WO2019187969A1 - Polishing composition - Google Patents

Polishing composition Download PDF

Info

Publication number
WO2019187969A1
WO2019187969A1 PCT/JP2019/008022 JP2019008022W WO2019187969A1 WO 2019187969 A1 WO2019187969 A1 WO 2019187969A1 JP 2019008022 W JP2019008022 W JP 2019008022W WO 2019187969 A1 WO2019187969 A1 WO 2019187969A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing composition
polyvinyl alcohol
dispersant
weight
Prior art date
Application number
PCT/JP2019/008022
Other languages
French (fr)
Japanese (ja)
Inventor
公亮 土屋
真希 浅田
大輝 市坪
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to JP2020510492A priority Critical patent/JP7450532B2/en
Publication of WO2019187969A1 publication Critical patent/WO2019187969A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing composition.
  • This application claims priority based on Japanese Patent Application No. 2018-69647 filed on Mar. 30, 2018, the entire contents of which are incorporated herein by reference.
  • Precision polishing using a polishing composition is performed on material surfaces such as metal, metalloid, nonmetal, and oxides thereof.
  • the surface of a silicon wafer used as a component of a semiconductor device or the like is generally finished into a high-quality mirror surface through a lapping process (rough polishing process) and a polishing process (precision polishing process).
  • the polishing process typically includes a preliminary polishing process (preliminary polishing process) and a final polishing process (final polishing process).
  • Patent document 1 is mentioned as technical literature regarding the polishing composition mainly used for the use which grinds semiconductor substrates, such as a silicon wafer.
  • a polishing composition used in a finishing polishing process (particularly, a polishing polishing process for a semiconductor substrate such as a silicon wafer or other substrate) is required to have a performance that realizes a surface having low haze and less surface defects after polishing.
  • Many polishing compositions for such applications contain a water-soluble polymer for the purpose of protecting the surface of a polishing object and improving wettability in addition to abrasive grains and water.
  • Patent Document 1 discloses a polishing composition for silicon wafers containing hydroxyethyl cellulose or polyvinyl alcohol (PVA) as a water-soluble polymer.
  • the wettability of the surface after polishing can be stably improved.
  • the conventional polishing composition using the polyvinyl alcohol polymer tends to be insufficient in reducing the surface defects.
  • This invention is made
  • a polishing composition comprising abrasive grains and water is provided.
  • the polishing composition further includes a polyvinyl alcohol polymer and a dispersant for the polyvinyl alcohol polymer.
  • the dispersant includes an ether bond in the molecule.
  • the molar ratio of the content of the polyvinyl alcohol polymer to the content of the dispersant is 0.01 or more and 10 or less.
  • the polishing composition containing the polyvinyl alcohol-based polymer in which aggregation is suppressed, surface defects of the polished object after polishing are appropriately reduced.
  • polyvinyl alcohol polymer dispersant means that the dispersibility of the polyvinyl alcohol polymer is improved by adding it to the polishing composition as compared with the polishing composition not containing the dispersant. It refers to an agent (compound) having the performance of Typically, the dispersant for the polyvinyl alcohol polymer is a compound having the ability to improve the dispersion stability of the polyvinyl alcohol polymer in an aqueous solution. In the present specification, unless otherwise specified, what is simply described as “dispersant” means “a dispersant for a polyvinyl alcohol polymer”.
  • the “surface defect” in the present specification includes LPD (Light Point Defectives) which means a foreign substance generally called a particle.
  • LPD Light Point Defectives
  • the occurrence of such surface defects can be evaluated by measuring the number of LPDs detected by a wafer inspection apparatus used in examples described later.
  • the polyvinyl alcohol-based polymer has a weight average molecular weight of 3 ⁇ 10 4 or more. Since a polyvinyl alcohol polymer having such a weight average molecular weight tends to aggregate more easily, it is meaningful to apply the present invention to a polishing composition containing a polyvinyl alcohol polymer having the above weight average molecular weight.
  • the weight average molecular weight of the dispersant is smaller than the weight average molecular weight of the polyvinyl alcohol polymer. According to such a configuration, it is possible to realize a polishing composition capable of appropriately suppressing aggregation of the polyvinyl alcohol-based polymer and reducing surface defects of the object to be polished.
  • the dispersant contains polyoxyethylene alkyl ether. According to the configuration containing such a dispersant, it is possible to realize a polishing composition in which aggregation of the polyvinyl alcohol-based polymer is more appropriately suppressed and surface defect reduction properties are further improved.
  • the dispersant has a weight average molecular weight of 1500 or less. According to the configuration containing such a dispersant, it is possible to realize a polishing composition in which aggregation of the polyvinyl alcohol-based polymer is more appropriately suppressed and surface defect reduction properties are further improved.
  • the abrasive grains are silica particles.
  • the surface defect defects can be effectively reduced while maintaining the polishing rate.
  • the polishing composition according to a preferred embodiment disclosed herein is used for polishing a surface made of silicon.
  • the surface of the polishing object is protected by the action of the polyvinyl alcohol polymer in which aggregation is suppressed by the action of the dispersant in polishing where the polishing object is a surface made of silicon.
  • defects on the surface can be appropriately reduced.
  • the polishing composition disclosed herein contains abrasive grains.
  • the abrasive grains serve to mechanically polish the surface of the object to be polished.
  • the material and properties of the abrasive grains are not particularly limited, and can be appropriately selected depending on the purpose of use and usage of the polishing composition.
  • Examples of the abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles.
  • the inorganic particles include silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, oxide particles such as bengara particles; Examples thereof include nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate.
  • Specific examples of the organic particles include polymethyl methacrylate (PMMA) particles and poly (meth) acrylic acid particles (here, (meth) acrylic acid is a generic term for acrylic acid and methacrylic acid). And polyacrylonitrile particles. Such abrasive grains may be used singly or in combination of two or more.
  • abrasive grains inorganic particles are preferable, and particles made of metal or metalloid oxide are preferable, and silica particles are particularly preferable.
  • a polishing composition that can be used for polishing (for example, finish polishing) of an object to be polished having a surface made of silicon, such as a silicon wafer described later, it is particularly meaningful to employ silica particles as abrasive grains.
  • the technique disclosed here can be preferably implemented, for example, in a mode in which the abrasive grains are substantially composed of silica particles.
  • substantially means 95% by weight or more (preferably 98% by weight or more, more preferably 99% by weight or more, or 100% by weight) of the particles constituting the abrasive grains. It means silica particles.
  • silica particles include colloidal silica, fumed silica, precipitated silica and the like.
  • Silica particles can be used singly or in combination of two or more.
  • the use of colloidal silica is particularly preferred because it is easy to obtain a polished surface with excellent surface quality after polishing.
  • colloidal silica for example, colloidal silica produced using water glass (Na silicate) as a raw material by an ion exchange method, or alkoxide colloidal silica (colloidal silica produced by hydrolysis condensation reaction of alkoxysilane) is preferably employed. be able to.
  • Colloidal silica can be used singly or in combination of two or more.
  • the true specific gravity of the abrasive constituent material is preferably 1.5 or more, more preferably 1.6 or more, and even more preferably 1.7 or more.
  • the upper limit of the true specific gravity of the abrasive grain constituent material is not particularly limited, but is typically 2.3 or less, for example, 2.2 or less.
  • a measured value by a liquid replacement method using ethanol as a replacement liquid can be adopted.
  • the BET diameter of the abrasive grains is not particularly limited, but is preferably 5 nm or more, more preferably 10 nm or more from the viewpoint of polishing efficiency and the like. From the viewpoint of obtaining a higher polishing effect (for example, effects such as haze reduction and defect removal), the BET diameter is preferably 15 nm or more, and more preferably 20 nm or more (for example, more than 20 nm). Further, from the viewpoint of preventing scratches, the BET diameter of the abrasive grains is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 40 nm or less.
  • the technique disclosed herein is preferably applied to polishing in which a high-quality surface is required after polishing because a high-quality surface (for example, a surface having a small number of LPDs) is easily obtained.
  • a high-quality surface for example, a surface having a small number of LPDs
  • an abrasive having a BET diameter of 35 nm or less is preferable.
  • the particle diameter calculated by the formula.
  • the specific surface area can be measured using, for example, a surface area measuring device manufactured by Micromeritex Corporation, a trade name “Flow Sorb II 2300”.
  • the shape (outer shape) of the abrasive grains may be spherical or non-spherical.
  • specific examples of the non-spherical particles include a peanut shape (that is, a peanut shell shape), a bowl shape, a confetti shape, a rugby ball shape, and the like.
  • abrasive grains in which many of the particles have a peanut shape or a bowl shape can be preferably used.
  • the average value of the major axis / minor axis ratio (average aspect ratio) of the abrasive grains is theoretically 1.0 or more, preferably 1.05 or more, more preferably 1.1 or more. It is. By increasing the average aspect ratio, higher polishing efficiency can be realized.
  • the average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, and still more preferably 1.5 or less, from the viewpoint of reducing scratches.
  • the shape (outer shape) and average aspect ratio of the abrasive grains can be grasped by, for example, observation with an electron microscope.
  • a predetermined number for example, 200
  • SEM scanning electron microscope
  • the value obtained by dividing the length of the long side (major axis value) by the length of the short side (minor axis value) is the major axis / minor axis ratio (aspect ratio).
  • An average aspect ratio can be obtained by arithmetically averaging the aspect ratios of the predetermined number of particles.
  • the polishing composition disclosed herein contains a polyvinyl alcohol polymer.
  • the polyvinyl alcohol polymer is a water-soluble organic compound (typically a water-soluble polymer) containing a vinyl alcohol unit as its repeating unit.
  • the vinyl alcohol unit (hereinafter also referred to as “VA unit”) is a structural portion represented by the following chemical formula: —CH 2 —CH (OH) —.
  • the VA unit can be produced, for example, by hydrolyzing (saponifying) a repeating unit (—CH 2 —CH (OCOCH 3 ) —) having a structure in which vinyl acetate is vinyl polymerized. According to the polishing composition containing a polyvinyl alcohol polymer, the wettability of the surface of the polishing object is improved, and a surface having low haze and few surface defects is easily realized after polishing.
  • the polyvinyl alcohol polymer has a hydroxy group (OH group) in the molecule.
  • a polyvinyl alcohol-type polymer has a property which is easy to aggregate by the effect
  • the ability to reduce surface defects after polishing may decrease.
  • the use of a polyvinyl alcohol polymer and a polyvinyl alcohol polymer dispersant described later in combination effectively suppresses aggregation of the polyvinyl alcohol polymer and improves the dispersion stability. Compositions can be realized.
  • the polyvinyl alcohol-based polymer may contain only VA units as repeating units, and may contain repeating units other than VA units (hereinafter also referred to as “non-VA units”) in addition to VA units.
  • the non-VA unit includes an oxyalkylene group, a carboxy group, a sulfo group, an amino group, a hydroxyl group, an amide group, an imide group, a nitrile group, an ether group, an ester group, and these It may be a repeating unit having at least one structure selected from the salts of
  • the non-VA unit is a repeating unit having at least one structure selected from oxyalkylene groups, carboxy groups, sulfo groups, amino groups, hydroxyl groups, amide groups, imide groups, nitrile groups, ester groups, and salts thereof.
  • the polyvinyl alcohol-based polymer may be a random copolymer containing VA units and non-VA units, or may be a block copolymer or a graft copolymer.
  • the polyvinyl alcohol-based polymer may include only one type of non-VA unit as the non-VA unit, or may include two or more types of non-VA units.
  • the ratio of the number of moles of VA units to the number of moles of all repeating units constituting the polyvinyl alcohol polymer may be, for example, 5% or more, 10% or more, 20% or more, or 30% or more. .
  • the ratio of the number of moles of the VA unit may be 50% or more, 65% or more, 75% or more, 80% or more, It may be 90% or more (for example, 95% or more, or 98% or more).
  • Substantially 100% of the repeating units constituting the polyvinyl alcohol polymer may be VA units.
  • substantially 100% means that at least intentionally, the polyvinyl alcohol polymer does not contain a non-VA unit.
  • the surface of the object to be polished has high wettability, and the surface having few surface defects after polishing is obtained. Easy to realize. Moreover, since PVA with a high saponification tendency tends to aggregate more easily, it is meaningful to apply this invention to PVA with a high saponification degree (for example, PVA with a saponification degree 98% or more).
  • PVA polyvinyl alcohol
  • the ratio of the number of moles of VA units to the number of moles of all repeating units constituting the polyvinyl alcohol-based polymer may be, for example, 95% or less, may be 90% or less, and may be 80% or less. It may be 70% or less.
  • the content of VA units (content based on weight) in the polyvinyl alcohol polymer may be, for example, 5% by weight or more, 10% by weight or more, 20% by weight or more, or 30% by weight or more.
  • the content of the VA unit may be 50% by weight or more (eg, more than 50% by weight), 70% by weight or more, and 80% by weight or more ( For example, it may be 90% by weight or more, or 95% by weight or more, or 98% by weight or more).
  • Substantially 100% by weight of the repeating units constituting the polyvinyl alcohol-based polymer may be VA units.
  • substantially 100% by weight means that at least intentionally, a non-VA unit is not included as a repeating unit constituting the polyvinyl alcohol-based polymer.
  • the content of VA units in the polyvinyl alcohol-based polymer may be, for example, 95% by weight or less, 90% by weight or less, 80% by weight or less, or 70% by weight or less. .
  • the polyvinyl alcohol-based polymer may contain a plurality of polymer chains having different VA unit contents in the same molecule.
  • the polymer chain refers to a part (segment) that constitutes a part of a polymer of one molecule.
  • the polyvinyl alcohol-based polymer has a polymer chain A having a VA unit content of more than 50% by weight and a VA unit content of less than 50% by weight (that is, a non-VA unit content of more than 50% by weight).
  • the polymer chain B may be contained in the same molecule.
  • the polymer chain A may contain only VA units as repeating units, and may contain non-VA units in addition to VA units.
  • the content of the VA unit in the polymer chain A may be 60% by weight or more, 70% by weight or more, 80% by weight or more, or 90% by weight or more. In some embodiments, the content of VA units in the polymer chain A may be 95% by weight or more, or 98% by weight or more. Substantially 100% by weight of the repeating units constituting the polymer chain A may be VA units.
  • the polymer chain B may contain only non-VA units as repeating units, and may contain VA units in addition to non-VA units.
  • the content of non-VA units in the polymer chain B may be 60% by weight or more, 70% by weight or more, 80% by weight or more, or 90% by weight or more. In some embodiments, the content of non-VA units in the polymer chain B may be 95% by weight or more, or 98% by weight or more. Substantially 100% by weight of the repeating units constituting the polymer chain B may be non-VA units.
  • polyvinyl alcohol polymer containing polymer chain A and polymer chain B in the same molecule examples include block copolymers and graft copolymers containing these polymer chains.
  • the graft copolymer may be a graft copolymer having a structure in which a polymer chain B (side chain) is grafted to a polymer chain A (main chain), and the polymer chain B (main chain) is polymer chain A (side). It may be a graft copolymer having a structure in which the chain) is grafted.
  • a polyvinyl alcohol polymer having a structure in which a polymer chain B is grafted to a polymer chain A can be used.
  • Examples of the polymer chain B include a polymer chain having a repeating unit derived from an N-vinyl type monomer as a main repeating unit, and a polymer having a repeating unit derived from an N- (meth) acryloyl type monomer as a main repeating unit.
  • the main repeating unit means a repeating unit contained in an amount exceeding 50% by weight unless otherwise specified.
  • a polymer chain having an N-vinyl type monomer as a main repeating unit that is, an N-vinyl polymer chain may be mentioned.
  • the content of repeating units derived from N-vinyl type monomers in the N-vinyl polymer chain is typically more than 50% by weight, may be 70% by weight or more, and is 85% by weight or more. It may be 95% by weight or more.
  • the polymer unit B may be a repeating unit derived from substantially all N-vinyl type monomers.
  • N-vinyl type monomer examples include a monomer having a nitrogen-containing heterocyclic ring (for example, a lactam ring) and an N-vinyl chain amide.
  • N-vinyl lactam type monomers include N-vinyl pyrrolidone, N-vinyl piperidone, N-vinyl morpholinone, N-vinyl caprolactam, N-vinyl-1,3-oxazin-2-one, N-vinyl- 3,5-morpholinedione and the like can be mentioned.
  • Specific examples of the N-vinyl chain amide include N-vinylacetamide, N-vinylpropionic acid amide, N-vinylbutyric acid amide and the like.
  • the polymer chain B is, for example, an N-vinyl polymer chain in which more than 50% by weight (for example, 70% by weight or more, 85% by weight or more, or 95% by weight or more) of the repeating unit is an N-vinylpyrrolidone unit. obtain. Substantially all of the repeating units constituting the polymer chain B may be N-vinylpyrrolidone units.
  • polymer chain B includes a polymer chain having a repeating unit derived from an N- (meth) acryloyl type monomer as a main repeating unit, that is, an N- (meth) acryloyl polymer chain.
  • the content of repeating units derived from the N- (meth) acryloyl type monomer in the N- (meth) acryloyl-based polymer chain is typically more than 50% by weight and may be 70% by weight or more. % By weight or 95% by weight or more may be used. Repeating units derived from N- (meth) acryloyl type monomers may be sufficient as the polymer chain B.
  • N- (meth) acryloyl type monomer examples include a chain amide having an N- (meth) acryloyl group and a cyclic amide having an N- (meth) acryloyl group.
  • chain amides having an N- (meth) acryloyl group include (meth) acrylamide; N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl ( N-alkyl (meth) acrylamides such as (meth) acrylamide and Nn-butyl (meth) acrylamide; N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-dipropyl (meta) ) Acrylamide, N, N-diisopropyl (meth) acrylamide, N, N-dialkyl (meth) acrylamide
  • polymer chain B examples include a polymer chain containing an oxyalkylene unit as a main repeating unit, that is, an oxyalkylene polymer chain.
  • the content of oxyalkylene units in the oxyalkylene polymer chain is typically more than 50% by weight, 70% by weight or more, 85% by weight or more, 95% by weight or more. There may be. Substantially all of the repeating units contained in the polymer chain B may be oxyalkylene units.
  • oxyalkylene units include oxyethylene units, oxypropylene units, oxybutylene units, and the like. Each such oxyalkylene unit can be a repeating unit derived from the corresponding alkylene oxide.
  • the oxyalkylene unit contained in the oxyalkylene polymer chain may be one kind or two or more kinds. For example, it may be an oxyalkylene polymer chain containing a combination of oxyethylene units and oxypropylene units. In the oxyalkylene polymer chain containing two or more types of oxyalkylene units, these oxyalkylene units may be a random copolymer of a corresponding alkylene oxide, and may be a block copolymer or a graft copolymer. Also good.
  • polymer chain B examples include a polymer chain containing, as a main repeating unit, an alkyl vinyl ether unit, a structural unit obtained by acetalizing polyvinyl alcohol and an aldehyde, and the like.
  • vinyl ether units alkyl vinyl ether units
  • vinyl ester units derived from monocarboxylic acids having 1 to 7 carbon atoms (monocarboxylic acid vinyl ester units)
  • Examples of vinyl ether units having an alkyl group having 1 to 10 carbon atoms include propyl vinyl ether units, butyl vinyl ether units, 2-ethylhexyl vinyl ether units and the like.
  • Examples of vinyl ester units derived from monocarboxylic acids having 1 to 7 carbon atoms include vinyl propanoate units, vinyl butanoate units, vinyl pentanoate units, vinyl hexanoate units, and the like.
  • the polyvinyl alcohol polymer used in the polishing composition disclosed herein may be unmodified PVA (non-modified PVA), and is a modified PVA that is a copolymer containing VA units and non-VA units. It may be. A combination of non-modified PVA and modified PVA may be used.
  • the polyvinyl alcohol polymer used in the polishing composition disclosed herein preferably does not contain an ether bond.
  • the present invention even when non-modified PVA is used as the polyvinyl alcohol polymer, a polishing composition in which aggregation of the non-modified PVA is suitably suppressed can be obtained. For this reason, it is more meaningful to apply the present invention to a polishing composition containing non-modified PVA.
  • the content of the modified PVA is preferably less than 50% by weight, more preferably based on the total amount of the polyvinyl alcohol-based polymer. It is 30% by weight or less, more preferably 10% by weight or less, 5% by weight or less, or 1% by weight or less.
  • polyvinyl alcohol (PVA) containing only non-modified PVA can be preferably used as the polyvinyl alcohol-based polymer.
  • the weight average molecular weight (Mw) of the polyvinyl alcohol polymer used in the polishing composition disclosed herein is not particularly limited.
  • the Mw of the polyvinyl alcohol polymer is usually 2 ⁇ 10 3 or more, may be 5 ⁇ 10 3 or more, and may be 1 ⁇ 10 4 or more.
  • the Mw of the polyvinyl alcohol polymer increases, the wettability of the surface after polishing tends to increase. Further, since the dispersion stability of the polyvinyl alcohol polymer tends to decrease as the Mw of the polyvinyl alcohol polymer increases, the significance of application of the present invention increases.
  • the Mw of the polyvinyl alcohol polymer used in the polishing composition disclosed herein is preferably 3 ⁇ 10 4 or more, more preferably 4 ⁇ 10 4 or more, and further preferably 5 ⁇ 10 4 or more, particularly preferably 6 ⁇ 10 4 or more (for example, 6.5 ⁇ 10 4 or more).
  • the upper limit of Mw of the polyvinyl alcohol polymer used in the polishing composition disclosed herein is not particularly limited.
  • the Mw of the polyvinyl alcohol-based polymer is usually suitably 100 ⁇ 10 4 or less, preferably 30 ⁇ 10 4 or less, and may be 20 ⁇ 10 4 or less (for example, 15 ⁇ 10 4 or less). From the viewpoint of achieving both the polishing rate and the surface protection of the object to be polished, the Mw of the polyvinyl alcohol-based polymer may be 10 ⁇ 10 4 or less, or 8 ⁇ 10 4 or less.
  • the weight average molecular weight (Mw) of the polyvinyl alcohol polymer, the dispersant, the water-soluble polymer and the surfactant is a value based on an aqueous gel permeation chromatography (GPC) (aqueous, polyethylene oxide equivalent). ) Can be adopted.
  • GPC gel permeation chromatography
  • HLC-8320GPC aqueous, polyethylene oxide equivalent
  • the polishing composition disclosed herein contains a polyvinyl alcohol polymer dispersant (hereinafter also simply referred to as “dispersant”). According to the technique disclosed herein, the dispersant has at least one ether bond in the molecule. According to the polishing composition containing both the dispersant and the polyvinyl alcohol-based polymer, it is possible to realize a polishing composition in which aggregation of the polyvinyl alcohol-based polymer is suppressed and dispersion stability is improved.
  • a polyvinyl alcohol polymer dispersant hereinafter also simply referred to as “dispersant”. According to the technique disclosed herein, the dispersant has at least one ether bond in the molecule. According to the polishing composition containing both the dispersant and the polyvinyl alcohol-based polymer, it is possible to realize a polishing composition in which aggregation of the polyvinyl alcohol-based polymer is suppressed and dispersion stability is improved.
  • the dispersant contained in the polishing composition disclosed herein various compounds can be used with an appropriate content without any limitation as long as an ether bond is included in the molecule.
  • the dispersant contained in the polishing composition disclosed herein may be a compound having one ether bond in the molecule or a polyether having two or more ether bonds in the molecule. .
  • the dispersant may be a polymer compound or a compound that is not a polymer.
  • the ether bond may be contained in the polymer main chain, in the side chain, or in both the main chain and the side chain. It may be.
  • the dispersant may generally be a compound that can be grasped as a surfactant.
  • the said dispersing agent can be used individually by 1 type or in combination of 2 or more types.
  • the dispersant is preferably water-soluble.
  • Examples of compounds having one ether bond in the molecule include diethyl ether and tetrahydrofuran.
  • the dispersant is a polyether having two or more ether bonds in the molecule. It is preferable.
  • a polyether having an ether bond in the main chain may be mentioned.
  • the polyether having an ether bond in the main chain include oxyalkylene polymers such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol; polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl amine, Polyoxyalkylene derivatives such as polyoxyethylene fatty acid esters, polyoxyethylene glyceryl ether fatty acid esters, polyoxyethylene sorbitan fatty acid esters (for example, polyoxyalkylene adducts); copolymers of plural types of oxyalkylene (for example, diblock) Type copolymer, triblock type copolymer, random type copolymer, alternating copolymer); and the like.
  • other examples include cellulose derivatives, starch derivatives, and the like.
  • a block copolymer of ethylene oxide (EO) and propylene oxide (PO) (diblock copolymer, PEO (polyethylene oxide) -PPO (polypropylene oxide) -PEO triblock, PPO- Oxyalkylene copolymers such as PEO-PPO type triblock copolymers, etc., random copolymers of EO and PO;
  • Oxyalkylene polymers such as polyethylene glycol; polyoxyethylene propyl ether, polyoxyethylene butyl ether, polyoxyethylene pentyl ether, polyoxyethylene hexyl ether, polyoxyethylene octyl ether, polyoxyethylene-2-ethylhexyl ether, polyoxyethylene Nonyl ether, polyoxyethylene decyl ether, polyoxyethylene isodecyl ether, polyoxyethylene tridecyl ether, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxy
  • cellulose derivatives such as hydroxyethyl cellulose (HEC), hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose; pregelatinized starch, pullulan, carboxymethyl starch, And starch derivatives such as cyclodextrin;
  • dispersants that can be suitably used include polyethers having an ether bond in the side chain.
  • examples of the polyether having an ether bond in the side chain include polyacryloylmorpholine (PACMO).
  • polyoxyethylene alkyl ether HEC and PACMO may be mentioned as dispersants suitably used for the polishing composition disclosed herein.
  • polyoxyethylene alkyl ether is preferred.
  • the number of carbon atoms of the alkyl group in the polyoxyethylene alkyl ether that can be used here is not particularly limited.
  • the alkyl group preferably has 5 or more carbon atoms, more preferably 6 or more, and still more preferably 7 or more.
  • the alkyl group preferably has 12 or less carbon atoms, more preferably 11 or less, still more preferably 10 or less, and particularly preferably 9 or less.
  • the alkyl group has 8 carbon atoms, for example.
  • the number of moles of ethylene oxide added in the polyoxyethylene alkyl ether is not particularly limited, but is preferably 4 or more, more preferably 5 or more, still more preferably 6 or more, and preferably 10 or less.
  • the dispersant used in the polishing composition disclosed herein is preferably a polyoxyethylene octyl ether having an ethylene oxide addition mole number of 4 to 10 (for example, 6). Can be used.
  • the ratio of the content of the polyvinyl alcohol polymer and the dispersant contained in the polishing composition is appropriate. It is preferably designed to be in the range.
