WO2019188015A1 - Working machine reversing support device - Google Patents

Working machine reversing support device Download PDF

Info

Publication number
WO2019188015A1
WO2019188015A1 PCT/JP2019/008367 JP2019008367W WO2019188015A1 WO 2019188015 A1 WO2019188015 A1 WO 2019188015A1 JP 2019008367 W JP2019008367 W JP 2019008367W WO 2019188015 A1 WO2019188015 A1 WO 2019188015A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
work machine
measuring device
vehicle stop
road surface
Prior art date
Application number
PCT/JP2019/008367
Other languages
French (fr)
Japanese (ja)
Inventor
大基 手塚
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Publication of WO2019188015A1 publication Critical patent/WO2019188015A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes

Definitions

  • the present invention relates to a backward support technology for supporting backward running of a work machine such as a mining dump truck.
  • a work machine such as a mining dump truck.
  • it is related to the technology for assisting retreat in the earth.
  • Patent Document 1 states that “the load of the vessel is discharged at a position where the rear end of the vehicle body or rear end of the rear tire is projected onto the road surface or a position on the road surface which is a predetermined distance away from the projected position.
  • Set a reference distance guideline or a guideline distance for earthwork during the earthing work and display the guideline for the earthwork distance or a guideline for the distance during the earthing operation on the display.
  • a display system for displaying a rear view of a transport vehicle is disclosed.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a technique capable of guiding a transport vehicle so that the vehicle can be stopped at an appropriate earthing position at the time of earthing.
  • the present invention relates to a backward support device for a work machine that supports the backward running of the work machine, and measures the distance to the detected object by irradiating a laser and receiving the reflected light reflected by the detected object.
  • a first distance measuring device and a second distance measuring device wherein the first distance measuring device and the second distance measuring device are a first scan surface and a second distance formed by a laser irradiation surface of the first distance measuring device.
  • a second scan plane composed of a laser irradiation surface of the measuring device is orthogonalized, and the first scan plane is perpendicular to the horizontal plane of the vehicle body including the longitudinal axis and the horizontal axis of the vehicle body of the work machine, and the horizontal plane of the vehicle body
  • the second scanning plane has a measuring device disposed on the work machine with a depression angle, and based on the first distance measured by the first distance measuring device and the second distance measured by the second distance measuring device.
  • Progress of work machine Detects the distance to the wheel stop located direction and shape of the bollard, the working machine is characterized in that retraction support apparatus for a working machine and calculates the distance to the contact with the bollard.
  • the transport vehicle can be guided so that the vehicle can be stopped at an appropriate earthing position when earthing.
  • (A) is the schematic diagram for demonstrating the vehicle stop detection process which concerns on embodiment of this invention
  • (b) is the schematic diagram (dump) which plotted the measurement result of the 1st distance measuring device which concerns on embodiment of this invention Track left side view).
  • the flowchart of the vehicle stop position estimation process which concerns on embodiment of this invention.
  • (A) is a flowchart of the vehicle stop width direction shape detection processing according to the embodiment of the present invention
  • (b) is an explanatory diagram of mapping in the vehicle stop width direction shape detection processing according to the embodiment of the present invention (top view of the dump truck) ).
  • the flowchart of the contact distance determination process which concerns on embodiment of this invention.
  • FIG. 1 The schematic diagram for demonstrating the vehicle stop detection process in case the pitch vibration has generate
  • (A) is a figure which shows the case where the road surface which concerns on embodiment of this invention is a plane, (b) is the road surface rotated by inclination-angle (theta) centering
  • (A) is a figure which shows inclination-angle (theta) in the case of the linear approximation of two or more embodiment which concerns on embodiment of this invention,
  • (b) is the case of two or more curve approximation which concerns on embodiment of this invention.
  • the schematic diagram for demonstrating the back detection process in case the dump truck which concerns on embodiment of this invention is drive
  • the schematic diagram for demonstrating the back detection process in case the dump truck which concerns on embodiment of this invention is drive
  • FIG. 1 is an explanatory diagram showing the surrounding environment when the dump truck 1 according to the present embodiment is released.
  • FIG. 2 is a left side view of the dump truck 1.
  • FIG. 3 is a rear perspective view of the dump truck 1.
  • the dump truck 1 travels backward on the traveling road surface 1001 toward a vehicle stop (Bund) 1002 disposed on the cliff when the dump truck 1 is dumped on the dumping ground 1003 under the cliff.
  • the dump truck 1 includes a right front wheel 3r and a left front wheel 3l (see FIG. 2) at a front lower part of a body frame 2 (see FIG. 2), and a right rear wheel 4r and a left rear wheel 4l at a rear lower part. Further, a rear axle 7 is provided at the rear portion of the vehicle body frame 2.
  • a driver's seat 5 (see FIG. 2) is provided at the front upper part of the body frame 2, and a vessel 6 is provided at the rear upper part.
  • the dump truck 1 is provided with a backward support device 100 that supports the backward traveling of the dump truck 1.
  • the backward assistance device 100 includes an imaging device (camera) 102 that captures the rear of the dump truck 1, a contact distance calculation device 101 that calculates a distance (contact distance) to the car stop 1002, and a display image generation device 103 (see FIG. 4). ), An image display device (monitor) 104 (see FIG. 4), an earthmoving place entry determination device 105 (see FIG. 4), an earthing place entry notification device (buzzer, lamp) 106 (see FIG. 4), including.
  • the video display device 104 and the earthing place entry notification device 106 are arranged in the driver's seat 5.
  • the contact distance calculation device 101 scans the back of the dump truck 1 to accumulate the car stop shape and calculates the distance (contact distance) until the dump truck 1 contacts the car stop 1002.
  • the contact distance calculation device 101 includes a measurement device (scanner) 200 including a plurality of laser scanners, a self-position estimation device 300 that detects the self-position of the dump truck 1, a sensor output from the measurement device 200, and a self-position estimation device 300.
  • the vehicle stop detection device 10 that detects the vehicle stop 1002 based on the self-position from the vehicle and the vehicle stop guidance device 60 that calculates information for guiding the dump truck 1 to the detected vehicle stop 1002 (see FIG. 5).
  • the position of the dump truck 1 when the backward support device 100 starts operating is the origin
  • the traveling direction at the moment when the backward support device 100 starts operating is the y axis
  • the vehicle body height of the dump truck 1 is An orthogonal coordinate system 400 is used in which the axis is the z axis and the axis orthogonal to the two axes of the y axis and the z axis is the x axis.
  • the measuring device 200 includes a first distance measuring device 201 and a second distance measuring device 202.
  • the measuring apparatus 200 is installed between the left rear wheel 4l and the right rear wheel 4r at the rear of the dump truck 1, more specifically, above the rear axle 7 and below the vessel 6.
  • the first distance measuring device 201 and the second distance measuring device 202 do not need to be arranged at the same height and may not be symmetrical.
  • the first distance measuring device 201 and the second distance measuring device 202 are, for example, a laser scanner (laser) that irradiates a laser beam in a fan shape, receives reflected light from the detected object, and detects the distance and direction to the detected object. Radar).
  • the first distance measuring device 201 and the second distance measuring device 202 include a laser irradiation surface (hereinafter referred to as “second scan surface”) 22 of the second distance measuring device 202 and a laser irradiation surface (hereinafter referred to as “second scanning surface”) of the first distance measuring device 201. 21) (referred to as “first scan plane”).
  • the orthogonality is not limited to the case where the normal vectors of the first scan plane 21 and the second scan plane 22 are strictly perpendicular, but the same detected object as the detected object detected by the first distance measuring device 201. This includes the case where the first distance measuring device 201 and the second distance measuring device 202 are arranged so that the second scan surface 22 faces in a direction in which the shape in the width direction of the body can be detected.
  • the first scanning surface 21 extends at least vertically downward from the vehicle body horizontal plane H including the front and rear axes and the left and right axes of the vehicle body frame 2 to the direction parallel to the vehicle body horizontal plane H toward the rear of the vehicle body.
  • the first distance measuring device 201 is installed on the dump truck 1 so as to cover it.
  • the second distance measuring device 202 uses a position P1 where the second scanning surface 22 and the traveling road surface 1001 intersect, and the rear end of the left rear wheel 4l and the right rear wheel 4r as the traveling road surface 1001.
  • the second distance measuring device 202 is determined by the detection distance of the second distance measuring device 202, the installation depression angle ⁇ of the second distance measuring device 202 with respect to the vehicle body horizontal plane H, and the shielding of the dump truck 1 with respect to the second scan surface 22. It is installed at a position where the length D2 (see FIG. 3) of the intersection line between the road surface 1001 and the second scan surface 22 is longer than the wheel width (outer width) of the dump truck 1. By installing in this way, it is possible to scan in advance the region through which the wheels of the dump truck 1 pass.
  • first distance measuring device 201 and the second distance measuring device 202 are not limited to the configuration provided one by one, and each measuring device may be configured using a plurality of laser scanners. Further, the first scanning surface 21 is not limited to one for the first distance measuring device 201, and a plurality of first scanning surfaces 21 may be provided. Similarly, the second scanning surface 22 is not limited to one for the second distance measuring device 202 and may be plural.
  • the photographing apparatus 102 is a camera that acquires an image behind the dump truck 1, for example.
  • the imaging device 102 is a first scan behind the dump truck 1, more specifically above the measuring device 200 and below the vessel 6, between the left rear wheel 4 l and the right rear wheel 4 r.
  • the surface 21 and the second scanning surface 22 are installed so as to be included in the visual field range.
  • the vehicle coordinate system of the dump truck 1 is a coordinate whose origin is the center of gravity of the dump truck 1, the vehicle longitudinal axis direction on the horizontal plane of the vehicle body is the y axis, the horizontal axis direction is the x axis, and the direction perpendicular to the horizontal plane of the vehicle body is the z axis direction. It is a system.
  • FIG. 4 is a block diagram showing the functional configuration of the backward support device 100 and FIG. 5 is the functional configuration of the contact distance calculation device 101, respectively.
  • the self-position estimating device 300 is connected to each of a wheel speed measuring device (wheel speed sensor) 301 and a steering angle measuring device (yaw rate sensor, turning angular velocity sensor) 302 provided in the dump truck 1.
  • the rotational speed is acquired, and the measurement result of the turning angular speed of the dump truck 1 is acquired from the steering angle measuring device 302.
  • the self-position estimation apparatus 300 calculates the speed and angular velocity of the dump truck 1 and the position and orientation from the origin of the aforementioned orthogonal coordinate system 400 (see FIG. 1) by executing, for example, dead reckoning processing.
  • an IMU inertia measurement device
  • a steering angle sensor 302 may be used instead of the yaw rate sensor as the steering angle measurement device 302 for the purpose of estimating the turning angular velocity.
  • a GPS Global Positioning System
  • a geomagnetic sensor may be used instead of the self-position estimation apparatus 300.
  • the vehicle stop detection device 10 includes a first vehicle stop detection device 40 that estimates the position of the vehicle stop 1002 and a second vehicle stop detection device 50 that estimates the shape of the vehicle stop 1002 in the width direction.
  • the vehicle stop guidance device 60 includes a vehicle stop guidance determination device 61 and a vehicle body shape storage device 62.
  • the first vehicle stop detection device 40 includes a road surface estimation device 41 and a vehicle stop estimation device 42.
  • the output of the first distance measuring device 201 described above is connected to respective inputs of the road surface estimating device 41 and the car stop estimating device 42.
  • the output of the road surface estimation device 41 is connected to the input of a vehicle stop estimation device 42 and a pitch vibration correction device 51 described later.
  • the output of the first distance measuring device 201 is further connected to the input of the car stop estimating device 42.
  • First distance information R1i output from the first distance measuring device 201 (i: indicates the laser irradiation angle ⁇ in the first distance measuring device 201, for example, ⁇ 45 ⁇ i ⁇ 225, and the second distance information R2i described later is also the same). Includes a measurement point and a distance to the measurement point.
  • the road surface estimation device 41 extracts the distance information indicating the measurement point and distance estimated as the road surface from the first distance information R1i, and calculates the road surface line. Then, the inclination angle ⁇ (see FIG. 12) of the road surface line with respect to the vehicle body horizontal plane H including the front and rear axes and the left and right axes of the vehicle body frame 2 is calculated, and the road surface inclination with respect to the vehicle body horizontal plane H is calculated.
  • the inclination angle ⁇ is also referred to as a pitch angle ⁇ .
  • the vehicle stop estimation device 42 extracts distance information of what is estimated to be the vehicle stop 1002 from the first distance information R1i measured by the first distance measurement device 201, the intersection of the road surface and the vehicle stop 1002, and the inclination of the vehicle stop 1002 with respect to the road surface. Is calculated.
  • the second vehicle stop detection device 50 includes a pitch vibration correction device 51, a vehicle stop shape estimation device 52, and a vehicle stop shape storage device 53.
  • the input of the pitch vibration correcting device 51 is connected to the respective outputs of the second distance measuring device 202 and the road surface estimating device 41.
  • the output of the pitch vibration correcting device 51 is connected to the input of the vehicle stop shape estimating device 52.
  • the input of the car stopper shape estimation device 52 is further connected to the output of the self-position estimation device 300.
  • the vehicle stop shape storage device 53 is connected to a vehicle stop shape estimation device 52 and a vehicle stop guidance determination device 61 described later.
  • the pitch vibration correcting device 51 removes the influence of pitch vibration from the second distance information R2i measured by the second distance measuring device 202 based on the inclination angle ⁇ of the road surface with respect to the vehicle body horizontal plane H estimated by the road surface estimating device 41. The correction process is executed.
  • the car stop shape estimating device 52 is a general SLAM (Simultaneous Localization and Mapping).
  • the topography in the traveling direction of the dump truck 1 is calculated as the shape of the vehicle stop 1002 in the vehicle width direction by a mapping method such as the above.
  • the car stop shape storage device 53 stores width direction shape information indicating the shape of the car stop 1002 in the vehicle width direction calculated by the car stop shape estimation device 52.
  • the vehicle stop shape estimation device 52 may refer to the vehicle stop shape information stored in the vehicle stop shape storage device 53 in order to calculate the width direction shape information more highly.
  • the stored vehicle stop shape information also refers to the display video generation device 103.
  • the vehicle stop guidance device 60 includes a vehicle stop guidance determination device 61 and a vehicle body shape storage device 62.
  • the input of the vehicle stop guidance determination device 61 is connected to the respective outputs of the vehicle stop estimation device 42 and the self-position estimation device 300, and is also connected to the vehicle stop shape storage device 53 and the vehicle body shape storage device 62, respectively.
  • the vehicle stop guidance determination device 61 reads information stored in the vehicle stop shape storage device 53 and the vehicle body shape storage device 62 as necessary.
