferable in that a linear object that is unlikely to interfere with other linear objects can be preferentially selected when gripped.
 ロボットハンド22が線状物を把持する際の姿勢(把持姿勢)は、把持部と線状物が略直角をなすように把持することが好ましい。把持部に対して把持位置から先端側の線状物の向きが略垂直であれば、把持した後に加工機等に挿入する際もロボットの制御が容易になるからである。好ましくは、待機位置において、把持した際に把持部と線状物とが直角をなす向きになるように、ロボットハンド22の姿勢を調整する。その後、ロボットハンド22は、待機位置から把持位置に向かって第2干渉領域に沿って移動する。これにより、ロボットハンド22の姿勢、ロボットハンド22の移動方向、ならびに第1および第2干渉領域の平面の向きが一致するため、高精度な干渉判定が可能となる。 The posture (gripping posture) when the robot hand 22 grips the linear object is preferably gripped so that the grip portion and the linear object are substantially perpendicular. This is because if the orientation of the linear object from the gripping position to the gripping portion is substantially perpendicular to the gripping part, the robot can be easily controlled even when it is inserted into a processing machine after gripping. Preferably, at the standby position, the posture of the robot hand 22 is adjusted so that the gripping portion and the linear object are oriented at right angles when gripped. Thereafter, the robot hand 22 moves along the second interference region from the standby position toward the gripping position. Thereby, since the posture of the robot hand 22, the moving direction of the robot hand 22, and the orientation of the planes of the first and second interference areas coincide, it is possible to perform highly accurate interference determination.
 本実施の形態によって線状物を把持したロボットハンド22が当該線状物を種々の製造装置・加工装置まで搬送してもよい。たとえば、把持した電線の先端をロボットハンド22によって移動させ、被膜剥き加工機や端子圧着装置等に挿入してもよい。電線の先端をコネクタ等の各種部品に挿入しワイヤーハーネスを製造する工程に用いてもよい。 The robot hand 22 that holds the linear object according to the present embodiment may convey the linear object to various manufacturing apparatuses and processing apparatuses. For example, the tip of the gripped electric wire may be moved by the robot hand 22 and inserted into a film peeling machine or a terminal crimping device. You may use for the process of inserting the front-end | tip of an electric wire into various components, such as a connector, and manufacturing a wire harness.
 (実施の形態:把持制御装置および線状物把持装置)
 上記のように説明した、ロボットハンド22の把持部23を用いて、当該線状物を把持する場合について検討する。具体的には、この実施の形態では、ロボットハンド22の把持部23による線状物の把持姿勢および把持位置を制御する装置を把持制御装置40と呼ぶ。
(Embodiment: gripping control device and linear object gripping device)
Consider the case where the linear object is gripped using the gripping portion 23 of the robot hand 22 described above. Specifically, in this embodiment, a device that controls the gripping posture and gripping position of the linear object by the gripping portion 23 of the robot hand 22 is referred to as a gripping control device 40.
 再び、図1を参照して、把持制御装置40は、ワイヤーハーネスWの3次元形状を取得する3次元カメラ31と、3次元形状に基づいて第1把持位置H1を認識し、以下に説明する所定の方法で第2把持位置H2を計算し、第1把持位置H1および第2把持位置H2をロボット20に通知する処理部と、を有する。この処理部は、制御装置32に含まれていてもよいし、別途の装置として構成してもよい。本実施の形態では、制御装置32に処理部が含まれている。 Referring to FIG. 1 again, the grip control device 40 recognizes the first grip position H1 based on the three-dimensional camera 31 that acquires the three-dimensional shape of the wire harness W and the three-dimensional shape, and will be described below. A processing unit that calculates the second gripping position H2 by a predetermined method and notifies the robot 20 of the first gripping position H1 and the second gripping position H2. This processing unit may be included in the control device 32 or may be configured as a separate device. In the present embodiment, the control device 32 includes a processing unit.