  • the molar ratio of the content of the polyvinyl alcohol-based polymer to the content of the dispersant in the polishing composition is preferably 0.01 or more and 10 or less, more preferably 0.02 or more and 5 or less (for example, 0.8. 04 to 4).
  • the molar ratio of the content of the polyvinyl alcohol polymer to the content of the dispersant in the polishing composition is 1 or less. Preferably, it is 0.5 or less, more preferably 0.1 or less (for example, 0.07 or less). Moreover, the molar ratio of the content of the polyvinyl alcohol polymer to the content of the dispersant in such an embodiment is usually 0.01 or more, preferably 0.02 or more, more preferably 0.03 or more. Yes, more preferably 0.04 or more. When the polyvinyl alcohol polymer and the dispersant are contained at such a blending ratio, aggregation of the polyvinyl alcohol polymer is appropriately suppressed, and a polishing composition that can reduce surface defects after polishing is easily realized.
  • a polyoxyalkylene derivative such as polyoxyethylene alkyl ether
  • the content of the polyvinyl alcohol-based polymer relative to the content of the dispersant in the polishing composition Is preferably 15 or less, more preferably 10 or less, and even more preferably 5 or less (for example, 4 or less).
  • the molar ratio of the content of the polyvinyl alcohol polymer to the content of the dispersant in such an embodiment is usually 0.1 or more, preferably 0.3 or more, more preferably 0.5 or more. Yes, more preferably 1 or more.
  • the weight average molecular weight (Mw) of the dispersant is not particularly limited.
  • the Mw of the dispersant is usually 100 or more, preferably 200 or more, more preferably 300 or more.
  • Mw of a dispersing agent is 100x10 ⁇ 4 > or less normally, Preferably it is 70x10 ⁇ 4 > or less, More preferably, it is 50x10 ⁇ 4 > or less.
  • the Mw of the dispersant is preferably 3000 or less, more preferably 1500 or less, still more preferably 700 or less, and particularly preferably 500. It is as follows.
  • the Mw of the dispersant is preferably 100 or more, more preferably 200 or more, and still more preferably 300 or more. According to the polishing composition containing the dispersant having Mw in such a range, surface defects after polishing can be highly reduced.
  • the Mw of the dispersant may be 1 ⁇ 10 4 or more, and 5 ⁇ 10 4 may be more, it may also be 10 ⁇ 10 4 or more, may be 20 ⁇ 10 4 or more. Further, the Mw of the dispersant may be 100 ⁇ 10 4 or less, 50 ⁇ 10 4 or less, 45 ⁇ 10 4 or less, or 40 ⁇ 10 4 or less. .
  • the Mw of the dispersant is smaller than the Mw of the polyvinyl alcohol polymer. According to the polishing composition containing the dispersant having Mw, the polished surface can be appropriately protected, and surface defects after polishing can be highly reduced.
  • a compound having an Mw of less than 1 ⁇ 10 4 and a compound having an Mw of 1 ⁇ 10 4 or more may be used in combination.
  • a polyoxyalkylene derivative such as polyoxyethylene alkyl ether and a water-soluble polymer containing a repeating unit having an ether bond (typically HEC or PACMO) may be used in combination as the dispersant.
  • HEC or PACMO water-soluble polymer containing a repeating unit having an ether bond
  • the dispersant used in the polishing composition disclosed herein preferably contains a polyoxyalkylene derivative such as polyoxyethylene alkyl ether.
  • the content of the water-soluble polymer with respect to the entire dispersant is preferably more than 50% by weight, more preferably 70% by weight or more. Yes, more preferably 80% by weight or more, 85% by weight or more, or 90% by weight or more.
  • a compound having an Mw of less than 1 ⁇ 10 4 may be used alone.
  • a polyoxyalkylene derivative such as polyoxyethylene alkyl ether is used as a dispersant.
  • the polishing composition disclosed herein may further contain a water-soluble polymer other than the above-described polyvinyl alcohol-based polymer and dispersant as necessary, as long as the effects of the present invention are not significantly hindered.
  • the water-soluble polymer may have at least one functional group selected from a cationic group, an anionic group, and a nonionic group in the molecule.
  • the water-soluble polymer may have, for example, a hydroxyl group, a carboxy group, a sulfo group, a primary amide structure, a heterocyclic structure, a vinyl structure, etc. in the molecule. From the viewpoints of reducing aggregates and improving detergency, a nonionic polymer can be preferably employed as the water-soluble polymer.
  • Examples of the water-soluble polymer include a polymer containing a nitrogen atom.
  • the polymer containing a nitrogen atom any of a polymer containing a nitrogen atom in the main chain and a polymer having a nitrogen atom in a side chain functional group (pendant group) can be used.
  • Examples of the polymer containing a nitrogen atom in the main chain include homopolymers and copolymers of N-acylalkylenimine type monomers.
  • Specific examples of the N-acylalkyleneimine monomer include N-acetylethyleneimine, N-propionylethyleneimine and the like.
  • the polymer having a nitrogen atom in the pendant group include a polymer containing an N-vinyl type monomer unit. For example, homopolymers and copolymers of N-vinylpyrrolidone can be employed.
  • the polishing composition disclosed herein can be carried out in an embodiment that does not substantially contain a water-soluble polymer other than the polyvinyl alcohol polymer and the dispersant.
  • the polishing composition disclosed herein may further contain a surfactant other than the above-described dispersant as required, as long as the effects of the present invention are not significantly hindered.
  • a surfactant any of anionic, cationic, nonionic, and amphoteric can be used.
  • the polishing composition disclosed herein can be carried out in a mode that does not substantially contain a surfactant other than the dispersant.
  • ion-exchanged water deionized water
  • pure water ultrapure water
  • distilled water or the like
  • the water to be used preferably has, for example, a total content of transition metal ions of 100 ppb or less in order to avoid as much as possible the action of other components contained in the polishing composition.
  • the purity of water can be increased by operations such as removal of impurity ions with an ion exchange resin, removal of foreign matter with a filter, distillation, and the like.
  • the polishing composition disclosed herein contains a basic compound.
  • the basic compound refers to a compound having a function of dissolving in water and increasing the pH of an aqueous solution.
  • an organic or inorganic basic compound containing nitrogen an alkali metal hydroxide, an alkaline earth metal hydroxide, various carbonates, bicarbonates, or the like can be used.
  • Examples of basic compounds containing nitrogen include quaternary ammonium compounds, quaternary phosphonium compounds, ammonia, amines (preferably water-soluble amines), and the like. Such basic compounds can be used singly or in combination of two or more.
  • alkali metal hydroxide examples include potassium hydroxide and sodium hydroxide.
  • Specific examples of the carbonate or bicarbonate include ammonium bicarbonate, ammonium carbonate, potassium bicarbonate, potassium carbonate, sodium bicarbonate, sodium carbonate and the like.
  • amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, anhydrous piperazine , Piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine, guanidine, azoles such as imidazole and triazole, and the like.
  • quaternary phosphonium compound include quaternary phosphonium hydroxide such as tetramethylphosphonium hydroxide and tetraethylphosphonium hydroxide.
  • quaternary ammonium salt typically a strong base
  • a quaternary ammonium salt such as a tetraalkylammonium salt or a hydroxyalkyltrialkylammonium salt
  • the anionic component in such a quaternary ammonium salt can be, for example, OH ⁇ , F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , ClO 4 ⁇ , BH 4 ⁇ and the like.
  • the anion is OH - a is a quaternary ammonium salt, i.e., include quaternary ammonium hydroxide.
  • quaternary ammonium hydroxide examples include hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapentylammonium hydroxide, and tetrahexylammonium hydroxide.
  • hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapentylammonium hydroxide, and tetrahexylammonium hydroxide.
  • Tetraalkylammonium hydroxide; hydroxyalkyltrialkylammonium hydroxide such as 2-hydroxyethyltrimethylammonium hydroxide (also referred to as choline); and the like.
  • At least one basic compound selected from alkali metal hydroxides, quaternary ammonium hydroxides and ammonia can be preferably used.
  • alkali metal hydroxides for example, quaternary ammonium hydroxides and ammonia
  • tetraalkylammonium hydroxide for example, tetramethylammonium hydroxide
  • ammonia is particularly preferable.
  • the polishing composition disclosed herein is a chelating agent, an organic acid, an organic acid salt, an inorganic acid, an inorganic acid salt, an antiseptic, an antifungal agent, etc., as long as the effect of the present invention is not significantly hindered.
  • a known additive that can be used in a polishing slurry (typically, a polishing slurry used in a polishing process of a silicon wafer) may be further contained as necessary.
  • the polishing composition disclosed herein does not substantially contain an oxidizing agent. If the polishing composition contains an oxidizing agent, the supply of the composition may oxidize the surface of the silicon substrate to produce an oxide film, which may reduce the polishing rate. Because.
  • that the polishing composition substantially does not contain an oxidant means that at least intentionally no oxidant is blended, and a trace amount of oxidant is inevitably contained due to raw materials and manufacturing methods. It can be tolerated.
  • the trace amount means that the molar concentration of the oxidizing agent in the polishing composition is 0.0005 mol / L or less (preferably 0.0001 mol / L or less, more preferably 0.00001 mol / L or less, particularly preferably 0.00.
  • the polishing composition according to a preferred embodiment does not contain an oxidizing agent.
  • the polishing composition disclosed herein can be preferably implemented in an embodiment that does not contain, for example, hydrogen peroxide, sodium persulfate, ammonium persulfate, and sodium dichloroisocyanurate.
  • the pH of the polishing composition disclosed herein is typically 8.0 or higher, preferably 8.5 or higher, more preferably 9.0 or higher, even more preferably 9.3 or higher, for example 9. 5 or more.
  • the pH of the polishing composition increases, the polishing efficiency tends to improve.
  • the pH of the polishing composition is suitably 12.0 or less, and 11.0 Is preferably 10.8 or less, more preferably 10.8 or less, and even more preferably 10.5 or less.
  • a pH meter for example, a glass electrode type hydrogen ion concentration indicator (model number F-23) manufactured by Horiba, Ltd.) is used, and a standard buffer solution (phthalate pH buffer solution: pH 4.01 (25 ° C.)). , Neutral phosphate pH buffer solution pH: 6.86 (25 ° C), carbonate pH buffer solution pH: 10.01 (25 ° C)) It can grasp
  • the polishing composition in the technique disclosed herein can be applied to polishing a polishing object having various materials and shapes.
  • the material of the polishing object is, for example, a metal or semimetal such as silicon, aluminum, nickel, tungsten, copper, tantalum, titanium, stainless steel, or an alloy thereof; glass such as quartz glass, aluminosilicate glass, glassy carbon, etc.
  • a ceramic material such as alumina, silica, sapphire, silicon nitride, tantalum nitride, and titanium carbide; a compound semiconductor substrate material such as silicon carbide, gallium nitride, and gallium arsenide; a resin material such as polyimide resin; Of these, a polishing object composed of a plurality of materials may be used.
  • the polishing composition in the technique disclosed herein can be particularly preferably used for polishing a surface made of silicon (typically polishing a silicon wafer).
  • a typical example of the silicon wafer here is a silicon single crystal wafer, for example, a silicon single crystal wafer obtained by slicing a silicon single crystal ingot.
  • the polishing composition disclosed herein can be preferably applied to a polishing process of an object to be polished (for example, a silicon wafer). Before the polishing process with the polishing composition disclosed herein, the polishing object is subjected to a general treatment that can be applied to the polishing object in a process upstream of the polishing process, such as lapping and etching. May be.
  • the polishing composition disclosed herein can be preferably used, for example, in polishing an object to be polished (for example, a silicon wafer) prepared to have a surface roughness of 0.1 nm to 100 nm by an upstream process.
  • the surface roughness Ra of the object to be polished can be measured using, for example, a laser scan type surface roughness meter “TMS-3000WRC” manufactured by Schmitt® Measurement® System® Inc.
  • TMS-3000WRC laser scan type surface roughness meter
  • the final polishing refers to the final polishing step in the manufacturing process of the target product (that is, a step in which no further polishing is performed after that step).
  • the polishing composition disclosed herein is typically supplied to a polishing object in the form of a polishing liquid containing the polishing composition, and used for polishing the polishing object.
  • the polishing liquid may be prepared, for example, by diluting (typically diluting with water) any of the polishing compositions disclosed herein. Or you may use this polishing composition as polishing liquid as it is. That is, the concept of the polishing composition in the technology disclosed herein is used as a polishing liquid diluted with a polishing liquid (working slurry) that is supplied to a polishing object and used for polishing the polishing object. Both concentrates (ie, stock solutions of polishing liquid) are included.
  • Another example of the polishing liquid containing the polishing composition disclosed herein is a polishing liquid obtained by adjusting the pH of the composition.
  • the content of the abrasive grains in the polishing liquid is not particularly limited, but is typically 0.01% by weight or more, preferably 0.05% by weight or more, more preferably 0.10% by weight or more, for example, It is 0.15% by weight or more. By increasing the abrasive content, higher polishing rates can be achieved. From the viewpoint of dispersion stability of particles in the polishing composition, the content is usually suitably 10% by weight or less, preferably 7% by weight or less, more preferably 5% by weight or less, and even more preferably 2% by weight. % Or less, for example, 1% by weight or less, and may be 0.7% by weight or less. In a preferred embodiment, the content may be 0.5% by weight or less, or 0.2% by weight or less.
  • the concentration of the polyvinyl alcohol polymer in the polishing liquid is not particularly limited and can be, for example, 0.0001% by weight or more. From the viewpoint of haze reduction or the like, the preferred concentration is 0.0005% by weight or more, more preferably 0.001% by weight or more, for example 0.003% by weight or more, and may be 0.005% by weight or more. . From the viewpoint of polishing rate and the like, the concentration of the polyvinyl alcohol-based polymer is usually preferably 0.2% by weight or less, more preferably 0.1% by weight or less, and 0.05% by weight or less. (For example, 0.01% by weight or less) or 0.008% by weight or less may be used.
  • the concentration of the dispersant in the polishing liquid is not particularly limited, and can be, for example, 0.0001% by weight or more, preferably 0.0003% by weight or more. Further, the concentration of the dispersant in the polishing liquid is usually preferably 0.2% by weight or less, more preferably 0.1% by weight or less, and may be 0.05% by weight or less. In a preferred embodiment, the concentration of the dispersant in the polishing liquid may be 0.0001 wt% or more and 0.002 wt% or less, or 0.0002 wt% or more and 0.001 wt% or less. In another preferred embodiment, the concentration of the dispersant in the polishing liquid may be 0.005 wt% or more and 0.03% wt or less.
  • the concentration of the basic compound in the polishing liquid is not particularly limited. From the viewpoint of improving the polishing rate, the concentration is usually preferably 0.001% by weight or more of the polishing liquid, and more preferably 0.003% by weight or more (eg, 0.005% by weight or more). . From the viewpoint of haze reduction or the like, the concentration is suitably less than 0.3% by weight, preferably less than 0.1% by weight, and less than 0.05% by weight (for example, 0.03%). More preferably, it is less than% by weight.
  • the polishing composition disclosed herein is in a concentrated form before being supplied to the object to be polished (that is, it is in the form of a concentrated concentrate of the polishing liquid and can also be grasped as a stock solution of the polishing liquid). There may be.
  • the polishing composition in such a concentrated form is advantageous from the viewpoints of convenience, cost reduction, etc. during production, distribution, storage and the like.
  • the concentration ratio is not particularly limited, and can be, for example, about 2 to 100 times in terms of volume, and usually about 5 to 50 times (for example, about 10 to 40 times) is appropriate.
  • Such a concentrated liquid can be used in such a manner that a polishing liquid (working slurry) is prepared by diluting at a desired timing and the polishing liquid is supplied to an object to be polished.
  • the dilution can be performed, for example, by adding water to the concentrated solution and mixing.
  • the content of abrasive grains in the concentrated liquid can be, for example, 50% by weight or less.
  • the abrasive grain content in the concentrated liquid is preferably 45% by weight or less, more preferably 40% by weight. It is as follows.
  • the content of abrasive grains can be, for example, 0.5% by weight or more, preferably 1% by weight or more, and more preferably Is 3% by weight or more.
  • the polishing composition used in the technology disclosed herein may be a one-part type or a multi-part type including a two-part type.
  • Part A containing at least abrasive grains and Part B containing at least a part of the remaining components are mixed, and these are mixed and diluted at an appropriate timing as necessary.
  • the polishing liquid may be prepared.
  • the method for preparing the polishing composition is not particularly limited. For example, it is good to mix each component which comprises polishing composition using well-known mixing apparatuses, such as a wing-type stirrer, an ultrasonic disperser, a homomixer.
  • mixing apparatuses such as a wing-type stirrer, an ultrasonic disperser, a homomixer.
  • the aspect which mixes these components is not specifically limited, For example, all the components may be mixed at once and may be mixed in the order set suitably.
  • the polishing composition disclosed herein can be used for polishing a polishing object, for example, in an embodiment including the following operations.
  • a preferred embodiment of a method for polishing an object to be polished (for example, a silicon wafer) using the polishing composition disclosed herein will be described. That is, a polishing liquid containing any of the polishing compositions disclosed herein is prepared.
  • Preparing the polishing liquid may include preparing the polishing liquid by adding operations such as concentration adjustment (for example, dilution) and pH adjustment to the polishing composition. Or you may use polishing composition as polishing liquid as it is.
  • the polishing liquid is supplied to the object to be polished and polished by a conventional method.
  • a silicon wafer that has undergone a lapping process is set in a general polishing apparatus, and a polishing liquid is applied to the surface to be polished of the silicon wafer through a polishing pad of the polishing apparatus.
  • Supply typically, while continuously supplying the polishing liquid, the polishing pad is pressed against the surface to be polished of the silicon wafer to move both relatively (for example, rotational movement). The polishing of the object to be polished is completed through this polishing step.
  • the polishing pad used in the polishing step is not particularly limited.
  • a polishing pad of foamed polyurethane type, non-woven fabric type, suede type or the like can be used.
  • Each polishing pad may include abrasive grains or may not include abrasive grains.
  • a polishing pad not containing abrasive grains is preferably used.
  • An object to be polished polished using the polishing composition disclosed herein is typically cleaned.
  • the washing can be performed using an appropriate washing solution.
  • the cleaning solution to be used is not particularly limited.
  • an SC-1 cleaning solution ammonium hydroxide (NH 4 OH), hydrogen peroxide (H 2 O 2 ), water (H 2 O), etc.
  • SC-2 cleaning liquid mixed liquid of HCl, H 2 O 2 and H 2 O), etc.
  • the temperature of the cleaning liquid can be, for example, in the range of room temperature (typically about 15 ° C. to 25 ° C.) or more and about 90 ° C. From the viewpoint of improving the cleaning effect, a cleaning solution of about 50 ° C. to 85 ° C. can be preferably used.
  • Example 1A Polyvinyl alcohol (PVA), a dispersant, and water were mixed to prepare an aqueous solution containing 0.11% of PVA and the balance being water, and used as a test solution according to Example 1A.
  • PVA polyvinyl alcohol
  • dispersant polyoxyethylene octyl ether (hereinafter also referred to as “C8PEO6”) having an ethylene oxide addition mole number of 6 was used.
  • Example 2A In place of C8PEO6, an aqueous solution containing the same components as in Example 1A at the same concentration except that polyacryloylmorpholine (PACMO) having a Mw of 39 ⁇ 10 4 was used as a dispersant was prepared in Example 2A. This test solution was used.
  • PACMO polyacryloylmorpholine
  • Example 3A A test solution of Example 3A was prepared in the same manner as in Example 1A, except that hydroxyethyl cellulose (HEC) having an Mw of 26 ⁇ 10 4 was used as the dispersant instead of C8PEO6.
  • the concentration of PVA in the test solution according to Example 3A was 0.10%.
  • Example 4A An aqueous solution containing the same components as used in Example 3A at the same concentration except that no dispersant was used was prepared as a test solution according to Example 4A.
  • Example 5A A test solution of Example 5A was prepared in the same manner as Example 1A except that polyvinylpyrrolidone (PVP) having a Mw of 1.7 ⁇ 10 4 was used instead of C8PEO6.
  • the concentration of PVA in the test solution according to Example 5A was 0.10%, and the concentration of PVP was 0.05%.
  • Example 6A Except not using PVA, the aqueous solution which contains the same component used by Example 5A by the same density
  • Example 1A The molar ratio of the content of PVA to the content of the dispersant having an ether bond in each test solution of Example 1A to Example 3A was as indicated in the corresponding column of Table 1.
  • each test solution of Examples 1A to 6A was collected, put into a container with a lid of 80 ml capacity, and shaken at a shaking strength of 300 spm in an environment of 23 ° C. While the container was shaken, the presence or absence of precipitates in the container was visually confirmed every 12 hours.
  • the dispersion stability of each test solution was good ( ⁇ ) when no precipitate was formed even after shaking for 72 hours or more in the shaking test under the above test conditions, and was precipitated by shaking for 24 hours or more and less than 72 hours. Evaluation was made in three stages, where a product was acceptable ( ⁇ ), and a product with precipitates formed by shaking for less than 24 hours was regarded as defective (x). The evaluation results are shown in the column of dispersion stability in Table 1.
  • Example 1A to 3A containing a dispersant having an ether bond in the molecule were compared with the test solutions of Examples 4A to 5A containing no dispersant. Dispersion stability was obviously improved. Moreover, since the test solution of Example 6A not containing PVA showed good dispersion stability, it was suggested that a factor that impairs the dispersion stability of the test solution is derived from aggregation of PVA. Similarly, the test solution prepared in the same manner except that the PVA used in the test solution of Example 4A was replaced with PVA having a molecular weight of 1.1 ⁇ 10 4 and a saponification degree of 98% or more.
  • Pre-polishing process A pre-polishing composition containing 0.9% abrasive grains and 0.1% basic compound with the balance being water was prepared. As abrasive grains, colloidal silica having a BET diameter of 35 nm was used. Potassium hydroxide (KOH) was used as the basic compound. This pre-polishing composition was used as it was as a polishing liquid (working slurry), and a silicon wafer as an object to be polished was polished under the pre-polishing conditions described below.
  • KOH Potassium hydroxide
  • a commercially available silicon single crystal wafer having a diameter of 300 mm and finished lapping and etching (conduction type: P type, crystal orientation: ⁇ 100>, resistivity: 1 ⁇ ⁇ cm or more and less than 100 ⁇ ⁇ cm, COP free) is used. did.
  • Polishing device Single wafer polishing machine manufactured by Okamoto Machine Tool Co., Ltd. Model “PNX-332B” Polishing load: 20 kPa Plate rotation speed: 20 rpm Carrier rotation speed: 20rpm Polishing pad: Product name “FP55”, manufactured by Fujibo Atago Co., Ltd. Polishing liquid supply rate: 1 liter / min Polishing liquid temperature: 20 ° C. Surface plate cooling water temperature: 20 ° C Polishing time: 2 minutes
  • Example 1B A polishing composition containing abrasive grains, polyvinyl alcohol (PVA), a dispersant, and a basic compound, with the balance being water, was prepared and used as the polishing composition according to Example 1B.
  • PVA polyvinyl alcohol
  • a dispersant polyoxyethylene octyl ether (C8PEO6) having an ethylene oxide addition mole number of 6 was used. Ammonia was used as the basic compound.
  • the concentration of each component in the polishing composition according to Example 1B was 3.3% for abrasive grains, 0.11% for PVA, and 0.21% for basic compounds.
  • DIW deionized water
  • Polishing device Single wafer polishing machine manufactured by Okamoto Machine Tool Co., Ltd. Model “PNX-332B” Polishing load: 15 kPa Plate rotation speed: 30 rpm Carrier rotation speed: 30rpm Polishing pad: Polishing pad manufactured by Fujibo Atago Co., Ltd., trade name “POLYPAS27NX” Polishing liquid supply rate: 2 l / min Polishing liquid temperature: 20 ° C. Surface plate cooling water temperature: 20 ° C Polishing time: 4 minutes
  • DIW deionized water
  • SC-1 wash More specifically, a cleaning tank equipped with an ultrasonic oscillator having a frequency of 720 kHz is prepared, the cleaning liquid is stored in the cleaning tank and held at 70 ° C., and the polished silicon wafer is immersed in the cleaning tank for 6 minutes, After that, rinsing with ultrapure water was performed. After repeating this process twice, the silicon wafer was dried.
  • Example 2B A polishing composition of Example 2B was prepared so as to contain the same components as in Example 1B at the same concentration except that PACMO having an Mw of 39 ⁇ 10 4 was used as a dispersant instead of C8PEO6. Except for using this polishing composition, the silicon wafer that had undergone the previous polishing step was subjected to final polishing, washing, and drying in the same manner as in Example 1B.
  • Example 3B The polishing composition of Example 3B was prepared in the same manner as Example 1B, except that HEC having an Mw of 26 ⁇ 10 4 was used as the dispersant instead of C8PEO6.
  • the concentration of each component in the polishing composition according to Example 3B was 3.3% for abrasive grains, 0.10% for PVA, and 0.23% for basic compounds. Except for using this polishing composition, the silicon wafer that had undergone the previous polishing step was subjected to final polishing, washing, and drying in the same manner as in Example 1B.
  • Example 4B A polishing composition of Example 4B was prepared in the same manner as in Example 1B, except that the dispersant was not used.
  • the concentration of each component in the polishing composition according to Example 4B was 3.3% for abrasive grains, 0.10% for PVA, and 0.21% for basic compounds. Except for using this polishing composition, the silicon wafer that had undergone the previous polishing step was subjected to final polishing, washing, and drying in the same manner as in Example 1B.
  • Example 5B The polishing composition of Example 5B was prepared in the same manner as Example 1B, except that PVP having Mw of 1.7 ⁇ 10 4 was used instead of C8PEO6.
  • the concentration of each component in the polishing composition according to Example 5B was 3.3% for abrasive grains, 0.10% for PVA, 0.05% for PVP, and 0.21% for basic compounds. Except for using this polishing composition, the silicon wafer that had undergone the previous polishing step was subjected to final polishing, washing, and drying in the same manner as in Example 1B.
  • Example 6B A polishing composition of Example 6B was prepared so as to contain the same components as in Example 5B at the same concentration except that PVA was not used. Except for using this polishing composition, the silicon wafer that had undergone the previous polishing step was subjected to final polishing, washing, and drying in the same manner as in Example 1B.
  • the polishing compositions of Examples 1B to 3B containing PVA and a dispersant having an ether bond in the molecule As shown in Table 2, according to the polishing compositions of Examples 1B to 3B containing PVA and a dispersant having an ether bond in the molecule, the polishing compositions of Examples 4B to 5B containing no dispersant Compared with the composition, the number of LPDs was clearly reduced, and surface defects on the polished surface were reduced. In particular, according to the polishing composition of Example 1B using C8PEO6 as a dispersant, surface defects were significantly reduced.