  • the vehicle stop guidance determination device 61 is connected to the distance to the vehicle stop 1002 estimated by the vehicle stop estimation device 42, the inclination of the vehicle stop 1002, the width direction shape of the vehicle stop 1002 stored in the vehicle stop shape storage device 53, and the self-position estimation device 300. Based on the obtained turning angular velocity measured by the steering angle measuring device 302 and the vehicle body shape (including the size in the vehicle width direction) stored by the vehicle body shape storage device 62, the contact distance required for the determination of guidance is calculated. The vehicle stop guidance determination device 61 outputs the calculated contact distance to the earthing place entry determination device 105.
  • the display video generation device 103 superimposes the vehicle stop shape stored in the vehicle stop shape storage device 53 on the video acquired by the photographing device 102 and generates a display video.
  • the input of the display video generation device 103 is connected to the respective outputs of the photographing device 102 and the contact distance calculation device 101, and the output of the display video generation device 103 is connected to the input of the video display device 104.
  • the display video generation device 103 superimposes the vehicle stop shape on the display video in an identifiable manner.
  • the vehicle stop shape represented by the value of the orthogonal coordinate system 400 is converted into a pixel position using the self-position and posture of the dump truck 1 calculated by the self-position estimation apparatus 300.
  • the video display device 104 displays the display video generated by the display video generation device 103.
  • An example image 410 displayed on the image display device 104 is shown in FIG.
  • the vehicle stop shape 1002b is displayed in an identifiable manner on the image behind the dump truck 1 including the vessel 6, the left rear wheel 4l, and the right rear wheel 4r.
  • the display video generation device 103 When the video around the dump truck 1 can be acquired by the imaging device 102, the display video generation device 103 generates an overhead image from the video acquired by the imaging device 102, and adds a car stop shape 1002b to the generated overhead image.
  • a display image may be generated by superimposing.
  • a display image example 420 in this case is shown in FIG.
  • An icon image 1a representing the dump truck 1 is displayed at the center.
  • the conversion table and icon image 1a used when converting the acquired video into a bird's-eye view image are held in advance in a storage device such as a ROM provided in the backward support device 100.
  • the earthing place entry determination device 105 determines whether or not the dump truck 1 has entered the earthing place from the contact distance calculated by the car stop guidance determination device 61 and the earthing place predetermined by the distance from the car stop 1002. If it is determined and it is determined that the vehicle has entered, a notification signal is output to the earthing place entry notification device 106.
  • the input of the earthing place entry determination device 105 is connected to the output of the contact distance calculation device 101.
  • the output of the earthing place entry determination device 105 is connected to the input of the earthing place entry notification device 106.
  • the earthmoving place entry notification device 106 includes, for example, a buzzer and a lamp.
  • the earthing place entry notification device 106 outputs a sound from the buzzer or turns on the lamp when receiving the notification signal from the earthing place entry determination device 105.
  • the vehicle stop detection device 10, the vehicle stop guidance device 60, the self-position estimation device 300, the display image generation device 103, and the earthing place entry determination device 105 are a microcomputer device including a central processing unit, a storage device, an input / output circuit, and a communication circuit. It may be configured by a combination of hardware and software that realizes the function of each device, or each device may be configured by an arithmetic circuit.
  • FIG. 8A is a schematic diagram for explaining a vehicle stop detection process by the vehicle stop detection device 10.
  • FIG. 8B is a schematic diagram in which the measurement results of the first distance measuring device 201 are plotted.
  • FIG. 8A represents the distance to the detected object (including both the road surface and the vehicle stop 1002) measured by the first vehicle stop detection device 40.
  • the dotted line 1011 in FIG. Further, a black point 1012 in FIG. 8A indicates a measurement point measured by the first distance measuring device 201.
  • a black point 1013 in FIG. 8B indicates a position where the first distance measurement device 201 outputs the first distance information R1i on the orthogonal coordinates.
  • the scanner as the measuring device 200 rotates and irradiates the laser at ⁇ 45 ° to ⁇ 225 ° to incline the car stop 1002 from the rear end of the rear wheel of the dump truck 1.
  • the distance to each point arranged along the surface 1002a is calculated and output as the first distance information R1i.
  • the line of intersection between the first scan surface 21 and the traveling road surface 1001 becomes shorter.
  • the straight line 1021 substantially parallel to the horizontal direction and the vertical height
  • a straight line 1022 having a variable length is obtained.
  • the intersection 1023 of the two straight lines is an inflection point of the first distance information R1i, and can be estimated as a point where the road surface (t load ) and the vehicle stop (t berm ) are in contact with each other.
  • the second scan surface 22 calculates the distance to each point aligned in the width direction on the inclined surface 1002a, not the traveling road surface 1001. And output as the second distance information R2i. Thereafter, as the dump truck 1 further approaches the vehicle stop 1002, the second scan surface 22 moves toward the upper end of the inclined surface 1002a.
  • FIG. 9 is a flowchart showing the vehicle stop position estimation process.
  • the road surface estimation device 41 extracts first distance information estimated as a road surface from the first distance information R1i measured by the first distance measurement device 201 (S101). Specifically, the first distance information R1i whose distance from the road surface road_old estimated by the road surface estimation device 41 in the previous measurement is equal to or less than the first threshold value K1 is extracted.
  • the road surface estimation device 41 compares the number n of the first distance information R1i extracted as the road surface with a predetermined threshold value (road surface threshold Kn). When the number n of the extracted distance information is less than the road threshold Kn (S102 / NO), the road line t road set to an initial value ini_t road (S108), the process proceeds to S104 to be described later.
  • the road surface estimation device 41 calculates the road surface road load from the extracted distance information (S103).
  • the road surface line road is calculated by approximating the extracted first distance information R1i by linear regression.
  • linear regression processing for example, linear approximation may be performed by a first-order least square method, or two or more linear approximations or curve approximations may be used. The same applies to linear regression in the calculation of the vehicle stop line described later.
  • the road surface estimation device 41 outputs the calculated road surface road to the vehicle stop estimation device 42.
  • the vehicle stop estimation device 42 extracts the first distance information R1i estimated as the vehicle stop 1002 from the first distance information R1i measured by the first distance measurement device 201 (S104).
  • the distance from the road surface road is equal to or greater than the second threshold value K2
  • the vehicle stop estimated by the vehicle stop estimation device 42 in the previous measurement First distance information R1i whose distance from the line t berm_old is equal to or smaller than a third threshold value K3 is extracted.
  • the car stop estimation device 42 compares the number m of the first distance information R1i extracted as the car stop 1002 with a predetermined threshold (car stop threshold Km). If the number m of the first distance information R1i extracted as the car stop 1002 is less than the car stop threshold Km (S105 / No), the process ends.
  • the car stop estimation device 42 uses the linear stop to approximate the extracted first distance information R1i. Is calculated (S106).
  • the wheel stop estimating device 42 calculates the wheel stopper inclination angle Ab from the slope of t road and t berm (S107).
  • FIG. 10A is a flowchart showing a vehicle stop width direction shape detection process by the second vehicle stop detection device 50.
  • FIG.10 (b) is a schematic diagram for demonstrating the mapping in a vehicle stop width direction shape detection process.
  • the pitch vibration correction device 51 calculates the installation depression angle ⁇ (see FIG. 2) of the second distance measuring device 202 and the inclination angle ⁇ (see FIG. 12) of the vehicle body horizontal plane H with respect to the road surface estimated by the road surface estimation device 41 (see FIG. 12). Applied to 1) to (3), three-dimensional conversion is performed while correcting pitch vibration for the second distance information R2i (S201).
  • xi R2i ⁇ cos ( ⁇ ) (1)
  • the vehicle stop shape estimation device 52 performs mapping of the second distance information R2i corrected by the pitch vibration correction device 51 based on the self-position estimated by the self-position estimation device 300 (S202). Then, the vehicle stop shape estimation device 52 writes the width direction shape information including the corrected second distance information R2i mapped to the vehicle stop shape storage device 53, and accumulates the mapped distance information (S203).
  • point group R2_c indicates current distance information
  • point group R2_pre1 and point group R2_pre2 indicate past width direction shape information. It should be noted that the point group R2_pre2 is the width direction shape information before the point group R2_pre1.
  • FIG. 11 is a flowchart of the contact distance determination process performed by the vehicle stop guidance device 60.
  • the vehicle stop guidance determination device 61 compares the distance Lb1 to the vehicle stop 1002 and the vehicle stop inclination angle Ab calculated by the vehicle stop estimation device 42 with predetermined fourth threshold value K4 and fifth threshold value K5, respectively.
  • the vehicle stop guidance determination device 61 estimates the predicted travel path p (S302). ).
  • the traveling path p is estimated based on the turning angular velocity (steering angle) s measured by the steering angle measuring device 302 and acquired through the self-position estimating device 300.
  • the vehicle stop guidance determination device 61 uses the traveling path p, the width direction shape information G stored in the vehicle stop shape storage device 53 by the second vehicle stop detection device 50, and the vehicle body shape D stored by the vehicle body shape storage device 62.
  • a distance Lb2 to the car stop 1002 is calculated (S303).
  • the distance Lb2 is set as the contact distance Lc (S305).
  • the distance Lb1 is set as the contact distance Lc (S306).
  • the fourth threshold value K4 is set as the contact distance Lc.
  • FIG. 12 is a schematic diagram for explaining a vehicle stop detection process when pitch vibration is generated in the dump truck 1.
  • FIG. 13A and FIG. 13B are diagrams illustrating measurement results performed by the first distance measuring device 201 in the state of FIG.
  • FIG. 13A is a diagram showing a case where the road surface is a plane.
  • the raw data from the first distance measuring device 201 is the distance L and the polar coordinates of the laser irradiation angle ⁇ , and these are coordinate-converted into orthogonal coordinates (x, y).
  • the inclination angle ⁇ is atan (a).
  • FIG. 13B shows a state in which the road surface is rotated by an inclination angle ⁇ around the ground directly below the first distance measuring device 201 in the vertical direction.
  • the place measured by the second distance measuring device 202 is a place rotated by ⁇ around the second distance measuring device 202 with reference to a case where there is no pitch vibration.
  • the laser irradiation angle ⁇ When the tilt angle ⁇ is generated, the laser irradiation angle ⁇ is not changed, but the distance L is short (or long).
  • FIG. 14A is a diagram showing the inclination angle ⁇ in the case of two or more linear approximations.
  • the inclination a of the first straight line that is, the straight line closer to the dump truck 1 is the inclination angle ⁇ .
  • FIG. 14B is a diagram showing the inclination angle ⁇ in the case of approximating two or more curves.
  • the road surface estimation device 41 extracts the first distance information R1i obtained by measuring the road surface using the previously estimated road surface road_old_old and estimates the road surface, the influence of the pitch vibration is alleviated even in the situation where the pitch vibration is occurring. Thus, the slope of the road surface can be estimated. Further, the vehicle stop estimation device 42 also extracts the first distance information R1i obtained by measuring the vehicle stop 1002 using the previously estimated vehicle stop line t berm_old , and estimates the vehicle stop 1002 so that the pitch vibration is generated even in a situation where pitch vibration is occurring. The position and inclination of the vehicle stop 1002 can be estimated by reducing the influence of vibration.
  • the pitch vibration correction device 51 performs correction using the vehicle body horizontal plane H and the road surface inclination angle ⁇ calculated by the road surface estimation device 41 according to the equations (1) to (3), the second distance measurement device 202 is used. It is possible to correct the depression angle caused by the pitch vibration.
  • FIG. 15 is a schematic diagram for explaining the backward detection process when the dump truck 1 is traveling on an inclined traveling road surface 1001A.
  • the distance information measured by the first distance measuring device 201 and the second distance measuring device 202 is on the traveling road surface 1001 having no inclination shown in FIG. It will be the same as that measured. Accordingly, the distance to the car stop 1002, the car stop angle, and the car stop shape 1002b can be accurately estimated even when the vehicle travels on the inclined road surface 1001A.
  • the inclination sensor determines the inclination by gravity. Therefore, when traveling on the traveling road surface 1001A having the inclination as shown in FIG. 15, the pitch vibration even when there is no pitch vibration. As a result, it is determined that there is noise, and accurate pitch vibration correction cannot be performed.
  • the pitch vibration correction device 51 uses the relative inclination angle ⁇ between the vehicle body horizontal surface H of the dump truck 1 and the traveling road surface 1001A, the pitch vibration correction device 51 can correct the pitch vibration regardless of the road surface inclination. Therefore, when traveling on a traveling road surface where the inclination changes, the pitch vibration correction device 51 can correct not only the pitch vibration but also the change in the inclination of the road surface.
  • FIG. 16 is a schematic diagram for explaining the rear detection process when the dump truck 1 is traveling on a traveling road surface 1001B having a change in inclination.
  • the slope of the traveling road surface 1001B changes from the middle.
  • the first distance measuring device 201 measures the distance in the traveling direction, the relative relationship between the current dump truck 1 and the traveling road surface 1001B is obtained. Rather than the inclination, the relative inclination between the road surface in the future and the dump truck 1 is measured.
  • the pitch vibration correcting device 51 can correct not only the pitch vibration but also the change in the inclination of the road surface.
  • the scanning surfaces of the first distance measuring device 201 and the second distance measuring device 202 are crossed and installed on the dump truck 1 so that when the pitch vibration is generated in the dump truck 1 or on the road surface Even if the vehicle has an inclination, it is possible to reduce the influence of pitch vibration and accurately measure the distance to the car stopper 1002 and the shape and direction of the car stopper 1002 (the inclination angle and the width direction shape of the car stopper 1002).
  • the dump truck 1 can be guided to the car stop 1002 by using the distance to the car stop 1002 accurately measured and the shape and direction of the car stop 1002. Thereby, it can guide
  • the work machine is not limited to a dump truck, but may be a dozer, a wheel loader, or a hydraulic excavator.
  • a scanner may be attached to the rear of these work machines to detect the shape of a rear obstacle.
  • the scanner may be installed in front, left, and right of the work machine to detect the shapes of the front obstacle, the left obstacle, and the right obstacle.
  • the display image generation device 103 and the earthing place entry determination device 105 are only examples of the output destination of the contact distance calculation device 101, and are other devices such as a so-called unmanned dump truck in which the dump truck 1 autonomously travels.
  • the vehicle is output to an autonomous traveling control device that controls autonomous traveling, and the distance from the dump truck 1 to the car stop 1002 and the direction of the body of the dump truck 1 relative to the car stop 1002 (the direction of the body horizontal plane, the body longitudinal axis,
  • the autonomous traveling control device may be configured to execute calculations necessary for stopping, such as the direction of the left and right axis of the vehicle body.
  • the imaging device 102, the display video generation device 103, the video display device 104, the earthing place entry determination device 105, and the earthing place entry notification device 106 may not be provided.
  • the dump truck 1 may be provided with a contact determination device, and this contact determination device may be used as the output destination of the contact distance calculation device 101. Then, the contact determination device may perform contact determination with the vehicle stop 1002 and perform control for avoiding contact (interference) with the vehicle stop 1002.