 処理部は、線状物W1の3次元形状を取得する3次元カメラ31から線状物(ワイヤーハーネスW)の3次元形状を取得し、この3次元形状から線状物の先端の位置を取得し、線状物の先端の位置に基づき、把持姿勢および把持位置の情報をロボットハンド22を有するロボット20に通知することを想定している。 The processing unit acquires the three-dimensional shape of the linear object (wire harness W) from the three-dimensional camera 31 that acquires the three-dimensional shape of the linear object W1, and acquires the position of the tip of the linear object from the three-dimensional shape. It is assumed that the robot 20 having the robot hand 22 is notified of the gripping posture and the gripping position information based on the position of the tip of the linear object.
 図1に示した全体システム10においては、ロボットハンド22を有するロボット20、3次元カメラ31、および、制御装置32を有する構成としている。この制御装置32は、ロボット20および3次元カメラ31から独立した制御装置、ロボット20が備える制御装置、および、3次元カメラ31が備える制御装置のいずれであってもよい。 1 is configured to include a robot 20 having a robot hand 22, a three-dimensional camera 31, and a control device 32. The control device 32 may be any of a control device independent of the robot 20 and the three-dimensional camera 31, a control device provided in the robot 20, and a control device provided in the three-dimensional camera 31.
 本実施の形態は、1本のロボットアーム21で線状物を2か所把持してハンドリングできる機構となっているため、2本のロボットアームを用いて線状物を2か所把持する機構に比べて、各段に省コストかつ省スペースで正確な搬送を実現できる。図1においては、3次元カメラ31を2台記載しているが、3次元カメラ31は線状物(ワイヤーハーネスW)の形状を取得できればよく、1台であっても複数台であってもよい。 In the present embodiment, since a single robot arm 21 can grip and handle two linear objects, a mechanism that uses two robot arms to grip two linear objects. Compared to the above, it is possible to realize accurate transportation at each stage with cost saving and space saving. In FIG. 1, two three-dimensional cameras 31 are described, but it is sufficient that the three-dimensional camera 31 can acquire the shape of a linear object (wire harness W). Good.
 上記のようにして線状物の把持位置の判定を行なった後に、ロボットハンド22の把持部23を用いて、当該線状物を把持する場合に、線状物の先端近傍付近を1箇所把持することが考えられる。しかし、線状物は比較的その剛性が低い場合が多いため、線状物を把持部23を用いて一箇所のみ把持したのでは、その把持部23から先端側は不安定となる場合がある。このような場合、線状物を把持して所定の加工孔に挿入しようと移動させても、先端側が不安定になっているため、挿入できないことが懸念される。 After determining the gripping position of the linear object as described above, when gripping the linear object using the grip portion 23 of the robot hand 22, the vicinity of the tip of the linear object is gripped at one place. It is possible to do. However, since the linear object has a relatively low rigidity in many cases, if the linear object is gripped only at one place using the grip part 23, the tip side from the grip part 23 may become unstable. . In such a case, there is a concern that even if the linear object is gripped and moved so as to be inserted into a predetermined processing hole, the tip end side is unstable, so that it cannot be inserted.
 さらに、把持部23で把持した線状物の先端側とは反対側(後端側)には線状物が連続して繋がっている場合がある。この場合には、後端側の線状物の重量がロボットハンドの把持部23に加わることで、把持部23による線状物の把持が不安定になることが懸念される。 Furthermore, the linear object may be continuously connected to the opposite side (rear end side) of the linear object gripped by the grip part 23. In this case, there is a concern that the weight of the linear object on the rear end side is added to the grip part 23 of the robot hand, so that the grip of the linear object by the grip part 23 becomes unstable.
 線状物を把持して所定位置まで移動させる場合、線状物がたわむことによって、移動中に他の部品や障害物に線状物が接触してしまうことが懸念される。ロボットが線状物を把持して所定のケースに収納する場合、把持している最中に線状物の形状が想定外の形状になると、所定のケースに線状物を収納できないことがある。 When gripping and moving a linear object to a predetermined position, there is a concern that the linear object may come into contact with other parts or obstacles during the movement due to the deflection of the linear object. When the robot grips a linear object and stores it in a predetermined case, the linear object may not be stored in the predetermined case if the shape of the linear object becomes an unexpected shape during the gripping. .
