WO2019188135A1 - End mill main body and end mill - Google Patents

End mill main body and end mill Download PDF

Info

Publication number
WO2019188135A1
WO2019188135A1 PCT/JP2019/009441 JP2019009441W WO2019188135A1 WO 2019188135 A1 WO2019188135 A1 WO 2019188135A1 JP 2019009441 W JP2019009441 W JP 2019009441W WO 2019188135 A1 WO2019188135 A1 WO 2019188135A1
Authority
WO
WIPO (PCT)
Prior art keywords
end mill
blade
corner
outer peripheral
mill body
Prior art date
Application number
PCT/JP2019/009441
Other languages
French (fr)
Japanese (ja)
Inventor
修介 北川
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP2019534989A priority Critical patent/JP7341058B2/en
Publication of WO2019188135A1 publication Critical patent/WO2019188135A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape

Definitions

  • This disclosure relates to an end mill body and an end mill.
  • An end mill made of cemented carbide is known in which a corner blade projecting outward is formed between the bottom blade and the outer peripheral blade.
  • a ceramic end mill made of a material such as silicon nitride has been developed (see Patent Document 1).
  • the strength of the outer peripheral blade may be insufficient. As a result, a defect may occur when the feed amount or cutting amount per blade is increased.
  • One aspect of the present disclosure preferably provides an end mill main body capable of cutting with high efficiency while suppressing defects.
  • One aspect of the present disclosure is a ceramic end mill body that constitutes a cutting edge portion of an end mill that is rotated around an axis.
  • the end mill body includes a chip discharge groove, an outer peripheral blade, a gash, a bottom blade, a bottom rake surface, a corner blade, a corner rake surface, and a chamfer surface.
  • the chip discharge groove is provided on the outer periphery of the front end portion so as to be twisted backward in the rotation direction from the front end side toward the rear end side.
  • An outer peripheral blade is provided in the outer peripheral side ridgeline of a chip discharge groove. The gasche reaches the chip discharge groove from the top of the tip.
  • the bottom blade is provided at the top of the tip.
  • the bottom rake face extends from the bottom blade toward the rear end side.
  • the corner blade is provided so as to protrude outward from the bottom blade to the outer peripheral blade.
  • the corner rake face is provided between the bottom rake face and the chip discharge groove so as to contact the corner blade.
  • the chamfer surface is provided at an edge portion of the outer peripheral edge where at least the chip discharge groove intersects with the flank face of the outer peripheral blade.
  • the strength of the outer peripheral blade can be improved by providing the chamfer surface.
  • high-efficiency cutting with a large feed amount and cutting amount per blade becomes possible while suppressing defects such as each blade and gash.
  • the radial rake angle ⁇ of the chamfer surface at the outer peripheral edge line portion may be ⁇ 30 ° to ⁇ 15 °. According to such a configuration, it is possible to achieve both the strength of the outer peripheral blade and the machinability.
  • the difference ( ⁇ ) obtained by subtracting the radial rake angle ⁇ from the radial rake angle ⁇ of the chip discharge groove may be 10 ° or more and 30 ° or less. According to such a configuration, it is possible to improve the machinability of the outer peripheral blade and promote the reduction of the cutting resistance.
  • the chamfer surface may be provided on at least a part of a corner blade ridge line portion where a corner rake surface and a corner blade flank surface intersect.
  • the radial rake angle ⁇ of the chamfer surface at the corner edge line portion may be not less than ⁇ 30 ° and not more than ⁇ 15 °. According to such a configuration, high-efficiency cutting can be performed while more reliably suppressing defects such as blades and gashes.
  • the chamfer surface may not be provided on the bottom blade. According to such a structure, it can suppress that the cutting efficiency in a bottom blade reduces by a chamfer surface.
  • a corner having a radius of 0.5 mm or more and 2 mm or less may be attached to the corner portion that is the most spaced from the bottom blade in the gasche. According to such a structure, the defect
  • One aspect of the present disclosure can be suitably used as an end mill body constituting a cutting edge portion of a radius end mill.
  • Another aspect of the present disclosure is an end mill that includes the end mill body and a shank portion that is attached to a rear end portion of the end mill body and is configured to be fixed to a rotating shaft of a machine tool. According to such a configuration, it is possible to obtain an end mill capable of cutting with high efficiency while suppressing defects such as blades and gashes.
  • the shank portion may be made of ceramic.
  • the end mill main body and the shank portion may be integrally formed. According to such a configuration, the weight of the end mill can be reduced.
  • the end mill main body may have a connection portion configured such that the shank portion is detachably connected. According to such a configuration, it is possible to easily replace only the end mill body.
  • FIG. 3A is a schematic cross-sectional view taken along line IVA-IVA in FIG. 2
  • FIG. 4B is a schematic cross-sectional view partially enlarged from FIG. 4A
  • FIG. 5 is a schematic partial enlarged sectional view taken along line VV in FIG. 2. It is a typical side view which shows the end mill of embodiment different from FIG. It is a schematic diagram which shows the cutting state in the test in an Example.
  • the end mill 1 shown in FIG. 1 is a tool for cutting a metal member by being rotated around an axis O.
  • the end mill 1 is a radius end mill in which the top portion (that is, the bottom surface) of the cutting edge portion provided at the tip is planar and the corner of the cutting edge portion is rounded. That is, the end mill body 3 constitutes a cutting edge portion of a radius end mill.
  • the end mill 1 includes an end mill main body 3 and a shank portion 5.
  • the end mill 1 is fed in a direction perpendicular to the axis O while rotating in the direction K about the axis O by a machine tool (not shown) to which the shank portion 5 is attached. ).
  • the end mill main body 3 constitutes a cutting edge provided at the tip of the end mill 1.
  • the end mill body 3 is made of ceramic.
  • “made of ceramic” means that a material containing ceramic as a main component, that is, containing 50 volume% or more (preferably 90 volume% or more) of ceramic.
  • Examples of the ceramic constituting the end mill body 3 include silicon nitride, sialon, alumina, and zirconia.
  • the end mill body 3 includes a chip discharge groove 9, an outer peripheral blade 13, an outer peripheral rake surface 15, a gash 17, a bottom blade 21, a bottom rake surface 19, a corner blade 23, a corner rake surface 27, and a chamfer.
  • Surface 30 (see FIG. 2).
  • the chip discharge groove 9 is provided on the outer periphery of the front end portion 7 of the end mill body 3 so as to be twisted backward in the rotation direction from the front end side toward the rear end side.
  • the chip discharge groove 9 is a so-called blade groove or flute.
  • four strip discharge grooves 9 are provided at equal intervals in the circumferential direction.
  • the number of the chip discharge grooves 9 is not limited to four.
  • the outer peripheral blade 13 is provided on the outer peripheral side ridge line of the chip discharge groove 9. Specifically, the outer peripheral blade 13 is provided at the ridge line portion of the outer peripheral rake face 15 provided at the rear in the rotation direction of the chip discharge groove 9.
  • the outer peripheral blade 13 is provided so as to be twisted toward the rear side in the rotational direction of the end mill body 3 from the front end side toward the rear end side. Further, the flank 13 ⁇ / b> A of the outer peripheral blade is an outer peripheral surface of the end mill body 3 that continues to the rear in the rotation direction of the outer peripheral rake surface 15.
  • the gash 17 reaches the chip discharge groove 9 from the top portion (that is, the bottom blade 21) of the tip end portion 7. That is, the gash 17 connects the chip discharge groove 9 and the bottom blade 21.
  • the gash 17 is a region that is recessed toward the axis O from the chip discharge groove 9.
  • the corner (the upper right corner in FIG. 1) 17A farthest from the bottom blade 21 in the gash 17 is preferably provided with a roundness as shown in FIGS. 3A and 3B in order to avoid stress concentration.
  • the radius of the roundness is preferably 0.5 mm or more and 2 mm or less.
  • the corner portion 17A of the gasche 17 is preferably provided with a fillet portion having a minimum curvature of 0.5 mm or more.
  • roundness does not mean a complete curved surface shape.
  • the shape is formed by connecting a plurality of fine steps to the corner portion 17A, and has a function substantially equivalent to roundness. It is a concept that also includes
  • the bottom blade 21 is provided on the top portion (that is, the bottom surface) of the distal end portion 7.
  • the bottom blade 21 extends in the radial direction from the vicinity of the axis O.
  • the bottom rake face 19 extends in the direction from the bottom blade 21 toward the rear end side of the end mill body 3 (that is, the direction along the axis O).
  • the bottom rake face 19 faces the front of the end mill body 3 in the rotational direction.
  • the corner blade 23 is provided so as to protrude outward from the end mill body 3 from the bottom blade 21 to the outer peripheral blade 13.
  • the corner blade 23 has an arc shape.
  • a corner rake face 27 is provided between the bottom rake face 19 and the chip discharge groove 9 so as to be in contact with the corner blade 23.
  • the corner rake face 27 faces the front in the rotational direction of the end mill body 3.
  • the chamfer surface 30 is a concave curved surface provided at the outer peripheral edge ridge line portion 13 ⁇ / b> B where at least the chip discharge groove 9 and the flank 13 ⁇ / b> A of the outer peripheral edge 13 intersect.
  • the chamfer surface 30 may be a curved surface other than the concave curved surface or a flat surface. The chamfer surface 30 faces forward in the rotational direction.
  • the chamfer surface 30 is provided on the entire outer peripheral edge ridge line portion 13B and a part of the corner edge ridge line portion 23B where the corner rake surface 27 and the flank 23A of the corner blade 23 intersect. Yes. Further, the chamfer surface 30 is not provided on the bottom blade 21.
