WO2018025655A1 - Liquid concentrate of composition for rough-polishing silicon wafers - Google Patents

Liquid concentrate of composition for rough-polishing silicon wafers Download PDF

Info

Publication number
WO2018025655A1
WO2018025655A1 PCT/JP2017/026405 JP2017026405W WO2018025655A1 WO 2018025655 A1 WO2018025655 A1 WO 2018025655A1 JP 2017026405 W JP2017026405 W JP 2017026405W WO 2018025655 A1 WO2018025655 A1 WO 2018025655A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
water
less
weight
soluble polymer
Prior art date
Application number
PCT/JP2017/026405
Other languages
French (fr)
Japanese (ja)
Inventor
雄彦 村瀬
恵 谷口
圭祐 沼田
麗子 秋月
公亮 土屋
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to JP2018531830A priority Critical patent/JP6916792B2/en
Publication of WO2018025655A1 publication Critical patent/WO2018025655A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a concentrate of a composition for rough polishing of silicon wafers.
  • the surface of a silicon substrate used for manufacturing a semiconductor product is finished to a high-quality mirror surface through a lapping process and a polishing process.
  • the polishing process typically includes a preliminary polishing process and a finishing polishing process.
  • the preliminary polishing process is also called a rough polishing process.
  • the finish polishing process is also called a finish polishing process.
  • This type of polishing composition may be in a concentrated form before being supplied to the object to be polished, from the viewpoint of convenience in manufacturing, distribution, storage, etc. and cost reduction. That is, the polishing composition may be in the form of a concentrated concentrate of polishing liquid.
  • the prepared concentrated liquid is diluted with water and used for polishing.
  • Patent document 1 is mentioned as a literature which discloses this kind of prior art.
  • Patent Document 2 is a document disclosing the radius of inertia of hydroxycellulose used in the polishing composition.
  • the present inventors have obtained knowledge that the polishing performance is improved as the water-soluble polymer is added and the inertia radius is larger. .
  • the polishing performance here is typically flatness, for example, GBIR (Global Backside Ideal Range).
  • GBIR Global Backside Ideal Range
  • the inertial radius of the water-soluble polymer is too large, the stability at the stage of the concentrate tends to decrease.
  • the concentrated liquid contains components such as abrasive grains and water-soluble polymers at a higher concentration than when used, there is a risk that good stability such as separation and aggregation of the contained components may not be obtained. is there.
  • Even in the form of a concentrated solution of high concentration if a polishing composition that is excellent in stability and can exhibit good polishing performance after dilution is provided, it is advantageous in terms of convenience and cost reduction, There are great practical advantages.
  • the present invention has been made in view of the above circumstances, and provides a concentrated liquid of a composition for rough polishing of silicon wafers that can exhibit good polishing performance after dilution and has excellent stability.
  • the purpose is to do.
  • a concentrated liquid for a silicon wafer rough polishing composition comprising abrasive grains, a basic compound and a water-soluble polymer.
  • the ratio [rg / d] of the radius of inertia rg [nm] of the water-soluble polymer to the interparticle distance d [nm] of the abrasive grains in the concentrated liquid is 4.7 or less.
  • the concentrated liquid having such a configuration exhibits excellent stability and can exhibit good polishing performance after dilution.
  • the polishing performance is typically a flatness improving effect.
  • the concentrate of the polishing composition disclosed herein contains abrasive grains and a water-soluble polymer.
  • the concentrated liquid of the polishing composition may be simply abbreviated as “concentrated liquid”.
  • Such a concentrated liquid is characterized by a ratio [rg / d] of the inertia radius rg [nm] of the water-soluble polymer to the interparticle distance d [nm] of the abrasive grains being 4.7 or less.
  • a concentrated solution satisfying the above characteristics exhibits excellent stability.
  • the reason for this is not particularly limited, but when the ratio [rg / d] is satisfied, the water-soluble polymer is stably present between the abrasive grains in the concentrate. This is presumably because the abrasive particles and the water-soluble polymer, which are the main components of the concentrate, can be stably dispersed in the concentrate. Further, when the concentrated liquid is diluted and used as a polishing liquid, the polishing performance can be exhibited with respect to the substrate to be polished, that is, the silicon wafer, by including the water-soluble polymer. Specifically, the polishing performance is an effect of improving flatness.
  • the ratio [rg / d] is preferably 3.8 or less, more preferably 2.8 or less, still more preferably 2.5 or less, and particularly preferably 1.9 or less, from the viewpoint of improving stability.
  • the ratio [rg / d] is typically 1.0 or less.
  • the lower limit of the above ratio [rg / d] is not particularly limited, and can usually be about 0.3 or more, for example, 0.6 or more, from the viewpoint of the concentration efficiency of the concentrate, polishing performance, and the like.
  • the interparticle distance d [nm] of the abrasive grains and the inertial radius rg [nm] of the water-soluble polymer are measured by the method described later.
  • the abrasive grains disclosed herein are contained in the concentrated liquid in such a content that the inter-particle distance d [nm] of the abrasive grains satisfies the above ratio [rg / d].
  • the interparticle distance d of the abrasive grains is 200 nm or less. According to the technique disclosed here, the inter-particle distance d of the abrasive grains is not more than a predetermined value as described above, and excellent stability can be achieved even when the abrasive grains are relatively close to each other in the concentrated liquid. Can be realized.
  • the interparticle distance d is more preferably 150 nm or less, further preferably 100 nm or less, and particularly preferably 80 nm or less from the viewpoint of the concentration efficiency of the concentrate. In a particularly preferred embodiment, the interparticle distance d is typically 70 nm or less. Further, the inter-particle distance d may be, for example, 60 nm or less, further 40 nm or less, within a range that satisfies the ratio [rg / d].
  • the inter-particle distance d [nm] of the abrasive grains is assumed to be the closest packed ratio [74%] of the spheres assuming that the abrasive grains contained in the concentrate are uniformly dispersed.
  • d [nm] R S ⁇ 2-D1 It is a theoretical value obtained from
  • R S is the radius [nm] of a sphere that is centered on one abrasive grain and circumscribes the corresponding sphere of the adjacent abrasive grain
  • D1 is the average primary particle diameter [nm] of the abrasive grain. It is.
  • the number of abrasive grains contained in a unit volume of concentrated liquid is obtained by dividing the weight [g / L] of abrasive grains per concentrated volume of unit volume, for example, 1 L, by the weight [g] per abrasive grain. Is required.
  • the weight of the abrasive grains per unit volume of the concentrate is determined from the content and specific gravity of the abrasive grains in the concentrate and the content and specific gravity of components other than the abrasive grains contained in the concentrate.
  • the specific gravity of the abrasive grains is, for example, 2.2 g / cm 3 in the case of silica abrasive grains.
  • Components other than the abrasive grains contained in the concentrated liquid usually have an aqueous solvent as a main component.
  • the weight [g] per abrasive grain particle is determined from the average primary particle diameter [nm] of the abrasive grain particle and the specific volume of the abrasive grain particle when the primary particle is regarded as a true sphere.
  • the material and properties of the abrasive grains contained in the concentrated liquid and the polishing composition diluted with the concentrated liquid are not particularly limited, and can be appropriately selected according to the purpose of use, usage mode, and the like. it can.
  • the abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles.
  • the inorganic particles include silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, oxide particles such as bengara particles; Examples thereof include nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate.
  • the organic particles include polymethyl methacrylate (PMMA) particles, poly (meth) acrylic acid particles, and polyacrylonitrile particles. Such an abrasive grain may be used individually by 1 type, and may be used in combination of 2 or more type.
  • (meth) acrylic acid is the meaning which points out acrylic acid and methacrylic acid comprehensively.
  • a particularly preferable abrasive grain in the technology disclosed herein includes silica particles.
  • the technique disclosed here can be preferably implemented, for example, in a mode in which the abrasive grains are substantially composed of silica particles.
  • substantially means that 95% by weight or more, preferably 98% by weight or more, more preferably 99% by weight or more of the particles constituting the abrasive grains are silica particles. 100% by weight of the particles may be silica particles.
  • the silica particles include colloidal silica, fumed silica, precipitated silica and the like.
  • Silica particles can be used alone or in combination of two or more.
  • Colloidal silica is particularly preferable because scratches are hardly generated on the surface of the object to be polished and good polishing performance can be exhibited.
  • good polishing performance refers to performance that reduces surface roughness.
  • colloidal silica for example, colloidal silica produced using water glass as a raw material by an ion exchange method or alkoxide colloidal silica can be preferably used. Water glass is also called Na silicate.
  • the alkoxide colloidal silica refers to colloidal silica produced by hydrolysis condensation reaction of alkoxysilane. Colloidal silica can be used alone or in combination of two or more.
  • the true specific gravity of silica constituting the silica particles is preferably 1.5 or more, more preferably 1.6 or more, and even more preferably 1.7 or more. As the true specific gravity of silica increases, the polishing rate tends to increase. From this viewpoint, silica particles having a true specific gravity of 2.0 or more are particularly preferable. In a particularly preferred embodiment, the true specific gravity is, for example, 2.1 or more. The upper limit of the true specific gravity of silica is not particularly limited, but is typically 2.3 or less, for example, 2.2 or less. As the true specific gravity of silica, a measured value by a liquid substitution method using ethanol as a substitution liquid can be adopted.
  • the average primary particle diameter of the abrasive grains disclosed herein is not particularly limited.
  • the abrasive grains are typically silica particles.
  • the average primary particle size is suitably 5 nm or more, preferably 10 nm or more, more preferably 30 nm or more, still more preferably 40 nm or more, and particularly preferably 45 nm or more.
  • the average primary particle diameter is, for example, 50 nm or more.
  • the average primary particle diameter of the abrasive grains is suitably about 200 nm or less, preferably 100 nm or less, more preferably 80 nm or less, and even more preferably 70 nm or less.
  • the average primary particle size of the abrasive grains can be 60 nm or less, for example 55 nm or less.
  • the specific surface area measured by the BET method is referred to as a BET value.
  • the specific surface area can be measured using, for example, a surface area measuring device manufactured by Micromeritex Corporation, a trade name “Flow Sorb II 2300”.
  • the shape of the abrasive grains may be spherical or non-spherical.
  • the said shape is an external shape.
  • Specific examples of the non-spherical particles include a peanut shape, a bowl shape, a confetti shape, and a rugby ball shape.
  • the peanut shape is the shape of a peanut shell.
  • abrasive grains in which many of the particles have a peanut shape can be preferably used.
  • the average value of the major axis / minor axis ratio of the abrasive grains is theoretically 1.0 or more, preferably 1.05 or more, and more preferably 1.1 or more.
  • the average value of the major axis / minor axis ratio of the abrasive grains is also referred to as an average aspect ratio. By increasing the average aspect ratio, a higher polishing rate can be achieved.
  • the average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, and still more preferably 1.5 or less, from the viewpoint of reducing scratches.
  • the shape (outer shape) and average aspect ratio of the abrasive grains can be grasped by, for example, observation with an electron microscope.
  • an electron microscope As a specific procedure for grasping the average aspect ratio, for example, with a scanning electron microscope (SEM), for a predetermined number of silica particles capable of recognizing the shape of independent particles, the minimum circumscribing each particle image is performed.
  • the predetermined number is, for example, 200.
  • the value obtained by dividing the length of the long side (major axis value) by the length of the short side (minor axis value) is the major axis / minor axis ratio (aspect ratio). ).
  • An average aspect ratio can be obtained by arithmetically averaging the aspect ratios of the predetermined number of particles.
  • the content (concentration) of abrasive grains in the concentrate disclosed herein can be, for example, 50% by weight or less. From the viewpoint of the stability of the concentrate, filterability, and the like, it is usually appropriate that the content of abrasive grains be 45% by weight or less, for example 40% by weight or less, typically 35% by weight or less.
  • the content of the abrasive is preferably 30% by weight or less, more preferably 25% by weight or less, and still more preferably 20% by weight or less. In a more preferred embodiment, the content of the abrasive grains is, for example, 15% by weight or less.
  • the content of the abrasive grains in the concentrated liquid is usually 1% by weight or more, for example, 3% by weight or more, from the viewpoints of the abrasive grain concentration of the polishing composition after dilution, convenience of production, distribution, storage and the like. Typically, it is suitable to be 5% by weight or more.
  • the content of the abrasive is preferably 8% by weight or more. In a preferred embodiment, the content of the abrasive grains is, for example, 10% by weight or more, and further 12% by weight or more.
  • Water-soluble polymer As the water-soluble polymer contained in the concentrated liquid disclosed herein, those having a radius of gyration (rg) satisfying a ratio [rg / d] of a predetermined value or less are used.
  • the polishing slurry containing such a water-soluble polymer is well wetted and familiar with the substrate to be polished, and as a result, the polishing performance can be improved.
  • the polishing performance here is typically flatness.
  • the inertia radius rg of the water-soluble polymer is the size of one molecule of the water-soluble polymer in the aqueous solution, which can be mainly determined by the hydrophilicity, molecular weight, etc. of the polymer.
  • the upper limit value of the inertia radius rg is a value limited in the relative relationship with the interparticle distance d because the upper limit of the ratio [rg / d] is limited.
  • the inertial radius rg of the water-soluble polymer according to one embodiment is about 500 nm or less, and suitably about 300 nm or less. Further, when a water-soluble polymer having an inertia radius rg of 220 nm or less, more preferably 150 nm or less is used, the above ratio [rg / d] can be preferably satisfied. Concentration efficiency also tends to improve.
  • the inertia radius rg may be about 100 nm or less, for example 70 nm or less.
  • the water-soluble polymer has an inertial radius rg of 30 nm or more, and more preferably 50 nm or more.
  • the inertia radius rg is more preferably 80 nm or more, further preferably 100 nm or more, and particularly preferably 120 nm or more.
  • the inertia radius rg is, for example, 140 nm or more. According to the technique disclosed herein, even if the inertia radius rg of the water-soluble polymer is equal to or greater than a predetermined value, the concentrated liquid can realize excellent stability.
  • polishing liquid containing a water-soluble polymer having an inertia radius rg of a predetermined value or more when used, wettability to the substrate surface is better exhibited and the polishing performance tends to be further improved.
  • the polishing performance here is typically flatness.
  • the inertial radius rg of the water-soluble polymer in the present specification is measured by the method described in Examples described later.
  • the type of the water-soluble polymer contained in the concentrate disclosed herein is not particularly limited, and can be appropriately selected from water-soluble polymer species known in the field of polishing compositions.
  • a water-soluble polymer can be used singly or in combination of two or more.
  • the water-soluble polymer include cellulose derivatives, starch derivatives, polymers containing oxyalkylene units, polymers containing nitrogen atoms, polyvinyl alcohol and the like. Among these, from the viewpoint of improving flatness, cellulose derivatives and starch derivatives are preferable, and cellulose derivatives are more preferable.
  • Cellulose derivatives are polymers containing ⁇ -glucose units as the main repeating unit.
