WO2019188014A1 - Sliding bearing and spherical sliding bearing - Google Patents

Sliding bearing and spherical sliding bearing Download PDF

Info

Publication number
WO2019188014A1
WO2019188014A1 PCT/JP2019/008365 JP2019008365W WO2019188014A1 WO 2019188014 A1 WO2019188014 A1 WO 2019188014A1 JP 2019008365 W JP2019008365 W JP 2019008365W WO 2019188014 A1 WO2019188014 A1 WO 2019188014A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion layer
plain bearing
titanium alloy
mass percent
spherical plain
Prior art date
Application number
PCT/JP2019/008365
Other languages
French (fr)
Japanese (ja)
Inventor
孟 壇
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019188014A1 publication Critical patent/WO2019188014A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics

Definitions

  • the present invention relates to a plain bearing and a spherical plain bearing. More specifically, the present invention relates to a titanium alloy slide bearing and a spherical slide bearing.
  • Titanium alloy has low wear resistance due to its low hardness compared to steel. Therefore, it is difficult to apply a titanium alloy to a machine part that requires wear resistance without performing a surface treatment.
  • Patent Document 1 a titanium alloy member described in International Publication No. 97/36018 (Patent Document 1) is known.
  • the titanium alloy member described in Patent Document 1 has a surface hardened layer on the surface.
  • the surface hardened layer has a first hardened layer on the surface of the titanium alloy member and a second hardened layer on the inner side of the titanium alloy member with respect to the first hardened layer.
  • first hardened layer 0.6 weight percent or more and 8.0 weight percent or less of nitrogen is solid-dissolved.
  • oxygen of 1.0 weight percent or more and 14.0 weight percent or less is dissolved.
  • second hardened layer 0.5 wt% or more and 14.0 wt% or less of oxygen is dissolved.
  • the hardness of the surface hardened layer is improved by dissolving nitrogen.
  • the hardness of the surface hardened layer increases, but the surface hardened layer becomes brittle.
  • the present invention has been made in view of the above-described problems of the prior art. More specifically, the present invention provides a plain bearing and a spherical plain bearing that can improve the hardness of the sliding surface while maintaining the toughness of the sliding surface.
  • the plain bearing according to one aspect of the present invention is made of a titanium alloy.
  • a plain bearing according to one embodiment of the present invention includes an oxygen diffusion layer on a sliding surface.
  • the nitrogen concentration in the oxygen diffusion layer is 0.5 mass percent or less.
  • the oxygen concentration in the oxygen diffusion layer is 0.6 mass percent or more and 8.0 mass percent or less on the sliding surface.
  • the sliding bearing according to one aspect of the present invention can improve the hardness of the sliding surface while maintaining the toughness of the sliding surface.
  • the hardness of the oxygen diffusion layer may be 480 Hv or more and 1200 Hv or less on the sliding surface. In this case, the hardness on the sliding surface can be improved while maintaining the toughness on the sliding surface.
  • the titanium alloy may be a 64 titanium alloy.
  • the hardness on the sliding surface can be improved while maintaining the toughness on the sliding surface.
  • the sliding bearing may be an aerospace sliding bearing.
  • a spherical plain bearing according to an aspect of the present invention includes an inner ring and an outer ring.
  • the inner ring and the outer ring are made of a titanium alloy.
  • At least one of the inner ring and the outer ring has an oxygen diffusion layer on the sliding surface.
  • the nitrogen concentration in the oxygen diffusion layer is 0.5 mass percent or less.
  • the oxygen concentration in the oxygen diffusion layer is 0.6 mass percent or more and 8.0 mass percent or less on the sliding surface.
  • the sliding bearing according to one aspect of the present invention can improve the hardness of the sliding surface while maintaining the toughness of the sliding surface.
  • the hardness of the oxygen diffusion layer may be 480 Hv or more and 1200 Hv or less on the sliding surface. In this case, the hardness on the sliding surface can be improved while maintaining the toughness on the sliding surface.
  • the titanium alloy may be a 64 titanium alloy.
  • the hardness on the sliding surface can be improved while maintaining the toughness on the sliding surface.
  • the above spherical plain bearing may further include a self-lubricating liner disposed between the inner ring and the outer ring. In this case, friction between the inner ring and the outer ring can be reduced.
  • the liner may be a woven fabric including at least one fiber selected from the group consisting of polytetrafluoroethylene fiber, aramid fiber, glass fiber, and polyester fiber. In this case, the friction between the inner ring and the outer ring can be further reduced.
  • the liner may be a molded body including at least one material selected from the group consisting of polytetrafluoroethylene, polyamide, polyimide, and polyphenylene sulfide. In this case, the friction between the inner ring and the outer ring can be further reduced.
  • the above spherical plain bearing may be an aerospace spherical plain bearing.
  • the sliding bearing according to one aspect of the present invention can improve the hardness of the sliding surface while maintaining the toughness of the sliding surface.
  • the spherical plain bearing according to one aspect of the present invention can improve the hardness of the sliding surface while maintaining the toughness of the sliding surface.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. It is an enlarged view in the area
  • 3 is a schematic graph showing the relationship between the oxygen concentration in the test piece 1 and the distance from the surface.
  • 3 is a schematic graph showing a relationship between an oxygen concentration in a test piece 2 and a distance from a surface.
  • FIG. 1 is a top view of a mechanical component according to the embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • the mechanical component according to the embodiment is a slide bearing 10.
  • the machine component according to the embodiment is not limited to this.
  • the slide bearing 10 is made of a titanium (Ti) alloy.
  • the titanium alloy constituting the slide bearing 10 is ASTM standard B348-13GR.
  • the Ti-6Al (aluminum) -4V (vanadium) alloy specified in 5 is preferable.
  • this Ti-6Al-4V alloy is referred to as a 64 titanium alloy.
  • the sliding bearing 10 is composed of a ring-shaped member.
  • the plain bearing 10 has an upper surface 10a, a bottom surface 10b, an inner peripheral surface 10c, and an outer peripheral surface 10d.
  • the bottom surface 10b is a surface opposite to the top surface 10a.
  • the outer peripheral surface 10d is a surface opposite to the inner peripheral surface 10c.
  • the top surface 10 a and the bottom surface 10 b are surfaces of the slide bearing 10 that are orthogonal to the central axis of the slide bearing 10.
  • the inner peripheral surface 10c and the outer peripheral surface 10d are connected to the upper surface 10a and the bottom surface 10b.
  • the distance between the inner peripheral surface 10c and the central axis is smaller than the distance between the outer peripheral surface 10d and the central axis.
  • the inner peripheral surface 10c constitutes a sliding surface (surface on the side in contact with the shaft) of the slide bearing 10.
  • FIG. 3 is an enlarged view of region III in FIG.
  • the plain bearing 10 has a diffusion layer 10e (oxygen diffusion layer).
  • the diffusion layer 10e is provided on the inner peripheral surface 10c.
  • the diffusion layer 10e has a depth D.
  • the depth D is a distance from the inner peripheral surface 10c in a direction orthogonal to the inner peripheral surface 10c.
  • the depth D is 0.05 mm or more.
  • the depth D is 0.2 mm or more.
  • the depth D is 0.25 mm or more.
  • the nitrogen concentration is 0.5 mass percent or less. That is, in the diffusion layer 10e, the nitrogen concentration may be 0.5 mass percent or less, and the diffusion layer 10e may not contain nitrogen. In the diffusion layer 10e, nitrogen is dissolved in the titanium alloy.
  • the oxygen concentration is 0.6 mass percent or more and 8.0 mass percent or less.
  • the oxygen concentration in the diffusion layer 10e on the inner peripheral surface 10c is set to 8.0 mass percent or less in consideration of the hardness and toughness required for a titanium alloy bearing.
  • the oxygen concentration is preferably 1.0 mass percent or more and 6.0 mass percent or less.
  • the oxygen concentration in the diffusion layer 10e decreases as the distance from the inner peripheral surface 10c increases.
  • oxygen is dissolved in the titanium alloy.
  • the nitrogen concentration and oxygen concentration in the diffusion layer 10e are measured by, for example, EPMA (electron beam microanalyzer).
  • the hardness of the diffusion layer 10e is preferably 600 Hv or more and 1500 Hv or less. On the inner peripheral surface 10c, the hardness of the diffusion layer 10e may be not less than 480 Hv and not more than 1200 Hv.
  • the hardness of the diffusion layer 10e is measured according to the Vickers hardness test method defined in JIS Z 2244: 2009.
  • the titanium alloy constituting the slide bearing 10 includes crystal grains composed of an ⁇ phase.
  • the crystal grains composed of the ⁇ phase are preferably arranged equiaxially in the diffusion layer 10e.
  • FIG. 4 is a process diagram illustrating a method for manufacturing a mechanical component according to the embodiment.
  • the method for manufacturing a machine part according to the embodiment includes a preparation step S1, an acid immersion step S2, a cooling step S3, and a post-processing step S4.
  • preparation of a workpiece is performed.
  • This workpiece is a ring-shaped member made of a titanium alloy when the mechanical component according to the embodiment is the slide bearing 10.
  • the processing object has an inner peripheral surface.
  • the inner peripheral surface of the object to be processed is a surface that finally becomes the inner peripheral surface 10c of the slide bearing 10.
  • soaking treatment is performed on the surface of the workpiece. More specifically, the dipping treatment is performed on the inner peripheral surface of the workpiece.
  • heat treatment is performed using a heat treatment furnace in an atmosphere containing oxygen.
  • the atmospheric gas containing oxygen is, for example, an endothermic modified gas.
  • the heating temperature in the heat treatment is preferably 900 ° C. or higher and 1000 ° C. or lower.
  • the heating temperature in the heat treatment is particularly preferably 920 ° C. or higher and 950 ° C. or lower.
  • the holding time in the heat treatment is preferably 5 hours or more and 20 hours or less.
  • the holding time in the heat treatment is preferably 6 hours or more and 15 hours or less.
  • the immersion step S2 oxygen in the atmosphere enters and diffuses from the surface of the workpiece to the inside of the workpiece, thereby forming the diffusion layer 10e.
  • a titanium oxide (TiO 2 , TiO, etc.) film is formed on the surface of the workpiece. This titanium oxide film is removed, for example, in the post-processing step S4.
  • the workpiece is taken out from the heat treatment furnace and cooled.
  • the workpiece is cooled by holding the workpiece taken out from the heat treatment furnace in, for example, semi-hot oil.
  • post-processing process S4 the post-processing with respect to a process target object is performed.
  • machining such as cleaning of the workpiece, grinding or polishing of the workpiece is performed.
  • the sliding bearing 10 is manufactured from a workpiece.
  • Table 1 shows the composition of the titanium alloy used for each test piece.