 そこで、本実施の形態では、安定的に線状物を把持し移動することが可能なように、線状物を二カ所把持することが可能な構成を備える把持制御装置および線状物把持装置について、以下説明する。 Therefore, in the present embodiment, a grip control device and a linear object gripping device having a configuration capable of gripping the linear object in two places so that the linear object can be gripped and moved stably. Will be described below.
 図9および図10を参照して、本実施の形態の線状物把持装置220について説明する。上記したロボットハンド22は、線状物把持装置220を含んでいる。図9は、線状物の把持位置を示す模式図、図10は、線状物把持装置220の構成を示す概略図である。 9 and 10, the linear object gripping apparatus 220 according to the present embodiment will be described. The robot hand 22 described above includes a linear object gripping device 220. FIG. 9 is a schematic diagram showing the gripping position of the linear object, and FIG. 10 is a schematic diagram showing the configuration of the linear object gripping device 220.
 図9を参照して、本実施の形態に用いる線状物は、電線W1、電線W2、電線W3が束ねられたワイヤーハーネスWを用いる。電線W1、電線W2、電線W3は、ワイヤーハーネスWの被覆束部W10の先端部分から被覆が取り除かれて露出した状態(露出細線部)となっている。 Referring to FIG. 9, the wire harness W in which the electric wire W1, the electric wire W2, and the electric wire W3 are bundled is used as the linear object used in the present embodiment. The electric wire W1, the electric wire W2, and the electric wire W3 are in an exposed state (exposed thin wire portion) after the coating is removed from the distal end portion of the covering bundle portion W10 of the wire harness W.
 本実施の形態では、電線W1の先端を所定の位置に搬送することを想定している。線状物把持装置220は、電線W1の先端側から所定距離L1の位置にある露出細線部の位置(第1把持位置H1)と、第1把持位置H1よりもワイヤーハーネスWの先端側から遠い位置にあるL1+L2の位置(第2把持位置H2)の被覆束部W10とを、把持する。 In the present embodiment, it is assumed that the tip of the electric wire W1 is transported to a predetermined position. The linear object gripping device 220 is farther from the distal end side of the wire harness W than the position of the exposed thin wire portion (first gripping position H1) at a predetermined distance L1 from the distal end side of the electric wire W1 and the first gripping position H1. The covering bundle portion W10 at the position L1 + L2 (second holding position H2) is held.
 いずれの電線を選択するか、また、選択された電線W1の第1把持位置H1は、上述の把持位置の判定工程を採用することにより決定される。被覆束部W10の第2把持位置H2については、後述の決定方法または計算方法によって決まる位置となる。本実施の形態では、第1把持位置H1として、電線W1の先端からの距離L1は、約10mmに設定した。第1把持位置H1と第2把持位置H2との距離L2は、約100mmに設定した。距離L1および距離L2は、線状物の種類、重量等に応じて適宜最適な距離に設定することができる。 Which electric wire is selected and the first holding position H1 of the selected electric wire W1 are determined by adopting the above-described holding position determination step. About the 2nd holding position H2 of the covering bundle part W10, it becomes a position decided by the below-mentioned determination method or calculation method. In the present embodiment, the distance L1 from the tip of the electric wire W1 is set to about 10 mm as the first gripping position H1. The distance L2 between the first grip position H1 and the second grip position H2 was set to about 100 mm. The distance L1 and the distance L2 can be appropriately set to optimum distances according to the type, weight, etc. of the linear object.
 図10を参照して、線状物把持装置220は、電線W1の第1把持位置H1を把持する第1把持装置22AおよびワイヤーハーネスWの第2把持位置H2を把持する第2把持装置22Bを含む。第1把持装置22Aおよび第2把持装置22Bは、ブリッジ部材25により一体となるように連結されている。さらに、ブリッジ部材25には、ロボットアーム21の先端側に連結された連結部材26が取り付けられている。 Referring to FIG. 10, the linear object gripping device 220 includes a first gripping device 22A that grips the first gripping position H1 of the electric wire W1 and a second gripping device 22B that grips the second gripping position H2 of the wire harness W. Including. The first gripping device 22A and the second gripping device 22B are connected by a bridge member 25 so as to be integrated. Further, a connecting member 26 connected to the distal end side of the robot arm 21 is attached to the bridge member 25.
