WO2019188104A1 - Fiber-reinforced vulcanized rubber composition and production method therefor - Google Patents

Fiber-reinforced vulcanized rubber composition and production method therefor Download PDF

Info

Publication number
WO2019188104A1
WO2019188104A1 PCT/JP2019/009214 JP2019009214W WO2019188104A1 WO 2019188104 A1 WO2019188104 A1 WO 2019188104A1 JP 2019009214 W JP2019009214 W JP 2019009214W WO 2019188104 A1 WO2019188104 A1 WO 2019188104A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
rubber composition
vulcanized rubber
weight
parts
Prior art date
Application number
PCT/JP2019/009214
Other languages
French (fr)
Japanese (ja)
Inventor
山田 昌宏
阪本 浩規
真之 廣田
佑美 細木
村瀬 裕明
Original Assignee
大阪瓦斯株式会社
大阪ガスケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社, 大阪ガスケミカル株式会社 filed Critical 大阪瓦斯株式会社
Priority to JP2020509790A priority Critical patent/JPWO2019188104A1/en
Publication of WO2019188104A1 publication Critical patent/WO2019188104A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Definitions

  • the present invention relates to a vulcanized rubber composition reinforced with cellulose nanofibers modified with a 9,9-bisarylfluorene skeleton and a method for producing the same.
  • Cellulose which is a fiber derived from natural products such as plants, has a low environmental load, is a sustainable resource, and has excellent properties such as high elastic modulus, high strength, and low linear expansion coefficient. Therefore, it is used for a wide range of applications, for example, materials such as paper, film and sheet, and resin composite materials (for example, resin reinforcing agents). Also in the rubber composition, cellulose is added as a reinforcing agent to the rubber composition in order to improve the mechanical properties of the rubber.
  • Patent Document 1 discloses a finely powdered cellulose fiber prepared from natural plant fibers and having an average particle size of 100 ⁇ m as a rubber composition capable of achieving both excellent low heat generation and synthesis.
  • a tire rubber composition containing 2 to 100 parts by weight of diene rubber with respect to 100 parts by weight of diene rubber is disclosed.
  • Japanese Patent Application Laid-Open No. 2005-133025 discloses a rubber composition having excellent abrasion resistance, having 5 to 75 parts by weight of starch and a fiber diameter of 1 ⁇ m or less with respect to 100 parts by weight of the diene rubber component.
  • a rubber composition comprising 0.1 to 40 parts by weight of bacterial cellulose is disclosed.
  • Patent Document 3 describes a vulcanized rubber composition having excellent breaking characteristics and low energy loss at the interface between rubber and cellulose.
  • 1 to 50 parts by weight (more preferably, chemically modified microfibril cellulose having an average fiber diameter of 4 nm to 1 ⁇ m with respect to 100 parts by weight of a rubber component composed of at least one of natural rubber, modified natural rubber, acrylonitrile butadiene rubber and polybutadiene rubber. 7 to 15 parts by weight) is disclosed.
  • This document describes acetylation, alkyl esterification, complex esterification, ⁇ -ketoesterification, and arylcarbamation as chemical modification methods for microfibril cellulose.
  • an object of the present invention is to provide a vulcanized rubber composition capable of improving mechanical properties such as strength, elongation and hardness, and a method for producing the same.
  • Another object of the present invention is to provide a vulcanized rubber composition capable of improving heat resistance and solvent resistance and a method for producing the same.
  • the present inventors have reinforced rubber composition by reinforcing rubber components with modified cellulose nanofibers to which a compound having a 9,9-bis (aryl) fluorene skeleton is bound.
  • the present inventors have found that mechanical properties such as strength, elongation, and hardness of a product can be improved.
  • the vulcanized rubber composition of the present invention includes a rubber component (A) and a modified cellulose nanofiber (B) to which a fluorene compound (B1) having an aryl group at the 9th and 9th positions is bonded.
  • the fluorene compound (B1) may be a compound represented by the following formula (1).
  • ring Z is an arene ring
  • R 1 and R 2 are substituents
  • X 1 is a heteroatom-containing functional group
  • k is an integer of 0 to 4
  • n is an integer of 1 or more
  • p is an integer of 0 or more. Show).
  • X 1 is a group — [(OA) m1 -Y 1 ] (wherein A is an alkylene group, Y 1 is a hydroxyl group or a glycidyloxy group, and m1 represents an integer of 0 or more) It may be.
  • the ratio of the fluorene compound (B1) may be about 0.01 to 33% by weight with respect to the total amount of the modified cellulose nanofiber (B).
  • the modified cellulose nanofiber (B) may have an average fiber diameter of about 3 to 500 nm.
  • the rubber component (A) may contain a diene rubber and / or an olefin rubber.
  • the ratio of the modified cellulose nanofiber (B) may be about 0.1 to 30 parts by weight with respect to 100 parts by weight of the rubber component (A).
  • the vulcanized rubber composition may further contain a reinforcing agent (C) and a processing aid (D).
  • the present invention provides a kneading step of kneading the rubber component (A), the modified cellulose nanofiber (B) in which the fluorene compound (B1) having an aryl group at the 9th and 9th positions is bonded and / or its raw material. Also included is a method for producing the vulcanized rubber composition, which includes a vulcanization step of vulcanizing the kneaded composition to obtain a vulcanized rubber composition.
  • the raw material may be a fluorene compound (B1) and unmodified cellulose nanofibers.
  • the modified cellulose nanofiber (B) and / or its raw material dispersed in advance in the processing aid (D) may be kneaded with the rubber component (A).
  • the rubber component is reinforced with modified cellulose nanofibers to which a compound having a 9,9-bis (aryl) fluorene skeleton is bonded
  • the modified cellulose nanofibers can be uniformly dispersed in the rubber, and the vulcanized rubber composition Mechanical properties such as strength, elongation and hardness of objects can be improved.
  • the obtained vulcanized rubber composition has high heat resistance and solvent resistance, and can suppress swelling of rubber even when it contains a processing aid such as a solvent or a softening agent.
  • FIG. 1 is a scanning electron microscope (SEM) photograph of cellulose nanofibers used in the examples.
  • the vulcanized rubber composition of the present invention includes a rubber component (A) and a modified cellulose nanofiber (B) to which a fluorene compound (B1) having an aryl group at the 9th and 9th positions is bonded.
  • the rubber component (A) is not particularly limited, and a conventional rubber component can be used.
  • conventional rubber components include diene rubber, olefin rubber, acrylic rubber (ACM, ANM), butyl rubber (IIR), epichlorohydrin rubber (CO), polysulfide rubber (OT, EOT), and urethane rubber. (U), silicone rubber (Q), fluorine rubber (FFKM, FKM), sulfur-containing rubber and the like. These rubber components can be used alone or in combination of two or more. Of these rubber components, diene rubbers and / or olefin rubbers are preferred from the viewpoint of a large improvement effect by the modified cellulose nanofiber (B).
  • diene rubber examples include natural rubber (NR), epoxidized natural rubber, polybutadiene [eg, butadiene rubber (BR), 1,2-polybutadiene (VBR), etc.], isoprene rubber (IR), chloroprene rubber (CR ), Acrylonitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR), and the like.
  • NR natural rubber
  • epoxidized natural rubber examples of the diene rubber
  • polybutadiene eg, butadiene rubber (BR), 1,2-polybutadiene (VBR), etc.
  • IR isoprene rubber
  • CR chloroprene rubber
  • NBR Acrylonitrile-butadiene rubber
  • SBR styrene-butadiene rubber
  • diene rubbers may be hydrogenated rubber (for example, hydrogenated BR, hydrogenated NBR, hydrogenated SBR, etc.).
  • These diene rubbers can
  • olefin rubber examples include ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), ethylene-butene rubber, ethylene-1-butene-diene rubber, propylene-1-butene-diene rubber, polyisobutylene rubber, ethylene -Vinyl acetate rubber, maleic acid modified ethylene-propylene rubber (M-EPM), chlorosulfonated polyethylene (CSM), chlorinated polyethylene (CM), maleic acid modified chlorinated polyethylene (M-CM) and the like.
  • EPM ethylene-propylene rubber
  • EPDM ethylene-propylene-diene rubber
  • EPDM ethylene-butene rubber
  • ethylene-1-butene-diene rubber propylene-1-butene-diene rubber
  • polyisobutylene rubber ethylene -Vinyl acetate rubber
  • M-EPM chlorosulfonated polyethylene
  • CSM chlorinated polyethylene
  • CM male
  • Examples of the diene unit (non-conjugated diene unit) contained in the olefin rubber include units derived from dicyclopentadiene, 1,4-hexadiene, cyclooctadiene, methylene norbornene, and ethylidene norbornene. These olefin rubbers can be used alone or in combination of two or more.
  • the copolymer rubber may be a random or block copolymer, and examples of the block copolymer include a copolymer having an AB type, ABA type, tapered type, or radial teleblock type structure. .
  • diene rubbers such as SBR and NBR and olefin rubbers such as EPDM are preferred.
  • the Mooney viscosity of the unvulcanized rubber component can be appropriately selected depending on the rubber type, and may be 30 or more (for example, about 30 to 80) in the case of a diene rubber, or 20 or more (for example, in the case of an olefin rubber) Or about 40 (for example, about 40 to 80) in the case of an olefin-based rubber composition containing carbon black as a reinforcing agent.
  • the Mooney viscosity can be measured according to JIS K6300.
  • the fluorene compound (B1) having an aryl group at the 9,9-position is a compatibilizing agent or dispersion for uniformly dispersing cellulose nanofibers in the rubber component as a functional group constituting the modified cellulose nanofiber (B).
  • the mechanical properties of the vulcanized rubber composition can be greatly improved.
  • Such a fluorene compound may be a compound having a 9,9-bisarylfluorene skeleton, and may be, for example, a fluorene compound represented by the formula (1).
  • examples of the arene ring represented by the ring Z include a monocyclic arene ring such as a benzene ring, a polycyclic arene ring, and the like.
  • the polycyclic arene ring includes a condensed polycyclic arene.
  • a ring (fused polycyclic hydrocarbon ring), a ring assembly arene ring (ring assembly aromatic hydrocarbon ring), and the like are included.
  • Examples of the condensed polycyclic arene ring include a condensed bicyclic arene ring (for example, a condensed bicyclic C 10-16 arene ring such as a naphthalene ring), a condensed tricyclic arene (for example, an anthracene ring, a phenanthrene ring, etc.) And condensed bi- to tetracyclic arene rings.
  • Preferred examples of the condensed polycyclic arene ring include a naphthalene ring and an anthracene ring, and a naphthalene ring is particularly preferable.
  • Examples of the ring-assembled arene ring include a bearene ring [for example, a bi-C 6-12 arene ring such as a biphenyl ring, a binaphthyl ring, a phenylnaphthalene ring (for example, a 1-phenylnaphthalene ring, a 2-phenylnaphthalene ring, etc.), A ring (for example, a tel C 6-12 arene ring such as a terphenylene ring) can be exemplified.
  • Preferred ring-assembled arene rings include bi-C 6-10 arene rings, particularly biphenyl rings.
  • the two rings Z substituted at the 9-position of fluorene may be different or the same, but are usually the same ring in many cases.
  • a benzene ring, a naphthalene ring, a biphenyl ring (particularly a benzene ring) and the like are preferable.
  • substitution position of the ring Z substituted at the 9-position of fluorene is not particularly limited.
  • the group corresponding to the ring Z substituted at the 9-position of fluorene may be a 1-naphthyl group, a 2-naphthyl group, or the like.
  • hetero atom-containing functional group represented by X 1 examples include a functional group having at least one selected from oxygen, sulfur and nitrogen atoms as a hetero atom.
  • the number of heteroatoms contained in such a functional group is not particularly limited, but may be usually 1 to 3, preferably 1 or 2.
  • Examples of the functional group include a group — [(OA) m1 —Y 1 ] (wherein Y 1 is a hydroxyl group, a glycidyloxy group, an amino group, an N-substituted amino group, or a mercapto group, and A is an alkylene group.
  • M1 is an integer of 0 or more
  • a group — (CH 2 ) m2 —COOR 3 wherein R 3 is a hydrogen atom or an alkyl group, and m2 is an integer of 0 or more).
  • examples of the N-substituted amino group for Y 1 include N-monoalkylamino groups such as methylamino and ethylamino groups (N-monoC 1-4 alkylamino groups). And N-monohydroxyalkylamino groups such as a hydroxyethylamino group (N-monohydroxy C 1-4 alkylamino group and the like).
  • the alkylene group A includes a linear or branched alkylene group.
  • the linear alkylene group include C 2-6 alkylene groups such as ethylene group, trimethylene group and tetramethylene group (preferably straight chain groups).
  • a linear C 2-3 alkylene group more preferably a linear C 2-3 alkylene group, particularly an ethylene group).
  • the branched alkylene group include a propylene group, a 1,2-butanediyl group, Examples thereof include branched C 3-6 alkylene groups such as 1,3-butanediyl groups (preferably branched C 3-4 alkylene groups, particularly propylene groups).
  • M1 representing the number of repeating oxyalkylene groups (OA) (average number of added moles) can be selected from 0 or an integer of 1 or more (eg, 0 to 15, preferably about 0 to 10), for example, 0 to 8 ( For example, it may be 1 to 8), preferably 0 to 5 (eg 1 to 5), more preferably 0 to 4 (eg 1 to 4), particularly 0 to 3 (eg 1 to 3), and usually 0 It may be ⁇ 2 (eg 0 or 1).
  • the type of the alkylene group A may be the same or different. Further, the type of alkylene group A may be the same or different in the same or different ring Z.
  • the alkyl group represented by R 3 is a linear or branched chain such as methyl, ethyl, propyl, isopropyl, butyl, or t-butyl.
  • Illustrative examples are C 1-6 alkyl groups.
  • Preferred alkyl groups are C 1-4 alkyl groups, especially C 1-2 alkyl groups.
  • M2 indicating the number of repeating methylene groups (average number of moles added) may be 0 or an integer of 1 or more (eg, 1 to 6, preferably 1 to 4, more preferably about 1 to 2).
  • m2 may usually be 0 or 1 to 2.
  • the group X 1 is preferably a group — [(OA) m1 —Y 1 ] (wherein A is an alkylene group, Y 1 is a hydroxyl group or a glycidyloxy group, and m1 is an integer of 0 or more).
  • a group in which Y 1 is a glycidyloxy group — [(OA) m1 —Y 1 ] [wherein A represents a C 2-6 alkylene group such as an ethylene group (eg, a C 2-4 alkylene group, particularly a C 2-3 An alkylene group), m1 is an integer of 0 to 5 (for example, 0 or 1)].
  • n indicating the number of the group X 1 substituted on the ring Z is 1 or more, preferably 1 to 3, more preferably 1 or 2 (particularly 1).
  • the number of substitutions n may be the same or different in each ring Z.
  • the group X 1 can be substituted at an appropriate position of the ring Z.
  • the ring Z is a benzene ring, it is substituted at the 2, 3, 4 position (particularly the 3 position and / or the 4 position) of the phenyl group.
  • ring Z is a naphthalene ring, it is often substituted at any one of positions 5 to 8 of the naphthyl group.
  • 1 of the naphthalene ring is substituted with respect to the 9-position of fluorene.
  • Position or 2-position is substituted (substituted by the relationship of 1-naphthyl or 2-naphthyl), and the relationship such as the 1,5-position, 2,6-position, etc.
  • substitution position (especially when n is 1, In many cases, the group X 1 is substituted in the (2,6-position relationship). Moreover, when n is 2 or more, the substitution position is not particularly limited. Further, in the ring assembly arene ring Z, the substitution position of the group X 1 is not particularly limited, and for example, the arene ring bonded to the 9th position of fluorene and / or the arene ring adjacent to the arene ring may be substituted. Good.
  • the 3-position or 4-position of the biphenyl ring Z may be bonded to the 9-position of fluorene, and when the 3-position of the biphenyl ring Z is bonded to the 9-position of fluorene, the substitution position of the group X 1 is Any of 2, 4, 5, 6, 2 ′, 3 ′, and 4 ′ positions may be used, and the 6-position may be preferably substituted.
  • examples of the substituent R 2 include a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), alkyl group (methyl group, ethyl group, propyl group, isopropyl group, butyl group, linear or branched C 1-10 alkyl group such as s-butyl group or t-butyl group, preferably linear or branched C 1-6 alkyl group, more preferably linear or branched chain C 1-4 alkyl group), cycloalkyl group (C 5-10 cycloalkyl group such as cyclopentyl group, cyclohexyl group, etc.), aryl group [phenyl group, alkylphenyl group (methylphenyl (tolyl) group, dimethylphenyl (xylyl), etc.
  • a halogen atom eg, fluorine atom, chlorine atom, bromine atom, iodine atom
  • a biphenyl group such as a naphthyl group, an aralkyl group (benzyl group, phenethyl C 6-10 an aryl -C 1-4 alkyl group) such as an alkoxy group (e.g., methoxy group, an ethoxy group, a propoxy group, n- butoxy group, isobutoxy group, a linear or branched, such as t- butoxy A chain C 1-10 alkoxy group), a cycloalkoxy group (eg, C 5-10 cycloalkyloxy group such as cyclohexyloxy group), an aryloxy group (eg, C 6-10 aryloxy such as phenoxy group) Group), aralkyloxy group (eg C 6-10 aryl-C 1-4 alkyloxy group such as benzyloxy group), alkylthio group (eg methylthio group, ethylthio group,
  • substituents R 2 typically, a halogen atom, a hydrocarbon group (alkyl group, cycloalkyl group, aryl group, aralkyl group), alkoxy group, acyl group, nitro group, cyano group, substituted amino group Etc.
  • Preferable substituent R 2 is an alkoxy group (such as a linear or branched C 1-4 alkoxy group such as a methoxy group), particularly an alkyl group (particularly a linear or branched chain C such as a methyl group). 1-4 alkyl group) is preferred.
  • the substituent R 2 when the substituent R 2 is an aryl group, the substituent R 2 may form the ring assembly arene ring together with the ring Z.
  • the type of the substituent R 2 may be the same or different in the same or different ring Z.
  • the number p of the substituent R 2 can be appropriately selected depending on the kind of the ring Z and the like, and may be an integer of about 0 to 8, for example, an integer of 0 to 4, preferably 0 to 3 (eg, 0 to 2). ), More preferably 0 or 1.
  • the ring Z may be a benzene ring, a naphthalene ring or a biphenyl ring, and the substituent R 2 may be a methyl group.
  • substituent R 1 examples include a cyano group, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, etc.), a carboxyl group, an alkoxycarbonyl group (eg, a C 1-4 alkoxy-carbonyl group such as a methoxycarbonyl group), an alkyl, etc.
  • Groups eg, C 1-6 alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, and t-butyl groups
  • aryl groups eg, C 6-10 aryl groups such as phenyl
  • a linear or branched C 1-4 alkyl group (particularly a C 1-3 alkyl group such as a methyl group), a carboxyl group or a C 1-2 alkoxy-carbonyl group, cyano A group and a halogen atom are preferred.
  • the substitution number k is an integer of 0 to 4 (for example, 0 to 3), preferably an integer of 0 to 2 (for example, 0 or 1), particularly 0.
  • the number of substitutions k may be the same or different from each other.
  • the types of the substituents R 1 may be the same or different from each other, and are substituted with two benzene rings of the fluorene ring.
  • the type of substituent R 1 may be the same or different. Further, the substitution position of the substituent R 1 is not particularly limited, and may be, for example, the 2nd to 7th positions (such as the 2nd, 3rd and / or 7th positions) of the fluorene ring.
  • Y 1 represents a hydroxyl group
  • 9,9-bis ( 9,9-bis (hydroxy C 6- ) such as 4-hydroxyphenyl) fluorene, 9,9-bis (6-hydroxy-2-naphthyl) fluorene, 9,9-bis (5-hydroxy-1-naphthyl) fluorene 12 aryl) fluorene; 9,9-bis (di or trihydroxy C 6-12 aryl) fluorene such as 9,9-bis (3,4-dihydroxyphenyl) fluorene; 9,9-bis (3-methyl-4 - 9,9-bis such hydroxyphenyl) fluorene (C 1-4 alkyl - hydroxy C 6-12 aryl) fluorene; 9,9-bis (3-phenyl-4 Hydroxyphenyl) fluorene, 9,9-bis (4
  • Preferred fluorene compounds when the group X 1 is a group — [(OA) m1 —Y 1 ] include 9,9-bis (glycidyloxyaryl) fluorene
  • 9,9-bis (3-phenyl-4-glycidyl oxyphenyl) fluorene such as 9,9-bis (C 6-10 aryl - glycidyloxy C 6-10 aryl) fluorene; 9,9-bis (aryl - Glycidyloxy (poly) alkoxyaryl) fluorene, for example, 9,9-bis (C 6-10 aryl-glycidyloxy, such as 9,9-bis (3-phenyl-4- (2-glycidyloxyethoxy) phenyl) fluorene (poly) C 2-4 alkoxy C 6-10 aryl) fluorene; 9,9-bis (di Glycidyloxy) aryl) fluorene, e.g., 9,9-bis (3,4-di (glycidyloxy) phenyl) fluorene such as 9,9-bis (di (glycidyloxy) C 6-10 aryl) fluorene;
  • fluorene compounds (B1) can be used alone or in combination of two or more.
  • (poly) alkoxy is used to mean both an alkoxy group and a polyalkoxy group.
  • Cellulose nanofibers (or cellulose nanofibers) constituting the modified cellulose nanofiber (B) are cellulose fibers obtained by refining cellulose (cellulose raw material) to the nano order (or microfibrillation), and microorganism-derived nanometer-sized cellulose. Fiber.
  • cellulose nanofiber examples include pulps having a low content of non-cellulosic components such as lignin and hemicellulose, for example, plant-derived cellulose raw materials ⁇ for example, wood [for example, conifers (pine, fir, spruce, tsuga, cedar, etc.), Hardwood (beech, hippopotamus, poplar, maple, etc.)], herbaceous plants [hemp (hemp, flax, manila hemp, ramie, etc.), straw, bagasse, mitsumata, etc., seed hair fibers (cotton linter, Bombax cotton, capok Etc.), bamboo, sugarcane, etc. ⁇ , pulps produced from animal-derived cellulose raw materials (eg, squirt cellulose), bacterial-derived cellulose raw materials (eg, cellulose contained in Nata de Coco), and the like.
  • plant-derived cellulose raw materials for example, wood [for example, conifers (pine, fir, spruce
  • cellulose nanofibers can be used alone or in combination of two or more.
  • wood nanofibers derived from wood pulp for example, softwood pulp, hardwood pulp, etc.
  • pulp derived from seed hair fibers for example, cotton linter pulp
  • the pulp may be a mechanical pulp obtained by mechanically treating a pulp material, but a chemical pulp obtained by chemically treating a pulp material is preferable because the content of non-cellulosic components is small.
  • the average fiber diameter and average fiber length of the cellulose nanofibers can be selected so that the average fiber diameter and average fiber length of the modified cellulose nanofibers are within the ranges described below.
  • the average fiber diameter, the average fiber length, and the ratio of the average fiber length to the average fiber diameter (aspect ratio) of the cellulose nanofibers may be the same as the range of the modified cellulose nanofibers described later, and are generally substantially the same.
  • the cellulose nanofiber may be cellulose (or cellulose fiber) having high crystallinity, and the crystallinity of cellulose is, for example, 40 to 100% (for example, 50 to 100%), preferably 60 to 100%, more preferably May be about 70 to 100% (especially 75 to 100%), and usually the crystallinity may be 60% or more (for example, 60 to 99%).
  • the crystal structure of cellulose include I-type, II-type, III-type, and IV-type, and an I-type crystal structure excellent in linear expansion characteristics and elastic modulus is preferable.
  • modified cellulose nanofiber (B) and production method thereof The modified cellulose nanofiber (or modified cellulose nanofiber) (B) is a cellulose derivative in which the cellulose nanofiber and the fluorene compound (B1) are bonded.
  • the form of chemical modification (or bonding) of the modified cellulose nanofiber (B) is not particularly limited.
  • the fluorene compound (B1) is a fluorene compound represented by the formula (1)
  • the fluorene compound (B1) The reactive group (heteroatom-containing functional group) can be appropriately selected.
  • an ether of the hydroxyl group and / or carboxyl group of cellulose nanofiber and the hydroxyl group of the fluorene compound represented by the formula (1) may be a bond and / or an ester bond
  • Y 1 is a glycidyloxy group
  • the hydroxyl group and / or carboxyl group of the cellulose nanofiber and the glycidyl group of the fluorene compound represented by the formula (1) It may be an ether bond and / or an ester bond.
  • the carboxyl group of a cellulose nanofiber may be formed in the manufacture processes, such as a pulp.
  • the modified cellulose nanofiber (B) may be produced by reacting the raw cellulose nanofiber and the fluorene compound (B1) in the presence of a predetermined catalyst.
  • the raw cellulose nanofiber And the fluorene compound (B1) may be produced by reacting in the process of kneading.
  • the ratio of the raw material cellulose nanofiber can be selected according to the reactive group of the fluorene compound (B1). For example, it is 0.1 to 500 parts by weight (for example, 1 to 300 parts by weight with respect to 100 parts by weight of the fluorene compound (B1)). Part by weight), and may be, for example, about 5 to 200 parts by weight (particularly 10 to 150 parts by weight).
  • the catalyst can also be selected according to the reactive group of the fluorene compound.
  • an acid catalyst may be used.
  • the acid catalyst include Bronsted acids, for example, inorganic acids such as sulfuric acid, hydrochloric acid, and phosphoric acid, organic acids such as p-toluenesulfonic acid, and solid acids [for example, heteropolyacids (tungsten heteropolyacid, molybdenum heteropolyacid, etc.
  • Cation exchange resins strong acid cation exchange resins having sulfonic acid groups, fluorine-containing cation exchange resins having sulfonic acid groups, weak acid cation exchange resins having carboxylic acid groups, etc.
  • These acid catalysts can be used alone or in combination of two or more.
  • the base catalyst may be either an inorganic base or an organic base.
  • the inorganic base include alkali metal hydroxides (such as sodium hydroxide and potassium hydroxide) and alkali metal carbonates.
  • the organic base include tertiary amines such as trialkylamine (such as trimethylamine and triethylamine), alkanolamine (such as triethanolamine and dimethylaminoethanol), heterocyclic amine (such as N-methylmorpholine), and hexamethylenetetramine.
  • DBU Diazabicycloundecene
  • DBN diazabicyclononene
  • DABCO 1,4-diazabicyclo [2.2.2] octane
  • the amount of the catalyst used can be selected according to the type of the catalyst, but can be appropriately selected from a range of, for example, about 0.01 to 100 parts by weight with respect to 100 parts by weight of the raw material cellulose nanofiber, and usually 0.01 to 20 parts. Parts by weight (eg 0.1 to 18 parts by weight), preferably 0.5 to 18 parts by weight (eg 1 to 17 parts by weight), more preferably about 3 to 15 parts by weight (especially 5 to 15 parts by weight). May be.
  • the reaction may be carried out in the absence of an organic solvent, but is usually carried out in the presence of an organic solvent.
  • the organic solvent may be impregnated in the raw material cellulose nanofibers, but is often reacted in a dispersion system in which the raw material cellulose nanofibers are dispersed in the organic solvent.
  • the raw material cellulose nanofibers and the fluorene compound (B1) are reacted in a dispersion system in which the raw material cellulose nanofibers are dispersed in an organic solvent, they can be reacted uniformly.
  • the modified cellulose nanofiber (B) obtained by such a method has high handleability and dispersibility.
  • raw material cellulose nanofibers When drying raw material cellulose nanofibers (particularly, microfibrillated fibers, nanofibers having an average fiber diameter of nanometer size), the fibers may become entangled and cannot be redispersed. Therefore, usually, raw material cellulose nanofibers are often marketed as water-impregnated or aqueous dispersions.
  • a conventional solvent replacement method for replacing the water of the aqueous dispersion with an organic solvent for example, adding a water-soluble solvent to the aqueous dispersion of raw material cellulose nanofibers, and separating the raw material cellulose nanofibers After removing the solvent (or removing the solvent), a dispersion liquid in which the raw material cellulose nanofibers are dispersed in the organic solvent can be prepared by a method of repeating the operation of adding and mixing the organic solvent.
  • the solvent can be replaced by removing water by distillation (including azeotropic distillation).
  • water-soluble organic solvent examples include alcohols (C 1-4 alkanols such as methanol, ethanol, propanol and isopropanol), ethers (cyclic ethers such as dioxane and tetrahydrofuran), ketones (acetone and the like), amides, and the like.
  • alcohols C 1-4 alkanols such as methanol, ethanol, propanol and isopropanol
  • ethers cyclic ethers such as dioxane and tetrahydrofuran
  • ketones acetone and the like
  • amides examples of the water-soluble organic solvent
  • sulfoxides dimethylsulfoxide, etc.
  • alkanediols eg C 2-4 alkanediols such as ethylene glycol, propylene glycol
  • cellosolves methyl cellosolve, Ethyl cellosolve, etc.
  • carbitols ethylcarbitol, etc.
  • carbonates ethylene carbonate, propylene carbonate, dimethyl carbonate, etc.
  • Water-insoluble organic solvents include ethers (dialkyl ethers such as diethyl ether and diisopropyl ether), esters (methyl acetate, ethyl acetate, butyl acetate, etc.), ketones (methyl ethyl ketone, methyl isobutyl ketone, etc.), nitriles (Eg benzonitrile), cellosolve acetates, carbitol acetates, hydrocarbons (aliphatic hydrocarbons such as hexane, octane, cyclohexane, aromatic hydrocarbons such as toluene), halogenated hydrocarbons (dichloromethane, Chloroform, carbon tetrachloride, dichloroethane, trichlor
  • aprotic solvents particularly aprotic polar solvents (for example, ethers, ketones, amides, sulfoxides, etc.) are preferable.
  • the solubility parameter (SP value, (cal / cm) 2 ) of an organic solvent may be about 8 to 15 (eg, 8.5 to 15), usually 9 to 14.5. It may be about (for example, 10 to 14.5).
  • the solid content concentration of the raw material cellulose nanofibers in the dispersion is, for example, 0.01 to 30% by weight (eg 0.1 to 20% by weight), preferably 1 to 15% by weight, more preferably 3 to 12% by weight ( For example, it may be about 5 to 10% by weight. If the solid content concentration is too low, the reaction efficiency may decrease.
  • the reaction may be performed under reduced pressure, but is usually performed under pressure or normal pressure in many cases.
  • the reaction temperature can be appropriately selected depending on the boiling point of the solvent, and may be, for example, about 50 to 200 ° C. (eg 70 to 170 ° C.), preferably about 80 to 150 ° C. (eg 100 to 130 ° C.).
  • the reaction may be performed under reflux of the solvent.
  • the reaction time is not particularly limited and is, for example, about 10 minutes to 48 hours (for example, 30 minutes to 24 hours).
  • the reaction can be performed with stirring in air or in an atmosphere of an inert gas (such as a rare gas such as nitrogen or argon).
  • the reaction may be carried out while stirring the reaction system.
  • raw material cellulose fibers cellulose or fibers other than nanometer size (for example, fibers having an average fiber diameter of micrometer size, pulp fibers, etc.) are used.
  • modified cellulose nanofibers obtained by refining cellulose may be obtained by applying mechanical shearing force to the fibers. Further, the modified cellulose fiber may be refined by defibrating after the reaction is completed.
  • the modified cellulose nanofiber (B) produced by the reaction using a catalyst may be separated and purified by a conventional method (for example, centrifugation, filtration, concentration, extraction, etc.).
  • a solvent capable of dissolving at least the fluorene compound (B1) is added to the reaction mixture, the unreacted fluorene compound is removed by a separation method (conventional method) such as centrifugation, filtration, and extraction, followed by separation and purification. Also good.
  • the separation operation can be performed a plurality of times (for example, about 2 to 5 times).
  • the modified cellulose fiber having a powdery form can be obtained by drying the separated and purified modified cellulose under heating, reduced pressure, or normal pressure.
  • the modified cellulose obtained by repeatedly removing the unreacted fluorene compound by the separation method or the like is analyzed by a method such as Raman analysis, there are a peak derived from the cellulose and a peak derived from the fluorene compound. It can be confirmed that the fluorene compound is bonded.
  • the modified cellulose nanofiber is produced by kneading in the unvulcanized rubber component, the modified cellulose nanofiber is obtained during the production process of the vulcanized rubber composition, as will be described later.
  • the modified cellulose nanofiber (B) obtained using the catalyst usually has a powdery form and is excellent in handleability. Moreover, even if the modification ratio (bonding amount) of the fluorene compound (B1) is relatively small, the modified cellulose nanofiber (B) may have a powdery form.
  • the ratio (modification rate) of the fluorene compound (B1) bound to the cellulose nanofibers is in the range of about 0.01 to 33% by weight (for example, 1 to 25% by weight) with respect to the total amount of the modified cellulose nanofibers (B). You can choose.
  • the modification rate is the modified cellulose nanofiber (B ) In the range of about 0.01 to 30% by weight, for example 0.1 to 30% by weight, preferably 0.5 to 25% by weight (eg 1 to 25% by weight), more preferably It may be about 2 to 20% by weight (particularly 3 to 20% by weight).
  • the group X 1 of the fluorene compound (B1) is a group — [(OA) m1 —Y 1 ] (wherein Y 1 represents a glycidyloxy group)
  • the modification rate is 0.01 to 33 wt. % (Eg 0.1 to 30% by weight), preferably 1 to 25% by weight (eg 2 to 25% by weight), more preferably 3 to 20% by weight (especially 5 to 20% by weight). Good.
  • modification rate is too large, properties such as dispersibility in an aqueous solvent and a low linear thermal expansion coefficient may be deteriorated. On the other hand, if the modification rate is too small, a powdery form cannot be formed, and handling properties are likely to be deteriorated. Or dispersibility (or miscibility) with the rubber component in the rubber composition may be reduced.
  • the modification rate can be measured by the method described in Examples described later.
  • the average fiber diameter of the modified cellulose nanofiber (B) is, for example, about 1 to 1000 nm (eg 3 to 800 nm), preferably 4 to 500 nm (eg 5 to 300 nm), more preferably about 10 to 200 nm (especially 15 to 100 nm). There may be. If the average fiber diameter is too large, properties such as strength of the rubber composition may be deteriorated.
  • the maximum fiber diameter of the cellulose nanofiber is, for example, about 3 to 1000 nm (for example, 4 to 900 nm), preferably about 5 to 700 nm (for example, 10 to 500 nm), more preferably about 15 to 400 nm (especially 20 to 300 nm). Also good. In many cases, the cellulose nanofibers substantially do not contain cellulose fibers having a fiber diameter of micrometer size.
  • the average fiber length of the modified cellulose nanofiber (B) can be selected, for example, in the range of about 0.01 to 500 ⁇ m (for example, 0.1 to 400 ⁇ m), and is usually 1 ⁇ m or more (for example, 5 to 300 ⁇ m), preferably 10 ⁇ m or more (for example, 20 to 200 ⁇ m), more preferably 30 ⁇ m or more (particularly 50 to 150 ⁇ m). If the average fiber length is too short, the mechanical properties of the rubber composition may be reduced. Conversely, if the average fiber length is too long, the dispersibility in the rubber composition may be reduced.
  • the ratio (aspect ratio) of the average fiber length to the average fiber diameter of the modified cellulose nanofiber (B) is, for example, 5 or more (for example, about 5 to 10,000), preferably 10 or more (for example, about 10 to 5000), and more preferably 20 (For example, about 20 to 3000), particularly 50 or more (for example, about 50 to 2000), 100 or more (for example, about 100 to 1000), and even 200 or more (for example, about 200 to 800). Good. Further, if the aspect ratio is too small, the reinforcing effect on the rubber component is lowered, and if the aspect ratio is too large, uniform dispersion becomes difficult and the fibers may be easily decomposed (or damaged).
  • the average fiber diameter, average fiber length, and aspect ratio of the modified cellulose nanofiber (B) are randomly determined from an image of a scanning electron micrograph. It may be calculated by selecting individual fibers and averaging them.
  • the modified cellulose nanofiber (B) has a low water content because the hydrophobicity is improved by the modification of the fluorene compound (B1). That is, the moisture content is 0 to 7% by weight (for example, 0 to 5% by weight), preferably 0.1 to 5% by weight, and more preferably when left standing for one day and night under the conditions of a temperature of 25 ° C. and a humidity of 60%. May be about 0.3 to 3% by weight.
  • the water content can be measured using a near infrared analyzer or the like.
  • the bulk density (apparent density) of the modified cellulose nanofiber (B) is measured in accordance with JIS K7365-1999 under the conditions of a temperature of 25 ° C. and a humidity of 60%, for example, 0.01 to 0.7 g / ml, preferably 0.05 to 0.5 g / ml, more preferably about 0.1 to 0.3 g / ml.
  • the modified cellulose nanofiber (B) has a high fluidity and an angle of repose measured according to JIS R9301-2-2 under conditions of a temperature of 25 ° C. and a humidity of 60%, for example, 20 to 45 °, The angle may be preferably 25 to 40 °, more preferably about 30 to 35 °. If the fluidity is too large, the handleability is lowered. Conversely, if the fluidity is too small, the dispersibility may be lowered.
  • the modified cellulose nanofiber (B) maintains the nanofiber form without forming a viscous liquid. Therefore, the molecular weight (or degree of polymerization) is relatively large, and the viscosity average degree of polymerization may be, for example, about 100 to 10,000, preferably about 200 to 5,000, more preferably about 300 to 2,000.
  • Viscosity average degree of polymerization can be measured by the viscosity method described in TAPPI T230. That is, 0.04 g of modified cellulose nanofiber (or raw material cellulose nanofiber) is precisely weighed, 10 mL of water and 10 mL of 1M copper ethylenediamine aqueous solution are added, and the modified cellulose is dissolved by stirring for about 5 minutes. The obtained solution is put into an Ubbelohde type viscosity tube, and the flow rate is measured at 25 ° C. A mixed liquid of 10 mL of water and 10 mL of 1M copper ethylenediamine aqueous solution is measured as a blank.
  • the viscosity average degree of polymerization can be calculated according to the following formula described in the Wood Science Experiment Manual (edited by the Wood Society of Japan, Bunnendo Publishing).
  • Viscosity average polymerization degree 175 ⁇ [ ⁇ ]
  • the modified cellulose nanofiber with high crystallinity Fiber is preferred.
  • the modified cellulose can maintain the crystallinity of the cellulose nanofibers, and therefore the crystallinity of the modified cellulose nanofiber (B) can directly refer to the value of the cellulose nanofibers.
  • the crystallinity of the modified cellulose is 40 to 100% (eg 50 to 100%), preferably 60 to 100% (eg 65 to 100%), more preferably 70 to 100% (particularly 75 to 100%).
  • the degree of crystallinity may be 60% or more (for example, about 75 to 99%). If the degree of crystallinity is too small, characteristics such as linear thermal expansion characteristics and strength may be deteriorated.
  • Examples of the crystal structure of cellulose include I-type, II-type, III-type, and IV-type, and an I-type crystal structure having high low linear expansion characteristics and high elastic modulus is preferable.
  • the crystallinity can be measured using a powder X-ray diffractometer (“Ultima IV” manufactured by Rigaku Corporation).
  • the proportion of the modified cellulose nanofiber (B) can be selected from the range of about 0.1 to 30 parts by weight, for example, 0.2 to 25 parts by weight, preferably 0.3, based on 100 parts by weight of the rubber component (A).
  • the amount is about 20 to 20 parts by weight, more preferably about 0.5 to 15 parts by weight (particularly 1 to 10 parts by weight).
  • a mechanical characteristic, heat resistance, etc. can be improved, and the ratio of a modified cellulose nanofiber (B) is 100 weight part of rubber components (A).
  • it may be, for example, about 0.1 to 10 parts by weight, preferably about 0.3 to 7 parts by weight, more preferably about 0.5 to 5 parts by weight (particularly about 1 to 3 parts by weight). If the proportion of the modified cellulose nanofiber (B) is too small, the mechanical properties of the rubber composition may be reduced, and conversely if too high, the moldability of the rubber composition may be reduced.
  • the mechanical properties of the rubber composition can be improved by adding the modified cellulose nanofiber (B) in the above ratio to the rubber component (A).
  • the heat resistance of a vulcanized rubber composition can be improved by adding unmodified cellulose nanofibers, which are raw materials for the modified cellulose nanofibers (B), to the rubber component (A).
  • the ratio of the cellulose nanofibers can also be selected from the same range as the amount of the modified cellulose nanofibers (B) added (the ratio in the composition).
  • the modified cellulose nanofiber (B) is preferable to the unmodified cellulose nanofiber from the viewpoint that the mechanical properties of the vulcanized rubber composition can be greatly improved.
  • the vulcanized rubber composition of the present invention further includes a reinforcing agent (C) in addition to the rubber component (A) and the modified cellulose nanofiber (B) in order to improve mechanical properties such as hardness and strength. May be.
  • a conventional reinforcing agent can be used.
  • granular reinforcing agents carbonaceous materials such as carbon black and graphite; calcium oxide, magnesium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, Metal oxides such as aluminum oxide (alumina); metal silicates such as calcium silicate and aluminum silicate; metal carbides such as silicon carbide and tungsten carbide; metal nitrides such as titanium nitride, aluminum nitride and boron nitride; carbonic acid Metal carbonates such as magnesium and calcium carbonate; metal sulfates such as calcium sulfate and barium sulfate; zeolite, diatomaceous earth, calcined diatomaceous earth, activated clay, silica, talc, mica, kaolin, sericite, bentonite, montmorillonite, smectite, Mineral materials such as clay) ⁇ reinforcing agents (glass fibers, carbon fibers, carbon fibers, carbon fibers, carbon
  • the cellulose fiber may be a cellulose nanofiber.
  • cellulose nanofibers are produced by reacting raw material cellulose nanofibers and fluorene compound (B1) in the course of kneading to produce modified cellulose nanofibers, cellulose nanofibers remaining without reacting with fluorene compound (B1) It may be a fiber.
  • the modified cellulose nanofiber (B) not only has its own dispersibility in the rubber component, but also has a high compatibility with a granular reinforcing agent (particularly, a granular inorganic reinforcing agent such as carbon black). The dispersibility of can also be improved.
  • carbon black examples include acetylene black, lamp black, thermal black, furnace black, channel black, ketjen black, coated carbon black, and graft carbon black. These carbon blacks can be used alone or in combination of two or more.
  • the calcium carbonate may be calcium carbonate surface-treated with a surface treatment agent such as rosin acid.
  • silica examples include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica. These silicas can be used alone or in combination of two or more.
  • the shape of the granular inorganic reinforcing agent is not particularly limited, and is spherical, elliptical, polyhedral [for example, cubic, rectangular parallelepiped, tetrahedral (pyramid), etc.], flat (plate, scale or flake) ), Layer shape, rod shape, needle shape, indeterminate shape, and the like.
  • the granular inorganic reinforcing agent may be in a porous shape. Of these, isotropic shapes such as a substantially spherical shape are preferred.
  • the average particle size (number average primary particle size) of the granular inorganic reinforcing agent is, for example, about 1 to 1000 nm, preferably 3 to 300 nm, more preferably 5 to 100 nm (particularly 10 to 50 nm). If the particle size of the granular inorganic reinforcing agent is too large, the mechanical properties of the vulcanized rubber composition may be reduced, and if it is too small, it may be difficult to uniformly disperse.
  • the average particle size (number average primary particle size) of carbon black can be selected from the range of about 5 to 200 nm, for example, 10 to 150 nm, preferably 15 to 100 nm, more preferably 20 to 80 nm (particularly 30 to 50 nm). . If the average particle size of the carbon black is too small, uniform dispersion may be difficult, and if it is too large, the mechanical properties of the rubber composition may be deteriorated.
  • the average particle diameter of a granular inorganic reinforcing agent can be measured based on a conventional method, for example, a scanning electron microscope (SEM) or a transmission electron microscope (TEM) photograph.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the proportion of the reinforcing agent (C) can be selected from the range of about 10 to 300 parts by weight, for example 20 to 200 parts by weight, preferably 30 to 150 parts by weight, more preferably 100 parts by weight of the rubber component (A). About 50 to 100 parts by weight (particularly 60 to 80 parts by weight). If the proportion of the reinforcing agent is too small, the effect of improving the mechanical properties of the vulcanized rubber composition may be reduced. Conversely, if the amount is too large, the elongation or strength of the vulcanized rubber composition may be reduced. is there.
  • the vulcanized rubber composition of the present invention may further contain a processing aid (D) in addition to the rubber component (A) and the modified cellulose nanofiber (B) in order to improve moldability and the like.
  • the processing aid (D) is not particularly limited as long as it is an additive compatible with the rubber component (A) and can reduce the viscosity of the unvulcanized rubber composition.
  • a solvent for example, hexane, cyclohexane, etc.
  • Aliphatic hydrocarbons for example, hexane, cyclohexane, etc.
  • aromatic hydrocarbons such as benzene, xylene and toluene
  • alkanols such as methanol, ethanol and isopropanol
  • ketones such as acetone, methyl ethyl ketone and cyclohexanone
  • halogenated hydrocarbons such as chloroform and trichloroethylene
  • ethyl ether and tetrahydrofuran Ethers such as ethyl acetate
  • amides such as dimethylformamide
  • sulfur compounds such as carbon disulfide
  • softeners such as paraffinic oil, naph
  • solvents such as toluene, softeners such as naphthenic oil and process oil, and plasticizers such as stearic acid are widely used.
  • the modified cellulose nanofiber (B) is contained, so that the vulcanized rubber composition (particularly EPDM) is added with the processing aid (D).
  • the vulcanized rubber composition particularly EPDM
  • Decrease in mechanical properties of a vulcanized rubber composition containing an olefin rubber such as olefin rubber can be suppressed.
  • the proportion of the processing aid (D) can be appropriately selected according to the type of the rubber component (A), and can be selected from the range of about 0.1 to 500 parts by weight with respect to 100 parts by weight of the rubber component (A).
  • the amount is 0.5 to 400 parts by weight (for example, 1 to 300 parts by weight), preferably 1 to 200 parts by weight, and more preferably about 3 to 100 parts by weight.
  • the ratio of the processing aid (D) is, for example, 10 to 200 parts by weight, preferably 20 to 150 parts by weight, with respect to 100 parts by weight of the rubber component (A). More preferably, it may be about 30 to 100 parts by weight. If the ratio of the processing aid (D) is too small, the effect of improving the moldability may be reduced, and conversely if too high, the mechanical properties of the vulcanized rubber composition may be reduced.
  • the vulcanized rubber composition of the present invention usually contains a vulcanizing agent (E).
  • a vulcanizing agent E
  • a conventional vulcanizing agent can be used depending on the type of the rubber component (A).
  • the vulcanizing agent (E) includes a sulfur-based vulcanizing agent and an organic peroxide.
  • sulfur vulcanizing agents include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, surface treated sulfur, sulfur chloride (sulfur monochloride, sulfur dichloride, etc.), morpholine disulfide, alkylphenol disulfide. Etc.
  • organic peroxide examples include diacyl peroxides such as dilauroyl peroxide, dibenzoyl peroxide, and 2,4-dichlorobenzoyl peroxide; di-t-butyl peroxide, t-butylcumyl peroxide, and dicumyl peroxide.
  • Oxide 1,1-di-butylperoxy-3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-di (t-butylperoxy) -hexane, 1,3-bis (t- Dialkyl peroxides such as butylperoxy-isopropyl) benzene; hydroperoxides such as t-butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide; n-butyl-4,4-di-t-butylperoxide Oxyvalerate, 2,5-dimethylhexane-2,5 Such as peroxy esters, such as di (peroxyl benzoate) and the like.
  • vulcanizing agents can be used alone or in combination of two or more.
  • dialkyl peroxides such as sulfur and dicumyl peroxide are widely used.
  • the proportion of the vulcanizing agent (E) is, for example, 0.1 to 10 parts by weight, preferably 0.5 to 8 parts by weight, and more preferably 0.6 to 5 parts by weight with respect to 100 parts by weight of the rubber component (A). Parts (particularly 0.8 to 3 parts by weight).
  • the vulcanized rubber composition of the present invention may further contain a vulcanization aid (F) in order to accelerate vulcanization.
  • a vulcanization aid (F) include organic vulcanization accelerators [for example, N-cyclohexyl-2-benzothiazylsulfenamide (CBS), Nt-butyl-2-benzothiazylsulfene.
  • Sulfenamide accelerators such as amide (TBBS); thiuram accelerators such as tetramethylthiuram monosulfide (TMTM) and tetramethylthiuram disulfide (TMTD); 2-mercaptobenzothiazole (MBT), a zinc salt of MBT, Thiazole accelerators such as dibenzothiazyl disulfide (MBTS); thiourea accelerators such as trimethylthiourea (TMU) and diethylthiourea (EDE); guanidines such as diphenylguanidine (DPG) and diortolylguanidine (DOTG) Accelerator: Sodium dimethyldithiocarbamate Any dithiocarbamic acid accelerator; xanthate accelerator such as zinc isopropylxanthate; aldehyde-amine or aldehyde-ammonia accelerator such as hexanemethylenetetramine], aromatic maleimide (N, N′-m- Arene bis
  • vulcanization aids can be used alone or in combination of two or more.
  • sulfenamide accelerators such as CBS
  • thiuram accelerators such as TMTD
  • inorganic assistants such as zinc oxide are widely used.
  • the ratio of the vulcanization aid (F) is, for example, about 3 to 20 parts by weight, preferably about 4 to 15 parts by weight, and more preferably about 5 to 10 parts by weight with respect to 100 parts by weight of the rubber component (A). Also good.
  • the proportion of the organic vulcanization accelerator is, for example, 0.5 to 5 parts by weight, preferably 1 to 4 parts by weight, and more preferably 1.5 to 3.5 parts by weight with respect to 100 parts by weight of the rubber component (A). It may be about a part.
  • the ratio of the inorganic auxiliary (particularly zinc white) is, for example, about 2 to 10 parts by weight, preferably about 3 to 8 parts by weight, and more preferably about 4 to 6 parts by weight with respect to 100 parts by weight of the rubber component (A). There may be.
  • the vulcanized rubber composition of the present invention may contain a conventional additive added to the vulcanized rubber depending on the type of the rubber component (A).
  • conventional additives include resin components (thermoplastic resins, thermosetting resins, etc.), vulcanization retarders, dispersants, aging or antioxidants (aromatic amine-based, benzimidazole-based anti-aging agents, etc.) , Colorants (for example, dyes and pigments), tackifiers, coupling agents (silane coupling agents, etc.), stabilizers (ultraviolet absorbers, light stabilizers, heat stabilizers, etc.), mold release agents, lubricants, Flame retardants (phosphorous flame retardants, halogen flame retardants, inorganic flame retardants, etc.), flame retardant aids, antistatic agents, conductive agents, flow control agents, leveling agents, antifoaming agents, surface modifiers, low stress Examples include agents, nucleating agents, crystallization accelerators,
  • the ratio of the other additive is, for example, about 0.1 to 50 parts by weight, preferably about 0.5 to 30 parts by weight, and more preferably about 1 to 10 parts by weight with respect to 100 parts by weight of the rubber component (A). May be.
  • the vulcanized rubber composition of the present invention kneads the rubber component (A), the modified cellulose nanofiber (B) in which the fluorene compound (B1) having an aryl group at the 9th and 9th positions is bonded and / or its raw material. It is obtained through a kneading step and a vulcanization step of vulcanizing the obtained kneaded composition to obtain a vulcanized rubber composition.
  • the modified cellulose nanofiber (B) may be the fluorene compound (B1) and the unmodified cellulose nanofiber that are the raw materials. By adding these raw materials, the kneading step and / or vulcanization is performed. The modified cellulose nanofiber (B) is produced by the process.
  • a conventional method can be used as a method for kneading the composition containing the rubber component (A) and the modified cellulose nanofiber (B).
  • a mixing roller, a kneader, a Banbury mixer, an extruder (uniaxial or biaxial) A method using a shaft extruder or the like can be used.
  • a pressure kneader is preferable.
  • each component including the rubber component (A) and the modified cellulose nanofiber (B) (or a raw material thereof) may be added in a lump, but the modified cellulose nanofiber (B) and / or the raw material thereof may be added.
  • the dispersion liquid previously dispersed in the processing aid (D) and the rubber component (A) may be kneaded.
  • the processing aid (D) is preferably process oil, organic solvent, plasticizer (including liquid rubber as a plasticizer), and the like.
  • the solid content concentration in the dispersion is, for example, about 0.1 to 50% by weight, preferably about 0.5 to 30% by weight, and more preferably about 1 to 20% by weight.
  • Kneading may be performed without heating or under heating.
  • the kneading temperature is, for example, about 30 to 250 ° C., preferably 40 to 225 ° C., more preferably about 50 to 200 ° C.
  • the vulcanization temperature can be selected according to the type of the rubber component (A), and is, for example, about 100 to 250 ° C., preferably 150 to 200 ° C., more preferably about 160 to 190 ° C.
  • the resulting vulcanized rubber composition may have a durometer hardness of 50 or more (particularly 60 or more), but it is 70 or more, preferably 75 or more (for example, about 75 to 90) by using carbon black as a reinforcing agent. ) Can also be adjusted.
  • the durometer hardness can be measured according to JIS K6253 type A.
  • Nisil VN3 Calcium carbonate “Synthetic calcium carbonate white luster 0” manufactured by Shiraishi Calcium Co., Ltd.
  • Process oil “Vivatec 500 (TDAE)” manufactured by H & R Co., Ltd.
  • Naphthenic oil “Diana Process NS-100” manufactured by Idemitsu Kosan Co., Ltd.
  • Paraffin oil “Diana Process PW-380” manufactured by Idemitsu Kosan Co., Ltd.
  • Plasticizer DOP “Bis (2-ethylhexyl) phthalate” manufactured by Mitsubishi Chemical Corporation Zinc Hana No.1: Made by Mitsui Mining & Smelting Co., Ltd. Stearic acid: NOF Co., Ltd.
  • Accelerator DPG “Noxeller D” manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Accelerator DM “Noxeller DM-P” manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Accelerator TS “Noxeller TS” manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Pulp “Pure pulp 5 mm” manufactured by Sanyo Chemical Co., Ltd.
  • the modification rate of the fluorene compound (hereinafter referred to as fluorene modification rate) was determined by performing a Raman analysis using a Raman microscope (manufactured by HORIBA JOBIN YVON, XploRA), and the aromatic ring (1604 cm ⁇ 1 ) and cellulose ring CH (1375 cm ⁇ ). 1 ) and the intensity ratio of the absorption band (I 1604 / I 1375 ).
  • a diacetyl cellulose (manufactured by Daicel Corporation) film containing a predetermined amount of a fluorene compound was prepared by a solution cast method, and a calibration curve prepared from these strength ratios (I 1604 / I 1375 ) was used. It was. All samples were measured three times, and the average value calculated from the results was defined as the fluorene modification rate.
  • Mooney viscosity The Mooney viscosity of the unvulcanized rubber composition was measured according to JIS K6300.
  • the density of the vulcanized rubber composition was measured according to JIS K6268.
  • Example 1 (SBR / CB / B-CNF 3 parts) With respect to the unvulcanized rubber composition obtained in Comparative Example 1, a modified cellulose nanofiber (B-CNF) was converted into a solid content with respect to 100 parts by weight of the composition of Comparative Example 1 using a 6-inch roll. 3 parts by weight was added to prepare an unvulcanized rubber composition containing modified cellulose nanofibers, and a vulcanized rubber composition was obtained in the same manner as in Comparative Example 1.
  • B-CNF modified cellulose nanofiber
  • Example 2 (5 parts of SBR / CB / B-CNF) A vulcanized rubber composition was obtained in the same manner as in Example 1 except that the amount of B-CNF added was changed to 5 parts by weight.
  • Example 3 (SBR / CB / B-CNF 7 parts) A vulcanized rubber composition was obtained in the same manner as in Example 1 except that the amount of B-CNF added was changed to 7 parts by weight.
  • Table 2 shows the evaluation results of the vulcanized rubber compositions obtained in Comparative Example 1 and Examples 1 to 3.
  • Comparative Example 2 (SBR / CB / unmodified cellulose nanofiber 3 parts) A vulcanized rubber composition was obtained in the same manner as in Example 1 except that B-CNF was changed to unmodified cellulose nanofibers.
  • Comparative Example 3 (SBR / CB / unmodified cellulose nanofiber 5 parts) A vulcanized rubber composition was obtained in the same manner as in Example 2 except that B-CNF was changed to unmodified cellulose nanofibers.
  • Comparative Example 4 (SBR / CB / unmodified cellulose nanofiber 7 parts) A vulcanized rubber composition was obtained in the same manner as in Example 3 except that B-CNF was changed to unmodified cellulose nanofibers.
  • Table 3 shows the evaluation results of the vulcanized rubber compositions obtained in Comparative Examples 2 to 4 together with the evaluation results of Comparative Example 1.
  • Comparative Example 5 (SBR / CB / pulp 3 parts) A vulcanized rubber composition was obtained in the same manner as in Example 1 except that B-CNF was changed to pulp.
  • Comparative Example 6 (SBR / CB / pulp 5 parts) A vulcanized rubber composition was obtained in the same manner as in Example 2 except that B-CNF was changed to pulp.
  • Comparative Example 7 (SBR / CB / 7 parts of pulp) A vulcanized rubber composition was obtained in the same manner as in Example 3 except that B-CNF was changed to pulp.
  • Table 4 shows the evaluation results of the vulcanized rubber compositions obtained in Comparative Examples 5 to 7 together with the evaluation results of Comparative Example 1.
  • Comparative Example 8 SBR / silica / blank
  • a pressure kneader manufactured by Moriyama Co., Ltd., volume 10 liters
  • the obtained composition was press vulcanized at a vulcanization temperature of 180 ° C. to obtain a vulcanized rubber composition.
  • Example 4 (3 parts SBR / silica / B-CNF) With respect to the unvulcanized rubber composition obtained in Comparative Example 8, a modified cellulose nanofiber (B-CNF) was converted into a solid content with respect to 100 parts by weight of the composition of Comparative Example 8 using a 6-inch roll. 3 parts by weight was added to prepare an unvulcanized rubber composition containing modified cellulose nanofibers, and a vulcanized rubber composition was obtained in the same manner as in Comparative Example 8.
  • B-CNF modified cellulose nanofiber
  • Example 5 (SBR / silica / B-CNF 5 parts) A vulcanized rubber composition was obtained in the same manner as in Example 4 except that the amount of B-CNF added was changed to 5 parts by weight.
  • Example 6 (SBR / silica / B-CNF 7 parts) A vulcanized rubber composition was obtained in the same manner as in Example 4 except that the amount of B-CNF added was changed to 7 parts by weight.
  • Table 6 shows the evaluation results of the vulcanized rubber compositions obtained in Comparative Example 8 and Examples 4 to 6.
  • Comparative Example 9 SBR / calcium carbonate / blank
  • the components shown in Table 7 were kneaded at a temperature of 150 ° C. using a pressure kneader (manufactured by Moriyama Co., Ltd., volume 10 liters) to prepare an unvulcanized rubber composition.
  • the obtained composition was press vulcanized at a vulcanization temperature of 180 ° C. to obtain a vulcanized rubber composition.
  • Example 7 SBR / calcium carbonate / B-CNF 3 parts
  • a modified cellulose nanofiber B-CNF
  • a 6-inch roll 3 parts by weight was added to prepare an unvulcanized rubber composition containing modified cellulose nanofibers, and a vulcanized rubber composition was obtained in the same manner as in Comparative Example 9.
  • Example 8 (SBR / calcium carbonate / B-CNF 5 parts) A vulcanized rubber composition was obtained in the same manner as in Example 7, except that the amount of B-CNF added was changed to 5 parts by weight.
  • Table 8 shows the evaluation results of the vulcanized rubber compositions obtained in Comparative Example 9 and Examples 7 to 8.
  • Comparative Example 10 (EPDM1 / CB / Blank) The components shown in Table 9 were kneaded at a temperature of 150 ° C. using a pressure kneader (manufactured by Moriyama Co., Ltd., capacity: 10 liters) to prepare an unvulcanized rubber composition. The obtained composition was press vulcanized at a vulcanization temperature of 170 ° C. to obtain a vulcanized rubber composition.
  • Example 9 (EPDM1 / CB / B-CNF 3 parts) To the unvulcanized rubber composition obtained in Comparative Example 10, 3 parts by weight of B-CNF was added in terms of solid content with respect to 100 parts by weight of the composition of Comparative Example 10 using a 6-inch roll. An unvulcanized rubber composition containing modified cellulose nanofibers was prepared, and a vulcanized rubber composition was obtained in the same manner as in Comparative Example 10.
  • Example 10 (EPDM1 / CB / B-CNF 5 parts) A vulcanized rubber composition was obtained in the same manner as in Example 9, except that the amount of B-CNF added was changed to 5 parts by weight.
  • Example 11 (EPDM1 / CB / B-CNF 7 parts) A vulcanized rubber composition was obtained in the same manner as in Example 9, except that the amount of B-CNF added was changed to 7 parts by weight.
  • Table 10 shows the evaluation results of the vulcanized rubber compositions obtained in Comparative Example 10 and Examples 9 to 11.
  • the vulcanized rubber composition of the example improved in 100% tensile stress and hardness as compared with the vulcanized rubber composition of Comparative Example 10.
  • Comparative Example 11 EPDM2 / calcium carbonate / blank
  • Each component shown in Table 11 was kneaded at a temperature of 150 ° C. using a pressure kneader (manufactured by Moriyama Co., Ltd., volume 10 liters) to prepare an unvulcanized rubber composition.
  • the obtained composition was press vulcanized at a vulcanization temperature of 170 ° C. to obtain a vulcanized rubber composition.
  • Example 12 EPDM2 / calcium carbonate / B-CNF 3 parts
  • a modified cellulose nanofiber B-CNF
  • a 6-inch roll 3 parts by weight was added to prepare an unvulcanized rubber composition containing modified cellulose nanofibers, and a vulcanized rubber composition was obtained in the same manner as in Comparative Example 11.
  • Example 13 (EPDM2 / calcium carbonate / B-CNF 5 parts) A vulcanized rubber composition was obtained in the same manner as in Example 12 except that the amount of B-CNF added was changed to 5 parts by weight.
  • Example 14 (EPDM2 / calcium carbonate / B-CNF 7 parts) A vulcanized rubber composition was obtained in the same manner as in Example 12 except that the amount of B-CNF added was changed to 7 parts by weight.
  • Table 12 shows the evaluation results of the vulcanized rubber compositions obtained in Comparative Example 11 and Examples 12-14.
  • the vulcanized rubber composition of the example improved in 25 to 300% tensile stress and hardness as compared with the vulcanized rubber composition of Comparative Example 11.
  • Comparative Example 12 (NBR / CB / Blank) The components shown in Table 13 were kneaded at a temperature of 150 ° C. using a pressure kneader (manufactured by Moriyama Co., Ltd., capacity 10 liters) to prepare an unvulcanized rubber composition. The obtained composition was press vulcanized at a vulcanization temperature of 160 ° C. to obtain a vulcanized rubber composition.
  • Example 15 (NBR / CB / B-CNF 3 parts) To the unvulcanized rubber composition obtained in Comparative Example 12, 3 parts by weight of B-CNF was added in terms of solid content with respect to 100 parts by weight of the composition of Comparative Example 12 using a 6-inch roll. An unvulcanized rubber composition containing modified cellulose nanofibers was prepared, and a vulcanized rubber composition was obtained in the same manner as in Comparative Example 12.
  • Example 16 (NBR / CB / B-CNF 5 parts) A vulcanized rubber composition was obtained in the same manner as in Example 15 except that the amount of B-CNF added was changed to 5 parts by weight.
  • Example 17 (NBR / CB / B-CNF 7 parts) A vulcanized rubber composition was obtained in the same manner as in Example 15 except that the amount of B-CNF added was changed to 7 parts by weight.
  • Table 14 shows the evaluation results of the vulcanized rubber compositions obtained in Comparative Example 12 and Examples 15 to 17.
  • the vulcanized rubber composition of the example was improved in 100% tensile stress and hardness as compared with the vulcanized rubber composition of Comparative Example 12.
  • Comparative Example 13 (NBR / calcium carbonate / blank)
  • the components shown in Table 15 were kneaded at a temperature of 150 ° C. using a pressure kneader (manufactured by Moriyama Co., Ltd., volume 10 liters) to prepare an unvulcanized rubber composition.
  • the obtained composition was press vulcanized at a vulcanization temperature of 160 ° C. to obtain a vulcanized rubber composition.
  • Example 18 (NBR / calcium carbonate / B-CNF 3 parts) To the unvulcanized rubber composition obtained in Comparative Example 13, 3 parts by weight of B-CNF was added in terms of solid content with respect to 100 parts by weight of the composition of Comparative Example 13 using a 6-inch roll. An unvulcanized rubber composition containing modified cellulose nanofibers was prepared, and a vulcanized rubber composition was obtained in the same manner as in Comparative Example 13.
  • Example 19 (NBR / calcium carbonate / B-CNF 5 parts) A vulcanized rubber composition was obtained in the same manner as in Example 18 except that the amount of B-CNF added was changed to 5 parts by weight.
  • Example 20 (NBR / calcium carbonate / B-CNF 7 parts) A vulcanized rubber composition was obtained in the same manner as in Example 18 except that the amount of B-CNF added was changed to 7 parts by weight.
  • Table 16 shows the evaluation results of the vulcanized rubber compositions obtained in Comparative Example 13 and Examples 18 to 20.
  • the vulcanized rubber composition of the present invention comprises various industrial members (conveyor belts, rubber cover rolls, gaskets, printing rolls, oil seals, packings, hoses such as oil-resistant hoses, etc.), building members (window frame rubber, vibration damping). Materials, carpet bagging materials, etc.), transportation equipment members (automobile members, tires, power transmission belts, etc.), and electrical / electronic equipment members (electric wire coverings, etc.).