Abstract

Provided is a polishing composition that, although including a polyvinyl alcohol-based polymer, has suppressed aggregation of the polyvinyl alcohol-based polymer in the composition and can effectively reduce surface defects. This polishing composition includes abrasive grains and water. The polishing composition also includes the polyvinyl alcohol-based polymer and a dispersant for the polyvinyl alcohol-based polymer. The dispersant includes an ether bond in the molecules thereof. The molar ratio of the polyvinyl alcohol-based polymer content relative to the dispersant content is 0.01–10.

Description

研磨用組成物Polishing composition
 本発明は研磨用組成物に関する。本出願は、2018年3月30日に出願された日本国特許出願2018-69647号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。 The present invention relates to a polishing composition. This application claims priority based on Japanese Patent Application No. 2018-69647 filed on Mar. 30, 2018, the entire contents of which are incorporated herein by reference.
 金属や半金属、非金属、その酸化物等の材料表面に対して、研磨用組成物を用いた精密研磨が行われている。例えば、半導体装置の構成要素等として用いられるシリコンウェーハの表面は、一般に、ラッピング工程(粗研磨工程)とポリシング工程(精密研磨工程)とを経て高品位の鏡面に仕上げられる。上記ポリシング工程は、典型的には、予備ポリシング工程(予備研磨工程)と仕上げポリシング工程(最終研磨工程)とを含む。シリコンウェーハ等の半導体基板を研磨する用途で主に使用される研磨用組成物に関する技術文献として、特許文献1が挙げられる。 Precision polishing using a polishing composition is performed on material surfaces such as metal, metalloid, nonmetal, and oxides thereof. For example, the surface of a silicon wafer used as a component of a semiconductor device or the like is generally finished into a high-quality mirror surface through a lapping process (rough polishing process) and a polishing process (precision polishing process). The polishing process typically includes a preliminary polishing process (preliminary polishing process) and a final polishing process (final polishing process). Patent document 1 is mentioned as technical literature regarding the polishing composition mainly used for the use which grinds semiconductor substrates, such as a silicon wafer.
日本国特許出願公開2010-34509号公報Japanese Patent Application Publication No. 2010-34509
 仕上げポリシング工程(特に、シリコンウェーハ等の半導体基板その他の基板の仕上げポリシング工程)に用いられる研磨用組成物には、研磨後においてヘイズが低くかつ表面欠陥の少ない表面を実現する性能が求められる。かかる用途向けの研磨用組成物は、砥粒および水に加えて、研磨対象物表面の保護や濡れ性向上等の目的で水溶性高分子を含むものが多い。例えば、特許文献1には、水溶性高分子としてヒドロキシエチルセルロースやポリビニルアルコール(PVA)を含むシリコンウェーハ用の研磨用組成物が開示されている。 A polishing composition used in a finishing polishing process (particularly, a polishing polishing process for a semiconductor substrate such as a silicon wafer or other substrate) is required to have a performance that realizes a surface having low haze and less surface defects after polishing. Many polishing compositions for such applications contain a water-soluble polymer for the purpose of protecting the surface of a polishing object and improving wettability in addition to abrasive grains and water. For example, Patent Document 1 discloses a polishing composition for silicon wafers containing hydroxyethyl cellulose or polyvinyl alcohol (PVA) as a water-soluble polymer.
 水溶性高分子としてポリビニルアルコール系ポリマーを用いることにより、研磨後の表面の濡れ性を安定して向上させることができる。しかしながら、研磨後の表面品位に対する要求レベルの高度化に伴い、ポリビニルアルコール系ポリマーを用いた従来の研磨用組成物では表面欠陥の低減効果が不足しがちであった。 By using a polyvinyl alcohol-based polymer as the water-soluble polymer, the wettability of the surface after polishing can be stably improved. However, with the advancement of the required level for the surface quality after polishing, the conventional polishing composition using the polyvinyl alcohol polymer tends to be insufficient in reducing the surface defects.
 本発明は、かかる点に鑑みてなされたものであり、ポリビニルアルコール系ポリマーを含む研磨用組成物でありながら、表面欠陥を効果的に低減可能な研磨用組成物を提供することを目的とする。 This invention is made | formed in view of this point, and it aims at providing the polishing composition which can reduce a surface defect effectively, although it is a polishing composition containing a polyvinyl alcohol-type polymer. .
 本発明者らは、研磨用組成物に含まれるポリビニルアルコール系ポリマーの凝集が上記表面欠陥を発生させる要因となっているのではないかと考え、かかる凝集の抑制に適した研磨用組成物を見出して本発明を完成した。
 本発明によると、砥粒と水とを含む研磨用組成物が提供される。上記研磨用組成物は、ポリビニルアルコール系ポリマーと、ポリビニルアルコール系ポリマーの分散剤と、をさらに含む。上記分散剤は、分子中にエーテル結合を含む。また、上記分散剤の含有量に対する上記ポリビニルアルコール系ポリマーの含有量のモル比が、0.01以上10以下である。かかる構成によると、上記ポリビニルアルコール系ポリマーと上記ポリビニルアルコール系ポリマーの分散剤とが適当な混合比で含まれているため、研磨用組成物中のポリビニルアルコール系ポリマーの凝集が該分散剤の作用により適切に抑制される。このように凝集が抑制されたポリビニルアルコール系ポリマーを含む研磨用組成物によると、研磨後の研磨対象物の表面欠陥が適切に低減される。
The present inventors have thought that aggregation of the polyvinyl alcohol polymer contained in the polishing composition may be a factor causing the surface defects, and have found a polishing composition suitable for suppressing such aggregation. The present invention has been completed.
According to the present invention, a polishing composition comprising abrasive grains and water is provided. The polishing composition further includes a polyvinyl alcohol polymer and a dispersant for the polyvinyl alcohol polymer. The dispersant includes an ether bond in the molecule. The molar ratio of the content of the polyvinyl alcohol polymer to the content of the dispersant is 0.01 or more and 10 or less. According to this configuration, since the polyvinyl alcohol polymer and the polyvinyl alcohol polymer dispersant are contained in an appropriate mixing ratio, the aggregation of the polyvinyl alcohol polymer in the polishing composition causes the action of the dispersant. Is appropriately suppressed. Thus, according to the polishing composition containing the polyvinyl alcohol-based polymer in which aggregation is suppressed, surface defects of the polished object after polishing are appropriately reduced.
 なお、本明細書において「ポリビニルアルコール系ポリマーの分散剤」とは、研磨用組成物に配合することにより、当該分散剤を含まない研磨用組成物に比べてポリビニルアルコール系ポリマーの分散性を向上させる性能を有する剤(化合物)のことを指す。典型的には、ポリビニルアルコール系ポリマーの分散剤は、水溶液中におけるポリビニルアルコール系ポリマーの分散安定性を向上させる性能を有する化合物である。本明細書においては、別段の定めがない限り、単に「分散剤」と記載されたものは、「ポリビニルアルコール系ポリマーの分散剤」を意味する。また、本明細書における「表面欠陥」は、一般にパーティクルと呼ばれる異物を意味するLPD(Light Point Defects)を含む。かかる表面欠陥の発生は、後述する実施例で使用するウェーハ検査装置で検出するLPDの数を測定することにより評価することができる。 In this specification, the term “polyvinyl alcohol polymer dispersant” means that the dispersibility of the polyvinyl alcohol polymer is improved by adding it to the polishing composition as compared with the polishing composition not containing the dispersant. It refers to an agent (compound) having the performance of Typically, the dispersant for the polyvinyl alcohol polymer is a compound having the ability to improve the dispersion stability of the polyvinyl alcohol polymer in an aqueous solution. In the present specification, unless otherwise specified, what is simply described as “dispersant” means “a dispersant for a polyvinyl alcohol polymer”. In addition, the “surface defect” in the present specification includes LPD (Light Point Defectives) which means a foreign substance generally called a particle. The occurrence of such surface defects can be evaluated by measuring the number of LPDs detected by a wafer inspection apparatus used in examples described later.
 好ましい一態様において、上記ポリビニルアルコール系ポリマーの重量平均分子量は、3×10以上である。かかる重量平均分子量を有するポリビニルアルコール系ポリマーは、より凝集しやすい傾向があるため、本発明を、上記重量平均分子量を有するポリビニルアルコール系ポリマーを含む研磨用組成物に適用することは有意義である。 In a preferred embodiment, the polyvinyl alcohol-based polymer has a weight average molecular weight of 3 × 10 4 or more. Since a polyvinyl alcohol polymer having such a weight average molecular weight tends to aggregate more easily, it is meaningful to apply the present invention to a polishing composition containing a polyvinyl alcohol polymer having the above weight average molecular weight.
 ここに開示される研磨用組成物の好ましい他の一態様では、上記分散剤の重量平均分子量は、上記ポリビニルアルコール系ポリマーの重量平均分子量よりも小さい。かかる構成によると、ポリビニルアルコール系ポリマーの凝集が適切に抑制されて、研磨対象物の表面欠陥を低減させ得る研磨用組成物が実現し得る。 In another preferred embodiment of the polishing composition disclosed herein, the weight average molecular weight of the dispersant is smaller than the weight average molecular weight of the polyvinyl alcohol polymer. According to such a configuration, it is possible to realize a polishing composition capable of appropriately suppressing aggregation of the polyvinyl alcohol-based polymer and reducing surface defects of the object to be polished.
 ここに開示される研磨用組成物の好ましい他の一態様では、上記分散剤は、ポリオキシエチレンアルキルエーテルを含む。かかる分散剤を含む構成によると、ポリビニルアルコール系ポリマーの凝集がより適切に抑制されて、表面欠陥の低減性がより向上した研磨用組成物が実現し得る。 In another preferred embodiment of the polishing composition disclosed herein, the dispersant contains polyoxyethylene alkyl ether. According to the configuration containing such a dispersant, it is possible to realize a polishing composition in which aggregation of the polyvinyl alcohol-based polymer is more appropriately suppressed and surface defect reduction properties are further improved.
 ここに開示される研磨用組成物の好ましい他の一態様では、上記分散剤の重量平均分子量が1500以下である。かかる分散剤を含む構成によると、ポリビニルアルコール系ポリマーの凝集がより適切に抑制されて、表面欠陥の低減性がより向上した研磨用組成物が実現し得る。 In another preferred embodiment of the polishing composition disclosed herein, the dispersant has a weight average molecular weight of 1500 or less. According to the configuration containing such a dispersant, it is possible to realize a polishing composition in which aggregation of the polyvinyl alcohol-based polymer is more appropriately suppressed and surface defect reduction properties are further improved.
 ここに開示される研磨用組成物の好ましい他の一態様では、上記砥粒はシリカ粒子である。砥粒としてシリカ粒子を用いる研磨において、研磨レートを維持しつつ、研磨対象物表面欠陥の低減性がより効果的に発揮され得る。 In another preferred embodiment of the polishing composition disclosed herein, the abrasive grains are silica particles. In the polishing using silica particles as the abrasive grains, the surface defect defects can be effectively reduced while maintaining the polishing rate.
 ここに開示される好ましい一態様に係る研磨用組成物は、シリコンからなる表面の研磨に用いられる。ここに開示される研磨用組成物は、研磨対象物がシリコンからなる表面である研磨において、上記分散剤の作用により凝集が抑制されたポリビニルアルコール系ポリマーの作用により研磨対象物の表面が保護されて、該表面の欠陥が適切に低減し得る。 The polishing composition according to a preferred embodiment disclosed herein is used for polishing a surface made of silicon. In the polishing composition disclosed herein, the surface of the polishing object is protected by the action of the polyvinyl alcohol polymer in which aggregation is suppressed by the action of the dispersant in polishing where the polishing object is a surface made of silicon. Thus, defects on the surface can be appropriately reduced.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
<砥粒>
 ここに開示される研磨用組成物は、砥粒を含む。砥粒は、研磨対象物の表面を機械的に研磨する働きをする。砥粒の材質や性状は特に制限されず、研磨用組成物の使用目的や使用態様等に応じて適宜選択することができる。砥粒の例としては、無機粒子、有機粒子、および有機無機複合粒子が挙げられる。無機粒子の具体例としては、シリカ粒子、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、ベンガラ粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩等が挙げられる。有機粒子の具体例としては、ポリメタクリル酸メチル(PMMA)粒子やポリ(メタ)アクリル酸粒子(ここで(メタ)アクリル酸とは、アクリル酸およびメタクリル酸を包括的に指す意味である。)、ポリアクリロニトリル粒子等が挙げられる。このような砥粒は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
<Abrasive grains>
The polishing composition disclosed herein contains abrasive grains. The abrasive grains serve to mechanically polish the surface of the object to be polished. The material and properties of the abrasive grains are not particularly limited, and can be appropriately selected depending on the purpose of use and usage of the polishing composition. Examples of the abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles. Specific examples of the inorganic particles include silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, oxide particles such as bengara particles; Examples thereof include nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate. Specific examples of the organic particles include polymethyl methacrylate (PMMA) particles and poly (meth) acrylic acid particles (here, (meth) acrylic acid is a generic term for acrylic acid and methacrylic acid). And polyacrylonitrile particles. Such abrasive grains may be used singly or in combination of two or more.
 上記砥粒としては、無機粒子が好ましく、なかでも金属または半金属の酸化物からなる粒子が好ましく、シリカ粒子が特に好ましい。後述するシリコンウェーハ等のようにシリコンからなる表面を有する研磨対象物の研磨(例えば仕上げ研磨)に用いられ得る研磨用組成物では、砥粒としてシリカ粒子を採用することが特に有意義である。ここに開示される技術は、例えば、上記砥粒が実質的にシリカ粒子からなる態様で好ましく実施され得る。ここで「実質的に」とは、砥粒を構成する粒子の95重量%以上(好ましくは98重量%以上、より好ましくは99重量%以上であり、100重量%であってもよい。)がシリカ粒子であることをいう。 As the abrasive grains, inorganic particles are preferable, and particles made of metal or metalloid oxide are preferable, and silica particles are particularly preferable. In a polishing composition that can be used for polishing (for example, finish polishing) of an object to be polished having a surface made of silicon, such as a silicon wafer described later, it is particularly meaningful to employ silica particles as abrasive grains. The technique disclosed here can be preferably implemented, for example, in a mode in which the abrasive grains are substantially composed of silica particles. Here, “substantially” means 95% by weight or more (preferably 98% by weight or more, more preferably 99% by weight or more, or 100% by weight) of the particles constituting the abrasive grains. It means silica particles.
 シリカ粒子の具体例としては、コロイダルシリカ、フュームドシリカ、沈降シリカ等が挙げられる。シリカ粒子は、一種を単独でまたは二種以上を組み合わせて用いることができる。研磨後において表面品位に優れた研磨面が得られやすいことから、コロイダルシリカの使用が特に好ましい。コロイダルシリカとしては、例えば、イオン交換法により水ガラス(珪酸Na)を原料として作製されたコロイダルシリカや、アルコキシド法コロイダルシリカ(アルコキシシランの加水分解縮合反応により製造されたコロイダルシリカ)を好ましく採用することができる。コロイダルシリカは、一種を単独でまたは二種以上を組み合わせて用いることができる。 Specific examples of the silica particles include colloidal silica, fumed silica, precipitated silica and the like. Silica particles can be used singly or in combination of two or more. The use of colloidal silica is particularly preferred because it is easy to obtain a polished surface with excellent surface quality after polishing. As the colloidal silica, for example, colloidal silica produced using water glass (Na silicate) as a raw material by an ion exchange method, or alkoxide colloidal silica (colloidal silica produced by hydrolysis condensation reaction of alkoxysilane) is preferably employed. be able to. Colloidal silica can be used singly or in combination of two or more.
 砥粒構成材料(例えば、シリカ粒子を構成するシリカ)の真比重は、1.5以上であることが好ましく、より好ましくは1.6以上、さらに好ましくは1.7以上である。砥粒構成材料(例えばシリカ)の真比重の上限は特に限定されないが、典型的には2.3以下、例えば2.2以下である。砥粒構成材料(例えばシリカ)の真比重としては、置換液としてエタノールを用いた液体置換法による測定値を採用し得る。 The true specific gravity of the abrasive constituent material (for example, silica constituting the silica particles) is preferably 1.5 or more, more preferably 1.6 or more, and even more preferably 1.7 or more. The upper limit of the true specific gravity of the abrasive grain constituent material (for example, silica) is not particularly limited, but is typically 2.3 or less, for example, 2.2 or less. As the true specific gravity of the abrasive grain constituent material (for example, silica), a measured value by a liquid replacement method using ethanol as a replacement liquid can be adopted.
 砥粒(典型的にはシリカ粒子)のBET径は特に限定されないが、研磨効率等の観点から、好ましくは5nm以上、より好ましくは10nm以上である。より高い研磨効果(例えば、ヘイズの低減、欠陥の除去等の効果)を得る観点から、上記BET径は、15nm以上が好ましく、20nm以上(例えば20nm超)がより好ましい。また、スクラッチ防止等の観点から、砥粒のBET径は、好ましくは100nm以下、より好ましくは50nm以下、さらに好ましくは40nm以下である。ここに開示される技術は、高品位の表面(例えば、LPD数が少ない表面)が得られやすいことから、研磨後に高品位の表面が求められる研磨に適用されることが好ましい。かかる研磨用組成物に用いる砥粒としては、BET径が35nm以下(典型的には35nm未満、より好ましくは32nm以下、例えば30nm未満)の砥粒が好ましい。 The BET diameter of the abrasive grains (typically silica particles) is not particularly limited, but is preferably 5 nm or more, more preferably 10 nm or more from the viewpoint of polishing efficiency and the like. From the viewpoint of obtaining a higher polishing effect (for example, effects such as haze reduction and defect removal), the BET diameter is preferably 15 nm or more, and more preferably 20 nm or more (for example, more than 20 nm). Further, from the viewpoint of preventing scratches, the BET diameter of the abrasive grains is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 40 nm or less. The technique disclosed herein is preferably applied to polishing in which a high-quality surface is required after polishing because a high-quality surface (for example, a surface having a small number of LPDs) is easily obtained. As the abrasive used in such a polishing composition, an abrasive having a BET diameter of 35 nm or less (typically less than 35 nm, more preferably 32 nm or less, for example, less than 30 nm) is preferable.
 なお、本明細書においてBET径とは、BET法により測定される比表面積(BET値)から、BET径(nm)=6000/(真密度(g/cm)×BET値(m/g))の式により算出される粒子径をいう。例えばシリカ粒子の場合、BET径(nm)=2727/BET値(m/g)によりBET径を算出することができる。比表面積の測定は、例えば、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて行うことができる。 In this specification, the BET diameter refers to the BET diameter (nm) = 6000 / (true density (g / cm 3 ) × BET value (m 2 / g) from the specific surface area (BET value) measured by the BET method. )) The particle diameter calculated by the formula. For example, in the case of silica particles, the BET diameter can be calculated from the BET diameter (nm) = 2727 / BET value (m 2 / g). The specific surface area can be measured using, for example, a surface area measuring device manufactured by Micromeritex Corporation, a trade name “Flow Sorb II 2300”.
 砥粒の形状(外形)は、球形であってもよく、非球形であってもよい。非球形をなす粒子の具体例としては、ピーナッツ形状(すなわち、落花生の殻の形状)、繭型形状、金平糖形状、ラグビーボール形状等が挙げられる。例えば、粒子の多くがピーナッツ形状または繭型形状をした砥粒を好ましく採用し得る。 The shape (outer shape) of the abrasive grains may be spherical or non-spherical. Specific examples of the non-spherical particles include a peanut shape (that is, a peanut shell shape), a bowl shape, a confetti shape, a rugby ball shape, and the like. For example, abrasive grains in which many of the particles have a peanut shape or a bowl shape can be preferably used.
 特に限定するものではないが、砥粒の長径/短径比の平均値(平均アスペクト比)は、原理的に1.0以上であり、好ましくは1.05以上、さらに好ましくは1.1以上である。平均アスペクト比の増大によって、より高い研磨能率が実現され得る。また、砥粒の平均アスペクト比は、スクラッチ低減等の観点から、好ましくは3.0以下であり、より好ましくは2.0以下、さらに好ましくは1.5以下である。 Although not particularly limited, the average value of the major axis / minor axis ratio (average aspect ratio) of the abrasive grains is theoretically 1.0 or more, preferably 1.05 or more, more preferably 1.1 or more. It is. By increasing the average aspect ratio, higher polishing efficiency can be realized. The average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, and still more preferably 1.5 or less, from the viewpoint of reducing scratches.
 砥粒の形状(外形)や平均アスペクト比は、例えば、電子顕微鏡観察により把握することができる。平均アスペクト比を把握する具体的な手順としては、例えば、走査型電子顕微鏡(SEM)を用いて、独立した粒子の形状を認識できる所定個数(例えば200個)の砥粒粒子について、各々の粒子画像に外接する最小の長方形を描く。そして、各粒子画像に対して描かれた長方形について、その長辺の長さ(長径の値)を短辺の長さ(短径の値)で除した値を長径/短径比(アスペクト比)として算出する。上記所定個数の粒子のアスペクト比を算術平均することにより、平均アスペクト比を求めることができる。 The shape (outer shape) and average aspect ratio of the abrasive grains can be grasped by, for example, observation with an electron microscope. As a specific procedure for grasping the average aspect ratio, for example, a predetermined number (for example, 200) of abrasive particles capable of recognizing the shape of independent particles using a scanning electron microscope (SEM) is used. Draw the smallest rectangle that circumscribes the image. For the rectangle drawn for each particle image, the value obtained by dividing the length of the long side (major axis value) by the length of the short side (minor axis value) is the major axis / minor axis ratio (aspect ratio). ). An average aspect ratio can be obtained by arithmetically averaging the aspect ratios of the predetermined number of particles.
<ポリビニルアルコール系ポリマー>
 ここに開示される研磨用組成物は、ポリビニルアルコール系ポリマーを含む。ここで、ポリビニルアルコール系ポリマーとは、その繰返し単位としてビニルアルコール単位を含む水溶性有機化合物(典型的には水溶性高分子)である。ここで、ビニルアルコール単位(以下「VA単位」ともいう。)とは、次の化学式:-CH-CH(OH)-;により表される構造部分である。VA単位は、例えば、酢酸ビニルがビニル重合した構造の繰返し単位(-CH-CH(OCOCH)-)を加水分解(けん化)することにより生成し得る。ポリビニルアルコール系ポリマーを含む研磨用組成物によると、研磨対象物の表面の濡れ性が向上して、研磨後においてヘイズが低くかつ表面欠陥の少ない表面が実現しやすい。
<Polyvinyl alcohol polymer>
The polishing composition disclosed herein contains a polyvinyl alcohol polymer. Here, the polyvinyl alcohol polymer is a water-soluble organic compound (typically a water-soluble polymer) containing a vinyl alcohol unit as its repeating unit. Here, the vinyl alcohol unit (hereinafter also referred to as “VA unit”) is a structural portion represented by the following chemical formula: —CH 2 —CH (OH) —. The VA unit can be produced, for example, by hydrolyzing (saponifying) a repeating unit (—CH 2 —CH (OCOCH 3 ) —) having a structure in which vinyl acetate is vinyl polymerized. According to the polishing composition containing a polyvinyl alcohol polymer, the wettability of the surface of the polishing object is improved, and a surface having low haze and few surface defects is easily realized after polishing.