 第1把持装置22Aは、第1本体装置24Aを有する。第1本体装置24Aの先端部分には、電線W1の第1把持位置H1を把持する一対のグリップハンド23a,23aが設けられている。 The first gripping device 22A has a first main body device 24A. A pair of grip hands 23a and 23a for gripping the first gripping position H1 of the electric wire W1 are provided at the distal end portion of the first main body device 24A.
 一対のグリップハンド23a,23aは、第1本体装置24Aの内部に設けられたアクチュエータ(図示省略)により、図中の矢印P方向に開閉可能に設けられている。グリップハンド23a,23aの開閉動作は、上述の制御装置32において制御される。 The pair of grip hands 23a, 23a are provided so as to be opened and closed in the direction of arrow P in the drawing by an actuator (not shown) provided in the first main body device 24A. The opening / closing operation of the grip hands 23a, 23a is controlled by the control device 32 described above.
 一対のグリップハンド23a,23aは、平板状の部材が用いられている。これにより、比較的細い線径の電線W1であっても安定的に把持することができる。 A flat plate member is used for the pair of grip hands 23a and 23a. Thereby, even the electric wire W1 having a relatively thin wire diameter can be stably held.
 第2把持装置22Bも、第1把持装置22Aと同様に、第2本体装置24Bを有する。第2本体装置24Bの先端部分には、被覆束部W10の第2把持位置H2を把持する一対のグリップハンド23b,23bが設けられている。 Similarly to the first gripping device 22A, the second gripping device 22B also has a second main body device 24B. A pair of grip hands 23b and 23b for gripping the second gripping position H2 of the covering bundle portion W10 are provided at the distal end portion of the second main body device 24B.
 一対のグリップハンド23b,23bは、第2本体装置24Bの内部に設けられたアクチュエータ(図示省略)により、図中の矢印P方向に開閉可能に設けられている。一対のグリップハンド23b,23bの開閉動作は、上述の制御装置32において制御される。 The pair of grip hands 23b, 23b is provided so as to be opened and closed in the direction of arrow P in the drawing by an actuator (not shown) provided inside the second main body device 24B. The opening / closing operation of the pair of grip hands 23b, 23b is controlled by the control device 32 described above.
 図10中において、ワイヤーハーネスWの延びる方向をX方向とすると、第1把持装置22Aおよび第2把持装置22Bが位置する方向は、X方向に対して直交するZ方向となる。つまり、ワイヤーハーネスの把持姿勢は、第1把持位置および第2把持位置において、ワイヤーハーネスと把持部であるグリップハンド23a,23aおよび23b,23bとが直交する姿勢となる。一対のグリップハンド23a,23aおよび一対のグリップハンド23b,23bが開閉する図中の矢印P方向は、X方向およびZ方向の両方に直交するY方向となる。ここで、直交とは厳密な意味での90度でなくても、以下に示す本実施の形態の効果が得られる範囲での多少の誤差を含むものとする。 10, when the direction in which the wire harness W extends is the X direction, the direction in which the first gripping device 22A and the second gripping device 22B are located is the Z direction orthogonal to the X direction. That is, the gripping posture of the wire harness is a posture in which the wire harness and the grip hands 23a, 23a and 23b, 23b that are gripping portions are orthogonal to each other at the first gripping position and the second gripping position. The arrow P direction in the figure where the pair of grip hands 23a, 23a and the pair of grip hands 23b, 23b open and close is the Y direction orthogonal to both the X direction and the Z direction. Here, even if the orthogonal is not 90 degrees in a strict sense, it includes some errors within a range where the effects of the present embodiment shown below can be obtained.
 一対のグリップハンド23b,23bは、平板状の部材が用いられている。これにより、比較的細い線径の電線W1であっても安定的に把持することができる。 A flat plate member is used for the pair of grip hands 23b and 23b. Thereby, even the electric wire W1 having a relatively thin wire diameter can be stably held.