Abstract

The objective of the present invention is to enable a conveying vehicle to be guided in such a way as to make it possible to stop in an appropriate soil releasing position when releasing soil. This working machine reversing support device is provided with a measuring device 200 which includes a first distance measuring device 201 and a second distance measuring device 202, wherein the first distance measuring device 201 and the second distance measuring device 202 are arranged such that a first scanning surface 21 of the first distance measuring device 201 and a second scanning surface 202 of the second distance measuring device 202 intersect at right angles, and the first scanning surface 21 is perpendicular to a vehicle body horizontal plane H and the second scanning surface 22 has an angle of depression relative to the vehicle body horizontal plane H, wherein, on the basis of a first distance measured by the first distance measuring device 201 and a second distance measured by the second distance measuring device 202, a distance to a vehicle stop 1002 positioned in the direction of travel of a working machine and the shape of the vehicle stop 1002 are detected, and the distance until the working machine comes into contact with the vehicle stop 1002 is calculated.

Description

作業機械の後退支援装置Work machine retreat support device
 本発明は、鉱山用ダンプトラック等の作業機械の後退走行を支援する後退支援技術に関する。特に、放土時の後退支援技術に関する。 [Technical Field] The present invention relates to a backward support technology for supporting backward running of a work machine such as a mining dump truck. In particular, it is related to the technology for assisting retreat in the earth.
 鉱山用ダンプトラック等の作業車両(運搬車両)の運転者が、停止位置を把握できるよう支援する技術がある。例えば、特許文献1には、「運搬車両の車体後端または後輪タイヤ後端を路面に投影した位置あるいは該投影した位置から後方へ所定距離離れた路面上の位置に、ベッセルの積荷を排土する排土作業時に基準となる排土作業時距離目安線あるいは排土作業時距離目安点を設定し、該排土作業時距離目安線あるいは排土作業時距離目安点を、表示部に表示される画像に、重ね合わせて表示する(要約抜粋)」運搬車両の後方視界表示システムが開示されている。 There is a technology that assists the driver of a work vehicle (carrying vehicle) such as a mine dump truck to grasp the stop position. For example, Patent Document 1 states that “the load of the vessel is discharged at a position where the rear end of the vehicle body or rear end of the rear tire is projected onto the road surface or a position on the road surface which is a predetermined distance away from the projected position. Set a reference distance guideline or a guideline distance for earthwork during the earthing work, and display the guideline for the earthwork distance or a guideline for the distance during the earthing operation on the display. A display system for displaying a rear view of a transport vehicle is disclosed.
特許第5380735号公報Japanese Patent No. 5380735
 しかしながら、特許文献1に開示の運搬車両の後方視界表示システムでは、車両を放土位置まで後退させる際に目安とする排土作業時距離目安線を、オペレータが画像上で設定する。このため、運搬車両が後退中に、この目安線を必ずしも正確に設定できるとは限らない。特に、鉱山のように走行路面や車止めの形状が頻繁に変化する環境では、排土作業時距離目安線を正確に設定することが難しく、その結果、適切な位置に誘導することが難しい。 However, in the rear view display system for a transporting vehicle disclosed in Patent Document 1, the operator sets on the image a guideline for distance of earthing work as a guideline when the vehicle is moved backward to the earthing position. For this reason, the reference line cannot always be set accurately while the transporting vehicle is moving backward. In particular, in an environment such as a mine where the traveling road surface and the shape of the car stop frequently change, it is difficult to accurately set the distance guide line for earth removal work, and as a result, it is difficult to guide to an appropriate position.
 本発明は、上記の状況に鑑みてなされたものであり、放土時に適切な放土位置に停車できるように、運搬車両を誘導可能な技術を提供することを目的とする。 The present invention has been made in view of the above situation, and an object of the present invention is to provide a technique capable of guiding a transport vehicle so that the vehicle can be stopped at an appropriate earthing position at the time of earthing.
 本発明は、作業機械の後退走行を支援する作業機械の後退支援装置であって、レーザを照射し、被検出体で反射された反射光を受光して前記被検出体までの距離を測定する第一距離計測装置及び第二距離計測装置を含み、前記第一距離計測装置及び前記第二距離計測装置は、前記第一距離計測装置のレーザ照射面からなる第一スキャン面及び前記第二距離計測装置のレーザ照射面からなる第二スキャン面を直交させ、前記作業機械の車体の前後軸及び左右軸を含む車体水平面に対して前記第一スキャン面が垂直、かつ前記車体水平面に対して前記第二スキャン面が俯角を有して前記作業機械に配置された計測装置を備え、前記第一距離計測装置で測定した第一距離及び前記第二距離計測装置で測定した第二距離に基づき前記作業機械の進行方向に位置する車止めまでの距離と前記車止めの形状とを検出し、前記作業機械が前記車止めに接触するまでの距離を算出することを特徴とする作業機械の後退支援装置ことを特徴とする。 The present invention relates to a backward support device for a work machine that supports the backward running of the work machine, and measures the distance to the detected object by irradiating a laser and receiving the reflected light reflected by the detected object. A first distance measuring device and a second distance measuring device, wherein the first distance measuring device and the second distance measuring device are a first scan surface and a second distance formed by a laser irradiation surface of the first distance measuring device. A second scan plane composed of a laser irradiation surface of the measuring device is orthogonalized, and the first scan plane is perpendicular to the horizontal plane of the vehicle body including the longitudinal axis and the horizontal axis of the vehicle body of the work machine, and the horizontal plane of the vehicle body The second scanning plane has a measuring device disposed on the work machine with a depression angle, and based on the first distance measured by the first distance measuring device and the second distance measured by the second distance measuring device. Progress of work machine Detects the distance to the wheel stop located direction and shape of the bollard, the working machine is characterized in that retraction support apparatus for a working machine and calculates the distance to the contact with the bollard.
 本発明によれば、放土時に適切な放土位置に停車できるように、運搬車両を誘導できる。上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, the transport vehicle can be guided so that the vehicle can be stopped at an appropriate earthing position when earthing. Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.
本発明の実施形態に係るダンプトラックの放土時の周辺環境を示す説明図。Explanatory drawing which shows the surrounding environment at the time of earthing of the dump truck which concerns on embodiment of this invention. 本発明の実施形態に係るダンプトラックの左側面図。The left view of the dump truck which concerns on embodiment of this invention. 本発明の実施形態に係るダンプトラックの後方斜視図。The rear perspective view of the dump truck concerning the embodiment of the present invention. 本発明の実施形態に係る後退支援装置の機能構成を示すブロック図。The block diagram which shows the function structure of the reverse assistance apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る接触距離算出装置の機能構成を示すブロック図。The block diagram which shows the function structure of the contact distance calculation apparatus which concerns on embodiment of this invention. 本発明の実施形態の映像表示装置に表示される映像例を示す図。The figure which shows the example of an image | video displayed on the video display apparatus of embodiment of this invention. 本発明の実施形態の映像表示装置に表示される他の映像例を示す図。The figure which shows the other example of a video displayed on the video display apparatus of embodiment of this invention. (a)は、本発明の実施形態に係る車止め検出処理を説明するための模式図、(b)は、本発明の実施形態に係る第一距離計測装置の計測結果をプロットした模式図(ダンプトラック左側面視)。(A) is the schematic diagram for demonstrating the vehicle stop detection process which concerns on embodiment of this invention, (b) is the schematic diagram (dump) which plotted the measurement result of the 1st distance measuring device which concerns on embodiment of this invention Track left side view). 本発明の実施形態に係る車止め位置推定処理のフローチャート。The flowchart of the vehicle stop position estimation process which concerns on embodiment of this invention. (a)は、本発明の実施形態に係る車止め幅方向形状検出処理のフローチャート、(b)は、本発明の実施形態に係る車止め幅方向形状検出処理におけるマッピングの説明図(ダンプトラックの上面視)。(A) is a flowchart of the vehicle stop width direction shape detection processing according to the embodiment of the present invention, (b) is an explanatory diagram of mapping in the vehicle stop width direction shape detection processing according to the embodiment of the present invention (top view of the dump truck) ). 本発明の実施形態に係る接触距離決定処理のフローチャート。The flowchart of the contact distance determination process which concerns on embodiment of this invention. 本発明の実施形態に係るダンプトラックにピッチ振動が発生している場合の車止め検出処理を説明するための模式図(ダンプトラックの左側面視)。The schematic diagram for demonstrating the vehicle stop detection process in case the pitch vibration has generate | occur | produced in the dump truck which concerns on embodiment of this invention (left side view of a dump truck). (a)は、本発明の実施形態に係る路面が平面である場合を示す図、(b)は、路面が第一距離計測装置の鉛直方向真下の地面を中心として、傾斜角θ分回転した状態を示す図。(A) is a figure which shows the case where the road surface which concerns on embodiment of this invention is a plane, (b) is the road surface rotated by inclination-angle (theta) centering | focusing on the ground right under the perpendicular direction of a 1st distance measuring device. The figure which shows a state. (a)は、本発明の実施形態に係る2本実施形態以上の直線近似の場合における傾斜角θを示す図、(b)は、本発明の実施形態に係る2本以上の曲線近似の場合における傾斜角θを示す図。(A) is a figure which shows inclination-angle (theta) in the case of the linear approximation of two or more embodiment which concerns on embodiment of this invention, (b) is the case of two or more curve approximation which concerns on embodiment of this invention. FIG. 本発明の実施形態に係るダンプトラックが傾斜を持つ走行路面上を走行している場合の後方検出処理を説明するための模式図(ダンプトラックの左側面視)。The schematic diagram for demonstrating the back detection process in case the dump truck which concerns on embodiment of this invention is drive | working on the running road surface with an inclination (left side view of a dump truck). 本発明の実施形態に係るダンプトラックが傾斜に変化がある走行路面を走行している場合の後方検出処理を説明するための模式図(ダンプトラックの左側面視)。The schematic diagram for demonstrating the back detection process in case the dump truck which concerns on embodiment of this invention is drive | working the driving | running | working road surface with a change in inclination (left side view of a dump truck).
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、実施形態を説明するための全図において、同一の機能を有する部材には同一または関連する符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In all the drawings for explaining the embodiments, members having the same function are denoted by the same or related reference numerals, and repeated description thereof is omitted.
 図1から図3を参照してダンプトラックの概略構成について説明する。図1は、本実施形態に係るダンプトラック1の放土時の周辺環境を示す説明図である。図2は、ダンプトラック1の左側面図である。図3は、ダンプトラック1の後方斜視図である。 The schematic configuration of the dump truck will be described with reference to FIGS. FIG. 1 is an explanatory diagram showing the surrounding environment when the dump truck 1 according to the present embodiment is released. FIG. 2 is a left side view of the dump truck 1. FIG. 3 is a rear perspective view of the dump truck 1.
 図1に示すように、ダンプトラック1は崖下にある放土場1003に放土する際、崖際に配置された車止め(Bund)1002に向かって走行路面1001上を後退走行する。ダンプトラック1は、車体フレーム2(図2参照)の前下部に右前輪3r及び左前輪3l(図2参照)を備え、後下部に右後輪4r及び左後輪4lを備える。更に車体フレーム2の後部にはリアアスクル7が備えられる。一方、車体フレーム2の前上部には運転席5(図2参照)が備えられ、後ろ上部にはベッセル6が備えられる。 As shown in FIG. 1, the dump truck 1 travels backward on the traveling road surface 1001 toward a vehicle stop (Bund) 1002 disposed on the cliff when the dump truck 1 is dumped on the dumping ground 1003 under the cliff. The dump truck 1 includes a right front wheel 3r and a left front wheel 3l (see FIG. 2) at a front lower part of a body frame 2 (see FIG. 2), and a right rear wheel 4r and a left rear wheel 4l at a rear lower part. Further, a rear axle 7 is provided at the rear portion of the vehicle body frame 2. On the other hand, a driver's seat 5 (see FIG. 2) is provided at the front upper part of the body frame 2, and a vessel 6 is provided at the rear upper part.
 更にダンプトラック1は、ダンプトラック1の後退走行を支援する後退支援装置100を備える。後退支援装置100は、ダンプトラック1の後方を撮影する撮影装置(カメラ)102と、車止め1002までの距離(接触距離)を算出する接触距離算出装置101と、表示映像生成装置103(図4参照)と、映像表示装置(モニタ)104(図4参照)と、放土場所進入判定装置105(図4参照)と、放土場所進入報知装置(ブザー、ランプ)106(図4参照)と、を含む。 Further, the dump truck 1 is provided with a backward support device 100 that supports the backward traveling of the dump truck 1. The backward assistance device 100 includes an imaging device (camera) 102 that captures the rear of the dump truck 1, a contact distance calculation device 101 that calculates a distance (contact distance) to the car stop 1002, and a display image generation device 103 (see FIG. 4). ), An image display device (monitor) 104 (see FIG. 4), an earthmoving place entry determination device 105 (see FIG. 4), an earthing place entry notification device (buzzer, lamp) 106 (see FIG. 4), including.
 映像表示装置104及び放土場所進入報知装置106は、運転席5に配置される。 The video display device 104 and the earthing place entry notification device 106 are arranged in the driver's seat 5.
 接触距離算出装置101は、ダンプトラック1の後方を走査して車止め形状を蓄積するとともに、ダンプトラック1が車止め1002に接触するまでの距離(接触距離)を算出する。接触距離算出装置101は、複数のレーザスキャナを含む計測装置(スキャナ)200と、ダンプトラック1の自己位置を検出する自己位置推定装置300と、計測装置200からのセンサ出力及び自己位置推定装置300からの自己位置を基に車止め1002を検出する車止め検出装置10と、検出した車止め1002にダンプトラック1を誘導する情報を算出する車止め誘導装置60(図5参照)とを含む。 The contact distance calculation device 101 scans the back of the dump truck 1 to accumulate the car stop shape and calculates the distance (contact distance) until the dump truck 1 contacts the car stop 1002. The contact distance calculation device 101 includes a measurement device (scanner) 200 including a plurality of laser scanners, a self-position estimation device 300 that detects the self-position of the dump truck 1, a sensor output from the measurement device 200, and a self-position estimation device 300. The vehicle stop detection device 10 that detects the vehicle stop 1002 based on the self-position from the vehicle and the vehicle stop guidance device 60 that calculates information for guiding the dump truck 1 to the detected vehicle stop 1002 (see FIG. 5).
 以下の説明において、後退支援装置100が動作を始めた時のダンプトラック1の位置を原点とし、後退支援装置100が動作を始めた瞬間の進行方向をy軸とし、ダンプトラック1の車体高さ軸をz軸とし、y軸及びz軸の2軸に直交する軸をx軸とする直交座標系400を用いる。 In the following description, the position of the dump truck 1 when the backward support device 100 starts operating is the origin, the traveling direction at the moment when the backward support device 100 starts operating is the y axis, and the vehicle body height of the dump truck 1 is An orthogonal coordinate system 400 is used in which the axis is the z axis and the axis orthogonal to the two axes of the y axis and the z axis is the x axis.
 計測装置200は、第一距離計測装置201及び第二距離計測装置202を含んで構成される。計測装置200は、ダンプトラック1の車体後方、より詳しくはリアアスクル7より上かつベッセル6より下で、左後輪4l及び右後輪4rの間に設置される。第一距離計測装置201及び第二距離計測装置202は、同じ高さに配置される必要はなく、また左右対称でなくてもよい。 The measuring device 200 includes a first distance measuring device 201 and a second distance measuring device 202. The measuring apparatus 200 is installed between the left rear wheel 4l and the right rear wheel 4r at the rear of the dump truck 1, more specifically, above the rear axle 7 and below the vessel 6. The first distance measuring device 201 and the second distance measuring device 202 do not need to be arranged at the same height and may not be symmetrical.
 第一距離計測装置201及び第二距離計測装置202は、例えばレーザ光を扇状に照射し、被検出体からの反射光を受光して被検出体までの距離と方向を検出するレーザスキャナ(レーザレーダ)である。第一距離計測装置201及び第二距離計測装置202は、第二距離計測装置202のレーザ照射面(以下「第二スキャン面」という)22と第一距離計測装置201のレーザ照射面(以下「第一スキャン面」という)21とが直交するよう配置される。なおここでいう直交は、厳密に第一スキャン面21及び第二スキャン面22の法線ベクトルが垂直となる場合に限定されず、第一距離計測装置201が検出した被検出体と同じ被検出体の幅方向の形状が検出できる向きに第二スキャン面22が向くように、第一距離計測装置201及び第二距離計測装置202が配置されている場合も含む。 The first distance measuring device 201 and the second distance measuring device 202 are, for example, a laser scanner (laser) that irradiates a laser beam in a fan shape, receives reflected light from the detected object, and detects the distance and direction to the detected object. Radar). The first distance measuring device 201 and the second distance measuring device 202 include a laser irradiation surface (hereinafter referred to as “second scan surface”) 22 of the second distance measuring device 202 and a laser irradiation surface (hereinafter referred to as “second scanning surface”) of the first distance measuring device 201. 21) (referred to as “first scan plane”). Note that the orthogonality is not limited to the case where the normal vectors of the first scan plane 21 and the second scan plane 22 are strictly perpendicular, but the same detected object as the detected object detected by the first distance measuring device 201. This includes the case where the first distance measuring device 201 and the second distance measuring device 202 are arranged so that the second scan surface 22 faces in a direction in which the shape in the width direction of the body can be detected.