  • intersection point B, the intersection point A between the corner blade 23 and the bottom blade 21, and the chamfer surface on a virtual plane including the axis O and passing through the intersection point B between one corner blade 23 and one outer peripheral blade 13 30 is projected onto a region Q1 that is sandwiched between a straight line P that passes through the point C and the intersection point B, and a straight line P that passes through the point C and the intersection point B.
  • Surface 30 exists.
  • the chamfer surface 30 does not exist in the region Q2 sandwiched between the straight line P and the line segment AC passing through the point C and the intersection A.
  • the corner rake face 27 exists only in the region Q1, and does not exist in the region Q2.
  • the point C is an intersection of a straight line passing through the intersection A and parallel to the axis O and a straight line passing through the intersection B and perpendicular to the axis O in the virtual plane.
  • the corner blade 23 has an arc shape constituted by a part of a perfect circle, and therefore the point C coincides with the center of the corner blade 23.
  • the corner blade 23 may be a part of an ellipse or a curved arc shape.
  • the radial rake angle ⁇ of the chamfer surface 30 in the outer peripheral edge portion 13B is preferably ⁇ 30 ° to ⁇ 15 °, and more preferably ⁇ 30 ° to less than ⁇ 20 °. If the radial rake angle ⁇ is too small (that is, too large on the negative angle side), the machinability of the outer peripheral blade 13 may be reduced, and a large burr may occur during the cutting process. On the other hand, if the radial rake angle ⁇ is too large (that is, a negative angle or a positive angle close to zero), the outer peripheral blade 13 may be lost due to insufficient strength of the outer peripheral blade 13 under high-speed feeding or cutting conditions. There is.
  • the “radial rake angle ⁇ ” is defined by the chamfer surface 30 and the reference line D1 passing through the axis O and the outer peripheral edge 13 in the transverse section of the end mill body 3 (that is, the section orthogonal to the axis O). Among the angles, it is an acute angle.
  • the radial rake angle ⁇ of the chip discharge groove 9 is preferably -10 ° or more and 0 ° or less. If the radial rake angle ⁇ is too small (that is, too large on the negative angle side), the cutting performance of the outer peripheral blade 13 may be insufficient.
  • the “radial rake angle ⁇ ” is an angle formed by the reference line D1 and the outer peripheral rake face 15 in the rotational direction rearward of the chip discharge groove 9 adjacent to the chamfer surface 30 in the cross section of the end mill body 3. Among them, it is an acute angle.
  • the difference ( ⁇ ) obtained by subtracting the radial rake angle ⁇ of the chamfer surface 30 from the radial rake angle ⁇ of the chip discharge groove 9 is preferably 10 ° or more and 30 ° or less. If the difference ( ⁇ ) is too small, there is a possibility that the effect of coexistence of the strength of the outer peripheral blade 13 and the machinability by the chamfer surface 30 may be insufficient. On the contrary, if the difference ( ⁇ ) is too large, the cutting performance of the outer peripheral blade 13 may be insufficient.
  • the width W of the chamfer surface 30 in the outer peripheral edge ridge line portion 13B is preferably 0.02 mm or more and 0.2 mm or less. However, it is preferable to change the width W of the chamfer surface 30 according to cutting conditions (for example, the feed amount per blade).
  • the width W [mm] is preferably 1/2 or more and 2/3 or less of the feed amount [mm / t] per blade.
  • the width W is preferably 0.02 mm to 0.027 mm
  • the width W is 0.15 mm to 0.2 mm. The following is preferred.
  • the radial rake angle ⁇ of the chamfer surface 30 at the corner edge portion 23B shown in FIG. 5 is preferably ⁇ 30 ° or more and ⁇ 15 ° or less, and more preferably ⁇ 30 ° or more and less than ⁇ 20 °. If the radial rake angle ⁇ is too small (that is, too large on the negative angle side), the cutting performance of the corner blade 23 becomes insufficient. On the other hand, if the radial rake angle ⁇ is too large (that is, a negative angle or a positive angle close to zero), the strength of the corner blade 23 is insufficient and a defect may occur.
  • the “radial rake angle ⁇ ” passes through the axis O and the corner blade 23 in a section perpendicular to the corner blade 23 of the end mill body 3 (that is, a section perpendicular to the chamfer surface 30 in the corner edge portion 23B). Of the angles formed by the reference line D2 and the chamfer surface 30, this is an acute angle.
  • the radial rake angle ⁇ and the radial rake angle ⁇ may be the same angle or different angles.
  • width W of the chamfer surface 30 at the corner edge line portion 23B is the same as the range of the width W of the chamfer surface 30 at the outer edge edge line portion 13B.
  • the two widths W may be the same value or different values.
  • the shank part 5 is attached to the rear end part of the end mill main body 3 and is configured to be fixed to the rotating shaft of the machine tool.
  • the shank portion 5 is made of ceramic and is made of the same material as the end mill body 3. Further, the shank portion 5 is configured integrally with the end mill body 3.
  • the end mill body 3 and the shank portion 5 are integrally formed of ceramic, so that the end mill 1 becomes a single ceramic part. Therefore, the weight reduction of the end mill 1 can be achieved.
  • the end mill 41 shown in FIG. 6 is a tool for cutting a metal member by being rotated around the axis O.
  • the end mill 41 includes an end mill main body 43 and a shank portion 45.
  • the end mill main body 43 has a tip portion 7 and a connection portion 44.
  • the tip 7 is the same as the end mill main body 3 of FIG.
  • the connecting portion 44 is configured such that the shank portion 45 is detachably connected.
  • the connecting portion 44 is provided at the rear end portion of the end mill main body 43.
  • the connection portion 44 includes a base portion 44A and a screw portion 44B protruding from the base portion 44A toward the rear end.
  • base parts have the recessed part 44C in the front end side of the end mill main body 43.
  • a prismatic protrusion 47 provided at the rear end of the tip 7 is fitted in the recess 44C.
  • the protruding portion 47 is joined to the base portion 44A by, for example, a brazing material.
  • the shank portion 45 has a screw hole 45 ⁇ / b> A that is open at a connection portion with the end mill body 43.
  • the screw portion 44B of the connection portion 44 is screwed into the screw hole 45A.
  • the end mill main body 43 is attached to the shank portion 45 by screwing the screw portion 44B into the screw hole 45A. Further, the screw part 44B is detached from the shank part 45 by detachment from the screw hole 45A.
  • the end mill main body 43 is configured as a replaceable head.
  • the chamfer surface 30 does not necessarily have to be provided at the corner edge portion 23B where the corner rake surface 27 and the flank 23A of the corner blade 23 intersect. That is, the chamfer surface 30 may be provided only on the outer peripheral edge line portion 13B.
  • the chamfer surface 30 may be provided on the entire corner edge portion 23B. Further, the chamfer surface 30 may be provided at a bottom edge portion where the bottom scoop surface 19 and the flank surface of the bottom edge 21 intersect. That is, the chamfer surface 30 may be formed from the outer peripheral edge line part 13B to the bottom edge line part.
  • the end mill body 3 of the above embodiment can be used for a ball end mill in addition to a radius end mill. That is, the end mill body 3 may constitute a cutting edge portion of a ball end mill.
  • Example 1-4 An end mill body 3 having the shape shown in FIG. 1 (that is, having a chamfer surface) was produced as Example 1-4.
  • the end mill body had a blade diameter of 12 mm, a corner blade diameter of 1.5 mm, and six outer peripheral blades. Further, the radial rake angle ⁇ of the chamfer surface of Example 1-4 is as shown in Table 1. The radial rake angles ⁇ of the chip discharge grooves of Example 1-4 are all 0 °.
  • the cutting conditions were a cutting speed of 600 m / min, a cutting amount of ap: 3 mm, ae: 12 mm, and grooving without using cutting oil.
  • the feed amount f per blade was changed from 0.02 mm / t to 0.06 mm / t, and a defect of the outer peripheral blade was confirmed for each feed amount f.
  • the results of Test 1 are shown in Table 1. In Table 1, A indicates no defect and B indicates a defect.
  • Example 2-4 in which the radial rake angle of the chamfer surface is ⁇ 15 ° or less, no chipping occurs even when the feed amount f is 0.06 mm / t, and the cutting efficiency is higher than that when the feed amount f is large. It was possible.
  • Example 1-4 The end mill body of Example 1-4 and Comparative Example 1 was subjected to a cutting performance evaluation test of the outer peripheral blade.
  • a nickel alloy ALLOY 7128 was used as the work material.
  • the cutting conditions were a cutting speed of 600 m / min, a cutting amount of ap: 9 mm, ae: 4 mm, a feed amount f per blade of 0.032 mm / t, and shoulder cutting without using cutting oil shown in FIG. went.
  • the straight arrow indicates the feed direction of the end mill body 3
  • the arc-shaped arrow indicates the rotation direction of the end mill body 3.
  • A indicates no defect and B indicates a defect.
  • B indicates a defect.
  • “large” indicates a burr height of 2.0 mm or more, and “small” indicates a burr height of less than 2.0 mm.
  • the burr height could not be evaluated because a defect occurred in the outer peripheral blade.
  • Example 1-3 in which the radial rake angle on the chamfer surface was ⁇ 30 ° or more, the burr height at the exit R3 was small, and the cutting performance of the outer peripheral blade was high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Abstract

Provided is an end mill main body with which highly efficient machining can be performed while damage is suppressed. The present disclosure relates to a ceramic end mill main body constituting a cutting edge portion of an end mill which rotates about an axis. This end mill main body is provided with a chip discharge groove provided at the outer periphery of a tip end portion in such a way as to twist rearward in the direction of rotation with increasing distance from a tip end side toward a rear end side, an outer peripheral cutting edge provided on an outer peripheral side ridge line of the chip discharge groove, and a chamfer surface provided at least in a part of the outer peripheral side ridge line where the chip discharge groove and a flank of the outer peripheral cutting edge intersect.