 ポリビニルアルコール系ポリマーは分子中にヒドロキシ基(OH基)を有する。このためポリビニルアルコール系ポリマーは、分子内または分子間における水素結合の作用により凝集しやすい性質を有する。研磨用組成物に含まれるポリビニルアルコール系ポリマーの一部が凝集して該組成物の分散安定性が低下すると、研磨後の表面欠陥の低減性能が低下することがある。ここに開示される技術によると、ポリビニルアルコール系ポリマーと後述するポリビニルアルコール系ポリマーの分散剤とが併用されることにより、ポリビニルアルコール系ポリマーの凝集が適切に抑制されて分散安定性が向上した研磨用組成物が実現し得る。 The polyvinyl alcohol polymer has a hydroxy group (OH group) in the molecule. For this reason, a polyvinyl alcohol-type polymer has a property which is easy to aggregate by the effect | action of the hydrogen bond in a molecule | numerator or between molecules. When a part of the polyvinyl alcohol-based polymer contained in the polishing composition aggregates and the dispersion stability of the composition decreases, the ability to reduce surface defects after polishing may decrease. According to the technology disclosed herein, the use of a polyvinyl alcohol polymer and a polyvinyl alcohol polymer dispersant described later in combination effectively suppresses aggregation of the polyvinyl alcohol polymer and improves the dispersion stability. Compositions can be realized.
 ポリビニルアルコール系ポリマーは、繰返し単位としてVA単位のみを含んでいてもよく、VA単位に加えてVA単位以外の繰返し単位(以下「非VA単位」ともいう。)を含んでいてもよい。ポリビニルアルコール系ポリマーが非VA単位を含む態様において、該非VA単位は、オキシアルキレン基、カルボキシ基、スルホ基、アミノ基、水酸基、アミド基、イミド基、ニトリル基、エーテル基、エステル基、およびこれらの塩から選ばれる少なくとも1つの構造を有する繰返し単位であり得る。あるいは、上記非VA単位は、オキシアルキレン基、カルボキシ基、スルホ基、アミノ基、水酸基、アミド基、イミド基、ニトリル基、エステル基、およびこれらの塩から選ばれる少なくとも1つの構造を有する繰返し単位であり得る。ポリビニルアルコール系ポリマーは、VA単位と非VA単位とを含むランダム共重合体であってもよく、ブロック共重合体やグラフト共重合体であってもよい。ポリビニルアルコール系ポリマーは、非VA単位として、一種類の非VA単位のみを含んでもよく、二種類以上の非VA単位を含んでもよい。 The polyvinyl alcohol-based polymer may contain only VA units as repeating units, and may contain repeating units other than VA units (hereinafter also referred to as “non-VA units”) in addition to VA units. In an embodiment in which the polyvinyl alcohol-based polymer includes a non-VA unit, the non-VA unit includes an oxyalkylene group, a carboxy group, a sulfo group, an amino group, a hydroxyl group, an amide group, an imide group, a nitrile group, an ether group, an ester group, and these It may be a repeating unit having at least one structure selected from the salts of Alternatively, the non-VA unit is a repeating unit having at least one structure selected from oxyalkylene groups, carboxy groups, sulfo groups, amino groups, hydroxyl groups, amide groups, imide groups, nitrile groups, ester groups, and salts thereof. It can be. The polyvinyl alcohol-based polymer may be a random copolymer containing VA units and non-VA units, or may be a block copolymer or a graft copolymer. The polyvinyl alcohol-based polymer may include only one type of non-VA unit as the non-VA unit, or may include two or more types of non-VA units.
 ポリビニルアルコール系ポリマーを構成する全繰返し単位のモル数に占めるVA単位のモル数の割合は、例えば5%以上であってよく、10%以上でもよく、20%以上でもよく、30%以上でもよい。特に限定するものではないが、いくつかの態様において、上記VA単位のモル数の割合は、50%以上であってよく、65%以上でもよく、75%以上でもよく、80%以上でもよく、90%以上(例えば95%以上、または98%以上)でもよい。ポリビニルアルコール系ポリマーを構成する繰返し単位の実質的に100%がVA単位であってもよい。ここで「実質的に100%」とは、少なくとも意図的にはポリビニルアルコール系ポリマーに非VA単位を含有させないことをいう。例えば、けん化度が98%以上であるポリビニルアルコール(PVA)(いわゆる完全けん化PVA)を含む研磨用組成物によると、研磨対象物の表面の濡れ性が高く、研磨後において表面欠陥の少ない表面が実現しやすい。また、けん化度が高いPVAはより凝集しやすい傾向があるため、本発明をけん化度が高いPVA(例えば、けん化度98%以上のPVA)に適用することは有意義である。他のいくつかの態様において、ポリビニルアルコール系ポリマーを構成する全繰返し単位のモル数に占めるVA単位のモル数の割合は、例えば95%以下であってよく、90%以下でもよく、80%以下でもよく、70%以下でもよい。 The ratio of the number of moles of VA units to the number of moles of all repeating units constituting the polyvinyl alcohol polymer may be, for example, 5% or more, 10% or more, 20% or more, or 30% or more. . Although not particularly limited, in some embodiments, the ratio of the number of moles of the VA unit may be 50% or more, 65% or more, 75% or more, 80% or more, It may be 90% or more (for example, 95% or more, or 98% or more). Substantially 100% of the repeating units constituting the polyvinyl alcohol polymer may be VA units. Here, “substantially 100%” means that at least intentionally, the polyvinyl alcohol polymer does not contain a non-VA unit. For example, according to a polishing composition containing polyvinyl alcohol (PVA) (so-called fully saponified PVA) having a saponification degree of 98% or more, the surface of the object to be polished has high wettability, and the surface having few surface defects after polishing is obtained. Easy to realize. Moreover, since PVA with a high saponification tendency tends to aggregate more easily, it is meaningful to apply this invention to PVA with a high saponification degree (for example, PVA with a saponification degree 98% or more). In some other embodiments, the ratio of the number of moles of VA units to the number of moles of all repeating units constituting the polyvinyl alcohol-based polymer may be, for example, 95% or less, may be 90% or less, and may be 80% or less. It may be 70% or less.
 ポリビニルアルコール系ポリマーにおけるVA単位の含有量(重量基準の含有量)は、例えば5重量%以上であってよく、10重量%以上でもよく、20重量%以上でもよく、30重量%以上でもよい。特に限定するものではないが、いくつかの態様において、上記VA単位の含有量は、50重量%以上(例えば50重量%超)であってよく、70重量%以上でもよく、80重量%以上(例えば90重量%以上、または95重量%以上、または98重量%以上)でもよい。ポリビニルアルコール系ポリマーを構成する繰返し単位の実質的に100重量%がVA単位であってもよい。ここで「実質的に100重量%」とは、少なくとも意図的にはポリビニルアルコール系ポリマーを構成する繰返し単位として非VA単位を含有させないことをいう。他のいくつかの態様において、ポリビニルアルコール系ポリマーにおけるVA単位の含有量は、例えば95重量%以下であってよく、90重量%以下でもよく、80重量%以下でもよく、70重量%以下でもよい。 The content of VA units (content based on weight) in the polyvinyl alcohol polymer may be, for example, 5% by weight or more, 10% by weight or more, 20% by weight or more, or 30% by weight or more. Although not particularly limited, in some embodiments, the content of the VA unit may be 50% by weight or more (eg, more than 50% by weight), 70% by weight or more, and 80% by weight or more ( For example, it may be 90% by weight or more, or 95% by weight or more, or 98% by weight or more). Substantially 100% by weight of the repeating units constituting the polyvinyl alcohol-based polymer may be VA units. Here, “substantially 100% by weight” means that at least intentionally, a non-VA unit is not included as a repeating unit constituting the polyvinyl alcohol-based polymer. In some other embodiments, the content of VA units in the polyvinyl alcohol-based polymer may be, for example, 95% by weight or less, 90% by weight or less, 80% by weight or less, or 70% by weight or less. .
 ポリビニルアルコール系ポリマーは、VA単位の含有量の異なる複数のポリマー鎖を同一分子内に含んでいてもよい。ここでポリマー鎖とは、一分子のポリマーの一部を構成する部分(セグメント)を指す。例えば、ポリビニルアルコール系ポリマーは、VA単位の含有量が50重量%より多いポリマー鎖Aと、VA単位の含有量が50重量%より少ない(すなわち、非VA単位の含有量が50重量%より多い)ポリマー鎖Bとを、同一分子内に含んでいてもよい。 The polyvinyl alcohol-based polymer may contain a plurality of polymer chains having different VA unit contents in the same molecule. Here, the polymer chain refers to a part (segment) that constitutes a part of a polymer of one molecule. For example, the polyvinyl alcohol-based polymer has a polymer chain A having a VA unit content of more than 50% by weight and a VA unit content of less than 50% by weight (that is, a non-VA unit content of more than 50% by weight). ) The polymer chain B may be contained in the same molecule.
 ポリマー鎖Aは、繰返し単位としてVA単位のみを含んでいてもよく、VA単位に加えて非VA単位を含んでいてもよい。ポリマー鎖AにおけるVA単位の含有量は、60重量%以上でもよく、70重量%以上でもよく、80重量%以上でもよく、90重量%以上でもよい。いくつかの態様において、ポリマー鎖AにおけるVA単位の含有量は、95重量%以上でもよく、98重量%以上でもよい。ポリマー鎖Aを構成する繰返し単位の実質的に100重量%がVA単位であってもよい。 The polymer chain A may contain only VA units as repeating units, and may contain non-VA units in addition to VA units. The content of the VA unit in the polymer chain A may be 60% by weight or more, 70% by weight or more, 80% by weight or more, or 90% by weight or more. In some embodiments, the content of VA units in the polymer chain A may be 95% by weight or more, or 98% by weight or more. Substantially 100% by weight of the repeating units constituting the polymer chain A may be VA units.
 ポリマー鎖Bは、繰返し単位として非VA単位のみを含んでいてもよく、非VA単位に加えてVA単位を含んでいてもよい。ポリマー鎖Bにおける非VA単位の含有量は、60重量%以上でもよく、70重量%以上でもよく、80重量%以上でもよく、90重量%以上でもよい。いくつかの態様において、ポリマー鎖Bにおける非VA単位の含有量は、95重量%以上でもよく、98重量%以上でもよい。ポリマー鎖Bを構成する繰返し単位の実質的に100重量%が非VA単位であってもよい。 The polymer chain B may contain only non-VA units as repeating units, and may contain VA units in addition to non-VA units. The content of non-VA units in the polymer chain B may be 60% by weight or more, 70% by weight or more, 80% by weight or more, or 90% by weight or more. In some embodiments, the content of non-VA units in the polymer chain B may be 95% by weight or more, or 98% by weight or more. Substantially 100% by weight of the repeating units constituting the polymer chain B may be non-VA units.
 ポリマー鎖Aとポリマー鎖Bとを同一分子中に含むポリビニルアルコール系ポリマーの例として、これらのポリマー鎖を含むブロック共重合体やグラフト共重合体が挙げられる。上記グラフト共重合体は、ポリマー鎖A(主鎖)にポリマー鎖B(側鎖)がグラフトした構造のグラフト共重合体であってもよく、ポリマー鎖B(主鎖)にポリマー鎖A(側鎖)がグラフトした構造のグラフト共重合体であってもよい。一態様において、ポリマー鎖Aにポリマー鎖Bがグラフトした構造のポリビニルアルコール系ポリマーを用いることができる。 Examples of the polyvinyl alcohol polymer containing polymer chain A and polymer chain B in the same molecule include block copolymers and graft copolymers containing these polymer chains. The graft copolymer may be a graft copolymer having a structure in which a polymer chain B (side chain) is grafted to a polymer chain A (main chain), and the polymer chain B (main chain) is polymer chain A (side). It may be a graft copolymer having a structure in which the chain) is grafted. In one embodiment, a polyvinyl alcohol polymer having a structure in which a polymer chain B is grafted to a polymer chain A can be used.
 ポリマー鎖Bの例としては、N-ビニル型のモノマーに由来する繰返し単位を主繰返し単位とするポリマー鎖や、N-(メタ)アクリロイル型のモノマーに由来する繰返し単位を主繰返し単位とするポリマー鎖が挙げられる。なお、本明細書において主繰返し単位とは、特記しない場合、50重量%を超えて含まれる繰返し単位をいう。 Examples of the polymer chain B include a polymer chain having a repeating unit derived from an N-vinyl type monomer as a main repeating unit, and a polymer having a repeating unit derived from an N- (meth) acryloyl type monomer as a main repeating unit. A chain. In the present specification, the main repeating unit means a repeating unit contained in an amount exceeding 50% by weight unless otherwise specified.
 ポリマー鎖Bの一好適例として、N-ビニル型のモノマーを主繰返し単位とするポリマー鎖、すなわちN-ビニル系ポリマー鎖が挙げられる。N-ビニル系ポリマー鎖におけるN-ビニル型モノマーに由来する繰返し単位の含有量は、典型的には50重量%超であり、70重量%以上であってもよく、85重量%以上であってもよく、95重量%以上であってもよい。ポリマー鎖Bの実質的に全部がN-ビニル型モノマーに由来する繰返し単位であってもよい。 As a preferred example of the polymer chain B, a polymer chain having an N-vinyl type monomer as a main repeating unit, that is, an N-vinyl polymer chain may be mentioned. The content of repeating units derived from N-vinyl type monomers in the N-vinyl polymer chain is typically more than 50% by weight, may be 70% by weight or more, and is 85% by weight or more. It may be 95% by weight or more. The polymer unit B may be a repeating unit derived from substantially all N-vinyl type monomers.
 N-ビニル型のモノマーの例には、窒素を含有する複素環(例えばラクタム環)を有するモノマーおよびN-ビニル鎖状アミドが含まれる。N-ビニルラクタム型モノマーの具体例としては、N-ビニルピロリドン、N-ビニルピペリドン、N-ビニルモルホリノン、N-ビニルカプロラクタム、N-ビニル-1,3-オキサジン-2-オン、N-ビニル-3,5-モルホリンジオン等が挙げられる。N-ビニル鎖状アミドの具体例としては、N-ビニルアセトアミド、N-ビニルプロピオン酸アミド、N-ビニル酪酸アミド等が挙げられる。ポリマー鎖Bは、例えば、その繰返し単位の50重量%超(例えば70重量%以上、または85重量%以上、または95重量%以上)がN-ビニルピロリドン単位であるN-ビニル系ポリマー鎖であり得る。ポリマー鎖Bを構成する繰返し単位の実質的に全部がN-ビニルピロリドン単位であってもよい。 Examples of the N-vinyl type monomer include a monomer having a nitrogen-containing heterocyclic ring (for example, a lactam ring) and an N-vinyl chain amide. Specific examples of N-vinyl lactam type monomers include N-vinyl pyrrolidone, N-vinyl piperidone, N-vinyl morpholinone, N-vinyl caprolactam, N-vinyl-1,3-oxazin-2-one, N-vinyl- 3,5-morpholinedione and the like can be mentioned. Specific examples of the N-vinyl chain amide include N-vinylacetamide, N-vinylpropionic acid amide, N-vinylbutyric acid amide and the like. The polymer chain B is, for example, an N-vinyl polymer chain in which more than 50% by weight (for example, 70% by weight or more, 85% by weight or more, or 95% by weight or more) of the repeating unit is an N-vinylpyrrolidone unit. obtain. Substantially all of the repeating units constituting the polymer chain B may be N-vinylpyrrolidone units.
 ポリマー鎖Bの他の例として、N-(メタ)アクリロイル型のモノマーに由来する繰返し単位を主繰返し単位とするポリマー鎖、すなわち、N-(メタ)アクリロイル系ポリマー鎖が挙げられる。N-(メタ)アクリロイル系ポリマー鎖におけるN-(メタ)アクリロイル型モノマーに由来する繰返し単位の含有量は、典型的には50重量%超であり、70重量%以上であってもよく、85重量%以上であってもよく、95重量%以上であってもよい。ポリマー鎖Bの実質的に全部がN-(メタ)アクリロイル型モノマーに由来する繰返し単位であってもよい。 Another example of the polymer chain B includes a polymer chain having a repeating unit derived from an N- (meth) acryloyl type monomer as a main repeating unit, that is, an N- (meth) acryloyl polymer chain. The content of repeating units derived from the N- (meth) acryloyl type monomer in the N- (meth) acryloyl-based polymer chain is typically more than 50% by weight and may be 70% by weight or more. % By weight or 95% by weight or more may be used. Repeating units derived from N- (meth) acryloyl type monomers may be sufficient as the polymer chain B.
 N-(メタ)アクリロイル型モノマーの例には、N-(メタ)アクリロイル基を有する鎖状アミドおよびN-(メタ)アクリロイル基を有する環状アミドが含まれる。N-(メタ)アクリロイル基を有する鎖状アミドの例としては、(メタ)アクリルアミド;N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド;N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジプロピル(メタ)アクリルアミド、N,N-ジイソプロピル(メタ)アクリルアミド、N,N-ジ(n-ブチル)(メタ)アクリルアミド等のN,N-ジアルキル(メタ)アクリルアミド;等が挙げられる。N-(メタ)アクリロイル基を有する環状アミドの例としては、N-(メタ)アクリロイルモルホリン、N-(メタ)アクリロイルピロリジン等が挙げられる。 Examples of the N- (meth) acryloyl type monomer include a chain amide having an N- (meth) acryloyl group and a cyclic amide having an N- (meth) acryloyl group. Examples of chain amides having an N- (meth) acryloyl group include (meth) acrylamide; N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl ( N-alkyl (meth) acrylamides such as (meth) acrylamide and Nn-butyl (meth) acrylamide; N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-dipropyl (meta) ) Acrylamide, N, N-diisopropyl (meth) acrylamide, N, N-dialkyl (meth) acrylamide such as N, N-di (n-butyl) (meth) acrylamide; Examples of the cyclic amide having an N- (meth) acryloyl group include N- (meth) acryloylmorpholine and N- (meth) acryloylpyrrolidine.
 ポリマー鎖Bの他の例として、オキシアルキレン単位を主繰返し単位として含むポリマー鎖、すなわちオキシアルキレン系ポリマー鎖が挙げられる。オキシアルキレン系ポリマー鎖におけるオキシアルキレン単位の含有量は、典型的には50重量%超であり、70重量%以上であってもよく、85重量%以上であってもよく、95重量%以上であってもよい。ポリマー鎖Bに含まれる繰返し単位の実質的に全部がオキシアルキレン単位であってもよい。 Other examples of the polymer chain B include a polymer chain containing an oxyalkylene unit as a main repeating unit, that is, an oxyalkylene polymer chain. The content of oxyalkylene units in the oxyalkylene polymer chain is typically more than 50% by weight, 70% by weight or more, 85% by weight or more, 95% by weight or more. There may be. Substantially all of the repeating units contained in the polymer chain B may be oxyalkylene units.
 オキシアルキレン単位の例としては、オキシエチレン単位、オキシプロピレン単位、オキシブチレン単位等が挙げられる。このようなオキシアルキレン単位は、それぞれ、対応するアルキレンオキサイドに由来する繰返し単位であり得る。オキシアルキレン系ポリマー鎖に含まれるオキシアルキレン単位は、一種類であってもよく、二種類以上であってもよい。例えば、オキシエチレン単位とオキシプロピレン単位とを組合せで含むオキシアルキレン系ポリマー鎖であってもよい。二種類以上のオキシアルキレン単位を含むオキシアルキレン系ポリマー鎖において、それらのオキシアルキレン単位は、対応するアルキレンオキサイドのランダム共重合体であってもよく、ブロック共重合体やグラフト共重合体であってもよい。 Examples of oxyalkylene units include oxyethylene units, oxypropylene units, oxybutylene units, and the like. Each such oxyalkylene unit can be a repeating unit derived from the corresponding alkylene oxide. The oxyalkylene unit contained in the oxyalkylene polymer chain may be one kind or two or more kinds. For example, it may be an oxyalkylene polymer chain containing a combination of oxyethylene units and oxypropylene units. In the oxyalkylene polymer chain containing two or more types of oxyalkylene units, these oxyalkylene units may be a random copolymer of a corresponding alkylene oxide, and may be a block copolymer or a graft copolymer. Also good.
 ポリマー鎖Bの他の例として、アルキルビニルエーテル単位、ポリビニルアルコールとアルデヒドとをアセタール化して得られた構成単位等を主繰返し単位として含むポリマー鎖が挙げられる。これらの中でも、炭素原子数1以上10以下のアルキル基を有するビニルエーテル単位(アルキルビニルエーテル単位)、炭素原子数1以上7以下のモノカルボン酸に由来するビニルエステル単位(モノカルボン酸ビニルエステル単位)、および、ポリビニルアルコールと炭素原子数1以上7以下のアルキル基を有するアルデヒドとをアセタール化して得られた構成単位からなる群から選択されると好ましい。 Other examples of the polymer chain B include a polymer chain containing, as a main repeating unit, an alkyl vinyl ether unit, a structural unit obtained by acetalizing polyvinyl alcohol and an aldehyde, and the like. Among these, vinyl ether units (alkyl vinyl ether units) having an alkyl group having 1 to 10 carbon atoms, vinyl ester units derived from monocarboxylic acids having 1 to 7 carbon atoms (monocarboxylic acid vinyl ester units), And it is preferable when it selects from the group which consists of a structural unit obtained by acetalizing polyvinyl alcohol and the aldehyde which has a C1-C7 alkyl group.
 炭素原子数1以上10以下のアルキル基を有するビニルエーテル単位の例としては、プロピルビニルエーテル単位、ブチルビニルエーテル単位、2-エチルヘキシルビニルエーテル単位等が挙げられる。炭素原子数1以上7以下のモノカルボン酸に由来するビニルエステル単位の例としては、プロパン酸ビニル単位、ブタン酸ビニル単位、ペンタン酸ビニル単位、ヘキサン酸ビニル単位等が挙げられる。 Examples of vinyl ether units having an alkyl group having 1 to 10 carbon atoms include propyl vinyl ether units, butyl vinyl ether units, 2-ethylhexyl vinyl ether units and the like. Examples of vinyl ester units derived from monocarboxylic acids having 1 to 7 carbon atoms include vinyl propanoate units, vinyl butanoate units, vinyl pentanoate units, vinyl hexanoate units, and the like.
 ここに開示される研磨用組成物に使用されるポリビニルアルコール系ポリマーは、変性されていないPVA(非変性PVA)であってもよく、VA単位および非VA単位を含む共重合体である変性PVAであってもよい。非変性PVAと変性PVAとを組み合わせて用いてもよい。ここに開示される研磨用組成物に使用されるポリビニルアルコール系ポリマーは、エーテル結合を含まないことが好ましい。 The polyvinyl alcohol polymer used in the polishing composition disclosed herein may be unmodified PVA (non-modified PVA), and is a modified PVA that is a copolymer containing VA units and non-VA units. It may be. A combination of non-modified PVA and modified PVA may be used. The polyvinyl alcohol polymer used in the polishing composition disclosed herein preferably does not contain an ether bond.
 ここに開示される技術によると、ポリビニルアルコール系ポリマーとして非変性PVAを用いた場合においても、該非変性PVAの凝集が好適に抑制された研磨用組成物が得られる。このため、本発明は、非変性PVAを含む研磨用組成物に対して適用することがより有意義である。例えば、ポリビニルアルコール系ポリマーとして、変性PVAと非変性PVAとを併用して用いる場合において、変性PVAの含有量はポリビニルアルコール系ポリマー全量に対して50重量%未満であることが好ましく、より好ましくは30重量%以下であり、さらに好ましくは10重量%以下であり、5重量%以下であってもよく、1重量%以下であってもよい。ここに開示される研磨用組成物のいくつかの態様において、ポリビニルアルコール系ポリマーとしては、非変性PVAのみを含むポリビニルアルコール(PVA)を好ましく採用し得る。 According to the technique disclosed herein, even when non-modified PVA is used as the polyvinyl alcohol polymer, a polishing composition in which aggregation of the non-modified PVA is suitably suppressed can be obtained. For this reason, it is more meaningful to apply the present invention to a polishing composition containing non-modified PVA. For example, in the case where a modified PVA and a non-modified PVA are used in combination as a polyvinyl alcohol-based polymer, the content of the modified PVA is preferably less than 50% by weight, more preferably based on the total amount of the polyvinyl alcohol-based polymer. It is 30% by weight or less, more preferably 10% by weight or less, 5% by weight or less, or 1% by weight or less. In some embodiments of the polishing composition disclosed herein, polyvinyl alcohol (PVA) containing only non-modified PVA can be preferably used as the polyvinyl alcohol-based polymer.
 ここに開示される研磨用組成物に使用されるポリビニルアルコール系ポリマーの重量平均分子量(Mw)は、特に限定されない。ポリビニルアルコール系ポリマーのMwは、通常は2×10以上であり、5×10以上であってもよく、1×10以上であってもよい。ポリビニルアルコール系ポリマーのMwの増大につれて、研磨後の表面の濡れ性が高まる傾向にある。また、ポリビニルアルコール系ポリマーのMwが高くなるとポリビニルアルコール系ポリマーの分散安定性は低下する傾向にあるので、本発明の適用意義が大きくなる。かかる観点から、ここに開示される研磨用組成物に使用されるポリビニルアルコール系ポリマーのMwは3×10以上であることが好ましく、より好ましくは4×10以上であり、さらに好ましくは5×10以上であり、特に好ましくは6×10以上(例えば6.5×10以上)である。 The weight average molecular weight (Mw) of the polyvinyl alcohol polymer used in the polishing composition disclosed herein is not particularly limited. The Mw of the polyvinyl alcohol polymer is usually 2 × 10 3 or more, may be 5 × 10 3 or more, and may be 1 × 10 4 or more. As the Mw of the polyvinyl alcohol polymer increases, the wettability of the surface after polishing tends to increase. Further, since the dispersion stability of the polyvinyl alcohol polymer tends to decrease as the Mw of the polyvinyl alcohol polymer increases, the significance of application of the present invention increases. From this viewpoint, the Mw of the polyvinyl alcohol polymer used in the polishing composition disclosed herein is preferably 3 × 10 4 or more, more preferably 4 × 10 4 or more, and further preferably 5 × 10 4 or more, particularly preferably 6 × 10 4 or more (for example, 6.5 × 10 4 or more).
 ここに開示される研磨用組成物に使用されるポリビニルアルコール系ポリマーのMwの上限は特に限定されない。ポリビニルアルコール系ポリマーのMwは、通常、100×10以下が適当であり、30×10以下が好ましく、20×10以下(例えば15×10以下)であってもよい。研磨レートと研磨対象物の表面保護とを両立させる観点からは、ポリビニルアルコール系ポリマーのMwは10×10以下であってもよく、8×10以下であってもよい。 The upper limit of Mw of the polyvinyl alcohol polymer used in the polishing composition disclosed herein is not particularly limited. The Mw of the polyvinyl alcohol-based polymer is usually suitably 100 × 10 4 or less, preferably 30 × 10 4 or less, and may be 20 × 10 4 or less (for example, 15 × 10 4 or less). From the viewpoint of achieving both the polishing rate and the surface protection of the object to be polished, the Mw of the polyvinyl alcohol-based polymer may be 10 × 10 4 or less, or 8 × 10 4 or less.