  • the titanium alloy used for each test piece is a 64 titanium alloy.
  • the oxygen concentration in the titanium alloy used for the test piece is 0.2 mass percent or less
  • the nitrogen concentration in the titanium alloy used for the test piece is 0.05 mass percent or less.
  • FIG. 5 is a schematic graph showing the relationship between the hardness of the test piece 1 and the test piece 2 and the distance from the surface. As shown in FIG. 5, the hardness of the test piece 1 and the test piece 2 decreases as the distance from the surface increases. In the test piece 1 and the test piece 2, the hardness was 400 Hv or more in the region between the surface and the position where the distance from the surface was 0.25 mm. Since the thickness of the titanium oxide film (scale) formed on the surface of the test piece 1 and the test piece 2 is about 0.01 mm, the depth D is 0.2 mm in the test piece 1 and the test piece 2. About a diffusion layer 10e was formed.
  • the hardness was 480 Hv or more in the region between the surface and the position where the distance from the surface was 0.14 mm.
  • FIG. 6 is a schematic graph showing the relationship between the oxygen concentration in the test piece 1 and the distance from the surface. As shown in FIG. 6, the oxygen concentration in the test piece 1 decreases as the distance from the surface increases. In the test piece 1, the oxygen concentration was 0.2 mass percent or more in a region between the surface and a position where the distance from the surface was 0.25 mm. This result also shows that the diffusion layer 10e having a depth D of about 0.2 mm is formed in the test piece 1.
  • the oxygen concentration was 8.0 mass percent or less at a position where the distance from the surface was 0.01 mm. That is, in the test piece 1, the oxygen concentration was 8.0 mass percent or less on the surface after the scale was removed.
  • the oxygen concentration was 0.6% by mass or more in the region between the surface and the position where the distance from the surface was 0.14 mm. From another viewpoint, in the test piece 1, the oxygen concentration in the diffusion layer 10e was 0.6 mass percent or more on the surface after the scale was removed.
  • FIG. 7 is a schematic graph showing the relationship between the oxygen concentration in the test piece 2 and the distance from the surface. As shown in FIG. 7, the oxygen concentration in the test piece 2 decreases as the distance from the surface increases. In the test piece 2, the oxygen concentration was 0.2 mass percent or more in a region between the surface and a position where the distance from the surface was 0.25 mm. This result also shows that the diffusion layer 10e having a depth D of about 0.2 mm is formed in the test piece 2.
  • the oxygen concentration was 8.0 mass percent or less at a position where the distance from the surface was 0.01 mm. That is, in the test piece 2, the oxygen concentration was 8.0 mass percent or less on the surface after the scale was removed.
  • the oxygen concentration was 0.6 mass percent or more in a region between the surface and a position where the distance from the surface was 0.14 mm. From another viewpoint, in the test piece 2, the oxygen concentration in the diffusion layer 10e was 0.6 mass percent or more on the surface after the scale was removed.
  • the nitrogen concentration in the test piece 1 and the test piece 2 was 0.05 mass percent or less at any location.
  • FIG. 8 is a schematic graph showing the relationship between the oxygen concentration and the hardness in the diffusion layer 10e of the test piece 1 and the test piece 2.
  • the nitrogen concentration in the diffusion layer 10e is low. Therefore, in the mechanical component according to the embodiment, the toughness of the diffusion layer 10e is not easily lowered.
  • the oxygen concentration in the diffusion layer 10e located on the surface is 0.6 mass percent or more and 8.0 mass percent.
  • the diffusion layer 10e can obtain high hardness (specifically, 480 Hv or more on the surface). Therefore, in the machine component according to the embodiment, the hardness on the surface can be improved while maintaining the toughness on the surface.
  • FIG. 9 is a sectional view of the spherical plain bearing 20 according to the embodiment.
  • the spherical plain bearing 20 has an inner ring 21 and an outer ring 22.
  • the spherical plain bearing 20 may further include a liner 23.
  • the inner ring 21 is a ring-shaped member.
  • the inner ring 21 has an upper surface 21a, a bottom surface 21b, an inner peripheral surface 21c, and an outer peripheral surface 21d.
  • the top surface 21a and the bottom surface 21b are orthogonal to the central axis 21e.
  • the bottom surface 21b is a surface opposite to the top surface 21a.
  • the inner peripheral surface 21c and the outer peripheral surface 21d are connected to the upper surface 21a and the bottom surface 21b.
  • the inner peripheral surface 21c is linear in a cross-sectional view (in a cross section passing through the central axis 21e).
  • the outer peripheral surface 21d has an arc shape in cross-sectional view.
  • the outer peripheral surface 21d constitutes a sliding surface.
  • the inner ring 21 is made of a titanium alloy.
  • the titanium alloy constituting the inner ring 21 is, for example, a 64 titanium alloy.
  • the outer ring 22 is a ring-shaped member.
  • the outer ring 22 has an upper surface 22a, a bottom surface 22b, an inner peripheral surface 22c, and an outer peripheral surface 22d.
  • the top surface 22a and the bottom surface 22b are orthogonal to the central axis 22e.
  • the bottom surface 22b is a surface opposite to the top surface 22a.
  • the inner peripheral surface 22c and the outer peripheral surface 22d are connected to the upper surface 22a and the bottom surface 22b.
  • the outer peripheral surface 22d is linear in a cross-sectional view (in a cross section passing through the central axis 22e).
  • the inner peripheral surface 22c has an arc shape in a sectional view.
  • the outer ring 22 is made of a titanium alloy.
  • the titanium alloy constituting the outer ring 22 is, for example, a 64 titanium alloy.
  • the outer ring 22 is disposed so that the inner peripheral surface 22c faces the outer peripheral surface 21d.
  • the inner ring 21 has a diffusion layer 21f.
  • the diffusion layer 21f is on the outer peripheral surface 21d.
  • the outer ring 22 has a diffusion layer 22f.
  • the diffusion layer 22f is on the inner peripheral surface 22c.
  • the inner ring 21 may not have the diffusion layer 21f, and the outer ring 22 may have the diffusion layer 22f.
  • the outer ring 22 may not have the diffusion layer 22f, and the inner ring 21 may have the diffusion layer 21f. That is, any one of the inner ring 21 and the outer ring 22 only needs to have the diffusion layer 21f (diffusion layer 22f).
  • the diffusion layer 21f and the diffusion layer 22f have the same configuration as the diffusion layer 10e. More specifically, the nitrogen concentration in the diffusion layer 21f (diffusion layer 22f) is 0.5 mass percent or less.
  • the oxygen concentration in the diffusion layer 21f (diffusion layer 22f) is 1.0 mass percent or more and 8.0 mass percent or less on the outer peripheral surface 21d (inner peripheral surface 22c).
  • the oxygen concentration in the diffusion layer 21f (diffusion layer 22f) is 0.6 mass percent or more and 6.0 mass percent or less on the outer peripheral surface 21d (inner peripheral surface 22c).
  • the hardness of the diffusion layer 21f (diffusion layer 22f) on the outer peripheral surface 21d (inner peripheral surface 22c) may be not less than 480 Hv and not more than 1500 Hv.
  • the hardness of the diffusion layer 21f (diffusion layer 22f) on the outer peripheral surface 21d (inner peripheral surface 22c) may be 4800 Hv or more and 1200 Hv or less.
  • the liner 23 is disposed between the inner ring 21 and the outer ring 22. More specifically, the liner 23 is attached to the inner peripheral surface 22c.
  • the liner 23 is made of a self-lubricating material.
  • a self-lubricating material refers to a material having a lower coefficient of friction than the counterpart material.
  • a woven fabric including at least one fiber selected from the group consisting of polytetrafluoroethylene fiber, aramid fiber, glass fiber, and polyester fiber is used.
  • the liner 23 may be a molded body including at least one material selected from the group consisting of polytetrafluoroethylene, polyamide, polyimide, and polyphenylene sulfide.
  • the oil supply hole may be provided in the inner ring 21, for example.
  • FIG. 10 is a process diagram showing a method of manufacturing the spherical plain bearing 20 according to the embodiment.
  • the method for manufacturing the spherical plain bearing 20 includes an inner ring manufacturing step S5, an outer ring manufacturing step S6, a liner mounting step S7, and an assembly step S8.
  • the inner ring manufacturing step S5 the inner ring 21 is manufactured.
  • the outer ring manufacturing step S6 the outer ring 22 is manufactured.
  • the inner ring manufacturing step S5 and the outer ring manufacturing step S6 are performed according to the method for manufacturing a machine part according to the above embodiment.
  • the liner attachment step S7 the liner 23 is attached to the inner peripheral surface 22c.
  • the liner 23 is composed of a woven fabric, the liner 23 is attached by sticking the woven fabric to the inner peripheral surface 22c.
  • the liner 23 is formed of a resin molded body, the liner 23 is attached by injection molding a resin material that forms the liner 23 on the inner peripheral surface 22c.
  • the inner ring 21 and the outer ring 22 are assembled.
  • the assembly step S8 is performed by plastic processing, for example.
  • a diameter expansion step for expanding the inner diameter of the outer ring 22 is performed in the assembly step S8.
  • the inner ring 21 is inserted into the outer ring 22 having an enlarged inner diameter.
  • a diameter reducing process for reducing the diameter of the outer ring 22 in a state where the inner ring 21 is inserted is performed.
  • the manufacture of the spherical plain bearing 20 is completed.
  • the spherical plain bearing 20 As described above, in the spherical plain bearing 20, at least one of the inner ring 21 and the outer ring 22 has the diffusion layer 21f (diffusion layer 22f) having the same configuration as the diffusion layer 10e. Therefore, according to the spherical plain bearing 20, the hardness in a sliding surface can be improved, maintaining the toughness in a sliding surface.
  • the liner 23 is made of a self-lubricating material, so that friction between the inner ring 21 and the outer ring 22 can be reduced.
  • the liner 23 is a woven fabric including at least one fiber selected from the group consisting of polytetrafluoroethylene fiber, aramid fiber, glass fiber, and polyester fiber, or made of polytetrafluoroethylene, polyamide, polyimide, polyphenylene sulfide
  • the molded body includes at least one material selected from the group, the friction between the inner ring 21 and the outer ring 22 can be further reduced.
  • the above-described embodiment is advantageously applied to a titanium alloy machine part, and more specifically, is particularly advantageously applied to a titanium alloy slide bearing and a spherical slide bearing.
  • 10 sliding bearing 10a top surface, 10b bottom surface, 10c inner circumferential surface, 10d outer circumferential surface, 10e diffusion layer, 20 spherical sliding bearing, 21 inner ring, 21a top surface, 21b bottom surface, 21c inner circumferential surface, 21d outer circumferential surface, 21e central axis, 21f diffusion layer, 22 outer ring, 22a top surface, 22b bottom surface, 22c inner peripheral surface, 22d outer peripheral surface, 22e central axis, 22f diffusion layer, S1 preparation step, S2 soaking step, S3 cooling step, S4 post-processing step, S5 inner ring Manufacturing process, S6 outer ring manufacturing process, S7 liner installation process, S8 assembly process, D depth.