Description

エンドミル本体及びエンドミルEnd mill body and end mill 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2018年3月27日に日本国特許庁に出願された日本国特許出願第2018-060177号に基づく優先権を主張するものであり、日本国特許出願第2018-060177号の全内容を本国際出願に参照により援用する。 This international application claims priority based on Japanese Patent Application No. 2018-060177 filed with the Japan Patent Office on March 27, 2018, and is based on Japanese Patent Application No. 2018-060177. The entire contents are incorporated by reference into this international application.
 本開示は、エンドミル本体及びエンドミルに関する。 This disclosure relates to an end mill body and an end mill.
 底刃と外周刃との間に外側に向かって張り出すコーナ刃が形成された超硬合金製のエンドミルが知られている。また、近年では、例えば窒化珪素等の材料からなるセラミック製のエンドミルが開発されている(特許文献1参照)。 An end mill made of cemented carbide is known in which a corner blade projecting outward is formed between the bottom blade and the outer peripheral blade. In recent years, a ceramic end mill made of a material such as silicon nitride has been developed (see Patent Document 1).
 このようなセラミック製のエンドミルにおいて、高速切削における外周刃の摩耗を抑制するために、外周刃のラジアルレーキを負角としたエンドミルが考案されている(特許文献2参照)。 In such a ceramic end mill, in order to suppress wear of the outer peripheral blade in high-speed cutting, an end mill having a negative angle on the radial rake of the outer peripheral blade has been devised (see Patent Document 2).
国際公開第2018/003948号International Publication No. 2018/003948 特開2016-159379号公報JP 2016-159379 A
 上述のように外周刃のラジアルレーキを負角としても、外周刃の強度が不十分となることがある。その結果、1つの刃当たりの送り量や切込み量を大きくした際に欠損が発生し得る。 As described above, even if the radial rake of the outer peripheral blade is set to a negative angle, the strength of the outer peripheral blade may be insufficient. As a result, a defect may occur when the feed amount or cutting amount per blade is increased.
 本開示の一局面は、欠損を抑制しつつ、高能率の切削加工が可能なエンドミル本体を提供することが好ましい。 One aspect of the present disclosure preferably provides an end mill main body capable of cutting with high efficiency while suppressing defects.
 本開示の一態様は、軸線回りに回転されるエンドミルの切刃部を構成する、セラミック製のエンドミル本体である。エンドミル本体は、切屑排出溝と、外周刃と、ギャッシュと、底刃と、底すくい面と、コーナ刃と、コーナすくい面と、チャンファー面と、を備える。切屑排出溝は、先端部の外周に、先端側から後端側に向かうに従って回転方向の後方に捻れるように設けられる。外周刃は、切屑排出溝の外周側稜線に設けられる。ギャッシュは、先端部の頂部から切屑排出溝に到る。 One aspect of the present disclosure is a ceramic end mill body that constitutes a cutting edge portion of an end mill that is rotated around an axis. The end mill body includes a chip discharge groove, an outer peripheral blade, a gash, a bottom blade, a bottom rake surface, a corner blade, a corner rake surface, and a chamfer surface. The chip discharge groove is provided on the outer periphery of the front end portion so as to be twisted backward in the rotation direction from the front end side toward the rear end side. An outer peripheral blade is provided in the outer peripheral side ridgeline of a chip discharge groove. The gasche reaches the chip discharge groove from the top of the tip.
 底刃は、先端部の頂部に設けられる。底すくい面は、底刃から後端側に向かって延伸する。コーナ刃は、底刃から外周刃にわたって外側に凸となるように設けられる。コーナすくい面は、底すくい面と切屑排出溝との間にコーナ刃に接するように設けられる。チャンファー面は、少なくとも切屑排出溝と外周刃の逃げ面とが交差する外周刃稜線部分に設けられる。 The bottom blade is provided at the top of the tip. The bottom rake face extends from the bottom blade toward the rear end side. The corner blade is provided so as to protrude outward from the bottom blade to the outer peripheral blade. The corner rake face is provided between the bottom rake face and the chip discharge groove so as to contact the corner blade. The chamfer surface is provided at an edge portion of the outer peripheral edge where at least the chip discharge groove intersects with the flank face of the outer peripheral blade.
 このような構成によれば、チャンファー面を設けることで、外周刃の強度を向上することができる。その結果、各刃やギャッシュ等の欠損を抑制しつつ、1つの刃当たりの送り量や切込み量が大きい高能率の切削加工が可能となる。 According to such a configuration, the strength of the outer peripheral blade can be improved by providing the chamfer surface. As a result, high-efficiency cutting with a large feed amount and cutting amount per blade becomes possible while suppressing defects such as each blade and gash.
 本開示の一態様では、外周刃稜線部分におけるチャンファー面のラジアルレーキ角αは、-30°以上-15°以下であってもよい。このような構成によれば、外周刃の強度と切削性とを両立することができる。 In one aspect of the present disclosure, the radial rake angle α of the chamfer surface at the outer peripheral edge line portion may be −30 ° to −15 °. According to such a configuration, it is possible to achieve both the strength of the outer peripheral blade and the machinability.
 本開示の一態様では、切屑排出溝のラジアルレーキ角βからラジアルレーキ角αを減じた差(β-α)は、10°以上30°以下であってもよい。このような構成によれば、外周刃の切削性を向上して切削抵抗の低減を促進することができる。 In one aspect of the present disclosure, the difference (β−α) obtained by subtracting the radial rake angle α from the radial rake angle β of the chip discharge groove may be 10 ° or more and 30 ° or less. According to such a configuration, it is possible to improve the machinability of the outer peripheral blade and promote the reduction of the cutting resistance.
 本開示の一態様では、チャンファー面は、コーナすくい面とコーナ刃の逃げ面とが交差するコーナ刃稜線部分の少なくとも一部にも設けられてもよい。コーナ刃稜線部分におけるチャンファー面のラジアルレーキ角γは、-30°以上-15°以下であってもよい。このような構成によれば、より確実に各刃やギャッシュ等の欠損を抑制しながら、高能率の切削加工が可能となる。 In one aspect of the present disclosure, the chamfer surface may be provided on at least a part of a corner blade ridge line portion where a corner rake surface and a corner blade flank surface intersect. The radial rake angle γ of the chamfer surface at the corner edge line portion may be not less than −30 ° and not more than −15 °. According to such a configuration, high-efficiency cutting can be performed while more reliably suppressing defects such as blades and gashes.
 本開示の一態様では、チャンファー面は、底刃には設けられなくてもよい。このような構成によれば、チャンファー面によって底刃における切削効率が低減することを抑制できる。 In one aspect of the present disclosure, the chamfer surface may not be provided on the bottom blade. According to such a structure, it can suppress that the cutting efficiency in a bottom blade reduces by a chamfer surface.
 本開示の一態様では、ギャッシュにおける底刃から最も離間した角部には、半径が0.5mm以上2mm以下の丸みが付けられてもよい。このような構成によれば、ギャッシュの角部を起点とした欠損が抑制できる。その結果、切削加工の能率をさらに高めることができる。 In one aspect of the present disclosure, a corner having a radius of 0.5 mm or more and 2 mm or less may be attached to the corner portion that is the most spaced from the bottom blade in the gasche. According to such a structure, the defect | deletion which started from the corner | angular part of a gash can be suppressed. As a result, the cutting efficiency can be further increased.
 本開示の一態様は、ラジアスエンドミルの切刃部を構成するエンドミル本体として好適に使用できる。 One aspect of the present disclosure can be suitably used as an end mill body constituting a cutting edge portion of a radius end mill.
 本開示の別の態様は、当該エンドミル本体と、エンドミル本体の後端部に取り付けられ、工作機械の回転軸に固定されるように構成されたシャンク部と、を備えるエンドミルである。このような構成によれば、刃やギャッシュ等の欠損を抑制しつつ、高能率の切削加工が可能なエンドミルが得られる。 Another aspect of the present disclosure is an end mill that includes the end mill body and a shank portion that is attached to a rear end portion of the end mill body and is configured to be fixed to a rotating shaft of a machine tool. According to such a configuration, it is possible to obtain an end mill capable of cutting with high efficiency while suppressing defects such as blades and gashes.
 本開示の一態様では、シャンク部は、セラミック製であってもよい。エンドミル本体とシャンク部とは、一体に構成されてもよい。このような構成によれば、エンドミルの軽量化を図ることができる。 In one aspect of the present disclosure, the shank portion may be made of ceramic. The end mill main body and the shank portion may be integrally formed. According to such a configuration, the weight of the end mill can be reduced.
 本開示の一態様では、エンドミル本体は、シャンク部が着脱可能に接続されるように構成された接続部を有してもよい。このような構成によれば、エンドミル本体のみの交換を容易に行うことができる。 In one aspect of the present disclosure, the end mill main body may have a connection portion configured such that the shank portion is detachably connected. According to such a configuration, it is possible to easily replace only the end mill body.
実施形態のエンドミルを示す模式的な側面図である。It is a typical side view showing an end mill of an embodiment. 図1のエンドミルにおける切刃部の部分拡大図である。It is the elements on larger scale of the cutting-blade part in the end mill of FIG. 図3Aは、図1とは異なる実施形態のギャッシュを示す部分拡大図であり、図3Bは、図1及び図3Aとは異なる実施形態のギャッシュを示す部分拡大図である。3A is a partially enlarged view showing a gash according to an embodiment different from that in FIG. 1, and FIG. 3B is a partially enlarged view showing a gash according to an embodiment different from those shown in FIGS. 1 and 3A. 図4Aは、図2のIVA-IVA線での模式的な断面図であり、図4Bは、図4Aを部分的に拡大した模式的な断面図である。4A is a schematic cross-sectional view taken along line IVA-IVA in FIG. 2, and FIG. 4B is a schematic cross-sectional view partially enlarged from FIG. 4A. 図2のV-V線での模式的な部分拡大断面図である。FIG. 5 is a schematic partial enlarged sectional view taken along line VV in FIG. 2. 図1とは異なる実施形態のエンドミルを示す模式的な側面図である。It is a typical side view which shows the end mill of embodiment different from FIG. 実施例における試験での切削状態を示す模式的な図である。It is a schematic diagram which shows the cutting state in the test in an Example.