 なお、本明細書においてポリビニルアルコール系ポリマー、分散剤、水溶性高分子および界面活性剤の重量平均分子量(Mw)としては、水系のゲルパーミエーションクロマトグラフィ(GPC)に基づく値(水系、ポリエチレンオキサイド換算)を採用することができる。GPC測定装置としては、東ソー株式会社製の機種名「HLC-8320GPC」を用いるとよい。測定条件は以下のとおりとするとよい。後述の実施例についても同様の方法が採用される。
  [GPC測定条件]
  サンプル濃度:0.1重量%
  カラム:TSKgel GMPWXL
  検出器:示差屈折計
  溶離液:100mM 硝酸ナトリウム水溶液/アセトニトリル=10~8/0~2
  流速:1mL/分
  測定温度:40℃
  サンプル注入量:200μL
In this specification, the weight average molecular weight (Mw) of the polyvinyl alcohol polymer, the dispersant, the water-soluble polymer and the surfactant is a value based on an aqueous gel permeation chromatography (GPC) (aqueous, polyethylene oxide equivalent). ) Can be adopted. As the GPC measuring apparatus, the model name “HLC-8320GPC” manufactured by Tosoh Corporation may be used. The measurement conditions should be as follows. The same method is adopted for the embodiments described later.
[GPC measurement conditions]
Sample concentration: 0.1% by weight
Column: TSKgel GMPW XL
Detector: differential refractometer Eluent: 100 mM sodium nitrate aqueous solution / acetonitrile = 10-8 / 0-2
Flow rate: 1 mL / min Measurement temperature: 40 ° C
Sample injection volume: 200 μL
<ポリビニルアルコール系ポリマーの分散剤>
 ここに開示される研磨用組成物は、ポリビニルアルコール系ポリマーの分散剤(以下、単に「分散剤」ともいう。)を含む。ここに開示される技術によると、上記分散剤は分子中に少なくとも一つのエーテル結合を有する。かかる分散剤とポリビニルアルコール系ポリマーとを併せて含む研磨用組成物によると、ポリビニルアルコール系ポリマーの凝集が抑制されて分散安定性が向上した研磨用組成物が実現し得る。ここに開示される技術を実施するにあたり、分子中にエーテル結合を含む分散剤がポリビニルアルコール系ポリマーの凝集抑制に寄与するメカニズムを解明することは必要とされないが、かかる分散剤によると、分散剤に含まれるエーテル結合の酸素原子とポリビニルアルコール系ポリマーのヒドロキシ基とが水素結合することにより、ポリビニルアルコール系ポリマーのヒドロキシ基同士の水素結合を阻害するためであると考えられる。ただし、このメカニズムのみに限定解釈されるものではない。
<Polyvinyl alcohol polymer dispersant>
The polishing composition disclosed herein contains a polyvinyl alcohol polymer dispersant (hereinafter also simply referred to as “dispersant”). According to the technique disclosed herein, the dispersant has at least one ether bond in the molecule. According to the polishing composition containing both the dispersant and the polyvinyl alcohol-based polymer, it is possible to realize a polishing composition in which aggregation of the polyvinyl alcohol-based polymer is suppressed and dispersion stability is improved. In carrying out the technology disclosed herein, it is not necessary to elucidate the mechanism by which the dispersant containing an ether bond in the molecule contributes to the suppression of aggregation of the polyvinyl alcohol polymer, but according to such a dispersant, This is considered to be because hydrogen atoms between the hydroxyl groups of the polyvinyl alcohol polymer are inhibited by hydrogen bonding between the oxygen atom of the ether bond contained in the polymer and the hydroxy group of the polyvinyl alcohol polymer. However, it is not limited to this mechanism.
 ここに開示される研磨用組成物に含まれる分散剤としては、分子中にエーテル結合を含む限りにおいて、特に制限なく種々の化合物を適切な含有量で用いることができる。ここに開示される研磨用組成物に含まれる分散剤は、分子中に1つのエーテル結合を有する化合物であってもよいし、分子中に2以上のエーテル結合を有するポリエーテルであってもよい。また、上記分散剤は、高分子化合物であってもよいし、高分子ではない化合物であってもよい。上記分散剤が高分子化合物である場合において、エーテル結合は高分子の主鎖に含まれていてもよいし、側鎖に含まれていてもよいし、主鎖と側鎖の両方に含まれていてもよい。また、上記分散剤が高分子ではない化合物である場合において、該分散剤は、一般に、界面活性剤として把握され得る化合物であってもよい。上記分散剤は一種を単独でまたは二種以上を組み合わせて用いることができる。上記分散剤は水溶性であることが好ましい。 As the dispersant contained in the polishing composition disclosed herein, various compounds can be used with an appropriate content without any limitation as long as an ether bond is included in the molecule. The dispersant contained in the polishing composition disclosed herein may be a compound having one ether bond in the molecule or a polyether having two or more ether bonds in the molecule. . The dispersant may be a polymer compound or a compound that is not a polymer. In the case where the dispersant is a polymer compound, the ether bond may be contained in the polymer main chain, in the side chain, or in both the main chain and the side chain. It may be. In the case where the dispersant is a compound that is not a polymer, the dispersant may generally be a compound that can be grasped as a surfactant. The said dispersing agent can be used individually by 1 type or in combination of 2 or more types. The dispersant is preferably water-soluble.
 分子中に1つのエーテル結合を有する化合物の例としては、ジエチルエーテル、テトラヒドロフラン等が挙げられる。水系の研磨用組成物中で適当な分散性を有し、かつポリビニルアルコール系ポリマーの分散安定性を向上させる観点から、上記分散剤は、分子中に2以上のエーテル結合を有するポリエーテルであることが好ましい。 Examples of compounds having one ether bond in the molecule include diethyl ether and tetrahydrofuran. From the viewpoint of having appropriate dispersibility in the aqueous polishing composition and improving the dispersion stability of the polyvinyl alcohol-based polymer, the dispersant is a polyether having two or more ether bonds in the molecule. It is preferable.
 例えば、好適に用いられ得る分散剤として、主鎖にエーテル結合を有するポリエーテルが挙げられる。主鎖にエーテル結合を有するポリエーテルとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のオキシアルキレン重合体;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセリルエーテル脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等のポリオキシアルキレン誘導体(例えば、ポリオキシアルキレン付加物);複数種のオキシアルキレンの共重合体(例えば、ジブロック型共重合体、トリブロック型共重合体、ランダム型共重合体、交互共重合体);等が挙げられる。あるいは、他の例として、セルロース誘導体、デンプン誘導体等が挙げられる。 For example, as a dispersant that can be suitably used, a polyether having an ether bond in the main chain may be mentioned. Examples of the polyether having an ether bond in the main chain include oxyalkylene polymers such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol; polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl amine, Polyoxyalkylene derivatives such as polyoxyethylene fatty acid esters, polyoxyethylene glyceryl ether fatty acid esters, polyoxyethylene sorbitan fatty acid esters (for example, polyoxyalkylene adducts); copolymers of plural types of oxyalkylene (for example, diblock) Type copolymer, triblock type copolymer, random type copolymer, alternating copolymer); and the like. Alternatively, other examples include cellulose derivatives, starch derivatives, and the like.
 具体的には、エチレンオキサイド(EO)とプロピレンオキサイド(PO)とのブロック共重合体(ジブロック型共重合体、PEO(ポリエチレンオキサイド)-PPO(ポリプロピレンオキサイド)-PEO型トリブロック体、PPO-PEO-PPO型のトリブロック共重合体等)、EOとPOとのランダム共重合体等のオキシアルキレン共重合体;
ポリエチレングリコール等のオキシアルキレン重合体;ポリオキシエチレンプロピルエーテル、ポリオキシエチレンブチルエーテル、ポリオキシエチレンペンチルエーテル、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレン-2-エチルヘキシルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンイソデシルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンイソステアリルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル;ポリオキシエチレンフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル;ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンラウリルアミン、ポリオキシエチレンステアリルアミン、ポリオキシエチレンオレイルアミン、ポリオキシエチレンモノラウリン酸エステル、ポリオキシエチレンモノステアリン酸エステル、ポリオキシエチレンジステアリン酸エステル、ポリオキシエチレンモノオレイン酸エステル、ポリオキシエチレンジオレイン酸エステル、モノラウリン酸ポリオキシエチレンソルビタン、モノパルチミン酸ポリオキシエチレンソルビタン、モノステアリン酸ポリオキシエチレンソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、トリオレイン酸ポリオキシエチレンソルビタン、テトラオレイン酸ポリオキシエチレンソルビット、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油等のオキシアルキレン誘導体;が挙げられる。
Specifically, a block copolymer of ethylene oxide (EO) and propylene oxide (PO) (diblock copolymer, PEO (polyethylene oxide) -PPO (polypropylene oxide) -PEO triblock, PPO- Oxyalkylene copolymers such as PEO-PPO type triblock copolymers, etc., random copolymers of EO and PO;
Oxyalkylene polymers such as polyethylene glycol; polyoxyethylene propyl ether, polyoxyethylene butyl ether, polyoxyethylene pentyl ether, polyoxyethylene hexyl ether, polyoxyethylene octyl ether, polyoxyethylene-2-ethylhexyl ether, polyoxyethylene Nonyl ether, polyoxyethylene decyl ether, polyoxyethylene isodecyl ether, polyoxyethylene tridecyl ether, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene isostearyl ether, polyoxy Polyoxyethylene alkyl ethers such as ethylene oleyl ether; Ether, polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene alkyl phenyl ether such as polyoxyethylene dodecyl phenyl ether; polyoxyethylene styrenated phenyl ether, polyoxyethylene laurylamine, polyoxyethylene stearylamine , Polyoxyethylene oleylamine, polyoxyethylene monolaurate, polyoxyethylene monostearate, polyoxyethylene distearate, polyoxyethylene monooleate, polyoxyethylene dioleate, polyoxyethylene sorbitan monolaurate , Polyoxyethylene sorbitan monopaltiminate, polyoxymonostearate Chirensorubitan, monooleate polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan, polyoxyethylene sorbit tetraoleate, polyoxyethylene castor oil, polyoxyalkylene derivatives such as polyoxyethylene hydrogenated castor oil; and the like.
 あるいは他の具体例として、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体;アルファ化デンプン、プルラン、カルボキシメチルデンプン、シクロデキストリン等のデンプン誘導体;等が挙げられる。 Alternatively, as other specific examples, cellulose derivatives such as hydroxyethyl cellulose (HEC), hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose; pregelatinized starch, pullulan, carboxymethyl starch, And starch derivatives such as cyclodextrin;
 また、好適に用いられ得る他の分散剤として、側鎖にエーテル結合を有するポリエーテルが挙げられる。側鎖にエーテル結合を有するポリエーテルとしては、ポリアクリロイルモルホリン(PACMO)等が例示される。 Also, other dispersants that can be suitably used include polyethers having an ether bond in the side chain. Examples of the polyether having an ether bond in the side chain include polyacryloylmorpholine (PACMO).
 なかでも、ここに開示される研磨用組成物に好適に使用される分散剤として、ポリオキシエチレンアルキルエーテル、HECおよびPACMOが挙げられる。なかでもポリオキシエチレンアルキルエーテルが好ましい。 Among them, polyoxyethylene alkyl ether, HEC and PACMO may be mentioned as dispersants suitably used for the polishing composition disclosed herein. Of these, polyoxyethylene alkyl ether is preferred.
 ここで用いられ得るポリオキシエチレンアルキルエーテルにおけるアルキル基の炭素原子数は、特に限定されない。例えば、上記アルキル基の炭素原子数は、5以上であることが好ましく、より好ましくは6以上、さらに好ましくは7以上である。例えば、上記アルキル基の炭素原子数は、12以下であることが好ましく、より好ましくは11以下、さらに好ましくは10以下、特に好ましくは9以下である。上記アルキル基の炭素原子数は、例えば8である。また、ポリオキシエチレンアルキルエーテルにおけるエチレンオキサイド付加モル数は、特に限定されないが、4以上であることが好ましく、より好ましくは5以上、さらに好ましくは6以上であり、10以下であることが好ましく、より好ましくは9以下であり、さらに好ましくは8以下であり、特に好ましくは7以下である。研磨後の表面欠陥低減の観点から、ここに開示される研磨用組成物に使用される分散剤としては、エチレンオキサイド付加モル数が4~10(例えば6)であるポリオキシエチレンオクチルエーテルが好ましく用いられ得る。 The number of carbon atoms of the alkyl group in the polyoxyethylene alkyl ether that can be used here is not particularly limited. For example, the alkyl group preferably has 5 or more carbon atoms, more preferably 6 or more, and still more preferably 7 or more. For example, the alkyl group preferably has 12 or less carbon atoms, more preferably 11 or less, still more preferably 10 or less, and particularly preferably 9 or less. The alkyl group has 8 carbon atoms, for example. The number of moles of ethylene oxide added in the polyoxyethylene alkyl ether is not particularly limited, but is preferably 4 or more, more preferably 5 or more, still more preferably 6 or more, and preferably 10 or less. More preferably, it is 9 or less, More preferably, it is 8 or less, Especially preferably, it is 7 or less. From the viewpoint of reducing surface defects after polishing, the dispersant used in the polishing composition disclosed herein is preferably a polyoxyethylene octyl ether having an ethylene oxide addition mole number of 4 to 10 (for example, 6). Can be used.
 ここに開示される研磨用組成物において、ポリビニルアルコール系ポリマーの分散安定性を好適に向上させる観点から、研磨用組成物に含まれるポリビニルアルコール系ポリマーと分散剤の含有量の比は、適切な範囲となるように設計されることが好ましい。例えば、研磨用組成物における分散剤の含有量に対するポリビニルアルコール系ポリマーの含有量のモル比は、0.01以上10以下となることが好ましく、より好ましくは0.02以上5以下(例えば0.04以上4以下)である。 In the polishing composition disclosed herein, from the viewpoint of suitably improving the dispersion stability of the polyvinyl alcohol polymer, the ratio of the content of the polyvinyl alcohol polymer and the dispersant contained in the polishing composition is appropriate. It is preferably designed to be in the range. For example, the molar ratio of the content of the polyvinyl alcohol-based polymer to the content of the dispersant in the polishing composition is preferably 0.01 or more and 10 or less, more preferably 0.02 or more and 5 or less (for example, 0.8. 04 to 4).
 例えば、分散剤がポリオキシエチレンアルキルエーテル等のポリオキシアルキレン誘導体を含む態様において、研磨用組成物における分散剤の含有量に対するポリビニルアルコール系ポリマーの含有量のモル比は、1以下であることが好ましく、より好ましくは0.5以下であり、さらに好ましくは0.1以下(例えば0.07以下)である。また、かかる態様における分散剤の含有量に対するポリビニルアルコール系ポリマーの含有量のモル比は、通常、0.01以上であり、0.02以上であることが好ましく、より好ましくは0.03以上であり、さらに好ましくは0.04以上である。かかる配合比でポリビニルアルコール系ポリマーと分散剤とを含有させると、ポリビニルアルコール系ポリマーの凝集が適切に抑制されて、研磨後の表面欠陥が低減し得る研磨用組成物が実現しやすい。 For example, in an embodiment in which the dispersant contains a polyoxyalkylene derivative such as polyoxyethylene alkyl ether, the molar ratio of the content of the polyvinyl alcohol polymer to the content of the dispersant in the polishing composition is 1 or less. Preferably, it is 0.5 or less, more preferably 0.1 or less (for example, 0.07 or less). Moreover, the molar ratio of the content of the polyvinyl alcohol polymer to the content of the dispersant in such an embodiment is usually 0.01 or more, preferably 0.02 or more, more preferably 0.03 or more. Yes, more preferably 0.04 or more. When the polyvinyl alcohol polymer and the dispersant are contained at such a blending ratio, aggregation of the polyvinyl alcohol polymer is appropriately suppressed, and a polishing composition that can reduce surface defects after polishing is easily realized.
 例えば、分散剤がエーテル結合を有する繰返し単位を含む水溶性高分子(典型的には、HECまたはPACMO)を含む態様において、研磨用組成物における分散剤の含有量に対するポリビニルアルコール系ポリマーの含有量のモル比は、15以下であることが好ましく、より好ましくは10以下であり、さらに好ましくは5以下(例えば4以下)である。また、かかる態様における分散剤の含有量に対するポリビニルアルコール系ポリマーの含有量のモル比は、通常、0.1以上であり、0.3以上であることが好ましく、より好ましくは0.5以上であり、さらに好ましくは1以上である。かかる配合比でポリビニルアルコール系ポリマーと分散剤とを含有させると、ポリビニルアルコール系ポリマーの凝集が適切に抑制されて、研磨後の表面欠陥が低減し得る研磨用組成物が実現しやすい。 For example, in an embodiment in which the dispersant includes a water-soluble polymer (typically, HEC or PACMO) including a repeating unit having an ether bond, the content of the polyvinyl alcohol-based polymer relative to the content of the dispersant in the polishing composition Is preferably 15 or less, more preferably 10 or less, and even more preferably 5 or less (for example, 4 or less). Further, the molar ratio of the content of the polyvinyl alcohol polymer to the content of the dispersant in such an embodiment is usually 0.1 or more, preferably 0.3 or more, more preferably 0.5 or more. Yes, more preferably 1 or more. When the polyvinyl alcohol polymer and the dispersant are contained at such a blending ratio, aggregation of the polyvinyl alcohol polymer is appropriately suppressed, and a polishing composition that can reduce surface defects after polishing is easily realized.
 分散剤の重量平均分子量(Mw)は、特に限定されない。分散剤のMwは、通常、100以上であり、好ましくは200以上であり、より好ましくは300以上である。また、分散剤のMwは、通常、100×10以下であり、好ましくは70×10以下であり、より好ましくは50×10以下である。 The weight average molecular weight (Mw) of the dispersant is not particularly limited. The Mw of the dispersant is usually 100 or more, preferably 200 or more, more preferably 300 or more. Moreover, Mw of a dispersing agent is 100x10 < 4 > or less normally, Preferably it is 70x10 < 4 > or less, More preferably, it is 50x10 < 4 > or less.
 例えば、分散剤がポリオキシエチレンアルキルエーテル等のポリオキシアルキレン誘導体である場合、分散剤のMwは3000以下が好ましく、より好ましくは1500以下であり、さらに好ましくは700以下であり、特に好ましくは500以下である。また、分散剤がポリオキシアルキレン誘導体である場合、分散剤のMwは100以上が好ましく、より好ましくは200以上であり、さらに好ましくは300以上である。かかる範囲のMwを有する分散剤を含む研磨用組成物によると、研磨後の表面欠陥が高度に低減し得る。 For example, when the dispersant is a polyoxyalkylene derivative such as polyoxyethylene alkyl ether, the Mw of the dispersant is preferably 3000 or less, more preferably 1500 or less, still more preferably 700 or less, and particularly preferably 500. It is as follows. When the dispersant is a polyoxyalkylene derivative, the Mw of the dispersant is preferably 100 or more, more preferably 200 or more, and still more preferably 300 or more. According to the polishing composition containing the dispersant having Mw in such a range, surface defects after polishing can be highly reduced.
 分散剤がエーテル結合を有する繰返し単位を含む水溶性高分子(典型的には、HECまたはPACMO)である場合において、分散剤のMwは1×10以上であってもよく、5×10以上であってもよく、10×10以上であってもよく、20×10以上であってもよい。また、分散剤のMwは100×10以下であってもよく、50×10以下であってもよく、45×10以下であってもよく、40×10以下であってもよい。 In the case where the dispersant is a water-soluble polymer (typically HEC or PACMO) containing a repeating unit having an ether bond, the Mw of the dispersant may be 1 × 10 4 or more, and 5 × 10 4 may be more, it may also be 10 × 10 4 or more, may be 20 × 10 4 or more. Further, the Mw of the dispersant may be 100 × 10 4 or less, 50 × 10 4 or less, 45 × 10 4 or less, or 40 × 10 4 or less. .
 好ましい一態様において、分散剤のMwはポリビニルアルコール系ポリマーのMwよりも小さい。かかるMwを有する分散剤を含む研磨用組成物によると、研磨面が適切に保護されて研磨後の表面欠陥が高度に低減し得る。 In a preferred embodiment, the Mw of the dispersant is smaller than the Mw of the polyvinyl alcohol polymer. According to the polishing composition containing the dispersant having Mw, the polished surface can be appropriately protected, and surface defects after polishing can be highly reduced.
 ここに開示される研磨用組成物に用いられる分散剤としては、Mwが1×10未満である化合物と、Mwが1×10以上である化合物とを併用して用いてもよい。例えば、上記分散剤として、ポリオキシエチレンアルキルエーテル等のポリオキシアルキレン誘導体と、エーテル結合を有する繰返し単位を含む水溶性高分子(典型的には、HECまたはPACMO)とを併用して用いてもよい。ここに開示される研磨用組成物に用いられる分散剤は、ポリオキシエチレンアルキルエーテル等のポリオキシアルキレン誘導体を含むことが好ましい。分散剤として上記ポリオキシアルキレン誘導体と上記水溶性高分子とを併用する場合において、分散剤全体に対する水溶性高分子の含有量は50重量%より大きいことが好ましく、より好ましくは70重量%以上であり、さらに好ましくは80重量%以上であり、85重量%以上であってもよく、90重量%以上であってもよい。 As a dispersant used in the polishing composition disclosed herein, a compound having an Mw of less than 1 × 10 4 and a compound having an Mw of 1 × 10 4 or more may be used in combination. For example, a polyoxyalkylene derivative such as polyoxyethylene alkyl ether and a water-soluble polymer containing a repeating unit having an ether bond (typically HEC or PACMO) may be used in combination as the dispersant. Good. The dispersant used in the polishing composition disclosed herein preferably contains a polyoxyalkylene derivative such as polyoxyethylene alkyl ether. In the case where the polyoxyalkylene derivative and the water-soluble polymer are used in combination as a dispersant, the content of the water-soluble polymer with respect to the entire dispersant is preferably more than 50% by weight, more preferably 70% by weight or more. Yes, more preferably 80% by weight or more, 85% by weight or more, or 90% by weight or more.
 ここに開示される研磨用組成物に用いられる分散剤としては、Mwが1×10未満である化合物を一種単独で用いてもよい。例えば、分散剤としてポリオキシエチレンアルキルエーテル等のポリオキシアルキレン誘導体のみを使用する態様でも実施することができる。 As a dispersant used in the polishing composition disclosed herein, a compound having an Mw of less than 1 × 10 4 may be used alone. For example, it can also be implemented in an embodiment in which only a polyoxyalkylene derivative such as polyoxyethylene alkyl ether is used as a dispersant.
<水溶性高分子>
 ここに開示される研磨用組成物は、本発明の効果が著しく妨げられない範囲で、上述したポリビニルアルコール系ポリマーおよび分散剤以外の水溶性高分子を、必要に応じてさらに含有してもよい。上記水溶性高分子は、分子中に、カチオン性基、アニオン性基およびノニオン性基から選ばれる少なくとも1種の官能基を有するものであり得る。上記水溶性高分子は、例えば、分子中に水酸基、カルボキシ基、スルホ基、第1級アミド構造、複素環構造、ビニル構造等を有するものであり得る。凝集物の低減や洗浄性向上等の観点から、上記水溶性高分子としてノニオン性のポリマーを好ましく採用し得る。
<Water-soluble polymer>
The polishing composition disclosed herein may further contain a water-soluble polymer other than the above-described polyvinyl alcohol-based polymer and dispersant as necessary, as long as the effects of the present invention are not significantly hindered. . The water-soluble polymer may have at least one functional group selected from a cationic group, an anionic group, and a nonionic group in the molecule. The water-soluble polymer may have, for example, a hydroxyl group, a carboxy group, a sulfo group, a primary amide structure, a heterocyclic structure, a vinyl structure, etc. in the molecule. From the viewpoints of reducing aggregates and improving detergency, a nonionic polymer can be preferably employed as the water-soluble polymer.
 上記水溶性高分子の例としては、窒素原子を含有するポリマー等が挙げられる。窒素原子を含有するポリマーとしては、主鎖に窒素原子を含有するポリマーおよび側鎖官能基(ペンダント基)に窒素原子を有するポリマーのいずれも使用可能である。主鎖に窒素原子を含有するポリマーの例としては、N-アシルアルキレンイミン型モノマーの単独重合体および共重合体が挙げられる。N-アシルアルキレンイミン型モノマーの具体例としては、N-アセチルエチレンイミン、N-プロピオニルエチレンイミン等が挙げられる。ペンダント基に窒素原子を有するポリマーとしては、例えばN-ビニル型のモノマー単位を含むポリマー等が挙げられる。例えば、N-ビニルピロリドンの単独重合体および共重合体等を採用し得る。 Examples of the water-soluble polymer include a polymer containing a nitrogen atom. As the polymer containing a nitrogen atom, any of a polymer containing a nitrogen atom in the main chain and a polymer having a nitrogen atom in a side chain functional group (pendant group) can be used. Examples of the polymer containing a nitrogen atom in the main chain include homopolymers and copolymers of N-acylalkylenimine type monomers. Specific examples of the N-acylalkyleneimine monomer include N-acetylethyleneimine, N-propionylethyleneimine and the like. Examples of the polymer having a nitrogen atom in the pendant group include a polymer containing an N-vinyl type monomer unit. For example, homopolymers and copolymers of N-vinylpyrrolidone can be employed.