 より詳しくは、本実施形態では、第一スキャン面21が車体フレーム2の前後軸及び左右軸を含む車体水平面Hに対して少なくとも垂直下向きから車体後方に向かって車体水平面Hと平行な方向までを覆うように第一距離計測装置201がダンプトラック1に設置される。 More specifically, in the present embodiment, the first scanning surface 21 extends at least vertically downward from the vehicle body horizontal plane H including the front and rear axes and the left and right axes of the vehicle body frame 2 to the direction parallel to the vehicle body horizontal plane H toward the rear of the vehicle body. The first distance measuring device 201 is installed on the dump truck 1 so as to cover it.
 第二距離計測装置202は、走行路面1001が平坦である時に、第二スキャン面22と走行路面1001とが交差する位置P1と、左後輪4l及び右後輪4rの最後端を走行路面1001に投影した位置P2との距離D1が、ダンプトラック1の最大後退速度の制動距離以上となるよう、車体水平面Hに対して設置俯角α(図2)を持つようにダンプトラック1に設置される。このように設置することにより、最大後退速度で後退しても車止め1002に接触することなく制動が可能である。 When the traveling road surface 1001 is flat, the second distance measuring device 202 uses a position P1 where the second scanning surface 22 and the traveling road surface 1001 intersect, and the rear end of the left rear wheel 4l and the right rear wheel 4r as the traveling road surface 1001. Is installed on the dump truck 1 so as to have an installation angle α (FIG. 2) with respect to the horizontal plane H of the vehicle body so that the distance D1 to the position P2 projected onto the vehicle is equal to or greater than the braking distance of the maximum reverse speed of the dump truck 1. . By installing in this way, braking is possible without contacting the vehicle stop 1002 even if the vehicle moves backward at the maximum reverse speed.
 また第二距離計測装置202は、第二距離計測装置202の検出距離と第二距離計測装置202の車体水平面Hに対する設置俯角αと、第二スキャン面22に対するダンプトラック1の遮蔽によって決まる、走行路面1001と第二スキャン面22との交線の長さD2(図3参照)がダンプトラック1の車輪幅(外幅)よりも長くなるような位置に設置される。このように設置することにより、ダンプトラック1の車輪が通過する領域を前もってスキャンすることが可能である。 The second distance measuring device 202 is determined by the detection distance of the second distance measuring device 202, the installation depression angle α of the second distance measuring device 202 with respect to the vehicle body horizontal plane H, and the shielding of the dump truck 1 with respect to the second scan surface 22. It is installed at a position where the length D2 (see FIG. 3) of the intersection line between the road surface 1001 and the second scan surface 22 is longer than the wheel width (outer width) of the dump truck 1. By installing in this way, it is possible to scan in advance the region through which the wheels of the dump truck 1 pass.
 なお第一距離計測装置201及び第二距離計測装置202は1つずつ備える構成に限定されず、各計測装置が複数のレーザスキャナを用いて構成されてもよい。また第一距離計測装置201に対して第一スキャン面21は一つに限定されず複数あってもよい。同様に第二距離計測装置202に対して第二スキャン面22は一つに限定されず複数あってもよい。 Note that the first distance measuring device 201 and the second distance measuring device 202 are not limited to the configuration provided one by one, and each measuring device may be configured using a plurality of laser scanners. Further, the first scanning surface 21 is not limited to one for the first distance measuring device 201, and a plurality of first scanning surfaces 21 may be provided. Similarly, the second scanning surface 22 is not limited to one for the second distance measuring device 202 and may be plural.
 撮影装置102は、例えばダンプトラック1の後方の映像を取得するカメラである。撮影装置102は、ダンプトラック1の車体後方、より詳しくは計測装置200より上かつベッセル6より下で、左後輪4l及び右後輪4rの間に、ダンプトラック1の後方の、第一スキャン面21及び第二スキャン面22を視野範囲に含んで設置される。 The photographing apparatus 102 is a camera that acquires an image behind the dump truck 1, for example. The imaging device 102 is a first scan behind the dump truck 1, more specifically above the measuring device 200 and below the vessel 6, between the left rear wheel 4 l and the right rear wheel 4 r. The surface 21 and the second scanning surface 22 are installed so as to be included in the visual field range.
 ダンプトラック1の車両座標系における視野範囲の各位置と画素位置とは予め対応づけて表示映像生成装置103がアクセス可能なROM等のメモリに記憶される。ダンプトラック1の車両座標系は、ダンプトラック1の重心を原点とし、車体水平面上の車体前後軸方向をy軸、左右軸方向をx軸、車体水平面に直交する方向をz軸方向とする座標系である。 Each position in the visual field range in the vehicle coordinate system of the dump truck 1 and the pixel position are associated with each other in advance and stored in a memory such as a ROM that can be accessed by the display image generation device 103. The vehicle coordinate system of the dump truck 1 is a coordinate whose origin is the center of gravity of the dump truck 1, the vehicle longitudinal axis direction on the horizontal plane of the vehicle body is the y axis, the horizontal axis direction is the x axis, and the direction perpendicular to the horizontal plane of the vehicle body is the z axis direction. It is a system.
 図4は後退支援装置100の、図5は接触距離算出装置101の、其々機能構成を示すブロック図である。 FIG. 4 is a block diagram showing the functional configuration of the backward support device 100 and FIG. 5 is the functional configuration of the contact distance calculation device 101, respectively.
 自己位置推定装置300は、ダンプトラック1が備える車輪速計測装置(車輪速センサ)301及び操舵角計測装置(ヨーレートセンサ、旋回角速度センサ)302の其々に接続され、車輪速計測装置301から車輪回転速度を取得し、操舵角計測装置302からダンプトラック1の旋回角速度の計測結果を取得する。そして自己位置推定装置300は、例えばデットレコニング処理を実行することにより、ダンプトラック1の速度、角速度、及び既述の直交座標系400(図1参照)の原点からの位置及び姿勢を算出する。 The self-position estimating device 300 is connected to each of a wheel speed measuring device (wheel speed sensor) 301 and a steering angle measuring device (yaw rate sensor, turning angular velocity sensor) 302 provided in the dump truck 1. The rotational speed is acquired, and the measurement result of the turning angular speed of the dump truck 1 is acquired from the steering angle measuring device 302. Then, the self-position estimation apparatus 300 calculates the speed and angular velocity of the dump truck 1 and the position and orientation from the origin of the aforementioned orthogonal coordinate system 400 (see FIG. 1) by executing, for example, dead reckoning processing.
 なお、車体速度を計測する目的で、車輪速計測装置301に代わりIMU(慣性計測装置)を、旋回角速度を推定する目的で操舵角計測装置302として、ヨーレートセンサに代わり操舵角センサを用いてもよい。また、直交座標系400の原点からの位置、姿勢を計測する目的で、自己位置推定装置300に代わり、GPS(全地球測位システム)と地磁気センサを用いてもよい。 It should be noted that an IMU (inertia measurement device) may be used instead of the wheel speed measurement device 301 for the purpose of measuring the vehicle body speed, and a steering angle sensor 302 may be used instead of the yaw rate sensor as the steering angle measurement device 302 for the purpose of estimating the turning angular velocity. Good. Further, for the purpose of measuring the position and orientation from the origin of the orthogonal coordinate system 400, a GPS (Global Positioning System) and a geomagnetic sensor may be used instead of the self-position estimation apparatus 300.
 車止め検出装置10は、車止め1002の位置を推定する第一車止め検出装置40及び車止め1002の幅方向の形状を推定する第二車止め検出装置50を含む。また車止め誘導装置60は、車止め誘導判断装置61及び車体形状記憶装置62を含む。 The vehicle stop detection device 10 includes a first vehicle stop detection device 40 that estimates the position of the vehicle stop 1002 and a second vehicle stop detection device 50 that estimates the shape of the vehicle stop 1002 in the width direction. The vehicle stop guidance device 60 includes a vehicle stop guidance determination device 61 and a vehicle body shape storage device 62.
 第一車止め検出装置40は、路面推定装置41及び車止め推定装置42を含む。既述の第一距離計測装置201の出力は、路面推定装置41及び車止め推定装置42の其々の入力に接続される。路面推定装置41の出力は、車止め推定装置42及び後述するピッチ振動補正装置51の入力に接続される。車止め推定装置42の入力には、第一距離計測装置201の出力が更に接続される。 The first vehicle stop detection device 40 includes a road surface estimation device 41 and a vehicle stop estimation device 42. The output of the first distance measuring device 201 described above is connected to respective inputs of the road surface estimating device 41 and the car stop estimating device 42. The output of the road surface estimation device 41 is connected to the input of a vehicle stop estimation device 42 and a pitch vibration correction device 51 described later. The output of the first distance measuring device 201 is further connected to the input of the car stop estimating device 42.
 第一距離計測装置201が出力する第一距離情報R1i(i:第一距離計測装置201におけるレーザ照射角度φを示し、例えば-45≦i≦225、後述する第二距離情報R2iも同様)には、測定点及び測定点までの距離が含まれる。 First distance information R1i output from the first distance measuring device 201 (i: indicates the laser irradiation angle φ in the first distance measuring device 201, for example, −45 ≦ i ≦ 225, and the second distance information R2i described later is also the same). Includes a measurement point and a distance to the measurement point.
 路面推定装置41は、第一距離情報R1iの内、路面と推定される測定点及び距離を示す距離情報を抽出し、路面線を演算する。そして車体フレーム2の前後軸及び左右軸を含む車体水平面Hに対する路面線の傾斜角θ(図12参照)を演算し、車体水平面Hに対する路面の傾きを算出する。傾斜角θをピッチ角θともいう。 The road surface estimation device 41 extracts the distance information indicating the measurement point and distance estimated as the road surface from the first distance information R1i, and calculates the road surface line. Then, the inclination angle θ (see FIG. 12) of the road surface line with respect to the vehicle body horizontal plane H including the front and rear axes and the left and right axes of the vehicle body frame 2 is calculated, and the road surface inclination with respect to the vehicle body horizontal plane H is calculated. The inclination angle θ is also referred to as a pitch angle θ.
 車止め推定装置42は、第一距離計測装置201が計測した第一距離情報R1iの内、車止め1002と推定されるものの距離情報を抽出し、路面及び車止め1002の交点と、路面に対する車止め1002の傾斜を算出する。 The vehicle stop estimation device 42 extracts distance information of what is estimated to be the vehicle stop 1002 from the first distance information R1i measured by the first distance measurement device 201, the intersection of the road surface and the vehicle stop 1002, and the inclination of the vehicle stop 1002 with respect to the road surface. Is calculated.
 第二車止め検出装置50は、ピッチ振動補正装置51、車止め形状推定装置52、及び車止め形状記憶装置53を含む。ピッチ振動補正装置51の入力は、第二距離計測装置202及び路面推定装置41の其々の出力に接続される。ピッチ振動補正装置51の出力は車止め形状推定装置52の入力に接続される。車止め形状推定装置52の入力は、更に自己位置推定装置300の出力に接続される。車止め形状記憶装置53は、車止め形状推定装置52及び後述する車止め誘導判断装置61に接続される。 The second vehicle stop detection device 50 includes a pitch vibration correction device 51, a vehicle stop shape estimation device 52, and a vehicle stop shape storage device 53. The input of the pitch vibration correcting device 51 is connected to the respective outputs of the second distance measuring device 202 and the road surface estimating device 41. The output of the pitch vibration correcting device 51 is connected to the input of the vehicle stop shape estimating device 52. The input of the car stopper shape estimation device 52 is further connected to the output of the self-position estimation device 300. The vehicle stop shape storage device 53 is connected to a vehicle stop shape estimation device 52 and a vehicle stop guidance determination device 61 described later.
 ピッチ振動補正装置51は、路面推定装置41が推定した車体水平面Hに対する路面の傾斜角θに基づいて、第二距離計測装置202が計測した第二距離情報R2iから、ピッチ振動による影響を取り除くための補正処理を実行する。 The pitch vibration correcting device 51 removes the influence of pitch vibration from the second distance information R2i measured by the second distance measuring device 202 based on the inclination angle θ of the road surface with respect to the vehicle body horizontal plane H estimated by the road surface estimating device 41. The correction process is executed.
 車止め形状推定装置52は、ピッチ振動補正装置51が補正した第二距離情報R2iと自己位置推定装置300が推定したダンプトラック1の位置及び姿勢に基づいて、一般的なSLAM(Simultaneous Localization and Mapping)等のマッピング方法によって、ダンプトラック1の進行方向の地形を車止め1002の車幅方向の形状として演算する。 Based on the second distance information R2i corrected by the pitch vibration correcting device 51 and the position and posture of the dump truck 1 estimated by the self-position estimating device 300, the car stop shape estimating device 52 is a general SLAM (Simultaneous Localization and Mapping). The topography in the traveling direction of the dump truck 1 is calculated as the shape of the vehicle stop 1002 in the vehicle width direction by a mapping method such as the above.
 車止め形状記憶装置53は、車止め形状推定装置52が演算した車止め1002の車幅方向の形状を示す幅方向形状情報を蓄積する。車止め形状推定装置52はより高度に幅方向形状情報を算出するために、車止め形状記憶装置53が蓄積した車止め形状情報を参照してもよい。蓄積された車止め形状情報は表示映像生成装置103も参照する。 The car stop shape storage device 53 stores width direction shape information indicating the shape of the car stop 1002 in the vehicle width direction calculated by the car stop shape estimation device 52. The vehicle stop shape estimation device 52 may refer to the vehicle stop shape information stored in the vehicle stop shape storage device 53 in order to calculate the width direction shape information more highly. The stored vehicle stop shape information also refers to the display video generation device 103.
 車止め誘導装置60は、車止め誘導判断装置61及び車体形状記憶装置62を含む。車止め誘導判断装置61の入力は、車止め推定装置42及び自己位置推定装置300の其々の出力に接続されると共に、車止め形状記憶装置53及び車体形状記憶装置62の其々にも接続される。車止め誘導判断装置61は、車止め形状記憶装置53及び車体形状記憶装置62に記憶された情報を必要に応じて読み出す。 The vehicle stop guidance device 60 includes a vehicle stop guidance determination device 61 and a vehicle body shape storage device 62. The input of the vehicle stop guidance determination device 61 is connected to the respective outputs of the vehicle stop estimation device 42 and the self-position estimation device 300, and is also connected to the vehicle stop shape storage device 53 and the vehicle body shape storage device 62, respectively. The vehicle stop guidance determination device 61 reads information stored in the vehicle stop shape storage device 53 and the vehicle body shape storage device 62 as necessary.
 車止め誘導判断装置61は、車止め推定装置42が推定した車止め1002までの距離及び車止め1002の傾斜と、車止め形状記憶装置53が記憶する車止め1002の幅方向形状と、自己位置推定装置300を介して取得する操舵角計測装置302が計測する旋回角速度と、車体形状記憶装置62が記憶する車体形状(車幅方向の大きさを含む)に基づいて、誘導の判断に必要な接触距離を算出する。車止め誘導判断装置61は、算出した接触距離を、放土場所進入判定装置105に出力する。 The vehicle stop guidance determination device 61 is connected to the distance to the vehicle stop 1002 estimated by the vehicle stop estimation device 42, the inclination of the vehicle stop 1002, the width direction shape of the vehicle stop 1002 stored in the vehicle stop shape storage device 53, and the self-position estimation device 300. Based on the obtained turning angular velocity measured by the steering angle measuring device 302 and the vehicle body shape (including the size in the vehicle width direction) stored by the vehicle body shape storage device 62, the contact distance required for the determination of guidance is calculated. The vehicle stop guidance determination device 61 outputs the calculated contact distance to the earthing place entry determination device 105.
 表示映像生成装置103は、撮影装置102が取得した映像に、車止め形状記憶装置53に蓄積された車止め形状を重畳し、表示映像を生成する。表示映像生成装置103の入力は、撮影装置102および接触距離算出装置101の其々の出力に接続され、表示映像生成装置103の出力は、映像表示装置104の入力に接続される。表示映像生成装置103は、表示映像上で車止め形状を識別可能な態様で重畳する。直交座標系400の値で表される車止め形状は、自己位置推定装置300が算出するダンプトラック1の自己位置及び姿勢を用い、画素位置に変換される。 The display video generation device 103 superimposes the vehicle stop shape stored in the vehicle stop shape storage device 53 on the video acquired by the photographing device 102 and generates a display video. The input of the display video generation device 103 is connected to the respective outputs of the photographing device 102 and the contact distance calculation device 101, and the output of the display video generation device 103 is connected to the input of the video display device 104. The display video generation device 103 superimposes the vehicle stop shape on the display video in an identifiable manner. The vehicle stop shape represented by the value of the orthogonal coordinate system 400 is converted into a pixel position using the self-position and posture of the dump truck 1 calculated by the self-position estimation apparatus 300.