  • Specific examples of the cellulose derivative include hydroxyethyl cellulose (HEC), hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose and the like. Of these, HEC is preferable.
  • Starch derivatives are polymers that contain ⁇ -glucose units as the main repeating unit. Specific examples of starch derivatives include pregelatinized starch, pullulan, carboxymethyl starch, and cyclodextrin. Of these, pullulan is preferred.
  • Polymers containing oxyalkylene units include polyethylene oxide (PEO), block copolymers of ethylene oxide (EO) and propylene oxide (PO) or butylene oxide (BO), and random copolymerization of EO and PO or BO. Examples include coalescence. Among these, a block copolymer of EO and PO or a random copolymer of EO and PO is preferable.
  • the block copolymer of EO and PO may be a diblock body, a triblock body or the like including a PEO block and a polypropylene oxide (PPO) block. Examples of the triblock body include a PEO-PPO-PEO type triblock body and a PPO-PEO-PPO type triblock body.
  • the molar ratio [EO / PO] of EO and PO constituting the copolymer is from the viewpoint of solubility in water, detergency, and the like. It is preferably larger than 1, more preferably 2 or more, and further preferably 3 or more. In a more preferred embodiment, the molar ratio [EO / PO] is, for example, 5 or more.
  • both a polymer containing a nitrogen atom in the main chain and a polymer having a nitrogen atom in a side chain functional group (pendant group) can be used.
  • a polymer containing nitrogen atoms By using a polymer containing nitrogen atoms, the surface roughness of the substrate can be improved.
  • the polymer containing a nitrogen atom in the main chain include homopolymers and copolymers of N-acylalkylenimine type monomers.
  • Specific examples of the N-acylalkyleneimine monomer include N-acetylethyleneimine, N-propionylethyleneimine and the like.
  • the polymer having a nitrogen atom in the pendant group include a polymer containing an N-vinyl type monomer unit.
  • homopolymers and copolymers of N-vinylpyrrolidone can be employed.
  • at least one of a homopolymer and a copolymer of N-vinylpyrrolidone obtained by polymerizing N-vinylpyrrolidone at a ratio of 50 mol% or more (hereinafter also referred to as “PVP”).
  • PVP polymerizing N-vinylpyrrolidone at a ratio of 50 mol% or more
  • the saponification degree of the polyvinyl alcohol is not particularly limited.
  • the molecular weight of the water-soluble polymer can be appropriately set within a range that satisfies a ratio [rg / d] of a predetermined value or less.
  • the weight average molecular weight (Mw) of the water-soluble polymer can be about 200 ⁇ 10 4 or less from the viewpoint of stability, concentration efficiency, etc., and is usually 150 ⁇ 10 4 or less, for example, 100 ⁇ 10 4 or less. Is appropriate.
  • the Mw for example 50 ⁇ 10 4 or less, or may be 30 ⁇ 10 4 or less.
  • Mw is suitably 1 ⁇ 10 4 or more, more preferably 10 ⁇ 10 4 or more, and even more preferably 20 ⁇ 10 4 or more.
  • the Mw may be, for example, 50 ⁇ 10 4 or more and 100 ⁇ 10 4 or more.
  • the above Mw can be particularly preferably applied to cellulose derivatives. Examples of the cellulose derivative include HEC.
  • Mw of the water-soluble polymer a value based on an aqueous gel permeation chromatography (GPC) (aqueous, polyethylene oxide equivalent) can be adopted.
  • GPC gel permeation chromatography
  • the technique disclosed herein is preferably implemented in a mode in which two or more water-soluble polymers are used in combination.
  • one or more water-soluble polymers P1 selected from cellulose derivatives and starch derivatives, and water-soluble polymers other than cellulose derivatives and starch derivatives The combined use with 1 type or 2 types or more of P2 is more preferable.
  • the water-soluble polymer P1 is typically a cellulose derivative such as HEC.
  • the water-soluble polymer P2 is preferably a polymer containing a nitrogen atom in the main chain, a polymer having a nitrogen atom in the side chain functional group (pendant group), and more preferably a polymer containing an N-vinyl type monomer unit.
  • N-vinylpyrrolidone homopolymers and copolymers are particularly preferred.
  • the blending ratio of the water-soluble polymer P1 and the water-soluble polymer P2 is not particularly limited.
  • the ratio [P2 / P1] of the content of the water-soluble polymer P2 to the content of the water-soluble polymer P1 is suitably 0.1 or more.
  • the ratio [P2 / P1] is, for example, 0.25 or more, typically 0.5 or more.
  • the ratio [P2 / P1] is suitably about 10 or less.
  • the ratio [P2 / P1] is, for example, 2.5 or less, typically less than 1.
  • the water-soluble polymer P1 is a cellulose derivative such as HEC
  • the water-soluble polymer P2 is a polymer containing an N-vinyl type monomer unit such as PVP.
  • the molecular weight of the water-soluble polymer P1 can be appropriately set within a range that satisfies a ratio [rg / d] of a predetermined value or less.
  • the weight average molecular weight (Mw) of the water-soluble polymer P1 can be about 200 ⁇ 10 4 or less from the viewpoint of stability, concentration efficiency, etc., and is usually 150 ⁇ 10 4 or less, for example, 100 ⁇ 10 4 or less. Is appropriate.
  • the Mw may be, for example, 50 ⁇ 10 4 or less and 30 ⁇ 10 4 or less.
  • Mw is suitably 1 ⁇ 10 4 or more, more preferably 10 ⁇ 10 4 or more, and even more preferably 20 ⁇ 10 4 or more.
  • the Mw for example 50 ⁇ 10 4 or more, may be 100 ⁇ 10 4 or more.
  • the above Mw can be particularly preferably applied to cellulose derivatives.
  • the cellulose derivative is, for example, HEC.
  • the molecular weight of the water-soluble polymer P2 is not particularly limited.
  • the weight average molecular weight (Mw) of the water-soluble polymer P2 can be about 300 ⁇ 10 4 or less, and is usually 150 ⁇ 10 4 or less, for example, 50 ⁇ 10 4 or less. From the viewpoint of stability and the like, the Mw may be 30 ⁇ 10 4 or less, for example, 5 ⁇ 10 4 or less. From the viewpoint of the surface protection improvement, typically, Mw is suitably 1 ⁇ 10 4 or more, more preferably 2 ⁇ 10 4 or more, more preferably 3 ⁇ 10 4 or more.
  • the above Mw can be particularly preferably applied to homopolymers and copolymers (typically PVP) of N-vinylpyrrolidone.
  • the content (concentration) of the water-soluble polymer in the concentrate disclosed herein is not particularly limited, and can be, for example, 0.0001% by weight or more. From the viewpoint of improving polishing performance, the preferable content is 0.001% by weight or more, more preferably 0.0025% by weight or more, for example, 0.005% by weight or more.
  • the polishing performance is specifically flatness. Further, from the viewpoint of polishing rate and the like, the content is preferably 1% by weight or less, more preferably 0.2% by weight or less, further preferably 0.1% by weight or less, It is particularly preferable that the content be 0.05% by weight or less. In a particularly preferred embodiment, the content of the water-soluble polymer is, for example, 0.02% by weight or less.
  • the content of the water-soluble polymer in the concentrate disclosed herein can also be specified by the relative relationship with the abrasive grains contained in the concentrate.
  • the content of the water-soluble polymer is suitably 0.001 part by weight or more with respect to 100 parts by weight of the abrasive grains, and preferably 0.005 weight from the viewpoint of improving the polishing performance.
  • Part or more more preferably 0.01 part by weight or more, and still more preferably 0.015 part by weight or more.
  • the content of the water-soluble polymer is, for example, 0.03 parts by weight or more with respect to 100 parts by weight of the abrasive grains.
  • the polishing performance is specifically flatness.
  • the content of the water-soluble polymer is suitably 10 parts by weight or less, preferably 1 part by weight or less, more preferably 100 parts by weight of abrasive grains. Is 0.5 parts by weight or less, more preferably 0.1 parts by weight or less. In a further preferred embodiment, the content of the water-soluble polymer is, for example, 0.05 parts by weight or less with respect to 100 parts by weight of the abrasive grains.
  • the concentrate disclosed here contains a basic compound.
  • the basic compound refers to a compound having a function of dissolving in water and increasing the pH of an aqueous solution.
  • an organic or inorganic basic compound containing nitrogen, an alkali metal hydroxide, an alkaline earth metal hydroxide, various carbonates, bicarbonates, or the like can be used.
  • Examples of basic compounds containing nitrogen include quaternary ammonium compounds, quaternary phosphonium compounds, ammonia, amines and the like.
  • the amine is preferably a water-soluble amine.
  • Such basic compounds can be used singly or in combination of two or more.
  • alkali metal hydroxide examples include potassium hydroxide and sodium hydroxide.
  • Specific examples of the carbonate or bicarbonate include ammonium bicarbonate, ammonium carbonate, potassium bicarbonate, potassium carbonate, sodium bicarbonate, sodium carbonate and the like.
  • amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, anhydrous piperazine , Piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine, guanidine, azoles such as imidazole and triazole, and the like.
  • quaternary phosphonium compound include quaternary phosphonium hydroxide such as tetramethylphosphonium hydroxide and tetraethylphosphonium hydroxide.
  • quaternary ammonium salt such as a tetraalkylammonium salt or a hydroxyalkyltrialkylammonium salt can be preferably used.
  • the quaternary ammonium salt is typically a strong base.
  • the anionic component in such a quaternary ammonium salt can be, for example, OH ⁇ , F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , ClO 4 ⁇ , BH 4 ⁇ and the like.
  • the anion is OH - a is a quaternary ammonium salt, i.e., include quaternary ammonium hydroxide.
  • quaternary ammonium hydroxide examples include hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapentylammonium hydroxide, and tetrahexylammonium hydroxide.
  • tetraalkylammonium hydroxide is preferable, and tetramethylammonium hydroxide (TMAH) is particularly preferable.
  • the concentrate disclosed herein may contain a combination of a quaternary ammonium compound and a weak acid salt as described above.
  • the quaternary ammonium compound is, for example, a tetraalkylammonium hydroxide such as TMAH.
  • TMAH tetraalkylammonium hydroxide
  • the weak acid salt one that can be used for polishing using silica particles and can exhibit a desired buffering action in combination with a quaternary ammonium compound can be appropriately selected.
  • the weak acid salts can be used alone or in combination of two or more.
  • weak acid salts include sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, sodium orthosilicate, potassium orthosilicate, sodium acetate, potassium acetate, sodium propionate, potassium propionate, calcium carbonate, calcium bicarbonate , Calcium acetate, calcium propionate, magnesium acetate, magnesium propionate, zinc propionate, manganese acetate, cobalt acetate and the like.
  • Weak acid salts in which the anion component is carbonate ion or hydrogen carbonate ion are preferred, and weak acid salts in which the anion component is carbonate ion are particularly preferred.
  • alkali metal ions such as potassium and sodium, are suitable.
  • Particularly preferred weak acid salts include sodium carbonate, potassium carbonate, sodium bicarbonate and potassium bicarbonate. Of these, potassium carbonate (K 2 CO 3 ) is preferable.
  • the blending ratio of the quaternary ammonium compound and the weak acid salt is not particularly limited.
  • the quaternary ammonium compound is, for example, a tetraalkylammonium hydroxide such as TMAH.
  • the weak acid salt is, for example, a weak acid salt whose anion component such as K 2 CO 3 is a carbonate ion.
  • the content (concentration) of the basic compound in the concentrated liquid disclosed herein is, for example, 0.1% by weight or more from the viewpoint of stability of the concentrated liquid, improvement of the polishing rate by the polishing composition after dilution, and the like. Specifically, the content is suitably 0.3% by weight or more, preferably 0.5% by weight or more, more preferably 0.6% by weight or more, and further preferably 0.8% by weight or more. In a more preferred embodiment, the content of the basic compound is, for example, 1.0% by weight or more, typically 1.2% by weight or more. For example, when the concentrated liquid is used after being diluted at a high magnification, the abrasive concentration after dilution is relatively low, and the processing force by the abrasive may tend to decrease.
  • the upper limit of the content of the basic compound in the concentrated solution is suitably 10% by weight or less, preferably 5% by weight or less, from the viewpoints of storage stability and surface quality.
  • the content of the basic compound is, for example, 3% by weight or less.
  • the content of the basic compound in the concentrate can be specified by the relative relationship with the abrasive grains contained in the concentrate.
  • the content of the basic compound in the concentrated solution is suitably 0.1 parts by weight or more with respect to 100 parts by weight of the abrasive grains, and preferably 1 weight from the viewpoint of improving the polishing rate. Part or more, more preferably 3 parts by weight or more, still more preferably 6 parts by weight or more.
  • the content of the basic compound in the concentrated liquid may be, for example, about 12 parts by weight or more and 22 parts by weight or more.
  • the content of the basic compound is suitably 50 parts by weight or less, preferably 30 parts by weight or less, with respect to 100 parts by weight of the abrasive grains.
  • the content of the basic compound in the concentrate may be, for example, 20 parts by weight or less and 10 parts by weight or less with respect to 100 parts by weight of the abrasive grains.
  • the concentrate disclosed herein typically contains water.
  • water ion exchange water (deionized water), pure water, ultrapure water, distilled water and the like can be preferably used.
  • the water to be used preferably has, for example, a total content of transition metal ions of 100 ppb or less in order to avoid as much as possible the action of other components contained in the concentrate.
  • the purity of water can be increased by operations such as removal of impurity ions with an ion exchange resin, removal of foreign matter with a filter, distillation, and the like.
  • the concentrate disclosed here may further contain an organic solvent that can be uniformly mixed with water, if necessary.
  • the organic solvent is a lower alcohol, a lower ketone or the like.
  • aqueous solvent may be used as a general term including the solvent and water.
  • the concentrated liquid disclosed herein can contain a chelating agent as an optional component.
  • the chelating agent functions to suppress contamination of the object to be polished by metal impurities by forming complex ions with metal impurities that can be contained in the concentrated liquid and capturing them.
  • Examples of chelating agents include aminocarboxylic acid chelating agents and organic phosphonic acid chelating agents.
  • aminocarboxylic acid-based chelating agents include ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid sodium, nitrilotriacetic acid, nitrilotriacetic acid sodium, nitrilotriacetic acid ammonium, hydroxyethylethylenediaminetriacetic acid, hydroxyethylethylenediamine sodium triacetate, diethylenetriaminepentaacetic acid Diethylenetriamine sodium pentaacetate, triethylenetetramine hexaacetic acid and sodium triethylenetetramine hexaacetate.
  • organic phosphonic acid chelating agents examples include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic).
  • ethylenediaminetetrakis methylenephosphonic acid
  • diethylenetriaminepenta methylenephosphonic acid
  • diethylenetriaminepentaacetic acid are preferable.
  • Particularly preferred chelating agents include ethylenediaminetetrakis (methylenephosphonic acid) and diethylenetriaminepenta (methylenephosphonic acid).