 ここに開示される研磨用組成物は、ポリビニルアルコール系ポリマーおよび分散剤以外の水溶性高分子を実質的に含まない態様で実施することができる。 The polishing composition disclosed herein can be carried out in an embodiment that does not substantially contain a water-soluble polymer other than the polyvinyl alcohol polymer and the dispersant.
<界面活性剤>
 ここに開示される研磨用組成物は、本発明の効果が著しく妨げられない範囲で、上述した分散剤以外の界面活性剤を、必要に応じてさらに含有してもよい。界面活性剤としては、アニオン性、カチオン性、ノニオン性、両性のいずれのものも使用可能である。ここに開示される研磨用組成物は、分散剤以外の界面活性剤を実質的に含まない態様で実施することができる。
<Surfactant>
The polishing composition disclosed herein may further contain a surfactant other than the above-described dispersant as required, as long as the effects of the present invention are not significantly hindered. As the surfactant, any of anionic, cationic, nonionic, and amphoteric can be used. The polishing composition disclosed herein can be carried out in a mode that does not substantially contain a surfactant other than the dispersant.
<水>
 ここに開示される研磨用組成物に含まれる水としては、イオン交換水(脱イオン水)、純水、超純水、蒸留水等を好ましく用いることができる。使用する水は、研磨用組成物に含有される他の成分の働きが阻害されることを極力回避するため、例えば遷移金属イオンの合計含有量が100ppb以下であることが好ましい。例えば、イオン交換樹脂による不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって水の純度を高めることができる。
<Water>
As water contained in the polishing composition disclosed herein, ion-exchanged water (deionized water), pure water, ultrapure water, distilled water, or the like can be preferably used. The water to be used preferably has, for example, a total content of transition metal ions of 100 ppb or less in order to avoid as much as possible the action of other components contained in the polishing composition. For example, the purity of water can be increased by operations such as removal of impurity ions with an ion exchange resin, removal of foreign matter with a filter, distillation, and the like.
<塩基性化合物>
 ここに開示される研磨用組成物は、塩基性化合物を含有する。本明細書において塩基性化合物とは、水に溶解して水溶液のpHを上昇させる機能を有する化合物を指す。塩基性化合物としては、窒素を含む有機または無機の塩基性化合物、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、各種の炭酸塩や炭酸水素塩等を用いることができる。窒素を含む塩基性化合物の例としては、第四級アンモニウム化合物、第四級ホスホニウム化合物、アンモニア、アミン(好ましくは水溶性アミン)等が挙げられる。このような塩基性化合物は、一種を単独でまたは二種以上を組み合わせて用いることができる。
<Basic compound>
The polishing composition disclosed herein contains a basic compound. In the present specification, the basic compound refers to a compound having a function of dissolving in water and increasing the pH of an aqueous solution. As the basic compound, an organic or inorganic basic compound containing nitrogen, an alkali metal hydroxide, an alkaline earth metal hydroxide, various carbonates, bicarbonates, or the like can be used. Examples of basic compounds containing nitrogen include quaternary ammonium compounds, quaternary phosphonium compounds, ammonia, amines (preferably water-soluble amines), and the like. Such basic compounds can be used singly or in combination of two or more.
 アルカリ金属の水酸化物の具体例としては、水酸化カリウム、水酸化ナトリウム等が挙げられる。炭酸塩または炭酸水素塩の具体例としては、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム等が挙げられる。アミンの具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、グアニジン、イミダゾールやトリアゾール等のアゾール類等が挙げられる。第四級ホスホニウム化合物の具体例としては、水酸化テトラメチルホスホニウム、水酸化テトラエチルホスホニウム等の水酸化第四級ホスホニウムが挙げられる。 Specific examples of the alkali metal hydroxide include potassium hydroxide and sodium hydroxide. Specific examples of the carbonate or bicarbonate include ammonium bicarbonate, ammonium carbonate, potassium bicarbonate, potassium carbonate, sodium bicarbonate, sodium carbonate and the like. Specific examples of amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- (β-aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, anhydrous piperazine , Piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine, guanidine, azoles such as imidazole and triazole, and the like. Specific examples of the quaternary phosphonium compound include quaternary phosphonium hydroxide such as tetramethylphosphonium hydroxide and tetraethylphosphonium hydroxide.
 第四級アンモニウム化合物としては、テトラアルキルアンモニウム塩、ヒドロキシアルキルトリアルキルアンモニウム塩等の第四級アンモニウム塩(典型的には強塩基)を好ましく用いることができる。かかる第四級アンモニウム塩におけるアニオン成分は、例えば、OH、F、Cl、Br、I、ClO 、BH 等であり得る。なかでも好ましい例として、アニオンがOHである第四級アンモニウム塩、すなわち水酸化第四級アンモニウムが挙げられる。水酸化第四級アンモニウムの具体例としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化テトラペンチルアンモニウムおよび水酸化テトラヘキシルアンモニウム等の水酸化テトラアルキルアンモニウム;水酸化2-ヒドロキシエチルトリメチルアンモニウム(コリンともいう。)等の水酸化ヒドロキシアルキルトリアルキルアンモニウム;等が挙げられる。 As the quaternary ammonium compound, a quaternary ammonium salt (typically a strong base) such as a tetraalkylammonium salt or a hydroxyalkyltrialkylammonium salt can be preferably used. The anionic component in such a quaternary ammonium salt can be, for example, OH , F , Cl , Br , I , ClO 4 , BH 4 − and the like. As Among these preferred examples, the anion is OH - a is a quaternary ammonium salt, i.e., include quaternary ammonium hydroxide. Specific examples of quaternary ammonium hydroxide include hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapentylammonium hydroxide, and tetrahexylammonium hydroxide. Tetraalkylammonium hydroxide; hydroxyalkyltrialkylammonium hydroxide such as 2-hydroxyethyltrimethylammonium hydroxide (also referred to as choline); and the like.
 これらの塩基性化合物のうち、例えば、アルカリ金属水酸化物、水酸化第四級アンモニウムおよびアンモニアから選択される少なくとも一種の塩基性化合物を好ましく使用し得る。なかでも水酸化テトラアルキルアンモニウム(例えば、水酸化テトラメチルアンモニウム)およびアンモニアがより好ましく、アンモニアが特に好ましい。 Among these basic compounds, for example, at least one basic compound selected from alkali metal hydroxides, quaternary ammonium hydroxides and ammonia can be preferably used. Of these, tetraalkylammonium hydroxide (for example, tetramethylammonium hydroxide) and ammonia are more preferable, and ammonia is particularly preferable.
<その他の成分>
 その他、ここに開示される研磨用組成物は、本発明の効果が著しく妨げられない範囲で、キレート剤、有機酸、有機酸塩、無機酸、無機酸塩、防腐剤、防カビ剤等の、研磨スラリー(典型的には、シリコンウェーハのポリシング工程に用いられる研磨スラリー)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。
<Other ingredients>
In addition, the polishing composition disclosed herein is a chelating agent, an organic acid, an organic acid salt, an inorganic acid, an inorganic acid salt, an antiseptic, an antifungal agent, etc., as long as the effect of the present invention is not significantly hindered. A known additive that can be used in a polishing slurry (typically, a polishing slurry used in a polishing process of a silicon wafer) may be further contained as necessary.
 ここに開示される研磨用組成物は、酸化剤を実質的に含まないことが好ましい。研磨用組成物中に酸化剤が含まれていると、当該組成物が供給されることでシリコン基板の表面が酸化されて酸化膜が生じ、これにより研磨レートが低下してしまうことがあり得るためである。ここで、研磨用組成物が酸化剤を実質的に含有しないとは、少なくとも意図的には酸化剤を配合しないことをいい、原料や製法等に由来して微量の酸化剤が不可避的に含まれることは許容され得る。上記微量とは、研磨用組成物における酸化剤のモル濃度が0.0005モル/L以下(好ましくは0.0001モル/L以下、より好ましくは0.00001モル/L以下、特に好ましくは0.000001モル/L以下)であることをいう。好ましい一態様に係る研磨用組成物は、酸化剤を含有しない。ここに開示される研磨用組成物は、例えば、過酸化水素、過硫酸ナトリウム、過硫酸アンモニウムおよびジクロロイソシアヌル酸ナトリウムをいずれも含有しない態様で好ましく実施され得る。 It is preferable that the polishing composition disclosed herein does not substantially contain an oxidizing agent. If the polishing composition contains an oxidizing agent, the supply of the composition may oxidize the surface of the silicon substrate to produce an oxide film, which may reduce the polishing rate. Because. Here, that the polishing composition substantially does not contain an oxidant means that at least intentionally no oxidant is blended, and a trace amount of oxidant is inevitably contained due to raw materials and manufacturing methods. It can be tolerated. The trace amount means that the molar concentration of the oxidizing agent in the polishing composition is 0.0005 mol / L or less (preferably 0.0001 mol / L or less, more preferably 0.00001 mol / L or less, particularly preferably 0.00. 00000 mol / L or less). The polishing composition according to a preferred embodiment does not contain an oxidizing agent. The polishing composition disclosed herein can be preferably implemented in an embodiment that does not contain, for example, hydrogen peroxide, sodium persulfate, ammonium persulfate, and sodium dichloroisocyanurate.
<pH>
 ここに開示される研磨用組成物のpHは、典型的には8.0以上であり、好ましくは8.5以上、より好ましくは9.0以上、さらに好ましくは9.3以上、例えば9.5以上である。研磨用組成物のpHが高くなると、研磨能率が向上する傾向にある。一方、砥粒(例えばシリカ粒子)の溶解を防いで機械的な研磨作用の低下を抑制する観点から、研磨用組成物のpHは、12.0以下であることが適当であり、11.0以下であることが好ましく、10.8以下であることがより好ましく、10.5以下であることがさらに好ましい。
<PH>
The pH of the polishing composition disclosed herein is typically 8.0 or higher, preferably 8.5 or higher, more preferably 9.0 or higher, even more preferably 9.3 or higher, for example 9. 5 or more. When the pH of the polishing composition increases, the polishing efficiency tends to improve. On the other hand, from the viewpoint of preventing dissolution of abrasive grains (for example, silica particles) and suppressing a decrease in mechanical polishing action, the pH of the polishing composition is suitably 12.0 or less, and 11.0 Is preferably 10.8 or less, more preferably 10.8 or less, and even more preferably 10.5 or less.
 pHは、pHメーター(例えば、堀場製作所製のガラス電極式水素イオン濃度指示計(型番F-23))を使用し、標準緩衝液(フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃)、炭酸塩pH緩衝液 pH:10.01(25℃))を用いて3点校正した後で、ガラス電極を測定対象の組成物に入れて、2分以上経過して安定した後の値を測定することにより把握することができる。 For the pH, a pH meter (for example, a glass electrode type hydrogen ion concentration indicator (model number F-23) manufactured by Horiba, Ltd.) is used, and a standard buffer solution (phthalate pH buffer solution: pH 4.01 (25 ° C.)). , Neutral phosphate pH buffer solution pH: 6.86 (25 ° C), carbonate pH buffer solution pH: 10.01 (25 ° C)) It can grasp | ascertain by putting into a composition and measuring the value after passing for 2 minutes or more and stabilizing.
<用途>
 ここに開示される技術における研磨用組成物は、種々の材質および形状を有する研磨対象物の研磨に適用され得る。研磨対象物の材質は、例えば、シリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン、ステンレス鋼等の金属もしくは半金属、またはこれらの合金;石英ガラス、アルミノシリケートガラス、ガラス状カーボン等のガラス状物質;アルミナ、シリカ、サファイア、窒化ケイ素、窒化タンタル、炭化チタン等のセラミック材料;炭化ケイ素、窒化ガリウム、ヒ化ガリウム等の化合物半導体基板材料;ポリイミド樹脂等の樹脂材料;等であり得る。これらのうち複数の材質により構成された研磨対象物であってもよい。
<Application>
The polishing composition in the technique disclosed herein can be applied to polishing a polishing object having various materials and shapes. The material of the polishing object is, for example, a metal or semimetal such as silicon, aluminum, nickel, tungsten, copper, tantalum, titanium, stainless steel, or an alloy thereof; glass such as quartz glass, aluminosilicate glass, glassy carbon, etc. A ceramic material such as alumina, silica, sapphire, silicon nitride, tantalum nitride, and titanium carbide; a compound semiconductor substrate material such as silicon carbide, gallium nitride, and gallium arsenide; a resin material such as polyimide resin; Of these, a polishing object composed of a plurality of materials may be used.
 ここに開示される技術における研磨用組成物は、シリコンからなる表面の研磨(典型的にはシリコンウェーハの研磨)に特に好ましく使用され得る。ここでいうシリコンウェーハの典型例はシリコン単結晶ウェーハであり、例えば、シリコン単結晶インゴットをスライスして得られたシリコン単結晶ウェーハである。 The polishing composition in the technique disclosed herein can be particularly preferably used for polishing a surface made of silicon (typically polishing a silicon wafer). A typical example of the silicon wafer here is a silicon single crystal wafer, for example, a silicon single crystal wafer obtained by slicing a silicon single crystal ingot.
 ここに開示される研磨用組成物は、研磨対象物(例えばシリコンウェーハ)のポリシング工程に好ましく適用することができる。研磨対象物には、ここに開示される研磨用組成物によるポリシング工程の前に、ラッピングやエッチング等の、ポリシング工程より上流の工程において研磨対象物に適用され得る一般的な処理が施されていてもよい。 The polishing composition disclosed herein can be preferably applied to a polishing process of an object to be polished (for example, a silicon wafer). Before the polishing process with the polishing composition disclosed herein, the polishing object is subjected to a general treatment that can be applied to the polishing object in a process upstream of the polishing process, such as lapping and etching. May be.
 ここに開示される研磨用組成物は、例えば、上流の工程によって表面粗さ0.1nm~100nmの表面状態に調製された研磨対象物(例えばシリコンウェーハ)のポリシングにおいて好ましく用いられ得る。研磨対象物の表面粗さRaは、例えば、Schmitt Measurement System Inc.社製のレーザースキャン式表面粗さ計「TMS-3000WRC」を用いて測定することができる。ファイナルポリシング(仕上げ研磨)またはその直前のポリシングでの使用が効果的であり、ファイナルポリシングにおける使用が特に好ましい。ここで、ファイナルポリシングとは、目的物の製造プロセスにおける最後のポリシング工程(すなわち、その工程の後にはさらなるポリシングを行わない工程)を指す。 The polishing composition disclosed herein can be preferably used, for example, in polishing an object to be polished (for example, a silicon wafer) prepared to have a surface roughness of 0.1 nm to 100 nm by an upstream process. The surface roughness Ra of the object to be polished can be measured using, for example, a laser scan type surface roughness meter “TMS-3000WRC” manufactured by Schmitt® Measurement® System® Inc. Use in final polishing (finish polishing) or polishing immediately before is effective, and use in final polishing is particularly preferable. Here, the final polishing refers to the final polishing step in the manufacturing process of the target product (that is, a step in which no further polishing is performed after that step).
<研磨用組成物>
 ここに開示される研磨用組成物は、典型的には該研磨用組成物を含む研磨液の形態で研磨対象物に供給されて、その研磨対象物の研磨に用いられる。上記研磨液は、例えば、ここに開示されるいずれかの研磨用組成物を希釈(典型的には、水により希釈)して調製されたものであり得る。あるいは、該研磨用組成物をそのまま研磨液として使用してもよい。すなわち、ここに開示される技術における研磨用組成物の概念には、研磨対象物に供給されて該研磨対象物の研磨に用いられる研磨液(ワーキングスラリー)と、希釈して研磨液として用いられる濃縮液(すなわち、研磨液の原液)との双方が包含される。ここに開示される研磨用組成物を含む研磨液の他の例として、該組成物のpHを調整してなる研磨液が挙げられる。
<Polishing composition>
The polishing composition disclosed herein is typically supplied to a polishing object in the form of a polishing liquid containing the polishing composition, and used for polishing the polishing object. The polishing liquid may be prepared, for example, by diluting (typically diluting with water) any of the polishing compositions disclosed herein. Or you may use this polishing composition as polishing liquid as it is. That is, the concept of the polishing composition in the technology disclosed herein is used as a polishing liquid diluted with a polishing liquid (working slurry) that is supplied to a polishing object and used for polishing the polishing object. Both concentrates (ie, stock solutions of polishing liquid) are included. Another example of the polishing liquid containing the polishing composition disclosed herein is a polishing liquid obtained by adjusting the pH of the composition.
 (研磨液)
 研磨液における砥粒の含有量は特に制限されないが、典型的には0.01重量%以上であり、0.05重量%以上であることが好ましく、より好ましくは0.10重量%以上、例えば0.15重量%以上である。砥粒の含有量の増大によって、より高い研磨速度が実現され得る。研磨用組成物中粒子の分散安定性の観点から、通常、上記含有量は、10重量%以下が適当であり、好ましくは7重量%以下、より好ましくは5重量%以下、さらに好ましくは2重量%以下、例えば1重量%以下であり、0.7重量%以下であってもよい。好ましい一態様において、上記含有量は、0.5重量%以下であってもよく、0.2重量%以下であってもよい。
(Polishing liquid)
The content of the abrasive grains in the polishing liquid is not particularly limited, but is typically 0.01% by weight or more, preferably 0.05% by weight or more, more preferably 0.10% by weight or more, for example, It is 0.15% by weight or more. By increasing the abrasive content, higher polishing rates can be achieved. From the viewpoint of dispersion stability of particles in the polishing composition, the content is usually suitably 10% by weight or less, preferably 7% by weight or less, more preferably 5% by weight or less, and even more preferably 2% by weight. % Or less, for example, 1% by weight or less, and may be 0.7% by weight or less. In a preferred embodiment, the content may be 0.5% by weight or less, or 0.2% by weight or less.
 研磨液におけるポリビニルアルコール系ポリマーの濃度は特に制限されず、例えば0.0001重量%以上とすることができる。ヘイズ低減等の観点から、好ましい濃度は0.0005重量%以上であり、より好ましくは0.001重量%以上、例えば0.003重量%以上であり、0.005重量%以上であってもよい。また、研磨速度等の観点から、ポリビニルアルコール系ポリマーの濃度は、通常、0.2重量%以下とすることが好ましく、0.1重量%以下とすることがより好ましく、0.05重量%以下(例えば0.01重量%以下)であってもよく、0.008重量%以下であってもよい。 The concentration of the polyvinyl alcohol polymer in the polishing liquid is not particularly limited and can be, for example, 0.0001% by weight or more. From the viewpoint of haze reduction or the like, the preferred concentration is 0.0005% by weight or more, more preferably 0.001% by weight or more, for example 0.003% by weight or more, and may be 0.005% by weight or more. . From the viewpoint of polishing rate and the like, the concentration of the polyvinyl alcohol-based polymer is usually preferably 0.2% by weight or less, more preferably 0.1% by weight or less, and 0.05% by weight or less. (For example, 0.01% by weight or less) or 0.008% by weight or less may be used.
 研磨液における分散剤の濃度は特に制限されず、例えば0.0001重量%以上とすることができ、好ましくは0.0003重量%以上である。また、研磨液における分散剤の濃度は、通常、0.2重量%以下とすることが好ましく、0.1重量%以下とすることがより好ましく、0.05重量%以下であってもよい。好ましい一態様において、研磨液における分散剤の濃度は0.0001重量%以上0.002重量%以下であってもよく、0.0002重量%以上0.001重量%以下であってもよい。また、他の好ましい一態様において、研磨液における分散剤の濃度は0.005重量%以上0.03重量%以下であってもよい。 The concentration of the dispersant in the polishing liquid is not particularly limited, and can be, for example, 0.0001% by weight or more, preferably 0.0003% by weight or more. Further, the concentration of the dispersant in the polishing liquid is usually preferably 0.2% by weight or less, more preferably 0.1% by weight or less, and may be 0.05% by weight or less. In a preferred embodiment, the concentration of the dispersant in the polishing liquid may be 0.0001 wt% or more and 0.002 wt% or less, or 0.0002 wt% or more and 0.001 wt% or less. In another preferred embodiment, the concentration of the dispersant in the polishing liquid may be 0.005 wt% or more and 0.03% wt or less.
 ここに開示される研磨用組成物が塩基性化合物を含む場合、研磨液における塩基性化合物の濃度は特に制限されない。研磨速度向上等の観点から、通常は、上記濃度を研磨液の0.001重量%以上とすることが好ましく、0.003重量%以上(例えば0.005重量%以上)とすることがより好ましい。また、ヘイズ低減等の観点から、上記濃度は、0.3重量%未満とすることが適当であり、0.1重量%未満とすることが好ましく、0.05重量%未満(例えば0.03重量%未満)とすることがより好ましい。 When the polishing composition disclosed herein contains a basic compound, the concentration of the basic compound in the polishing liquid is not particularly limited. From the viewpoint of improving the polishing rate, the concentration is usually preferably 0.001% by weight or more of the polishing liquid, and more preferably 0.003% by weight or more (eg, 0.005% by weight or more). . From the viewpoint of haze reduction or the like, the concentration is suitably less than 0.3% by weight, preferably less than 0.1% by weight, and less than 0.05% by weight (for example, 0.03%). More preferably, it is less than% by weight.
 (濃縮液)
 ここに開示される研磨用組成物は、研磨対象物に供給される前には濃縮された形態(すなわち、研磨液の濃縮液の形態であり、研磨液の原液としても把握され得る。)であってもよい。このように濃縮された形態の研磨用組成物は、製造、流通、保存等の際における利便性やコスト低減等の観点から有利である。濃縮倍率は特に限定されず、例えば、体積換算で2倍~100倍程度とすることができ、通常は5倍~50倍程度(例えば10倍~40倍程度)が適当である。
(Concentrated liquid)
The polishing composition disclosed herein is in a concentrated form before being supplied to the object to be polished (that is, it is in the form of a concentrated concentrate of the polishing liquid and can also be grasped as a stock solution of the polishing liquid). There may be. The polishing composition in such a concentrated form is advantageous from the viewpoints of convenience, cost reduction, etc. during production, distribution, storage and the like. The concentration ratio is not particularly limited, and can be, for example, about 2 to 100 times in terms of volume, and usually about 5 to 50 times (for example, about 10 to 40 times) is appropriate.
 このような濃縮液は、所望のタイミングで希釈して研磨液(ワーキングスラリー)を調製し、該研磨液を研磨対象物に供給する態様で使用することができる。上記希釈は、例えば、上記濃縮液に水を加えて混合することにより行うことができる。 Such a concentrated liquid can be used in such a manner that a polishing liquid (working slurry) is prepared by diluting at a desired timing and the polishing liquid is supplied to an object to be polished. The dilution can be performed, for example, by adding water to the concentrated solution and mixing.
 上記濃縮液における砥粒の含有量は、例えば50重量%以下とすることができる。上記濃縮液の取扱い性(例えば、砥粒の分散安定性や濾過性)等の観点から、通常、上記濃縮液における砥粒の含有量は、好ましくは45重量%以下、より好ましくは40重量%以下である。また、製造、流通、保存等の際における利便性やコスト低減等の観点から、砥粒の含有量は、例えば0.5重量%以上とすることができ、好ましくは1重量%以上、より好ましくは3重量%以上である。 The content of abrasive grains in the concentrated liquid can be, for example, 50% by weight or less. From the viewpoint of handling properties of the concentrated liquid (for example, dispersion stability and filterability of abrasive grains), the abrasive grain content in the concentrated liquid is preferably 45% by weight or less, more preferably 40% by weight. It is as follows. In addition, from the viewpoint of convenience in manufacturing, distribution, storage, etc. and cost reduction, the content of abrasive grains can be, for example, 0.5% by weight or more, preferably 1% by weight or more, and more preferably Is 3% by weight or more.
 (研磨用組成物の調製)
 ここに開示される技術において使用される研磨用組成物は、一剤型であってもよく、二剤型を始めとする多剤型であってもよい。例えば、研磨用組成物の構成成分のうち少なくとも砥粒を含むパートAと、残りの成分の少なくとも一部を含むパートBとを混合し、これらを必要に応じて適切なタイミングで混合および希釈することにより研磨液が調製されるように構成されていてもよい。
(Preparation of polishing composition)