Abstract

The present invention prepares a rubber composition by using a rubber ingredient (A) in combination with modified cellulose nanofibers (B) including, bonded thereto, a fluorene compound (B1) having aryl groups at the 9,9-position. The fluorene compound (B1) may be a compound represented by formula (1). (In formula (1), rings Z each represent an arene ring, R1 and R2 each represent a substituent, X1 represents a heteroatom-containing functional group, k is an integer of 0-4, n is an integer of 1 or larger, and p is an integer of 0 or larger.) This rubber composition is excellent in terms of mechanical properties including strength, elongation, and hardness.

Description

繊維強化加硫ゴム組成物およびその製造方法Fiber-reinforced vulcanized rubber composition and method for producing the same
 本発明は、9,9-ビスアリールフルオレン骨格で修飾されたセルロースナノファイバーで強化された加硫ゴム組成物およびその製造方法に関する。 The present invention relates to a vulcanized rubber composition reinforced with cellulose nanofibers modified with a 9,9-bisarylfluorene skeleton and a method for producing the same.
 植物などの天然物由来の繊維であるセルロースは、環境負荷が小さく、かつ持続型資源であるとともに、高弾性率、高強度、低線膨張係数などの優れた特性を有する。そのため、幅広い用途、例えば、紙、フィルムやシートなどの材料、樹脂の複合材料(例えば、樹脂の補強剤)などとして利用されている。また、ゴム組成物においても、ゴムの機械的特性を向上させるために、ゴム組成物に補強剤としてセルロースが添加されている。 Cellulose, which is a fiber derived from natural products such as plants, has a low environmental load, is a sustainable resource, and has excellent properties such as high elastic modulus, high strength, and low linear expansion coefficient. Therefore, it is used for a wide range of applications, for example, materials such as paper, film and sheet, and resin composite materials (for example, resin reinforcing agents). Also in the rubber composition, cellulose is added as a reinforcing agent to the rubber composition in order to improve the mechanical properties of the rubber.
 特開2005-75856号公報(特許文献1)には、優れた低発熱性と合成とを両立できるゴム組成物として、天然植物繊維から調製され、かつ平均粒子径が100μmである微粉末セルロース繊維をジエン系ゴム100重量部に対して2~100重量部含有するタイヤゴム組成物が開示されている。また、特開2005-133025号公報(特許文献2)には、耐摩耗性に優れるゴム組成物として、ジエン系ゴム成分100重量部に対して、澱粉5~75重量部、繊維直径1μm以下のバクテリアセルロース0.1~40重量部からなるゴム組成物が開示されている。 Japanese Patent Application Laid-Open No. 2005-75856 (Patent Document 1) discloses a finely powdered cellulose fiber prepared from natural plant fibers and having an average particle size of 100 μm as a rubber composition capable of achieving both excellent low heat generation and synthesis. A tire rubber composition containing 2 to 100 parts by weight of diene rubber with respect to 100 parts by weight of diene rubber is disclosed. Japanese Patent Application Laid-Open No. 2005-133025 (Patent Document 2) discloses a rubber composition having excellent abrasion resistance, having 5 to 75 parts by weight of starch and a fiber diameter of 1 μm or less with respect to 100 parts by weight of the diene rubber component. A rubber composition comprising 0.1 to 40 parts by weight of bacterial cellulose is disclosed.
 しかし、これらのゴム組成物では、ゴムとセルロースとの相容性が低いため、破断特性などのゴム特性が低下する。 However, in these rubber compositions, since the compatibility between rubber and cellulose is low, rubber properties such as breaking properties are deteriorated.
 そこで、ゴムとセルロースとの相容性を向上させるために、特許第4581116号公報(特許文献3)には、破断特性に優れ、ゴムとセルロースとの界面におけるエネルギーロスの少ない加硫ゴム組成物として、天然ゴム、変性天然ゴム、アクリロニトリルブタジエンゴムおよびポリブタジエンゴムの少なくともいずれかからなるゴム成分100重量部に対して、平均繊維径4nm~1μmの化学変性ミクロフィブリルセルロース1~50重量部(より好ましくは7~15重量部)を含有する加硫ゴム組成物が開示されている。この文献には、ミクロフィブリルセルロースの化学変性方法として、アセチル化、アルキルエステル化、複合エステル化、β-ケトエステル化、アリールカルバメート化が記載されている。 Therefore, in order to improve the compatibility between rubber and cellulose, Japanese Patent No. 4581116 (Patent Document 3) describes a vulcanized rubber composition having excellent breaking characteristics and low energy loss at the interface between rubber and cellulose. 1 to 50 parts by weight (more preferably, chemically modified microfibril cellulose having an average fiber diameter of 4 nm to 1 μm with respect to 100 parts by weight of a rubber component composed of at least one of natural rubber, modified natural rubber, acrylonitrile butadiene rubber and polybutadiene rubber. 7 to 15 parts by weight) is disclosed. This document describes acetylation, alkyl esterification, complex esterification, β-ketoesterification, and arylcarbamation as chemical modification methods for microfibril cellulose.
 しかし、このゴム組成物でも、強度や伸び、硬度などの機械的特性を向上できない。さらに、これらの特性を向上させるためには、多量の化学変性セルロースが必要であり、諸特性の両立が困難である。 However, even with this rubber composition, mechanical properties such as strength, elongation and hardness cannot be improved. Furthermore, in order to improve these characteristics, a large amount of chemically modified cellulose is required, and it is difficult to achieve both characteristics.
特開2005-75856号公報(請求項1および段落[0007])Japanese Patent Laying-Open No. 2005-75856 (Claim 1 and paragraph [0007]) 特開2005-133025号公報(特許請求の範囲)JP 2005-133025 A (Claims) 特許第4581116号公報(特許請求の範囲、段落[0003][0006][0039])Japanese Patent No. 4581116 (claims, paragraphs [0003] [0006] [0039])
 従って、本発明の目的は、強度や伸び、硬度などの機械的特性を向上できる加硫ゴム組成物およびその製造方法を提供することにある。 Therefore, an object of the present invention is to provide a vulcanized rubber composition capable of improving mechanical properties such as strength, elongation and hardness, and a method for producing the same.
 本発明の他の目的は、耐熱性および耐溶剤性を向上できる加硫ゴム組成物およびその製造方法を提供することにある。 Another object of the present invention is to provide a vulcanized rubber composition capable of improving heat resistance and solvent resistance and a method for producing the same.
 本発明者らは、前記課題を達成するため鋭意検討した結果、9,9-ビス(アリール)フルオレン骨格を有する化合物が結合した修飾セルロースナノ繊維でゴム成分を強化することにより、加硫ゴム組成物における強度や伸び、硬度などの機械的特性を向上できることを見出し、本発明を完成した。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have reinforced rubber composition by reinforcing rubber components with modified cellulose nanofibers to which a compound having a 9,9-bis (aryl) fluorene skeleton is bound. The present inventors have found that mechanical properties such as strength, elongation, and hardness of a product can be improved.
 すなわち、本発明の加硫ゴム組成物は、ゴム成分(A)と、9,9位にアリール基を有するフルオレン化合物(B1)が結合した修飾セルロースナノ繊維(B)とを含む。前記フルオレン化合物(B1)は、下記式(1)で表される化合物であってもよい。 That is, the vulcanized rubber composition of the present invention includes a rubber component (A) and a modified cellulose nanofiber (B) to which a fluorene compound (B1) having an aryl group at the 9th and 9th positions is bonded. The fluorene compound (B1) may be a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、環Zはアレーン環、RおよびRは置換基、Xはヘテロ原子含有官能基、kは0~4の整数、nは1以上の整数、pは0以上の整数を示す)。 Wherein ring Z is an arene ring, R 1 and R 2 are substituents, X 1 is a heteroatom-containing functional group, k is an integer of 0 to 4, n is an integer of 1 or more, and p is an integer of 0 or more. Show).
 前記式(1)において、Xは、基-[(OA)m1-Y](式中、Aはアルキレン基、Yはヒドロキシル基またはグリシジルオキシ基、m1は0以上の整数を示す)であってもよい。前記フルオレン化合物(B1)の割合は、修飾セルロースナノ繊維(B)の総量に対して0.01~33重量%程度であってもよい。前記修飾セルロースナノ繊維(B)の平均繊維径は3~500nm程度であってもよい。前記ゴム成分(A)は、ジエン系ゴムおよび/またはオレフィン系ゴムを含んでいてもよい。前記修飾セルロースナノ繊維(B)の割合は、ゴム成分(A)100重量部に対して0.1~30重量部程度であってもよい。前記加硫ゴム組成物は、補強剤(C)および加工助剤(D)をさらに含んでいてもよい。 In the formula (1), X 1 is a group — [(OA) m1 -Y 1 ] (wherein A is an alkylene group, Y 1 is a hydroxyl group or a glycidyloxy group, and m1 represents an integer of 0 or more) It may be. The ratio of the fluorene compound (B1) may be about 0.01 to 33% by weight with respect to the total amount of the modified cellulose nanofiber (B). The modified cellulose nanofiber (B) may have an average fiber diameter of about 3 to 500 nm. The rubber component (A) may contain a diene rubber and / or an olefin rubber. The ratio of the modified cellulose nanofiber (B) may be about 0.1 to 30 parts by weight with respect to 100 parts by weight of the rubber component (A). The vulcanized rubber composition may further contain a reinforcing agent (C) and a processing aid (D).
 本発明には、ゴム成分(A)と、9,9位にアリール基を有するフルオレン化合物(B1)が結合した修飾セルロースナノ繊維(B)および/またはその原料とを混練する混練工程、得られた混練組成物を加硫して加硫ゴム組成物を得る加硫工程を含む前記加硫ゴム組成物の製造方法も含まれる。前記原料は、フルオレン化合物(B1)および未修飾セルロースナノ繊維であってもよい。前記混練工程において、予め加工助剤(D)中に、分散させた修飾セルロースナノ繊維(B)および/またはその原料を、ゴム成分(A)と混練してもよい。 The present invention provides a kneading step of kneading the rubber component (A), the modified cellulose nanofiber (B) in which the fluorene compound (B1) having an aryl group at the 9th and 9th positions is bonded and / or its raw material. Also included is a method for producing the vulcanized rubber composition, which includes a vulcanization step of vulcanizing the kneaded composition to obtain a vulcanized rubber composition. The raw material may be a fluorene compound (B1) and unmodified cellulose nanofibers. In the kneading step, the modified cellulose nanofiber (B) and / or its raw material dispersed in advance in the processing aid (D) may be kneaded with the rubber component (A).
 本発明では、9,9-ビス(アリール)フルオレン骨格を有する化合物が結合した修飾セルロースナノ繊維でゴム成分を強化するため、前記修飾セルロースナノ繊維をゴム中に均一に分散でき、加硫ゴム組成物の強度や伸び、硬度などの機械的特性を向上できる。さらに、得られた加硫ゴム組成物は、耐熱性および耐溶剤性も高く、例えば、溶剤や軟化剤などの加工助剤を含んでいても、ゴムの膨潤を抑制できる。 In the present invention, since the rubber component is reinforced with modified cellulose nanofibers to which a compound having a 9,9-bis (aryl) fluorene skeleton is bonded, the modified cellulose nanofibers can be uniformly dispersed in the rubber, and the vulcanized rubber composition Mechanical properties such as strength, elongation and hardness of objects can be improved. Furthermore, the obtained vulcanized rubber composition has high heat resistance and solvent resistance, and can suppress swelling of rubber even when it contains a processing aid such as a solvent or a softening agent.
図1は、実施例で使用したセルロースナノ繊維の走査型電子顕微鏡(SEM)写真である。FIG. 1 is a scanning electron microscope (SEM) photograph of cellulose nanofibers used in the examples.
 本発明の加硫ゴム組成物は、ゴム成分(A)と、9,9位にアリール基を有するフルオレン化合物(B1)が結合した修飾セルロースナノ繊維(B)とを含む。 The vulcanized rubber composition of the present invention includes a rubber component (A) and a modified cellulose nanofiber (B) to which a fluorene compound (B1) having an aryl group at the 9th and 9th positions is bonded.
 [ゴム成分(A)]
 ゴム成分(A)としては、特に限定されず、慣用のゴム成分を利用できる。慣用のゴム成分としては、例えば、ジエン系ゴム、オレフィン系ゴム、アクリル系ゴム(ACM、ANM)、ブチルゴム(IIR)、エピクロロヒドリンゴム(CO)、多硫化ゴム(OT、EOT)、ウレタンゴム(U)、シリコーンゴム(Q)、フッ素ゴム(FFKM、FKM)、含イオウゴムなどが挙げられる。これらのゴム成分は、単独でまたは二種以上組み合わせて使用できる。これらのゴム成分のうち、修飾セルロースナノ繊維(B)による向上効果が大きい点から、ジエン系ゴムおよび/またはオレフィン系ゴムが好ましい。
[Rubber component (A)]
The rubber component (A) is not particularly limited, and a conventional rubber component can be used. Examples of conventional rubber components include diene rubber, olefin rubber, acrylic rubber (ACM, ANM), butyl rubber (IIR), epichlorohydrin rubber (CO), polysulfide rubber (OT, EOT), and urethane rubber. (U), silicone rubber (Q), fluorine rubber (FFKM, FKM), sulfur-containing rubber and the like. These rubber components can be used alone or in combination of two or more. Of these rubber components, diene rubbers and / or olefin rubbers are preferred from the viewpoint of a large improvement effect by the modified cellulose nanofiber (B).
 ジエン系ゴムとしては、例えば、天然ゴム(NR)、エポキシ化天然ゴム、ポリブタジエン[例えば、ブタジエンゴム(BR)、1,2-ポリブタジエン(VBR)など]、イソプレンゴム(IR)、クロロプレンゴム(CR)、アクリロニトリル-ブタジエンゴム(NBR)、スチレン-ブタジエンゴム(SBR)などが挙げられる。これらのジエン系ゴムは、水添ゴム(例えば、水素化BR、水素化NBR、水素化SBRなど)であってもよい。これらのジエン系ゴムは、単独でまたは二種以上組み合わせて使用できる。 Examples of the diene rubber include natural rubber (NR), epoxidized natural rubber, polybutadiene [eg, butadiene rubber (BR), 1,2-polybutadiene (VBR), etc.], isoprene rubber (IR), chloroprene rubber (CR ), Acrylonitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR), and the like. These diene rubbers may be hydrogenated rubber (for example, hydrogenated BR, hydrogenated NBR, hydrogenated SBR, etc.). These diene rubbers can be used alone or in combination of two or more.
 オレフィン系ゴムとしては、例えば、エチレン-プロピレンゴム(EPM)、エチレン-プロピレン-ジエンゴム(EPDM)、エチレン-ブテンゴム、エチレン-1-ブテン-ジエンゴム、プロピレン-1-ブテン-ジエンゴム、ポリイソブチレンゴム、エチレン-酢酸ビニルゴム、マレイン酸変性エチレン-プロピレンゴム(M-EPM)、クロロスルホン化ポリエチレン(CSM)、塩素化ポリエチレン(CM)、マレイン酸変性塩素化ポリエチレン(M-CM)などが挙げられる。オレフィン系ゴムに含まれるジエン単位(非共役ジエン単位)としては、例えば、ジシクロペンタジエン、1,4-ヘキサジエン、シクロオクタジエン、メチレンノルボルネン、エチリデンノルボルネン由来の単位などが挙げられる。これらのオレフィン系ゴムは、単独でまたは二種以上組み合わせて使用できる。 Examples of the olefin rubber include ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), ethylene-butene rubber, ethylene-1-butene-diene rubber, propylene-1-butene-diene rubber, polyisobutylene rubber, ethylene -Vinyl acetate rubber, maleic acid modified ethylene-propylene rubber (M-EPM), chlorosulfonated polyethylene (CSM), chlorinated polyethylene (CM), maleic acid modified chlorinated polyethylene (M-CM) and the like. Examples of the diene unit (non-conjugated diene unit) contained in the olefin rubber include units derived from dicyclopentadiene, 1,4-hexadiene, cyclooctadiene, methylene norbornene, and ethylidene norbornene. These olefin rubbers can be used alone or in combination of two or more.
 なお、共重合ゴムは、ランダムまたはブロック共重合体であってもよく、ブロック共重合体には、AB型、ABA型、テーパー型、ラジアルテレブロック型の構造を有する共重合体などが含まれる。 The copolymer rubber may be a random or block copolymer, and examples of the block copolymer include a copolymer having an AB type, ABA type, tapered type, or radial teleblock type structure. .
 これらのうち、SBR、NBRなどのジエン系ゴム、EPDMなどのオレフィン系ゴムが好ましい。 Of these, diene rubbers such as SBR and NBR and olefin rubbers such as EPDM are preferred.
 未加硫ゴム成分のムーニー粘度は、ゴム種に応じて適宜選択でき、ジエン系ゴムの場合、30以上(例えば30~80程度)であってもよく、オレフィン系ゴムの場合、20以上(例えば20~100程度)であってもよく、補強剤としてカーボンブラックを含むオレフィン系ゴム組成物では、40以上(例えば40~80程度)であってもよい。 The Mooney viscosity of the unvulcanized rubber component can be appropriately selected depending on the rubber type, and may be 30 or more (for example, about 30 to 80) in the case of a diene rubber, or 20 or more (for example, in the case of an olefin rubber) Or about 40 (for example, about 40 to 80) in the case of an olefin-based rubber composition containing carbon black as a reinforcing agent.
 なお、本明細書および特許請求の範囲において、ムーニー粘度は、JIS K6300に準拠して測定できる。 In the present specification and claims, the Mooney viscosity can be measured according to JIS K6300.
 [修飾セルロースナノ繊維(B)]
 (フルオレン化合物(B1))
 9,9位にアリール基を有するフルオレン化合物(B1)は、修飾セルロースナノ繊維(B)を構成する官能基として、セルロースナノ繊維をゴム成分中に均一に分散させるための相容化剤または分散剤として機能し、ゴム成分(A)中にセルロースナノ繊維を均一に分散させることにより、加硫ゴム組成物の機械的特性を大きく向上できる。
[Modified cellulose nanofiber (B)]
(Fluorene compound (B1))
The fluorene compound (B1) having an aryl group at the 9,9-position is a compatibilizing agent or dispersion for uniformly dispersing cellulose nanofibers in the rubber component as a functional group constituting the modified cellulose nanofiber (B). By functioning as an agent and uniformly dispersing cellulose nanofibers in the rubber component (A), the mechanical properties of the vulcanized rubber composition can be greatly improved.
 このようなフルオレン化合物は、9,9-ビスアリールフルオレン骨格を有する化合物であればよく、例えば、前記式(1)で表されるフルオレン化合物であってもよい。 Such a fluorene compound may be a compound having a 9,9-bisarylfluorene skeleton, and may be, for example, a fluorene compound represented by the formula (1).
 前記式(1)において、環Zで表されるアレーン環として、ベンゼン環などの単環式アレーン環、多環式アレーン環などが挙げられ、多環式アレーン環には、縮合多環式アレーン環(縮合多環式炭化水素環)、環集合アレーン環(環集合芳香族炭化水素環)などが含まれる。 In the formula (1), examples of the arene ring represented by the ring Z include a monocyclic arene ring such as a benzene ring, a polycyclic arene ring, and the like. The polycyclic arene ring includes a condensed polycyclic arene. A ring (fused polycyclic hydrocarbon ring), a ring assembly arene ring (ring assembly aromatic hydrocarbon ring), and the like are included.
 縮合多環式アレーン環としては、例えば、縮合二環式アレーン環(例えば、ナフタレン環などの縮合二環式C10-16アレーン環)、縮合三環式アレーン(例えば、アントラセン環、フェナントレン環など)などの縮合二乃至四環式アレーン環などが挙げられる。好ましい縮合多環式アレーン環としては、ナフタレン環、アントラセン環などが挙げられ、特に、ナフタレン環が好ましい。 Examples of the condensed polycyclic arene ring include a condensed bicyclic arene ring (for example, a condensed bicyclic C 10-16 arene ring such as a naphthalene ring), a condensed tricyclic arene (for example, an anthracene ring, a phenanthrene ring, etc.) And condensed bi- to tetracyclic arene rings. Preferred examples of the condensed polycyclic arene ring include a naphthalene ring and an anthracene ring, and a naphthalene ring is particularly preferable.
 環集合アレーン環としては、ビアレーン環[例えば、ビフェニル環、ビナフチル環、フェニルナフタレン環(例えば、1-フェニルナフタレン環、2-フェニルナフタレン環など)などのビC6-12アレーン環など]、テルアレーン環(例えば、テルフェニレン環などのテルC6-12アレーン環など)が例示できる。好ましい環集合アレーン環としては、ビC6-10アレーン環、特にビフェニル環などが挙げられる。 Examples of the ring-assembled arene ring include a bearene ring [for example, a bi-C 6-12 arene ring such as a biphenyl ring, a binaphthyl ring, a phenylnaphthalene ring (for example, a 1-phenylnaphthalene ring, a 2-phenylnaphthalene ring, etc.), A ring (for example, a tel C 6-12 arene ring such as a terphenylene ring) can be exemplified. Preferred ring-assembled arene rings include bi-C 6-10 arene rings, particularly biphenyl rings.
 フルオレンの9位に置換する2つの環Zは、異なっていてもよく、同一であってもよいが、通常、同一の環である場合が多い。環Zのうち、ベンゼン環、ナフタレン環、ビフェニル環(特にベンゼン環)などが好ましい。 The two rings Z substituted at the 9-position of fluorene may be different or the same, but are usually the same ring in many cases. Of the rings Z, a benzene ring, a naphthalene ring, a biphenyl ring (particularly a benzene ring) and the like are preferable.
 なお、フルオレンの9位に置換する環Zの置換位置は、特に限定されない。例えば、環Zがナフタレン環の場合、フルオレンの9位に置換する環Zに対応する基は、1-ナフチル基、2-ナフチル基などであってもよい。 In addition, the substitution position of the ring Z substituted at the 9-position of fluorene is not particularly limited. For example, when the ring Z is a naphthalene ring, the group corresponding to the ring Z substituted at the 9-position of fluorene may be a 1-naphthyl group, a 2-naphthyl group, or the like.
 Xで表されるヘテロ原子含有官能基としては、ヘテロ原子として、酸素、イオウおよび窒素原子から選択された少なくとも一種を有する官能基などが例示できる。このような官能基に含まれるヘテロ原子の数は、特に制限されないが、通常、1~3個、好ましくは1または2個であってもよい。 Examples of the hetero atom-containing functional group represented by X 1 include a functional group having at least one selected from oxygen, sulfur and nitrogen atoms as a hetero atom. The number of heteroatoms contained in such a functional group is not particularly limited, but may be usually 1 to 3, preferably 1 or 2.
 前記官能基としては、例えば、基-[(OA)m1-Y](式中、Yはヒドロキシル基、グリシジルオキシ基、アミノ基、N置換アミノ基またはメルカプト基であり、Aはアルキレン基、m1は0以上の整数である)、基-(CH)m2-COOR(式中、Rは水素原子またはアルキル基であり、m2は0以上の整数である)などが挙げられる。 Examples of the functional group include a group — [(OA) m1 —Y 1 ] (wherein Y 1 is a hydroxyl group, a glycidyloxy group, an amino group, an N-substituted amino group, or a mercapto group, and A is an alkylene group. M1 is an integer of 0 or more), a group — (CH 2 ) m2 —COOR 3 (wherein R 3 is a hydrogen atom or an alkyl group, and m2 is an integer of 0 or more).
 基-[(OA)m1-Y]において、YのN置換アミノ基としては、例えば、メチルアミノ、エチルアミノ基などのN-モノアルキルアミノ基(N-モノC1-4アルキルアミノ基など)、ヒドロキシエチルアミノ基などのN-モノヒドロキシアルキルアミノ基(N-モノヒドロキシC1-4アルキルアミノ基など)などが挙げられる。 In the group-[(OA) m1 -Y 1 ], examples of the N-substituted amino group for Y 1 include N-monoalkylamino groups such as methylamino and ethylamino groups (N-monoC 1-4 alkylamino groups). And N-monohydroxyalkylamino groups such as a hydroxyethylamino group (N-monohydroxy C 1-4 alkylamino group and the like).
 アルキレン基Aには、直鎖状または分岐鎖状アルキレン基が含まれ、直鎖状アルキレン基としては、例えば、エチレン基、トリメチレン基、テトラメチレン基などのC2-6アルキレン基(好ましくは直鎖状C2-4アルキレン基、さらに好ましくは直鎖状C2-3アルキレン基、特にエチレン基)が例示でき、分岐鎖状アルキレン基としては、例えば、プロピレン基、1,2-ブタンジイル基、1,3-ブタンジイル基などの分岐鎖状C3-6アルキレン基(好ましくは分岐鎖状C3-4アルキレン基、特にプロピレン基)などが挙げられる。 The alkylene group A includes a linear or branched alkylene group. Examples of the linear alkylene group include C 2-6 alkylene groups such as ethylene group, trimethylene group and tetramethylene group (preferably straight chain groups). A linear C 2-3 alkylene group, more preferably a linear C 2-3 alkylene group, particularly an ethylene group). Examples of the branched alkylene group include a propylene group, a 1,2-butanediyl group, Examples thereof include branched C 3-6 alkylene groups such as 1,3-butanediyl groups (preferably branched C 3-4 alkylene groups, particularly propylene groups).
 オキシアルキレン基(OA)の繰り返し数(平均付加モル数)を示すm1は、0または1以上の整数(例えば0~15、好ましくは0~10程度)の範囲から選択でき、例えば0~8(例えば1~8)、好ましくは0~5(例えば1~5)、さらに好ましくは0~4(例えば1~4)、特に0~3(例えば1~3)程度であってもよく、通常0~2(例えば0または1)であってもよい。なお、m1が2以上である場合、アルキレン基Aの種類は、同一または異なっていてもよい。また、アルキレン基Aの種類は、同一のまたは異なる環Zにおいて、同一または異なっていてもよい。 M1 representing the number of repeating oxyalkylene groups (OA) (average number of added moles) can be selected from 0 or an integer of 1 or more (eg, 0 to 15, preferably about 0 to 10), for example, 0 to 8 ( For example, it may be 1 to 8), preferably 0 to 5 (eg 1 to 5), more preferably 0 to 4 (eg 1 to 4), particularly 0 to 3 (eg 1 to 3), and usually 0 It may be ˜2 (eg 0 or 1). In addition, when m1 is 2 or more, the type of the alkylene group A may be the same or different. Further, the type of alkylene group A may be the same or different in the same or different ring Z.
 基-(CH)m2-COORにおいて、Rで表されるアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基などの直鎖状または分岐鎖状C1-6アルキル基が例示できる。好ましいアルキル基は、C1-4アルキル基、特にC1-2アルキル基である。メチレン基の繰り返し数(平均付加モル数)を示すm2は0または1以上の整数(例えば1~6、好ましくは1~4、さらに好ましくは1~2程度)であってもよい。m2は、通常、0または1~2であってもよい。 In the group — (CH 2 ) m2 —COOR 3 , the alkyl group represented by R 3 is a linear or branched chain such as methyl, ethyl, propyl, isopropyl, butyl, or t-butyl. Illustrative examples are C 1-6 alkyl groups. Preferred alkyl groups are C 1-4 alkyl groups, especially C 1-2 alkyl groups. M2 indicating the number of repeating methylene groups (average number of moles added) may be 0 or an integer of 1 or more (eg, 1 to 6, preferably 1 to 4, more preferably about 1 to 2). m2 may usually be 0 or 1 to 2.
 これらのうち、基Xは、基-[(OA)m1-Y](式中、Aはアルキレン基、Yはヒドロキシル基またはグリシジルオキシ基、m1は0以上の整数である)が好ましく、Yがグリシジルオキシ基である基-[(OA)m1-Y][式中、Aはエチレン基などのC2-6アルキレン基(例えばC2-4アルキレン基、特にC2-3アルキレン基)、m1は0~5の整数(例えば0または1)である]が特に好ましい。 Of these, the group X 1 is preferably a group — [(OA) m1 —Y 1 ] (wherein A is an alkylene group, Y 1 is a hydroxyl group or a glycidyloxy group, and m1 is an integer of 0 or more). , A group in which Y 1 is a glycidyloxy group — [(OA) m1 —Y 1 ] [wherein A represents a C 2-6 alkylene group such as an ethylene group (eg, a C 2-4 alkylene group, particularly a C 2-3 An alkylene group), m1 is an integer of 0 to 5 (for example, 0 or 1)].
 前記式(1)において、環Zに置換した基Xの個数を示すnは、1以上であり、好ましくは1~3、さらに好ましくは1または2(特に1)であってもよい。なお、置換数nは、それぞれの環Zにおいて、同一または異なっていてもよい。 In the formula (1), n indicating the number of the group X 1 substituted on the ring Z is 1 or more, preferably 1 to 3, more preferably 1 or 2 (particularly 1). The number of substitutions n may be the same or different in each ring Z.
 基Xは、環Zの適当な位置に置換でき、例えば、環Zがベンゼン環である場合には、フェニル基の2,3,4位(特に、3位および/または4位)に置換している場合が多く、環Zがナフタレン環である場合には、ナフチル基の5~8位のいずれかに置換している場合が多く、例えば、フルオレンの9位に対してナフタレン環の1位または2位が置換し(1-ナフチルまたは2-ナフチルの関係で置換し)、この置換位置に対して、1,5位、2,6位などの関係(特にnが1である場合、2,6位の関係)で基Xが置換している場合が多い。また、nが2以上である場合、置換位置は、特に限定されない。また、環集合アレーン環Zにおいて、基Xの置換位置は、特に限定されず、例えば、フルオレンの9位に結合したアレーン環および/またはこのアレーン環に隣接するアレーン環に置換していてもよい。例えば、ビフェニル環Zの3位または4位がフルオレンの9位に結合していてもよく、ビフェニル環Zの3位がフルオレンの9位に結合しているとき、基Xの置換位置は、2,4,5,6,2’,3’,4’位のいずれであってもよく、好ましくは6位に置換していてもよい。 The group X 1 can be substituted at an appropriate position of the ring Z. For example, when the ring Z is a benzene ring, it is substituted at the 2, 3, 4 position (particularly the 3 position and / or the 4 position) of the phenyl group. In many cases, when ring Z is a naphthalene ring, it is often substituted at any one of positions 5 to 8 of the naphthyl group. For example, 1 of the naphthalene ring is substituted with respect to the 9-position of fluorene. Position or 2-position is substituted (substituted by the relationship of 1-naphthyl or 2-naphthyl), and the relationship such as the 1,5-position, 2,6-position, etc. with respect to this substitution position (especially when n is 1, In many cases, the group X 1 is substituted in the (2,6-position relationship). Moreover, when n is 2 or more, the substitution position is not particularly limited. Further, in the ring assembly arene ring Z, the substitution position of the group X 1 is not particularly limited, and for example, the arene ring bonded to the 9th position of fluorene and / or the arene ring adjacent to the arene ring may be substituted. Good. For example, the 3-position or 4-position of the biphenyl ring Z may be bonded to the 9-position of fluorene, and when the 3-position of the biphenyl ring Z is bonded to the 9-position of fluorene, the substitution position of the group X 1 is Any of 2, 4, 5, 6, 2 ′, 3 ′, and 4 ′ positions may be used, and the 6-position may be preferably substituted.