1…エンドミル、3…エンドミル本体、5…シャンク部、7…先端部、9…切屑排出溝、13…外周刃、13A…逃げ面、13B…外周刃稜線部分、15…外周すくい面、17…ギャッシュ、17A…角部、19…底すくい面、21…底刃、23…コーナ刃、23A…逃げ面、23B…コーナ刃稜線部分、27…コーナすくい面、30…チャンファー面、41…エンドミル、43…エンドミル本体、44…接続部、44A…基部、44B…ネジ部、44C…凹部、45…シャンク部、45A…ネジ穴、47…突出部。 DESCRIPTION OF SYMBOLS 1 ... End mill, 3 ... End mill main body, 5 ... Shank part, 7 ... Tip part, 9 ... Chip discharge groove, 13 ... Outer peripheral blade, 13A ... Flank, 13B ... Outer edge ridgeline part, 15 ... Outer rake face, 17 ... Gash, 17A ... Corner, 19 ... Bottom rake face, 21 ... Bottom edge, 23 ... Corner edge, 23A ... Relief face, 23B ... Corner edge line part, 27 ... Corner rake face, 30 ... Chamfer face, 41 ... End mill 43 ... End mill main body, 44 ... Connection part, 44A ... Base part, 44B ... Screw part, 44C ... Recess, 45 ... Shank part, 45A ... Screw hole, 47 ... Projection part.
 以下、本開示が適用された実施形態について、図面を用いて説明する。 Hereinafter, embodiments to which the present disclosure is applied will be described with reference to the drawings.
 [1.第1実施形態]
 [1-1.構成]
 図1に示すエンドミル1は、軸線O周りに回転されることで、金属部材の切削を行うための工具である。
[1. First Embodiment]
[1-1. Constitution]
The end mill 1 shown in FIG. 1 is a tool for cutting a metal member by being rotated around an axis O.
 本実施形態では、エンドミル1は、先端に設けられた切刃部の頂部(つまり底面)が平面状で、かつ、切刃部のコーナが丸みを帯びたラジアスエンドミルである。つまり、エンドミル本体3は、ラジアスエンドミルの切刃部を構成している。 In the present embodiment, the end mill 1 is a radius end mill in which the top portion (that is, the bottom surface) of the cutting edge portion provided at the tip is planar and the corner of the cutting edge portion is rounded. That is, the end mill body 3 constitutes a cutting edge portion of a radius end mill.
 エンドミル1は、エンドミル本体3と、シャンク部5とを備える。エンドミル1は、シャンク部5が取り付けられた工作機械(図示せず)によって、軸線Oを中心として方向Kに回転しながら、軸線Oと垂直の方向に送り出されることにより、被加工物(つまりワーク)の切削加工を行う。 The end mill 1 includes an end mill main body 3 and a shank portion 5. The end mill 1 is fed in a direction perpendicular to the axis O while rotating in the direction K about the axis O by a machine tool (not shown) to which the shank portion 5 is attached. ).
 <エンドミル本体>
 エンドミル本体3は、図1に示すように、エンドミル1の先端部に設けられた切刃部を構成している。
<End mill body>
As shown in FIG. 1, the end mill main body 3 constitutes a cutting edge provided at the tip of the end mill 1.
 エンドミル本体3は、セラミック製である。ここで、「セラミック製」とは、セラミックを主成分とする材料、つまりセラミックを50体積%以上(好ましくは90体積%以上)含むことを意味する。エンドミル本体3を構成するセラミックとしては、例えば、窒化珪素、サイアロン、アルミナ、ジルコニア等が挙げられる。 The end mill body 3 is made of ceramic. Here, “made of ceramic” means that a material containing ceramic as a main component, that is, containing 50 volume% or more (preferably 90 volume% or more) of ceramic. Examples of the ceramic constituting the end mill body 3 include silicon nitride, sialon, alumina, and zirconia.
 エンドミル本体3は、切屑排出溝9と、外周刃13と、外周すくい面15と、ギャッシュ17と、底刃21と、底すくい面19と、コーナ刃23と、コーナすくい面27と、チャンファー面30(図2参照)とを備える。 The end mill body 3 includes a chip discharge groove 9, an outer peripheral blade 13, an outer peripheral rake surface 15, a gash 17, a bottom blade 21, a bottom rake surface 19, a corner blade 23, a corner rake surface 27, and a chamfer. Surface 30 (see FIG. 2).
 (切屑排出溝)
 切屑排出溝9は、エンドミル本体3の先端部7の外周に、先端側から後端側に向かうに従って回転方向の後方に捻れるように設けられている。
(Chip discharge groove)
The chip discharge groove 9 is provided on the outer periphery of the front end portion 7 of the end mill body 3 so as to be twisted backward in the rotation direction from the front end side toward the rear end side.
 切屑排出溝9は、いわゆる刃溝又はフルートである。本実施形態では、4条の切屑排出溝9が周方向に等間隔に設けられている。ただし、切屑排出溝9の数は4条に限定されない。 The chip discharge groove 9 is a so-called blade groove or flute. In the present embodiment, four strip discharge grooves 9 are provided at equal intervals in the circumferential direction. However, the number of the chip discharge grooves 9 is not limited to four.
 (外周刃)
 外周刃13は、切屑排出溝9の外周側稜線に設けられている。具体的には、外周刃13は、切屑排出溝9の回転方向後方に設けられた外周すくい面15の稜線部分に設けられている。
(Peripheral blade)
The outer peripheral blade 13 is provided on the outer peripheral side ridge line of the chip discharge groove 9. Specifically, the outer peripheral blade 13 is provided at the ridge line portion of the outer peripheral rake face 15 provided at the rear in the rotation direction of the chip discharge groove 9.
 外周刃13は、切屑排出溝9と同様に、先端側から後端側に向かうに従ってエンドミル本体3の回転方向の後方側に捩れるように設けられている。また、外周刃の逃げ面13Aは、外周すくい面15の回転方向後方に連なるエンドミル本体3の外周面である。 As with the chip discharge groove 9, the outer peripheral blade 13 is provided so as to be twisted toward the rear side in the rotational direction of the end mill body 3 from the front end side toward the rear end side. Further, the flank 13 </ b> A of the outer peripheral blade is an outer peripheral surface of the end mill body 3 that continues to the rear in the rotation direction of the outer peripheral rake surface 15.
 (ギャッシュ)
 ギャッシュ17は、先端部7の頂部(つまり底刃21)から切屑排出溝9に到っている。つまり、ギャッシュ17は、切屑排出溝9と底刃21とを連結している。ギャッシュ17は、切屑排出溝9よりも軸線Oに向かって凹んだ領域である。
(Gash)
The gash 17 reaches the chip discharge groove 9 from the top portion (that is, the bottom blade 21) of the tip end portion 7. That is, the gash 17 connects the chip discharge groove 9 and the bottom blade 21. The gash 17 is a region that is recessed toward the axis O from the chip discharge groove 9.
 ギャッシュ17における底刃21から最も離間した角部(図1中の右上の角部)17Aは、応力集中を避けるために、図3A,3Bに示すように、丸みが設けられるとよい。この丸みの半径としては、0.5mm以上2mm以下が好ましい。換言すれば、ギャッシュ17の角部17Aは、最小曲率が0.5mm以上の隅肉部が設けられるとよい。 The corner (the upper right corner in FIG. 1) 17A farthest from the bottom blade 21 in the gash 17 is preferably provided with a roundness as shown in FIGS. 3A and 3B in order to avoid stress concentration. The radius of the roundness is preferably 0.5 mm or more and 2 mm or less. In other words, the corner portion 17A of the gasche 17 is preferably provided with a fillet portion having a minimum curvature of 0.5 mm or more.
 なお、「丸み」とは、完全な曲面形状を意味するものではなく、例えば複数の微細な段差が角部17Aに連設されることにより構成され、実質的に丸みと同等の機能を奏する形状も含む概念である。 The “roundness” does not mean a complete curved surface shape. For example, the shape is formed by connecting a plurality of fine steps to the corner portion 17A, and has a function substantially equivalent to roundness. It is a concept that also includes
 このような丸みを角部17Aに設けることで、角部17Aを起点とした欠損が抑制できる。その結果、切削抵抗が増大に伴うギャッシュ17の欠損が抑制されるので、切削加工の能率をさらに高めることができる。 By providing such roundness in the corner portion 17A, it is possible to suppress a defect starting from the corner portion 17A. As a result, the loss of the gasche 17 accompanying the increase in cutting resistance is suppressed, so that the cutting efficiency can be further increased.
 (底刃)
 底刃21は、図1に示すように、先端部7の頂部(つまり底面)に設けられている。底刃21は、軸線Oの近傍から径方向に延伸している。
(Bottom blade)
As shown in FIG. 1, the bottom blade 21 is provided on the top portion (that is, the bottom surface) of the distal end portion 7. The bottom blade 21 extends in the radial direction from the vicinity of the axis O.
 底すくい面19は、底刃21からエンドミル本体3の後端側に向かう方向(つまり軸線Oに沿った方向)に延伸する。底すくい面19は、エンドミル本体3の回転方向前方を向いている。 The bottom rake face 19 extends in the direction from the bottom blade 21 toward the rear end side of the end mill body 3 (that is, the direction along the axis O). The bottom rake face 19 faces the front of the end mill body 3 in the rotational direction.
 (コーナ刃)
 コーナ刃23は、底刃21から外周刃13にわたってエンドミル本体3の外側に凸となるように設けられている。本実施形態では、コーナ刃23は円弧状である。
(Corner blade)
The corner blade 23 is provided so as to protrude outward from the end mill body 3 from the bottom blade 21 to the outer peripheral blade 13. In the present embodiment, the corner blade 23 has an arc shape.
 また、底すくい面19と切屑排出溝9との間には、コーナ刃23に接するようにコーナすくい面27が設けられている。コーナすくい面27は、エンドミル本体3の回転方向前方を向いている。 Further, a corner rake face 27 is provided between the bottom rake face 19 and the chip discharge groove 9 so as to be in contact with the corner blade 23. The corner rake face 27 faces the front in the rotational direction of the end mill body 3.
 (チャンファー面)