 映像表示装置104は、表示映像生成装置103が生成した表示映像を表示する。映像表示装置104に表示される映像例410を図6に示す。ベッセル6、左後輪4l、右後輪4rを含むダンプトラック1の後方の映像に、車止め形状1002bが識別可能な態様で表示される。 The video display device 104 displays the display video generated by the display video generation device 103. An example image 410 displayed on the image display device 104 is shown in FIG. The vehicle stop shape 1002b is displayed in an identifiable manner on the image behind the dump truck 1 including the vessel 6, the left rear wheel 4l, and the right rear wheel 4r.
 なお、撮影装置102によりダンプトラック1の周囲の映像を取得可能な場合は、表示映像生成装置103は、撮影装置102が取得した映像から俯瞰画像を生成し、生成した俯瞰画像に車止め形状1002bを重畳して表示画像を生成してもよい。この場合の表示画像例420を図Xに示す。中心にダンプトラック1を表すアイコン画像1aが表示される。取得した映像を俯瞰画像に変換する際に用いる変換テーブル、アイコン画像1aは、後退支援装置100が備えるROM等の記憶装置に予め保持される。 When the video around the dump truck 1 can be acquired by the imaging device 102, the display video generation device 103 generates an overhead image from the video acquired by the imaging device 102, and adds a car stop shape 1002b to the generated overhead image. A display image may be generated by superimposing. A display image example 420 in this case is shown in FIG. An icon image 1a representing the dump truck 1 is displayed at the center. The conversion table and icon image 1a used when converting the acquired video into a bird's-eye view image are held in advance in a storage device such as a ROM provided in the backward support device 100.
 放土場所進入判定装置105は、車止め誘導判断装置61が算出した接触距離と車止め1002からの距離で予め定められた放土場所とから、ダンプトラック1が放土場所に進入したか否かを判定し、進入したと判定した場合、放土場所進入報知装置106に報知信号を出力する。放土場所進入判定装置105の入力は、接触距離算出装置101の出力に接続される。放土場所進入判定装置105の出力は、放土場所進入報知装置106の入力に接続される。 The earthing place entry determination device 105 determines whether or not the dump truck 1 has entered the earthing place from the contact distance calculated by the car stop guidance determination device 61 and the earthing place predetermined by the distance from the car stop 1002. If it is determined and it is determined that the vehicle has entered, a notification signal is output to the earthing place entry notification device 106. The input of the earthing place entry determination device 105 is connected to the output of the contact distance calculation device 101. The output of the earthing place entry determination device 105 is connected to the input of the earthing place entry notification device 106.
 放土場所進入報知装置106は、例えばブザー、ランプを含む。放土場所進入報知装置106は、放土場所進入判定装置105から報知信号を受信するとブザーから音を出力したり、ランプを点灯させたりする報知出力を行う。 The earthmoving place entry notification device 106 includes, for example, a buzzer and a lamp. The earthing place entry notification device 106 outputs a sound from the buzzer or turns on the lamp when receiving the notification signal from the earthing place entry determination device 105.
 車止め検出装置10と車止め誘導装置60と自己位置推定装置300と表示映像生成装置103と放土場所進入判定装置105とは、中央演算装置、記憶装置、入出力回路、及び通信回路を含むマイコン装置に実装され、ハードウェアと各装置の機能を実現するソフトウェアとの組み合わせにより構成してもよいし、各装置を演算回路により構成してもよい。 The vehicle stop detection device 10, the vehicle stop guidance device 60, the self-position estimation device 300, the display image generation device 103, and the earthing place entry determination device 105 are a microcomputer device including a central processing unit, a storage device, an input / output circuit, and a communication circuit. It may be configured by a combination of hardware and software that realizes the function of each device, or each device may be configured by an arithmetic circuit.
 次に図8(a)及び図8(b)を参照して計測装置200を用いてダンプトラック1の後方にある車止め1002を検出する処理について説明する。図8(a)は車止め検出装置10による車止め検出処理を説明するための模式図である。図8(b)は第一距離計測装置201の計測結果をプロットした模式図である。 Next, a process for detecting the vehicle stop 1002 behind the dump truck 1 using the measuring device 200 will be described with reference to FIGS. 8 (a) and 8 (b). FIG. 8A is a schematic diagram for explaining a vehicle stop detection process by the vehicle stop detection device 10. FIG. 8B is a schematic diagram in which the measurement results of the first distance measuring device 201 are plotted.
 図8(a)の点線1011は、第一車止め検出装置40が計測した被検出体(路面、車止め1002の両方を含む)までの距離を表す。また図8(a)の黒点1012は、第一距離計測装置201が計測した測定点を示す。図8(b)の黒点1013は、直交座標上での第一距離計測装置201が第一距離情報R1iを出力した位置を示す。 8A represents the distance to the detected object (including both the road surface and the vehicle stop 1002) measured by the first vehicle stop detection device 40. The dotted line 1011 in FIG. Further, a black point 1012 in FIG. 8A indicates a measurement point measured by the first distance measuring device 201. A black point 1013 in FIG. 8B indicates a position where the first distance measurement device 201 outputs the first distance information R1i on the orthogonal coordinates.
 ダンプトラック1が車止め1002にむかって後退を始めると、計測装置200であるスキャナが回転しながら-45°~-225°にレーザを照射してダンプトラック1の後輪最後端から車止め1002の傾斜面1002aまでに沿って並ぶ各点までの距離を算出し、第一距離情報R1iとして出力する。ダンプトラック1が車止め1002に接近するにつれて、第一スキャン面21と走行路面1001上との交線は短くなる。 When the dump truck 1 starts to move backward toward the car stop 1002, the scanner as the measuring device 200 rotates and irradiates the laser at −45 ° to −225 ° to incline the car stop 1002 from the rear end of the rear wheel of the dump truck 1. The distance to each point arranged along the surface 1002a is calculated and output as the first distance information R1i. As the dump truck 1 approaches the vehicle stop 1002, the line of intersection between the first scan surface 21 and the traveling road surface 1001 becomes shorter.
 図8(b)に示すように第一距離情報R1iを横軸が水平方向位置、縦軸が垂直方向高さを示す座標系にプロットすると、水平方向にほぼ平行な直線1021と、垂直方向高さが変化する直線1022とが得られる。この二直線の交点1023が第一距離情報R1iの変曲点であり、路面(troad)と車止め(tberm)とが接する点と推定できる。 As shown in FIG. 8B, when the first distance information R1i is plotted in a coordinate system in which the horizontal axis indicates the horizontal position and the vertical axis indicates the vertical height, the straight line 1021 substantially parallel to the horizontal direction and the vertical height A straight line 1022 having a variable length is obtained. The intersection 1023 of the two straight lines is an inflection point of the first distance information R1i, and can be estimated as a point where the road surface (t load ) and the vehicle stop (t berm ) are in contact with each other.
 また図8(a)ではダンプトラック1が車止め1002に十分接近しているので、第二スキャン面22は、走行路面1001ではなく傾斜面1002a上の幅方向に並ぶ各点までの距離を算出して第二距離情報R2iとして出力する。以後、ダンプトラック1が車止め1002に更に接近するにつれて、第二スキャン面22は傾斜面1002aの上端に向かって移動する。 In FIG. 8A, since the dump truck 1 is sufficiently close to the car stop 1002, the second scan surface 22 calculates the distance to each point aligned in the width direction on the inclined surface 1002a, not the traveling road surface 1001. And output as the second distance information R2i. Thereafter, as the dump truck 1 further approaches the vehicle stop 1002, the second scan surface 22 moves toward the upper end of the inclined surface 1002a.
 次に図9を参照して第一車止め検出装置40の動作について説明する。図9は車止め位置推定処理を示すフローチャートである。 Next, the operation of the first vehicle stop detection device 40 will be described with reference to FIG. FIG. 9 is a flowchart showing the vehicle stop position estimation process.
 路面推定装置41は、第一距離計測装置201が計測した第一距離情報R1iのうち、路面と推定される第一距離情報を抽出する(S101)。具体的には、前回の計測で路面推定装置41が推定した路面線troad_oldとの距離が第一閾値K1以下である第一距離情報R1iを抽出する。 The road surface estimation device 41 extracts first distance information estimated as a road surface from the first distance information R1i measured by the first distance measurement device 201 (S101). Specifically, the first distance information R1i whose distance from the road surface road_old estimated by the road surface estimation device 41 in the previous measurement is equal to or less than the first threshold value K1 is extracted.
 路面推定装置41は、路面として抽出した第一距離情報R1iの個数nを、予め定めた閾値(路面閾値Kn)と比較する。抽出した距離情報の個数nが路面閾値Kn未満である場合(S102/NO)、路面線troadを初期値ini_troadに設定し(S108)、後述するS104へ進む。 The road surface estimation device 41 compares the number n of the first distance information R1i extracted as the road surface with a predetermined threshold value (road surface threshold Kn). When the number n of the extracted distance information is less than the road threshold Kn (S102 / NO), the road line t road set to an initial value ini_t road (S108), the process proceeds to S104 to be described later.
 抽出した第一距離情報R1iの個数nが路面閾値Kn以上の場合(S102/YES)、路面推定装置41は、抽出された距離情報から路面線troadを算出する(S103)。ここでは、抽出された第一距離情報R1iを線形回帰によって近似することにより、路面線troadを算出する。線形回帰処理として、例えば、1次の最小二乗法により直線近似してもよいし、二本以上の直線近似、また曲線近似を用いてもよい。後述する車止め線の算出における線形回帰も同様である。路面推定装置41は、算出した路面線troadを車止め推定装置42に出力する。 When the number n of the extracted first distance information R1i is equal to or greater than the road surface threshold Kn (S102 / YES), the road surface estimation device 41 calculates the road surface road load from the extracted distance information (S103). Here, the road surface line road is calculated by approximating the extracted first distance information R1i by linear regression. As the linear regression processing, for example, linear approximation may be performed by a first-order least square method, or two or more linear approximations or curve approximations may be used. The same applies to linear regression in the calculation of the vehicle stop line described later. The road surface estimation device 41 outputs the calculated road surface road to the vehicle stop estimation device 42.
 車止め推定装置42は、第一距離計測装置201が計測した第一距離情報R1iから、車止め1002と推定される第一距離情報R1iを抽出する(S104)。ここでは、第一距離計測装置201が計測した第一距離情報R1iのうち、路面線troadからの距離が第二閾値K2以上であり、かつ、前回の計測で車止め推定装置42が推定した車止め線tberm_oldとの距離が第三閾値K3以下である第一距離情報R1iを抽出する。 The vehicle stop estimation device 42 extracts the first distance information R1i estimated as the vehicle stop 1002 from the first distance information R1i measured by the first distance measurement device 201 (S104). Here, in the first distance information R1i measured by the first distance measuring device 201, the distance from the road surface road is equal to or greater than the second threshold value K2, and the vehicle stop estimated by the vehicle stop estimation device 42 in the previous measurement. First distance information R1i whose distance from the line t berm_old is equal to or smaller than a third threshold value K3 is extracted.
 車止め推定装置42は、車止め1002として抽出した第一距離情報R1iの数mと、予め定めた閾値(車止め閾値Km)と比較する。そして、車止め1002として抽出した第一距離情報R1iの数mが車止め閾値Km未満である場合(S105/No)、処理を終了する。 The car stop estimation device 42 compares the number m of the first distance information R1i extracted as the car stop 1002 with a predetermined threshold (car stop threshold Km). If the number m of the first distance information R1i extracted as the car stop 1002 is less than the car stop threshold Km (S105 / No), the process ends.
 一方、車止め推定装置42は、抽出した第一距離情報R1iの数mが車止め閾値Km以上である場合(S105/YES)、抽出された第一距離情報R1iを線形回帰によって近似した車止め線tbermを算出する(S106)。 On the other hand, when the number m of the extracted first distance information R1i is equal to or greater than the vehicle stop threshold value Km (S105 / YES), the car stop estimation device 42 uses the linear stop to approximate the extracted first distance information R1i. Is calculated (S106).
 そして車止め推定装置42は、路面線troad及び車止め線tbermの交点から車止め1002までの距離Lb1を求めると共に、troad及びtbermの傾きから車止め傾斜角度Abを算出する(S107)。 The wheel stop estimating device 42, as well as determining the distance Lb1 from the road line t road and bollard line t intersection of berm to bollard 1002, calculates the wheel stopper inclination angle Ab from the slope of t road and t berm (S107).
 次に図10(a)及び図10(b)を参照して、第二車止め検出装置50の動作について説明する。図10(a)は、第二車止め検出装置50による、車止め幅方向形状検出処理を示すフローチャートである。図10(b)は、車止め幅方向形状検出処理におけるマッピングを説明するための模式図である。 Next, the operation of the second vehicle stop detection device 50 will be described with reference to FIGS. 10 (a) and 10 (b). FIG. 10A is a flowchart showing a vehicle stop width direction shape detection process by the second vehicle stop detection device 50. FIG.10 (b) is a schematic diagram for demonstrating the mapping in a vehicle stop width direction shape detection process.
 ピッチ振動補正装置51は、第二距離計測装置202の設置俯角α(図2参照)と、路面推定装置41が推定した路面に対する車体水平面Hの傾斜角θ(図12参照)とを次式(1)~(3)に適用し、第二距離情報R2iに対してピッチ振動を補正しつつ3次元変換を行う(S201)。
  xi=R2i×cos(φ) ・・・(1)
  yi=R2i×sin(φ)×cos(α+θ) ・・・(2)
  zi=R2i×sin(φ)×sin(α+θ) ・・・(3)
The pitch vibration correction device 51 calculates the installation depression angle α (see FIG. 2) of the second distance measuring device 202 and the inclination angle θ (see FIG. 12) of the vehicle body horizontal plane H with respect to the road surface estimated by the road surface estimation device 41 (see FIG. 12). Applied to 1) to (3), three-dimensional conversion is performed while correcting pitch vibration for the second distance information R2i (S201).
xi = R2i × cos (φ) (1)
yi = R2i × sin (φ) × cos (α + θ) (2)
zi = R2i * sin ([phi]) * sin ([alpha] + [theta]) (3)
 次に車止め形状推定装置52は、自己位置推定装置300が推定した自己位置に基づいて、ピッチ振動補正装置51が補正した第二距離情報R2iのマッピングを行う(S202)。そして車止め形状推定装置52は、車止め形状記憶装置53にマッピングした補正後の第二距離情報R2iからなる幅方向形状情報を書込み、マッピングした距離情報を蓄積する(S203)。 Next, the vehicle stop shape estimation device 52 performs mapping of the second distance information R2i corrected by the pitch vibration correction device 51 based on the self-position estimated by the self-position estimation device 300 (S202). Then, the vehicle stop shape estimation device 52 writes the width direction shape information including the corrected second distance information R2i mapped to the vehicle stop shape storage device 53, and accumulates the mapped distance information (S203).
 図10(b)において点群R2_cは現在の距離情報を示し、点群R2_pre1、点群R2_pre2は過去の幅方向形状情報を示す。なお、点群R2_pre1よりも、点群R2_pre2の方が更に前の幅方向形状情報である。 In FIG. 10B, point group R2_c indicates current distance information, and point group R2_pre1 and point group R2_pre2 indicate past width direction shape information. It should be noted that the point group R2_pre2 is the width direction shape information before the point group R2_pre1.
 次に図11を参照して車止め誘導装置60の動作について説明する。図11は、車止め誘導装置60による接触距離決定処理のフローチャートである。 Next, the operation of the vehicle stop guidance device 60 will be described with reference to FIG. FIG. 11 is a flowchart of the contact distance determination process performed by the vehicle stop guidance device 60.
 車止め誘導判断装置61は、車止め推定装置42が算出した車止め1002までの距離Lb1及び車止め傾斜角度Abを、それぞれ予め定めた第四閾値K4および第五閾値K5と比較する。 The vehicle stop guidance determination device 61 compares the distance Lb1 to the vehicle stop 1002 and the vehicle stop inclination angle Ab calculated by the vehicle stop estimation device 42 with predetermined fourth threshold value K4 and fifth threshold value K5, respectively.
 距離Lb1が第四閾値K4以下であり、かつ、車止め傾斜角度Abが第五閾値K5以上である場合(S301/Yes)、車止め誘導判断装置61は、予測される進行経路pを推定する(S302)。進行経路pは、操舵角計測装置302が計測し、自己位置推定装置300を介して取得した旋回角速度(ステアリング角)sに基づいて推定される。 When the distance Lb1 is equal to or smaller than the fourth threshold value K4 and the vehicle stop inclination angle Ab is equal to or greater than the fifth threshold value K5 (S301 / Yes), the vehicle stop guidance determination device 61 estimates the predicted travel path p (S302). ). The traveling path p is estimated based on the turning angular velocity (steering angle) s measured by the steering angle measuring device 302 and acquired through the self-position estimating device 300.
 次に車止め誘導判断装置61は、進行経路pと、第二車止め検出装置50が車止め形状記憶装置53に蓄積した幅方向形状情報Gと、車体形状記憶装置62が記憶する車体形状Dとにより、車止め1002までの距離Lb2を算出する(S303)。 Next, the vehicle stop guidance determination device 61 uses the traveling path p, the width direction shape information G stored in the vehicle stop shape storage device 53 by the second vehicle stop detection device 50, and the vehicle body shape D stored by the vehicle body shape storage device 62. A distance Lb2 to the car stop 1002 is calculated (S303).