 前記式(1)において、置換基Rとしては、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルキル基(メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s-ブチル基、t-ブチル基などの直鎖状または分岐鎖状C1-10アルキル基、好ましくは直鎖状または分岐鎖状C1-6アルキル基、さらに好ましくは直鎖状または分岐鎖状C1-4アルキル基など)、シクロアルキル基(シクロペンチル基、シクロへキシル基などのC5-10シクロアルキル基など)、アリール基[フェニル基、アルキルフェニル基(メチルフェニル(トリル)基、ジメチルフェニル(キシリル)基など)、ビフェニル基、ナフチル基などのC6-12アリール基など]、アラルキル基(ベンジル基、フェネチル基などのC6-10アリール-C1-4アルキル基など)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基などの直鎖状または分岐鎖状C1-10アルコキシ基など)、シクロアルコキシ基(例えば、シクロへキシルオキシ基などのC5-10シクロアルキルオキシ基など)、アリールオキシ基(例えば、フェノキシ基などのC6-10アリールオキシ基など)、アラルキルオキシ基(例えば、ベンジルオキシ基などのC6-10アリール-C1-4アルキルオキシ基など)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、n-ブチルチオ基、t-ブチルチオ基などのC1-10アルキルチオ基など)、シクロアルキルチオ基(例えば、シクロへキシルチオ基などのC5-10シクロアルキルチオ基など)、アリールチオ基(例えば、チオフェノキシ基などのC6-10アリールチオ基など)、アラルキルチオ基(例えば、ベンジルチオ基などのC6-10アリール-C1-4アルキルチオ基など)、アシル基(例えば、アセチル基などのC1-6アシル基など)、ニトロ基、シアノ基などが例示できる。 In the formula (1), examples of the substituent R 2 include a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), alkyl group (methyl group, ethyl group, propyl group, isopropyl group, butyl group, linear or branched C 1-10 alkyl group such as s-butyl group or t-butyl group, preferably linear or branched C 1-6 alkyl group, more preferably linear or branched chain C 1-4 alkyl group), cycloalkyl group (C 5-10 cycloalkyl group such as cyclopentyl group, cyclohexyl group, etc.), aryl group [phenyl group, alkylphenyl group (methylphenyl (tolyl) group, dimethylphenyl (xylyl), etc. group), a biphenyl group, a C 6-12 aryl group such as a naphthyl group, an aralkyl group (benzyl group, phenethyl C 6-10 an aryl -C 1-4 alkyl group) such as an alkoxy group (e.g., methoxy group, an ethoxy group, a propoxy group, n- butoxy group, isobutoxy group, a linear or branched, such as t- butoxy A chain C 1-10 alkoxy group), a cycloalkoxy group (eg, C 5-10 cycloalkyloxy group such as cyclohexyloxy group), an aryloxy group (eg, C 6-10 aryloxy such as phenoxy group) Group), aralkyloxy group (eg C 6-10 aryl-C 1-4 alkyloxy group such as benzyloxy group), alkylthio group (eg methylthio group, ethylthio group, propylthio group, n-butylthio group, a C 1-10 alkylthio group such as a t-butylthio group), a cycloalkylthio group (for example, C 5-10 cycloalkylthio group such as cyclohexylthio group), arylthio group (eg C 6-10 arylthio group such as thiophenoxy group), aralkylthio group (eg C 6-10 aryl such as benzylthio group) -C 1-4 alkylthio group), acyl group (for example, C 1-6 acyl group such as acetyl group), nitro group, cyano group and the like.
 これらの置換基Rのうち、代表的には、ハロゲン原子、炭化水素基(アルキル基、シクロアルキル基、アリール基、アラルキル基)、アルコキシ基、アシル基、ニトロ基、シアノ基、置換アミノ基などが挙げられる。好ましい置換基Rとしては、アルコキシ基(メトキシ基などの直鎖状または分岐鎖状C1-4アルコキシ基など)、特に、アルキル基(特に、メチル基などの直鎖状または分岐鎖状C1-4アルキル基)が好ましい。なお、置換基Rがアリール基であるとき、置換基Rは、環Zとともに、前記環集合アレーン環を形成してもよい。置換基Rの種類は、同一のまたは異なる環Zにおいて、同一または異なっていてもよい。 Of these substituents R 2 , typically, a halogen atom, a hydrocarbon group (alkyl group, cycloalkyl group, aryl group, aralkyl group), alkoxy group, acyl group, nitro group, cyano group, substituted amino group Etc. Preferable substituent R 2 is an alkoxy group (such as a linear or branched C 1-4 alkoxy group such as a methoxy group), particularly an alkyl group (particularly a linear or branched chain C such as a methyl group). 1-4 alkyl group) is preferred. In addition, when the substituent R 2 is an aryl group, the substituent R 2 may form the ring assembly arene ring together with the ring Z. The type of the substituent R 2 may be the same or different in the same or different ring Z.
 置換基Rの数pは、環Zの種類などに応じて適宜選択でき、例えば0~8程度の整数であってもよく、0~4の整数、好ましくは0~3(例えば0~2)の整数、さらに好ましくは0または1であってもよい。特に、pが1である場合、環Zがベンゼン環、ナフタレン環またはビフェニル環、置換基Rがメチル基であってもよい。 The number p of the substituent R 2 can be appropriately selected depending on the kind of the ring Z and the like, and may be an integer of about 0 to 8, for example, an integer of 0 to 4, preferably 0 to 3 (eg, 0 to 2). ), More preferably 0 or 1. In particular, when p is 1, the ring Z may be a benzene ring, a naphthalene ring or a biphenyl ring, and the substituent R 2 may be a methyl group.
 置換基Rとしては、シアノ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子など)、カルボキシル基、アルコキシカルボニル基(例えば、メトキシカルボニル基などのC1-4アルコキシ-カルボニル基など)、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基などのC1-6アルキル基)、アリール基(例えば、フェニル基などのC6-10アリール基)などが挙げられる。 Examples of the substituent R 1 include a cyano group, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, etc.), a carboxyl group, an alkoxycarbonyl group (eg, a C 1-4 alkoxy-carbonyl group such as a methoxycarbonyl group), an alkyl, etc. Groups (eg, C 1-6 alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, and t-butyl groups), aryl groups (eg, C 6-10 aryl groups such as phenyl), etc. Is mentioned.
 これらの置換基Rのうち、直鎖状または分岐鎖状C1-4アルキル基(特に、メチル基などのC1-3アルキル基)、カルボキシル基またはC1-2アルコキシ-カルボニル基、シアノ基、ハロゲン原子が好ましい。置換数kは0~4(例えば0~3)の整数、好ましくは0~2の整数(例えば0または1)、特に0である。なお、置換数kは、互いに同一または異なっていてもよく、kが2以上である場合、置換基Rの種類は互いに同一または異なっていてもよく、フルオレン環の2つのベンゼン環に置換する置換基Rの種類は同一または異なっていてもよい。また、置換基Rの置換位置は、特に限定されず、例えば、フルオレン環の2位ないし7位(2位、3位および/または7位など)であってもよい。 Among these substituents R 1 , a linear or branched C 1-4 alkyl group (particularly a C 1-3 alkyl group such as a methyl group), a carboxyl group or a C 1-2 alkoxy-carbonyl group, cyano A group and a halogen atom are preferred. The substitution number k is an integer of 0 to 4 (for example, 0 to 3), preferably an integer of 0 to 2 (for example, 0 or 1), particularly 0. The number of substitutions k may be the same or different from each other. When k is 2 or more, the types of the substituents R 1 may be the same or different from each other, and are substituted with two benzene rings of the fluorene ring. The type of substituent R 1 may be the same or different. Further, the substitution position of the substituent R 1 is not particularly limited, and may be, for example, the 2nd to 7th positions (such as the 2nd, 3rd and / or 7th positions) of the fluorene ring.
 これらのうち、好ましいフルオレン化合物としては、基Xが、基-[(OA)m1-Y](式中、Yがヒドロキシル基を示す)である場合、例えば、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(6-ヒドロキシ-2-ナフチル)フルオレン、9,9-ビス(5-ヒドロキシ-1-ナフチル)フルオレンなどの9,9-ビス(ヒドロキシC6-12アリール)フルオレン;9,9-ビス(3,4-ジヒドロキシフェニル)フルオレンなどの9,9-ビス(ジまたはトリヒドロキシC6-12アリール)フルオレン;9,9-ビス(3-メチル-4-ヒドロキシフェニル)フルオレンなどの9,9-ビス(C1-4アルキル-ヒドロキシC6-12アリール)フルオレン;9,9-ビス(3-フェニル-4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-フェニル-3-ヒドロキシフェニル)フルオレンなどの9,9-ビス(C6-12アリール-ヒドロキシC6-12アリール)フルオレン;9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]フルオレン、9,9-ビス[5-(2-ヒドロキシエトキシ)-1-ナフチル]フルオレンなどの9,9-ビス(ヒドロキシ(ポリ)C2-4アルコキシ-C6-12アリール)フルオレン;9,9-ビス[3-メチル-4-(2-ヒドロキシエトキシ)フェニル]フルオレンなどの9,9-ビス(C1-4アルキル-ヒドロキシ(ポリ)C2-4アルコキシ-C6-12アリール)フルオレン;9,9-ビス[3-フェニル-4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-フェニル-3-(2-ヒドロキシエトキシ)フェニル]フルオレンなどの9,9-ビス(C6-12アリール-ヒドロキシ(ポリ)C2-4アルコキシ-C6-12アリール)フルオレンなどが挙げられる。 Among these, as a preferable fluorene compound, when the group X 1 is a group — [(OA) m1 —Y 1 ] (wherein Y 1 represents a hydroxyl group), for example, 9,9-bis ( 9,9-bis (hydroxy C 6- ) such as 4-hydroxyphenyl) fluorene, 9,9-bis (6-hydroxy-2-naphthyl) fluorene, 9,9-bis (5-hydroxy-1-naphthyl) fluorene 12 aryl) fluorene; 9,9-bis (di or trihydroxy C 6-12 aryl) fluorene such as 9,9-bis (3,4-dihydroxyphenyl) fluorene; 9,9-bis (3-methyl-4 - 9,9-bis such hydroxyphenyl) fluorene (C 1-4 alkyl - hydroxy C 6-12 aryl) fluorene; 9,9-bis (3-phenyl-4 Hydroxyphenyl) fluorene, 9,9-bis (4-phenyl-3-hydroxyphenyl) fluorene such as 9,9-bis (C 6-12 aryl - hydroxy C 6-12 aryl) fluorene; 9,9-bis [ 4- (2-hydroxyethoxy) phenyl] fluorene, 9,9-bis [6- (2-hydroxyethoxy) -2-naphthyl] fluorene, 9,9-bis [5- (2-hydroxyethoxy) -1- 9,9-bis (hydroxy (poly) C 2-4alkoxy- C 6-12 aryl) fluorene such as naphthyl] fluorene; 9,9-bis [3-methyl-4- (2-hydroxyethoxy) phenyl] fluorene 9,9-bis such (C 1-4 alkyl - hydroxy (poly) C 2-4 alkoxy -C 6-12 aryl) fluorene; 9 9- bis [3-phenyl-4- (2-hydroxyethoxy) phenyl] fluorene, 9,9-bis [4-phenyl-3- (2-hydroxyethoxy) phenyl] fluorene such as 9,9-bis (C 6-12 aryl-hydroxy (poly) C 2-4 alkoxy-C 6-12 aryl) fluorene and the like.
 基Xが、基-[(OA)m1-Y](式中、Yがグリシジルオキシ基を示す)である場合の好ましいフルオレン化合物としては、9,9-ビス(グリシジルオキシアリール)フルオレン、例えば、9,9-ビス(3-グリシジルオキシフェニル)フルオレン、9,9-ビス(4-グリシジルオキシフェニル)フルオレン、9,9-ビス(5-グリシジルオキシ-1-ナフチル)フルオレン、9,9-ビス(6-グリシジルオキシ-2-ナフチル)フルオレンなどの9,9-ビス(グリシジルオキシC6-10アリール)フルオレン;9,9-ビス(グリシジルオキシ(ポリ)アルコキシアリール)フルオレン、例えば、9,9-ビス(4-(2-グリシジルオキシエトキシ)フェニル)フルオレン、9,9-ビス(4-(2-グリシジルオキシプロポキシ)フェニル)フルオレン、9,9-ビス(5-(2-グリシジルオキシエトキシ)-1-ナフチル)フルオレン、9,9-ビス(6-(2-グリシジルオキシエトキシ)-2-ナフチル)フルオレンなどの9,9-ビス(グリシジルオキシ(ポリ)C2-4アルコキシC6-10アリール)フルオレン;9,9-ビス(アルキル-グリシジルオキシアリール)フルオレン、例えば、9,9-ビス(3-メチル-4-グリシジルオキシフェニル)フルオレンなどの9,9-ビス(C1-4アルキル-グリシジルオキシC6-10アリール)フルオレン;9,9-ビス(アルキル-グリシジルオキシ(ポリ)アルコキシアリール)フルオレン、例えば、9,9-ビス(3-メチル-4-(2-グリシジルオキシエトキシ)フェニル)フルオレンなどの9,9-ビス(C1-4アルキル-グリシジルオキシ(ポリ)C2-4アルコキシC6-10アリール)フルオレン;9,9-ビス(アリール-グリシジルオキシアリール)フルオレン、例えば、9,9-ビス(3-フェニル-4-グリシジルオキシフェニル)フルオレンなどの9,9-ビス(C6-10アリール-グリシジルオキシC6-10アリール)フルオレン;9,9-ビス(アリール-グリシジルオキシ(ポリ)アルコキシアリール)フルオレン、例えば、9,9-ビス(3-フェニル-4-(2-グリシジルオキシエトキシ)フェニル)フルオレンなどの9,9-ビス(C6-10アリール-グリシジルオキシ(ポリ)C2-4アルコキシC6-10アリール)フルオレン;9,9-ビス(ジ(グリシジルオキシ)アリール)フルオレン、例えば、9,9-ビス(3,4-ジ(グリシジルオキシ)フェニル)フルオレンなどの9,9-ビス(ジ(グリシジルオキシ)C6-10アリール)フルオレン;9,9-ビス(ジ(グリシジルオキシ(ポリ)アルコキシ)アリール)フルオレン、例えば、9,9-ビス(3,4-ジ(2-グリシジルオキシエトキシ))フェニル)フルオレンなどの9,9-ビス(ジ(グリシジルオキシ(ポリ)C2-4アルコキシ)C6-10アリール)フルオレンなどが例示できる。 Preferred fluorene compounds when the group X 1 is a group — [(OA) m1 —Y 1 ] (wherein Y 1 represents a glycidyloxy group) include 9,9-bis (glycidyloxyaryl) fluorene For example, 9,9-bis (3-glycidyloxyphenyl) fluorene, 9,9-bis (4-glycidyloxyphenyl) fluorene, 9,9-bis (5-glycidyloxy-1-naphthyl) fluorene, 9,9-bis (glycidyloxy C 6-10 aryl) fluorene such as 9-bis (6-glycidyloxy-2-naphthyl) fluorene; 9,9-bis (glycidyloxy (poly) alkoxyaryl) fluorene, for example 9,9-bis (4- (2-glycidyloxyethoxy) phenyl) fluorene, 9,9-bis (4- (2-glycidyl) Diloxypropoxy) phenyl) fluorene, 9,9-bis (5- (2-glycidyloxyethoxy) -1-naphthyl) fluorene, 9,9-bis (6- (2-glycidyloxyethoxy) -2-naphthyl) 9,9-bis (glycidyloxy (poly) C 2-4 alkoxy C 6-10 aryl) fluorene such as fluorene; 9,9-bis (alkyl-glycidyloxyaryl) fluorene, such as 9,9-bis (3 9,9-bis (C 1-4 alkyl-glycidyloxy C 6-10 aryl) fluorene such as -methyl-4-glycidyloxyphenyl) fluorene; 9,9-bis (alkyl-glycidyloxy (poly) alkoxyaryl) Fluorene, for example 9,9-bis (3-methyl-4- (2-glycidyloxyethoxy) Phenyl) fluorene such as 9,9-bis (C 1-4 alkyl - glycidyloxy (poly) C 2-4 alkoxy C 6-10 aryl) fluorene; 9,9-bis (aryl - glycidyloxy aryl) fluorene, e.g. , 9,9-bis (3-phenyl-4-glycidyl oxyphenyl) fluorene such as 9,9-bis (C 6-10 aryl - glycidyloxy C 6-10 aryl) fluorene; 9,9-bis (aryl - Glycidyloxy (poly) alkoxyaryl) fluorene, for example, 9,9-bis (C 6-10 aryl-glycidyloxy, such as 9,9-bis (3-phenyl-4- (2-glycidyloxyethoxy) phenyl) fluorene (poly) C 2-4 alkoxy C 6-10 aryl) fluorene; 9,9-bis (di Glycidyloxy) aryl) fluorene, e.g., 9,9-bis (3,4-di (glycidyloxy) phenyl) fluorene such as 9,9-bis (di (glycidyloxy) C 6-10 aryl) fluorene; 9, 9,9-bis (di- (9-bis (di (glycidyloxy (poly) alkoxy) aryl) fluorene), for example, 9,9-bis (3,4-di (2-glycidyloxyethoxy)) phenyl) fluorene (Glycidyloxy (poly) C 2-4 alkoxy) C 6-10 aryl) fluorene and the like can be exemplified.
 これらのフルオレン化合物(B1)は、単独でまたは二種以上組み合わせて使用できる。なお、「(ポリ)アルコキシ」は、アルコキシ基およびポリアルコキシ基の双方を含む意味に用いる。 These fluorene compounds (B1) can be used alone or in combination of two or more. Note that “(poly) alkoxy” is used to mean both an alkoxy group and a polyalkoxy group.
 (セルロースナノ繊維)
 修飾セルロースナノ繊維(B)を構成するセルロースナノ繊維(またはセルロースナノファイバー)は、セルロース(セルロース原料)をナノオーダーまで微細化(またはミクロフィブリル化)したセルロース繊維や、微生物由来のナノメータサイズのセルロース繊維である。前記セルロースナノ繊維としては、リグニン、ヘミセルロースなどの非セルロース成分の含有量が少ないパルプ、例えば、植物由来のセルロース原料{例えば、木材[例えば、針葉樹(マツ、モミ、トウヒ、ツガ、スギなど)、広葉樹(ブナ、カバ、ポプラ、カエデなど)など]、草本類[麻類(麻、亜麻、マニラ麻、ラミーなど)、ワラ、バガス、ミツマタなど]、種子毛繊維(コットンリンター、ボンバックス綿、カポックなど)、竹、サトウキビなど}、動物由来のセルロース原料(ホヤセルロースなど)、バクテリア由来のセルロース原料(ナタデココに含まれるセルロースなど)などから製造されたパルプなどが例示できる。これらのセルロースナノ繊維は単独でまたは二種以上組み合わせて使用できる。これらのセルロースナノ繊維のうち、木材パルプ(例えば、針葉樹パルプ、広葉樹パルプなど)、種子毛繊維由来のパルプ(例えば、コットンリンターパルプ)由来のセルロースナノ繊維などが好ましい。なお、パルプは、パルプ材を機械的に処理した機械パルプであってもよいが、非セルロース成分の含有量が少ないことからパルプ材を化学的に処理した化学パルプが好ましい。
(Cellulose nanofiber)
Cellulose nanofibers (or cellulose nanofibers) constituting the modified cellulose nanofiber (B) are cellulose fibers obtained by refining cellulose (cellulose raw material) to the nano order (or microfibrillation), and microorganism-derived nanometer-sized cellulose. Fiber. Examples of the cellulose nanofiber include pulps having a low content of non-cellulosic components such as lignin and hemicellulose, for example, plant-derived cellulose raw materials {for example, wood [for example, conifers (pine, fir, spruce, tsuga, cedar, etc.), Hardwood (beech, hippopotamus, poplar, maple, etc.)], herbaceous plants [hemp (hemp, flax, manila hemp, ramie, etc.), straw, bagasse, mitsumata, etc., seed hair fibers (cotton linter, Bombax cotton, capok Etc.), bamboo, sugarcane, etc.}, pulps produced from animal-derived cellulose raw materials (eg, squirt cellulose), bacterial-derived cellulose raw materials (eg, cellulose contained in Nata de Coco), and the like. These cellulose nanofibers can be used alone or in combination of two or more. Among these cellulose nanofibers, wood nanofibers derived from wood pulp (for example, softwood pulp, hardwood pulp, etc.), pulp derived from seed hair fibers (for example, cotton linter pulp), and the like are preferable. The pulp may be a mechanical pulp obtained by mechanically treating a pulp material, but a chemical pulp obtained by chemically treating a pulp material is preferable because the content of non-cellulosic components is small.
 セルロースナノ繊維(または原料セルロースナノ繊維)の平均繊維径および平均繊維長は、修飾セルロースナノ繊維の平均繊維径および平均繊維長が、後述する範囲となるように選択できる。セルロースナノ繊維の平均繊維径、平均繊維長および平均繊維径に対する平均繊維長の割合(アスペクト比)は、後述する修飾セルロースナノ繊維の範囲と同一であってもよく、通常、略同一である。 The average fiber diameter and average fiber length of the cellulose nanofibers (or raw material cellulose nanofibers) can be selected so that the average fiber diameter and average fiber length of the modified cellulose nanofibers are within the ranges described below. The average fiber diameter, the average fiber length, and the ratio of the average fiber length to the average fiber diameter (aspect ratio) of the cellulose nanofibers may be the same as the range of the modified cellulose nanofibers described later, and are generally substantially the same.
 セルロースナノ繊維は、結晶性の高いセルロース(またはセルロース繊維)であってもよく、セルロースの結晶化度は、例えば40~100%(例えば50~100%)、好ましくは60~100%、さらに好ましくは70~100%(特に75~100%)程度であってもよく、通常、結晶化度が60%以上(例えば60~99%)であってもよい。また、セルロースの結晶構造としては、例えば、I型、II型、III型、IV型などが例示でき、線膨張特性や弾性率などに優れたI型結晶構造が好ましい。 The cellulose nanofiber may be cellulose (or cellulose fiber) having high crystallinity, and the crystallinity of cellulose is, for example, 40 to 100% (for example, 50 to 100%), preferably 60 to 100%, more preferably May be about 70 to 100% (especially 75 to 100%), and usually the crystallinity may be 60% or more (for example, 60 to 99%). Examples of the crystal structure of cellulose include I-type, II-type, III-type, and IV-type, and an I-type crystal structure excellent in linear expansion characteristics and elastic modulus is preferable.
 (修飾セルロースナノ繊維(B)およびその製造方法)
 修飾セルロースナノ繊維(または変性セルロースナノ繊維)(B)は、前記セルロースナノ繊維と前記フルオレン化合物(B1)とが結合したセルロース誘導体である。
(Modified cellulose nanofiber (B) and production method thereof)
The modified cellulose nanofiber (or modified cellulose nanofiber) (B) is a cellulose derivative in which the cellulose nanofiber and the fluorene compound (B1) are bonded.
 修飾セルロースナノ繊維(B)の化学修飾(または結合)の形態は、特に限定されず、例えば、フルオレン化合物(B1)が前記式(1)で表されるフルオレン化合物の場合、フルオレン化合物(B1)の反応性基(ヘテロ原子含有官能基)の種類に応じて適宜選択できる。具体的には、前記式(1)において、Yがヒドロキシル基である場合、セルロースナノ繊維のヒドロキシル基および/またはカルボキシル基と前記式(1)で表されるフルオレン化合物のヒドロキシル基とのエーテル結合および/またはエステル結合であってもよく、Yがグリシジルオキシ基である場合、セルロースナノ繊維のヒドロキシル基および/またはカルボキシル基と前記式(1)で表されるフルオレン化合物のグリシジル基とのエーテル結合および/またはエステル結合であってもよい。なお、セルロースナノ繊維のカルボキシル基は、パルプなどの製造過程で形成される場合がある。 The form of chemical modification (or bonding) of the modified cellulose nanofiber (B) is not particularly limited. For example, when the fluorene compound (B1) is a fluorene compound represented by the formula (1), the fluorene compound (B1) The reactive group (heteroatom-containing functional group) can be appropriately selected. Specifically, in the formula (1), when Y 1 is a hydroxyl group, an ether of the hydroxyl group and / or carboxyl group of cellulose nanofiber and the hydroxyl group of the fluorene compound represented by the formula (1) It may be a bond and / or an ester bond, and when Y 1 is a glycidyloxy group, the hydroxyl group and / or carboxyl group of the cellulose nanofiber and the glycidyl group of the fluorene compound represented by the formula (1) It may be an ether bond and / or an ester bond. In addition, the carboxyl group of a cellulose nanofiber may be formed in the manufacture processes, such as a pulp.
 修飾セルロースナノ繊維(B)は、所定の触媒の存在下、原料セルロースナノ繊維と前記フルオレン化合物(B1)とを反応させて製造してもよく、ゴム成分(A)中において、原料セルロースナノ繊維と前記フルオレン化合物(B1)とを混練する過程で反応させて製造してもよい。 The modified cellulose nanofiber (B) may be produced by reacting the raw cellulose nanofiber and the fluorene compound (B1) in the presence of a predetermined catalyst. In the rubber component (A), the raw cellulose nanofiber And the fluorene compound (B1) may be produced by reacting in the process of kneading.
 原料セルロースナノ繊維の割合は、フルオレン化合物(B1)の反応性基に応じて選択できるが、例えば、フルオレン化合物(B1)100重量部に対して、0.1~500重量部(例えば1~300重量部)程度の範囲から選択でき、例えば5~200重量部(特に10~150重量部)程度であってもよい。 The ratio of the raw material cellulose nanofiber can be selected according to the reactive group of the fluorene compound (B1). For example, it is 0.1 to 500 parts by weight (for example, 1 to 300 parts by weight with respect to 100 parts by weight of the fluorene compound (B1)). Part by weight), and may be, for example, about 5 to 200 parts by weight (particularly 10 to 150 parts by weight).
 触媒を使用する場合、触媒もフルオレン化合物の反応性基に応じて選択でき、反応性基がヒドロキシル基の場合、酸触媒を利用してもよい。酸触媒としては、ブレンステッド酸、例えば、硫酸、塩酸、リン酸などの無機酸、p-トルエンスルホン酸などの有機酸、固体酸[例えば、ヘテロポリ酸(タングステン系ヘテロポリ酸、モリブデン系ヘテロポリ酸など)、陽イオン交換樹脂(スルホン酸基を有する強酸性陽イオン交換樹脂、スルホン酸基を有する含フッ素陽イオン交換樹脂、カルボン酸基を有する弱酸性陽イオン交換樹脂など)]などが挙げられる。これらの酸触媒は、単独でまたは二種以上組み合わせて使用できる。 When a catalyst is used, the catalyst can also be selected according to the reactive group of the fluorene compound. When the reactive group is a hydroxyl group, an acid catalyst may be used. Examples of the acid catalyst include Bronsted acids, for example, inorganic acids such as sulfuric acid, hydrochloric acid, and phosphoric acid, organic acids such as p-toluenesulfonic acid, and solid acids [for example, heteropolyacids (tungsten heteropolyacid, molybdenum heteropolyacid, etc. ), Cation exchange resins (strong acid cation exchange resins having sulfonic acid groups, fluorine-containing cation exchange resins having sulfonic acid groups, weak acid cation exchange resins having carboxylic acid groups, etc.)]. These acid catalysts can be used alone or in combination of two or more.
 反応性基がグリシジル基の場合、塩基触媒を利用してもよい。塩基触媒は、無機塩基および有機塩基のいずれであってもよく、無機塩基としては、例えば、アルカリ金属水酸化物(水酸化ナトリウム、水酸化カリウムなど)、アルカリ金属炭酸塩などが例示できる。有機塩基としては、三級アミン類、例えば、トリアルキルアミン(トリメチルアミン、トリエチルアミンなど)、アルカノールアミン(トリエタノールアミン、ジメチルアミノエタノールなど)、複素環式アミン(N-メチルモルホリンなど)、ヘキサメチレンテトラミン、ジアザビシクロウンデセン(DBU)、ジアザビシクロノネン(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)などが挙げられる。これらの塩基触媒も単独でまたは二種以上組み合わせて使用できる。 When the reactive group is a glycidyl group, a base catalyst may be used. The base catalyst may be either an inorganic base or an organic base. Examples of the inorganic base include alkali metal hydroxides (such as sodium hydroxide and potassium hydroxide) and alkali metal carbonates. Examples of the organic base include tertiary amines such as trialkylamine (such as trimethylamine and triethylamine), alkanolamine (such as triethanolamine and dimethylaminoethanol), heterocyclic amine (such as N-methylmorpholine), and hexamethylenetetramine. , Diazabicycloundecene (DBU), diazabicyclononene (DBN), 1,4-diazabicyclo [2.2.2] octane (DABCO), and the like. These base catalysts can also be used alone or in combination of two or more.
 触媒の使用量は、触媒の種類に応じて選択できるが、原料セルロースナノ繊維100重量部に対して、例えば0.01~100重量部程度の範囲から適当に選択でき、通常0.01~20重量部(例えば0.1~18重量部)、好ましくは0.5~18重量部(例えば1~17重量部)、さらに好ましくは3~15重量部(特に5~15重量部)程度であってもよい。 The amount of the catalyst used can be selected according to the type of the catalyst, but can be appropriately selected from a range of, for example, about 0.01 to 100 parts by weight with respect to 100 parts by weight of the raw material cellulose nanofiber, and usually 0.01 to 20 parts. Parts by weight (eg 0.1 to 18 parts by weight), preferably 0.5 to 18 parts by weight (eg 1 to 17 parts by weight), more preferably about 3 to 15 parts by weight (especially 5 to 15 parts by weight). May be.
 触媒を用いる場合、反応は有機溶媒の非存在下で行ってもよいが、通常、有機溶媒の存在下で行われる。この有機溶媒は原料セルロースナノ繊維に含浸していてもよいが、原料セルロースナノ繊維を有機溶媒に分散させた分散系で反応させる場合が多い。原料セルロースナノ繊維を有機溶媒に分散させた分散系で、原料セルロースナノ繊維と前記フルオレン化合物(B1)とを反応させると、均一に反応させることができる。このような方法で得られた修飾セルロースナノ繊維(B)は、取り扱い性および分散性が高い。 When using a catalyst, the reaction may be carried out in the absence of an organic solvent, but is usually carried out in the presence of an organic solvent. The organic solvent may be impregnated in the raw material cellulose nanofibers, but is often reacted in a dispersion system in which the raw material cellulose nanofibers are dispersed in the organic solvent. When the raw material cellulose nanofibers and the fluorene compound (B1) are reacted in a dispersion system in which the raw material cellulose nanofibers are dispersed in an organic solvent, they can be reacted uniformly. The modified cellulose nanofiber (B) obtained by such a method has high handleability and dispersibility.
 原料セルロースナノ繊維(特に、ミクロフィブリル化した繊維、平均繊維径がナノメーターサイズのナノ繊維)を乾燥すると、繊維が絡み合って再分散できなくなる場合がある。そのため、通常、原料セルロースナノ繊維は水含浸または水分散液として市販されている場合が多い。このような水分散液では、水分散液の水を有機溶媒に置換する慣用の溶媒置換法、例えば、原料セルロースナノ繊維の水分散液に水溶性溶媒を添加混合し、原料セルロースナノ繊維を分離(または溶媒を除去)した後、さらに有機溶媒を添加混合する操作を繰り返す方法などにより、原料セルロースナノ繊維が有機溶媒に分散した分散液を調製できる。なお、沸点が水よりも高い水溶性有機溶媒を用いる場合、水を蒸留(共沸蒸留を含む)して除去することにより溶媒置換できる。 When drying raw material cellulose nanofibers (particularly, microfibrillated fibers, nanofibers having an average fiber diameter of nanometer size), the fibers may become entangled and cannot be redispersed. Therefore, usually, raw material cellulose nanofibers are often marketed as water-impregnated or aqueous dispersions. In such an aqueous dispersion, a conventional solvent replacement method for replacing the water of the aqueous dispersion with an organic solvent, for example, adding a water-soluble solvent to the aqueous dispersion of raw material cellulose nanofibers, and separating the raw material cellulose nanofibers After removing the solvent (or removing the solvent), a dispersion liquid in which the raw material cellulose nanofibers are dispersed in the organic solvent can be prepared by a method of repeating the operation of adding and mixing the organic solvent. When a water-soluble organic solvent having a boiling point higher than that of water is used, the solvent can be replaced by removing water by distillation (including azeotropic distillation).