 チャンファー面30は、図2に示すように、少なくとも切屑排出溝9と外周刃13の逃げ面13Aとが交差する外周刃稜線部分13Bに設けられた凹曲面である。ただし、チャンファー面30は、凹曲面以外の曲面又は平坦面であってもよい。チャンファー面30は、回転方向前方を向いている。
(Chamfer side)
As shown in FIG. 2, the chamfer surface 30 is a concave curved surface provided at the outer peripheral edge ridge line portion 13 </ b> B where at least the chip discharge groove 9 and the flank 13 </ b> A of the outer peripheral edge 13 intersect. However, the chamfer surface 30 may be a curved surface other than the concave curved surface or a flat surface. The chamfer surface 30 faces forward in the rotational direction.
 本実施形態では、チャンファー面30は、外周刃稜線部分13Bの全体と、コーナすくい面27とコーナ刃23の逃げ面23Aとが交差するコーナ刃稜線部分23Bの一部とに、設けられている。また、チャンファー面30は、底刃21には設けられていない。 In the present embodiment, the chamfer surface 30 is provided on the entire outer peripheral edge ridge line portion 13B and a part of the corner edge ridge line portion 23B where the corner rake surface 27 and the flank 23A of the corner blade 23 intersect. Yes. Further, the chamfer surface 30 is not provided on the bottom blade 21.
 ここで、軸線Oを含み、1つのコーナ刃23と1つの外周刃13との交点Bを通る仮想平面に、上記交点Bと、コーナ刃23と底刃21との交点Aと、チャンファー面30とを投影したとき、交点A及び交点Bを通る直線ABに垂直で、かつ点Cを通る直線Pと、点C及び交点Bを通る線分BCとに挟まれた領域Q1に、チャンファー面30は存在する。一方で、直線Pと、点C及び交点Aを通る線分ACとに挟まれた領域Q2には、チャンファー面30は存在しない。また、コーナすくい面27も、領域Q1にのみ存在し、領域Q2には存在しない。 Here, the intersection point B, the intersection point A between the corner blade 23 and the bottom blade 21, and the chamfer surface on a virtual plane including the axis O and passing through the intersection point B between one corner blade 23 and one outer peripheral blade 13 30 is projected onto a region Q1 that is sandwiched between a straight line P that passes through the point C and the intersection point B, and a straight line P that passes through the point C and the intersection point B. Surface 30 exists. On the other hand, the chamfer surface 30 does not exist in the region Q2 sandwiched between the straight line P and the line segment AC passing through the point C and the intersection A. Further, the corner rake face 27 exists only in the region Q1, and does not exist in the region Q2.
 上記点Cは、上記仮想平面において、交点Aを通り軸線Oに平行な直線と、交点Bを通り軸線Oに垂直な直線との交点である。本実施形態では、コーナ刃23は真円の一部で構成された円弧状であるため、点Cは、コーナ刃23の中心に一致する。ただし、コーナ刃23は、楕円の一部であってもよいし、湾曲した円弧状であってもよい。 The point C is an intersection of a straight line passing through the intersection A and parallel to the axis O and a straight line passing through the intersection B and perpendicular to the axis O in the virtual plane. In the present embodiment, the corner blade 23 has an arc shape constituted by a part of a perfect circle, and therefore the point C coincides with the center of the corner blade 23. However, the corner blade 23 may be a part of an ellipse or a curved arc shape.
 図4A,4Bに示す外周刃稜線部分13Bにおけるチャンファー面30のラジアルレーキ角αは、-30°以上-15°以下が好ましく、-30°以上-20°未満がより好ましい。ラジアルレーキ角αが小さすぎる(つまり、負角側に大きすぎる)と、外周刃13の切削性が低下して切削加工時に大きなバリが生じるおそれがある。逆に、ラジアルレーキ角αが大きすぎる(つまり、ゼロに近い負角又は正角である)と、高速の送り又は切込みの切削条件において、外周刃13の強度不足により外周刃13が欠損するおそれがある。 4A and 4B, the radial rake angle α of the chamfer surface 30 in the outer peripheral edge portion 13B is preferably −30 ° to −15 °, and more preferably −30 ° to less than −20 °. If the radial rake angle α is too small (that is, too large on the negative angle side), the machinability of the outer peripheral blade 13 may be reduced, and a large burr may occur during the cutting process. On the other hand, if the radial rake angle α is too large (that is, a negative angle or a positive angle close to zero), the outer peripheral blade 13 may be lost due to insufficient strength of the outer peripheral blade 13 under high-speed feeding or cutting conditions. There is.
 ここで、「ラジアルレーキ角α」は、エンドミル本体3の横断面(つまり、軸線Oと直交する断面)において、軸線Oと外周刃13とを通る基準線D1と、チャンファー面30との成す角度のうち、鋭角の角度である。 Here, the “radial rake angle α” is defined by the chamfer surface 30 and the reference line D1 passing through the axis O and the outer peripheral edge 13 in the transverse section of the end mill body 3 (that is, the section orthogonal to the axis O). Among the angles, it is an acute angle.
 切屑排出溝9のラジアルレーキ角βは、-10°以上0°以下が好ましい。ラジアルレーキ角βが小さすぎる(つまり、負角側に大きすぎる)と、外周刃13の切削性が不十分となるおそれがある。 The radial rake angle β of the chip discharge groove 9 is preferably -10 ° or more and 0 ° or less. If the radial rake angle β is too small (that is, too large on the negative angle side), the cutting performance of the outer peripheral blade 13 may be insufficient.
 ここで、「ラジアルレーキ角β」は、エンドミル本体3の横断面において、上記基準線D1と、チャンファー面30に隣接する切屑排出溝9の回転方向後方の外周すくい面15との成す角度のうち、鋭角の角度である。 Here, the “radial rake angle β” is an angle formed by the reference line D1 and the outer peripheral rake face 15 in the rotational direction rearward of the chip discharge groove 9 adjacent to the chamfer surface 30 in the cross section of the end mill body 3. Among them, it is an acute angle.
 また、切屑排出溝9のラジアルレーキ角βからチャンファー面30のラジアルレーキ角αを減じた差(β-α)は、10°以上30°以下が好ましい。上記差(β-α)が小さすぎると、チャンファー面30による外周刃13の強度と切削性との両立効果が不十分となるおそれがある。逆に、上記差(β-α)が大きすぎると、外周刃13の切削性が不十分となるおそれがある。 Further, the difference (β−α) obtained by subtracting the radial rake angle α of the chamfer surface 30 from the radial rake angle β of the chip discharge groove 9 is preferably 10 ° or more and 30 ° or less. If the difference (β−α) is too small, there is a possibility that the effect of coexistence of the strength of the outer peripheral blade 13 and the machinability by the chamfer surface 30 may be insufficient. On the contrary, if the difference (β−α) is too large, the cutting performance of the outer peripheral blade 13 may be insufficient.
 外周刃稜線部分13Bにおけるチャンファー面30の幅Wは、0.02mm以上0.2mm以下が好ましい。ただし、チャンファー面30の幅Wは、切削条件(例えば1つの刃当たりの送り量)によって変更することが好ましい。幅W[mm]は、1つの刃当たりの送り量[mm/t]の1/2以上2/3以下とするとよい。例えば、送り量が0.04mm/tの加工では、幅Wは0.02mm以上0.027mm以下が好ましく、送り量が0.3mm/tの加工では、幅Wは0.15mm以上0.2mm以下が好ましい。 The width W of the chamfer surface 30 in the outer peripheral edge ridge line portion 13B is preferably 0.02 mm or more and 0.2 mm or less. However, it is preferable to change the width W of the chamfer surface 30 according to cutting conditions (for example, the feed amount per blade). The width W [mm] is preferably 1/2 or more and 2/3 or less of the feed amount [mm / t] per blade. For example, in processing with a feed amount of 0.04 mm / t, the width W is preferably 0.02 mm to 0.027 mm, and in processing with a feed amount of 0.3 mm / t, the width W is 0.15 mm to 0.2 mm. The following is preferred.
 図5に示すコーナ刃稜線部分23Bにおけるチャンファー面30のラジアルレーキ角γは、-30°以上-15°以下が好ましく、-30°以上-20°未満がさらに好ましい。ラジアルレーキ角γが小さすぎる(つまり、負角側に大きすぎる)と、コーナ刃23の切削性が不十分となる。逆に、ラジアルレーキ角γが大きすぎる(つまり、ゼロに近い負角又は正角である)と、コーナ刃23の強度が不足し、欠損が生じ得る。 The radial rake angle γ of the chamfer surface 30 at the corner edge portion 23B shown in FIG. 5 is preferably −30 ° or more and −15 ° or less, and more preferably −30 ° or more and less than −20 °. If the radial rake angle γ is too small (that is, too large on the negative angle side), the cutting performance of the corner blade 23 becomes insufficient. On the other hand, if the radial rake angle γ is too large (that is, a negative angle or a positive angle close to zero), the strength of the corner blade 23 is insufficient and a defect may occur.
 ここで、「ラジアルレーキ角γ」は、エンドミル本体3のコーナ刃23と垂直な断面(つまりコーナ刃稜線部分23Bにおけるチャンファー面30と垂直な断面)において、軸線Oとコーナ刃23とを通る基準線D2と、チャンファー面30との成す角度のうち、鋭角の角度である。 Here, the “radial rake angle γ” passes through the axis O and the corner blade 23 in a section perpendicular to the corner blade 23 of the end mill body 3 (that is, a section perpendicular to the chamfer surface 30 in the corner edge portion 23B). Of the angles formed by the reference line D2 and the chamfer surface 30, this is an acute angle.
 ラジアルレーキ角αとラジアルレーキ角γとは、同じ角度であってもよいし、異なる角度であってもよい。 The radial rake angle α and the radial rake angle γ may be the same angle or different angles.
 また、コーナ刃稜線部分23Bにおけるチャンファー面30の幅Wは、外周刃稜線部分13Bにおけるチャンファー面30の幅Wの範囲と同様である。なお、これら2つの幅Wは同じ値であってもよいし、異なる値であってもよい。 Further, the width W of the chamfer surface 30 at the corner edge line portion 23B is the same as the range of the width W of the chamfer surface 30 at the outer edge edge line portion 13B. The two widths W may be the same value or different values.
 <シャンク部>
 シャンク部5は、エンドミル本体3の後端部に取り付けられ、工作機械の回転軸に固定されるように構成されている。本実施形態では、シャンク部5は、セラミック製であり、エンドミル本体3と同じ材料で構成されている。また、シャンク部5は、エンドミル本体3と一体に構成されている。
<Shank part>