 算出した距離Lb2が第六閾値K6以下の場合(S304/Yes)、距離Lb2を接触距離Lcとする(S305)。 When the calculated distance Lb2 is equal to or less than the sixth threshold value K6 (S304 / Yes), the distance Lb2 is set as the contact distance Lc (S305).
 算出した距離Lbが第六閾値K6より大きい場合(S304/No)、距離Lb1を接触距離Lcとする(S306)。 When the calculated distance Lb is larger than the sixth threshold K6 (S304 / No), the distance Lb1 is set as the contact distance Lc (S306).
 距離Lb1が第四閾値K4より大きいか、または、車止め傾斜角度Abが第五閾値K5未満である場合(S301/No)、第四閾値K4を接触距離Lcとする。 When the distance Lb1 is larger than the fourth threshold value K4 or the vehicle stop inclination angle Ab is smaller than the fifth threshold value K5 (S301 / No), the fourth threshold value K4 is set as the contact distance Lc.
 次にピッチ振動が発生している場合の車止め検出装置10による車止め検出について説明する。図12は、ダンプトラック1にピッチ振動が発生している場合の車止め検出処理を説明するための模式図である。図13(a)及び図13(b)は図12の状態において第一距離計測装置201が行った計測結果を示す図である。 Next, vehicle stop detection by the vehicle stop detection device 10 when pitch vibration is occurring will be described. FIG. 12 is a schematic diagram for explaining a vehicle stop detection process when pitch vibration is generated in the dump truck 1. FIG. 13A and FIG. 13B are diagrams illustrating measurement results performed by the first distance measuring device 201 in the state of FIG.
 図13(a)は路面が平面である場合を示す図である。第一距離計測装置201の鉛直方向真下の地面を中心として、路面が傾斜角θ=0、即ち路面が水平な場合を示す。第一距離計測装置201からの生データは、距離Lとレーザ照射角度φの極座標とであり、これを直交座標(x、y)に座標変換する。そして点群のうち、路面と推定されるものを抽出し、線形解析(最小二乗法)による直線近似を行い路面直線y=ax+bを算出する。このとき、傾斜角θはatan(a)となる。 FIG. 13A is a diagram showing a case where the road surface is a plane. The case where the road surface has an inclination angle θ = 0, that is, the road surface is horizontal, with the ground directly below the vertical direction of the first distance measuring device 201 as the center is shown. The raw data from the first distance measuring device 201 is the distance L and the polar coordinates of the laser irradiation angle φ, and these are coordinate-converted into orthogonal coordinates (x, y). Then, from the point group, what is estimated to be a road surface is extracted, and a straight line approximation by a linear analysis (least square method) is performed to calculate a road surface line y = ax + b. At this time, the inclination angle θ is atan (a).
 路面が理想的な平面な場合、路面直線はy=bであり、傾斜角θ=0となる。 When the road surface is an ideal plane, the road surface straight line is y = b and the inclination angle θ = 0.
 図13(b)は、路面が第一距離計測装置201の鉛直方向真下の地面を中心として、傾斜角θ分回転した状態を示す。また、第二距離計測装置202が計測する場所は、ピッチ振動がない場合を基準として第二距離計測装置202を中心としてθ回転した場所となる。 FIG. 13B shows a state in which the road surface is rotated by an inclination angle θ around the ground directly below the first distance measuring device 201 in the vertical direction. The place measured by the second distance measuring device 202 is a place rotated by θ around the second distance measuring device 202 with reference to a case where there is no pitch vibration.
 傾斜角θが発生しているとき、レーザ照射角度φは変わらないが距離Lは短く(または長く)なる。第一距離計測装置201からの生データの距離Lとレーザ照射角度φの極座標とを直交座標(x、y)に変換すると、図13(b)のように直交座標上にプロットされるxy座標に変換される。図13(a)と同様に直線近似を行い、路面直線y=ax+bを算出することで、傾斜角θを算出することができる。 When the tilt angle θ is generated, the laser irradiation angle φ is not changed, but the distance L is short (or long). When the distance L of the raw data from the first distance measuring device 201 and the polar coordinates of the laser irradiation angle φ are converted into orthogonal coordinates (x, y), xy coordinates plotted on the orthogonal coordinates as shown in FIG. Is converted to The inclination angle θ can be calculated by performing linear approximation in the same manner as in FIG. 13A and calculating the road surface line y = ax + b.
 図14(a)は、2本以上の直線近似の場合における傾斜角θを示す図である。2本以上の直線が求まった場合には、最初の直線、即ち、ダンプトラック1に近い側の直線の傾きaが傾斜角θとなる。 FIG. 14A is a diagram showing the inclination angle θ in the case of two or more linear approximations. When two or more straight lines are obtained, the inclination a of the first straight line, that is, the straight line closer to the dump truck 1 is the inclination angle θ.
 図14(b)は、2本以上曲線近似の場合における傾斜角θを示す図である。2本以上の曲線が求まった場合には、水平方向位置が0付近、すなわちダンプトラック1に近い位置での曲線の微分値の傾きが傾斜角θとなる。 FIG. 14B is a diagram showing the inclination angle θ in the case of approximating two or more curves. When two or more curves are obtained, the slope of the differential value of the curve at the position in the horizontal direction near 0, that is, the position close to the dump truck 1 is the inclination angle θ.
 図14(a)、図14(b)のいずれの場合でも、直線近似、曲線近似のいずれも、近似路面線の水平方向位置が0付近(ダンプトラック1付近)における、水平方向位置軸と路面との傾きをθとしていることが共通している。 14A and 14B, in both the linear approximation and the curve approximation, the horizontal position axis and the road surface when the horizontal position of the approximate road surface line is near 0 (near the dump truck 1). It is common that the inclination of is θ.
 路面推定装置41は、前回推定した路面線troad_oldを用いて路面を計測した第一距離情報R1iの抽出を行い路面を推定するので、ピッチ振動が発生している状況でもピッチ振動の影響を緩和して路面の傾きを推定することができる。また、車止め推定装置42も前回推定した車止め線tberm_oldを用いて車止め1002を計測した第一距離情報R1iの抽出を行い、車止め1002を推定することで、ピッチ振動が発生している状況でもピッチ振動の影響を緩和して車止め1002の位置及び傾斜を推定することができる。 Since the road surface estimation device 41 extracts the first distance information R1i obtained by measuring the road surface using the previously estimated road surface road_old_old and estimates the road surface, the influence of the pitch vibration is alleviated even in the situation where the pitch vibration is occurring. Thus, the slope of the road surface can be estimated. Further, the vehicle stop estimation device 42 also extracts the first distance information R1i obtained by measuring the vehicle stop 1002 using the previously estimated vehicle stop line t berm_old , and estimates the vehicle stop 1002 so that the pitch vibration is generated even in a situation where pitch vibration is occurring. The position and inclination of the vehicle stop 1002 can be estimated by reducing the influence of vibration.
 ピッチ振動補正装置51は、式(1)~式(3)の通り路面推定装置41が算出した車体水平面Hと路面の傾斜角θを用いて補正を行っているので、第二距離計測装置202のピッチ振動による俯角ずれを補正することができる。 Since the pitch vibration correction device 51 performs correction using the vehicle body horizontal plane H and the road surface inclination angle θ calculated by the road surface estimation device 41 according to the equations (1) to (3), the second distance measurement device 202 is used. It is possible to correct the depression angle caused by the pitch vibration.
 次に図15を参照して走行路面1001Aに傾きがある場合の車止め検出装置10の動作について説明する。図15はダンプトラック1が傾斜を持つ走行路面1001A上を走行している場合の後方検出処理を説明するための模式図である。 Next, the operation of the vehicle stop detection device 10 when the traveling road surface 1001A is inclined will be described with reference to FIG. FIG. 15 is a schematic diagram for explaining the backward detection process when the dump truck 1 is traveling on an inclined traveling road surface 1001A.
 図15において、ダンプトラック1にピッチ振動がない場合、第一距離計測装置201及び第二距離計測装置202が計測する距離情報は、図8(b)で示した傾きのない走行路面1001上で計測したものと同じになる。従って、傾斜を持つ走行路面1001Aを走行していても正確に車止め1002までの距離と車止め角度、及び車止め形状1002bを推定することができる。 In FIG. 15, when there is no pitch vibration in the dump truck 1, the distance information measured by the first distance measuring device 201 and the second distance measuring device 202 is on the traveling road surface 1001 having no inclination shown in FIG. It will be the same as that measured. Accordingly, the distance to the car stop 1002, the car stop angle, and the car stop shape 1002b can be accurately estimated even when the vehicle travels on the inclined road surface 1001A.
 ピッチ振動を傾斜センサ等によって計測する場合、傾斜センサは重力によって傾きを判定するため、図15で示したような傾斜を持つ走行路面1001A上を走行する場合は、ピッチ振動がない場合でもピッチ振動があると判定されてしまい、正確なピッチ振動補正が行えない。 When the pitch vibration is measured by an inclination sensor or the like, the inclination sensor determines the inclination by gravity. Therefore, when traveling on the traveling road surface 1001A having the inclination as shown in FIG. 15, the pitch vibration even when there is no pitch vibration. As a result, it is determined that there is noise, and accurate pitch vibration correction cannot be performed.
 一方で、ピッチ振動補正装置51はダンプトラック1の車体水平面Hと走行路面1001Aとの相対的な傾斜角θを利用するため、路面の傾きによらずピッチ振動を補正することができる。従って、傾斜が変化する走行路面上を走行している場合は、ピッチ振動補正装置51はピッチ振動だけでなく、路面の傾きの変化を補正することができる。 On the other hand, since the pitch vibration correction device 51 uses the relative inclination angle θ between the vehicle body horizontal surface H of the dump truck 1 and the traveling road surface 1001A, the pitch vibration correction device 51 can correct the pitch vibration regardless of the road surface inclination. Therefore, when traveling on a traveling road surface where the inclination changes, the pitch vibration correction device 51 can correct not only the pitch vibration but also the change in the inclination of the road surface.
 次に図16を参照して走行路面1001Bの傾斜に変化がある場合の車止め検出装置10の動作について説明する。図16はダンプトラック1が傾斜に変化のある走行路面1001B上を走行している場合の後方検出処理を説明するための模式図である。 Next, the operation of the vehicle stop detection device 10 when there is a change in the inclination of the traveling road surface 1001B will be described with reference to FIG. FIG. 16 is a schematic diagram for explaining the rear detection process when the dump truck 1 is traveling on a traveling road surface 1001B having a change in inclination.
 図16では、走行路面1001Bの傾きが途中から変化しているが、第一距離計測装置201は、進行方向の距離を計測しているため、現在のダンプトラック1と走行路面1001Bの相対的な傾きではなく、今後走行する走行路面とダンプトラック1との相対的な傾きを計測している。 In FIG. 16, the slope of the traveling road surface 1001B changes from the middle. However, since the first distance measuring device 201 measures the distance in the traveling direction, the relative relationship between the current dump truck 1 and the traveling road surface 1001B is obtained. Rather than the inclination, the relative inclination between the road surface in the future and the dump truck 1 is measured.
 従って、傾斜の変化する走行路面1001B上を走行している場合は、ピッチ振動補正装置51は、ピッチ振動だけでなく、路面の傾きの変化を補正することができる。 Therefore, when traveling on the traveling road surface 1001B where the inclination changes, the pitch vibration correcting device 51 can correct not only the pitch vibration but also the change in the inclination of the road surface.
 以上説明したように、第一距離計測装置201及び第二距離計測装置202のスキャン面を交差させてダンプトラック1に設置することで、ダンプトラック1にピッチ振動が発生しているときや走行路面に傾斜がある場合でもピッチ振動による影響を緩和して車止め1002までの距離と車止め1002の形状、向き(車止め1002の傾斜角や幅方向の形状)を精度よく計測することができる。本実施形態によれば、精度よく計測した車止め1002までの距離と車止め1002の形状、向きとを用いてダンプトラック1を車止め1002までの誘導できる。これにより、放土時に適切な放土位置に停車できるように誘導することができる。 As described above, the scanning surfaces of the first distance measuring device 201 and the second distance measuring device 202 are crossed and installed on the dump truck 1 so that when the pitch vibration is generated in the dump truck 1 or on the road surface Even if the vehicle has an inclination, it is possible to reduce the influence of pitch vibration and accurately measure the distance to the car stopper 1002 and the shape and direction of the car stopper 1002 (the inclination angle and the width direction shape of the car stopper 1002). According to the present embodiment, the dump truck 1 can be guided to the car stop 1002 by using the distance to the car stop 1002 accurately measured and the shape and direction of the car stop 1002. Thereby, it can guide | invade so that it can stop at an appropriate earthing position at the time of earthing.
 上記実施形態は本発明を限定するものではなく、本発明の趣旨を逸脱しない範囲での変更態様は本発明に含まれる。例えば作業機械はダンプトラックに限らず、ドーザー、ホイールローダ、油圧ショベルでもよく、これらの作業機械の後方にスキャナを取り付けて後方障害物の形状検出を行ってもよい。また、後方障害物に限らず、スキャナを作業機械の前、左、右に設置し、前方障害物、左障害物、右障害物の形状検出を行ってもよい。 The above embodiments do not limit the present invention, and modifications within a range not departing from the gist of the present invention are included in the present invention. For example, the work machine is not limited to a dump truck, but may be a dozer, a wheel loader, or a hydraulic excavator. A scanner may be attached to the rear of these work machines to detect the shape of a rear obstacle. In addition to the rear obstacles, the scanner may be installed in front, left, and right of the work machine to detect the shapes of the front obstacle, the left obstacle, and the right obstacle.
 また、表示映像生成装置103および放土場所進入判定装置105は、接触距離算出装置101の出力先の一例に過ぎず、他の装置、例えば、ダンプトラック1が自律走行をする所謂無人ダンプトラックである場合には、自律走行を制御する自律走行制御装置に出力して、ダンプトラック1から車止め1002までの距離や車止め1002に対するダンプトラック1の車体の向き(車体水平面の向き、車体前後軸、また車体左右軸の向きでもよい)等、停車に必要な演算を自律走行制御装置が実行するように構成されてもよい。この場合、撮影装置102、表示映像生成装置103、映像表示装置104、放土場所進入判定装置105、放土場所進入報知装置106は備えなくてもよい。 The display image generation device 103 and the earthing place entry determination device 105 are only examples of the output destination of the contact distance calculation device 101, and are other devices such as a so-called unmanned dump truck in which the dump truck 1 autonomously travels. In some cases, the vehicle is output to an autonomous traveling control device that controls autonomous traveling, and the distance from the dump truck 1 to the car stop 1002 and the direction of the body of the dump truck 1 relative to the car stop 1002 (the direction of the body horizontal plane, the body longitudinal axis, The autonomous traveling control device may be configured to execute calculations necessary for stopping, such as the direction of the left and right axis of the vehicle body. In this case, the imaging device 102, the display video generation device 103, the video display device 104, the earthing place entry determination device 105, and the earthing place entry notification device 106 may not be provided.
 更に、ダンプトラック1に接触判定装置を備え、この接触判定装置を接触距離算出装置101の出力先としてもちいてもよい。そして、接触判定装置が車止め1002との接触判定を行い、車止め1002との接触(干渉)を回避するための制御を行ってもよい。 Furthermore, the dump truck 1 may be provided with a contact determination device, and this contact determination device may be used as the output destination of the contact distance calculation device 101. Then, the contact determination device may perform contact determination with the vehicle stop 1002 and perform control for avoiding contact (interference) with the vehicle stop 1002.
 1:ダンプトラック、1a:アイコン画像、2:車体フレーム、3l:左前輪、3r:右前輪、4l:左後輪、4r:右後輪、5:運転席、6:ベッセル、7:リアアスクル、
 100:後退支援装置、101:接触距離算出装置、102撮影装置、103:表示映像生成装置、104:映像表示装置、105:放土場所進入判定装置、106:放土場所進入報知装置、
 10:車止め検出装置、40:第一車止め検出装置、41:路面推定装置、42:車止め推定装置、50:第二車止め検出装置、51:ピッチ振動補正装置、52:車止め形状推定装置、53:車止め形状記憶装置、60:車止め誘導装置、61:車止め誘導判断装置、62:車体形状記憶装置、
 200:計測装置、201:第一距離計測装置、202:第二距離計測装置、21:第一スキャン面、22:第二スキャン面、
 300:自己位置推定装置、301:車輪速計測装置、302:操舵角計測装置、400:直交座標系、
 1001:走行路面、1001A:走行路面、1001B:走行路面、1002:車止め、1002a:傾斜面、1002b:車止め形状、1003:放土場、1011:点線、1012:黒点、1013:黒点、1023:交点
1: dump truck, 1a: icon image, 2: body frame, 3l: left front wheel, 3r: right front wheel, 4l: left rear wheel, 4r: right rear wheel, 5: driver's seat, 6: vessel, 7: rear axle ,
DESCRIPTION OF SYMBOLS 100: Back assistance apparatus, 101: Contact distance calculation apparatus, 102 imaging | photography apparatus, 103: Display image generation apparatus, 104: Image display apparatus, 105: Excavation place approach determination apparatus, 106: Excavation place approach notification apparatus,
10: Car stop detection device, 40: First vehicle stop detection device, 41: Road surface estimation device, 42: Car stop estimation device, 50: Second vehicle stop detection device, 51: Pitch vibration correction device, 52: Car stop shape estimation device, 53: Car stop shape storage device, 60: Car stop guidance device, 61: Car stop guidance determination device, 62: Car body shape storage device,
200: Measuring device 201: First distance measuring device 202: Second distance measuring device 21: First scanning surface 22: Second scanning surface
300: Self-position estimation device, 301: Wheel speed measurement device, 302: Steering angle measurement device, 400: Cartesian coordinate system,
1001: traveling road surface, 1001A: traveling road surface, 1001B: traveling road surface, 1002: car stop, 1002a: inclined surface, 1002b: car stop shape, 1003: earthmoving field, 1011: dotted line, 1012: black point, 1013: black point, 1023: intersection point