 水溶性有機溶媒としては、例えば、アルコール類(メタノール、エタノール、プロパノール、イソプロパノールなどのC1-4アルカノールなど)、エーテル類(ジオキサン、テトラヒドロフランなどの環状エーテル類)、ケトン類(アセトンなど)、アミド類(ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、ジエチルアセトアミドなど)、スルホキシド類(ジメチルスルホキシドなど)、アルカンジオール(例えば、エチレングリコール、プロピレングリコールなどのC2-4アルカンジオール)、セロソルブ類(メチルセロソルブ、エチルセロソルブなど)、カルビトール類(エチルカルビトールなど)、カーボネート類(エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネートなど)などが挙げられる。これらの溶媒は、単独でまたは二種以上組み合わせてもよい。 Examples of the water-soluble organic solvent include alcohols (C 1-4 alkanols such as methanol, ethanol, propanol and isopropanol), ethers (cyclic ethers such as dioxane and tetrahydrofuran), ketones (acetone and the like), amides, and the like. (Dimethylformamide, diethylformamide, dimethylacetamide, diethylacetamide, etc.), sulfoxides (dimethylsulfoxide, etc.), alkanediols (eg C 2-4 alkanediols such as ethylene glycol, propylene glycol), cellosolves (methyl cellosolve, Ethyl cellosolve, etc.), carbitols (ethylcarbitol, etc.), carbonates (ethylene carbonate, propylene carbonate, dimethyl carbonate, etc.), etc. And the like. These solvents may be used alone or in combination of two or more.
 なお、水溶性有機溶媒を用いて溶媒置換したセルロース含有分散液において、水溶性有機溶媒は、前記と同様にして、非水溶性有機溶媒に溶媒置換することもできる。非水溶性有機溶媒としては、エーテル類(ジエチルエーテル、ジイソプロピルエーテルなどのジアルキルエーテルなど)、エステル類(酢酸メチル、酢酸エチル、酢酸ブチルなど)、ケトン類(メチルエチルケトン、メチルイソブチルケトンなど)、ニトリル類(ベンゾニトリルなど)、セロソルブアセテート類、カルビトールアセテート類、炭化水素類(ヘキサン、オクタン、シクロヘキサンなどの脂肪族炭化水素類、トルエンなどの芳香族炭化水素類)、ハロゲン化炭化水素類(ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエチレンなど)などが例示できる。これらの非水溶性有機溶媒も単独でまたは二種以上組み合わせて使用できる。 In the cellulose-containing dispersion obtained by solvent substitution using a water-soluble organic solvent, the water-soluble organic solvent can be replaced with a water-insoluble organic solvent in the same manner as described above. Water-insoluble organic solvents include ethers (dialkyl ethers such as diethyl ether and diisopropyl ether), esters (methyl acetate, ethyl acetate, butyl acetate, etc.), ketones (methyl ethyl ketone, methyl isobutyl ketone, etc.), nitriles (Eg benzonitrile), cellosolve acetates, carbitol acetates, hydrocarbons (aliphatic hydrocarbons such as hexane, octane, cyclohexane, aromatic hydrocarbons such as toluene), halogenated hydrocarbons (dichloromethane, Chloroform, carbon tetrachloride, dichloroethane, trichloroethylene, etc.). These water-insoluble organic solvents can also be used alone or in combination of two or more.
 これらの有機溶媒のうち、非プロトン性溶媒、特に非プロトン性極性溶媒(例えば、エーテル類、ケトン類、アミド類、スルホキシド類など)が好ましい。 Of these organic solvents, aprotic solvents, particularly aprotic polar solvents (for example, ethers, ketones, amides, sulfoxides, etc.) are preferable.
 有機溶媒(例えば、非プロトン性極性溶媒)の溶解度パラメーター(SP値、(cal/cm))は8~15(例えば8.5~15)程度であってもよく、通常9~14.5(例えば10~14.5)程度であってもよい。 The solubility parameter (SP value, (cal / cm) 2 ) of an organic solvent (eg, aprotic polar solvent) may be about 8 to 15 (eg, 8.5 to 15), usually 9 to 14.5. It may be about (for example, 10 to 14.5).
 分散液中の原料セルロースナノ繊維の固形分濃度は、例えば0.01~30重量%(例えば0.1~20重量%)、好ましくは1~15重量%、さらに好ましくは3~12重量%(例えば5~10重量%)程度であってもよい。固形分濃度が低すぎると、反応効率が低下する虞がある。 The solid content concentration of the raw material cellulose nanofibers in the dispersion is, for example, 0.01 to 30% by weight (eg 0.1 to 20% by weight), preferably 1 to 15% by weight, more preferably 3 to 12% by weight ( For example, it may be about 5 to 10% by weight. If the solid content concentration is too low, the reaction efficiency may decrease.
 触媒を用いる場合、反応は、減圧下で行ってもよいが、通常、加圧下または常圧下で行う場合が多い。反応温度は、溶媒の沸点などにより適宜選択でき、例えば50~200℃(例えば70~170℃)、好ましくは80~150℃(例えば100~130℃)程度であってもよい。なお、反応は溶媒の還流下で行ってもよい。また、反応時間は、特に限定されず、例えば10分~48時間(例えば30分~24時間)程度である。さらに、反応は、空気中または不活性ガス(窒素、アルゴンなどの希ガスなど)雰囲気下、攪拌しながら行うことができる。 When a catalyst is used, the reaction may be performed under reduced pressure, but is usually performed under pressure or normal pressure in many cases. The reaction temperature can be appropriately selected depending on the boiling point of the solvent, and may be, for example, about 50 to 200 ° C. (eg 70 to 170 ° C.), preferably about 80 to 150 ° C. (eg 100 to 130 ° C.). The reaction may be performed under reflux of the solvent. The reaction time is not particularly limited and is, for example, about 10 minutes to 48 hours (for example, 30 minutes to 24 hours). Furthermore, the reaction can be performed with stirring in air or in an atmosphere of an inert gas (such as a rare gas such as nitrogen or argon).
 なお、反応は、反応系を撹拌しながら行ってもよく、原料セルロース繊維として、ナノメータサイズではないセルロースまたは繊維(例えば、平均繊維径がミクロンメータサイズの繊維、パルプ繊維など)を使用し、セルロースまたは繊維に機械的剪断力を作用させながら行い、セルロースを微細化した修飾セルロースナノ繊維を得てもよい。さらに、反応終了後に解繊して修飾セルロース繊維を微細化してもよい。 The reaction may be carried out while stirring the reaction system. As raw material cellulose fibers, cellulose or fibers other than nanometer size (for example, fibers having an average fiber diameter of micrometer size, pulp fibers, etc.) are used. Alternatively, modified cellulose nanofibers obtained by refining cellulose may be obtained by applying mechanical shearing force to the fibers. Further, the modified cellulose fiber may be refined by defibrating after the reaction is completed.
 触媒を用いた反応により生成した修飾セルロースナノ繊維(B)は、慣用の方法(例えば、遠心分離、濾過、濃縮、抽出など)により分離精製してもよい。例えば、少なくとも前記フルオレン化合物(B1)を溶解可能な溶媒を反応混合物に添加し、前記遠心分離、濾過、抽出などの分離法(慣用の方法)で未反応フルオレン化合物を除去し、分離精製してもよい。なお、前記分離操作は複数回(例えば2~5回程度)行うことができる。さらに、分離精製した修飾セルロースを加熱下または減圧下あるいは常圧下で乾燥することにより、粉末状の形態を有する修飾セルロース繊維を得ることができる。 The modified cellulose nanofiber (B) produced by the reaction using a catalyst may be separated and purified by a conventional method (for example, centrifugation, filtration, concentration, extraction, etc.). For example, a solvent capable of dissolving at least the fluorene compound (B1) is added to the reaction mixture, the unreacted fluorene compound is removed by a separation method (conventional method) such as centrifugation, filtration, and extraction, followed by separation and purification. Also good. The separation operation can be performed a plurality of times (for example, about 2 to 5 times). Furthermore, the modified cellulose fiber having a powdery form can be obtained by drying the separated and purified modified cellulose under heating, reduced pressure, or normal pressure.
 なお、未反応フルオレン化合物を前記分離方法などにより繰り返し除去して精製した修飾セルロースを、ラマン分析などの方法により分析すると、セルロースに由来するピークとフルオレン化合物に由来するピークとが存在し、セルロースにフルオレン化合物が結合していることが確認できる。 In addition, when the modified cellulose obtained by repeatedly removing the unreacted fluorene compound by the separation method or the like is analyzed by a method such as Raman analysis, there are a peak derived from the cellulose and a peak derived from the fluorene compound. It can be confirmed that the fluorene compound is bonded.
 一方、未加硫ゴム成分中での混練によって修飾セルロースナノ繊維を製造する場合は、後述するように、加硫ゴム組成物の製造過程で修飾セルロースナノ繊維が得られる。 On the other hand, when the modified cellulose nanofiber is produced by kneading in the unvulcanized rubber component, the modified cellulose nanofiber is obtained during the production process of the vulcanized rubber composition, as will be described later.
 (修飾セルロースナノ繊維(B)の特性)
 触媒を用いて得られた修飾セルロースナノ繊維(B)は、通常、粉末状の形態を有しており、取り扱い性に優れる。また、前記フルオレン化合物(B1)の修飾割合(結合量)が、比較的少なくても、修飾セルロースナノ繊維(B)は粉末状の形態を有していてもよい。
(Characteristics of modified cellulose nanofiber (B))
The modified cellulose nanofiber (B) obtained using the catalyst usually has a powdery form and is excellent in handleability. Moreover, even if the modification ratio (bonding amount) of the fluorene compound (B1) is relatively small, the modified cellulose nanofiber (B) may have a powdery form.
 セルロースナノ繊維に結合したフルオレン化合物(B1)の割合(修飾率)は、修飾セルロースナノ繊維(B)の総量に対して0.01~33重量%(例えば1~25重量%)程度の範囲から選択できる。特に、フルオレン化合物(B1)の基Xが基-[(OA)m1-Y](式中、Yがヒドロキシル基を示す)である場合、前記修飾率は、修飾セルロースナノ繊維(B)の総量に対して0.01~30重量%程度の範囲から選択でき、例えば0.1~30重量%、好ましくは0.5~25重量%(例えば1~25重量%)、さらに好ましくは2~20重量%(特に3~20重量%)程度であってもよい。また、フルオレン化合物(B1)の基Xが基-[(OA)m1-Y](式中、Yがグリシジルオキシ基を示す)である場合、前記修飾率は0.01~33重量%程度(例えば0.1~30重量%)、好ましくは1~25重量%(例えば2~25重量%)、さらに好ましくは3~20重量%(特に5~20重量%)程度であってもよい。 The ratio (modification rate) of the fluorene compound (B1) bound to the cellulose nanofibers is in the range of about 0.01 to 33% by weight (for example, 1 to 25% by weight) with respect to the total amount of the modified cellulose nanofibers (B). You can choose. In particular, when the group X 1 of the fluorene compound (B1) is a group — [(OA) m1 —Y 1 ] (wherein Y 1 represents a hydroxyl group), the modification rate is the modified cellulose nanofiber (B ) In the range of about 0.01 to 30% by weight, for example 0.1 to 30% by weight, preferably 0.5 to 25% by weight (eg 1 to 25% by weight), more preferably It may be about 2 to 20% by weight (particularly 3 to 20% by weight). When the group X 1 of the fluorene compound (B1) is a group — [(OA) m1 —Y 1 ] (wherein Y 1 represents a glycidyloxy group), the modification rate is 0.01 to 33 wt. % (Eg 0.1 to 30% by weight), preferably 1 to 25% by weight (eg 2 to 25% by weight), more preferably 3 to 20% by weight (especially 5 to 20% by weight). Good.
 修飾率が大きすぎると、水性溶媒に対する分散性、低線熱膨張係数などの特性が低下する虞があり、逆に小さすぎると、粉体状の形態を形成できなくなり、取り扱い性が低下し易くなったり、ゴム組成物中でのゴム成分との分散性(または混和性)が低下する虞がある。修飾率は、後述する実施例に記載の方法などにより測定できる。 If the modification rate is too large, properties such as dispersibility in an aqueous solvent and a low linear thermal expansion coefficient may be deteriorated. On the other hand, if the modification rate is too small, a powdery form cannot be formed, and handling properties are likely to be deteriorated. Or dispersibility (or miscibility) with the rubber component in the rubber composition may be reduced. The modification rate can be measured by the method described in Examples described later.
 修飾セルロースナノ繊維(B)の平均繊維径は、例えば1~1000nm(例えば3~800nm)、好ましくは4~500nm(例えば5~300nm)、さらに好ましくは10~200nm(特に15~100nm)程度であってもよい。平均繊維径が大きすぎると、ゴム組成物の強度などの特性が低下する虞がある。なお、セルロースナノ繊維の最大繊維径は、例えば3~1000nm(例えば4~900nm)、好ましくは5~700nm(例えば10~500nm)、さらに好ましくは15~400nm(特に20~300nm)程度であってもよい。なお、セルロースナノ繊維は、繊維径がマイクロメータサイズのセルロース繊維を実質的に含んでいない場合が多い。 The average fiber diameter of the modified cellulose nanofiber (B) is, for example, about 1 to 1000 nm (eg 3 to 800 nm), preferably 4 to 500 nm (eg 5 to 300 nm), more preferably about 10 to 200 nm (especially 15 to 100 nm). There may be. If the average fiber diameter is too large, properties such as strength of the rubber composition may be deteriorated. The maximum fiber diameter of the cellulose nanofiber is, for example, about 3 to 1000 nm (for example, 4 to 900 nm), preferably about 5 to 700 nm (for example, 10 to 500 nm), more preferably about 15 to 400 nm (especially 20 to 300 nm). Also good. In many cases, the cellulose nanofibers substantially do not contain cellulose fibers having a fiber diameter of micrometer size.
 修飾セルロースナノ繊維(B)の平均繊維長は、例えば0.01~500μm(例えば0.1~400μm)程度の範囲から選択でき、通常1μm以上(例えば5~300μm)、好ましくは10μm以上(例えば20~200μm)、さらに好ましくは30μm以上(特に50~150μm)であってもよい。平均繊維長が短すぎると、ゴム組成物の機械的特性が低下する虞があり、逆に長すぎると、ゴム組成物中での分散性が低下する虞がある。 The average fiber length of the modified cellulose nanofiber (B) can be selected, for example, in the range of about 0.01 to 500 μm (for example, 0.1 to 400 μm), and is usually 1 μm or more (for example, 5 to 300 μm), preferably 10 μm or more (for example, 20 to 200 μm), more preferably 30 μm or more (particularly 50 to 150 μm). If the average fiber length is too short, the mechanical properties of the rubber composition may be reduced. Conversely, if the average fiber length is too long, the dispersibility in the rubber composition may be reduced.
 修飾セルロースナノ繊維(B)の平均繊維径に対する平均繊維長の割合(アスペクト比)は、例えば5以上(例えば5~10000程度)、好ましくは10以上(例えば10~5000程度)、さらに好ましくは20以上(例えば20~3000程度)、特に50以上(例えば50~2000程度)であってもよく、100以上(例えば100~1000程度)、さらには200以上(例えば200~800程度)であってもよい。また、アスペクト比が小さすぎると、ゴム成分に対する補強効果が低下し、アスペクト比が大きすぎると、均一な分散が困難となり、繊維が分解(または損傷)し易くなる虞がある。 The ratio (aspect ratio) of the average fiber length to the average fiber diameter of the modified cellulose nanofiber (B) is, for example, 5 or more (for example, about 5 to 10,000), preferably 10 or more (for example, about 10 to 5000), and more preferably 20 (For example, about 20 to 3000), particularly 50 or more (for example, about 50 to 2000), 100 or more (for example, about 100 to 1000), and even 200 or more (for example, about 200 to 800). Good. Further, if the aspect ratio is too small, the reinforcing effect on the rubber component is lowered, and if the aspect ratio is too large, uniform dispersion becomes difficult and the fibers may be easily decomposed (or damaged).
 なお、本明細書および特許請求の範囲では、修飾セルロースナノ繊維(B)(または原料セルロースナノ繊維)の平均繊維径、平均繊維長およびアスペクト比は、走査型電子顕微鏡写真の画像からランダムに50個の繊維を選択し、加算平均して算出してもよい。 In the present specification and claims, the average fiber diameter, average fiber length, and aspect ratio of the modified cellulose nanofiber (B) (or raw material cellulose nanofiber) are randomly determined from an image of a scanning electron micrograph. It may be calculated by selecting individual fibers and averaging them.
 修飾セルロースナノ繊維(B)は、前記フルオレン化合物(B1)の修飾により疎水性が向上するためか、水分含有量が少ない。すなわち、水分含有量は、温度25℃、湿度60%の条件下、1昼夜放置したとき、0~7重量%(例えば0~5重量%)、好ましくは0.1~5重量%、さらに好ましくは0.3~3重量%程度であってもよい。なお、水分含有量は、近赤外線分析計などを用いて測定できる。 The modified cellulose nanofiber (B) has a low water content because the hydrophobicity is improved by the modification of the fluorene compound (B1). That is, the moisture content is 0 to 7% by weight (for example, 0 to 5% by weight), preferably 0.1 to 5% by weight, and more preferably when left standing for one day and night under the conditions of a temperature of 25 ° C. and a humidity of 60%. May be about 0.3 to 3% by weight. The water content can be measured using a near infrared analyzer or the like.
 修飾セルロースナノ繊維(B)の嵩密度(見掛密度)は、温度25℃、湿度60%の条件下において、JIS K7365-1999に準拠して測定したとき、例えば0.01~0.7g/ml、好ましくは0.05~0.5g/ml、さらに好ましくは0.1~0.3g/ml程度であってもよい。なお、嵩密度Pは、所定重量Wの修飾セルロースナノ繊維をメスシリンダーに入れて体積Vを測定し、式P=W/Vで算出できる。 When the bulk density (apparent density) of the modified cellulose nanofiber (B) is measured in accordance with JIS K7365-1999 under the conditions of a temperature of 25 ° C. and a humidity of 60%, for example, 0.01 to 0.7 g / ml, preferably 0.05 to 0.5 g / ml, more preferably about 0.1 to 0.3 g / ml. The bulk density P can be calculated from the formula P = W / V by measuring the volume V of a modified cellulose nanofiber having a predetermined weight W in a measuring cylinder.
 修飾セルロースナノ繊維(B)は、流動性が高く、安息角が、温度25℃、湿度60%の条件下において、JIS R9301-2-2に準拠して測定したとき、例えば20~45°、好ましくは25~40°、さらに好ましくは30~35°程度であってもよい。流動性が大きすぎると、取り扱い性が低下し、逆に小さすぎると、分散性が低下するおそれがある。 The modified cellulose nanofiber (B) has a high fluidity and an angle of repose measured according to JIS R9301-2-2 under conditions of a temperature of 25 ° C. and a humidity of 60%, for example, 20 to 45 °, The angle may be preferably 25 to 40 °, more preferably about 30 to 35 °. If the fluidity is too large, the handleability is lowered. Conversely, if the fluidity is too small, the dispersibility may be lowered.
 修飾セルロースナノ繊維(B)は、粘稠な液体を形成することなく、ナノファイバーの形態を維持している。そのため、比較的分子量(または重合度)が大きく、粘度平均重合度は、例えば100~10000、好ましくは200~5000、より好ましくは300~2000程度であってもよい。 The modified cellulose nanofiber (B) maintains the nanofiber form without forming a viscous liquid. Therefore, the molecular weight (or degree of polymerization) is relatively large, and the viscosity average degree of polymerization may be, for example, about 100 to 10,000, preferably about 200 to 5,000, more preferably about 300 to 2,000.
 粘度平均重合度は、TAPPI T230に記載の粘度法により測定できる。すなわち、修飾セルロースナノ繊維(または原料セルロースナノ繊維)0.04gを精秤し、水10mLと1M銅エチレンジアミン水溶液10mLとを加え、5分間程攪拌して修飾セルロースを溶解する。得られた溶液をウベローデ型粘度管に入れ、25℃下で流下速度を測定する。水10mLと1M銅エチレンジアミン水溶液10mLとの混合液をブランクとして測定する。これらの測定値に基づいて算出した固有粘度[η]を用い、木質科学実験マニュアル(日本木材学会編、文永堂出版)に記載の下記式に従って粘度平均重合度を算出できる。 Viscosity average degree of polymerization can be measured by the viscosity method described in TAPPI T230. That is, 0.04 g of modified cellulose nanofiber (or raw material cellulose nanofiber) is precisely weighed, 10 mL of water and 10 mL of 1M copper ethylenediamine aqueous solution are added, and the modified cellulose is dissolved by stirring for about 5 minutes. The obtained solution is put into an Ubbelohde type viscosity tube, and the flow rate is measured at 25 ° C. A mixed liquid of 10 mL of water and 10 mL of 1M copper ethylenediamine aqueous solution is measured as a blank. Using the intrinsic viscosity [η] calculated based on these measured values, the viscosity average degree of polymerization can be calculated according to the following formula described in the Wood Science Experiment Manual (edited by the Wood Society of Japan, Bunnendo Publishing).
   粘度平均重合度=175×[η] Viscosity average polymerization degree = 175 × [η]
 また、本発明の加硫ゴム組成物において、修飾セルロースナノ繊維(B)の特性(例えば、低線熱膨張特性、強度、耐熱性など)を有効に発現させる場合、結晶性の高い修飾セルロースナノ繊維が好ましい。前記のように、修飾セルロースはセルロースナノ繊維の結晶性を維持できるため、修飾セルロースナノ繊維(B)の結晶化度は前記セルロースナノ繊維の数値をそのまま参照できる。例えば、修飾セルロースの結晶化度は、40~100%(例えば50~100%)、好ましくは60~100%(例えば65~100%)、さらに好ましくは70~100%(特に75~100%)程度であってもよく、通常、結晶化度が60%以上(例えば75~99%程度)であってもよい。結晶化度が小さすぎると、線熱膨張特性や強度などの特性を低下させるおそれがある。セルロースの結晶構造としては、例えば、I型、II型、III型、IV型などが例示でき、低線膨張特性および弾性率などが高いI型結晶構造が好ましい。なお、結晶化度は、粉末X線回折装置((株)リガク製「Ultima IV」)などを用いて測定できる。 Further, in the vulcanized rubber composition of the present invention, when the properties of the modified cellulose nanofiber (B) (for example, low linear thermal expansion properties, strength, heat resistance, etc.) are effectively expressed, the modified cellulose nanofiber with high crystallinity Fiber is preferred. As described above, the modified cellulose can maintain the crystallinity of the cellulose nanofibers, and therefore the crystallinity of the modified cellulose nanofiber (B) can directly refer to the value of the cellulose nanofibers. For example, the crystallinity of the modified cellulose is 40 to 100% (eg 50 to 100%), preferably 60 to 100% (eg 65 to 100%), more preferably 70 to 100% (particularly 75 to 100%). Usually, the degree of crystallinity may be 60% or more (for example, about 75 to 99%). If the degree of crystallinity is too small, characteristics such as linear thermal expansion characteristics and strength may be deteriorated. Examples of the crystal structure of cellulose include I-type, II-type, III-type, and IV-type, and an I-type crystal structure having high low linear expansion characteristics and high elastic modulus is preferable. The crystallinity can be measured using a powder X-ray diffractometer (“Ultima IV” manufactured by Rigaku Corporation).
 修飾セルロースナノ繊維(B)の割合は、ゴム成分(A)100重量部に対して0.1~30重量部程度の範囲から選択でき、例えば0.2~25重量部、好ましくは0.3~20重量部、さらに好ましくは0.5~15重量部(特に1~10重量部)程度である。さらに、本発明では、修飾セルロースナノ繊維(B)の割合が少なくても、機械的特性や耐熱性などを向上でき、修飾セルロースナノ繊維(B)の割合は、ゴム成分(A)100重量部に対して、例えば0.1~10重量部、好ましくは0.3~7重量部、さらに好ましくは0.5~5重量部(特に1~3重量部)程度であってもよい。修飾セルロースナノ繊維(B)の割合が少なすぎると、ゴム組成物の機械的特性が低下する虞があり、逆に多すぎると、ゴム組成物の成形性が低下する虞がある。 The proportion of the modified cellulose nanofiber (B) can be selected from the range of about 0.1 to 30 parts by weight, for example, 0.2 to 25 parts by weight, preferably 0.3, based on 100 parts by weight of the rubber component (A). The amount is about 20 to 20 parts by weight, more preferably about 0.5 to 15 parts by weight (particularly 1 to 10 parts by weight). Furthermore, in this invention, even if there is little ratio of a modified cellulose nanofiber (B), a mechanical characteristic, heat resistance, etc. can be improved, and the ratio of a modified cellulose nanofiber (B) is 100 weight part of rubber components (A). On the other hand, it may be, for example, about 0.1 to 10 parts by weight, preferably about 0.3 to 7 parts by weight, more preferably about 0.5 to 5 parts by weight (particularly about 1 to 3 parts by weight). If the proportion of the modified cellulose nanofiber (B) is too small, the mechanical properties of the rubber composition may be reduced, and conversely if too high, the moldability of the rubber composition may be reduced.
 本発明では、ゴム成分(A)に対して、修飾セルロースナノ繊維(B)を前記割合で添加することにより、ゴム組成物の機械的特性を向上できる。さらに、修飾セルロースナノ繊維(B)の原料である未修飾のセルロースナノ繊維も、ゴム成分(A)に添加することにより、加硫ゴム組成物の耐熱性を向上できる。セルロースナノ繊維の割合も、前記修飾セルロースナノ繊維(B)の添加量(組成物中の前記割合)と同一の範囲から選択できる。加硫ゴム組成物の機械的特性を大きく向上できる点からは、未修飾のセルロースナノ繊維よりも、修飾セルロースナノ繊維(B)の方が好ましい。 In the present invention, the mechanical properties of the rubber composition can be improved by adding the modified cellulose nanofiber (B) in the above ratio to the rubber component (A). Furthermore, the heat resistance of a vulcanized rubber composition can be improved by adding unmodified cellulose nanofibers, which are raw materials for the modified cellulose nanofibers (B), to the rubber component (A). The ratio of the cellulose nanofibers can also be selected from the same range as the amount of the modified cellulose nanofibers (B) added (the ratio in the composition). The modified cellulose nanofiber (B) is preferable to the unmodified cellulose nanofiber from the viewpoint that the mechanical properties of the vulcanized rubber composition can be greatly improved.
 [補強剤(C)]
 本発明の加硫ゴム組成物は、硬度や強度などの機械的特性を向上させるために、ゴム成分(A)および修飾セルロースナノ繊維(B)に加えて、補強剤(C)をさらに含んでいてもよい。
[Reinforcing agent (C)]
The vulcanized rubber composition of the present invention further includes a reinforcing agent (C) in addition to the rubber component (A) and the modified cellulose nanofiber (B) in order to improve mechanical properties such as hardness and strength. May be.
 補強剤(C)としては、慣用の補強剤を利用でき、例えば、粒状補強剤(カーボンブラックやグラファイトなどの炭素質材料;酸化カルシウム、酸化マグネシウム、酸化バリウム、酸化鉄、酸化銅、酸化チタン、酸化アルミニウム(アルミナ)などの金属酸化物;ケイ酸カルシウムやケイ酸アルミニウムなどの金属ケイ酸塩;炭化ケイ素や炭化タングステンなどの金属炭化物;窒化チタン、窒化アルミニウム、窒化ホウ素などの金属窒化物;炭酸マグネシウムや炭酸カルシウムなどの金属炭酸塩;硫酸カルシウムや硫酸バリウムなどの金属硫酸塩;ゼオライト、ケイソウ土、焼成ケイソウ土、活性白土、シリカ、タルク、マイカ、カオリン、セリサイト、ベントナイト、モンモリロナイト、スメクタイト、クレーなどの鉱物質材料など)、繊維状補強剤(ガラス繊維、炭素繊維、ボロン繊維、ウィスカー、ワラストナイトなどの無機繊維;ポリエステル繊維、ポリアミド繊維、セルロース繊維などの有機繊維など)などが挙げられる。これらの補強剤は、単独でまたは二種以上組み合わせて使用できる。 As the reinforcing agent (C), a conventional reinforcing agent can be used. For example, granular reinforcing agents (carbonaceous materials such as carbon black and graphite; calcium oxide, magnesium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, Metal oxides such as aluminum oxide (alumina); metal silicates such as calcium silicate and aluminum silicate; metal carbides such as silicon carbide and tungsten carbide; metal nitrides such as titanium nitride, aluminum nitride and boron nitride; carbonic acid Metal carbonates such as magnesium and calcium carbonate; metal sulfates such as calcium sulfate and barium sulfate; zeolite, diatomaceous earth, calcined diatomaceous earth, activated clay, silica, talc, mica, kaolin, sericite, bentonite, montmorillonite, smectite, Mineral materials such as clay)維状 reinforcing agents (glass fibers, carbon fibers, boron fibers, whiskers, inorganic fibers such as wollastonite; polyester fibers, polyamide fibers, and organic fibers such as cellulose fibers) and the like. These reinforcing agents can be used alone or in combination of two or more.
 また、前記補強剤のうち、セルロース繊維は、セルロースナノ繊維であってもよい。さらに、セルロースナノ繊維は、原料セルロースナノ繊維とフルオレン化合物(B1)とを混練する過程で反応させて修飾セルロースナノ繊維を製造した場合において、フルオレン化合物(B1)と反応せずに残存したセルロースナノ繊維であってもよい。 Of the reinforcing agents, the cellulose fiber may be a cellulose nanofiber. Furthermore, when cellulose nanofibers are produced by reacting raw material cellulose nanofibers and fluorene compound (B1) in the course of kneading to produce modified cellulose nanofibers, cellulose nanofibers remaining without reacting with fluorene compound (B1) It may be a fiber.