  • a chelating agent can be used individually by 1 type or in combination of 2 or more types.
  • the concentrated liquid disclosed herein is a polishing slurry such as a surfactant, organic acid, organic acid salt, inorganic acid, inorganic acid salt, preservative, antifungal agent, etc., as long as the effect of the present invention is not significantly hindered. You may further contain the well-known additive which may be used for this as needed.
  • the surfactant various surfactants such as nonionic, anionic and cationic can be used. Of these, nonionic surfactants are preferred from the viewpoint of preventing precipitation of water-soluble polymers such as polyvinyl alcohol.
  • the polishing slurry is typically a polishing slurry used in a silicon substrate polishing process.
  • the concentrate disclosed here contains substantially no oxidizing agent. If the concentrate contains an oxidizing agent, the polishing slurry after dilution of the concentrate is supplied to the object to be polished (here, the silicon substrate), so that the surface of the object to be polished is oxidized and oxidized. This is because a film may be formed, which may reduce the polishing rate.
  • the oxidizing agent herein include hydrogen peroxide (H 2 O 2 ), sodium persulfate, ammonium persulfate, sodium dichloroisocyanurate, and the like.
  • a concentrate does not contain an oxidizing agent substantially means not containing an oxidizing agent at least intentionally.
  • the pH of the concentrate disclosed herein is typically 8.0 or higher, preferably 8.5 or higher, more preferably 9.0 or higher, even more preferably 9.5 or higher, such as 10.0 or higher. And particularly preferably 10.5 or more.
  • the pH of the concentrate is suitably 12.0 or less and 11.8 or less from the viewpoint of preventing dissolution of the abrasive grains and suppressing the reduction of the mechanical polishing action by the abrasive grains.
  • it is 11.5 or less.
  • the abrasive grains are, for example, silica particles.
  • the pH of the liquid composition is adjusted to 3 using a pH buffer and a standard buffer solution, and then the glass electrode is placed in the composition to be measured. It can be grasped by measuring the value after a minute or more has passed and stabilized.
  • the liquid composition may be a polishing slurry, a concentrated liquid thereof, or the like.
  • a glass electrode type hydrogen ion concentration indicator (model number F-23) manufactured by HORIBA, Ltd. is used.
  • the standard buffer solutions are phthalate pH buffer solution pH: 4.01 (25 ° C.), neutral phosphate pH buffer solution pH: 6.86 (25 ° C.), carbonate pH buffer solution pH: 10. 01 (25 ° C.).
  • each component contained in the concentrate may be mixed using a well-known mixing device such as a blade-type stirrer, an ultrasonic disperser, or a homomixer.
  • a well-known mixing device such as a blade-type stirrer, an ultrasonic disperser, or a homomixer.
  • the aspect which mixes these components is not specifically limited, For example, all the components may be mixed at once and may be mixed in the order set suitably.
  • the same mixing method can be appropriately employed before and after dilution of the concentrate.
  • the concentrate of the polishing composition disclosed herein is diluted with a magnification larger than 5 times on a volume basis and prepared as a polishing liquid, and then used for rough polishing of a substrate to be polished.
  • the substrate to be polished is specifically a silicon wafer.
  • the concentrated solution diluted at a predetermined magnification or more tends to have a high concentration of components, so that the components are easily separated and aggregated, and it is difficult to obtain good stability.
  • the concentrated solution exhibits excellent stability by preparing the concentrated solution so that the ratio [rg / d] is not more than a predetermined value.
  • the concentrated composition exhibits excellent stability when diluted, and the polishing composition after dilution is Good polishing performance can be realized.
  • the dilution ratio may be 15 times or more, for example, 25 times or more on a volume basis.
  • the upper limit of the dilution ratio is not particularly limited, but may be about 50 times or less, for example, 40 times or less, typically 35 times or less on a volume basis.
  • the above dilution can be performed at a desired timing.
  • the dilution can be performed by adding the aqueous solvent to the concentrate and mixing.
  • the aqueous solvent is typically water.
  • As the liquid used for dilution it is preferable to use an aqueous solvent consisting essentially of water from the viewpoints of handleability and workability.
  • the water is typically ion exchange water.
  • the aqueous solvent is, for example, an aqueous solvent in which 99.5 to 100% by volume is water.
  • the aqueous solvent is a mixed solvent, only a part of the components of the aqueous solvent may be added for dilution, and a mixture containing these components in a different ratio from the aqueous solvent.
  • a solvent may be added for dilution.
  • the polishing composition disclosed herein contains abrasive grains, a water-soluble polymer, and a basic compound contained in the concentrated liquid described above. Moreover, it typically contains water, and may further contain a chelating agent and other components as optional components. Since these specific examples are as described above, description thereof will not be repeated here.
  • the polishing composition is also referred to as a polishing liquid or a polishing slurry.
  • the content of abrasive grains in the polishing composition obtained by diluting the concentrated liquid disclosed herein can be determined by the abrasive grain concentration and dilution ratio in the concentrated liquid.
  • the content is preferably 0.05% by weight or more, more preferably 0.1% by weight or more, and further preferably 0.3% by weight or more. In a more preferred embodiment, the content is, for example, 0.5% by weight or more. Higher polishing rates can be achieved by increasing the abrasive content.
  • the content is usually suitably 10% by weight or less, preferably 7% by weight or less, more preferably 5% by weight or less, and further preferably 3% by weight. % Or less. In a more preferred embodiment, the content is, for example, 2% by weight or less.
  • the content of the water-soluble polymer in the polishing composition is suitably 1 ⁇ 10 ⁇ 5 wt% or more, for example, 5 ⁇ 10 ⁇ 5 wt% or more, from the viewpoint of improving polishing performance and surface quality. Yes, preferably 1 ⁇ 10 ⁇ 4 wt% or more. In a preferred embodiment, the content of the water-soluble polymer is, for example, 2 ⁇ 10 ⁇ 4 wt% or more.
  • the upper limit of the content of the water-soluble polymer in the polishing composition can be, for example, 1% by weight or less.
  • the content of the water-soluble polymer is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and even more preferably 0.02. % By weight or less. In a more preferred embodiment, the content of the water-soluble polymer is, for example, 0.01% by weight or less, typically 0.005% by weight or less.
  • the content of the water-soluble polymer in the polishing composition is suitably 0.001 part by weight or more with respect to 100 parts by weight of the abrasive grains. It is 005 weight part or more, More preferably, it is 0.01 weight part or more, More preferably, it is 0.015 weight part or more. In a more preferred embodiment, the content of the water-soluble polymer in the polishing composition is, for example, 0.03 parts by weight or more with respect to 100 parts by weight of the abrasive grains.
  • the polishing performance is specifically flatness.
  • the content of the water-soluble polymer is suitably 10 parts by weight or less, preferably 1 part by weight or less, more preferably 100 parts by weight of abrasive grains. Is 0.5 parts by weight or less, more preferably 0.1 parts by weight or less. In a more preferred embodiment, the content of the water-soluble polymer is, for example, 0.05 parts by weight or less with respect to 100 parts by weight of the abrasive grains.
  • the content of the basic compound in the polishing composition is, for example, 0.001% by weight or more, typically 0.01% by weight or more. From the viewpoint of improvement and the like, it is preferably 0.05% by weight or more, more preferably 0.07% by weight or more, and further preferably 0.09% by weight or more. Stability can also be improved by increasing the content of the basic compound.
  • the upper limit of the content of the basic compound is suitably 5% by weight or less, and preferably 1% by weight or less from the viewpoint of surface quality and the like. In a preferred embodiment, the content of the basic compound is, for example, 0.5% by weight or less, typically 0.2% by weight or less.
  • the pH of the polishing composition in the technique disclosed herein is preferably 8.0 or more, for example 8.5 or more, more preferably 9.0 or more, and still more preferably 9.5 or more. In a more preferred embodiment, the pH is, for example, 10.0 or more.
  • the upper limit of the pH of the polishing liquid is not particularly limited, it is preferably 12.0 or less, for example, 11.5 or less, and more preferably 11.0 or less, from the viewpoint of better polishing the object to be polished. .
  • the pH is more preferably 10.8 or less.
  • the pH is, for example, 10.6 or less, typically 10.5 or less.
  • the improvement in surface quality is typically a reduction in surface roughness.
  • the pH can be preferably applied to, for example, a polishing liquid used for polishing a silicon wafer.
  • the polishing liquid is, for example, a polishing liquid for rough polishing.
  • the technique disclosed herein is preferably applied to polishing using a silicon substrate (particularly a silicon wafer) as an object to be polished.
  • a typical example of the silicon wafer here is a silicon single crystal wafer, for example, a silicon single crystal wafer obtained by slicing a silicon single crystal ingot.
  • the surface to be polished in the technique disclosed herein is typically a surface made of silicon.
  • the silicon substrate is subjected to general treatment that can be applied to the silicon substrate in a process upstream of the rough polishing process, such as lapping and etching, before the polishing process using the polishing liquid disclosed herein. May be.
  • a finish polishing step can be performed on the silicon substrate after the polishing step using the polishing liquid.
  • the finishing process includes one or more polishing processes, and the final polishing is performed to finish the silicon wafer into a high-quality mirror surface.
  • final polishing refers to the final polishing step in the manufacturing process of the object. That is, final polishing refers to a process in which no further polishing is performed after that process.
  • the polishing liquid disclosed herein and the concentrated liquid before dilution can be used for polishing a silicon wafer that has undergone lapping. Further, the polishing liquid and the concentrated liquid can be used for rough polishing performed before final polishing of the silicon wafer. Rough polishing is also called preliminary polishing.
  • Polishing of the object to be polished can be performed, for example, as follows. That is, the concentrate disclosed here is diluted to prepare a polishing composition (polishing slurry). Next, the polishing slurry (working slurry) is supplied to the object to be polished and polished by a conventional method. In rough polishing of a silicon wafer, typically, an object to be polished (silicon wafer) that has undergone a lapping process is set in a polishing apparatus, and the above-mentioned is performed through a polishing pad fixed to a surface plate (polishing surface plate) of the polishing apparatus. A polishing slurry is supplied to the surface of the object to be polished (surface to be polished).
  • the polishing pad is pressed against the surface of the object to be polished, and the two are relatively moved.
  • the movement is, for example, a rotational movement.
  • the polishing of the object to be polished is completed through this polishing step.
  • the polishing pad used in the above polishing process is not particularly limited.
  • a polishing pad of foamed polyurethane type, non-woven fabric type, suede type or the like can be used.
  • Each polishing pad may include abrasive grains or may not include abrasive grains.
  • a double-side polishing apparatus that simultaneously polishes both sides of the object to be polished, or a single-side polishing apparatus that polishes only one side of the object to be polished may be used.
  • a double-side polishing apparatus can be preferably employed in the rough polishing step.
  • the double-side polishing apparatus is, for example, a batch type double-side polishing apparatus.
  • the polishing apparatus may be a single wafer type polishing apparatus configured to polish one polishing object at a time, or a batch type polishing apparatus capable of simultaneously polishing a plurality of polishing objects on the same surface plate. But you can.
  • the object to be polished that has finished the rough polishing step is typically cleaned before the finish polishing step is started. This washing can be performed using an appropriate washing solution.
  • the cleaning liquid to be used is not particularly limited, and for example, a common SC-1 cleaning liquid, SC-2 cleaning liquid, etc. in the field of semiconductors can be used.
  • the SC-1 cleaning liquid is a mixed liquid of ammonium hydroxide (NH 4 OH), hydrogen peroxide (H 2 O 2 ), and water (H 2 O).
  • the SC-2 cleaning solution is a mixed solution of HCl, H 2 O 2 and H 2 O.
  • the temperature of the cleaning liquid can be, for example, in the range from room temperature to about 90 ° C. Here, room temperature typically means about 15 ° C. to 25 ° C. From the viewpoint of improving the cleaning effect, a cleaning solution of about 50 ° C. to 85 ° C. can be preferably used.
  • the polishing object is a silicon substrate, typically a silicon single crystal wafer. Therefore, according to this specification, a method for producing a polished article including the polishing step is provided. Specifically, the manufacturing method is a method for manufacturing a silicon wafer.
  • the concentrate of the composition for silicon wafer rough polishing containing an abrasive grain, a basic compound, and water-soluble polymer is provided.
  • the ratio [rg / d] of the radius of inertia rg [nm] of the water-soluble polymer to the interparticle distance d [nm] of the abrasive grains in the concentrated liquid is 4.7 or less.
  • the concentrated liquid having such a configuration exhibits excellent stability and can exhibit good polishing performance after dilution.
  • the polishing performance is typically a flatness improving effect.
  • the ratio [rg / d] is 2.5 or less.
  • the interparticle distance d of the abrasive grains is 200 nm or less. According to the technology disclosed herein, excellent stability can be realized even when the inter-particle distance d of the abrasive grains is not more than a predetermined value as described above. Further, as described above, the concentrated solution having the interparticle distance d of not more than a predetermined value can be concentrated at a high concentration, which is advantageous in terms of convenience and cost reduction.
  • the water-soluble polymer has an inertia radius rg of 30 nm or more. According to the technique disclosed here, even if the inertial radius of the water-soluble polymer is not less than a predetermined value as described above, the concentrated liquid can realize excellent stability. In addition, as described above, a polishing liquid having a water-soluble polymer having an inertial radius of a predetermined value or more can exhibit more excellent polishing performance. The polishing performance is typically a flatness improving effect.
  • the concentration of the abrasive grains is 5% by weight or more. According to the technology disclosed herein, excellent stability can be achieved even when the abrasive grain concentration is a predetermined value or more. Further, as described above, a concentrated liquid having an abrasive concentration equal to or higher than a predetermined value can be concentrated at a high concentration, which is advantageous in terms of convenience and cost reduction.
  • the concentration of the water-soluble polymer is in the range of 0.001 to 0.05% by weight.
  • the concentrated solution is diluted by a factor larger than 10 times on a volume basis and used for rough polishing of a silicon wafer. According to the technique disclosed herein, the concentrated solution is excellent in stability even at a high concentration ratio that is diluted at a predetermined magnification or higher. Moreover, the concentrated liquid concentrated to a predetermined concentration or more as described above is advantageous in terms of convenience and cost reduction.
  • the concentrated solution is used for polishing a lapped silicon wafer. More specifically, the concentrated solution is used for rough polishing performed before final polishing of the silicon wafer. Rough polishing is also called preliminary polishing.
  • Example 1-1 ⁇ Examples 1-1 to 1-11 and Comparative Example 1-1> [Preparation of polishing composition concentrate] By mixing colloidal silica (average primary particle size 54 nm) as abrasive grains, water-soluble polymer (HEC, PVP), TMAH, K 2 CO 3 and ion-exchanged water, Example 1-1 Concentrates of the polishing compositions according to ⁇ 1-11 and Comparative Example 1-1 were prepared. The concentration of the abrasive grains and the water soluble polymer in the concentrate in each example are as shown in Table 1, the concentration of TMAH and K 2 CO 3 is 1.62% and 1.05%.