The polishing composition used in the technology disclosed herein may be a one-part type or a multi-part type including a two-part type. For example, among the constituents of the polishing composition, Part A containing at least abrasive grains and Part B containing at least a part of the remaining components are mixed, and these are mixed and diluted at an appropriate timing as necessary. Thus, the polishing liquid may be prepared.
 研磨用組成物の調製方法は特に限定されない。例えば、翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いて、研磨用組成物を構成する各成分を混合するとよい。これらの成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。 The method for preparing the polishing composition is not particularly limited. For example, it is good to mix each component which comprises polishing composition using well-known mixing apparatuses, such as a wing-type stirrer, an ultrasonic disperser, a homomixer. The aspect which mixes these components is not specifically limited, For example, all the components may be mixed at once and may be mixed in the order set suitably.
<研磨>
 ここに開示される研磨用組成物は、例えば以下の操作を含む態様で、研磨対象物の研磨に使用することができる。以下、ここに開示される研磨用組成物を用いて研磨対象物(例えばシリコンウェーハ)を研磨する方法の好適な一態様につき説明する。
 すなわち、ここに開示されるいずれかの研磨用組成物を含む研磨液を用意する。上記研磨液を用意することには、研磨用組成物に濃度調整(例えば希釈)、pH調整等の操作を加えて研磨液を調製することが含まれ得る。あるいは、研磨用組成物をそのまま研磨液として使用してもよい。
<Polishing>
The polishing composition disclosed herein can be used for polishing a polishing object, for example, in an embodiment including the following operations. Hereinafter, a preferred embodiment of a method for polishing an object to be polished (for example, a silicon wafer) using the polishing composition disclosed herein will be described.
That is, a polishing liquid containing any of the polishing compositions disclosed herein is prepared. Preparing the polishing liquid may include preparing the polishing liquid by adding operations such as concentration adjustment (for example, dilution) and pH adjustment to the polishing composition. Or you may use polishing composition as polishing liquid as it is.
 次いで、その研磨液を研磨対象物に供給し、常法により研磨する。例えば、シリコンウェーハの仕上げ研磨を行う場合、典型的には、ラッピング工程を経たシリコンウェーハを一般的な研磨装置にセットし、該研磨装置の研磨パッドを通じて上記シリコンウェーハの研磨対象面に研磨液を供給する。典型的には、上記研磨液を連続的に供給しつつ、シリコンウェーハの研磨対象面に研磨パッドを押しつけて両者を相対的に移動(例えば回転移動)させる。かかる研磨工程を経て研磨対象物の研磨が完了する。 Next, the polishing liquid is supplied to the object to be polished and polished by a conventional method. For example, when performing final polishing of a silicon wafer, typically, a silicon wafer that has undergone a lapping process is set in a general polishing apparatus, and a polishing liquid is applied to the surface to be polished of the silicon wafer through a polishing pad of the polishing apparatus. Supply. Typically, while continuously supplying the polishing liquid, the polishing pad is pressed against the surface to be polished of the silicon wafer to move both relatively (for example, rotational movement). The polishing of the object to be polished is completed through this polishing step.
 上記研磨工程に使用される研磨パッドは、特に限定されない。例えば、発泡ポリウレタンタイプ、不織布タイプ、スウェードタイプ等の研磨パッドを用いることができる。各研磨パッドは、砥粒を含んでもよく、砥粒を含まなくてもよい。通常は、砥粒を含まない研磨パッドが好ましく用いられる。 The polishing pad used in the polishing step is not particularly limited. For example, a polishing pad of foamed polyurethane type, non-woven fabric type, suede type or the like can be used. Each polishing pad may include abrasive grains or may not include abrasive grains. Usually, a polishing pad not containing abrasive grains is preferably used.
 ここに開示される研磨用組成物を用いて研磨された研磨対象物は、典型的には洗浄される。洗浄は、適当な洗浄液を用いて行うことができる。使用する洗浄液は特に限定されず、例えば、半導体等の分野において一般的なSC-1洗浄液(水酸化アンモニウム(NHOH)と過酸化水素(H)と水(HO)との混合液)、SC-2洗浄液(HClとHとHOとの混合液)等を用いることができる。洗浄液の温度は、例えば室温(典型的には約15℃~25℃)以上、約90℃程度までの範囲とすることができる。洗浄効果を向上させる観点から、50℃~85℃程度の洗浄液を好ましく使用し得る。 An object to be polished polished using the polishing composition disclosed herein is typically cleaned. The washing can be performed using an appropriate washing solution. The cleaning solution to be used is not particularly limited. For example, an SC-1 cleaning solution (ammonium hydroxide (NH 4 OH), hydrogen peroxide (H 2 O 2 ), water (H 2 O), etc. SC-2 cleaning liquid (mixed liquid of HCl, H 2 O 2 and H 2 O), etc. can be used. The temperature of the cleaning liquid can be, for example, in the range of room temperature (typically about 15 ° C. to 25 ° C.) or more and about 90 ° C. From the viewpoint of improving the cleaning effect, a cleaning solution of about 50 ° C. to 85 ° C. can be preferably used.
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「部」および「%」は、特に断りがない限り重量基準である。また、以下の説明におけるPVAは、いずれも、ポリ酢酸ビニルのけん化物である。 Hereinafter, some examples relating to the present invention will be described. However, the present invention is not intended to be limited to the examples shown in the examples. In the following description, “parts” and “%” are based on weight unless otherwise specified. In addition, PVA in the following description is a saponified product of polyvinyl acetate.
<分散安定性の評価>
 以下の実施例に使用した分散剤または分散剤以外の水溶性高分子を含む水溶液の分散安定性を、次のようにして評価した。まず、以下のようにして分散安定性評価用の試験液を調製した。
<Evaluation of dispersion stability>
The dispersion stability of an aqueous solution containing a dispersant or a water-soluble polymer other than the dispersant used in the following examples was evaluated as follows. First, a test solution for evaluating dispersion stability was prepared as follows.
  (例1A)
 ポリビニルアルコール(PVA)と分散剤と水を混合し、PVAを0.11%含み、残部が水からなる水溶液を調製し、例1Aに係る試験液とした。PVAとしては、Mwが7×10であり、けん化度98%以上のものを使用した。分散剤としては、エチレンオキサイド付加モル数6のポリオキシエチレンオクチルエーテル(以下、「C8PEO6」とも表記する。)を使用した。
(Example 1A)
Polyvinyl alcohol (PVA), a dispersant, and water were mixed to prepare an aqueous solution containing 0.11% of PVA and the balance being water, and used as a test solution according to Example 1A. As the PVA, one having Mw of 7 × 10 4 and a saponification degree of 98% or more was used. As the dispersant, polyoxyethylene octyl ether (hereinafter also referred to as “C8PEO6”) having an ethylene oxide addition mole number of 6 was used.
  (例2A)
 C8PEO6に代えて、分散剤としてMwが39×10のポリアクリロイルモルホリン(PACMO)を使用したこと以外は、例1Aで使用したのと同じ成分を同濃度で含む水溶液を調製し、例2Aに係る試験液とした。
(Example 2A)
In place of C8PEO6, an aqueous solution containing the same components as in Example 1A at the same concentration except that polyacryloylmorpholine (PACMO) having a Mw of 39 × 10 4 was used as a dispersant was prepared in Example 2A. This test solution was used.
  (例3A)
 C8PEO6に代えて、分散剤としてMwが26×10のヒドロキシエチルセルロース(HEC)を使用したこと以外は、例1Aと同様の方法で例3Aの試験液を調製した。例3Aに係る試験液におけるPVAの濃度は0.10%とした。
(Example 3A)
A test solution of Example 3A was prepared in the same manner as in Example 1A, except that hydroxyethyl cellulose (HEC) having an Mw of 26 × 10 4 was used as the dispersant instead of C8PEO6. The concentration of PVA in the test solution according to Example 3A was 0.10%.
  (例4A)
 分散剤を使用しないこと以外は、例3Aで使用したのと同じ成分を同濃度で含む水溶液を調製し、例4Aに係る試験液とした。
(Example 4A)
An aqueous solution containing the same components as used in Example 3A at the same concentration except that no dispersant was used was prepared as a test solution according to Example 4A.
  (例5A)
 C8PEO6に代えて、Mwが1.7×10のポリビニルピロリドン(PVP)を使用したこと以外は、例1Aと同様の方法で例5Aの試験液を調製した。例5Aに係る試験液におけるPVAの濃度は0.10%、PVPの濃度は0.05%とした。
(Example 5A)
A test solution of Example 5A was prepared in the same manner as Example 1A except that polyvinylpyrrolidone (PVP) having a Mw of 1.7 × 10 4 was used instead of C8PEO6. The concentration of PVA in the test solution according to Example 5A was 0.10%, and the concentration of PVP was 0.05%.
  (例6A)
 PVAを使用しないこと以外は、例5Aで使用したのと同じ成分を同濃度で含む水溶液を調製し、例6Aに係る試験液とした。
(Example 6A)
Except not using PVA, the aqueous solution which contains the same component used by Example 5A by the same density | concentration was prepared, and it was set as the test liquid which concerns on Example 6A.
 例1A~例3Aの各試験液における、エーテル結合を有する分散剤の含有量に対するPVAの含有量のモル比は、それぞれ表1の該当欄に表示する通りとした。 The molar ratio of the content of PVA to the content of the dispersant having an ether bond in each test solution of Example 1A to Example 3A was as indicated in the corresponding column of Table 1.
 次いで、例1A~6Aの各試験液を20ml採取し、これを容量80mlの蓋付き容器に入れて、23℃の環境下において、振とう強度300spmで振とうした。容器を振とうしている間、目視で容器中における析出物の発生の有無を12時間おきに確認した。各試験液の分散安定性は、上記試験条件における振とう試験において、72時間以上の振とうによっても析出物が生じなかったものを良(○)、24時間以上72時間未満の振とうで析出物が生じたものを可(△)、24時間未満の振とうで析出物が生じたものを不良(×)とする3段階で評価した。評価結果を表1の分散安定性の欄に示す。 Next, 20 ml of each test solution of Examples 1A to 6A was collected, put into a container with a lid of 80 ml capacity, and shaken at a shaking strength of 300 spm in an environment of 23 ° C. While the container was shaken, the presence or absence of precipitates in the container was visually confirmed every 12 hours. The dispersion stability of each test solution was good (◯) when no precipitate was formed even after shaking for 72 hours or more in the shaking test under the above test conditions, and was precipitated by shaking for 24 hours or more and less than 72 hours. Evaluation was made in three stages, where a product was acceptable (Δ), and a product with precipitates formed by shaking for less than 24 hours was regarded as defective (x). The evaluation results are shown in the column of dispersion stability in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、分子中にエーテル結合を有する分散剤を含んだ例1A~例3Aの試験液は、分散剤を含まない例4A~例5Aの試験液と比較して、溶液の分散安定性が明らかに向上した。また、PVAを含まない例6Aの試験液が良好な分散安定性を示したことから、試験液の分散安定性を損なう要因がPVAの凝集に由来することが示唆された。また、例4Aの試験液で使用したPVAを、分子量が1.1×10であり、けん化度98%以上であるPVAに代えたこと以外は同じように調製した試験液について同様に分散安定性の評価を行ったところ、この試験液の分散安定性の評価は可(△)であり、この試験液に比べて例4Aの試験液は分散安定性が低いことがわかった。このことから、分子量が高いPVAを含む試験液によるとPVAの凝集が起こりやすい傾向があることが示された。 As shown in Table 1, the test solutions of Examples 1A to 3A containing a dispersant having an ether bond in the molecule were compared with the test solutions of Examples 4A to 5A containing no dispersant. Dispersion stability was obviously improved. Moreover, since the test solution of Example 6A not containing PVA showed good dispersion stability, it was suggested that a factor that impairs the dispersion stability of the test solution is derived from aggregation of PVA. Similarly, the test solution prepared in the same manner except that the PVA used in the test solution of Example 4A was replaced with PVA having a molecular weight of 1.1 × 10 4 and a saponification degree of 98% or more. As a result of the evaluation, the dispersion stability of this test solution was evaluated as acceptable (Δ), and it was found that the test solution of Example 4A had lower dispersion stability than this test solution. From this, it was shown that PVA aggregation tends to occur according to a test solution containing PVA having a high molecular weight.
<前段研磨工程>
 次に、以下の実施例に適用した前段研磨工程の内容を示す。
 (前段研磨工程)
 砥粒0.9%および塩基性化合物0.1%を含み、残部が水からなる前段研磨用組成物を調製した。砥粒としては、BET径35nmのコロイダルシリカを使用した。塩基性化合物としては水酸化カリウム(KOH)を使用した。
 この前段研磨用組成物をそのまま研磨液(ワーキングスラリー)として使用して、研磨対象物としてのシリコンウェーハを下記の前段研磨条件で研磨した。シリコンウェーハとしては、ラッピングおよびエッチングを終えた直径300mmの市販シリコン単結晶ウェーハ(伝導型:P型、結晶方位:<100>、抵抗率:1Ω・cm以上100Ω・cm未満、COPフリー)を使用した。
<Pre-stage polishing process>
Next, the content of the pre-polishing process applied to the following examples is shown.
(Pre-polishing process)
A pre-polishing composition containing 0.9% abrasive grains and 0.1% basic compound with the balance being water was prepared. As abrasive grains, colloidal silica having a BET diameter of 35 nm was used. Potassium hydroxide (KOH) was used as the basic compound.
This pre-polishing composition was used as it was as a polishing liquid (working slurry), and a silicon wafer as an object to be polished was polished under the pre-polishing conditions described below. As a silicon wafer, a commercially available silicon single crystal wafer having a diameter of 300 mm and finished lapping and etching (conduction type: P type, crystal orientation: <100>, resistivity: 1 Ω · cm or more and less than 100 Ω · cm, COP free) is used. did.
  [前段研磨条件]
 研磨装置:株式会社岡本工作機械製作所製の枚葉研磨機、型式「PNX-332B」
 研磨荷重:20kPa
 定盤回転数:20rpm
 キャリア回転数:20rpm
 研磨パッド:フジボウ愛媛社製、製品名「FP55」
 研磨液供給レート:1リットル/分
 研磨液の温度:20℃
 定盤冷却水の温度:20℃
 研磨時間:2分
[Pre-polishing conditions]
Polishing device: Single wafer polishing machine manufactured by Okamoto Machine Tool Co., Ltd. Model “PNX-332B”
Polishing load: 20 kPa
Plate rotation speed: 20 rpm
Carrier rotation speed: 20rpm
Polishing pad: Product name “FP55”, manufactured by Fujibo Atago Co., Ltd.
Polishing liquid supply rate: 1 liter / min Polishing liquid temperature: 20 ° C.
Surface plate cooling water temperature: 20 ° C
Polishing time: 2 minutes
<研磨用組成物の調製と仕上げ研磨>
  (例1B)
 砥粒と、ポリビニルアルコール(PVA)と、分散剤と、塩基性化合物とを含み、残部が水からなる研磨用組成物を調製し、例1Bに係る研磨用組成物とした。砥粒としては、BET径25nmのコロイダルシリカを使用した。PVAとしては、Mwが7×10であり、けん化度98%以上のものを使用した。分散剤としては、エチレンオキサイド付加モル数6のポリオキシエチレンオクチルエーテル(C8PEO6)を使用した。塩基性化合物としてはアンモニアを使用した。例1Bに係る研磨用組成物における各成分の濃度は、砥粒が3.3%、PVAが0.11%、塩基性化合物が0.21%であった。
 この研磨用組成物を脱イオン水(DIW)で20倍に希釈した希釈液を研磨液(ワーキングスラリー)として使用して、上記前段研磨工程を終えたシリコンウェーハを、下記の仕上げ研磨条件で研磨した。
<Preparation of polishing composition and final polishing>
(Example 1B)
A polishing composition containing abrasive grains, polyvinyl alcohol (PVA), a dispersant, and a basic compound, with the balance being water, was prepared and used as the polishing composition according to Example 1B. As abrasive grains, colloidal silica having a BET diameter of 25 nm was used. As the PVA, one having Mw of 7 × 10 4 and a saponification degree of 98% or more was used. As the dispersant, polyoxyethylene octyl ether (C8PEO6) having an ethylene oxide addition mole number of 6 was used. Ammonia was used as the basic compound. The concentration of each component in the polishing composition according to Example 1B was 3.3% for abrasive grains, 0.11% for PVA, and 0.21% for basic compounds.
Using the diluted solution obtained by diluting the polishing composition 20 times with deionized water (DIW) as a polishing solution (working slurry), the silicon wafer that has been subjected to the previous polishing step is polished under the following finish polishing conditions. did.
  [仕上げ研磨条件]
 研磨装置:株式会社岡本工作機械製作所製の枚葉研磨機、型式「PNX-332B」
 研磨荷重:15kPa
 定盤回転数:30rpm
 キャリア回転数:30rpm
 研磨パッド:フジボウ愛媛社製の研磨パッド、商品名「POLYPAS27NX」
 研磨液供給レート:2リットル/分
 研磨液の温度:20℃
 定盤冷却水の温度:20℃
 研磨時間:4分
[Finishing polishing conditions]
Polishing device: Single wafer polishing machine manufactured by Okamoto Machine Tool Co., Ltd. Model “PNX-332B”
Polishing load: 15 kPa
Plate rotation speed: 30 rpm
Carrier rotation speed: 30rpm
Polishing pad: Polishing pad manufactured by Fujibo Atago Co., Ltd., trade name “POLYPAS27NX”
Polishing liquid supply rate: 2 l / min Polishing liquid temperature: 20 ° C.
Surface plate cooling water temperature: 20 ° C
Polishing time: 4 minutes
 研磨後のシリコンウェーハを研磨装置から取り外し、NHOH(29%):H(31%):脱イオン水(DIW)=2:5.3:48(体積比)の洗浄液を用いて洗浄した(SC-1洗浄)。より具体的には、周波数720kHzの超音波発振器を取り付けた洗浄槽を用意し、洗浄槽に上記洗浄液を収容して70℃に保持し、研磨後のシリコンウェーハを洗浄槽に6分浸漬し、その後超純水よるリンスを行った。この工程を2回繰り返した後、シリコンウェーハを乾燥させた。 The polished silicon wafer is removed from the polishing apparatus, and a cleaning solution of NH 4 OH (29%): H 2 O 2 (31%): deionized water (DIW) = 2: 5.3: 48 (volume ratio) is used. (SC-1 wash). More specifically, a cleaning tank equipped with an ultrasonic oscillator having a frequency of 720 kHz is prepared, the cleaning liquid is stored in the cleaning tank and held at 70 ° C., and the polished silicon wafer is immersed in the cleaning tank for 6 minutes, After that, rinsing with ultrapure water was performed. After repeating this process twice, the silicon wafer was dried.
  (例2B)
 C8PEO6に代えて、分散剤としてMwが39×10のPACMOを使用したこと以外は、例1Bと同じ成分を同じ濃度で含むようにして、例2Bの研磨用組成物を調製した。この研磨用組成物を用いた他は例1Bと同様にして、上記前段研磨工程を終えたシリコンウェーハの仕上げ研磨、洗浄および乾燥を行った。
(Example 2B)
A polishing composition of Example 2B was prepared so as to contain the same components as in Example 1B at the same concentration except that PACMO having an Mw of 39 × 10 4 was used as a dispersant instead of C8PEO6. Except for using this polishing composition, the silicon wafer that had undergone the previous polishing step was subjected to final polishing, washing, and drying in the same manner as in Example 1B.
  (例3B)
 C8PEO6に代えて、分散剤としてMwが26×10のHECを使用したこと以外は、例1Bと同様の方法で例3Bの研磨用組成物を調製した。例3Bに係る研磨用組成物における各成分の濃度は、砥粒が3.3%、PVAが0.10%、塩基性化合物が0.23%であった。この研磨用組成物を用いた他は例1Bと同様にして、上記前段研磨工程を終えたシリコンウェーハの仕上げ研磨、洗浄および乾燥を行った。
(Example 3B)
The polishing composition of Example 3B was prepared in the same manner as Example 1B, except that HEC having an Mw of 26 × 10 4 was used as the dispersant instead of C8PEO6. The concentration of each component in the polishing composition according to Example 3B was 3.3% for abrasive grains, 0.10% for PVA, and 0.23% for basic compounds. Except for using this polishing composition, the silicon wafer that had undergone the previous polishing step was subjected to final polishing, washing, and drying in the same manner as in Example 1B.
  (例4B)
 分散剤を使用しないこと以外は、例1Bと同様の方法で例4Bの研磨用組成物を調製した。例4Bに係る研磨用組成物における各成分の濃度は、砥粒が3.3%、PVAが0.10%、塩基性化合物が0.21%であった。この研磨用組成物を用いた他は例1Bと同様にして、上記前段研磨工程を終えたシリコンウェーハの仕上げ研磨、洗浄および乾燥を行った。
(Example 4B)
A polishing composition of Example 4B was prepared in the same manner as in Example 1B, except that the dispersant was not used. The concentration of each component in the polishing composition according to Example 4B was 3.3% for abrasive grains, 0.10% for PVA, and 0.21% for basic compounds. Except for using this polishing composition, the silicon wafer that had undergone the previous polishing step was subjected to final polishing, washing, and drying in the same manner as in Example 1B.
  (例5B)
 C8PEO6に代えて、Mwが1.7×10のPVPを使用したこと以外は、例1Bと同様の方法で例5Bの研磨用組成物を調製した。例5Bに係る研磨用組成物における各成分の濃度は、砥粒が3.3%、PVAが0.10%、PVPが0.05%、塩基性化合物が0.21%であった。この研磨用組成物を用いた他は例1Bと同様にして、上記前段研磨工程を終えたシリコンウェーハの仕上げ研磨、洗浄および乾燥を行った。
(Example 5B)
The polishing composition of Example 5B was prepared in the same manner as Example 1B, except that PVP having Mw of 1.7 × 10 4 was used instead of C8PEO6. The concentration of each component in the polishing composition according to Example 5B was 3.3% for abrasive grains, 0.10% for PVA, 0.05% for PVP, and 0.21% for basic compounds. Except for using this polishing composition, the silicon wafer that had undergone the previous polishing step was subjected to final polishing, washing, and drying in the same manner as in Example 1B.
  (例6B)
 PVAを使用しないこと以外は例5Bと同じ成分を同じ濃度で含むようにして、例6Bの研磨用組成物を調製した。この研磨用組成物を用いた他は例1Bと同様にして、上記前段研磨工程を終えたシリコンウェーハの仕上げ研磨、洗浄および乾燥を行った。
(Example 6B)
A polishing composition of Example 6B was prepared so as to contain the same components as in Example 5B at the same concentration except that PVA was not used. Except for using this polishing composition, the silicon wafer that had undergone the previous polishing step was subjected to final polishing, washing, and drying in the same manner as in Example 1B.
 例1B~例3Bの各研磨用組成物における、エーテル結合を有する分散剤の含有量に対するPVAの含有量のモル比は、それぞれ表2の該当欄に表示する通りとした。 The molar ratio of the content of PVA to the content of the dispersant having an ether bond in each of the polishing compositions of Examples 1B to 3B was as indicated in the corresponding column of Table 2.
<表面欠陥の評価>
 上記の各例により得られたシリコンウェーハについて、以下の評価を行った。
 (LPD数測定)
 シリコンウェーハの表面(研磨面)に存在する32nmよりも大きいLPDの個数を、ウェーハ検査装置(ケーエルエー・テンコール社製、商品名「SURFSCAN SP2 xp」)を用いて計測した。計測されたLPDの個数を以下の3段階で表2の該当欄に示した。LPDの個数が小さいほど、研磨面の表面欠陥が低減していることを示す。
  ◎:100個以下
  ○:101個以上1000個以下
  ×:1001個以上
<Evaluation of surface defects>
The following evaluation was performed about the silicon wafer obtained by said each example.
(LPD count measurement)
The number of LPDs larger than 32 nm present on the surface (polished surface) of the silicon wafer was measured using a wafer inspection device (trade name “SURFSCAN SP2 xp” manufactured by KLA Tencor). The number of LPDs measured is shown in the corresponding column of Table 2 in the following three stages. A smaller number of LPDs indicates that surface defects on the polished surface are reduced.
◎: 100 or less ○: 101 or more and 1000 or less ×: 1001 or more
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、PVAと、分子中にエーテル結合を有する分散剤と、を含む例1B~例3Bの研磨用組成物によると、分散剤を含まない例4B~例5Bの研磨用組成物と比較して、明らかにLPD数が減少し、研磨面の表面欠陥が低減された。特に、分散剤としてC8PEO6を使用した例1Bの研磨用組成物によると、表面欠陥が顕著に低減された。 As shown in Table 2, according to the polishing compositions of Examples 1B to 3B containing PVA and a dispersant having an ether bond in the molecule, the polishing compositions of Examples 4B to 5B containing no dispersant Compared with the composition, the number of LPDs was clearly reduced, and surface defects on the polished surface were reduced. In particular, according to the polishing composition of Example 1B using C8PEO6 as a dispersant, surface defects were significantly reduced.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