The shank part 5 is attached to the rear end part of the end mill main body 3 and is configured to be fixed to the rotating shaft of the machine tool. In the present embodiment, the shank portion 5 is made of ceramic and is made of the same material as the end mill body 3. Further, the shank portion 5 is configured integrally with the end mill body 3.
 [1-2.効果]
 以上詳述した実施形態によれば、以下の効果が得られる。
[1-2. effect]
According to the embodiment detailed above, the following effects can be obtained.
 (1a)チャンファー面30を設けることで、外周刃13の強度を向上することができる。その結果、各刃やギャッシュ17等の欠損を抑制しつつ、1つの刃当たりの送り量や切込み量が大きい高能率の切削加工が可能となる。 (1a) By providing the chamfer surface 30, the strength of the outer peripheral blade 13 can be improved. As a result, high-efficiency cutting with a large feed amount and cutting amount per blade becomes possible while suppressing the loss of each blade, the gasche 17 and the like.
 (1b)チャンファー面30がコーナ刃稜線部分23Bの少なくとも一部にも設けられることで、より確実に各刃やギャッシュ17等の欠損を抑制しながら、高能率の切削加工が可能となる。 (1b) Since the chamfer surface 30 is also provided on at least a part of the corner blade ridge line portion 23B, it is possible to perform cutting with high efficiency while more surely suppressing defects of each blade, the gasche 17 and the like.
 (1c)チャンファー面30が底刃21には設けられないことで、底刃21における切削効率の低減を抑制することができる。その結果、エンドミル本体3の欠損を抑制しつつ、切削加工の効率が高められる。 (1c) Since the chamfer surface 30 is not provided on the bottom blade 21, it is possible to suppress a reduction in cutting efficiency in the bottom blade 21. As a result, the efficiency of the cutting process is increased while suppressing the chipping of the end mill body 3.
 (1d)エンドミル本体3とシャンク部5とがセラミックによって一体に構成されることで、エンドミル1が単一のセラミック部品となる。そのため、エンドミル1の軽量化を図ることができる。 (1d) The end mill body 3 and the shank portion 5 are integrally formed of ceramic, so that the end mill 1 becomes a single ceramic part. Therefore, the weight reduction of the end mill 1 can be achieved.
 [2.第2実施形態]
 [2-1.構成]
 図6に示すエンドミル41は、軸線O周りに回転されることで、金属部材の切削を行うための工具である。エンドミル41は、エンドミル本体43と、シャンク部45とを備えている。
[2. Second Embodiment]
[2-1. Constitution]
The end mill 41 shown in FIG. 6 is a tool for cutting a metal member by being rotated around the axis O. The end mill 41 includes an end mill main body 43 and a shank portion 45.
 <エンドミル本体>
 エンドミル本体43は、先端部7と、接続部44とを有する。先端部7は、図1のエンドミル本体3と同様であるため、同一の符号を付して説明を省略する。
<End mill body>
The end mill main body 43 has a tip portion 7 and a connection portion 44. The tip 7 is the same as the end mill main body 3 of FIG.
 接続部44は、シャンク部45が着脱可能に接続されるように構成されている。接続部44は、エンドミル本体43の後端部に設けられている。接続部44は、基部44Aと、基部44Aから後端に向かって突出したネジ部44Bとを有する。 The connecting portion 44 is configured such that the shank portion 45 is detachably connected. The connecting portion 44 is provided at the rear end portion of the end mill main body 43. The connection portion 44 includes a base portion 44A and a screw portion 44B protruding from the base portion 44A toward the rear end.
 基部44Aは、エンドミル本体43の先端側に凹部44Cを有している。凹部44Cには、先端部7の後端部に設けられた角柱状の突出部47が嵌入されている。突出部47は、例えばロウ材によって、基部44Aと接合されている。 44 A of base parts have the recessed part 44C in the front end side of the end mill main body 43. As shown in FIG. A prismatic protrusion 47 provided at the rear end of the tip 7 is fitted in the recess 44C. The protruding portion 47 is joined to the base portion 44A by, for example, a brazing material.
 <シャンク部>
 シャンク部45は、エンドミル本体43との連結部分に開口したネジ穴45Aを有する。ネジ穴45Aには、接続部44のネジ部44Bが螺合される。
<Shank part>
The shank portion 45 has a screw hole 45 </ b> A that is open at a connection portion with the end mill body 43. The screw portion 44B of the connection portion 44 is screwed into the screw hole 45A.
 したがって、エンドミル本体43は、ネジ部44Bのネジ穴45Aへのねじ込みによって、シャンク部45に装着される。また、ネジ部44Bのネジ穴45Aからの脱離によって、シャンク部45から取り外される。このように、エンドミル本体43は、交換式ヘッドとして構成されている。 Therefore, the end mill main body 43 is attached to the shank portion 45 by screwing the screw portion 44B into the screw hole 45A. Further, the screw part 44B is detached from the shank part 45 by detachment from the screw hole 45A. Thus, the end mill main body 43 is configured as a replaceable head.
 [2-2.効果]
 以上詳述した実施形態によれば、以下の効果が得られる。
[2-2. effect]
According to the embodiment detailed above, the following effects can be obtained.
 (2a)切削加工への使用に伴いエンドミル本体43に摩耗等が生じた際に、エンドミル本体43のみの交換を容易に行うことができる。 (2a) When wear or the like occurs in the end mill main body 43 with use in cutting, only the end mill main body 43 can be easily replaced.
 [3.他の実施形態]
 以上、本開示の実施形態について説明したが、本開示は、上記実施形態に限定されることなく、種々の形態を採り得ることは言うまでもない。
[3. Other Embodiments]
As mentioned above, although embodiment of this indication was described, it cannot be overemphasized that this indication can take various forms, without being limited to the above-mentioned embodiment.
 (3a)上記実施形態のエンドミル本体3において、チャンファー面30は、必ずしもコーナすくい面27とコーナ刃23の逃げ面23Aとが交差するコーナ刃稜線部分23Bに設けられなくてもよい。つまり、チャンファー面30は、外周刃稜線部分13Bのみに設けられてもよい。 (3a) In the end mill body 3 of the above embodiment, the chamfer surface 30 does not necessarily have to be provided at the corner edge portion 23B where the corner rake surface 27 and the flank 23A of the corner blade 23 intersect. That is, the chamfer surface 30 may be provided only on the outer peripheral edge line portion 13B.
 逆に、チャンファー面30は、コーナ刃稜線部分23Bの全体に設けられてもよい。さらに、チャンファー面30は、底すくい面19と底刃21の逃げ面とが交差する底刃稜線部分に設けられてもよい。つまり、チャンファー面30は、外周刃稜線部分13Bから上記底刃稜線部分にわたって形成されてもよい。 Conversely, the chamfer surface 30 may be provided on the entire corner edge portion 23B. Further, the chamfer surface 30 may be provided at a bottom edge portion where the bottom scoop surface 19 and the flank surface of the bottom edge 21 intersect. That is, the chamfer surface 30 may be formed from the outer peripheral edge line part 13B to the bottom edge line part.
 (3b)上記実施形態のエンドミル本体3は、ラジアスエンドミル以外に、ボールエンドミルにも使用可能である。つまり、エンドミル本体3は、ボールエンドミルの切刃部を構成してもよい。 (3b) The end mill body 3 of the above embodiment can be used for a ball end mill in addition to a radius end mill. That is, the end mill body 3 may constitute a cutting edge portion of a ball end mill.
 (3c)上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 (3c) The functions of one component in the above embodiment may be distributed as a plurality of components, or the functions of a plurality of components may be integrated into one component. Moreover, you may abbreviate | omit a part of structure of the said embodiment. In addition, at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other embodiment. In addition, all the aspects included in the technical idea specified from the wording described in the claims are embodiments of the present disclosure.
 [4.実施例]
 以下に、本開示の効果を確認するために行った試験の内容とその評価とについて説明する。
[4. Example]
Below, the content of the test conducted in order to confirm the effect of this indication and its evaluation are demonstrated.
 <実施例1-4>
 図1の形状の(つまりチャンファー面を有する)エンドミル本体3を実施例1-4として作製した。
<Example 1-4>
An end mill body 3 having the shape shown in FIG. 1 (that is, having a chamfer surface) was produced as Example 1-4.
 エンドミル本体の刃径は12mm、コーナ刃の径は1.5mm、外周刃は6枚とした。また、実施例1-4のチャンファー面のラジアルレーキ角αは、表1に示すとおりである。実施例1-4の切屑排出溝のラジアルレーキ角βはいずれも0°である。 The end mill body had a blade diameter of 12 mm, a corner blade diameter of 1.5 mm, and six outer peripheral blades. Further, the radial rake angle α of the chamfer surface of Example 1-4 is as shown in Table 1. The radial rake angles β of the chip discharge grooves of Example 1-4 are all 0 °.
 <比較例1>
 チャンファー面30を有しない点を除いて、実施例1と同じ形状のエンドミル本体を比較例1として作製した。
<Comparative Example 1>
An end mill body having the same shape as that of Example 1 was produced as Comparative Example 1 except that the chamfer surface 30 was not provided.
 <試験1>
 実施例1-4及び比較例1のエンドミル本体に対し、外周刃の欠損試験を行った。被削材としては、ニッケル合金(ALLOY718)を用いた。
<Test 1>
The end mill body of Examples 1-4 and Comparative Example 1 was subjected to a peripheral edge cutting test. As the work material, a nickel alloy (ALLOY 718) was used.
 切削条件は、切削速度を600m/min、切込み量をap:3mm、ae:12mmとし、切削油を用いない溝削りを行った。1つの刃当たりの送り量fを0.02mm/tから0.06mm/tまで変化させ、送り量fごとに外周刃の欠損を確認した。試験1の結果を表1に示す。表1中、Aは欠損無し、Bは欠損有りを示す。 The cutting conditions were a cutting speed of 600 m / min, a cutting amount of ap: 3 mm, ae: 12 mm, and grooving without using cutting oil. The feed amount f per blade was changed from 0.02 mm / t to 0.06 mm / t, and a defect of the outer peripheral blade was confirmed for each feed amount f. The results of Test 1 are shown in Table 1. In Table 1, A indicates no defect and B indicates a defect.
Figure JPOXMLDOC01-appb-T000001
 