  • colloidal silica average primary particle size 54 nm
  • HEC water-soluble polymer
  • TMAH TMAH
  • K 2 CO 3 ion-exchanged water
  • the interparticle distance d [nm] of the abrasive grains was determined, and the inertia radius rg [nm] of the water-soluble polymer was measured by the following method.
  • the ratio [rg / d] of the inertial radius rg [nm] of the water-soluble polymer to d [nm] was determined.
  • Table 1 shows the interparticle distance d [nm] of the abrasive grains, the inertial radius rg [nm] and the ratio [rg / d] of the water-soluble polymer in each example.
  • Example 2 ⁇ Experiment 2 ⁇ ⁇ Examples 2-1 to 2-14 and Comparative Examples 2-1 to 2-2> [Preparation of polishing composition concentrate] By mixing colloidal silica (average primary particle diameter 54 nm) as abrasive grains, water-soluble polymer (HEC, PVP, PVA), TMAH, K 2 CO 3 and ion-exchanged water, Example 2 Concentrates of polishing compositions according to -1 to 2-14 and Comparative Examples 2-1 to 2-2 were prepared. The concentrations of the abrasive grains and the water-soluble polymer in the concentrated liquid of each example are as shown in Table 2, and TMAH and K 2 CO 3 are each 0.067% in the polishing composition (polishing liquid) after dilution.
  • colloidal silica average primary particle diameter 54 nm
  • HEC water-soluble polymer
  • TMAH TMAH
  • K 2 CO 3 ion-exchanged water
  • Example 2-14 polyoxyethylene lauryl ether was added as a nonionic surfactant to a concentration of 0.001%.
  • the interparticle distance d [nm] of the abrasive grains was determined, and the inertial radius rg [nm] of the water-soluble polymer was measured by the same method as in Experiment 1. From the obtained value, the particle The ratio [rg / d] of the inertial radius rg [nm] of the water-soluble polymer to the inter-space distance d [nm] was determined. Further, the stability of the concentrate was also evaluated by the same method as in Experiment 1. Table 2 shows the evaluation results of the interparticle distance d [nm], the radius of inertia rg [nm] of the water-soluble polymer, the ratio [rg / d], and the concentrate stability.
  • Model “EJ-380IN” Polishing pad Product name “MH S-15A”, manufactured by Nitta Haas Polishing pressure: 26.6 kPa Slurry flow rate: 100 mL / min Plate rotation speed: 50 rpm Head rotation speed: 50 rpm Polishing amount: 8 ⁇ m Work species: Bare Si P - ⁇ 100> Work size: ⁇ 60mm ⁇ 60mm
  • the wafer thickness difference was less than 2.5 ⁇ m was evaluated as “A”
  • the case where the wafer thickness difference was 2.5 ⁇ m or more and less than 3.0 ⁇ m was evaluated as “B”
  • the wafer thickness difference was The case where it was 3.0 ⁇ m or more and 3.2 ⁇ m or less was evaluated as “C”
  • the case where the wafer thickness difference was larger than 3.2 ⁇ m was evaluated as “D”.
  • a to C were practically acceptable levels, and D was considered unacceptable. The results are shown in Table 2.
  • concentration efficiency concentration efficiency
  • the ratio [rg / d] of the radius of inertia rg [nm] of the water-soluble polymer to the interparticle distance d [nm] of the abrasive grains was 4.7 or less.
  • the concentrated solutions according to Examples 1-1 to 1-11 were evaluated as acceptable.
  • the stability evaluation result was A or B, and more excellent stability was obtained.
  • the stability of the concentrate was at a reject level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

Provided is a liquid concentrate of a composition for rough-polishing silicon wafers, which, when being diluted, is able to deliver preferable polishing performance, and which exhibits excellent stability. The liquid concentrate of a composition for rough-polishing silicon wafers provided by the present invention comprises abrasive particles, a basic compound, and a water-soluble polymer, wherein the ratio [rg/d] of the radius of gyration rg [nm] of the water-soluble polymer to the inter-particle distance d [nm] of the abrasive particles is 4.7 or less.

Description

シリコンウェーハ粗研磨用組成物の濃縮液Silicon wafer rough polishing composition concentrate
 本発明は、シリコンウェーハ粗研磨用組成物の濃縮液に関する。
 本出願は、2016年8月2日に出願された日本国特許出願2016-152324号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
The present invention relates to a concentrate of a composition for rough polishing of silicon wafers.
This application claims priority based on Japanese Patent Application No. 2016-152324 filed on Aug. 2, 2016, the entire contents of which are incorporated herein by reference.
 半導体製品の製造等に用いられるシリコン基板の表面は、一般に、ラッピング工程とポリシング工程とを経て高品位の鏡面に仕上げられる。上記ポリシング工程は、典型的には、予備ポリシング工程と仕上げポリシング工程とを含む。なお、予備ポリシング工程は粗研磨工程ともいう。仕上げポリシング工程は仕上げ研磨工程ともいう。この種の研磨用組成物は、製造や流通、保存等の際における利便性やコスト低減等の観点から、研磨対象物に供給される前には濃縮された形態であり得る。すなわち、上記研磨用組成物は、研磨液の濃縮液の形態であり得る。調製された濃縮液は、水等で希釈された後、研磨に用いられる。この種の従来技術を開示する文献として、特許文献1が挙げられる。特許文献2は、研磨用組成物に用いられるヒドロキシセルロースの慣性半径を開示する文献である。 Generally, the surface of a silicon substrate used for manufacturing a semiconductor product is finished to a high-quality mirror surface through a lapping process and a polishing process. The polishing process typically includes a preliminary polishing process and a finishing polishing process. The preliminary polishing process is also called a rough polishing process. The finish polishing process is also called a finish polishing process. This type of polishing composition may be in a concentrated form before being supplied to the object to be polished, from the viewpoint of convenience in manufacturing, distribution, storage, etc. and cost reduction. That is, the polishing composition may be in the form of a concentrated concentrate of polishing liquid. The prepared concentrated liquid is diluted with water and used for polishing. Patent document 1 is mentioned as a literature which discloses this kind of prior art. Patent Document 2 is a document disclosing the radius of inertia of hydroxycellulose used in the polishing composition.
日本国特許出願公開2012-89862号公報Japanese Patent Application Publication No. 2012-89862 日本国特許出願公開2015-124231号公報Japanese Patent Application Publication No. 2015-124231
 本発明者らは、シリコンウェーハ粗研磨用組成物の性能向上について検討を行った結果、水溶性高分子を添加し、かつその慣性半径が大きいほど、研磨性能が改善されるという知見を得た。ここでいう研磨性能は、典型的には平坦度、例えばGBIR(Global Backside Ideal Range)である。しかしその一方で、水溶性高分子の慣性半径が大きすぎると、濃縮液の段階での安定性が低下傾向となる。具体的には、上記濃縮液は、砥粒、水溶性高分子等の成分を使用時よりも高濃度で含有するため、含有成分が分離、凝集するなど良好な安定性が得られないおそれがある。高濃度の濃縮液の形態においても、安定性に優れ、かつ希釈後には良好な研磨性能を発揮し得る研磨用組成物が提供されれば、利便性、コスト低減等の点でも有利であり、実用上の利点は大きい。 As a result of examining the performance improvement of the silicon wafer rough polishing composition, the present inventors have obtained knowledge that the polishing performance is improved as the water-soluble polymer is added and the inertia radius is larger. . The polishing performance here is typically flatness, for example, GBIR (Global Backside Ideal Range). However, on the other hand, if the inertial radius of the water-soluble polymer is too large, the stability at the stage of the concentrate tends to decrease. Specifically, since the concentrated liquid contains components such as abrasive grains and water-soluble polymers at a higher concentration than when used, there is a risk that good stability such as separation and aggregation of the contained components may not be obtained. is there. Even in the form of a concentrated solution of high concentration, if a polishing composition that is excellent in stability and can exhibit good polishing performance after dilution is provided, it is advantageous in terms of convenience and cost reduction, There are great practical advantages.
 本発明は、上記の事情に鑑みてなされたものであり、希釈後には良好な研磨性能を発揮することが可能であり、かつ安定性に優れたシリコンウェーハ粗研磨用組成物の濃縮液を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a concentrated liquid of a composition for rough polishing of silicon wafers that can exhibit good polishing performance after dilution and has excellent stability. The purpose is to do.
 本発明によると、砥粒、塩基性化合物および水溶性高分子を含むシリコンウェーハ粗研磨用組成物の濃縮液が提供される。前記濃縮液中における前記砥粒の粒子間距離d[nm]に対する前記水溶性高分子の慣性半径rg[nm]の比[rg/d]は4.7以下である。かかる構成の濃縮液は、優れた安定性を示し、希釈後には良好な研磨性能を発揮することができる。上記研磨性能は、典型的には平坦度改善効果である。 According to the present invention, there is provided a concentrated liquid for a silicon wafer rough polishing composition comprising abrasive grains, a basic compound and a water-soluble polymer. The ratio [rg / d] of the radius of inertia rg [nm] of the water-soluble polymer to the interparticle distance d [nm] of the abrasive grains in the concentrated liquid is 4.7 or less. The concentrated liquid having such a configuration exhibits excellent stability and can exhibit good polishing performance after dilution. The polishing performance is typically a flatness improving effect.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
 <研磨用組成物の濃縮液>
  (特性)
 ここに開示される研磨用組成物の濃縮液は砥粒と水溶性高分子とを含む。上記研磨用組成物の濃縮液は、以下、単に「濃縮液」と略す場合がある。そして、かかる濃縮液は、砥粒の粒子間距離d[nm]に対する水溶性高分子の慣性半径rg[nm]の比[rg/d]が4.7以下であることによって特徴づけられる。上記特性を満足する濃縮液は優れた安定性を示す。その理由としては、特に限定して解釈されるものではないが、上記比[rg/d]を満足することにより、濃縮液中にて水溶性高分子が砥粒粒子間に安定して存在することができ、濃縮液の主たる含有成分である砥粒粒子および水溶性高分子が、濃縮液中で安定して分散することができるためと考えられる。また、当該濃縮液を希釈して研磨液として用いたときには、上記水溶性高分子を含むことにより、研磨対象基板、すなわちシリコンウェーハ、に対して良好な研磨性能を発揮することができる。上記研磨性能は、具体的には平坦度向上効果である。上記比[rg/d]は、安定性向上の観点から、好ましくは3.8以下、より好ましくは2.8以下、さらに好ましくは2.5以下、特に好ましくは1.9以下である。特に好ましい一態様において、上記比[rg/d]は、典型的には1.0以下である。上記比[rg/d]の下限は、特に限定されず、濃縮液の濃縮効率や研磨性能等の観点から、通常は凡そ0.3以上、例えば0.6以上であり得る。砥粒の粒子間距離d[nm]および水溶性高分子の慣性半径rg[nm]は、後述の方法で測定される。
<Concentrated liquid of polishing composition>
(Characteristic)
The concentrate of the polishing composition disclosed herein contains abrasive grains and a water-soluble polymer. Hereinafter, the concentrated liquid of the polishing composition may be simply abbreviated as “concentrated liquid”. Such a concentrated liquid is characterized by a ratio [rg / d] of the inertia radius rg [nm] of the water-soluble polymer to the interparticle distance d [nm] of the abrasive grains being 4.7 or less. A concentrated solution satisfying the above characteristics exhibits excellent stability. The reason for this is not particularly limited, but when the ratio [rg / d] is satisfied, the water-soluble polymer is stably present between the abrasive grains in the concentrate. This is presumably because the abrasive particles and the water-soluble polymer, which are the main components of the concentrate, can be stably dispersed in the concentrate. Further, when the concentrated liquid is diluted and used as a polishing liquid, the polishing performance can be exhibited with respect to the substrate to be polished, that is, the silicon wafer, by including the water-soluble polymer. Specifically, the polishing performance is an effect of improving flatness. The ratio [rg / d] is preferably 3.8 or less, more preferably 2.8 or less, still more preferably 2.5 or less, and particularly preferably 1.9 or less, from the viewpoint of improving stability. In a particularly preferred embodiment, the ratio [rg / d] is typically 1.0 or less. The lower limit of the above ratio [rg / d] is not particularly limited, and can usually be about 0.3 or more, for example, 0.6 or more, from the viewpoint of the concentration efficiency of the concentrate, polishing performance, and the like. The interparticle distance d [nm] of the abrasive grains and the inertial radius rg [nm] of the water-soluble polymer are measured by the method described later.
  (砥粒)
 ここに開示される砥粒は、砥粒粒子の粒子間距離d[nm]が上記比[rg/d]を満足する含有量で濃縮液中に含まれている。好ましい一態様では、上記砥粒の粒子間距離dは200nm以下である。ここに開示される技術によると、上記のように砥粒の粒子間距離dが所定値以下であり、濃縮液中において砥粒粒子が比較的近接した状態であっても、優れた安定性を実現することができる。上記粒子間距離dは、濃縮液の濃縮効率の観点から、より好ましくは150nm以下、さらに好ましくは100nm以下、特に好ましくは80nm以下である。特に好ましい一態様において、上記粒子間距離dは、典型的には70nm以下である。さらには、上記比[rg/d]を満足する範囲内において、上記粒子間距離dは、例えば60nm以下、さらには40nm以下であってもよい。
(Abrasive grains)
The abrasive grains disclosed herein are contained in the concentrated liquid in such a content that the inter-particle distance d [nm] of the abrasive grains satisfies the above ratio [rg / d]. In a preferred embodiment, the interparticle distance d of the abrasive grains is 200 nm or less. According to the technique disclosed here, the inter-particle distance d of the abrasive grains is not more than a predetermined value as described above, and excellent stability can be achieved even when the abrasive grains are relatively close to each other in the concentrated liquid. Can be realized. The interparticle distance d is more preferably 150 nm or less, further preferably 100 nm or less, and particularly preferably 80 nm or less from the viewpoint of the concentration efficiency of the concentrate. In a particularly preferred embodiment, the interparticle distance d is typically 70 nm or less. Further, the inter-particle distance d may be, for example, 60 nm or less, further 40 nm or less, within a range that satisfies the ratio [rg / d].