Abstract

This sliding bearing (10) is made of a titanium alloy. A sliding surface of the sliding bearing (10) is provided with an oxygen diffusion layer (10e). The nitrogen concentration in the oxygen diffusion layer (10e) is 0.5 mass% or less. The oxygen concentration in the oxygen diffusion layer (10e) is 0.6 - 8.0 mass% at the sliding surface.

Description

すべり軸受及び球面すべり軸受Plain bearings and spherical plain bearings
 本発明は、すべり軸受及び球面すべり軸受に関する。より特定的には、本発明は、チタン合金製のすべり軸受及び球面すべり軸受に関する。 The present invention relates to a plain bearing and a spherical plain bearing. More specifically, the present invention relates to a titanium alloy slide bearing and a spherical slide bearing.
 チタン合金は、鋼と比較して硬さが低いため、耐摩耗性が低い。そのため、表面処理を行うことなくチタン合金を耐摩耗性が要求される機械部品に適用することは困難である。従来から、国際公開第97/36018号(特許文献1)に記載のチタン合金部材が知られている。特許文献1に記載のチタン合金部材は、表面に、表面硬化層を有している。 Titanium alloy has low wear resistance due to its low hardness compared to steel. Therefore, it is difficult to apply a titanium alloy to a machine part that requires wear resistance without performing a surface treatment. Conventionally, a titanium alloy member described in International Publication No. 97/36018 (Patent Document 1) is known. The titanium alloy member described in Patent Document 1 has a surface hardened layer on the surface.
 表面硬化層は、チタン合金部材の表面にある第1の硬化層と、第1の硬化層よりもチタン合金部材の内部側にある第2の硬化層とを有している。第1の硬化層中には、0.6重量パーセント以上8.0重量パーセント以下の窒素が固溶している。第1の硬化層中には、1.0重量パーセント以上14.0重量パーセント以下の酸素が固溶している。第2の硬化層中には、0.5重量パーセント以上14.0重量パーセント以下の酸素が固溶している。 The surface hardened layer has a first hardened layer on the surface of the titanium alloy member and a second hardened layer on the inner side of the titanium alloy member with respect to the first hardened layer. In the first hardened layer, 0.6 weight percent or more and 8.0 weight percent or less of nitrogen is solid-dissolved. In the first hardened layer, oxygen of 1.0 weight percent or more and 14.0 weight percent or less is dissolved. In the second hardened layer, 0.5 wt% or more and 14.0 wt% or less of oxygen is dissolved.
国際公開第97/36018号International Publication No. 97/36018
 上記のとおり、特許文献1に記載のチタン合金部材においては、窒素を固溶させることにより、表面硬化層の硬さを改善している。しかしながら、窒素を固溶させることにより、表面硬化層の硬さは上昇するものの、表面硬化層が脆性的となる。 As described above, in the titanium alloy member described in Patent Document 1, the hardness of the surface hardened layer is improved by dissolving nitrogen. However, by dissolving nitrogen, the hardness of the surface hardened layer increases, but the surface hardened layer becomes brittle.
 本発明は、上記のような従来技術の問題点に鑑みてなされたものである。より具体的には、本発明は、摺動面の靱性を維持しつつ、摺動面の硬さを改善することができるすべり軸受及び球面すべり軸受を提供する。 The present invention has been made in view of the above-described problems of the prior art. More specifically, the present invention provides a plain bearing and a spherical plain bearing that can improve the hardness of the sliding surface while maintaining the toughness of the sliding surface.
 本発明の一態様に係るすべり軸受は、チタン合金製である。本発明の一態様に係るすべり軸受は、摺動面に酸素拡散層を備える。酸素拡散層中における窒素濃度は、0.5質量パーセント以下である。酸素拡散層中における酸素濃度は、摺動面において0.6質量パーセント以上8.0質量パーセント以下である。 The plain bearing according to one aspect of the present invention is made of a titanium alloy. A plain bearing according to one embodiment of the present invention includes an oxygen diffusion layer on a sliding surface. The nitrogen concentration in the oxygen diffusion layer is 0.5 mass percent or less. The oxygen concentration in the oxygen diffusion layer is 0.6 mass percent or more and 8.0 mass percent or less on the sliding surface.
 本発明の一態様に係るすべり軸受によると、摺動面における靱性を維持しつつ、摺動面における硬さを改善することができる。 The sliding bearing according to one aspect of the present invention can improve the hardness of the sliding surface while maintaining the toughness of the sliding surface.
 上記のすべり軸受において、酸素拡散層の硬さは、摺動面において480Hv以上1200Hv以下であってもよい。この場合には、摺動面における靱性を維持しつつ、摺動面における硬さを改善することができる。 In the above sliding bearing, the hardness of the oxygen diffusion layer may be 480 Hv or more and 1200 Hv or less on the sliding surface. In this case, the hardness on the sliding surface can be improved while maintaining the toughness on the sliding surface.
 上記のすべり軸受において、チタン合金は、64チタン合金であってもよい。この場合には、摺動面における靱性を維持しつつ、摺動面における硬さを改善することができる。 In the above sliding bearing, the titanium alloy may be a 64 titanium alloy. In this case, the hardness on the sliding surface can be improved while maintaining the toughness on the sliding surface.
 上記のすべり軸受は、航空宇宙用すべり軸受であってもよい。
 本発明の一態様に係る球面すべり軸受は、内輪と、外輪とを備える。内輪及び外輪は、チタン合金製である。内輪及び外輪の少なくとも一方は、摺動面に酸素拡散層を有する。酸素拡散層中における窒素濃度は、0.5質量パーセント以下である。酸素拡散層中における酸素濃度は、摺動面において0.6質量パーセント以上8.0質量パーセント以下である。
The sliding bearing may be an aerospace sliding bearing.
A spherical plain bearing according to an aspect of the present invention includes an inner ring and an outer ring. The inner ring and the outer ring are made of a titanium alloy. At least one of the inner ring and the outer ring has an oxygen diffusion layer on the sliding surface. The nitrogen concentration in the oxygen diffusion layer is 0.5 mass percent or less. The oxygen concentration in the oxygen diffusion layer is 0.6 mass percent or more and 8.0 mass percent or less on the sliding surface.
 本発明の一態様に係るすべり軸受によると、摺動面における靱性を維持しつつ、摺動面における硬さを改善することができる。 The sliding bearing according to one aspect of the present invention can improve the hardness of the sliding surface while maintaining the toughness of the sliding surface.
 上記の球面すべり軸受において、酸素拡散層の硬さは、摺動面において480Hv以上1200Hv以下であってもよい。この場合には、摺動面における靱性を維持しつつ、摺動面における硬さを改善することができる。 In the above spherical plain bearing, the hardness of the oxygen diffusion layer may be 480 Hv or more and 1200 Hv or less on the sliding surface. In this case, the hardness on the sliding surface can be improved while maintaining the toughness on the sliding surface.
 上記の球面すべり軸受において、チタン合金は、64チタン合金であってもよい。この場合には、摺動面における靱性を維持しつつ、摺動面における硬さを改善することができる。 In the above spherical plain bearing, the titanium alloy may be a 64 titanium alloy. In this case, the hardness on the sliding surface can be improved while maintaining the toughness on the sliding surface.
 上記の球面すべり軸受は、内輪と外輪との間に配置される自己潤滑性のライナをさらに備えていてもよい。この場合には、内輪と外輪との間の摩擦を低減することができる。 The above spherical plain bearing may further include a self-lubricating liner disposed between the inner ring and the outer ring. In this case, friction between the inner ring and the outer ring can be reduced.
 上記の球面すべり軸受において、ライナは、ポリテトラフルオロエチレン繊維、アラミド繊維、ガラス繊維及びポリエステル繊維からなる群から選択される少なくとも1つの繊維を含む織布であってもよい。この場合には、内輪と外輪との間の摩擦をさらに低減することができる。 In the above spherical plain bearing, the liner may be a woven fabric including at least one fiber selected from the group consisting of polytetrafluoroethylene fiber, aramid fiber, glass fiber, and polyester fiber. In this case, the friction between the inner ring and the outer ring can be further reduced.
 上記の球面すべり軸受において、ライナは、ポリテトラフルオロエチレン、ポリアミド、ポリイミド、ポリフェニレンサルファイドからなる群から選択される少なくとも1つの材料を含む成形体であってもよい。この場合には、内輪と外輪との間の摩擦をさらに低減することができる。 In the above-described spherical plain bearing, the liner may be a molded body including at least one material selected from the group consisting of polytetrafluoroethylene, polyamide, polyimide, and polyphenylene sulfide. In this case, the friction between the inner ring and the outer ring can be further reduced.
 上記の球面すべり軸受は、航空宇宙用球面すべり軸受であってもよい。 The above spherical plain bearing may be an aerospace spherical plain bearing.
 本発明の一態様に係るすべり軸受によると、摺動面における靱性を維持しつつ、摺動面における硬さを改善することができる。本発明の一態様に係る球面すべり軸受によると、摺動面における靱性を維持しつつ、摺動面における硬さを改善することができる。 The sliding bearing according to one aspect of the present invention can improve the hardness of the sliding surface while maintaining the toughness of the sliding surface. The spherical plain bearing according to one aspect of the present invention can improve the hardness of the sliding surface while maintaining the toughness of the sliding surface.
実施形態に係る機械部品の上面図である。It is a top view of the machine part concerning an embodiment. 図1のII-IIにおける断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 図2の領域IIIにおける拡大図である。It is an enlarged view in the area | region III of FIG. 実施形態に係る機械部品の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the machine component which concerns on embodiment. 試験片1及び試験片2の硬さと表面からの距離との関係を示す模式的なグラフである。It is a typical graph which shows the relationship between the hardness from the test piece 1 and the test piece 2, and the distance from the surface. 試験片1中における酸素濃度と表面からの距離との関係を示す模式的なグラフである。3 is a schematic graph showing the relationship between the oxygen concentration in the test piece 1 and the distance from the surface. 試験片2中における酸素濃度と表面からの距離との関係を示す模式的なグラフである。3 is a schematic graph showing a relationship between an oxygen concentration in a test piece 2 and a distance from a surface. 試験片1及び試験片2の拡散層10e中における酸素濃度と硬さとの関係を示す模式的なグラフである。It is a typical graph which shows the relationship between the oxygen concentration in the diffused layer 10e of the test piece 1 and the test piece 2, and hardness. 実施形態に係る球面すべり軸受20の断面図である。It is sectional drawing of the spherical plain bearing 20 which concerns on embodiment. 実施形態に係る球面すべり軸受20の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the spherical plain bearing 20 which concerns on embodiment.
 以下に、実施形態について図面を参照して説明する。なお、以下の図面においては、同一又は相当する部分に同一の参照番号を付し、その説明は繰り返さないものとする。 Hereinafter, embodiments will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated.
 (実施形態に係る機械部品の構成)
 以下に、実施形態に係る機械部品の構成を、図1~図3を参照して説明する。図1は、実施形態に係る機械部品の上面図である。図2は、図1のII-IIにおける断面図である。図1及び図2に示すように、実施形態に係る機械部品は、すべり軸受10である。但し、実施形態に係る機械部品は、これに限られるものではない。
(Configuration of mechanical parts according to the embodiment)
Hereinafter, the configuration of the mechanical component according to the embodiment will be described with reference to FIGS. 1 to 3. FIG. 1 is a top view of a mechanical component according to the embodiment. FIG. 2 is a cross-sectional view taken along the line II-II in FIG. As shown in FIGS. 1 and 2, the mechanical component according to the embodiment is a slide bearing 10. However, the machine component according to the embodiment is not limited to this.
 すべり軸受10は、チタン(Ti)合金により構成されている。すべり軸受10を構成するチタン合金は、ASTM規格B348-13GR.5に規定されているTi-6Al(アルミニウム)-4V(バナジウム)合金であることが好ましい。なお、以下においては、このTi-6Al-4V合金を、64チタン合金という。 The slide bearing 10 is made of a titanium (Ti) alloy. The titanium alloy constituting the slide bearing 10 is ASTM standard B348-13GR. The Ti-6Al (aluminum) -4V (vanadium) alloy specified in 5 is preferable. Hereinafter, this Ti-6Al-4V alloy is referred to as a 64 titanium alloy.