 以上、本実施の形態における線状物把持装置220によれば、電線W1の第1把持位置H1を第1把持装置22Aにより把持し、被覆束部W10を第2把持装置22Bにより把持している。これにより、線状物把持装置220は、ワイヤーハーネスWを2カ所保持することとなる。その結果、ワイヤーハーネスWを安定的に保持し、ロボットハンド22を用いて、電線W1の先端部を所定の位置に正確に搬送することができる。 As described above, according to the linear object gripping device 220 in the present embodiment, the first gripping position H1 of the electric wire W1 is gripped by the first gripping device 22A, and the covering bundle portion W10 is gripped by the second gripping device 22B. . Thereby, the linear object holding | gripping apparatus 220 will hold | maintain the wire harness W at two places. As a result, the wire harness W can be stably held and the tip of the electric wire W1 can be accurately conveyed to a predetermined position using the robot hand 22.
 第2把持位置H2は、第1把持位置H1から所定距離離れた位置に第2把持装置22Bを設けることで決定されているがこの決定方法には限定されない。たとえば、他のロボットアームがすでに線状物を掴んでいた場合(他のロボットアームからワイヤーハーネスを受け取るような場合)、当該他のロボットアームの掴んでいる位置情報から第2把持位置H2を決定してもよい。 The second gripping position H2 is determined by providing the second gripping device 22B at a predetermined distance from the first gripping position H1, but is not limited to this determination method. For example, when another robot arm has already grasped a linear object (when receiving a wire harness from another robot arm), the second grasping position H2 is determined from position information grasped by the other robot arm. May be.
 さらに、第2把持位置H2は、ワイヤーハーネスWの3次元形状、線状物把持装置220の形状および線状物把持装置220の可動域のうち少なくとも1つに基づいて計算されるとよい。線状物把持装置220の可動域に基づいて決定されるとは、第2把持位置H2が、ロボット20および線状物把持装置220の稼働範囲内であるか否かを判定する可動領域判定を行なう。判定結果が可動領域外であった場合、別の把持位置を第2把持位置として、再判定してもよいし、ワイヤーハーネスWの姿勢を変える情報(回転、移動など)をロボット20に通知してもよい。 Furthermore, the second gripping position H2 may be calculated based on at least one of the three-dimensional shape of the wire harness W, the shape of the linear object gripping device 220, and the movable range of the linear object gripping device 220. The determination based on the movable range of the linear object gripping device 220 means that a movable region determination is made to determine whether or not the second gripping position H2 is within the operating range of the robot 20 and the linear object gripping device 220. Do. If the determination result is out of the movable region, another determination may be made with the second gripping position as the second gripping position, and information (rotation, movement, etc.) for changing the posture of the wire harness W is notified to the robot 20. May be.
 把持対象の線状物としては、ワイヤーハーネスWに限定されない。電線、はんだ、紐、糸、繊維、ガラス繊維、光ファイバ、チューブ、乾麺等が挙げられる。 The linear object to be grasped is not limited to the wire harness W. Examples thereof include electric wires, solder, strings, threads, fibers, glass fibers, optical fibers, tubes, and dry noodles.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10 全体システム、20 ロボット、21 ロボットアーム、22 ロボットハンド、31 3次元カメラ(ステレオカメラ)、32 制御装置、40 把持制御装置、51 第1干渉領域、52 第1拡張干渉領域、53 第2干渉領域、54 第2拡張干渉領域。22A 第1把持装置、22B 第2把持装置、23 把持部、23a,23b グリップハンド、24A 第1本体装置、24B 第2本体装置、25 ブリッジ部材、26 連結部材、220 線状物把持装置、H1 第1把持位置、H2 第2把持位置。 10 overall system, 20 robot, 21 robot arm, 22 robot hand, 31 3D camera (stereo camera), 32 control device, 40 grip control device, 51 first interference area, 52 first extended interference area, 53 second interference Area, 54 second extended interference area. 22A first gripping device, 22B second gripping device, 23 gripping part, 23a, 23b grip hand, 24A first main body device, 24B second main body device, 25 bridge member, 26 connecting member, 220 linear object gripping device, H1 1st holding position, H2 2nd holding position.