 表1に示されるように、チャンファー面を有さない比較例1では、送り量fが0.04mm/tの時に外周刃の欠損が発生した。一方、チャンファー面を有する実施例1-4では、比較例1よりも高い送り量でも欠損が発生しなかった。
Figure JPOXMLDOC01-appb-T000001

As shown in Table 1, in Comparative Example 1 having no chamfer surface, the outer peripheral edge was broken when the feed amount f was 0.04 mm / t. On the other hand, in Example 1-4 having a chamfer surface, no defect occurred even at a higher feed amount than in Comparative Example 1.
 さらに、チャンファー面のラジアルレーキ角が-15°以下の実施例2-4では、送り量fが0.06mm/tでも欠損が発生せず、送り量fが大きいより高能率の切削加工が可能であった。 Further, in Example 2-4 in which the radial rake angle of the chamfer surface is −15 ° or less, no chipping occurs even when the feed amount f is 0.06 mm / t, and the cutting efficiency is higher than that when the feed amount f is large. It was possible.
 <試験2>
 実施例1-4及び比較例1のエンドミル本体に対し、外周刃の切削性評価試験を行った。被削材としては、ニッケル合金(ALLOY718)を用いた。
<Test 2>
The end mill body of Example 1-4 and Comparative Example 1 was subjected to a cutting performance evaluation test of the outer peripheral blade. As the work material, a nickel alloy (ALLOY 718) was used.
 切削条件は、切削速度を600m/min、切込み量をap:9mm、ae:4mm、1つの刃当たりの送り量fを0.032mm/tとし、図7に示す切削油を用いない肩削りを行った。 The cutting conditions were a cutting speed of 600 m / min, a cutting amount of ap: 9 mm, ae: 4 mm, a feed amount f per blade of 0.032 mm / t, and shoulder cutting without using cutting oil shown in FIG. went.
 図7中の直線状の矢印はエンドミル本体3の送り方向、円弧状の矢印はエンドミル本体3の回転方向である。肩削り後、被削材Rの入口R1、中央R2、及び出口R3の3点におけるバリの高さを測定した。試験2の結果を表2に示す。 7, the straight arrow indicates the feed direction of the end mill body 3, and the arc-shaped arrow indicates the rotation direction of the end mill body 3. After shoulder cutting, the height of burrs at the three points of the inlet R1, the center R2, and the outlet R3 of the work material R was measured. The results of Test 2 are shown in Table 2.
 表2中、Aは欠損無し、Bは欠損有りを示す。また、表2中、「大」はバリ高さが2.0mm以上、「小」はバリ高さが2.0mm未満を示す。なお、比較例1では、外周刃に欠損が発生したため、バリ高さが評価できなかった。 In Table 2, A indicates no defect and B indicates a defect. In Table 2, “large” indicates a burr height of 2.0 mm or more, and “small” indicates a burr height of less than 2.0 mm. In Comparative Example 1, the burr height could not be evaluated because a defect occurred in the outer peripheral blade.
Figure JPOXMLDOC01-appb-T000002
 
 表2に示されるように、チャンファー面を有さない比較例1では、外周刃の強度不足により欠損が発生した。一方、チャンファー面を有する実施例1-4では、外周刃の欠損は発生しなかった。
Figure JPOXMLDOC01-appb-T000002

As shown in Table 2, in Comparative Example 1 having no chamfer surface, a defect occurred due to insufficient strength of the outer peripheral blade. On the other hand, in Examples 1-4 having a chamfer surface, the peripheral edge was not damaged.
 さらに、チャンファー面のラジアルレーキ角が-30°以上の実施例1-3では、出口R3におけるバリ高さが小さくなり、外周刃の切削性が高かった。 Furthermore, in Example 1-3 in which the radial rake angle on the chamfer surface was −30 ° or more, the burr height at the exit R3 was small, and the cutting performance of the outer peripheral blade was high.