 すべり軸受10は、リング状の部材により構成されている。すべり軸受10は、上面10aと、底面10bと、内周面10cと、外周面10dとを有している。底面10bは、上面10aの反対側の面である。外周面10dは、内周面10cの反対側の面である。上面10a及び底面10bは、すべり軸受10の中心軸に直交するすべり軸受10の面である。内周面10c及び外周面10dは、上面10a及び底面10bに連なっている。内周面10cと中心軸との距離は、外周面10dと中心軸との距離よりも小さくなっている。内周面10cは、すべり軸受10の摺動面(軸と接する側の面)を構成している。 The sliding bearing 10 is composed of a ring-shaped member. The plain bearing 10 has an upper surface 10a, a bottom surface 10b, an inner peripheral surface 10c, and an outer peripheral surface 10d. The bottom surface 10b is a surface opposite to the top surface 10a. The outer peripheral surface 10d is a surface opposite to the inner peripheral surface 10c. The top surface 10 a and the bottom surface 10 b are surfaces of the slide bearing 10 that are orthogonal to the central axis of the slide bearing 10. The inner peripheral surface 10c and the outer peripheral surface 10d are connected to the upper surface 10a and the bottom surface 10b. The distance between the inner peripheral surface 10c and the central axis is smaller than the distance between the outer peripheral surface 10d and the central axis. The inner peripheral surface 10c constitutes a sliding surface (surface on the side in contact with the shaft) of the slide bearing 10.
 図3は、図2の領域IIIにおける拡大図である。図3に示すように、すべり軸受10は、拡散層10e(酸素拡散層)を有している。拡散層10eは、内周面10cに設けられている。拡散層10eは深さDを有している。深さDは、内周面10cに直交する方向における内周面10cからの距離である。深さDは、0.05mm以上である。好ましくは、深さDは、0.2mm以上である。特に好ましくは、深さDは、0.25mm以上である。 FIG. 3 is an enlarged view of region III in FIG. As shown in FIG. 3, the plain bearing 10 has a diffusion layer 10e (oxygen diffusion layer). The diffusion layer 10e is provided on the inner peripheral surface 10c. The diffusion layer 10e has a depth D. The depth D is a distance from the inner peripheral surface 10c in a direction orthogonal to the inner peripheral surface 10c. The depth D is 0.05 mm or more. Preferably, the depth D is 0.2 mm or more. Particularly preferably, the depth D is 0.25 mm or more.
 拡散層10e中において、窒素濃度は、0.5質量パーセント以下となっている。すなわち、拡散層10e中においては、窒素濃度が0.5質量パーセント以下であればよく、拡散層10e中に窒素が含まれていなくてもよい。拡散層10e中において、窒素は、チタン合金中に固溶している。 In the diffusion layer 10e, the nitrogen concentration is 0.5 mass percent or less. That is, in the diffusion layer 10e, the nitrogen concentration may be 0.5 mass percent or less, and the diffusion layer 10e may not contain nitrogen. In the diffusion layer 10e, nitrogen is dissolved in the titanium alloy.
 内周面10cにある拡散層10e中において、酸素濃度は、0.6質量パーセント以上8.0質量パーセント以下である。なお、内周面10cにある拡散層10e中において酸素濃度が8.0質量パーセント以下とされているのは、チタン合金製の軸受において必要とされる硬さ及び靱性を考慮したものである。内周面10cにある拡散層10e中において、酸素濃度は、1.0質量パーセント以上6.0質量パーセント以下であることが好ましい。拡散層10e中における酸素濃度は、内周面10cからの距離が大きくなるにつれて小さくなっている。拡散層10e中において、酸素は、チタン合金中に固溶している。 In the diffusion layer 10e on the inner peripheral surface 10c, the oxygen concentration is 0.6 mass percent or more and 8.0 mass percent or less. The oxygen concentration in the diffusion layer 10e on the inner peripheral surface 10c is set to 8.0 mass percent or less in consideration of the hardness and toughness required for a titanium alloy bearing. In the diffusion layer 10e on the inner peripheral surface 10c, the oxygen concentration is preferably 1.0 mass percent or more and 6.0 mass percent or less. The oxygen concentration in the diffusion layer 10e decreases as the distance from the inner peripheral surface 10c increases. In the diffusion layer 10e, oxygen is dissolved in the titanium alloy.
 拡散層10e中における窒素濃度及び酸素濃度は、例えばEPMA(電子線マイクロアナライザ)により測定される。 The nitrogen concentration and oxygen concentration in the diffusion layer 10e are measured by, for example, EPMA (electron beam microanalyzer).
 内周面10cにおいて、拡散層10eの硬さは、600Hv以上1500Hv以下であることが好ましい。内周面10cにおいて、拡散層10eの硬さは、480Hv以上1200Hv以下であってもよい。 In the inner peripheral surface 10c, the hardness of the diffusion layer 10e is preferably 600 Hv or more and 1500 Hv or less. On the inner peripheral surface 10c, the hardness of the diffusion layer 10e may be not less than 480 Hv and not more than 1200 Hv.
 拡散層10eの硬さは、JIS Z 2244:2009に規定されているビッカース硬さ試験法にしたがって測定される。 The hardness of the diffusion layer 10e is measured according to the Vickers hardness test method defined in JIS Z 2244: 2009.
 拡散層10eにおいて、すべり軸受10を構成するチタン合金は、α相で構成される結晶粒を含んでいる。このα相で構成される結晶粒は、拡散層10eにおいて、等軸状に配列されていることが好ましい。 In the diffusion layer 10e, the titanium alloy constituting the slide bearing 10 includes crystal grains composed of an α phase. The crystal grains composed of the α phase are preferably arranged equiaxially in the diffusion layer 10e.
 以下に、実施形態に係る機械部品の製造方法を、図4を参照して説明する。図4は、実施形態に係る機械部品の製造方法を示す工程図である。図4に示すように、実施形態に係る機械部品の製造方法は、準備工程S1と、浸酸工程S2と、冷却工程S3と、後処理工程S4とを有している。 Hereinafter, a method for manufacturing a mechanical component according to the embodiment will be described with reference to FIG. FIG. 4 is a process diagram illustrating a method for manufacturing a mechanical component according to the embodiment. As shown in FIG. 4, the method for manufacturing a machine part according to the embodiment includes a preparation step S1, an acid immersion step S2, a cooling step S3, and a post-processing step S4.
 準備工程S1においては、加工対象物の準備が行われる。この加工対象物は、実施形態に係る機械部品がすべり軸受10である場合、チタン合金製のリング状の部材である。加工対象物は、内周面を有している。加工対象物の内周面は、最終的にはすべり軸受10の内周面10cとなる面である。 In the preparation step S1, preparation of a workpiece is performed. This workpiece is a ring-shaped member made of a titanium alloy when the mechanical component according to the embodiment is the slide bearing 10. The processing object has an inner peripheral surface. The inner peripheral surface of the object to be processed is a surface that finally becomes the inner peripheral surface 10c of the slide bearing 10.
 浸酸工程S2においては、加工対象物の表面に、浸酸処理が行われる。より具体的には、加工対象物の内周面に浸酸処理が行われる。浸酸処理に際しては、酸素を含有する雰囲気下において、熱処理炉を用いて加熱処理が行われる。酸素を含有する雰囲気ガスは、例えば吸熱型変成ガスである。加熱処理における加熱温度は、900℃以上1000℃以下であることが好ましい。熱処理における加熱温度は、920℃以上950℃以下であることが特に好ましい。熱処理における保持時間は、5時間以上20時間以下であることが好ましい。熱処理における保持時間は、6時間以上15時間以下であることが好ましい。 In the soaking step S2, soaking treatment is performed on the surface of the workpiece. More specifically, the dipping treatment is performed on the inner peripheral surface of the workpiece. In the immersion treatment, heat treatment is performed using a heat treatment furnace in an atmosphere containing oxygen. The atmospheric gas containing oxygen is, for example, an endothermic modified gas. The heating temperature in the heat treatment is preferably 900 ° C. or higher and 1000 ° C. or lower. The heating temperature in the heat treatment is particularly preferably 920 ° C. or higher and 950 ° C. or lower. The holding time in the heat treatment is preferably 5 hours or more and 20 hours or less. The holding time in the heat treatment is preferably 6 hours or more and 15 hours or less.
 浸酸工程S2においては、雰囲気中の酸素が加工対象物の表面から加工対象物の内部に侵入、拡散し、拡散層10eが形成される。なお、浸酸工程S2においては、加工対象物の表面に、チタンの酸化物(TiO、TiO等)膜が形成される。このチタン酸化物膜は、例えば後処理工程S4において除去される。 In the immersion step S2, oxygen in the atmosphere enters and diffuses from the surface of the workpiece to the inside of the workpiece, thereby forming the diffusion layer 10e. In the immersion step S2, a titanium oxide (TiO 2 , TiO, etc.) film is formed on the surface of the workpiece. This titanium oxide film is removed, for example, in the post-processing step S4.
 冷却工程S3においては、加工対象物は、熱処理炉から取り出され、冷却される。加工対象物の冷却は、熱処理炉から取り出された加工対象物を、例えばセミホット油中で保持することにより行われる。 In the cooling step S3, the workpiece is taken out from the heat treatment furnace and cooled. The workpiece is cooled by holding the workpiece taken out from the heat treatment furnace in, for example, semi-hot oil.
 後処理工程S4においては、加工対象物に対する後処理が行われる。後処理工程S4においては、例えば加工対象物の洗浄、加工対象物に対する研削、研磨等の機械加工等が行われる。これにより、加工対象物からすべり軸受10が製造される。 In post-processing process S4, the post-processing with respect to a process target object is performed. In the post-processing step S4, for example, machining such as cleaning of the workpiece, grinding or polishing of the workpiece is performed. Thereby, the sliding bearing 10 is manufactured from a workpiece.
 (拡散層の硬度と拡散層中における酸素濃度との関係)
 以下に、拡散層10eの硬度と拡散層10e中における酸素濃度との関係についての評価試験及びその結果を説明する。
(Relationship between diffusion layer hardness and oxygen concentration in diffusion layer)
Below, the evaluation test about the relationship between the hardness of the diffusion layer 10e and the oxygen concentration in the diffusion layer 10e and the result are demonstrated.
 <試験片>
 まず、上記の試験に用いた試験片について説明する。表1には、各試験片に用いられたチタン合金の組成が示されている。表1に示すように、各試験片に用いられたチタン合金は、64チタン合金である。また、試験片に用いられたチタン合金中の酸素濃度は、0.2質量パーセント以下であり、試験片に用いられたチタン合金中の窒素濃度は、0.05質量パーセント以下である。
<Specimen>
First, the test piece used for said test is demonstrated. Table 1 shows the composition of the titanium alloy used for each test piece. As shown in Table 1, the titanium alloy used for each test piece is a 64 titanium alloy. Moreover, the oxygen concentration in the titanium alloy used for the test piece is 0.2 mass percent or less, and the nitrogen concentration in the titanium alloy used for the test piece is 0.05 mass percent or less.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <熱処理条件>
 試験片に対しては、上記の浸酸工程S2及び冷却工程S3が行われた。表2には、浸酸工程S2における加熱温度、保持時間及び雰囲気ガスが示されている。表2に示すように、試験片1においては、加熱温度は950℃であり、保持時間が6.75時間であった。試験片2においては、加熱時間は920℃であり、保持時間は14.4時間であった。なお、試験片1及び試験片2の双方において、熱処理は、吸熱型変成ガス中で行われた。また、冷却工程S3は、100℃のセミホット油中で保持することにより行われた。
<Heat treatment conditions>
The test piece was subjected to the immersion step S2 and the cooling step S3. Table 2 shows the heating temperature, holding time, and atmospheric gas in the soaking step S2. As shown in Table 2, in the test piece 1, the heating temperature was 950 ° C., and the holding time was 6.75 hours. In test piece 2, the heating time was 920 ° C. and the holding time was 14.4 hours. In both the test piece 1 and the test piece 2, the heat treatment was performed in an endothermic modified gas. Moreover, cooling process S3 was performed by hold | maintaining in a 100 degreeC semi-hot oil.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <硬さ評価試験>
 図5は、試験片1及び試験片2の硬さと表面からの距離との関係を示す模式的なグラフである。図5に示すように、試験片1及び試験片2の硬さは、表面からの距離が大きくなるにつれて、小さくなっている。試験片1及び試験片2においては、表面と表面からの距離が0.25mmとなる位置までの間の領域で、硬さが400Hv以上であった。試験片1及び試験片2の表面に形成されるチタンの酸化物膜(スケール)の厚さが0.01mm程度であるため、試験片1及び試験片2においては、深さDが0.2mm程度の拡散層10eが形成されていた。