Claims (6)

  1.  線状物を把持可能な線状物把持装置を備えたロボットに対して前記線状物の把持情報を前記ロボットに通知する把持制御装置であって、
     前記線状物の3次元形状を取得する3次元カメラと、
     前記3次元形状に基づいて第1把持位置を認識し、所定の方法で第2把持位置を計算し、前記第1把持位置および前記第2把持位置を前記ロボットに通知する処理部と、
    を有する把持制御装置。
    A gripping control device for notifying the robot of gripping information of the linear object to a robot having a linear object gripping device capable of gripping the linear object,
    A three-dimensional camera for acquiring a three-dimensional shape of the linear object;
    A processing unit that recognizes a first gripping position based on the three-dimensional shape, calculates a second gripping position by a predetermined method, and notifies the robot of the first gripping position and the second gripping position;
    A gripping control device.
  2.  前記第2把持位置は、前記3次元形状、前記線状物把持装置の形状および前記線状物把持装置の可動域のうち少なくとも1つに基づいて計算される、
    請求項1に記載の把持制御装置。
    The second gripping position is calculated based on at least one of the three-dimensional shape, the shape of the linear object gripping device, and the movable range of the linear object gripping device.
    The grip control device according to claim 1.
  3.  前記処理部は、前記線状物把持装置が前記第1把持位置および前記第2把持位置を把持する際の把持姿勢もさらに通知する、
    請求項1または2のいずれか1項に記載の把持制御装置。
    The processing unit further notifies a gripping posture when the linear object gripping device grips the first gripping position and the second gripping position.
    The holding | grip control apparatus of any one of Claim 1 or 2.
  4.  前記把持姿勢は、前記第1把持位置において前記線状物と前記線状物把持装置の把持部とが直交する姿勢である、
    請求項3に記載の把持制御装置。
    The gripping posture is a posture in which the linear object and the gripping part of the linear object gripping device are orthogonal to each other at the first gripping position.
    The grip control apparatus according to claim 3.
  5.  前記線状物は、複数の細線が被覆材で覆われた多芯線であるとともに、複数の前記細線が露出した露出細線部と、被覆材により覆われた被覆束部とを含み、
     前記第1把持位置は、前記露出細線部に位置し、
     前記第2把持位置は、前記被覆束部に位置する、請求項1から請求項4のいずれか1項に記載の把持制御装置。
    The linear object is a multi-core wire in which a plurality of fine wires are covered with a covering material, and includes an exposed fine wire portion in which the plurality of fine wires are exposed, and a covering bundle portion covered with a covering material,
    The first grip position is located in the exposed thin line portion,
    The grip control device according to any one of claims 1 to 4, wherein the second grip position is located in the covering bundle portion.
  6.  前記ロボットは1台の多関節ロボットであり、
     前記処理部は、前記多関節ロボットに設けたロボットハンドで把持可能な前記第1把持位置および前記第2把持位置を前記多関節ロボットに通知する、
    請求項1から請求項5のいずれか1項に記載の把持制御装置。
    The robot is an articulated robot,
    The processing unit notifies the articulated robot of the first gripping position and the second gripping position that can be gripped by a robot hand provided in the articulated robot.
    The grip control device according to any one of claims 1 to 5.
PCT/JP2019/009719 2018-03-28 2019-03-11 Grip control device WO2019188196A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020509819A JP7140826B2 (en) 2018-03-28 2019-03-11 Grip control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018061890 2018-03-28
JP2018-061890 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019188196A1 true WO2019188196A1 (en) 2019-10-03