 これらの補強剤のうち、カーボンブラックや炭酸カルシウム、シリカなどの粒状補強剤(特に粒状無機補強剤)が汎用され、修飾セルロースナノ繊維(B)との組み合わせにより、ゴム組成物の機械的特性を大きく向上できる点から、カーボンブラック、炭酸カルシウム、シリカが好ましく、カーボンブラックが特に好ましい。本発明では、修飾セルロースナノ繊維(B)は、ゴム成分中における自身の分散性だけでなく、粒状補強剤(特にカーボンブラックなどの粒状無機補強剤)との相容性も高く、粒状補強剤の分散性も向上できる。 Among these reinforcing agents, granular reinforcing agents (particularly granular inorganic reinforcing agents) such as carbon black, calcium carbonate, and silica are widely used, and in combination with the modified cellulose nanofiber (B), the mechanical properties of the rubber composition are improved. Carbon black, calcium carbonate, and silica are preferable, and carbon black is particularly preferable because it can be greatly improved. In the present invention, the modified cellulose nanofiber (B) not only has its own dispersibility in the rubber component, but also has a high compatibility with a granular reinforcing agent (particularly, a granular inorganic reinforcing agent such as carbon black). The dispersibility of can also be improved.
 カーボンブラックとしては、例えば、アセチレンブラック、ランプブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック、被覆カーボンブラック、グラフトカーボンブラックなどが挙げられる。これらのカーボンブラックは、単独でまたは二種以上組み合わせて使用できる。 Examples of carbon black include acetylene black, lamp black, thermal black, furnace black, channel black, ketjen black, coated carbon black, and graft carbon black. These carbon blacks can be used alone or in combination of two or more.
 炭酸カルシウムは、ロジン酸などの表面処理剤で表面処理された炭酸カルシウムであってもよい。 The calcium carbonate may be calcium carbonate surface-treated with a surface treatment agent such as rosin acid.
 シリカとしては、例えば、乾式法ホワイトカーボン、湿式法ホワイトカーボン、コロイダルシリカ、沈降シリカなどが挙げられる。これらのシリカは、単独でまたは二種以上組み合わせて使用できる。 Examples of silica include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica. These silicas can be used alone or in combination of two or more.
 粒状無機補強剤の形状は、特に制限されず、球状、楕円球状、多面体状[例えば、立方体状、直方体状、四面体状(ピラミッド状)など]、扁平状(板状、鱗片状または薄片状)、層状、ロッド状、針状、不定形状などであってもよい。また、粒状無機補強剤は多孔質形状であってもよい。これらのうち、略球状などの等方形状が好ましい。 The shape of the granular inorganic reinforcing agent is not particularly limited, and is spherical, elliptical, polyhedral [for example, cubic, rectangular parallelepiped, tetrahedral (pyramid), etc.], flat (plate, scale or flake) ), Layer shape, rod shape, needle shape, indeterminate shape, and the like. The granular inorganic reinforcing agent may be in a porous shape. Of these, isotropic shapes such as a substantially spherical shape are preferred.
 粒状無機補強剤の平均粒径(個数平均一次粒径)は、例えば1~1000nm、好ましくは3~300nm、さらに好ましくは5~100nm(特に10~50nm)程度である。粒状無機補強剤の粒径が大きすぎると、加硫ゴム組成物の機械的特性が低下する虞があり、小さすぎると、均一に分散するのが困難となる虞がある。 The average particle size (number average primary particle size) of the granular inorganic reinforcing agent is, for example, about 1 to 1000 nm, preferably 3 to 300 nm, more preferably 5 to 100 nm (particularly 10 to 50 nm). If the particle size of the granular inorganic reinforcing agent is too large, the mechanical properties of the vulcanized rubber composition may be reduced, and if it is too small, it may be difficult to uniformly disperse.
 カーボンブラックの平均粒径(個数平均一次粒径)は5~200nm程度の範囲から選択でき、例えば10~150nm、好ましくは15~100nm、さらに好ましくは20~80nm(特に30~50nm)程度である。カーボンブラックの平均粒径が小さすぎると、均一な分散が困難となる虞があり、大きすぎると、ゴム組成物の機械的特性が低下する虞がある。 The average particle size (number average primary particle size) of carbon black can be selected from the range of about 5 to 200 nm, for example, 10 to 150 nm, preferably 15 to 100 nm, more preferably 20 to 80 nm (particularly 30 to 50 nm). . If the average particle size of the carbon black is too small, uniform dispersion may be difficult, and if it is too large, the mechanical properties of the rubber composition may be deteriorated.
 なお、本明細書および特許請求の範囲において、粒状無機補強剤の平均粒径は、慣用の方法、例えば、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)写真に基づいて測定できる。 In addition, in this specification and a claim, the average particle diameter of a granular inorganic reinforcing agent can be measured based on a conventional method, for example, a scanning electron microscope (SEM) or a transmission electron microscope (TEM) photograph.
 補強剤(C)の割合は、ゴム成分(A)100重量部に対して10~300重量部程度の範囲から選択でき、例えば20~200重量部、好ましくは30~150重量部、さらに好ましくは50~100重量部(特に60~80重量部)程度である。補強剤の割合が少なすぎると、加硫ゴム組成物の機械的特性を向上させる効果が低下する虞があり、逆に多すぎると、加硫ゴム組成物の伸びや強度などが低下する虞がある。 The proportion of the reinforcing agent (C) can be selected from the range of about 10 to 300 parts by weight, for example 20 to 200 parts by weight, preferably 30 to 150 parts by weight, more preferably 100 parts by weight of the rubber component (A). About 50 to 100 parts by weight (particularly 60 to 80 parts by weight). If the proportion of the reinforcing agent is too small, the effect of improving the mechanical properties of the vulcanized rubber composition may be reduced. Conversely, if the amount is too large, the elongation or strength of the vulcanized rubber composition may be reduced. is there.
 [加工助剤(D)]
 本発明の加硫ゴム組成物は、成形性などを向上させるために、ゴム成分(A)および修飾セルロースナノ繊維(B)に加えて、加工助剤(D)をさらに含んでいてもよい。
[Processing aid (D)]
The vulcanized rubber composition of the present invention may further contain a processing aid (D) in addition to the rubber component (A) and the modified cellulose nanofiber (B) in order to improve moldability and the like.
 加工助剤(D)としては、ゴム成分(A)に相容して未加硫ゴム組成物の粘度を低減できる添加剤であれば特に限定されず、例えば、溶剤(例えば、ヘキサン、シクロヘキサンなどの脂肪族炭化水素;ベンゼン、キシレン、トルエンなどの芳香族炭化水素;メタノール、エタノール、イソプロパノールなどのアルカノール;アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン;クロロホルム、トリクロロエチレンなどのハロゲン化炭化水素;エチルエーテル、テトラヒドロフランなどのエーテル;酢酸エチルなどのエステル;ジメチルホルムアミドなどのアミド;二硫化炭素などの硫黄化合物など)、軟化剤(パラフィン系オイル、ナフテン系オイル、プロセスオイルなどのオイル類など)、可塑剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィン、脂肪酸アマイドなど)などが挙げられる。これらの加工助剤は、単独でまたは二種以上組み合わせて使用できる。 The processing aid (D) is not particularly limited as long as it is an additive compatible with the rubber component (A) and can reduce the viscosity of the unvulcanized rubber composition. For example, a solvent (for example, hexane, cyclohexane, etc.) Aliphatic hydrocarbons; aromatic hydrocarbons such as benzene, xylene and toluene; alkanols such as methanol, ethanol and isopropanol; ketones such as acetone, methyl ethyl ketone and cyclohexanone; halogenated hydrocarbons such as chloroform and trichloroethylene; ethyl ether and tetrahydrofuran Ethers such as ethyl acetate; amides such as dimethylformamide; sulfur compounds such as carbon disulfide), softeners (oils such as paraffinic oil, naphthenic oil, process oil), plasticizers (stearin) Acid, steari Acid metal salts, waxes, paraffins, fatty acid amide) and the like. These processing aids can be used alone or in combination of two or more.
 これらの加工助剤のうち、トルエンなどの溶剤、ナフテン系オイルやプロセスオイルなどの軟化剤、ステアリン酸などの可塑剤などが汎用される。 Of these processing aids, solvents such as toluene, softeners such as naphthenic oil and process oil, and plasticizers such as stearic acid are widely used.
 本発明では、成形性を向上させるために、これらの加工助剤を配合した場合でも、修飾セルロースナノ繊維(B)を含むため、加工助剤(D)により加硫ゴム組成物(特に、EPDMなどのオレフィン系ゴムを含む加硫ゴム組成物)の機械的特性が低下するのを抑制できる。 In the present invention, even when these processing aids are blended in order to improve moldability, the modified cellulose nanofiber (B) is contained, so that the vulcanized rubber composition (particularly EPDM) is added with the processing aid (D). Decrease in mechanical properties of a vulcanized rubber composition containing an olefin rubber such as olefin rubber can be suppressed.
 加工助剤(D)の割合は、ゴム成分(A)の種類に応じて適宜選択でき、ゴム成分(A)100重量部に対して0.1~500重量部程度の範囲から選択でき、例えば0.5~400重量部(例えば1~300重量部)、好ましくは1~200重量部、さらに好ましくは3~100重量部程度である。ゴム成分(A)がオレフィン系ゴムである場合、加工助剤(D)の割合は、ゴム成分(A)100重量部に対して、例えば10~200重量部、好ましくは20~150重量部、さらに好ましくは30~100重量部程度であってもよい。加工助剤(D)の割合が少なすぎると、成形性を向上する効果が低下する虞があり、逆に多すぎると、加硫ゴム組成物の機械的特性が低下する虞がある。 The proportion of the processing aid (D) can be appropriately selected according to the type of the rubber component (A), and can be selected from the range of about 0.1 to 500 parts by weight with respect to 100 parts by weight of the rubber component (A). The amount is 0.5 to 400 parts by weight (for example, 1 to 300 parts by weight), preferably 1 to 200 parts by weight, and more preferably about 3 to 100 parts by weight. When the rubber component (A) is an olefin rubber, the ratio of the processing aid (D) is, for example, 10 to 200 parts by weight, preferably 20 to 150 parts by weight, with respect to 100 parts by weight of the rubber component (A). More preferably, it may be about 30 to 100 parts by weight. If the ratio of the processing aid (D) is too small, the effect of improving the moldability may be reduced, and conversely if too high, the mechanical properties of the vulcanized rubber composition may be reduced.
 [加硫剤(E)]
 本発明の加硫ゴム組成物は、通常、加硫剤(E)を含んでいる。加硫剤(E)としては、ゴム成分(A)の種類に応じて、慣用の加硫剤を利用できる。加硫剤(E)には、硫黄系加硫剤、有機過酸化物が含まれる。
[Vulcanizing agent (E)]
The vulcanized rubber composition of the present invention usually contains a vulcanizing agent (E). As the vulcanizing agent (E), a conventional vulcanizing agent can be used depending on the type of the rubber component (A). The vulcanizing agent (E) includes a sulfur-based vulcanizing agent and an organic peroxide.
 硫黄系加硫剤としては、例えば、粉末硫黄、沈降性硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、表面処理硫黄、塩化硫黄(一塩化硫黄、二塩化硫黄など)、モルホリンジスルフィド、アルキルフェノールジスルフィドなどが挙げられる。 Examples of sulfur vulcanizing agents include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, surface treated sulfur, sulfur chloride (sulfur monochloride, sulfur dichloride, etc.), morpholine disulfide, alkylphenol disulfide. Etc.
 有機過酸化物としては、例えば、ジラウロイルパーオキシド、ジベンゾイルパーオキシド、2,4-ジクロロベンゾイルパーオキシドなどのジアシルパーオキシド;ジt-ブチルパーオキシド、t-ブチルクミルパーオキシド、ジクミルパーオキシド、1,1-ジ-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-ヘキサン、1,3-ビス(t-ブチルパーオキシ-イソプロピル)ベンゼンなどのジアルキルパーオキシド;t-ブチルハイドロパーオキシド、クメンハイドロパーオキシド、ジイソプロピルベンゼンハイドロパーオキシドなどのハイドロパーオキシド;n-ブチル-4,4-ジ-t-ブチルパーオキシバレレート、2,5-ジメチルヘキサン-2,5-ジ(パーオキシルベンゾエート)などのパーオキシエステルなどが挙げられる。 Examples of the organic peroxide include diacyl peroxides such as dilauroyl peroxide, dibenzoyl peroxide, and 2,4-dichlorobenzoyl peroxide; di-t-butyl peroxide, t-butylcumyl peroxide, and dicumyl peroxide. Oxide, 1,1-di-butylperoxy-3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-di (t-butylperoxy) -hexane, 1,3-bis (t- Dialkyl peroxides such as butylperoxy-isopropyl) benzene; hydroperoxides such as t-butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide; n-butyl-4,4-di-t-butylperoxide Oxyvalerate, 2,5-dimethylhexane-2,5 Such as peroxy esters, such as di (peroxyl benzoate) and the like.
 これらの加硫剤は、単独でまたは二種以上組み合わせて使用できる。これらのうち、硫黄やジクミルパーオキシドなどのジアルキルパーオキシドなどが汎用される。 These vulcanizing agents can be used alone or in combination of two or more. Of these, dialkyl peroxides such as sulfur and dicumyl peroxide are widely used.
 加硫剤(E)の割合は、ゴム成分(A)100重量部に対して、例えば0.1~10重量部、好ましくは0.5~8重量部、さらに好ましくは0.6~5重量部(特に0.8~3重量部)程度であってもよい。 The proportion of the vulcanizing agent (E) is, for example, 0.1 to 10 parts by weight, preferably 0.5 to 8 parts by weight, and more preferably 0.6 to 5 parts by weight with respect to 100 parts by weight of the rubber component (A). Parts (particularly 0.8 to 3 parts by weight).
 [加硫助剤(F)]
 本発明の加硫ゴム組成物は、加硫を促進するために、加硫助剤(F)をさらに含んでいてもよい。加硫助剤(F)には、例えば、有機系加硫促進剤[例えば、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド(CBS)、N-t-ブチル-2-ベンゾチアジルスルフェンアミド(TBBS)などのスルフェンアミド系促進剤;テトラメチルチウラムモノスルフィド(TMTM)、テトラメチルチウラムジスルフィド(TMTD)などのチウラム系促進剤;2-メルカプトベンゾチアゾール(MBT)、MBTの亜鉛塩、ジベンゾチアジルジスルフィド(MBTS)などのチアゾール系促進剤;トリメチルチオ尿素(TMU)、ジエチルチオ尿素(EDE)などのチオウレア系促進剤;ジフェニルグアニジン(DPG)、ジオルトトリルグアニジン(DOTG)などのグアニジン系促進剤;ジメチルジチオカルバミン酸ナトリウムなどのジチオカルバミン酸系促進剤;イソプロピルキサントゲン酸亜鉛などのキサントゲン酸塩系促進剤;ヘキサンメチレンテトラミンなどのアルデヒド-アミン系またはアルデヒド-アンモニア系促進剤など]、芳香族マレイミド(N,N’-m-フェニレンジマレイミドなどのアレーンビスマレイミドなど)、無機系助剤[酸化亜鉛(亜鉛華)、酸化マグネシウムなど]などが挙げられる。
[Vulcanization aid (F)]
The vulcanized rubber composition of the present invention may further contain a vulcanization aid (F) in order to accelerate vulcanization. Examples of the vulcanization aid (F) include organic vulcanization accelerators [for example, N-cyclohexyl-2-benzothiazylsulfenamide (CBS), Nt-butyl-2-benzothiazylsulfene. Sulfenamide accelerators such as amide (TBBS); thiuram accelerators such as tetramethylthiuram monosulfide (TMTM) and tetramethylthiuram disulfide (TMTD); 2-mercaptobenzothiazole (MBT), a zinc salt of MBT, Thiazole accelerators such as dibenzothiazyl disulfide (MBTS); thiourea accelerators such as trimethylthiourea (TMU) and diethylthiourea (EDE); guanidines such as diphenylguanidine (DPG) and diortolylguanidine (DOTG) Accelerator: Sodium dimethyldithiocarbamate Any dithiocarbamic acid accelerator; xanthate accelerator such as zinc isopropylxanthate; aldehyde-amine or aldehyde-ammonia accelerator such as hexanemethylenetetramine], aromatic maleimide (N, N′-m- Arene bismaleimide such as phenylene dimaleimide), inorganic auxiliary agents [zinc oxide (zinc white), magnesium oxide, etc.] and the like.
 これらの加硫助剤は、単独でまたは二種以上組み合わせて使用できる。これらのうち、CBSなどのスルフェンアミド系促進剤、TMTDなどのチウラム系促進剤、酸化亜鉛などの無機系助剤が汎用される。 These vulcanization aids can be used alone or in combination of two or more. Of these, sulfenamide accelerators such as CBS, thiuram accelerators such as TMTD, and inorganic assistants such as zinc oxide are widely used.
 加硫助剤(F)の割合は、ゴム成分(A)100重量部に対して、例えば3~20重量部、好ましくは4~15重量部、さらに好ましくは5~10重量部程度であってもよい。有機系加硫促進剤の割合は、ゴム成分(A)100重量部に対して、例えば0.5~5重量部、好ましくは1~4重量部、さらに好ましくは1.5~3.5重量部程度であってもよい。無機系助剤(特に亜鉛華)の割合は、ゴム成分(A)100重量部に対して、例えば2~10重量部、好ましくは3~8重量部、さらに好ましくは4~6重量部程度であってもよい。 The ratio of the vulcanization aid (F) is, for example, about 3 to 20 parts by weight, preferably about 4 to 15 parts by weight, and more preferably about 5 to 10 parts by weight with respect to 100 parts by weight of the rubber component (A). Also good. The proportion of the organic vulcanization accelerator is, for example, 0.5 to 5 parts by weight, preferably 1 to 4 parts by weight, and more preferably 1.5 to 3.5 parts by weight with respect to 100 parts by weight of the rubber component (A). It may be about a part. The ratio of the inorganic auxiliary (particularly zinc white) is, for example, about 2 to 10 parts by weight, preferably about 3 to 8 parts by weight, and more preferably about 4 to 6 parts by weight with respect to 100 parts by weight of the rubber component (A). There may be.
 [他の添加剤(G)]
 本発明の加硫ゴム組成物は、ゴム成分(A)の種類に応じて、加硫ゴムに添加される慣用の添加剤を含んでいてもよい。慣用の添加剤としては、例えば、樹脂成分(熱可塑性樹脂、熱硬化性樹脂など)、加硫遅延剤、分散剤、老化または酸化防止剤(芳香族アミン系、ベンズイミダゾール系老化防止剤など)、着色剤(例えば、染顔料など)、粘着付与剤、カップリング剤(シランカップリング剤など)、安定剤(紫外線吸収剤、耐光安定剤、熱安定剤など)、離型剤、潤滑剤、難燃剤(リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤など)、難燃助剤、帯電防止剤、導電剤、流動調整剤、レベリング剤、消泡剤、表面改質剤、低応力化剤、核剤、結晶化促進剤、抗菌剤、防腐剤などが挙げられる。
[Other additives (G)]
The vulcanized rubber composition of the present invention may contain a conventional additive added to the vulcanized rubber depending on the type of the rubber component (A). Examples of conventional additives include resin components (thermoplastic resins, thermosetting resins, etc.), vulcanization retarders, dispersants, aging or antioxidants (aromatic amine-based, benzimidazole-based anti-aging agents, etc.) , Colorants (for example, dyes and pigments), tackifiers, coupling agents (silane coupling agents, etc.), stabilizers (ultraviolet absorbers, light stabilizers, heat stabilizers, etc.), mold release agents, lubricants, Flame retardants (phosphorous flame retardants, halogen flame retardants, inorganic flame retardants, etc.), flame retardant aids, antistatic agents, conductive agents, flow control agents, leveling agents, antifoaming agents, surface modifiers, low stress Examples include agents, nucleating agents, crystallization accelerators, antibacterial agents, and preservatives.
 これら他の添加剤は、単独でまたは二種以上組み合わせて使用できる。他の添加剤の割合は、ゴム成分(A)100重量部に対して、例えば0.1~50重量部、好ましくは0.5~30重量部、さらに好ましくは1~10重量部程度であってもよい。 These other additives can be used alone or in combination of two or more. The ratio of the other additive is, for example, about 0.1 to 50 parts by weight, preferably about 0.5 to 30 parts by weight, and more preferably about 1 to 10 parts by weight with respect to 100 parts by weight of the rubber component (A). May be.
 [加硫ゴム組成物の製造方法]
 本発明の加硫ゴム組成物は、ゴム成分(A)と、9,9位にアリール基を有するフルオレン化合物(B1)が結合した修飾セルロースナノ繊維(B)および/またはその原料とを混練する混練工程、得られた混練組成物を加硫して加硫ゴム組成物を得る加硫工程を経て得られる。
[Method for producing vulcanized rubber composition]
The vulcanized rubber composition of the present invention kneads the rubber component (A), the modified cellulose nanofiber (B) in which the fluorene compound (B1) having an aryl group at the 9th and 9th positions is bonded and / or its raw material. It is obtained through a kneading step and a vulcanization step of vulcanizing the obtained kneaded composition to obtain a vulcanized rubber composition.
 混練工程において、修飾セルロースナノ繊維(B)は、その原料であるフルオレン化合物(B1)および未修飾セルロースナノ繊維であってもよく、これらの原料を添加することにより、混練工程および/または加硫工程によって修飾セルロースナノ繊維(B)が生成する。 In the kneading step, the modified cellulose nanofiber (B) may be the fluorene compound (B1) and the unmodified cellulose nanofiber that are the raw materials. By adding these raw materials, the kneading step and / or vulcanization is performed. The modified cellulose nanofiber (B) is produced by the process.
 混練工程において、ゴム成分(A)および修飾セルロースナノ繊維(B)を含む組成物の混練方法としては、慣用の方法を利用でき、例えば、ミキシングローラ、ニーダ、バンバリーミキサー、押出機(一軸または二軸押出機など)などを用いた方法などを利用できる。これらのうち、加圧式ニーダーが好ましい。 In the kneading step, a conventional method can be used as a method for kneading the composition containing the rubber component (A) and the modified cellulose nanofiber (B). For example, a mixing roller, a kneader, a Banbury mixer, an extruder (uniaxial or biaxial) A method using a shaft extruder or the like can be used. Of these, a pressure kneader is preferable.
 混練工程では、ゴム成分(A)および修飾セルロースナノ繊維(B)(またはその原料)を含む各成分を一括して添加してもよいが、修飾セルロースナノ繊維(B)および/またはその原料を予め加工助剤(D)中に分散させた分散液と、ゴム成分(A)と混練してもよい。前記分散液を予め調製することにより、修飾セルロースナノ繊維(B)をより均一にゴム成分(A)中に分散でき、加硫ゴムの機械的特性を向上できる。分散液を調製する場合、加工助剤(D)としては、プロセスオイル、有機溶媒、可塑剤(可塑剤としての液体ゴムも含む)などが好ましい。なお、加工助剤(D)として、沸点の低い溶剤を選択した場合、溶剤の一部または全部は揮発して、加硫ゴム組成物中に残存しない(加硫ゴム組成物を構成する成分とはならない)。分散液中の固形分濃度は、例えば0.1~50重量%、好ましくは0.5~30重量%、さらに好ましくは1~20重量%程度である。 In the kneading step, each component including the rubber component (A) and the modified cellulose nanofiber (B) (or a raw material thereof) may be added in a lump, but the modified cellulose nanofiber (B) and / or the raw material thereof may be added. The dispersion liquid previously dispersed in the processing aid (D) and the rubber component (A) may be kneaded. By preparing the dispersion in advance, the modified cellulose nanofiber (B) can be more uniformly dispersed in the rubber component (A), and the mechanical properties of the vulcanized rubber can be improved. When preparing the dispersion, the processing aid (D) is preferably process oil, organic solvent, plasticizer (including liquid rubber as a plasticizer), and the like. When a solvent having a low boiling point is selected as the processing aid (D), part or all of the solvent is volatilized and does not remain in the vulcanized rubber composition (the components constituting the vulcanized rubber composition) Must not). The solid content concentration in the dispersion is, for example, about 0.1 to 50% by weight, preferably about 0.5 to 30% by weight, and more preferably about 1 to 20% by weight.
 混練は、非加熱下、加熱下のいずれで混練してもよい。加熱する場合、混練温度は、例えば30~250℃、好ましくは40~225℃、さらに好ましくは50~200℃程度である。 Kneading may be performed without heating or under heating. In the case of heating, the kneading temperature is, for example, about 30 to 250 ° C., preferably 40 to 225 ° C., more preferably about 50 to 200 ° C.
 加硫工程において、加硫温度は、ゴム成分(A)の種類に応じて選択でき、例えば100~250℃、好ましくは150~200℃、さらに好ましくは160~190℃程度である。 In the vulcanization step, the vulcanization temperature can be selected according to the type of the rubber component (A), and is, for example, about 100 to 250 ° C., preferably 150 to 200 ° C., more preferably about 160 to 190 ° C.
 得られた加硫ゴム組成物のデュロメータ硬さは50以上(特に60以上)であってもよいが、補強剤としてカーボンブラックを利用することにより70以上、好ましくは75以上(例えば75~90程度)に調整することもできる。 The resulting vulcanized rubber composition may have a durometer hardness of 50 or more (particularly 60 or more), but it is 70 or more, preferably 75 or more (for example, about 75 to 90) by using carbon black as a reinforcing agent. ) Can also be adjusted.
 なお、本明細書および特許請求の範囲において、デュロメータ硬さは、JIS K6253タイプAに準拠して測定できる。 In the present specification and claims, the durometer hardness can be measured according to JIS K6253 type A.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。以下に、用いた原料および測定機器の詳細、評価方法は以下の通りである。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. Details of the raw materials and measuring instruments used and the evaluation methods are as follows.
 (使用原料)
 BPFG:9,9-ビス(4-グリシジルオキシフェニル)フルオレン
 SBR:JSR(株)製「JSR 1502」
 NBR:JSR(株)製「JSR N230S」
 EPDM1:JSR(株)製「JSR EP21」、ムーニー粘度26
 EPDM2:JSR(株)製「JSR EP27」、ムーニー粘度70
 CB N234:東海カーボン(株)製「シースト7HM」、平均一次粒径19nm
 CB HAF:東海カーボン(株)製「シースト3」、平均一次粒径28nm
 CB SRF:東海カーボン(株)製「シーストS」、平均一次粒径66nm
 シリカ:東ソー・シリカ(株)「ニプシールVN3」
 炭酸カルシウム:白石カルシウム(株)製「合成炭酸カルシウム 白艶華0」、平均一次粒径30nm
 プロセスオイル:H&R(株)製「Vivatec500(TDAE)」
 ナフテン油:出光興産(株)製「ダイアナプロセスNS-100」
 パラフィン油:出光興産(株)製「ダイアナプロセスPW-380」
 可塑剤DOP:三菱ケミカル(株)製「フタル酸ビス(2-エチルヘキシル)」
 亜鉛華1号:三井金属鉱業(株)製
 ステアリン酸:日油(株)製「ビーズステアリン酸つばき」
 硫黄:鶴見化学(株)製「粉末硫黄」
 PEG4000:三洋化成工業(株)「PEG-4000S」
 促進剤CBS:大内新興化学工業(株)製「ノクセラーCZ-G」
 促進剤TT:大内新興化学工業(株)製「ノクセラーTT-P」
 促進剤M:大内新興化学工業(株)製「ノクセラーM-P」
 促進剤CZ:大内新興化学工業(株)製「ノクセラーCZ-G」
 促進剤Mix No1:大内新興化学工業(株)製「ノクセラーMix No1」
 促進剤DPG:大内新興化学工業(株)製「ノクセラーD」
 促進剤DM:大内新興化学工業(株)製「ノクセラーDM-P」
 促進剤TS:大内新興化学工業(株)製「ノクセラーTS」
 パルプ:サンヨー化成(株)製「純パルプ5mm」。
(Raw material)
BPFG: 9,9-bis (4-glycidyloxyphenyl) fluorene SBR: “JSR 1502” manufactured by JSR Corporation
NBR: “JSR N230S” manufactured by JSR Corporation
EPDM1: “JSR EP21” manufactured by JSR Corporation, Mooney viscosity 26
EPDM2: “JSR EP27” manufactured by JSR Corporation, Mooney viscosity 70
CB N234: “Seast 7HM” manufactured by Tokai Carbon Co., Ltd., average primary particle size 19 nm
CB HAF: “Seast 3” manufactured by Tokai Carbon Co., Ltd., average primary particle size 28 nm
CB SRF: “Seast S” manufactured by Tokai Carbon Co., Ltd., average primary particle size 66 nm
Silica: Tosoh Silica Co., Ltd. “Nipsil VN3”
Calcium carbonate: “Synthetic calcium carbonate white luster 0” manufactured by Shiraishi Calcium Co., Ltd.
Process oil: “Vivatec 500 (TDAE)” manufactured by H & R Co., Ltd.
Naphthenic oil: “Diana Process NS-100” manufactured by Idemitsu Kosan Co., Ltd.
Paraffin oil: “Diana Process PW-380” manufactured by Idemitsu Kosan Co., Ltd.
Plasticizer DOP: “Bis (2-ethylhexyl) phthalate” manufactured by Mitsubishi Chemical Corporation
Zinc Hana No.1: Made by Mitsui Mining & Smelting Co., Ltd. Stearic acid: NOF Co., Ltd.
Sulfur: “Powder sulfur” manufactured by Tsurumi Chemical Co., Ltd.
PEG4000: Sanyo Chemical Industries “PEG-4000S”
Accelerator CBS: “Noxeller CZ-G” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Accelerator TT: “Noxeller TT-P” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Accelerator M: “Noxeller MP” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Accelerator CZ: “Noxeller CZ-G” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Accelerator Mix No1: "Noxeller Mix No1" manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Accelerator DPG: “Noxeller D” manufactured by Ouchi Shinsei Chemical Co., Ltd.
Accelerator DM: “Noxeller DM-P” manufactured by Ouchi Shinsei Chemical Co., Ltd.
Accelerator TS: “Noxeller TS” manufactured by Ouchi Shinsei Chemical Co., Ltd.
Pulp: “Pure pulp 5 mm” manufactured by Sanyo Chemical Co., Ltd.
 (修飾セルロースナノ繊維に結合したフルオレン化合物の修飾率)
 フルオレン化合物の修飾率(以下フルオレン修飾率)は、ラマン顕微鏡(HORIBA JOBIN YVON社製、XploRA)を使用してラマン分析を行い、芳香族環(1604cm-1)とセルロースの環内CH(1375cm-1)との吸収バンドの強度比(I1604/I1375)により算出した。なお、算出にあたっては、フルオレン化合物を所定量含有するジアセチルセルロース((株)ダイセル製)フィルムを、溶液キャスト法により作成し、これらの強度比(I1604/I1375)から作成した検量線を用いた。すべてのサンプルは3回測定し、その結果から算出される値の平均値をフルオレン修飾率とした。