<Hardness evaluation test>
FIG. 5 is a schematic graph showing the relationship between the hardness of the test piece 1 and the test piece 2 and the distance from the surface. As shown in FIG. 5, the hardness of the test piece 1 and the test piece 2 decreases as the distance from the surface increases. In the test piece 1 and the test piece 2, the hardness was 400 Hv or more in the region between the surface and the position where the distance from the surface was 0.25 mm. Since the thickness of the titanium oxide film (scale) formed on the surface of the test piece 1 and the test piece 2 is about 0.01 mm, the depth D is 0.2 mm in the test piece 1 and the test piece 2. About a diffusion layer 10e was formed.
 試験片1及び試験片2においては、表面と表面からの距離が0.14mmとなる位置までの間の領域で、硬さが480Hv以上となっていた。 In the test piece 1 and the test piece 2, the hardness was 480 Hv or more in the region between the surface and the position where the distance from the surface was 0.14 mm.
 図6は、試験片1中における酸素濃度と表面からの距離との関係を示す模式的なグラフである。図6に示すように、試験片1中における酸素濃度は、表面からの距離が大きくなるにつれて、小さくなっている。試験片1においては、表面と表面からの距離が0.25mmとなる位置との間の領域で、酸素濃度が0.2質量パーセント以上となっていた。この結果からも、試験片1においては、深さDが0.2mm程度の拡散層10eが形成されていることが示されている。 FIG. 6 is a schematic graph showing the relationship between the oxygen concentration in the test piece 1 and the distance from the surface. As shown in FIG. 6, the oxygen concentration in the test piece 1 decreases as the distance from the surface increases. In the test piece 1, the oxygen concentration was 0.2 mass percent or more in a region between the surface and a position where the distance from the surface was 0.25 mm. This result also shows that the diffusion layer 10e having a depth D of about 0.2 mm is formed in the test piece 1.
 試験片1中においては、表面からの距離が0.01mmとなる位置で、酸素濃度が8.0質量パーセント以下となっていた。すなわち、試験片1においては、スケールが除去された後の表面で、酸素濃度が8.0質量パーセント以下となっていた。 In the test piece 1, the oxygen concentration was 8.0 mass percent or less at a position where the distance from the surface was 0.01 mm. That is, in the test piece 1, the oxygen concentration was 8.0 mass percent or less on the surface after the scale was removed.
 試験片1中においては、表面と表面からの距離が0.14mmとなる位置との間の領域で、酸素濃度が0.6質量パーセント以上となっていた。別の観点からいえば、試験片1においては、拡散層10e中の酸素濃度は、スケールが除去された後の表面で0.6質量パーセント以上となっていた。 In the test piece 1, the oxygen concentration was 0.6% by mass or more in the region between the surface and the position where the distance from the surface was 0.14 mm. From another viewpoint, in the test piece 1, the oxygen concentration in the diffusion layer 10e was 0.6 mass percent or more on the surface after the scale was removed.
 図7は、試験片2中における酸素濃度と表面からの距離との関係を示す模式的なグラフである。図7に示すように、試験片2中における酸素濃度は、表面からの距離が大きくなるにつれて、小さくなっている。試験片2においては、表面と表面からの距離が0.25mmとなる位置との間の領域で、酸素濃度が0.2質量パーセント以上となっていた。この結果からも、試験片2においては、深さDが0.2mm程度の拡散層10eが形成されていることが示されている。 FIG. 7 is a schematic graph showing the relationship between the oxygen concentration in the test piece 2 and the distance from the surface. As shown in FIG. 7, the oxygen concentration in the test piece 2 decreases as the distance from the surface increases. In the test piece 2, the oxygen concentration was 0.2 mass percent or more in a region between the surface and a position where the distance from the surface was 0.25 mm. This result also shows that the diffusion layer 10e having a depth D of about 0.2 mm is formed in the test piece 2.
 試験片2中においては、表面からの距離が0.01mmとなる位置で、酸素濃度が8.0質量パーセント以下となっていた。すなわち、試験片2においては、スケールが除去された後の表面で、酸素濃度が8.0質量パーセント以下となっていた。 In the test piece 2, the oxygen concentration was 8.0 mass percent or less at a position where the distance from the surface was 0.01 mm. That is, in the test piece 2, the oxygen concentration was 8.0 mass percent or less on the surface after the scale was removed.
 試験片2中においては、表面と表面からの距離が0.14mmとなる位置との間の領域で、酸素濃度が0.6質量パーセント以上となっていた。別の観点からいえば、試験片2においては、拡散層10e中の酸素濃度は、スケールが除去された後の表面において0.6質量パーセント以上となっていた。 In the test piece 2, the oxygen concentration was 0.6 mass percent or more in a region between the surface and a position where the distance from the surface was 0.14 mm. From another viewpoint, in the test piece 2, the oxygen concentration in the diffusion layer 10e was 0.6 mass percent or more on the surface after the scale was removed.
 なお、図6及び図7中に図示されていないが、試験片1及び試験片2中における窒素濃度は、いずれの場所においても0.05質量パーセント以下であった。 Although not shown in FIGS. 6 and 7, the nitrogen concentration in the test piece 1 and the test piece 2 was 0.05 mass percent or less at any location.
 図8は、試験片1及び試験片2の拡散層10e中における酸素濃度と硬さとの関係を示す模式的なグラフである。図8に示すように、試験片1において、各々の位置における酸素濃度と硬さとをプロットするとともに、酸素濃度と硬さとの関係を直線近似したところ、酸素濃度をX(単位:質量パーセント)、硬さをY(単位:Hv)とすると、X及びYには、Y=191.27×X+399.43(以下において、式1という)との関係があることが明らかとなった。 FIG. 8 is a schematic graph showing the relationship between the oxygen concentration and the hardness in the diffusion layer 10e of the test piece 1 and the test piece 2. As shown in FIG. 8, in the test piece 1, the oxygen concentration and the hardness at each position are plotted, and when the relationship between the oxygen concentration and the hardness is linearly approximated, the oxygen concentration is expressed by X (unit: mass percent), Assuming that the hardness is Y (unit: Hv), it has been clarified that X and Y have a relationship with Y = 191.27 × X + 399.43 (hereinafter referred to as Formula 1).
 同様の処理を試験片2に対して行ったところ、X及びYには、Y=283.4×X+312.73(以下において、式2という)との関係があることが明らかとなった。すなわち、試験片1及び試験片2においては、酸素濃度が高くなるほど、硬さが高くなることが示された。また、式1及び式2の対比から、拡散層10e中の酸素濃度が同一であっても、加熱温度が低く保持時間が長い方が、結晶粒の成長が抑制されることによって拡散層10eの硬度がより上昇することが明らかとされた。 When the same treatment was performed on the test piece 2, it became clear that X and Y had a relationship with Y = 283.4 × X + 312.73 (hereinafter referred to as Expression 2). That is, in the test piece 1 and the test piece 2, it was shown that hardness becomes high, so that oxygen concentration becomes high. Further, from the comparison of Formula 1 and Formula 2, even when the oxygen concentration in the diffusion layer 10e is the same, the growth of the crystal grains is suppressed when the heating temperature is low and the holding time is long, so It was revealed that the hardness was further increased.
 式1及び式2のXに0.6を代入すると、Y>480となる。
 以上から、実施形態に係る機械部品としてのすべり軸受10において、内周面10cにある拡散層10e中における酸素濃度が0.6質量パーセント以上である場合、拡散層10eの硬さは、内周面10cにおいて4800Hv以上となることが明らかにされた。
Substituting 0.6 for X in Equation 1 and Equation 2 yields Y> 480.
From the above, in the slide bearing 10 as the mechanical component according to the embodiment, when the oxygen concentration in the diffusion layer 10e on the inner peripheral surface 10c is 0.6 mass percent or more, the hardness of the diffusion layer 10e is It was revealed that the surface 10c was 4800 Hv or higher.
 以下に、実施形態に係る機械部品の効果について説明する。実施形態に係る機械部品においては、拡散層10e中における窒素濃度が低い。そのため、実施形態に係る機械部品においては、拡散層10eの靱性が低下しにくい。 Hereinafter, the effect of the machine part according to the embodiment will be described. In the mechanical component according to the embodiment, the nitrogen concentration in the diffusion layer 10e is low. Therefore, in the mechanical component according to the embodiment, the toughness of the diffusion layer 10e is not easily lowered.
 また、実施形態に係る機械部品においては、表面に位置する拡散層10e中における酸素濃度が0.6質量パーセント以上8.0質量パーセントとなっている。その結果、実施形態に係る機械部品においては、拡散層10eは、高い硬度(具体的には、表面において480Hv以上)を得ることができる。そのため、実施形態に係る機械部品においては、表面における靱性を維持しつつ、表面における硬さを改善することができる。 In the mechanical component according to the embodiment, the oxygen concentration in the diffusion layer 10e located on the surface is 0.6 mass percent or more and 8.0 mass percent. As a result, in the mechanical component according to the embodiment, the diffusion layer 10e can obtain high hardness (specifically, 480 Hv or more on the surface). Therefore, in the machine component according to the embodiment, the hardness on the surface can be improved while maintaining the toughness on the surface.
 (実施形態に係る球面すべり軸受の構成)
 以下に、実施形態に係る球面すべり軸受20の構成を説明する。
(Configuration of spherical plain bearing according to the embodiment)
Below, the structure of the spherical plain bearing 20 which concerns on embodiment is demonstrated.
 図9は、実施形態に係る球面すべり軸受20の断面図である。図9に示すように、球面すべり軸受20は、内輪21と、外輪22とを有している。球面すべり軸受20は、ライナ23をさらに有していてもよい。 FIG. 9 is a sectional view of the spherical plain bearing 20 according to the embodiment. As shown in FIG. 9, the spherical plain bearing 20 has an inner ring 21 and an outer ring 22. The spherical plain bearing 20 may further include a liner 23.
 内輪21は、リング状の部材である。内輪21は、上面21aと、底面21bと、内周面21cと、外周面21dとを有している。上面21a及び底面21bは、中心軸21eに直交している。底面21bは、上面21aの反対側の面である。内周面21c及び外周面21dは、上面21a及び底面21bに連なっている。内周面21cは、断面視において(中心軸21eを通る断面において)、直線状になっている。外周面21dは、断面視において、円弧状になっている。内周面21cと外周面21dとの距離は、上面21aから底面21bに向かうにしたがって一旦大きくなり、その後さらに底面21bに向かうにしたがって再び小さくなる。外周面21dは、摺動面を構成している。内輪21は、チタン合金製である。内輪21を構成するチタン合金は、例えば64チタン合金である。 The inner ring 21 is a ring-shaped member. The inner ring 21 has an upper surface 21a, a bottom surface 21b, an inner peripheral surface 21c, and an outer peripheral surface 21d. The top surface 21a and the bottom surface 21b are orthogonal to the central axis 21e. The bottom surface 21b is a surface opposite to the top surface 21a. The inner peripheral surface 21c and the outer peripheral surface 21d are connected to the upper surface 21a and the bottom surface 21b. The inner peripheral surface 21c is linear in a cross-sectional view (in a cross section passing through the central axis 21e). The outer peripheral surface 21d has an arc shape in cross-sectional view. The distance between the inner peripheral surface 21c and the outer peripheral surface 21d once increases from the upper surface 21a toward the bottom surface 21b, and then decreases again toward the bottom surface 21b. The outer peripheral surface 21d constitutes a sliding surface. The inner ring 21 is made of a titanium alloy. The titanium alloy constituting the inner ring 21 is, for example, a 64 titanium alloy.