 なお、本明細書において砥粒粒子の粒子間距離d[nm]は、濃縮液中に含まれる砥粒粒子が均一分散していると仮定して、球の最密充填率[74%]に基づき、式:
   d[nm]=R×2-D1
;から求められる理論値である。ここで、Rは、一の砥粒粒子を中心とし、隣接する砥粒粒子の対応する球と外接する球の半径[nm]であり、D1は砥粒粒子の平均一次粒子径[nm]である。Rは、濃縮液において一の砥粒粒子に割り当てられる濃縮液の体積を有する球の半径[nm]と言い換えることができ、次の方法で求められる。具体的には、単位体積、例えば1L、の濃縮液の体積に充填率74%を乗じた値を、該単位体積の濃縮液に含まれる砥粒粒子の個数で除して、一の砥粒粒子が占め得る最大サイズの球の体積Vを求め、式:V=4/3×πR ;からRは求められる。単位体積の濃縮液に含まれる砥粒粒子の個数は、単位体積、例えば1L、の濃縮液当たりの砥粒の重量[g/L]を砥粒粒子1個当たりの重量[g]で除することにより求められる。単位体積の濃縮液当たりの砥粒の重量は、濃縮液中の砥粒粒子の含有量および比重、ならびに濃縮液に含まれる砥粒以外の成分の含有量および比重から求められる。砥粒の比重は、例えばシリカ砥粒の場合、2.2g/cmである。濃縮液に含まれる砥粒以外の成分は、通常は水系溶媒を主成分とする。砥粒粒子1個当たりの重量[g]は、砥粒粒子の平均一次粒子径[nm]から、一次粒子を真球とみなしたときの球体積と砥粒粒子の比重とから求められる。
In the present specification, the inter-particle distance d [nm] of the abrasive grains is assumed to be the closest packed ratio [74%] of the spheres assuming that the abrasive grains contained in the concentrate are uniformly dispersed. Based on the formula:
d [nm] = R S × 2-D1
It is a theoretical value obtained from Here, R S is the radius [nm] of a sphere that is centered on one abrasive grain and circumscribes the corresponding sphere of the adjacent abrasive grain, and D1 is the average primary particle diameter [nm] of the abrasive grain. It is. R S is the concentrate can be rephrased as the radius [nm] of a sphere having a volume of concentrate to be assigned to one of the abrasive particles is determined in the following manner. Specifically, a value obtained by multiplying the volume of a concentrated liquid of a unit volume, for example, 1 L, by a filling rate of 74% is divided by the number of abrasive grains contained in the concentrated liquid of the unit volume, thereby obtaining one abrasive grain. It obtains the volume V S of the maximum size of the sphere which particles can occupy the formula: V S = 4/3 × πR S 3; the R S is determined. The number of abrasive grains contained in a unit volume of concentrated liquid is obtained by dividing the weight [g / L] of abrasive grains per concentrated volume of unit volume, for example, 1 L, by the weight [g] per abrasive grain. Is required. The weight of the abrasive grains per unit volume of the concentrate is determined from the content and specific gravity of the abrasive grains in the concentrate and the content and specific gravity of components other than the abrasive grains contained in the concentrate. The specific gravity of the abrasive grains is, for example, 2.2 g / cm 3 in the case of silica abrasive grains. Components other than the abrasive grains contained in the concentrated liquid usually have an aqueous solvent as a main component. The weight [g] per abrasive grain particle is determined from the average primary particle diameter [nm] of the abrasive grain particle and the specific volume of the abrasive grain particle when the primary particle is regarded as a true sphere.
 ここに開示される技術において、濃縮液、当該濃縮液を希釈した研磨用組成物に含まれる砥粒の材質や性状は特に制限されず、使用目的や使用態様等に応じて適宜選択することができる。砥粒の例としては、無機粒子、有機粒子、および有機無機複合粒子が挙げられる。無機粒子の具体例としては、シリカ粒子、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、ベンガラ粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩等が挙げられる。有機粒子の具体例としては、ポリメタクリル酸メチル(PMMA)粒子やポリ(メタ)アクリル酸粒子、ポリアクリロニトリル粒子等が挙げられる。このような砥粒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、(メタ)アクリル酸とは、アクリル酸およびメタクリル酸を包括的に指す意味である。 In the technology disclosed herein, the material and properties of the abrasive grains contained in the concentrated liquid and the polishing composition diluted with the concentrated liquid are not particularly limited, and can be appropriately selected according to the purpose of use, usage mode, and the like. it can. Examples of the abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles. Specific examples of the inorganic particles include silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, oxide particles such as bengara particles; Examples thereof include nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate. Specific examples of the organic particles include polymethyl methacrylate (PMMA) particles, poly (meth) acrylic acid particles, and polyacrylonitrile particles. Such an abrasive grain may be used individually by 1 type, and may be used in combination of 2 or more type. In addition, (meth) acrylic acid is the meaning which points out acrylic acid and methacrylic acid comprehensively.
 上記砥粒としては、無機粒子が好ましく、なかでも金属または半金属の酸化物からなる粒子が好ましい。ここに開示される技術において特に好ましい砥粒として、シリカ粒子が挙げられる。ここに開示される技術は、例えば、上記砥粒が実質的にシリカ粒子からなる態様で好ましく実施され得る。ここで「実質的に」とは、砥粒を構成する粒子の95重量%以上、好ましくは98重量%以上、より好ましくは99重量%以上がシリカ粒子であることをいい、砥粒を構成する粒子の100重量%がシリカ粒子であってもよい。 As the abrasive, inorganic particles are preferable, and particles made of metal or metalloid oxide are particularly preferable. A particularly preferable abrasive grain in the technology disclosed herein includes silica particles. The technique disclosed here can be preferably implemented, for example, in a mode in which the abrasive grains are substantially composed of silica particles. Here, “substantially” means that 95% by weight or more, preferably 98% by weight or more, more preferably 99% by weight or more of the particles constituting the abrasive grains are silica particles. 100% by weight of the particles may be silica particles.
 シリカ粒子の具体例としては、コロイダルシリカ、フュームドシリカ、沈降シリカ等が挙げられる。シリカ粒子は、1種を単独でまたは2種以上を組み合わせて用いることができる。研磨対象物表面にスクラッチを生じにくく、かつ良好な研磨性能を発揮し得ることから、コロイダルシリカが特に好ましい。ここで良好な研磨性能とは、表面粗さを低下させる性能等を指す。コロイダルシリカとしては、例えば、イオン交換法により水ガラスを原料として作製されたコロイダルシリカや、アルコキシド法コロイダルシリカを好ましく採用することができる。なお、水ガラスは珪酸Naともいう。アルコキシド法コロイダルシリカとは、アルコキシシランの加水分解縮合反応により製造されたコロイダルシリカをいう。コロイダルシリカは、1種を単独でまたは2種以上を組み合わせて用いることができる。 Specific examples of the silica particles include colloidal silica, fumed silica, precipitated silica and the like. Silica particles can be used alone or in combination of two or more. Colloidal silica is particularly preferable because scratches are hardly generated on the surface of the object to be polished and good polishing performance can be exhibited. Here, good polishing performance refers to performance that reduces surface roughness. As the colloidal silica, for example, colloidal silica produced using water glass as a raw material by an ion exchange method or alkoxide colloidal silica can be preferably used. Water glass is also called Na silicate. The alkoxide colloidal silica refers to colloidal silica produced by hydrolysis condensation reaction of alkoxysilane. Colloidal silica can be used alone or in combination of two or more.
 シリカ粒子を構成するシリカの真比重は、1.5以上であることが好ましく、より好ましくは1.6以上、さらに好ましくは1.7以上である。シリカの真比重の増大により、研磨レートは高くなる傾向にある。かかる観点から、真比重が2.0以上のシリカ粒子が特に好ましい。特に好ましい一態様において、上記真比重は、例えば2.1以上である。シリカの真比重の上限は特に限定されないが、典型的には2.3以下、例えば2.2以下である。シリカの真比重としては、置換液としてエタノールを用いた液体置換法による測定値を採用し得る。 The true specific gravity of silica constituting the silica particles is preferably 1.5 or more, more preferably 1.6 or more, and even more preferably 1.7 or more. As the true specific gravity of silica increases, the polishing rate tends to increase. From this viewpoint, silica particles having a true specific gravity of 2.0 or more are particularly preferable. In a particularly preferred embodiment, the true specific gravity is, for example, 2.1 or more. The upper limit of the true specific gravity of silica is not particularly limited, but is typically 2.3 or less, for example, 2.2 or less. As the true specific gravity of silica, a measured value by a liquid substitution method using ethanol as a substitution liquid can be adopted.
 ここに開示される砥粒の平均一次粒子径は特に限定されない。上記砥粒は、典型的にはシリカ粒子である。研磨レート等の観点から、上記平均一次粒子径は、5nm以上が適当であり、好ましくは10nm以上、より好ましくは30nm以上、さらに好ましくは40nm以上、特に好ましくは45nm以上である。特に好ましい一態様において、上記平均一次粒子径は、例えば50nm以上である。また、スクラッチ防止等の観点から、砥粒の平均一次粒子径は、200nm以下程度とすることが適当であり、好ましくは100nm以下、より好ましくは80nm以下、さらに好ましくは70nm以下である。特に好ましい一態様において、砥粒の平均一次粒子径は60nm以下、例えば55nm以下であり得る。
 なお、本明細書において平均一次粒子径とは、BET法により測定される比表面積から、BET径[nm]=6000/(真密度[g/cm]×BET値[m/g])の式により算出される粒子径をいう。ここで、BET法により測定される比表面積のことをBET値という。例えばシリカ粒子の場合、BET径[nm]=2727/BET値[m/g]によりBET径を算出することができる。比表面積の測定は、例えば、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて行うことができる。
The average primary particle diameter of the abrasive grains disclosed herein is not particularly limited. The abrasive grains are typically silica particles. From the viewpoint of polishing rate and the like, the average primary particle size is suitably 5 nm or more, preferably 10 nm or more, more preferably 30 nm or more, still more preferably 40 nm or more, and particularly preferably 45 nm or more. In a particularly preferred embodiment, the average primary particle diameter is, for example, 50 nm or more. From the viewpoint of preventing scratches and the like, the average primary particle diameter of the abrasive grains is suitably about 200 nm or less, preferably 100 nm or less, more preferably 80 nm or less, and even more preferably 70 nm or less. In a particularly preferred embodiment, the average primary particle size of the abrasive grains can be 60 nm or less, for example 55 nm or less.
In addition, in this specification, the average primary particle diameter is BET diameter [nm] = 6000 / (true density [g / cm 3 ] × BET value [m 2 / g]) from the specific surface area measured by the BET method. The particle diameter calculated by the formula Here, the specific surface area measured by the BET method is referred to as a BET value. For example, in the case of silica particles, the BET diameter can be calculated from BET diameter [nm] = 2727 / BET value [m 2 / g]. The specific surface area can be measured using, for example, a surface area measuring device manufactured by Micromeritex Corporation, a trade name “Flow Sorb II 2300”.
 砥粒の形状は、球形であってもよく、非球形であってもよい。上記形状とは、外形のことである。非球形をなす粒子の具体例としては、ピーナッツ形状、繭型形状、金平糖形状、ラグビーボール形状等が挙げられる。ピーナッツ形状とは、すなわち、落花生の殻の形状のことである。例えば、粒子の多くがピーナッツ形状をした砥粒を好ましく採用し得る。 The shape of the abrasive grains may be spherical or non-spherical. The said shape is an external shape. Specific examples of the non-spherical particles include a peanut shape, a bowl shape, a confetti shape, and a rugby ball shape. The peanut shape is the shape of a peanut shell. For example, abrasive grains in which many of the particles have a peanut shape can be preferably used.
 特に限定するものではないが、砥粒の長径/短径比の平均値は、原理的に1.0以上であり、好ましくは1.05以上、さらに好ましくは1.1以上である。砥粒の長径/短径比の平均値は、平均アスペクト比ともいう。平均アスペクト比の増大によって、より高い研磨レートが実現され得る。また、砥粒の平均アスペクト比は、スクラッチ低減等の観点から、好ましくは3.0以下であり、より好ましくは2.0以下、さらに好ましくは1.5以下である。 Although not particularly limited, the average value of the major axis / minor axis ratio of the abrasive grains is theoretically 1.0 or more, preferably 1.05 or more, and more preferably 1.1 or more. The average value of the major axis / minor axis ratio of the abrasive grains is also referred to as an average aspect ratio. By increasing the average aspect ratio, a higher polishing rate can be achieved. The average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, and still more preferably 1.5 or less, from the viewpoint of reducing scratches.
 砥粒の形状(外形)や平均アスペクト比は、例えば、電子顕微鏡観察により把握することができる。平均アスペクト比を把握する具体的な手順としては、例えば、走査型電子顕微鏡(SEM)を用いて、独立した粒子の形状を認識できる所定個数のシリカ粒子について、各々の粒子画像に外接する最小の長方形を描く。ここで所定個数とは、例えば200個である。そして、各粒子画像に対して描かれた長方形について、その長辺の長さ(長径の値)を短辺の長さ(短径の値)で除した値を長径/短径比(アスペクト比)として算出する。上記所定個数の粒子のアスペクト比を算術平均することにより、平均アスペクト比を求めることができる。 The shape (outer shape) and average aspect ratio of the abrasive grains can be grasped by, for example, observation with an electron microscope. As a specific procedure for grasping the average aspect ratio, for example, with a scanning electron microscope (SEM), for a predetermined number of silica particles capable of recognizing the shape of independent particles, the minimum circumscribing each particle image is performed. Draw a rectangle. Here, the predetermined number is, for example, 200. For the rectangle drawn for each particle image, the value obtained by dividing the length of the long side (major axis value) by the length of the short side (minor axis value) is the major axis / minor axis ratio (aspect ratio). ). An average aspect ratio can be obtained by arithmetically averaging the aspect ratios of the predetermined number of particles.
 ここに開示される濃縮液における砥粒の含有量(濃度)は、例えば50重量%以下とすることができる。濃縮液の安定性や濾過性等の観点から、通常は砥粒の含有量は、45重量%以下、例えば40重量%以下、典型的には35重量%以下とすることが適当である。上記砥粒の含有量は、好ましくは30重量%以下であり、より好ましくは25重量%以下、さらに好ましくは20重量%以下である。さらに好ましい一態様において、上記砥粒の含有量は、例えば15重量%以下である。上記濃縮液における砥粒の含有量は、希釈後の研磨用組成物の砥粒濃度や、製造、流通、保存等の利便性等の観点から、通常は1重量%以上、例えば3重量%以上、典型的には5重量%以上とすることが適当である。上記砥粒の含有量は、好ましくは8重量%以上である。好ましい一態様において、上記砥粒の含有量は、例えば10重量%以上、さらには12重量%以上である。 The content (concentration) of abrasive grains in the concentrate disclosed herein can be, for example, 50% by weight or less. From the viewpoint of the stability of the concentrate, filterability, and the like, it is usually appropriate that the content of abrasive grains be 45% by weight or less, for example 40% by weight or less, typically 35% by weight or less. The content of the abrasive is preferably 30% by weight or less, more preferably 25% by weight or less, and still more preferably 20% by weight or less. In a more preferred embodiment, the content of the abrasive grains is, for example, 15% by weight or less. The content of the abrasive grains in the concentrated liquid is usually 1% by weight or more, for example, 3% by weight or more, from the viewpoints of the abrasive grain concentration of the polishing composition after dilution, convenience of production, distribution, storage and the like. Typically, it is suitable to be 5% by weight or more. The content of the abrasive is preferably 8% by weight or more. In a preferred embodiment, the content of the abrasive grains is, for example, 10% by weight or more, and further 12% by weight or more.