(Modification rate of fluorene compound bonded to modified cellulose nanofiber)
The modification rate of the fluorene compound (hereinafter referred to as fluorene modification rate) was determined by performing a Raman analysis using a Raman microscope (manufactured by HORIBA JOBIN YVON, XploRA), and the aromatic ring (1604 cm −1 ) and cellulose ring CH (1375 cm −). 1 ) and the intensity ratio of the absorption band (I 1604 / I 1375 ). In the calculation, a diacetyl cellulose (manufactured by Daicel Corporation) film containing a predetermined amount of a fluorene compound was prepared by a solution cast method, and a calibration curve prepared from these strength ratios (I 1604 / I 1375 ) was used. It was. All samples were measured three times, and the average value calculated from the results was defined as the fluorene modification rate.
 (修飾セルロースナノ繊維の合成)
 セルロースナノ繊維の水分散液(固形分濃度15重量%)100gをN,N-ジメチルアセトアミド(DMAc)500gに分散して遠心分離した後、沈降した固形分をさらに500gのDMAcに分散して再び遠心分離することにより、溶媒置換し、セルロースナノ繊維とDMAcとの混合物(セルロース含量約10重量%)を得た。この混合物を1000mLの三口フラスコに移し、さらにDMAc350g、9,9-ビス(4-グリシジルオキシフェニル)フルオレン(BPFG)15g、ジアザビシクロウンデセン(DBU)10gを加え、120℃で3時間攪拌した。得られた混合液を遠心分離で回収し、1200mLのDMAcで洗浄する工程を3回繰り返し、修飾セルロースナノ繊維(B-CNF)を得た。得られたB-CNFの平均繊維径は213nmであり、平均繊維長は30μmであった。フルオレン化合物の修飾率は12重量%であった。なお、使用した原料である植物由来のセルロースナノ繊維をSEM(日本電子(株)製「JSM-6510」)で観察したSEM写真を図1に示す。
(Synthesis of modified cellulose nanofiber)
100 g of an aqueous dispersion of cellulose nanofiber (solid content 15% by weight) was dispersed in 500 g of N, N-dimethylacetamide (DMAc) and centrifuged, and then the precipitated solid was further dispersed in 500 g of DMAc and again. Centrifugation gave a solvent substitution to obtain a mixture of cellulose nanofibers and DMAc (cellulose content about 10% by weight). This mixture was transferred to a 1000 mL three-necked flask, 350 g of DMAc, 9,9-bis (4-glycidyloxyphenyl) fluorene (BPFG) 15 g, and 10 g of diazabicycloundecene (DBU) were added, and the mixture was stirred at 120 ° C. for 3 hours. . The obtained mixed solution was collected by centrifugation, and the process of washing with 1200 mL of DMAc was repeated three times to obtain modified cellulose nanofibers (B-CNF). The obtained B-CNF had an average fiber diameter of 213 nm and an average fiber length of 30 μm. The modification ratio of the fluorene compound was 12% by weight. In addition, the SEM photograph which observed the plant-derived cellulose nanofiber which is the used raw material with SEM (the JEOL Co., Ltd. product "JSM-6510") is shown in FIG.
 (未修飾セルロースナノ繊維の調製)
 セルロースナノ繊維の水分散液(ダイセルファインケム(株)製、「セリッシュ KY110N」、セルロース:水(重量比)=15/85)100g(固形分15g)をメタノール500gに分散して吸引濾過した後、沈降した固形分をさらにアセトン500gに分散して再び吸引濾過し、濾物を乾燥することで未修飾セルロースナノ繊維の乾燥品(平均繊維径10nm、平均繊維長100nm)を得た。
(Preparation of unmodified cellulose nanofibers)
An aqueous dispersion of cellulose nanofibers (manufactured by Daicel Finechem Co., Ltd., “Cerish KY110N”, cellulose: water (weight ratio) = 15/85) 100 g (solid content 15 g) was dispersed in 500 g of methanol and suction filtered. The precipitated solid content was further dispersed in 500 g of acetone and suction filtered again, and the filtrate was dried to obtain a dried product of unmodified cellulose nanofibers (average fiber diameter 10 nm, average fiber length 100 nm).
 (引張試験)
 JIS K6251に準拠し、引張試験機(ミネベア社製「LTS-1kN」)を用いて、加硫ゴム組成物について、25~300%引張応力、引張強さ、伸び率を以下の条件で測定した。なお、引張応力については、実施例に応じて、25%、50%、100%、200%、300%の伸び率から選択して測定するとともに、100%引張応力については、いずれの実施例でも測定し、対応する比較例に対する相対値も示した。
  試験片:ダンベル8号、厚さ2mm
  引っ張り速度:5mm/min
  初期チャック間距離:30mm
  ロードセル:1kN
(Tensile test)
In accordance with JIS K6251, using a tensile tester (“LTS-1kN” manufactured by Minebea), the vulcanized rubber composition was measured for 25 to 300% tensile stress, tensile strength, and elongation under the following conditions. . In addition, about tensile stress, it selects from the elongation of 25%, 50%, 100%, 200%, and 300% according to an Example, and measures about 100% tensile stress in any Example. The relative values for the corresponding comparative examples were also measured.
Test piece: Dumbbell No. 8, thickness 2mm
Pulling speed: 5mm / min
Initial chuck distance: 30mm
Load cell: 1kN
 (デュロメータ硬さ)
 JIS K6253タイプAに準拠し、加硫ゴム組成物のデュロメータ硬さを測定した。
(Durometer hardness)
Based on JIS K6253 type A, the durometer hardness of the vulcanized rubber composition was measured.
 (ムーニー粘度)
 JIS K6300に準拠し、未加硫ゴム組成物のムーニー粘度を測定した。
(Mooney viscosity)
The Mooney viscosity of the unvulcanized rubber composition was measured according to JIS K6300.
 (密度)
 JIS K6268に準拠し、加硫ゴム組成物の密度を測定した。
(density)
The density of the vulcanized rubber composition was measured according to JIS K6268.
 比較例1(SBR/CB/ブランク)
 表1に示す割合の各成分を加圧式ニーダー(モリヤマ(株)製、容量10リットル)を用いて、温度150℃で混練し、未加硫ゴム組成物を調製した。得られた組成物を、加硫温度180℃でプレス加硫し、加硫ゴム組成物を得た。
Comparative Example 1 (SBR / CB / Blank)
Each component in the ratio shown in Table 1 was kneaded at a temperature of 150 ° C. using a pressure kneader (manufactured by Moriyama Co., Ltd., capacity: 10 liters) to prepare an unvulcanized rubber composition. The obtained composition was press vulcanized at a vulcanization temperature of 180 ° C. to obtain a vulcanized rubber composition.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1(SBR/CB/B-CNF3部)
 比較例1で得られた未加硫ゴム組成物に対して、6インチロールを用いて、修飾セルロースナノ繊維(B-CNF)を比較例1の組成物100重量部に対して固形分量換算で3重量部添加し、修飾セルロースナノ繊維を含む未加硫ゴム組成物を調製し、比較例1と同一の方法で加硫ゴム組成物を得た。
Example 1 (SBR / CB / B-CNF 3 parts)
With respect to the unvulcanized rubber composition obtained in Comparative Example 1, a modified cellulose nanofiber (B-CNF) was converted into a solid content with respect to 100 parts by weight of the composition of Comparative Example 1 using a 6-inch roll. 3 parts by weight was added to prepare an unvulcanized rubber composition containing modified cellulose nanofibers, and a vulcanized rubber composition was obtained in the same manner as in Comparative Example 1.
 実施例2(SBR/CB/B-CNF5部)
 B-CNFの添加量を5重量部に変更する以外は実施例1と同一の方法で加硫ゴム組成物を得た。
Example 2 (5 parts of SBR / CB / B-CNF)
A vulcanized rubber composition was obtained in the same manner as in Example 1 except that the amount of B-CNF added was changed to 5 parts by weight.
 実施例3(SBR/CB/B-CNF7部)
 B-CNFの添加量を7重量部に変更する以外は実施例1と同一の方法で加硫ゴム組成物を得た。
Example 3 (SBR / CB / B-CNF 7 parts)
A vulcanized rubber composition was obtained in the same manner as in Example 1 except that the amount of B-CNF added was changed to 7 parts by weight.
 比較例1および実施例1~3で得られた加硫ゴム組成物の評価結果を表2に示す。 Table 2 shows the evaluation results of the vulcanized rubber compositions obtained in Comparative Example 1 and Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2の結果から明らかなように、実施例の加硫ゴム組成物は、比較例1の加硫ゴム組成物に比べて、100%引張応力、硬さが向上した。 As is clear from the results in Table 2, the vulcanized rubber compositions of the examples were improved in 100% tensile stress and hardness as compared with the vulcanized rubber composition of Comparative Example 1.
 比較例2(SBR/CB/未修飾セルロースナノ繊維3部)
 B-CNFを未修飾セルロースナノ繊維に変更する以外は実施例1と同一の方法で加硫ゴム組成物を得た。
Comparative Example 2 (SBR / CB / unmodified cellulose nanofiber 3 parts)
A vulcanized rubber composition was obtained in the same manner as in Example 1 except that B-CNF was changed to unmodified cellulose nanofibers.
 比較例3(SBR/CB/未修飾セルロースナノ繊維5部)
 B-CNFを未修飾セルロースナノ繊維に変更する以外は実施例2と同一の方法で加硫ゴム組成物を得た。
Comparative Example 3 (SBR / CB / unmodified cellulose nanofiber 5 parts)
A vulcanized rubber composition was obtained in the same manner as in Example 2 except that B-CNF was changed to unmodified cellulose nanofibers.
 比較例4(SBR/CB/未修飾セルロースナノ繊維7部)
 B-CNFを未修飾セルロースナノ繊維に変更する以外は実施例3と同一の方法で加硫ゴム組成物を得た。
Comparative Example 4 (SBR / CB / unmodified cellulose nanofiber 7 parts)
A vulcanized rubber composition was obtained in the same manner as in Example 3 except that B-CNF was changed to unmodified cellulose nanofibers.
 比較例2~4で得られた加硫ゴム組成物の評価結果を比較例1の評価結果と合わせて表3に示す。 Table 3 shows the evaluation results of the vulcanized rubber compositions obtained in Comparative Examples 2 to 4 together with the evaluation results of Comparative Example 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3の結果から明らかなように、未修飾セルロースナノ繊維を添加しても、SBRの物性は向上しなかった。 As is clear from the results in Table 3, even when unmodified cellulose nanofibers were added, the physical properties of SBR were not improved.
 比較例5(SBR/CB/パルプ3部)
 B-CNFをパルプに変更する以外は実施例1と同一の方法で加硫ゴム組成物を得た。
Comparative Example 5 (SBR / CB / pulp 3 parts)
A vulcanized rubber composition was obtained in the same manner as in Example 1 except that B-CNF was changed to pulp.
 比較例6(SBR/CB/パルプ5部)
 B-CNFをパルプに変更する以外は実施例2と同一の方法で加硫ゴム組成物を得た。
Comparative Example 6 (SBR / CB / pulp 5 parts)
A vulcanized rubber composition was obtained in the same manner as in Example 2 except that B-CNF was changed to pulp.
 比較例7(SBR/CB/パルプ7部)
 B-CNFをパルプに変更する以外は実施例3と同一の方法で加硫ゴム組成物を得た。
Comparative Example 7 (SBR / CB / 7 parts of pulp)
A vulcanized rubber composition was obtained in the same manner as in Example 3 except that B-CNF was changed to pulp.
 比較例5~7で得られた加硫ゴム組成物の評価結果を比較例1の評価結果と合わせて表4に示す。 Table 4 shows the evaluation results of the vulcanized rubber compositions obtained in Comparative Examples 5 to 7 together with the evaluation results of Comparative Example 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表4の結果から明らかなように、パルプの添加により硬さは増加するが、100%引張応力の増加は小さかった。 As is clear from the results in Table 4, the hardness increased with the addition of pulp, but the increase in 100% tensile stress was small.
 比較例8(SBR/シリカ/ブランク)
 表5に示す割合の各成分を加圧式ニーダー(モリヤマ(株)製、容量10リットル)を用いて、温度150℃で混練し、未加硫ゴム組成物を調製した。得られた組成物を、加硫温度180℃でプレス加硫し、加硫ゴム組成物を得た。
Comparative Example 8 (SBR / silica / blank)
Each component in the ratio shown in Table 5 was kneaded at a temperature of 150 ° C. using a pressure kneader (manufactured by Moriyama Co., Ltd., volume 10 liters) to prepare an unvulcanized rubber composition. The obtained composition was press vulcanized at a vulcanization temperature of 180 ° C. to obtain a vulcanized rubber composition.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例4(SBR/シリカ/B-CNF3部)
 比較例8で得られた未加硫ゴム組成物に対して、6インチロールを用いて、修飾セルロースナノ繊維(B-CNF)を比較例8の組成物100重量部に対して固形分量換算で3重量部添加し、修飾セルロースナノ繊維を含む未加硫ゴム組成物を調製し、比較例8と同一の方法で加硫ゴム組成物を得た。
Example 4 (3 parts SBR / silica / B-CNF)
With respect to the unvulcanized rubber composition obtained in Comparative Example 8, a modified cellulose nanofiber (B-CNF) was converted into a solid content with respect to 100 parts by weight of the composition of Comparative Example 8 using a 6-inch roll. 3 parts by weight was added to prepare an unvulcanized rubber composition containing modified cellulose nanofibers, and a vulcanized rubber composition was obtained in the same manner as in Comparative Example 8.
 実施例5(SBR/シリカ/B-CNF5部)
 B-CNFの添加量を5重量部に変更する以外は実施例4と同一の方法で加硫ゴム組成物を得た。
Example 5 (SBR / silica / B-CNF 5 parts)
A vulcanized rubber composition was obtained in the same manner as in Example 4 except that the amount of B-CNF added was changed to 5 parts by weight.
 実施例6(SBR/シリカ/B-CNF7部)
 B-CNFの添加量を7重量部に変更する以外は実施例4と同一の方法で加硫ゴム組成物を得た。
Example 6 (SBR / silica / B-CNF 7 parts)
A vulcanized rubber composition was obtained in the same manner as in Example 4 except that the amount of B-CNF added was changed to 7 parts by weight.
 比較例8および実施例4~6で得られた加硫ゴム組成物の評価結果を表6に示す。 Table 6 shows the evaluation results of the vulcanized rubber compositions obtained in Comparative Example 8 and Examples 4 to 6.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表6の結果から明らかなように、実施例の加硫ゴム組成物は、比較例8の加硫ゴム組成物に比べて、100~300%引張応力、硬さが向上した。 As is clear from the results in Table 6, the vulcanized rubber compositions of the examples were improved in tensile stress and hardness by 100 to 300% compared to the vulcanized rubber composition of Comparative Example 8.
 比較例9(SBR/炭酸カルシウム/ブランク)
 表7に示す割合の各成分を加圧式ニーダー(モリヤマ(株)製、容量10リットル)を用いて、温度150℃で混練し、未加硫ゴム組成物を調製した。得られた組成物を、加硫温度180℃でプレス加硫し、加硫ゴム組成物を得た。
Comparative Example 9 (SBR / calcium carbonate / blank)
The components shown in Table 7 were kneaded at a temperature of 150 ° C. using a pressure kneader (manufactured by Moriyama Co., Ltd., volume 10 liters) to prepare an unvulcanized rubber composition. The obtained composition was press vulcanized at a vulcanization temperature of 180 ° C. to obtain a vulcanized rubber composition.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例7(SBR/炭酸カルシウム/B-CNF3部)
 比較例9で得られた未加硫ゴム組成物に対して、6インチロールを用いて、修飾セルロースナノ繊維(B-CNF)を比較例9の組成物100重量部に対して固形分量換算で3重量部添加し、修飾セルロースナノ繊維を含む未加硫ゴム組成物を調製し、比較例9と同一の方法で加硫ゴム組成物を得た。
Example 7 (SBR / calcium carbonate / B-CNF 3 parts)
With respect to the unvulcanized rubber composition obtained in Comparative Example 9, a modified cellulose nanofiber (B-CNF) was converted to a solid content amount with respect to 100 parts by weight of the composition of Comparative Example 9 using a 6-inch roll. 3 parts by weight was added to prepare an unvulcanized rubber composition containing modified cellulose nanofibers, and a vulcanized rubber composition was obtained in the same manner as in Comparative Example 9.
 実施例8(SBR/炭酸カルシウム/B-CNF5部)
 B-CNFの添加量を5重量部に変更する以外は実施例7と同一の方法で加硫ゴム組成物を得た。
Example 8 (SBR / calcium carbonate / B-CNF 5 parts)
A vulcanized rubber composition was obtained in the same manner as in Example 7, except that the amount of B-CNF added was changed to 5 parts by weight.
 比較例9および実施例7~8で得られた加硫ゴム組成物の評価結果を表8に示す。 Table 8 shows the evaluation results of the vulcanized rubber compositions obtained in Comparative Example 9 and Examples 7 to 8.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表8の結果から明らかなように、実施例の加硫ゴム組成物は、比較例9の加硫ゴム組成物に比べて、100~300%引張応力、硬さが向上した。 As is clear from the results in Table 8, the vulcanized rubber compositions of the examples were improved in tensile stress and hardness by 100 to 300% compared to the vulcanized rubber composition of Comparative Example 9.
 比較例10(EPDM1/CB/ブランク)
 表9に示す割合の各成分を加圧式ニーダー(モリヤマ(株)製、容量10リットル)を用いて、温度150℃で混練し、未加硫ゴム組成物を調製した。得られた組成物を加硫温度170℃でプレス加硫し、加硫ゴム組成物を得た。
Comparative Example 10 (EPDM1 / CB / Blank)
The components shown in Table 9 were kneaded at a temperature of 150 ° C. using a pressure kneader (manufactured by Moriyama Co., Ltd., capacity: 10 liters) to prepare an unvulcanized rubber composition. The obtained composition was press vulcanized at a vulcanization temperature of 170 ° C. to obtain a vulcanized rubber composition.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 実施例9(EPDM1/CB/B-CNF3部)
 比較例10で得られた未加硫ゴム組成物に対して、6インチロールを用いて、B-CNFを比較例10の組成物100重量部に対して固形分量換算で3重量部添加し、修飾セルロースナノ繊維を含む未加硫ゴム組成物を調製し、比較例10と同一の方法で加硫ゴム組成物を得た。
Example 9 (EPDM1 / CB / B-CNF 3 parts)
To the unvulcanized rubber composition obtained in Comparative Example 10, 3 parts by weight of B-CNF was added in terms of solid content with respect to 100 parts by weight of the composition of Comparative Example 10 using a 6-inch roll. An unvulcanized rubber composition containing modified cellulose nanofibers was prepared, and a vulcanized rubber composition was obtained in the same manner as in Comparative Example 10.
 実施例10(EPDM1/CB/B-CNF5部)
 B-CNFの添加量を5重量部に変更する以外は実施例9と同一の方法で加硫ゴム組成物を得た。
Example 10 (EPDM1 / CB / B-CNF 5 parts)
A vulcanized rubber composition was obtained in the same manner as in Example 9, except that the amount of B-CNF added was changed to 5 parts by weight.
 実施例11(EPDM1/CB/B-CNF7部)
 B-CNFの添加量を7重量部に変更する以外は実施例9と同一の方法で加硫ゴム組成物を得た。
Example 11 (EPDM1 / CB / B-CNF 7 parts)
A vulcanized rubber composition was obtained in the same manner as in Example 9, except that the amount of B-CNF added was changed to 7 parts by weight.
 比較例10および実施例9~11で得られた加硫ゴム組成物の評価結果を表10に示す。 Table 10 shows the evaluation results of the vulcanized rubber compositions obtained in Comparative Example 10 and Examples 9 to 11.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表10の結果から明らかなように、実施例の加硫ゴム組成物は、比較例10の加硫ゴム組成物に比べて、100%引張応力および硬さが向上した。 As is clear from the results in Table 10, the vulcanized rubber composition of the example improved in 100% tensile stress and hardness as compared with the vulcanized rubber composition of Comparative Example 10.
 比較例11(EPDM2/炭酸カルシウム/ブランク)
 表11に示す割合の各成分を加圧式ニーダー(モリヤマ(株)製、容量10リットル)を用いて、温度150℃で混練し、未加硫ゴム組成物を調製した。得られた組成物を加硫温度170℃でプレス加硫し、加硫ゴム組成物を得た。
Comparative Example 11 (EPDM2 / calcium carbonate / blank)
Each component shown in Table 11 was kneaded at a temperature of 150 ° C. using a pressure kneader (manufactured by Moriyama Co., Ltd., volume 10 liters) to prepare an unvulcanized rubber composition. The obtained composition was press vulcanized at a vulcanization temperature of 170 ° C. to obtain a vulcanized rubber composition.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 実施例12(EPDM2/炭酸カルシウム/B-CNF3部)
 比較例11で得られた未加硫ゴム組成物に対して、6インチロールを用いて、修飾セルロースナノ繊維(B-CNF)を比較例11の組成物100重量部に対して固形分量換算で3重量部添加し、修飾セルロースナノ繊維を含む未加硫ゴム組成物を調製し、比較例11と同一の方法で加硫ゴム組成物を得た。
Example 12 (EPDM2 / calcium carbonate / B-CNF 3 parts)
With respect to the unvulcanized rubber composition obtained in Comparative Example 11, a modified cellulose nanofiber (B-CNF) was converted into a solid content with respect to 100 parts by weight of the composition of Comparative Example 11 using a 6-inch roll. 3 parts by weight was added to prepare an unvulcanized rubber composition containing modified cellulose nanofibers, and a vulcanized rubber composition was obtained in the same manner as in Comparative Example 11.
 実施例13(EPDM2/炭酸カルシウム/B-CNF5部)
 B-CNFの添加量を5重量部に変更する以外は実施例12と同一の方法で加硫ゴム組成物を得た。
Example 13 (EPDM2 / calcium carbonate / B-CNF 5 parts)
A vulcanized rubber composition was obtained in the same manner as in Example 12 except that the amount of B-CNF added was changed to 5 parts by weight.
 実施例14(EPDM2/炭酸カルシウム/B-CNF7部)
 B-CNFの添加量を7重量部に変更する以外は実施例12と同一の方法で加硫ゴム組成物を得た。
Example 14 (EPDM2 / calcium carbonate / B-CNF 7 parts)
A vulcanized rubber composition was obtained in the same manner as in Example 12 except that the amount of B-CNF added was changed to 7 parts by weight.
 比較例11および実施例12~14で得られた加硫ゴム組成物の評価結果を表12に示す。 Table 12 shows the evaluation results of the vulcanized rubber compositions obtained in Comparative Example 11 and Examples 12-14.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表12の結果から明らかなように、実施例の加硫ゴム組成物は、比較例11の加硫ゴム組成物に比べて、25~300%引張応力、硬さが向上した。 As is apparent from the results in Table 12, the vulcanized rubber composition of the example improved in 25 to 300% tensile stress and hardness as compared with the vulcanized rubber composition of Comparative Example 11.
 比較例12(NBR/CB/ブランク)
 表13に示す割合の各成分を加圧式ニーダー(モリヤマ(株)製、容量10リットル)を用いて、温度150℃で混練し、未加硫ゴム組成物を調製した。得られた組成物を加硫温度160℃でプレス加硫し、加硫ゴム組成物を得た。
Comparative Example 12 (NBR / CB / Blank)
The components shown in Table 13 were kneaded at a temperature of 150 ° C. using a pressure kneader (manufactured by Moriyama Co., Ltd., capacity 10 liters) to prepare an unvulcanized rubber composition. The obtained composition was press vulcanized at a vulcanization temperature of 160 ° C. to obtain a vulcanized rubber composition.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 実施例15(NBR/CB/B-CNF3部)
 比較例12で得られた未加硫ゴム組成物に対して、6インチロールを用いて、B-CNFを比較例12の組成物100重量部に対して固形分量換算で3重量部添加し、修飾セルロースナノ繊維を含む未加硫ゴム組成物を調製し、比較例12と同一の方法で加硫ゴム組成物を得た。
Example 15 (NBR / CB / B-CNF 3 parts)
To the unvulcanized rubber composition obtained in Comparative Example 12, 3 parts by weight of B-CNF was added in terms of solid content with respect to 100 parts by weight of the composition of Comparative Example 12 using a 6-inch roll. An unvulcanized rubber composition containing modified cellulose nanofibers was prepared, and a vulcanized rubber composition was obtained in the same manner as in Comparative Example 12.
 実施例16(NBR/CB/B-CNF5部)
 B-CNFの添加量を5重量部に変更する以外は実施例15と同一の方法で加硫ゴム組成物を得た。
Example 16 (NBR / CB / B-CNF 5 parts)
A vulcanized rubber composition was obtained in the same manner as in Example 15 except that the amount of B-CNF added was changed to 5 parts by weight.
 実施例17(NBR/CB/B-CNF7部)
 B-CNFの添加量を7重量部に変更する以外は実施例15と同一の方法で加硫ゴム組成物を得た。
Example 17 (NBR / CB / B-CNF 7 parts)
A vulcanized rubber composition was obtained in the same manner as in Example 15 except that the amount of B-CNF added was changed to 7 parts by weight.
 比較例12および実施例15~17で得られた加硫ゴム組成物の評価結果を表14に示す。 Table 14 shows the evaluation results of the vulcanized rubber compositions obtained in Comparative Example 12 and Examples 15 to 17.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表14の結果から明らかなように、実施例の加硫ゴム組成物は、比較例12の加硫ゴム組成物に比べて、100%引張応力および硬さが向上した。 As is clear from the results in Table 14, the vulcanized rubber composition of the example was improved in 100% tensile stress and hardness as compared with the vulcanized rubber composition of Comparative Example 12.
 比較例13(NBR/炭酸カルシウム/ブランク)
 表15に示す割合の各成分を加圧式ニーダー(モリヤマ(株)製、容量10リットル)を用いて、温度150℃で混練し、未加硫ゴム組成物を調製した。得られた組成物を加硫温度160℃でプレス加硫し、加硫ゴム組成物を得た。
Comparative Example 13 (NBR / calcium carbonate / blank)
The components shown in Table 15 were kneaded at a temperature of 150 ° C. using a pressure kneader (manufactured by Moriyama Co., Ltd., volume 10 liters) to prepare an unvulcanized rubber composition. The obtained composition was press vulcanized at a vulcanization temperature of 160 ° C. to obtain a vulcanized rubber composition.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 実施例18(NBR/炭酸カルシウム/B-CNF3部)
 比較例13で得られた未加硫ゴム組成物に対して、6インチロールを用いて、B-CNFを比較例13の組成物100重量部に対して固形分量換算で3重量部添加し、修飾セルロースナノ繊維を含む未加硫ゴム組成物を調製し、比較例13と同一の方法で加硫ゴム組成物を得た。
Example 18 (NBR / calcium carbonate / B-CNF 3 parts)
To the unvulcanized rubber composition obtained in Comparative Example 13, 3 parts by weight of B-CNF was added in terms of solid content with respect to 100 parts by weight of the composition of Comparative Example 13 using a 6-inch roll. An unvulcanized rubber composition containing modified cellulose nanofibers was prepared, and a vulcanized rubber composition was obtained in the same manner as in Comparative Example 13.
 実施例19(NBR/炭酸カルシウム/B-CNF5部)
 B-CNFの添加量を5重量部に変更する以外は実施例18と同一の方法で加硫ゴム組成物を得た。
Example 19 (NBR / calcium carbonate / B-CNF 5 parts)
A vulcanized rubber composition was obtained in the same manner as in Example 18 except that the amount of B-CNF added was changed to 5 parts by weight.
 実施例20(NBR/炭酸カルシウム/B-CNF7部)
 B-CNFの添加量を7重量部に変更する以外は実施例18と同一の方法で加硫ゴム組成物を得た。
Example 20 (NBR / calcium carbonate / B-CNF 7 parts)
A vulcanized rubber composition was obtained in the same manner as in Example 18 except that the amount of B-CNF added was changed to 7 parts by weight.
 比較例13および実施例18~20で得られた加硫ゴム組成物の評価結果を表16に示す。 Table 16 shows the evaluation results of the vulcanized rubber compositions obtained in Comparative Example 13 and Examples 18 to 20.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表16の結果から明らかなように、実施例の加硫ゴム組成物は、比較例13の加硫ゴム組成物に比べて、25~300%引張応力、硬さが向上した。 As is clear from the results in Table 16, the vulcanized rubber compositions of the examples were improved in 25 to 300% tensile stress and hardness as compared with the vulcanized rubber composition of Comparative Example 13.
 本発明の加硫ゴム組成物は、各種の工業用部材(コンベアベルト、ゴムカバーロール、ガスケット、印刷ロール、オイルシール、パッキン、耐油ホースなどのホースなど)、建築部材(窓枠ゴム、制振材、カーペットバッギング材など)、輸送機部材(自動車用部材、タイヤ、動力伝達ベルトなど)、電気・電子機器部材(電線被覆など)に利用できる。 The vulcanized rubber composition of the present invention comprises various industrial members (conveyor belts, rubber cover rolls, gaskets, printing rolls, oil seals, packings, hoses such as oil-resistant hoses, etc.), building members (window frame rubber, vibration damping). Materials, carpet bagging materials, etc.), transportation equipment members (automobile members, tires, power transmission belts, etc.), and electrical / electronic equipment members (electric wire coverings, etc.).