 外輪22は、リング状の部材である。外輪22は、上面22aと、底面22bと、内周面22cと、外周面22dとを有している。上面22a及び底面22bは、中心軸22eに直交している。底面22bは、上面22aの反対側の面である。内周面22c及び外周面22dは、上面22a及び底面22bに連なっている。外周面22dは、断面視において(中心軸22eを通る断面において)、直線状になっている。内周面22cは、断面視において、円弧状になっている。内周面22cと外周面22dとの距離は、上面22aから底面22bに向かうにしたがって一旦小さくなり、その後さらに底面22bに向かうにしたがって再び大きくなる。内周面22cは、摺動面を構成している。外輪22は、チタン合金製である。外輪22を構成するチタン合金は、例えば64チタン合金である。外輪22は、内周面22cが外周面21dと対向するように配置されている。 The outer ring 22 is a ring-shaped member. The outer ring 22 has an upper surface 22a, a bottom surface 22b, an inner peripheral surface 22c, and an outer peripheral surface 22d. The top surface 22a and the bottom surface 22b are orthogonal to the central axis 22e. The bottom surface 22b is a surface opposite to the top surface 22a. The inner peripheral surface 22c and the outer peripheral surface 22d are connected to the upper surface 22a and the bottom surface 22b. The outer peripheral surface 22d is linear in a cross-sectional view (in a cross section passing through the central axis 22e). The inner peripheral surface 22c has an arc shape in a sectional view. The distance between the inner peripheral surface 22c and the outer peripheral surface 22d once decreases from the upper surface 22a toward the bottom surface 22b, and then increases again toward the bottom surface 22b. The inner peripheral surface 22c constitutes a sliding surface. The outer ring 22 is made of a titanium alloy. The titanium alloy constituting the outer ring 22 is, for example, a 64 titanium alloy. The outer ring 22 is disposed so that the inner peripheral surface 22c faces the outer peripheral surface 21d.
 内輪21は、拡散層21fを有している。拡散層21fは、外周面21dにある。外輪22は、拡散層22fを有している。拡散層22fは、内周面22cにある。内輪21が拡散層21fを有さず、外輪22が拡散層22fを有していてもよい。外輪22が拡散層22fを有さず、内輪21が拡散層21fを有していてもよい。すなわち、内輪21及び外輪22のいずれか一方が、拡散層21f(拡散層22f)を有していればよい。 The inner ring 21 has a diffusion layer 21f. The diffusion layer 21f is on the outer peripheral surface 21d. The outer ring 22 has a diffusion layer 22f. The diffusion layer 22f is on the inner peripheral surface 22c. The inner ring 21 may not have the diffusion layer 21f, and the outer ring 22 may have the diffusion layer 22f. The outer ring 22 may not have the diffusion layer 22f, and the inner ring 21 may have the diffusion layer 21f. That is, any one of the inner ring 21 and the outer ring 22 only needs to have the diffusion layer 21f (diffusion layer 22f).
 拡散層21f及び拡散層22fは、拡散層10eと同様の構成を有している。より具体的には、拡散層21f(拡散層22f)中における窒素濃度は、0.5質量パーセント以下である。拡散層21f(拡散層22f)中における酸素濃度は、外周面21d(内周面22c)において、1.0質量パーセント以上8.0質量パーセント以下である。好ましくは、拡散層21f(拡散層22f)中における酸素濃度は、外周面21d(内周面22c)において、0.6質量パーセント以上6.0質量パーセント以下である。 The diffusion layer 21f and the diffusion layer 22f have the same configuration as the diffusion layer 10e. More specifically, the nitrogen concentration in the diffusion layer 21f (diffusion layer 22f) is 0.5 mass percent or less. The oxygen concentration in the diffusion layer 21f (diffusion layer 22f) is 1.0 mass percent or more and 8.0 mass percent or less on the outer peripheral surface 21d (inner peripheral surface 22c). Preferably, the oxygen concentration in the diffusion layer 21f (diffusion layer 22f) is 0.6 mass percent or more and 6.0 mass percent or less on the outer peripheral surface 21d (inner peripheral surface 22c).
 外周面21d(内周面22c)において拡散層21f(拡散層22f)の硬さは、480Hv以上1500Hv以下であってもよい。外周面21d(内周面22c)において拡散層21f(拡散層22f)の硬さは、4800Hv以上1200Hv以下であってもよい。 The hardness of the diffusion layer 21f (diffusion layer 22f) on the outer peripheral surface 21d (inner peripheral surface 22c) may be not less than 480 Hv and not more than 1500 Hv. The hardness of the diffusion layer 21f (diffusion layer 22f) on the outer peripheral surface 21d (inner peripheral surface 22c) may be 4800 Hv or more and 1200 Hv or less.
 ライナ23は、内輪21と外輪22との間に配置されている。より具体的には、ライナ23は、内周面22cに取り付けられている。ライナ23は、自己潤滑性の材料により構成されている。自己潤滑性の材料とは、相手材に対して摩擦係数が低い材料をいう。ライナ23には、例えばポリテトラフルオロエチレン繊維、アラミド繊維、ガラス繊維及びポリエステル繊維からなる群から選択される少なくとも1つの繊維を含む織布が用いられる。ライナ23には、ポリテトラフルオロエチレン、ポリアミド、ポリイミド、ポリフェニレンサルファイドからなる群から選択される少なくとも1つの材料を含む成形体が用いられてもよい。なお、球面すべり軸受20がライナ23を有していない場合には、例えば内輪21に給油孔を設けられていてもよい。 The liner 23 is disposed between the inner ring 21 and the outer ring 22. More specifically, the liner 23 is attached to the inner peripheral surface 22c. The liner 23 is made of a self-lubricating material. A self-lubricating material refers to a material having a lower coefficient of friction than the counterpart material. For the liner 23, for example, a woven fabric including at least one fiber selected from the group consisting of polytetrafluoroethylene fiber, aramid fiber, glass fiber, and polyester fiber is used. The liner 23 may be a molded body including at least one material selected from the group consisting of polytetrafluoroethylene, polyamide, polyimide, and polyphenylene sulfide. In addition, when the spherical plain bearing 20 does not have the liner 23, the oil supply hole may be provided in the inner ring 21, for example.
 (実施形態に係る球面すべり軸受の製造方法)
 以下に、実施形態に係る球面すべり軸受20の製造方法を説明する。
(Method for Manufacturing Spherical Plain Bearing According to Embodiment)
Below, the manufacturing method of the spherical plain bearing 20 which concerns on embodiment is demonstrated.
 図10は、実施形態に係る球面すべり軸受20の製造方法を示す工程図である。図10に示すように、球面すべり軸受20の製造方法は、内輪製造工程S5と、外輪製造工程S6と、ライナ取り付け工程S7と、組立工程S8とを有している。 FIG. 10 is a process diagram showing a method of manufacturing the spherical plain bearing 20 according to the embodiment. As shown in FIG. 10, the method for manufacturing the spherical plain bearing 20 includes an inner ring manufacturing step S5, an outer ring manufacturing step S6, a liner mounting step S7, and an assembly step S8.
 内輪製造工程S5においては、内輪21の製造が行われる。外輪製造工程S6においては、外輪22の製造が行われる。内輪製造工程S5及び外輪製造工程S6は、上記の実施形態に係る機械部品の製造方法にしたがって行われる。ライナ取り付け工程S7においては、内周面22cにライナ23が取り付けられる。ライナ23の取り付けは、ライナ23が織布で構成されている場合には、当該織布を内周面22cに貼付することにより行われる。ライナ23の取り付けは、ライナ23が樹脂成形体で構成されている場合には、内周面22cに対してライナ23を構成する樹脂材料を射出成形することにより行われる。 In the inner ring manufacturing step S5, the inner ring 21 is manufactured. In the outer ring manufacturing step S6, the outer ring 22 is manufactured. The inner ring manufacturing step S5 and the outer ring manufacturing step S6 are performed according to the method for manufacturing a machine part according to the above embodiment. In the liner attachment step S7, the liner 23 is attached to the inner peripheral surface 22c. When the liner 23 is composed of a woven fabric, the liner 23 is attached by sticking the woven fabric to the inner peripheral surface 22c. When the liner 23 is formed of a resin molded body, the liner 23 is attached by injection molding a resin material that forms the liner 23 on the inner peripheral surface 22c.
 組立工程S8においては、内輪21及び外輪22の組立が行われる。組立工程S8は、例えば塑性加工により行われる。より具体的な方法の1つとしては、組立工程S8においては、第1に、外輪22の内径を拡げる拡径工程が行われる。第2に、内径が拡げられた外輪22に、内輪21が挿入される。第3に、内輪21が挿入された状態で外輪22を再び縮径する縮径工程が行われる。以上により、球面すべり軸受20の製造が完了する。 In the assembly step S8, the inner ring 21 and the outer ring 22 are assembled. The assembly step S8 is performed by plastic processing, for example. As one of more specific methods, in the assembly step S8, firstly, a diameter expansion step for expanding the inner diameter of the outer ring 22 is performed. Second, the inner ring 21 is inserted into the outer ring 22 having an enlarged inner diameter. Thirdly, a diameter reducing process for reducing the diameter of the outer ring 22 in a state where the inner ring 21 is inserted is performed. Thus, the manufacture of the spherical plain bearing 20 is completed.
 (実施形態に係る球面すべり軸受の効果)
 以下に、実施形態に係る球面すべり軸受20の効果を説明する。
(Effect of the spherical plain bearing according to the embodiment)
Below, the effect of the spherical plain bearing 20 which concerns on embodiment is demonstrated.
 上記のとおり、球面すべり軸受20においては、内輪21及び外輪22の少なくとも一方が、拡散層10eと同様の構成の拡散層21f(拡散層22f)を有している。そのため、球面すべり軸受20によると、摺動面における靱性を維持しつつ、摺動面における硬さを改善することができる。 As described above, in the spherical plain bearing 20, at least one of the inner ring 21 and the outer ring 22 has the diffusion layer 21f (diffusion layer 22f) having the same configuration as the diffusion layer 10e. Therefore, according to the spherical plain bearing 20, the hardness in a sliding surface can be improved, maintaining the toughness in a sliding surface.
 球面すべり軸受20がライナ23を有している場合、ライナ23は自己潤滑性の材料により構成されているため、内輪21と外輪22との摩擦を低減することができる。ライナ23がポリテトラフルオロエチレン繊維、アラミド繊維、ガラス繊維及びポリエステル繊維からなる群から選択される少なくとも1の繊維を含む織布である場合、又はポリテトラフルオロエチレン、ポリアミド、ポリイミド、ポリフェニレンサルファイドからなる群から選択される少なくとも1の材料を含む成形体である場合、内輪21と外輪22との摩擦をさらに低減することができる。 When the spherical plain bearing 20 has the liner 23, the liner 23 is made of a self-lubricating material, so that friction between the inner ring 21 and the outer ring 22 can be reduced. When the liner 23 is a woven fabric including at least one fiber selected from the group consisting of polytetrafluoroethylene fiber, aramid fiber, glass fiber, and polyester fiber, or made of polytetrafluoroethylene, polyamide, polyimide, polyphenylene sulfide When the molded body includes at least one material selected from the group, the friction between the inner ring 21 and the outer ring 22 can be further reduced.
 以上のように本発明の実施形態について説明を行ったが、上述の実施形態を様々に変形することも可能である。また、本発明の範囲は、上述の実施形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更を含むことが意図される。 Although the embodiment of the present invention has been described above, the above-described embodiment can be variously modified. Further, the scope of the present invention is not limited to the above-described embodiment. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 上記の実施形態は、チタン合金製の機械部品に有利に適用され、より特定的には、チタン合金製のすべり軸受及び球面すべり軸受に特に有利に適用される。 The above-described embodiment is advantageously applied to a titanium alloy machine part, and more specifically, is particularly advantageously applied to a titanium alloy slide bearing and a spherical slide bearing.
 10 すべり軸受、10a 上面、10b 底面、10c 内周面、10d 外周面、10e 拡散層、20 球面すべり軸受、21 内輪、21a 上面、21b 底面、21c 内周面、21d 外周面、21e 中心軸、21f 拡散層、22 外輪、22a 上面、22b 底面、22c 内周面、22d 外周面、22e 中心軸、22f 拡散層、S1 準備工程、S2 浸酸工程、S3 冷却工程、S4 後処理工程、S5 内輪製造工程、S6 外輪製造工程、S7 ライナ取り付け工程、S8 組立工程、D 深さ。 10 sliding bearing, 10a top surface, 10b bottom surface, 10c inner circumferential surface, 10d outer circumferential surface, 10e diffusion layer, 20 spherical sliding bearing, 21 inner ring, 21a top surface, 21b bottom surface, 21c inner circumferential surface, 21d outer circumferential surface, 21e central axis, 21f diffusion layer, 22 outer ring, 22a top surface, 22b bottom surface, 22c inner peripheral surface, 22d outer peripheral surface, 22e central axis, 22f diffusion layer, S1 preparation step, S2 soaking step, S3 cooling step, S4 post-processing step, S5 inner ring Manufacturing process, S6 outer ring manufacturing process, S7 liner installation process, S8 assembly process, D depth.