  (水溶性高分子)
 ここに開示される濃縮液に含まれる水溶性高分子としては、所定値以下の比[rg/d]を満足する慣性半径(rg:radius of gyration)を有するものが用いられる。かかる水溶性高分子を含む研磨スラリーは、研磨対象基板によく濡れて馴染み、その結果、研磨性能を改善することができる。ここでいう研磨性能は、典型的には平坦度である。なお、水溶性高分子の慣性半径rgは、当該高分子の親水性、分子量等によって主として決定され得る、水溶液における水溶性高分子一分子のサイズである。上記慣性半径rgの上限値は、比[rg/d]の上限が制限されていることから、上記粒子間距離dとの相対的関係において制限された値となる。一態様に係る水溶性高分子の慣性半径rgは、凡そ500nm以下であり、300nm以下程度であることが適当である。また、慣性半径rgが220nm以下、より好ましくは150nm以下の水溶性高分子を用いると、上記比[rg/d]は好ましく満足され得る。濃縮効率も改善される傾向がある。上記慣性半径rgは凡そ100nm以下、例えば70nm以下であってもよい。また、好ましい一態様では、水溶性高分子の慣性半径rgは30nm以上であり、より好ましくは50nm以上である。研磨対象基板の濡れ性の観点から、上記慣性半径rgは80nm以上がより好ましく、100nm以上がさらに好ましく、120nm以上が特に好ましい。特に好ましい一態様において、上記慣性半径rgは、例えば140nm以上である。ここに開示される技術によると、水溶性高分子の慣性半径rgが所定値以上であっても、濃縮液は優れた安定性を実現することができる。また、慣性半径rgが所定値以上の水溶性高分子を含む研磨液を使用すると、基板表面への濡れ性がよりよく発揮され、研磨性能がさらに改善する傾向がある。ここでいう研磨性能は、典型的には平坦度である。なお、本明細書における水溶性高分子の慣性半径rgは、後述の実施例に記載の方法で測定される。
(Water-soluble polymer)
As the water-soluble polymer contained in the concentrated liquid disclosed herein, those having a radius of gyration (rg) satisfying a ratio [rg / d] of a predetermined value or less are used. The polishing slurry containing such a water-soluble polymer is well wetted and familiar with the substrate to be polished, and as a result, the polishing performance can be improved. The polishing performance here is typically flatness. The inertia radius rg of the water-soluble polymer is the size of one molecule of the water-soluble polymer in the aqueous solution, which can be mainly determined by the hydrophilicity, molecular weight, etc. of the polymer. The upper limit value of the inertia radius rg is a value limited in the relative relationship with the interparticle distance d because the upper limit of the ratio [rg / d] is limited. The inertial radius rg of the water-soluble polymer according to one embodiment is about 500 nm or less, and suitably about 300 nm or less. Further, when a water-soluble polymer having an inertia radius rg of 220 nm or less, more preferably 150 nm or less is used, the above ratio [rg / d] can be preferably satisfied. Concentration efficiency also tends to improve. The inertia radius rg may be about 100 nm or less, for example 70 nm or less. In a preferred embodiment, the water-soluble polymer has an inertial radius rg of 30 nm or more, and more preferably 50 nm or more. From the viewpoint of wettability of the substrate to be polished, the inertia radius rg is more preferably 80 nm or more, further preferably 100 nm or more, and particularly preferably 120 nm or more. In a particularly preferred embodiment, the inertia radius rg is, for example, 140 nm or more. According to the technique disclosed herein, even if the inertia radius rg of the water-soluble polymer is equal to or greater than a predetermined value, the concentrated liquid can realize excellent stability. In addition, when a polishing liquid containing a water-soluble polymer having an inertia radius rg of a predetermined value or more is used, wettability to the substrate surface is better exhibited and the polishing performance tends to be further improved. The polishing performance here is typically flatness. In addition, the inertial radius rg of the water-soluble polymer in the present specification is measured by the method described in Examples described later.
 ここに開示される濃縮液に含まれる水溶性高分子の種類は特に制限されず、研磨用組成物の分野において公知の水溶性高分子種のなかから適宜選択することができる。水溶性高分子は、1種を単独でまたは2種以上を組み合わせて用いることができる。水溶性高分子の例としては、セルロース誘導体、デンプン誘導体、オキシアルキレン単位を含むポリマー、窒素原子を含有するポリマー、ポリビニルアルコール等が挙げられる。なかでも、平坦度向上の観点から、セルロース誘導体、デンプン誘導体が好ましく、セルロース誘導体がより好ましい。 The type of the water-soluble polymer contained in the concentrate disclosed herein is not particularly limited, and can be appropriately selected from water-soluble polymer species known in the field of polishing compositions. A water-soluble polymer can be used singly or in combination of two or more. Examples of the water-soluble polymer include cellulose derivatives, starch derivatives, polymers containing oxyalkylene units, polymers containing nitrogen atoms, polyvinyl alcohol and the like. Among these, from the viewpoint of improving flatness, cellulose derivatives and starch derivatives are preferable, and cellulose derivatives are more preferable.
 セルロース誘導体は、主たる繰返し単位としてβ-グルコース単位を含むポリマーである。セルロース誘導体の具体例としては、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース等が挙げられる。なかでもHECが好ましい。 Cellulose derivatives are polymers containing β-glucose units as the main repeating unit. Specific examples of the cellulose derivative include hydroxyethyl cellulose (HEC), hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose and the like. Of these, HEC is preferable.
 デンプン誘導体は、主たる繰返し単位としてα-グルコース単位を含むポリマーである。デンプン誘導体の具体例としては、アルファ化デンプン、プルラン、カルボキシメチルデンプン、シクロデキストリン等が挙げられる。なかでもプルランが好ましい。 Starch derivatives are polymers that contain α-glucose units as the main repeating unit. Specific examples of starch derivatives include pregelatinized starch, pullulan, carboxymethyl starch, and cyclodextrin. Of these, pullulan is preferred.
 オキシアルキレン単位を含むポリマーとしては、ポリエチレンオキサイド(PEO)や、エチレンオキサイド(EO)とプロピレンオキサイド(PO)またはブチレンオキサイド(BO)とのブロック共重合体、EOとPOまたはBOとのランダム共重合体等が例示される。そのなかでも、EOとPOのブロック共重合体またはEOとPOのランダム共重合体が好ましい。EOとPOとのブロック共重合体は、PEOブロックとポリプロピレンオキサイド(PPO)ブロックとを含むジブロック体、トリブロック体等であり得る。上記トリブロック体の例には、PEO-PPO-PEO型トリブロック体およびPPO-PEO-PPO型トリブロック体が含まれる。通常は、PEO-PPO-PEO型トリブロック体がより好ましい。
 EOとPOとのブロック共重合体またはランダム共重合体において、該共重合体を構成するEOとPOとのモル比[EO/PO]は、水への溶解性や洗浄性等の観点から、1より大きいことが好ましく、2以上であることがより好ましく、3以上であることがさらに好ましい。さらに好ましい一態様において、上記モル比[EO/PO]は、例えば5以上である。
Polymers containing oxyalkylene units include polyethylene oxide (PEO), block copolymers of ethylene oxide (EO) and propylene oxide (PO) or butylene oxide (BO), and random copolymerization of EO and PO or BO. Examples include coalescence. Among these, a block copolymer of EO and PO or a random copolymer of EO and PO is preferable. The block copolymer of EO and PO may be a diblock body, a triblock body or the like including a PEO block and a polypropylene oxide (PPO) block. Examples of the triblock body include a PEO-PPO-PEO type triblock body and a PPO-PEO-PPO type triblock body. Usually, a PEO-PPO-PEO type triblock body is more preferable.
In the block copolymer or random copolymer of EO and PO, the molar ratio [EO / PO] of EO and PO constituting the copolymer is from the viewpoint of solubility in water, detergency, and the like. It is preferably larger than 1, more preferably 2 or more, and further preferably 3 or more. In a more preferred embodiment, the molar ratio [EO / PO] is, for example, 5 or more.
 窒素原子を含有するポリマーとしては、主鎖に窒素原子を含有するポリマーおよび側鎖官能基(ペンダント基)に窒素原子を有するポリマーのいずれも使用可能である。窒素原子を含有するポリマーを使用することで、基板の表面粗さを改善することができる。主鎖に窒素原子を含有するポリマーの例としては、N-アシルアルキレンイミン型モノマーの単独重合体および共重合体が挙げられる。N-アシルアルキレンイミン型モノマーの具体例としては、N-アセチルエチレンイミン、N-プロピオニルエチレンイミン等が挙げられる。ペンダント基に窒素原子を有するポリマーとしては、例えばN-ビニル型のモノマー単位を含むポリマー等が挙げられる。例えば、N-ビニルピロリドンの単独重合体および共重合体等を採用し得る。ここに開示される技術においては、N-ビニルピロリドンが50モル%以上の割合で重合されたN-ビニルピロリドンの単独重合体および共重合体の少なくとも1種(以下「PVP」ともいう。)が好ましく用いられる。 As the polymer containing a nitrogen atom, both a polymer containing a nitrogen atom in the main chain and a polymer having a nitrogen atom in a side chain functional group (pendant group) can be used. By using a polymer containing nitrogen atoms, the surface roughness of the substrate can be improved. Examples of the polymer containing a nitrogen atom in the main chain include homopolymers and copolymers of N-acylalkylenimine type monomers. Specific examples of the N-acylalkyleneimine monomer include N-acetylethyleneimine, N-propionylethyleneimine and the like. Examples of the polymer having a nitrogen atom in the pendant group include a polymer containing an N-vinyl type monomer unit. For example, homopolymers and copolymers of N-vinylpyrrolidone can be employed. In the technology disclosed herein, at least one of a homopolymer and a copolymer of N-vinylpyrrolidone obtained by polymerizing N-vinylpyrrolidone at a ratio of 50 mol% or more (hereinafter also referred to as “PVP”). Preferably used.
 水溶性高分子としてポリビニルアルコールを用いる場合、該ポリビニルアルコールのけん化度は特に限定されない。 When polyvinyl alcohol is used as the water-soluble polymer, the saponification degree of the polyvinyl alcohol is not particularly limited.
 ここに開示される技術において、水溶性高分子の分子量は、所定値以下の比[rg/d]を満足する範囲で適切に設定され得る。水溶性高分子の重量平均分子量(Mw)は、安定性や濃縮効率等の観点から、凡そ200×10以下とすることができ、通常は150×10以下、例えば100×10以下が適当である。上記Mwは、例えば50×10以下、30×10以下であってもよい。また、基板表面の保護性や研磨性能向上の観点から、通常は、Mwは1×10以上が適当であり、10×10以上がより好ましく、20×10以上がさらに好ましい。上記Mwは、例えば50×10以上、100×10以上であってもよい。上記Mwは、セルロース誘導体に対して特に好ましく適用され得る。上記セルロース誘導体としては、例えばHECが挙げられる。 In the technique disclosed herein, the molecular weight of the water-soluble polymer can be appropriately set within a range that satisfies a ratio [rg / d] of a predetermined value or less. The weight average molecular weight (Mw) of the water-soluble polymer can be about 200 × 10 4 or less from the viewpoint of stability, concentration efficiency, etc., and is usually 150 × 10 4 or less, for example, 100 × 10 4 or less. Is appropriate. The Mw, for example 50 × 10 4 or less, or may be 30 × 10 4 or less. Further, from the viewpoint of protecting the substrate surface and improving the polishing performance, usually, Mw is suitably 1 × 10 4 or more, more preferably 10 × 10 4 or more, and even more preferably 20 × 10 4 or more. The Mw may be, for example, 50 × 10 4 or more and 100 × 10 4 or more. The above Mw can be particularly preferably applied to cellulose derivatives. Examples of the cellulose derivative include HEC.
 なお、水溶性高分子のMwとしては、水系のゲルパーミエーションクロマトグラフィ(GPC)に基づく値(水系、ポリエチレンオキサイド換算)を採用することができる。 As the Mw of the water-soluble polymer, a value based on an aqueous gel permeation chromatography (GPC) (aqueous, polyethylene oxide equivalent) can be adopted.
 ここに開示される技術は、水溶性高分子を2種以上併用する態様で好ましく実施される。研磨性能(平坦度)と表面粗さとを両立する観点から、セルロース誘導体およびデンプン誘導体から選択される1種または2種以上の水溶性高分子P1と、セルロース誘導体およびデンプン誘導体以外の水溶性高分子P2の1種または2種以上との併用がより好ましい。水溶性高分子P1は、典型的にはセルロース誘導体、例えばHECである。水溶性高分子P2としては、主鎖に窒素原子を含有するポリマー、側鎖官能基(ペンダント基)に窒素原子を有するポリマーが好ましく、N-ビニル型のモノマー単位を含むポリマーがより好ましい。そのなかでも、N-ビニルピロリドンの単独重合体および共重合体(典型的にはPVP)等が特に好ましい。 The technique disclosed herein is preferably implemented in a mode in which two or more water-soluble polymers are used in combination. From the viewpoint of achieving both polishing performance (flatness) and surface roughness, one or more water-soluble polymers P1 selected from cellulose derivatives and starch derivatives, and water-soluble polymers other than cellulose derivatives and starch derivatives The combined use with 1 type or 2 types or more of P2 is more preferable. The water-soluble polymer P1 is typically a cellulose derivative such as HEC. The water-soluble polymer P2 is preferably a polymer containing a nitrogen atom in the main chain, a polymer having a nitrogen atom in the side chain functional group (pendant group), and more preferably a polymer containing an N-vinyl type monomer unit. Among these, N-vinylpyrrolidone homopolymers and copolymers (typically PVP) are particularly preferred.
 ここに開示される技術において、水溶性高分子P1と水溶性高分子P2とを組み合わせて使用する場合、水溶性高分子P1と水溶性高分子P2との配合比率は特に限定されず、例えば、水溶性高分子P1の含有量に対する水溶性高分子P2の含有量の比[P2/P1]は、0.1以上とすることが適当である。上記比[P2/P1]は、例えば0.25以上、典型的には0.5以上である。また、上記比[P2/P1]は、凡そ10以下とすることが適当である。上記比[P2/P1]は、例えば2.5以下、典型的には1未満である。なお、上記水溶性高分子P1は、例えばHEC等のセルロース誘導体であり、上記水溶性高分子P2は、例えばPVP等のN-ビニル型のモノマー単位を含むポリマーである。 In the technique disclosed herein, when the water-soluble polymer P1 and the water-soluble polymer P2 are used in combination, the blending ratio of the water-soluble polymer P1 and the water-soluble polymer P2 is not particularly limited. The ratio [P2 / P1] of the content of the water-soluble polymer P2 to the content of the water-soluble polymer P1 is suitably 0.1 or more. The ratio [P2 / P1] is, for example, 0.25 or more, typically 0.5 or more. The ratio [P2 / P1] is suitably about 10 or less. The ratio [P2 / P1] is, for example, 2.5 or less, typically less than 1. The water-soluble polymer P1 is a cellulose derivative such as HEC, and the water-soluble polymer P2 is a polymer containing an N-vinyl type monomer unit such as PVP.