Claims (10)

  1.  軸線回りに回転されるエンドミルの切刃部を構成する、セラミック製のエンドミル本体であって、
     先端部の外周に、先端側から後端側に向かうに従って回転方向の後方に捻れるように設けられた切屑排出溝と、
     前記切屑排出溝の外周側稜線に設けられた外周刃と、
     前記先端部の頂部から前記切屑排出溝に到るギャッシュと、
     前記先端部の頂部に設けられた底刃と、
     前記底刃から後端側に向かって延伸する底すくい面と、
     前記底刃から前記外周刃にわたって外側に凸となるように設けられたコーナ刃と、
     前記底すくい面と前記切屑排出溝との間に前記コーナ刃に接するように設けられたコーナすくい面と、
     少なくとも前記切屑排出溝と前記外周刃の逃げ面とが交差する外周刃稜線部分に設けられたチャンファー面と、
     を備える、エンドミル本体。
    A ceramic end mill body that constitutes a cutting edge portion of an end mill that rotates about an axis,
    A chip discharge groove provided on the outer periphery of the front end portion so as to be twisted backward in the rotation direction from the front end side toward the rear end side,
    An outer peripheral blade provided on an outer peripheral side ridge line of the chip discharge groove;
    A gasche from the top of the tip to the chip discharge groove,
    A bottom blade provided at the top of the tip;
    A bottom rake face extending from the bottom blade toward the rear end;
    A corner blade provided so as to protrude outward from the bottom blade to the outer peripheral blade;
    A corner rake face provided between the bottom rake face and the chip discharge groove so as to contact the corner blade;
    A chamfer surface provided at an outer peripheral blade ridge line portion where at least the chip discharge groove and the flank of the outer peripheral blade intersect,
    An end mill body.
  2.  前記外周刃稜線部分における前記チャンファー面のラジアルレーキ角αは、-30°以上-15°以下である、請求項1に記載のエンドミル本体。 2. The end mill body according to claim 1, wherein a radial rake angle α of the chamfer surface at the outer peripheral edge portion is not less than −30 ° and not more than −15 °.
  3.  前記切屑排出溝のラジアルレーキ角βから前記ラジアルレーキ角αを減じた差(β-α)は、10°以上30°以下である、請求項2に記載のエンドミル本体。 The end mill body according to claim 2, wherein a difference (β-α) obtained by subtracting the radial rake angle α from a radial rake angle β of the chip discharge groove is 10 ° or more and 30 ° or less.
  4.  前記チャンファー面は、前記コーナすくい面と前記コーナ刃の逃げ面とが交差するコーナ刃稜線部分の少なくとも一部にも設けられ、
     前記コーナ刃稜線部分における前記チャンファー面のラジアルレーキ角γは、-30°以上-15°以下である、請求項1から請求項3のいずれか1項に記載のエンドミル本体。
    The chamfer surface is also provided on at least a part of a corner blade ridge line portion where the corner rake surface and the flank surface of the corner blade intersect,
    The end mill body according to any one of claims 1 to 3, wherein a radial rake angle γ of the chamfer surface at the corner edge portion is not less than -30 ° and not more than -15 °.
  5.  前記チャンファー面は、前記底刃には設けられない、請求項4に記載のエンドミル本体。 The end mill body according to claim 4, wherein the chamfer surface is not provided on the bottom blade.
  6.  前記ギャッシュにおける前記底刃から最も離間した角部には、半径が0.5mm以上2mm以下の丸みが付けられる、請求項1から請求項5のいずれか1項に記載のエンドミル本体。 The end mill body according to any one of claims 1 to 5, wherein a corner having a radius of 0.5 mm or more and 2 mm or less is attached to a corner portion of the gasche that is farthest from the bottom blade.
  7.  ラジアスエンドミルの切刃部を構成する、請求項1から請求項6のいずれか1項に記載のエンドミル本体。 The end mill body according to any one of claims 1 to 6, constituting a cutting edge portion of a radius end mill.
  8.  請求項1から請求項7のいずれか1項に記載のエンドミル本体と、
     前記エンドミル本体の後端部に取り付けられ、工作機械の回転軸に固定されるように構成されたシャンク部と、
     を備える、エンドミル。
    The end mill body according to any one of claims 1 to 7,
    A shank portion attached to a rear end portion of the end mill body and configured to be fixed to a rotating shaft of a machine tool;
    An end mill.
  9.  前記シャンク部は、セラミック製であり、
     前記エンドミル本体と前記シャンク部とは、一体に構成される、請求項8に記載のエンドミル。
    The shank portion is made of ceramic,
    The end mill according to claim 8, wherein the end mill body and the shank portion are configured integrally.
  10.  前記エンドミル本体は、前記シャンク部が着脱可能に接続されるように構成された接続部を有する、請求項8に記載のエンドミル。 The end mill body according to claim 8, wherein the end mill body has a connecting portion configured to be detachably connected to the shank portion.
PCT/JP2019/009441 2018-03-27 2019-03-08 End mill main body and end mill WO2019188135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019534989A JP7341058B2 (en) 2018-03-27 2019-03-08 End mill body and end mill

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018060177 2018-03-27
JP2018-060177 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019188135A1 true WO2019188135A1 (en) 2019-10-03

Family

ID=68059914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009441 WO2019188135A1 (en) 2018-03-27 2019-03-08 End mill main body and end mill

Country Status (2)

Country Link
JP (1) JP7341058B2 (en)
WO (1) WO2019188135A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112890996A (en) * 2021-01-21 2021-06-04 百齿泰(厦门)医疗科技有限公司 Implant and implant system
CN113333837A (en) * 2020-09-07 2021-09-03 厦门金鹭特种合金有限公司 High-efficient whole end mill
CN114378345A (en) * 2021-12-30 2022-04-22 株洲钻石切削刀具股份有限公司 Milling cutter for machining and forming large chamfer forming surface
WO2023277176A1 (en) * 2021-07-01 2023-01-05 京セラ株式会社 Rotating tool, and method for manufacturing cut workpiece

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100115U (en) * 1986-12-18 1988-06-29
JPH0457311U (en) * 1990-09-21 1992-05-18
JPH07204921A (en) * 1994-01-14 1995-08-08 Hitachi Tool Eng Ltd End mill
JP2007307673A (en) * 2006-05-19 2007-11-29 Osg Corp Diamond-coated cutting member and its manufacturing method
US20170144234A1 (en) * 2015-11-23 2017-05-25 Iscar, Ltd. Cemented Carbide Corner Radius End Mill with Continuously Curved Rake Ridge and Helical Flute Design
WO2018003948A1 (en) * 2016-06-30 2018-01-04 日本特殊陶業株式会社 Endmill body and radius end mill

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113333837A (en) 2020-09-07 2021-09-03 厦门金鹭特种合金有限公司 High-efficient whole end mill
CN112890996B (en) 2021-01-21 2022-06-21 百齿泰(厦门)医疗科技有限公司 Implant and implant system
JPWO2023277176A1 (en) 2021-07-01 2023-01-05
CN114378345B (en) 2021-12-30 2023-09-19 株洲钻石切削刀具股份有限公司 Large-chamfer forming surface machining forming milling cutter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100115U (en) * 1986-12-18 1988-06-29
JPH0457311U (en) * 1990-09-21 1992-05-18
JPH07204921A (en) * 1994-01-14 1995-08-08 Hitachi Tool Eng Ltd End mill
JP2007307673A (en) * 2006-05-19 2007-11-29 Osg Corp Diamond-coated cutting member and its manufacturing method
US20170144234A1 (en) * 2015-11-23 2017-05-25 Iscar, Ltd. Cemented Carbide Corner Radius End Mill with Continuously Curved Rake Ridge and Helical Flute Design
WO2018003948A1 (en) * 2016-06-30 2018-01-04 日本特殊陶業株式会社 Endmill body and radius end mill

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113333837A (en) * 2020-09-07 2021-09-03 厦门金鹭特种合金有限公司 High-efficient whole end mill
CN112890996A (en) * 2021-01-21 2021-06-04 百齿泰(厦门)医疗科技有限公司 Implant and implant system
WO2023277176A1 (en) * 2021-07-01 2023-01-05 京セラ株式会社 Rotating tool, and method for manufacturing cut workpiece
CN114378345A (en) * 2021-12-30 2022-04-22 株洲钻石切削刀具股份有限公司 Milling cutter for machining and forming large chamfer forming surface
CN114378345B (en) * 2021-12-30 2023-09-19 株洲钻石切削刀具股份有限公司 Large-chamfer forming surface machining forming milling cutter

Also Published As

Publication number Publication date
JPWO2019188135A1 (en) 2021-02-12
JP7341058B2 (en) 2023-09-08

Similar Documents

Publication Publication Date Title
WO2019188135A1 (en) End mill main body and end mill
WO2017047700A1 (en) Cutting insert and replaceable-blade-type cutting tool
JP5967330B1 (en) Cutting insert and cutting edge exchangeable rotary cutting tool
US8186914B2 (en) Rotary cutting tool
CN108472751B (en) Cutting insert and indexable cutting tool
JP6330913B2 (en) Cutting insert and cutting edge exchangeable rotary cutting tool
JP3196394B2 (en) Indexable tip
JPWO2007142224A1 (en) Cutting tools and cutting inserts
JP2002192407A (en) Cutting tool
JP2009241190A (en) Cbn radius end mill
JP6361948B2 (en) Cutting inserts and cutting tools
WO2019044791A1 (en) Tapered reamer
WO2019073752A1 (en) Rotary cutting tool
JP4125909B2 (en) Square end mill
JP4821244B2 (en) Throw-away tip and throw-away end mill
JP2017080864A (en) Cutting edge exchange-type reamer and reamer insert
CN109414769B (en) End mill body and radius end mill
JP2001212712A (en) Throw-away end mill and throw-away tip
JP2006015418A (en) End mill for longitudinal feed machining
JP5849817B2 (en) Square end mill
JP2006205298A (en) Cutting insert, milling cutter tool and cutting method using this cutting insert
JPH06335816A (en) Minimum diameter end mill
JP3795278B2 (en) End mill
CN111545816A (en) End mill with flat relief angle for enhanced rigidity
JP7491105B2 (en) Ball End Mill

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019534989

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775417

Country of ref document: EP

Kind code of ref document: A1