Claims (11)

  1.  チタン合金製のすべり軸受であって、
     前記すべり軸受は、摺動面に酸素拡散層を備え、
     前記酸素拡散層中における窒素濃度は、0.5質量パーセント以下であり、
     前記酸素拡散層中における酸素濃度は、前記摺動面において0.6質量パーセント以上8.0質量パーセント以下である、すべり軸受。
    A plain bearing made of titanium alloy,
    The sliding bearing comprises an oxygen diffusion layer on the sliding surface,
    The nitrogen concentration in the oxygen diffusion layer is 0.5 mass percent or less,
    A slide bearing in which the oxygen concentration in the oxygen diffusion layer is 0.6 mass percent or more and 8.0 mass percent or less on the sliding surface.
  2.  前記酸素拡散層の硬さは、前記摺動面において、480Hv以上1200Hv以下である、請求項1に記載のすべり軸受。 The sliding bearing according to claim 1, wherein the hardness of the oxygen diffusion layer is not less than 480 Hv and not more than 1200 Hv on the sliding surface.
  3.  前記チタン合金は、64チタン合金である、請求項1又は2に記載のすべり軸受。 The plain bearing according to claim 1 or 2, wherein the titanium alloy is a 64 titanium alloy.
  4.  航空宇宙用すべり軸受である、請求項1~3のいずれか1項に記載のすべり軸受。 The slide bearing according to any one of claims 1 to 3, which is an aerospace slide bearing.
  5.  内輪と、
     外輪とを備え、
     前記内輪及び前記外輪は、チタン合金製であり、
     前記内輪及び前記外輪の少なくとも一方は、摺動面に酸素拡散層を有し、
     前記酸素拡散層中における窒素濃度は、0.5質量パーセント以下であり、
     前記酸素拡散層中における酸素濃度は、前記摺動面において0.6質量パーセント以上8.0質量パーセント以下である、球面すべり軸受。
    Inner ring,
    With an outer ring,
    The inner ring and the outer ring are made of a titanium alloy,
    At least one of the inner ring and the outer ring has an oxygen diffusion layer on the sliding surface,
    The nitrogen concentration in the oxygen diffusion layer is 0.5 mass percent or less,
    A spherical plain bearing in which the oxygen concentration in the oxygen diffusion layer is 0.6 mass percent or more and 8.0 mass percent or less on the sliding surface.
  6.  前記酸素拡散層の硬さは、前記摺動面において、480Hv以上1200Hv以下である、請求項5に記載の球面すべり軸受。 The spherical plain bearing according to claim 5, wherein the hardness of the oxygen diffusion layer is not less than 480 Hv and not more than 1200 Hv on the sliding surface.
  7.  前記チタン合金は、64チタン合金である、請求項5又は6に記載の球面すべり軸受。 The spherical plain bearing according to claim 5 or 6, wherein the titanium alloy is a 64 titanium alloy.
  8.  前記内輪と前記外輪との間に配置される自己潤滑性のライナをさらに備える、請求項5~7のいずれか1項に記載の球面すべり軸受。 The spherical plain bearing according to any one of claims 5 to 7, further comprising a self-lubricating liner disposed between the inner ring and the outer ring.
  9.  前記ライナは、ポリテトラフルオロエチレン繊維、アラミド繊維、ガラス繊維及びポリエステル繊維からなる群から選択される少なくとも1つの繊維を含む織布である、請求項8に記載の球面すべり軸受。 The spherical plain bearing according to claim 8, wherein the liner is a woven fabric including at least one fiber selected from the group consisting of polytetrafluoroethylene fiber, aramid fiber, glass fiber, and polyester fiber.
  10.  前記ライナは、ポリテトラフルオロエチレン、ポリアミド、ポリイミド、ポリフェニレンサルファイドからなる群から選択される少なくとも1つの材料を含む成形体である、請求項8に記載の球面すべり軸受。 The spherical plain bearing according to claim 8, wherein the liner is a molded body including at least one material selected from the group consisting of polytetrafluoroethylene, polyamide, polyimide, and polyphenylene sulfide.
  11.  航空宇宙用球面すべり軸受である、請求項5~10のいずれか1項に記載の球面すべり軸受。 The spherical plain bearing according to any one of claims 5 to 10, which is an aerospace spherical plain bearing.
PCT/JP2019/008365 2018-03-28 2019-03-04 Sliding bearing and spherical sliding bearing WO2019188014A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018062212A JP2019173862A (en) 2018-03-28 2018-03-28 Slide bearing and spherical slide bearing
JP2018-062212 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019188014A1 true WO2019188014A1 (en) 2019-10-03