 水溶性高分子P1,P2を併用する態様において、水溶性高分子P1の分子量は、所定値以下の比[rg/d]を満足する範囲で適切に設定され得る。水溶性高分子P1の重量平均分子量(Mw)は、安定性や濃縮効率等の観点から凡そ200×10以下とすることができ、通常は150×10以下、例えば100×10以下が適当である。上記Mwは、例えば50×10以下、30×10以下であってもよい。また、基板表面の保護性や研磨性能向上の観点から、通常は、Mwは1×10以上が適当であり、10×10以上がより好ましく、20×10以上がさらに好ましい。上記Mwは、例えば50×10以上、100×10以上であってもよい。上記Mwは、セルロース誘導体に対して特に好ましく適用され得る。上記セルロース誘導体は、例えばHECである。 In the embodiment in which the water-soluble polymers P1 and P2 are used in combination, the molecular weight of the water-soluble polymer P1 can be appropriately set within a range that satisfies a ratio [rg / d] of a predetermined value or less. The weight average molecular weight (Mw) of the water-soluble polymer P1 can be about 200 × 10 4 or less from the viewpoint of stability, concentration efficiency, etc., and is usually 150 × 10 4 or less, for example, 100 × 10 4 or less. Is appropriate. The Mw may be, for example, 50 × 10 4 or less and 30 × 10 4 or less. Further, from the viewpoint of protecting the substrate surface and improving the polishing performance, usually, Mw is suitably 1 × 10 4 or more, more preferably 10 × 10 4 or more, and even more preferably 20 × 10 4 or more. The Mw, for example 50 × 10 4 or more, may be 100 × 10 4 or more. The above Mw can be particularly preferably applied to cellulose derivatives. The cellulose derivative is, for example, HEC.
 また、水溶性高分子P2の分子量は、特に限定されない。水溶性高分子P2の重量平均分子量(Mw)は、凡そ300×10以下とすることができ、通常は150×10以下、例えば50×10以下が適当である。安定性等の観点から、上記Mwは、30×10以下、例えば5×10以下であってもよい。また、表面保護性向上の観点から、通常は、Mwが1×10以上が適当であり、2×10以上がより好ましく、3×10以上がさらに好ましい。上記Mwは、N-ビニルピロリドンの単独重合体および共重合体(典型的にはPVP)に対して特に好ましく適用され得る。 Further, the molecular weight of the water-soluble polymer P2 is not particularly limited. The weight average molecular weight (Mw) of the water-soluble polymer P2 can be about 300 × 10 4 or less, and is usually 150 × 10 4 or less, for example, 50 × 10 4 or less. From the viewpoint of stability and the like, the Mw may be 30 × 10 4 or less, for example, 5 × 10 4 or less. From the viewpoint of the surface protection improvement, typically, Mw is suitably 1 × 10 4 or more, more preferably 2 × 10 4 or more, more preferably 3 × 10 4 or more. The above Mw can be particularly preferably applied to homopolymers and copolymers (typically PVP) of N-vinylpyrrolidone.
 ここに開示される濃縮液における水溶性高分子の含有量(濃度)は特に制限されず、例えば0.0001重量%以上とすることができる。研磨性能向上等の観点から、好ましい含有量は0.001重量%以上であり、より好ましくは0.0025重量%以上、例えば0.005重量%以上である。上記研磨性能は、具体的には平坦度である。また、研磨レート等の観点から、上記含有量を1重量%以下とすることが好ましく、0.2重量%以下とすることがより好ましく、0.1重量%以下とすることがさらに好ましく、0.05重量%以下とすることが特に好ましい。特に好ましい一態様において、上記水溶性高分子の含有量は、例えば0.02重量%以下である。 The content (concentration) of the water-soluble polymer in the concentrate disclosed herein is not particularly limited, and can be, for example, 0.0001% by weight or more. From the viewpoint of improving polishing performance, the preferable content is 0.001% by weight or more, more preferably 0.0025% by weight or more, for example, 0.005% by weight or more. The polishing performance is specifically flatness. Further, from the viewpoint of polishing rate and the like, the content is preferably 1% by weight or less, more preferably 0.2% by weight or less, further preferably 0.1% by weight or less, It is particularly preferable that the content be 0.05% by weight or less. In a particularly preferred embodiment, the content of the water-soluble polymer is, for example, 0.02% by weight or less.
 また、ここに開示される濃縮液における水溶性高分子の含有量は、濃縮液に含まれる砥粒との相対的関係によっても特定され得る。具体的には、水溶性高分子の含有量は、砥粒100重量部に対して0.001重量部以上とすることが適当であり、研磨性能向上等の観点から、好ましくは0.005重量部以上、より好ましくは0.01重量部以上、さらに好ましくは0.015重量部以上である。さらに好ましい一態様において、上記水溶性高分子の含有量は、砥粒100重量部に対して例えば0.03重量部以上である。
上記研磨性能は、具体的には平坦度である。また、安定性や研磨レート等の観点から、水溶性高分子の含有量は、砥粒100重量部に対して10重量部以下とすることが適当であり、好ましくは1重量部以下、より好ましくは0.5重量部以下、さらに好ましくは0.1重量部以下である。さらに好ましい一態様において、上記水溶性高分子の含有量は、砥粒100重量部に対して例えば0.05重量部以下である。
In addition, the content of the water-soluble polymer in the concentrate disclosed herein can also be specified by the relative relationship with the abrasive grains contained in the concentrate. Specifically, the content of the water-soluble polymer is suitably 0.001 part by weight or more with respect to 100 parts by weight of the abrasive grains, and preferably 0.005 weight from the viewpoint of improving the polishing performance. Part or more, more preferably 0.01 part by weight or more, and still more preferably 0.015 part by weight or more. In a more preferred embodiment, the content of the water-soluble polymer is, for example, 0.03 parts by weight or more with respect to 100 parts by weight of the abrasive grains.
The polishing performance is specifically flatness. From the viewpoint of stability, polishing rate, etc., the content of the water-soluble polymer is suitably 10 parts by weight or less, preferably 1 part by weight or less, more preferably 100 parts by weight of abrasive grains. Is 0.5 parts by weight or less, more preferably 0.1 parts by weight or less. In a further preferred embodiment, the content of the water-soluble polymer is, for example, 0.05 parts by weight or less with respect to 100 parts by weight of the abrasive grains.
  (塩基性化合物)
 ここに開示される濃縮液は塩基性化合物を含有する。本明細書において塩基性化合物とは、水に溶解して水溶液のpHを上昇させる機能を有する化合物を指す。塩基性化合物としては、窒素を含む有機または無機の塩基性化合物、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、各種の炭酸塩や炭酸水素塩等を用いることができる。窒素を含む塩基性化合物の例としては、第四級アンモニウム化合物、第四級ホスホニウム化合物、アンモニア、アミン等が挙げられる。上記アミンは、好ましくは水溶性アミンである。このような塩基性化合物は、1種を単独でまたは2種以上を組み合わせて用いることができる。
(Basic compound)
The concentrate disclosed here contains a basic compound. In the present specification, the basic compound refers to a compound having a function of dissolving in water and increasing the pH of an aqueous solution. As the basic compound, an organic or inorganic basic compound containing nitrogen, an alkali metal hydroxide, an alkaline earth metal hydroxide, various carbonates, bicarbonates, or the like can be used. Examples of basic compounds containing nitrogen include quaternary ammonium compounds, quaternary phosphonium compounds, ammonia, amines and the like. The amine is preferably a water-soluble amine. Such basic compounds can be used singly or in combination of two or more.
 アルカリ金属の水酸化物の具体例としては、水酸化カリウム、水酸化ナトリウム等が挙げられる。炭酸塩または炭酸水素塩の具体例としては、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム等が挙げられる。アミンの具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、グアニジン、イミダゾールやトリアゾール等のアゾール類等が挙げられる。第四級ホスホニウム化合物の具体例としては、水酸化テトラメチルホスホニウム、水酸化テトラエチルホスホニウム等の水酸化第四級ホスホニウムが挙げられる。 Specific examples of the alkali metal hydroxide include potassium hydroxide and sodium hydroxide. Specific examples of the carbonate or bicarbonate include ammonium bicarbonate, ammonium carbonate, potassium bicarbonate, potassium carbonate, sodium bicarbonate, sodium carbonate and the like. Specific examples of amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- (β-aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, anhydrous piperazine , Piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine, guanidine, azoles such as imidazole and triazole, and the like. Specific examples of the quaternary phosphonium compound include quaternary phosphonium hydroxide such as tetramethylphosphonium hydroxide and tetraethylphosphonium hydroxide.
 第四級アンモニウム化合物としては、テトラアルキルアンモニウム塩、ヒドロキシアルキルトリアルキルアンモニウム塩等の第四級アンモニウム塩を好ましく用いることができる。上記第四級アンモニウム塩は、典型的には強塩基である。かかる第四級アンモニウム塩におけるアニオン成分は、例えば、OH、F、Cl、Br、I、ClO 、BH 等であり得る。なかでも好ましい例として、アニオンがOHである第四級アンモニウム塩、すなわち水酸化第四級アンモニウムが挙げられる。水酸化第四級アンモニウムの具体例としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化テトラペンチルアンモニウムおよび水酸化テトラヘキシルアンモニウム等の水酸化テトラアルキルアンモニウム;水酸化2-ヒドロキシエチルトリメチルアンモニウム(コリンともいう。)等の水酸化ヒドロキシアルキルトリアルキルアンモニウム;等が挙げられる。これらのうち水酸化テトラアルキルアンモニウムが好ましく、なかでも水酸化テトラメチルアンモニウム(TMAH)が好ましい。 As the quaternary ammonium compound, a quaternary ammonium salt such as a tetraalkylammonium salt or a hydroxyalkyltrialkylammonium salt can be preferably used. The quaternary ammonium salt is typically a strong base. The anionic component in such a quaternary ammonium salt can be, for example, OH , F , Cl , Br , I , ClO 4 , BH 4 − and the like. As Among these preferred examples, the anion is OH - a is a quaternary ammonium salt, i.e., include quaternary ammonium hydroxide. Specific examples of quaternary ammonium hydroxide include hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapentylammonium hydroxide, and tetrahexylammonium hydroxide. Tetraalkylammonium hydroxide; hydroxyalkyltrialkylammonium hydroxide such as 2-hydroxyethyltrimethylammonium hydroxide (also referred to as choline); and the like. Of these, tetraalkylammonium hydroxide is preferable, and tetramethylammonium hydroxide (TMAH) is particularly preferable.
 ここに開示される濃縮液は、上述のような第四級アンモニウム化合物と弱酸塩とを組み合わせて含み得る。上記第四級アンモニウム化合物は、例えば、TMAH等の水酸化テトラアルキルアンモニウムである。弱酸塩としては、シリカ粒子を用いる研磨に使用可能であって、第四級アンモニウム化合物との組合せで所望の緩衝作用を発揮し得るものを適宜選択することができる。弱酸塩は、1種を単独でまたは2種以上を組み合わせて用いることができる。弱酸塩の具体例としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、オルト珪酸ナトリウム、オルト珪酸カリウム、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、プロピオン酸カリウム、炭酸カルシウム、炭酸水素カルシウム、酢酸カルシウム、プロピオン酸カルシウム、酢酸マグネシウム、プロピオン酸マグネシウム、プロピオン酸亜鉛、酢酸マンガン、酢酸コバルト等が挙げられる。アニオン成分が炭酸イオンまたは炭酸水素イオンである弱酸塩が好ましく、アニオン成分が炭酸イオンである弱酸塩が特に好ましい。また、カチオン成分としては、カリウム、ナトリウム等のアルカリ金属イオンが好適である。特に好ましい弱酸塩として、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウムおよび炭酸水素カリウムが挙げられる。なかでも炭酸カリウム(KCO)が好ましい。 The concentrate disclosed herein may contain a combination of a quaternary ammonium compound and a weak acid salt as described above. The quaternary ammonium compound is, for example, a tetraalkylammonium hydroxide such as TMAH. As the weak acid salt, one that can be used for polishing using silica particles and can exhibit a desired buffering action in combination with a quaternary ammonium compound can be appropriately selected. The weak acid salts can be used alone or in combination of two or more. Specific examples of weak acid salts include sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, sodium orthosilicate, potassium orthosilicate, sodium acetate, potassium acetate, sodium propionate, potassium propionate, calcium carbonate, calcium bicarbonate , Calcium acetate, calcium propionate, magnesium acetate, magnesium propionate, zinc propionate, manganese acetate, cobalt acetate and the like. Weak acid salts in which the anion component is carbonate ion or hydrogen carbonate ion are preferred, and weak acid salts in which the anion component is carbonate ion are particularly preferred. Moreover, as a cation component, alkali metal ions, such as potassium and sodium, are suitable. Particularly preferred weak acid salts include sodium carbonate, potassium carbonate, sodium bicarbonate and potassium bicarbonate. Of these, potassium carbonate (K 2 CO 3 ) is preferable.
 塩基性化合物として、第四級アンモニウム化合物と、弱酸塩とを組み合わせて使用する場合、第四級アンモニウム化合物と弱酸塩との配合比率は特に限定されず、例えば、第四級アンモニウム化合物:弱酸塩を1:9~9:1とすることが適当であり、好ましくは3:7~8:2、より好ましくは5:5~7:3である。上記第四級アンモニウム化合物は、例えば、TMAH等の水酸化テトラアルキルアンモニウムである。弱酸塩は、例えば、KCO等のアニオン成分が炭酸イオンである弱酸塩である。 When a quaternary ammonium compound and a weak acid salt are used in combination as the basic compound, the blending ratio of the quaternary ammonium compound and the weak acid salt is not particularly limited. For example, the quaternary ammonium compound: the weak acid salt Is suitably 1: 9 to 9: 1, preferably 3: 7 to 8: 2, more preferably 5: 5 to 7: 3. The quaternary ammonium compound is, for example, a tetraalkylammonium hydroxide such as TMAH. The weak acid salt is, for example, a weak acid salt whose anion component such as K 2 CO 3 is a carbonate ion.