Claims (8)

  1.  作業機械の後退走行を支援する作業機械の後退支援装置であって、
     レーザを照射し、被検出体で反射された反射光を受光して前記被検出体までの距離を測定する第一距離計測装置及び第二距離計測装置を含み、前記第一距離計測装置及び前記第二距離計測装置は、前記第一距離計測装置のレーザ照射面からなる第一スキャン面及び前記第二距離計測装置のレーザ照射面からなる第二スキャン面を直交させ、前記作業機械の車体の前後軸及び左右軸を含む車体水平面に対して前記第一スキャン面が垂直、かつ前記車体水平面に対して前記第二スキャン面が俯角を有して前記作業機械に配置された計測装置を備え、
     前記第一距離計測装置で測定した第一距離及び前記第二距離計測装置で測定した第二距離に基づき前記作業機械の進行方向に位置する車止めまでの距離と前記車止めの形状とを検出し、前記作業機械が前記車止めに接触するまでの距離を算出することを特徴とする作業機械の後退支援装置。
    A backward support device for a work machine that supports the backward running of the work machine,
    A first distance measuring device and a second distance measuring device that irradiate a laser, receive reflected light reflected by the detected object, and measure the distance to the detected object, the first distance measuring device and the The second distance measuring device orthogonally crosses the first scan surface consisting of the laser irradiation surface of the first distance measuring device and the second scan surface consisting of the laser irradiation surface of the second distance measuring device, and A measuring device disposed on the work machine, wherein the first scan plane is perpendicular to a vehicle body horizontal plane including a front and rear axis and a left and right axis, and the second scan plane has a depression angle with respect to the vehicle body horizontal plane;
    Detecting the distance to the vehicle stop located in the traveling direction of the work machine and the shape of the vehicle stop based on the first distance measured by the first distance measurement device and the second distance measured by the second distance measurement device; A backward support device for a work machine, wherein a distance until the work machine comes into contact with the vehicle stop is calculated.
  2.  請求項1に記載の作業機械の後退支援装置であって、
     前記作業機械が動作を始めた時からの位置及び姿勢を自己位置として算出する自己位置推定装置と、
     前記第一距離を基に前記車体水平面に対する前記作業機械が走行する走行路面の傾きを算出する路面推定装置と、
     前記路面推定装置が算出した前記走行路面の傾きに基づいてピッチ振動を補正後の前記第二距離と、前記自己位置推定装置が算出した前記自己位置とに基づいて、前記作業機械の進行方向の地形を前記車止めの形状として推定する車止め形状推定装置と、
     前記車止め形状推定装置が推定した前記車止めの形状を蓄積する車止め形状記憶装置と、
     前記車止め形状記憶装置に蓄積された前記車止めの形状に基づいて、前記作業機械が前記車止めに接触するまでの距離を算出する車止め誘導装置と、をさらに備えることを特徴とする作業機械の後退支援装置。
    The work machine retreat support device according to claim 1,
    A self-position estimation device that calculates the position and orientation from when the work machine started to operate as a self-position;
    A road surface estimation device that calculates an inclination of a traveling road surface on which the work machine travels with respect to the vehicle body horizontal plane based on the first distance;
    Based on the second distance after correcting the pitch vibration based on the inclination of the traveling road surface calculated by the road surface estimation device and the self-position calculated by the self-position estimation device, the traveling direction of the work machine A vehicle stop shape estimating device for estimating the terrain as the shape of the vehicle stop;
    A vehicle stop shape storage device that accumulates the shape of the vehicle stop estimated by the vehicle stop shape estimation device;
    A backward support for the work machine, further comprising: a car stop guidance device that calculates a distance until the work machine contacts the car stop based on the shape of the car stop accumulated in the car stop shape storage device. apparatus.
  3.  請求項2に記載の作業機械の後退支援装置であって、
     前記第一距離と、前記路面推定装置が推定した前記走行路面の傾きとに基づいて、前記走行路面と前記車止めとの交点及び前記車止めの角度を推定する車止め推定装置をさらに備えることを特徴とする作業機械の後退支援装置。
    The work machine retreat support device according to claim 2,
    A vehicle stop estimation device for estimating an intersection between the travel road surface and the vehicle stop and an angle of the vehicle stop based on the first distance and the inclination of the travel road surface estimated by the road surface estimation device; Work equipment retreat support device.
  4.  請求項1に記載の作業機械の後退支援装置であって、
     前記第一距離計測装置及び前記第二距離計測装置は、それぞれ、照射面が1つまたは複数のレーザレーダであることを特徴とする作業機械の後退支援装置。
    The work machine retreat support device according to claim 1,
    The first distance measuring device and the second distance measuring device each have an irradiation surface of one or a plurality of laser radars.
  5.  請求項1に記載の作業機械の後退支援装置であって、
     前記第二距離計測装置の俯角は、前記作業機械が走行する走行路面と前記第二スキャン面とが交わる交線と、前記作業機械の後輪の最後端を前記走行路面に投影した点との距離が、前記作業機械の最大後退速度の制動距離以上になるよう設定されることを特徴とする作業機械の後退支援装置。
    The work machine retreat support device according to claim 1,
    The depression angle of the second distance measuring device is an intersection line between the traveling road surface on which the work machine travels and the second scan surface, and a point at which the rearmost end of the rear wheel of the work machine is projected onto the traveling road surface. A reverse assist device for a work machine, wherein the distance is set to be equal to or greater than a braking distance of the maximum reverse speed of the work machine.
  6.  請求項1に記載の作業機械の後退支援装置であって、
     前記第二距離計測装置は、前記第二スキャン面と前記作業機械が走行する走行路面との交線の長さが前記作業機械の車輪幅以上となるよう設置されることを特徴とする作業機械の後退支援装置。
    The work machine retreat support device according to claim 1,
    The second distance measuring device is installed such that a length of an intersection line between the second scan plane and a traveling road surface on which the working machine travels is equal to or greater than a wheel width of the working machine. Retreat support device.
  7.  請求項1に記載の作業機械の後退支援装置であって、
     前記作業機械の後方を撮影とする撮影装置と、
     前記撮影装置が取得した映像から表示映像を生成する表示映像生成装置と、
     生成された前記表示映像を表示する映像表示装置と、をさらに備え、
     前記表示映像生成装置は、前記撮影装置が取得した映像に検出された前記車止めの形状を識別可能な態様で重畳して前記表示映像を生成することを特徴とする作業機械の後退支援装置。
    The work machine retreat support device according to claim 1,
    A photographing device for photographing the rear of the work machine;
    A display video generation device that generates a display video from the video acquired by the imaging device;
    A video display device for displaying the generated display video,
    The display image generation device generates the display image by superimposing the detected shape of the vehicle stop on the image acquired by the photographing device in an identifiable manner.
  8.  請求項1に記載の作業機械の後退支援装置であって、
     前記作業機械が放土場所に進入した場合、報知信号を出力する放土場所進入判定装置と、
     前記報知信号を受信すると報知出力を行う放土場所進入報知装置と、をさらに備えることを特徴とする作業機械の後退支援装置。
    The work machine retreat support device according to claim 1,
    When the work machine enters the earthing place, the earthing place entry determination device that outputs a notification signal;
    An unloading place approach notifying device that outputs a notification when receiving the notification signal, further comprising a work machine retreat support device.
PCT/JP2019/008367 2018-03-30 2019-03-04 Working machine reversing support device WO2019188015A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-068808 2018-03-30
JP2018068808A JP6909752B2 (en) 2018-03-30 2018-03-30 Work machine retreat support device