Family

ID=68061561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009719 WO2019188196A1 (en) 2018-03-28 2019-03-11 Grip control device

Country Status (3)

Country Link
JP (1) JP7140826B2 (en)
TW (1) TW201945144A (en)
WO (1) WO2019188196A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021096591A (en) * 2019-12-16 2021-06-24 倉敷紡績株式会社 Connector classification method, method of gripping cable with connector, connector classification camera

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07500212A (en) * 1991-06-21 1995-01-05 レンタープライズ インダストリエル Wire gripper and method and device for producing a wire bundle using the gripper
JP2012115915A (en) * 2010-11-29 2012-06-21 Fanuc Ltd Method of taking out workpiece
JP2012200805A (en) * 2011-03-24 2012-10-22 Canon Inc Robot control device, robot control method, program, and recording medium
JP2014176917A (en) * 2013-03-14 2014-09-25 Yaskawa Electric Corp Robot device
WO2016158339A1 (en) * 2015-03-31 2016-10-06 株式会社オートネットワーク技術研究所 Method of manufacturing wire harness, and connector retaining portion support device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681382B2 (en) * 1986-02-05 1994-10-12 住友電気工業株式会社 Positioning method for robots for distribution work
JP2003094361A (en) * 2001-09-21 2003-04-03 Kurimoto Kasei Kogyo Kk Attitude positioning method and its device for bend pipe
JP4535942B2 (en) * 2005-06-15 2010-09-01 トヨタ自動車株式会社 Robot hand
JP5293039B2 (en) * 2008-09-19 2013-09-18 株式会社安川電機 Robot system and robot control method
JP2018014262A (en) * 2016-07-21 2018-01-25 株式会社オートネットワーク技術研究所 Method for producing wire harness, and device for electric wire terminal working

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07500212A (en) * 1991-06-21 1995-01-05 レンタープライズ インダストリエル Wire gripper and method and device for producing a wire bundle using the gripper
JP2012115915A (en) * 2010-11-29 2012-06-21 Fanuc Ltd Method of taking out workpiece
JP2012200805A (en) * 2011-03-24 2012-10-22 Canon Inc Robot control device, robot control method, program, and recording medium
JP2014176917A (en) * 2013-03-14 2014-09-25 Yaskawa Electric Corp Robot device
WO2016158339A1 (en) * 2015-03-31 2016-10-06 株式会社オートネットワーク技術研究所 Method of manufacturing wire harness, and connector retaining portion support device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021096591A (en) * 2019-12-16 2021-06-24 倉敷紡績株式会社 Connector classification method, method of gripping cable with connector, connector classification camera
JP7407584B2 (en) 2019-12-16 2024-01-04 倉敷紡績株式会社 Connector classification method, method for holding cables with connectors, and connector classification camera

Also Published As

Publication number Publication date
JPWO2019188196A1 (en) 2021-03-18
JP7140826B2 (en) 2022-09-21
TW201945144A (en) 2019-12-01

Similar Documents

Publication Publication Date Title
US10894324B2 (en) Information processing apparatus, measuring apparatus, system, interference determination method, and article manufacturing method
JP5685027B2 (en) Information processing apparatus, object gripping system, robot system, information processing method, object gripping method, and program
JP5778311B1 (en) Picking apparatus and picking method
US8948904B2 (en) Work picking system
Li et al. Autonomous continuum grasping
Park et al. Dual-arm coordinated-motion task specification and performance evaluation
WO2019188196A1 (en) Grip control device
JP7106571B2 (en) LINEAR OBJECT GRIP METHOD AND CONTROL DEVICE
Guilamo et al. Manipulability optimization for trajectory generation
JP7454132B2 (en) Robot system control device, robot system control method, computer control program, and robot system
JP4956964B2 (en) Robot hand gripping control device
WO2019163671A1 (en) Method for moving tip of linear object, control device, and three-dimensional camera
Zhang et al. Kuka youBot arm shortest path planning based on geodesics
JP7217109B2 (en) Belt-shaped object work position determination method, robot control method, belt-shaped object work position determination device, and belt-shaped object handling system
JP2017144501A (en) Machining robot device
Takizawa et al. Implementation of twisting skill to robot hands for manipulating linear deformable objects
JP7177639B2 (en) Three-dimensional measurement method for belt-shaped object and three-dimensional measurement device for belt-shaped object
CN108858162B (en) Position determination method and device for four-axis mechanical arm
JP2022150024A (en) Work-piece gripping method, robot controller and work-piece gripping system
EP3871842A1 (en) System and method for member articulation
WO2020050121A1 (en) Working position determining method for strip-shaped object, robot control method, working position determining device for strip-shaped object, strip-shaped object handling system, three-dimensional measuring method for strip-shaped object, and three-dimensional measuring device for strip-shaped object
WO2023100667A1 (en) Gripping device and gripping method
JP2023171034A (en) Information processor, robot system, information processing method, article manufacturing method, program, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509819

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19774467

Country of ref document: EP

Kind code of ref document: A1