Claims (11)

  1.  ゴム成分(A)と、9,9位にアリール基を有するフルオレン化合物(B1)が結合した修飾セルロースナノ繊維(B)とを含む加硫ゴム組成物。 A vulcanized rubber composition comprising a rubber component (A) and a modified cellulose nanofiber (B) to which a fluorene compound (B1) having an aryl group at the 9th and 9th positions is bonded.
  2.  フルオレン化合物(B1)が、下記式(1)で表される化合物である請求項1記載の加硫ゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、環Zはアレーン環、RおよびRは置換基、Xはヘテロ原子含有官能基、kは0~4の整数、nは1以上の整数、pは0以上の整数を示す)
    The vulcanized rubber composition according to claim 1, wherein the fluorene compound (B1) is a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    Wherein ring Z is an arene ring, R 1 and R 2 are substituents, X 1 is a heteroatom-containing functional group, k is an integer of 0 to 4, n is an integer of 1 or more, and p is an integer of 0 or more. Show)
  3.  式(1)において、Xが、基-[(OA)m1-Y](式中、Aはアルキレン基、Yはヒドロキシル基またはグリシジルオキシ基、m1は0以上の整数を示す)である請求項2記載の加硫ゴム組成物。 In Formula (1), X 1 is a group — [(OA) m1 -Y 1 ] (wherein A is an alkylene group, Y 1 is a hydroxyl group or a glycidyloxy group, and m1 represents an integer of 0 or more). The vulcanized rubber composition according to claim 2.
  4.  フルオレン化合物(B1)の割合が、修飾セルロースナノ繊維(B)の総量に対して0.01~33重量%である請求項1~3のいずれかに記載の加硫ゴム組成物。 The vulcanized rubber composition according to any one of claims 1 to 3, wherein the proportion of the fluorene compound (B1) is 0.01 to 33% by weight based on the total amount of the modified cellulose nanofibers (B).
  5.  修飾セルロースナノ繊維(B)の平均繊維径が4~500nmである請求項1~4のいずれかに記載の加硫ゴム組成物。 The vulcanized rubber composition according to any one of claims 1 to 4, wherein the average fiber diameter of the modified cellulose nanofiber (B) is 4 to 500 nm.
  6.  ゴム成分(A)が、ジエン系ゴムおよびオレフィン系ゴムからなる群より選択された少なくとも1種を含む請求項1~5のいずれかに記載の加硫ゴム組成物。 The vulcanized rubber composition according to any one of claims 1 to 5, wherein the rubber component (A) contains at least one selected from the group consisting of diene rubbers and olefin rubbers.
  7.  修飾セルロースナノ繊維(B)の割合が、ゴム成分(A)100重量部に対して0.1~30重量部である請求項1~6のいずれかに記載の加硫ゴム組成物。 The vulcanized rubber composition according to any one of claims 1 to 6, wherein the proportion of the modified cellulose nanofiber (B) is 0.1 to 30 parts by weight with respect to 100 parts by weight of the rubber component (A).
  8.  補強剤(C)および加工助剤(D)をさらに含む請求項1~7のいずれかに記載の加硫ゴム組成物。 The vulcanized rubber composition according to any one of claims 1 to 7, further comprising a reinforcing agent (C) and a processing aid (D).
  9.  ゴム成分(A)と、修飾セルロースナノ繊維(B)および/またはその原料とを混練する混練工程、得られた混練組成物を加硫して加硫ゴム組成物を得る加硫工程を含む請求項1~8のいずれかに記載の加硫ゴム組成物の製造方法。 Claims including a kneading step of kneading the rubber component (A), the modified cellulose nanofiber (B) and / or its raw material, and a vulcanizing step of vulcanizing the obtained kneaded composition to obtain a vulcanized rubber composition. Item 9. A method for producing a vulcanized rubber composition according to any one of Items 1 to 8.
  10.  修飾セルロースナノ繊維(B)の原料が、フルオレン化合物(B1)および未修飾セルロースナノ繊維である請求項9記載の製造方法。 The production method according to claim 9, wherein the raw materials of the modified cellulose nanofiber (B) are a fluorene compound (B1) and an unmodified cellulose nanofiber.
  11.  混練工程において、予め加工助剤(D)中に、分散させた修飾セルロースナノ繊維(B)および/またはその原料を、ゴム成分(A)と混練する請求項9または10記載の製造方法。 The manufacturing method according to claim 9 or 10, wherein in the kneading step, the modified cellulose nanofiber (B) and / or its raw material dispersed in advance in the processing aid (D) is kneaded with the rubber component (A).
PCT/JP2019/009214 2018-03-30 2019-03-08 Fiber-reinforced vulcanized rubber composition and production method therefor WO2019188104A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020509790A JPWO2019188104A1 (en) 2018-03-30 2019-03-08 Fiber reinforced vulcanized rubber composition and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-066788 2018-03-30
JP2018066788 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019188104A1 true WO2019188104A1 (en) 2019-10-03