Publications (1)

Publication Number Publication Date
WO2019188015A1 true WO2019188015A1 (en) 2019-10-03

Family

ID=68061324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008367 WO2019188015A1 (en) 2018-03-30 2019-03-04 Working machine reversing support device

Country Status (2)

Country Link
JP (1) JP6909752B2 (en)
WO (1) WO2019188015A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325755A (en) * 2021-11-26 2022-04-12 江苏徐工工程机械研究院有限公司 Retaining wall detection method and system suitable for automatic driving vehicle
CN114706094A (en) * 2022-06-07 2022-07-05 青岛慧拓智能机器有限公司 Unloading available state detection method and device for unloading point position and computer equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022067739A (en) * 2020-10-21 2022-05-09 株式会社小松製作所 Method and system for controlling work machine, and work machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229394A (en) * 2008-03-25 2009-10-08 Ihi Corp Apparatus and method for determining traveling area of mobile robot
JP2015081877A (en) * 2013-10-24 2015-04-27 日立建機株式会社 Reverse travelling support system
JP2015230551A (en) * 2014-06-04 2015-12-21 日立建機株式会社 Surrounding object detection system and transport vehicle
JP2017015409A (en) * 2015-06-26 2017-01-19 シャープ株式会社 Road surface detection device, mobile body, road surface detection method, and road surface detection program
JP2017030688A (en) * 2015-08-06 2017-02-09 日立建機株式会社 Periphery monitoring device of work machine
JP2018049573A (en) * 2016-09-23 2018-03-29 株式会社小松製作所 Management system of work vehicle and management method of work vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229394A (en) * 2008-03-25 2009-10-08 Ihi Corp Apparatus and method for determining traveling area of mobile robot
JP2015081877A (en) * 2013-10-24 2015-04-27 日立建機株式会社 Reverse travelling support system
JP2015230551A (en) * 2014-06-04 2015-12-21 日立建機株式会社 Surrounding object detection system and transport vehicle
JP2017015409A (en) * 2015-06-26 2017-01-19 シャープ株式会社 Road surface detection device, mobile body, road surface detection method, and road surface detection program
JP2017030688A (en) * 2015-08-06 2017-02-09 日立建機株式会社 Periphery monitoring device of work machine
JP2018049573A (en) * 2016-09-23 2018-03-29 株式会社小松製作所 Management system of work vehicle and management method of work vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325755A (en) * 2021-11-26 2022-04-12 江苏徐工工程机械研究院有限公司 Retaining wall detection method and system suitable for automatic driving vehicle
CN114706094A (en) * 2022-06-07 2022-07-05 青岛慧拓智能机器有限公司 Unloading available state detection method and device for unloading point position and computer equipment
CN114706094B (en) * 2022-06-07 2022-08-23 青岛慧拓智能机器有限公司 Unloading available state detection method and device for unloading point location and computer equipment

Also Published As

Publication number Publication date
JP2019178972A (en) 2019-10-17
JP6909752B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
US11292469B2 (en) Dump truck and reversing assistance device
JP6386794B2 (en) Transport vehicle
CN108139755B (en) Abnormality detection device for self-position estimation device, and vehicle
WO2018164203A1 (en) Scanner, working machine, and wheel stopper detecting device
JP6284741B2 (en) Retreat support device
WO2019188015A1 (en) Working machine reversing support device
GB2552282A (en) Vehicle control system
JP6718341B2 (en) Mine work machine and its rear monitoring method
AU2017239926B2 (en) Control system of transporter vehicle, transporter vehicle, and control method of transporter vehicle
KR20100075750A (en) Parking assist apparatus
JP2013159257A (en) Surrounding monitoring apparatus for transporter vehicle
WO2016121688A1 (en) Obstacle detection device for transport vehicle
JP2013052754A (en) Parking support device
JP2012023505A (en) Driving support device
JP2022045987A (en) Travel auxiliary device for work vehicle and work vehicle including the same
WO2022190484A1 (en) Container measurement system
JP2017058841A (en) Drive support device of vehicle and drive support method
US20230408289A1 (en) Guidance of a transport vehicle to a loading point
JP2018178878A (en) Industrial vehicle
JP4006319B2 (en) Vehicle travel control device
JP6886929B2 (en) Transport vehicle
JP2020067702A (en) Inclination detector and transport system
JPH10141954A (en) Device for detecting obstruction on track for moving body
JP6761845B2 (en) Dump truck control system and dump truck
WO2024005680A1 (en) Method, arrangement, and underground mining machine for autonomous routing to an unmapped location

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776829

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19776829

Country of ref document: EP

Kind code of ref document: A1