Claims (7)

  1.  砥粒と水とを含む研磨用組成物であって、
     ポリビニルアルコール系ポリマーと、ポリビニルアルコール系ポリマーの分散剤とをさらに含み、
     前記分散剤は、分子中にエーテル結合を含み、
     前記分散剤の含有量に対する前記ポリビニルアルコール系ポリマーの含有量のモル比が、0.01以上10以下である、研磨用組成物。
    A polishing composition comprising abrasive grains and water,
    It further includes a polyvinyl alcohol polymer and a dispersant for the polyvinyl alcohol polymer,
    The dispersant contains an ether bond in the molecule,
    Polishing composition whose molar ratio of content of the said polyvinyl alcohol-type polymer with respect to content of the said dispersing agent is 0.01-10.
  2.  前記ポリビニルアルコール系ポリマーの重量平均分子量が3×10以上である、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the polyvinyl alcohol-based polymer has a weight average molecular weight of 3 × 10 4 or more.
  3.  前記分散剤の重量平均分子量は、前記ポリビニルアルコール系ポリマーの重量平均分子量よりも小さい、請求項1または2に記載の研磨用組成物。 The polishing composition according to claim 1 or 2, wherein a weight average molecular weight of the dispersant is smaller than a weight average molecular weight of the polyvinyl alcohol polymer.
  4.  前記分散剤は、ポリオキシエチレンアルキルエーテルを含む、請求項1から3のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 3, wherein the dispersant contains polyoxyethylene alkyl ether.
  5.  前記分散剤の重量平均分子量が1500以下である、請求項1から4のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 4, wherein the dispersant has a weight average molecular weight of 1500 or less.
  6.  前記砥粒はシリカ粒子である、請求項1から5のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 5, wherein the abrasive grains are silica particles.
  7.  シリコンからなる表面の研磨に用いられる、請求項1から6のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 6, which is used for polishing a surface made of silicon.
PCT/JP2019/008022 2018-03-30 2019-03-01 Polishing composition WO2019187969A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020510492A JP7450532B2 (en) 2018-03-30 2019-03-01 polishing composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018069647 2018-03-30
JP2018-069647 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019187969A1 true WO2019187969A1 (en) 2019-10-03

Family

ID=68061523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008022 WO2019187969A1 (en) 2018-03-30 2019-03-01 Polishing composition

Country Status (3)

Country Link
JP (1) JP7450532B2 (en)
TW (1) TWI829675B (en)
WO (1) WO2019187969A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176122A1 (en) * 2012-05-25 2013-11-28 日産化学工業株式会社 Polishing solution composition for wafers
WO2014129408A1 (en) * 2013-02-21 2014-08-28 株式会社フジミインコーポレーテッド Polishing composition and method for manufacturing polished article
WO2015046164A1 (en) * 2013-09-30 2015-04-02 株式会社フジミインコーポレーテッド Polishing composition and production method therefor
JP2016056220A (en) * 2014-09-05 2016-04-21 日本キャボット・マイクロエレクトロニクス株式会社 Slurry composition, rinse composition, substrate polishing method and substrate rinsing method
WO2017150158A1 (en) * 2016-03-01 2017-09-08 株式会社フジミインコーポレーテッド Method for polishing silicon substrate and polishing composition set
WO2017150118A1 (en) * 2016-02-29 2017-09-08 株式会社フジミインコーポレーテッド Polishing composition and polishing method using same
WO2018025655A1 (en) * 2016-08-02 2018-02-08 株式会社フジミインコーポレーテッド Liquid concentrate of composition for rough-polishing silicon wafers
WO2018043504A1 (en) * 2016-08-31 2018-03-08 株式会社フジミインコーポレーテッド Polishing composition and polishing composition set
WO2018096991A1 (en) * 2016-11-22 2018-05-31 株式会社フジミインコーポレーテッド Polishing composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6280688B2 (en) * 2012-10-12 2018-02-14 株式会社フジミインコーポレーテッド Method for producing polishing composition and polishing composition
JP6343160B2 (en) * 2014-03-28 2018-06-13 株式会社フジミインコーポレーテッド Polishing composition
US20180030313A1 (en) * 2015-02-12 2018-02-01 Fujimi Incorporated Method for polishing silicon wafer and surface treatment composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176122A1 (en) * 2012-05-25 2013-11-28 日産化学工業株式会社 Polishing solution composition for wafers
WO2014129408A1 (en) * 2013-02-21 2014-08-28 株式会社フジミインコーポレーテッド Polishing composition and method for manufacturing polished article
WO2015046164A1 (en) * 2013-09-30 2015-04-02 株式会社フジミインコーポレーテッド Polishing composition and production method therefor
JP2016056220A (en) * 2014-09-05 2016-04-21 日本キャボット・マイクロエレクトロニクス株式会社 Slurry composition, rinse composition, substrate polishing method and substrate rinsing method
WO2017150118A1 (en) * 2016-02-29 2017-09-08 株式会社フジミインコーポレーテッド Polishing composition and polishing method using same
WO2017150158A1 (en) * 2016-03-01 2017-09-08 株式会社フジミインコーポレーテッド Method for polishing silicon substrate and polishing composition set
WO2018025655A1 (en) * 2016-08-02 2018-02-08 株式会社フジミインコーポレーテッド Liquid concentrate of composition for rough-polishing silicon wafers
WO2018043504A1 (en) * 2016-08-31 2018-03-08 株式会社フジミインコーポレーテッド Polishing composition and polishing composition set
WO2018096991A1 (en) * 2016-11-22 2018-05-31 株式会社フジミインコーポレーテッド Polishing composition

Also Published As

Publication number Publication date
JPWO2019187969A1 (en) 2021-04-30
TWI829675B (en) 2024-01-21
TW201942274A (en) 2019-11-01
JP7450532B2 (en) 2024-03-15

Similar Documents

Publication Publication Date Title
JP7148506B2 (en) Polishing composition and polishing method using the same
CN106663619B (en) Composition for polishing silicon wafer
WO2014129408A1 (en) Polishing composition and method for manufacturing polished article
WO2021182155A1 (en) Polishing composition and polishing method
JP6691774B2 (en) Polishing composition and method for producing the same
WO2020196645A1 (en) Polishing composition
WO2018150945A1 (en) Silicon substrate intermediate polishing composition and silicon substrate polishing composition set
JP7103823B2 (en) Silicon wafer polishing method and polishing composition
JP7353051B2 (en) Composition for polishing silicon wafers
KR101732331B1 (en) Composition for polishing silicon wafers
WO2020196370A1 (en) Polishing composition
JP7061965B2 (en) Polishing composition
CN113631679B (en) Polishing composition
WO2022070801A1 (en) Grinding composition and use thereof
WO2019187969A1 (en) Polishing composition
TWI832999B (en) Grinding composition
WO2021199723A1 (en) Polishing composition
WO2021182278A1 (en) Polishing composition and polishing method
WO2023181928A1 (en) Polishing composition
WO2023063027A1 (en) Polishing composition
WO2023181929A1 (en) Polishing composition
WO2022113986A1 (en) Polishing composition for silicon wafers and use thereof
CN111040731A (en) Composition for polishing silicon wafer
WO2024070831A1 (en) Polishing composition
WO2021182277A1 (en) Polishing composition and polishing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776441

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510492

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19776441

Country of ref document: EP

Kind code of ref document: A1