Family

ID=68059800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009214 WO2019188104A1 (en) 2018-03-30 2019-03-08 Fiber-reinforced vulcanized rubber composition and production method therefor

Country Status (2)

Country Link
JP (1) JPWO2019188104A1 (en)
WO (1) WO2019188104A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110955A1 (en) * 2018-11-27 2020-06-04 大阪瓦斯株式会社 Rubbery composition and method for producing same
JP2020084061A (en) * 2018-11-27 2020-06-04 大阪瓦斯株式会社 Rubber composition and method for producing the same
KR102367007B1 (en) * 2021-04-19 2022-02-24 주식회사 셀루펩 A Method of Manufacturing of Functional Composites Additives for life quarantine prevention Using Non-Wood Nanocellulose fibrils
RU2795137C1 (en) * 2021-04-19 2023-04-28 СеллуФАБ Ко., Лтд. Method for manufacturing functional composite additives with antibacterial effect using non-wood nanocellulose fibres

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225847A (en) * 2010-03-31 2011-11-10 Osaka Gas Co Ltd Method for production of cellulose
JP2016079370A (en) * 2014-10-22 2016-05-16 大阪瓦斯株式会社 Modified cellulose and manufacturing method therefor
JP2016079369A (en) * 2014-10-22 2016-05-16 大阪瓦斯株式会社 Modified cellulose and manufacturing method therefor
WO2016158682A1 (en) * 2015-04-02 2016-10-06 富士フイルム株式会社 Cellulose film, wiring board and method for producing cellulose film
JP2016222745A (en) * 2015-05-26 2016-12-28 大阪瓦斯株式会社 Mixed composition, manufacturing method thereof and composite
JP2019052261A (en) * 2017-09-15 2019-04-04 大阪瓦斯株式会社 Curable composition and cured product of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225847A (en) * 2010-03-31 2011-11-10 Osaka Gas Co Ltd Method for production of cellulose
JP2016079370A (en) * 2014-10-22 2016-05-16 大阪瓦斯株式会社 Modified cellulose and manufacturing method therefor
JP2016079369A (en) * 2014-10-22 2016-05-16 大阪瓦斯株式会社 Modified cellulose and manufacturing method therefor
WO2016158682A1 (en) * 2015-04-02 2016-10-06 富士フイルム株式会社 Cellulose film, wiring board and method for producing cellulose film
JP2016222745A (en) * 2015-05-26 2016-12-28 大阪瓦斯株式会社 Mixed composition, manufacturing method thereof and composite
JP2019052261A (en) * 2017-09-15 2019-04-04 大阪瓦斯株式会社 Curable composition and cured product of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110955A1 (en) * 2018-11-27 2020-06-04 大阪瓦斯株式会社 Rubbery composition and method for producing same
JP2020084061A (en) * 2018-11-27 2020-06-04 大阪瓦斯株式会社 Rubber composition and method for producing the same
KR102367007B1 (en) * 2021-04-19 2022-02-24 주식회사 셀루펩 A Method of Manufacturing of Functional Composites Additives for life quarantine prevention Using Non-Wood Nanocellulose fibrils
RU2795137C1 (en) * 2021-04-19 2023-04-28 СеллуФАБ Ко., Лтд. Method for manufacturing functional composite additives with antibacterial effect using non-wood nanocellulose fibres

Also Published As

Publication number Publication date
JPWO2019188104A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
WO2019188104A1 (en) Fiber-reinforced vulcanized rubber composition and production method therefor
Li et al. Mechanical, thermal and friction properties of rice bran carbon/nitrile rubber composites: Influence of particle size and loading
Yu et al. A comprehensive study on lignin as a green alternative of silica in natural rubber composites
JP6082591B2 (en) Rubber composition
JP5763995B2 (en) Rubber composition and method for producing the same
Du et al. Carboxylated butadiene–styrene rubber/halloysite nanotube nanocomposites: Interfacial interaction and performance
KR101615759B1 (en) Carbon nanotube containing rubber compositions
US10676586B2 (en) Nanocomposite additives based on graphene sheets and silica nanofibers
WO2013081138A1 (en) Modified cellulose fibers and rubber composition containing modified cellulose fibers
JP2007112885A (en) Thermoplastic elastomer composition
JP7386807B2 (en) Rubbery composition and method for producing the same
JP2021121686A (en) Fiber-reinforced polyamide and method for producing the same
JP7141884B2 (en) Vibration-damping fiber-reinforced rubber composition and method for producing the same
Mago et al. Development of natural rubber-bamboo biochar composites for vibration and noise control applications
Senthilvel et al. Studies the effect of halloysite nanotubes on the mechanical and hot air ageing properties of nitrile-polyvinyl chloride rubber nano-composites
JP5443072B2 (en) Rubber composition for pneumatic tread and pneumatic tire
Theja et al. Investigation into mechanical properties of EPDM/SBR-nanoclay nanocomposites
JP2021001253A (en) Method for producing rubber-filler composite
JP7299087B2 (en) Rubber-like composition and method for producing the same
Cheng et al. Surface-modified halloysite nanotubes as fillers applied in reinforcing the performance of polytetrafluoroethylene
JP7214561B2 (en) Method for producing amphiphilic silica-carbon composite
JP5421025B2 (en) Rubber composition for carcass, pneumatic tire and method for producing pneumatic tire
JP2024014765A (en) Masterbatches, their uses and manufacturing methods
JP7319061B2 (en) Rubber compositions, weatherstrips, and hoses
JP2015510481A (en) Carbon filler treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509790

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19775267

Country of ref document: EP

Kind code of ref document: A1