Family

ID=68061301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008365 WO2019188014A1 (en) 2018-03-28 2019-03-04 Sliding bearing and spherical sliding bearing

Country Status (2)

Country Link
JP (1) JP2019173862A (en)
WO (1) WO2019188014A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097914A (en) * 2000-07-18 2002-04-05 Fuji Oozx Inc Engine valve made of titanium alloy and method of manufacturing it
JP2006162068A (en) * 2004-12-03 2006-06-22 Minebea Co Ltd Manufacturing method of self-lubricating plain bearing, self-lubricating plain bearing, bearing element member and self-lubricating spherical plain bearing
JP2007255712A (en) * 2006-03-21 2007-10-04 Roller Bearing Co Of America Inc Liner and titanium spherical sliding bearing with surface-treated surface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097914A (en) * 2000-07-18 2002-04-05 Fuji Oozx Inc Engine valve made of titanium alloy and method of manufacturing it
JP2006162068A (en) * 2004-12-03 2006-06-22 Minebea Co Ltd Manufacturing method of self-lubricating plain bearing, self-lubricating plain bearing, bearing element member and self-lubricating spherical plain bearing
JP2007255712A (en) * 2006-03-21 2007-10-04 Roller Bearing Co Of America Inc Liner and titanium spherical sliding bearing with surface-treated surface

Also Published As

Publication number Publication date
JP2019173862A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
WO1998044270A1 (en) Rolling bearing
US9816557B2 (en) Tapered roller bearing
WO2018181285A1 (en) Machine component and sliding bearing
WO2019189087A1 (en) Bearing part
JP2002097914A (en) Engine valve made of titanium alloy and method of manufacturing it
JP2009221493A (en) Rolling bearing, method for manufacturing race ring
JP5163183B2 (en) Rolling bearing
JP2002364648A (en) Rolling bearing
WO2019188014A1 (en) Sliding bearing and spherical sliding bearing
JP2004052997A (en) Rolling device and manufacturing method
JP2007186760A (en) Manufacturing method of bearing ring for rolling bearing, and rolling bearing
WO2022202922A1 (en) Track wheel and shaft
WO2019188013A1 (en) Sliding bearing and spherical sliding bearing
JP2011190921A (en) Thrust roller bearing
WO2020189402A1 (en) Sliding bearing made of titanium alloy
JP2007127263A (en) Rolling member and rolling device
JP2023047716A (en) Machine component
JP6562179B1 (en) Method for manufacturing rolling ring bearing ring and method for manufacturing rolling bearing
JP2009236146A (en) Rolling bearing cage, rolling bearing, and rolling bearing cage manufacturing method
JP2018168433A (en) Bearing part, rolling bearing, and process for production of bearing part
JP2020164887A (en) Titanium alloy slide bearing
JP7320780B2 (en) machine parts
JP2008111462A (en) Rolling element and rolling device
JP2020152936A (en) Machine part
WO2018181140A1 (en) Mechanical component and surface treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775238

Country of ref document: EP

Kind code of ref document: A1