 ここに開示される濃縮液における塩基性化合物の含有量(濃度)は、濃縮液の安定性、希釈後の研磨用組成物による研磨レート向上等の観点から、例えば0.1重量%以上、典型的には0.3重量%以上とすることが適当であり、好ましくは0.5重量%以上、より好ましくは0.6重量%以上、さらに好ましくは0.8重量%以上である。さらに好ましい一態様において、上記塩基性化合物の含有量は、例えば1.0重量%以上、典型的には1.2重量%以上である。例えば、濃縮液を高倍率で希釈して使用する場合には、希釈後における砥粒濃度は相対的に低くなり、砥粒による加工力も低下傾向となる場合がある。そのような場合においても、濃縮液の段階で塩基性化合物を増量しておくことで、希釈後における化学的研磨を強化することができる。上記濃縮液における塩基性化合物の含有量の上限は、保存安定性や表面品質等の観点から、10重量%以下とすることが適当であり、好ましくは5重量%以下である。好ましい一態様において、上記塩基性化合物の含有量は、例えば3重量%以下である。 The content (concentration) of the basic compound in the concentrated liquid disclosed herein is, for example, 0.1% by weight or more from the viewpoint of stability of the concentrated liquid, improvement of the polishing rate by the polishing composition after dilution, and the like. Specifically, the content is suitably 0.3% by weight or more, preferably 0.5% by weight or more, more preferably 0.6% by weight or more, and further preferably 0.8% by weight or more. In a more preferred embodiment, the content of the basic compound is, for example, 1.0% by weight or more, typically 1.2% by weight or more. For example, when the concentrated liquid is used after being diluted at a high magnification, the abrasive concentration after dilution is relatively low, and the processing force by the abrasive may tend to decrease. Even in such a case, chemical polishing after dilution can be strengthened by increasing the amount of the basic compound at the stage of the concentrate. The upper limit of the content of the basic compound in the concentrated solution is suitably 10% by weight or less, preferably 5% by weight or less, from the viewpoints of storage stability and surface quality. In a preferred embodiment, the content of the basic compound is, for example, 3% by weight or less.
 また、濃縮液における塩基性化合物の含有量は、濃縮液に含まれる砥粒との相対的関係によっても特定され得る。具体的には、濃縮液における塩基性化合物の含有量は、砥粒100重量部に対して0.1重量部以上とすることが適当であり、研磨レート向上等の観点から、好ましくは1重量部以上、より好ましくは3重量部以上、さらに好ましくは6重量部以上である。上記濃縮液における塩基性化合物の含有量は、例えば凡そ12重量部以上、22重量部以上であってもよい。また、安定性や表面品質等の観点から、塩基性化合物の含有量は、砥粒100重量部に対して50重量部以下とすることが適当であり、好ましくは30重量部以下である。上記濃縮液における塩基性化合物の含有量は、砥粒100重量部に対して、例えば20重量部以下、10重量部以下であってもよい。 Also, the content of the basic compound in the concentrate can be specified by the relative relationship with the abrasive grains contained in the concentrate. Specifically, the content of the basic compound in the concentrated solution is suitably 0.1 parts by weight or more with respect to 100 parts by weight of the abrasive grains, and preferably 1 weight from the viewpoint of improving the polishing rate. Part or more, more preferably 3 parts by weight or more, still more preferably 6 parts by weight or more. The content of the basic compound in the concentrated liquid may be, for example, about 12 parts by weight or more and 22 parts by weight or more. From the viewpoint of stability and surface quality, the content of the basic compound is suitably 50 parts by weight or less, preferably 30 parts by weight or less, with respect to 100 parts by weight of the abrasive grains. The content of the basic compound in the concentrate may be, for example, 20 parts by weight or less and 10 parts by weight or less with respect to 100 parts by weight of the abrasive grains.
  (水)
 ここに開示される濃縮液は、典型的には水を含む。水としては、イオン交換水(脱イオン水)、純水、超純水、蒸留水等を好ましく用いることができる。使用する水は、濃縮液に含まれる他の成分の働きが阻害されることを極力回避するため、例えば遷移金属イオンの合計含有量が100ppb以下であることが好ましい。例えば、イオン交換樹脂による不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって水の純度を高めることができる。また、ここに開示される濃縮液は、必要に応じて、水と均一に混合し得る有機溶剤をさらに含有してもよい。上記有機溶剤は、低級アルコール、低級ケトン等である。通常は、濃縮液に含まれる溶媒の90体積%以上が水であることが好ましく、95体積%以上が水であることがより好ましい。より好ましい一態様において、典型的には、濃縮液に含まれる溶媒の99~100体積%が水である。なお本明細書では、上記溶媒および水を包含する総称として水系溶媒という語を用いる場合がある。
(water)
The concentrate disclosed herein typically contains water. As water, ion exchange water (deionized water), pure water, ultrapure water, distilled water and the like can be preferably used. The water to be used preferably has, for example, a total content of transition metal ions of 100 ppb or less in order to avoid as much as possible the action of other components contained in the concentrate. For example, the purity of water can be increased by operations such as removal of impurity ions with an ion exchange resin, removal of foreign matter with a filter, distillation, and the like. Moreover, the concentrate disclosed here may further contain an organic solvent that can be uniformly mixed with water, if necessary. The organic solvent is a lower alcohol, a lower ketone or the like. Usually, 90% by volume or more of the solvent contained in the concentrate is preferably water, and more preferably 95% by volume or more is water. In a more preferred embodiment, typically 99 to 100% by volume of the solvent contained in the concentrate is water. In the present specification, the term “aqueous solvent” may be used as a general term including the solvent and water.
  (キレート剤)
 ここに開示される濃縮液には、任意成分として、キレート剤を含有させることができる。キレート剤は、濃縮液中に含まれ得る金属不純物と錯イオンを形成してこれを捕捉することにより、金属不純物による研磨対象物の汚染を抑制する働きをする。キレート剤の例としては、アミノカルボン酸系キレート剤および有機ホスホン酸系キレート剤が挙げられる。アミノカルボン酸系キレート剤の例には、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、ジエチレントリアミン五酢酸、ジエチレントリアミン五酢酸ナトリウム、トリエチレンテトラミン六酢酸およびトリエチレンテトラミン六酢酸ナトリウムが含まれる。有機ホスホン酸系キレート剤の例には、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1-ジホスホン酸、エタン-1,1,2-トリホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、エタン-1-ヒドロキシ-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、メタンヒドロキシホスホン酸、2-ホスホノブタン-1,2-ジカルボン酸、1-ホスホノブタン-2,3,4-トリカルボン酸およびα-メチルホスホノコハク酸が含まれる。これらのうち有機ホスホン酸系キレート剤がより好ましい。なかでも好ましいものとして、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)およびジエチレントリアミン五酢酸が挙げられる。特に好ましいキレート剤として、エチレンジアミンテトラキス(メチレンホスホン酸)およびジエチレントリアミンペンタ(メチレンホスホン酸)が挙げられる。キレート剤は、1種を単独でまたは2種以上を組み合わせて用いることができる。
(Chelating agent)
The concentrated liquid disclosed herein can contain a chelating agent as an optional component. The chelating agent functions to suppress contamination of the object to be polished by metal impurities by forming complex ions with metal impurities that can be contained in the concentrated liquid and capturing them. Examples of chelating agents include aminocarboxylic acid chelating agents and organic phosphonic acid chelating agents. Examples of aminocarboxylic acid-based chelating agents include ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid sodium, nitrilotriacetic acid, nitrilotriacetic acid sodium, nitrilotriacetic acid ammonium, hydroxyethylethylenediaminetriacetic acid, hydroxyethylethylenediamine sodium triacetate, diethylenetriaminepentaacetic acid Diethylenetriamine sodium pentaacetate, triethylenetetramine hexaacetic acid and sodium triethylenetetramine hexaacetate. Examples of organic phosphonic acid chelating agents include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic). Acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid Ethane-1,2-dicarboxy-1,2-diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane-2,3,4-tricarboxylic acid and α-methylphospho Nosuccinic acid is included. Of these, organic phosphonic acid chelating agents are more preferred. Of these, ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) and diethylenetriaminepentaacetic acid are preferable. Particularly preferred chelating agents include ethylenediaminetetrakis (methylenephosphonic acid) and diethylenetriaminepenta (methylenephosphonic acid). A chelating agent can be used individually by 1 type or in combination of 2 or more types.
  (その他の成分)
 ここに開示される濃縮液は、本発明の効果が著しく妨げられない範囲で、界面活性剤、有機酸、有機酸塩、無機酸、無機酸塩、防腐剤、防カビ剤等の、研磨スラリーに用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。界面活性剤としては、ノニオン性、アニオン性、カチオン性等の各種界面活性剤を使用することができる。なかでも、ポリビニルアルコール等の水溶性高分子の析出を防止する観点から、ノニオン性界面活性剤が好ましい。上記研磨スラリーは、典型的には、シリコン基板のポリシング工程に用いられる研磨スラリーである。
(Other ingredients)
The concentrated liquid disclosed herein is a polishing slurry such as a surfactant, organic acid, organic acid salt, inorganic acid, inorganic acid salt, preservative, antifungal agent, etc., as long as the effect of the present invention is not significantly hindered. You may further contain the well-known additive which may be used for this as needed. As the surfactant, various surfactants such as nonionic, anionic and cationic can be used. Of these, nonionic surfactants are preferred from the viewpoint of preventing precipitation of water-soluble polymers such as polyvinyl alcohol. The polishing slurry is typically a polishing slurry used in a silicon substrate polishing process.
 ここに開示される濃縮液は、酸化剤を実質的に含まないことが好ましい。濃縮液中に酸化剤が含まれていると、当該濃縮液を希釈した後の研磨スラリーが研磨対象物(ここではシリコン基板)に供給されることで該研磨対象物の表面が酸化されて酸化膜が生じ、これにより研磨レートが低下してしまうことがあり得るためである。ここでいう酸化剤の具体例としては、過酸化水素(H)、過硫酸ナトリウム、過硫酸アンモニウム、ジクロロイソシアヌル酸ナトリウム等が挙げられる。なお、濃縮液が酸化剤を実質的に含まないとは、少なくとも意図的には酸化剤を含有させないことをいう。 It is preferable that the concentrate disclosed here contains substantially no oxidizing agent. If the concentrate contains an oxidizing agent, the polishing slurry after dilution of the concentrate is supplied to the object to be polished (here, the silicon substrate), so that the surface of the object to be polished is oxidized and oxidized. This is because a film may be formed, which may reduce the polishing rate. Specific examples of the oxidizing agent herein include hydrogen peroxide (H 2 O 2 ), sodium persulfate, ammonium persulfate, sodium dichloroisocyanurate, and the like. In addition, that a concentrate does not contain an oxidizing agent substantially means not containing an oxidizing agent at least intentionally.
  (pH)
 ここに開示される濃縮液のpHは、典型的には8.0以上であり、好ましくは8.5以上、より好ましくは9.0以上、さらに好ましくは9.5以上、例えば10.0以上であり、特に好ましくは10.5以上である。濃縮液のpHが高くなると、希釈後の研磨液のpHも高くなり、研磨性能が向上する傾向にある。一方、砥粒の溶解を防ぎ、該砥粒による機械的な研磨作用の低下を抑制する観点から、濃縮液のpHは、12.0以下であることが適当であり、11.8以下であることが好ましく、11.5以下であることがより好ましい。上記砥粒は、例えばシリカ粒子である。
(PH)
The pH of the concentrate disclosed herein is typically 8.0 or higher, preferably 8.5 or higher, more preferably 9.0 or higher, even more preferably 9.5 or higher, such as 10.0 or higher. And particularly preferably 10.5 or more. When the pH of the concentrated liquid is increased, the pH of the diluted polishing liquid is also increased, and the polishing performance tends to be improved. On the other hand, the pH of the concentrate is suitably 12.0 or less and 11.8 or less from the viewpoint of preventing dissolution of the abrasive grains and suppressing the reduction of the mechanical polishing action by the abrasive grains. Preferably, it is 11.5 or less. The abrasive grains are, for example, silica particles.
 なお、ここに開示される技術において、液状の組成物のpHは、pHメーターを使用し、標準緩衝液を用いて3点校正した後で、ガラス電極を測定対象の組成物に入れて、2分以上経過して安定した後の値を測定することにより把握することができる。上記液状の組成物は、研磨スラリー、その濃縮液等であり得る。また、pHメーターとしては、例えば、堀場製作所製のガラス電極式水素イオン濃度指示計(型番F-23)を使用する。さらに、標準緩衝液は、フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃)、炭酸塩pH緩衝液 pH:10.01(25℃)である。 In the technique disclosed herein, the pH of the liquid composition is adjusted to 3 using a pH buffer and a standard buffer solution, and then the glass electrode is placed in the composition to be measured. It can be grasped by measuring the value after a minute or more has passed and stabilized. The liquid composition may be a polishing slurry, a concentrated liquid thereof, or the like. As the pH meter, for example, a glass electrode type hydrogen ion concentration indicator (model number F-23) manufactured by HORIBA, Ltd. is used. Further, the standard buffer solutions are phthalate pH buffer solution pH: 4.01 (25 ° C.), neutral phosphate pH buffer solution pH: 6.86 (25 ° C.), carbonate pH buffer solution pH: 10. 01 (25 ° C.).
 濃縮液の調製方法は特に限定されない。例えば、翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いて、濃縮液に含まれる各成分を混合するとよい。これらの成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。後述の研磨用組成物についても、濃縮液の希釈前後において、同様の混合方法が適宜採用され得る。 The method for preparing the concentrate is not particularly limited. For example, each component contained in the concentrate may be mixed using a well-known mixing device such as a blade-type stirrer, an ultrasonic disperser, or a homomixer. The aspect which mixes these components is not specifically limited, For example, all the components may be mixed at once and may be mixed in the order set suitably. For the polishing composition described later, the same mixing method can be appropriately employed before and after dilution of the concentrate.
  (希釈)
 ここに開示される研磨用組成物の濃縮液は、体積基準で5倍よりも大きい倍率で希釈されて研磨液として調製された後、研磨対象基板の粗研磨に用いられる。研磨対象基板は、具体的にはシリコンウェーハである。このように所定以上の倍率で希釈される濃縮液は、含有成分が高濃度になりがちであるため、当該成分が分離、凝集しやすく良好な安定性が得られ難い。このような構成において、上記比[rg/d]を所定値以下となるように濃縮液を調製することにより、当該濃縮液は優れた安定性を示す。ここに開示される技術によると、体積基準で10倍よりも大きい倍率で希釈する濃縮液を用いる構成においても、当該濃縮液のときには優れた安定性を示し、かつ希釈後の研磨用組成物は良好な研磨性能を実現することができる。上記希釈倍率は、体積基準で15倍以上、例えば25倍以上であってもよい。上記希釈倍率の上限は特に制限されないが、体積基準で凡そ50倍以下、例えば40倍以下、典型的には35倍以下であり得る。
(Dilution)
The concentrate of the polishing composition disclosed herein is diluted with a magnification larger than 5 times on a volume basis and prepared as a polishing liquid, and then used for rough polishing of a substrate to be polished. The substrate to be polished is specifically a silicon wafer. In this way, the concentrated solution diluted at a predetermined magnification or more tends to have a high concentration of components, so that the components are easily separated and aggregated, and it is difficult to obtain good stability. In such a configuration, the concentrated solution exhibits excellent stability by preparing the concentrated solution so that the ratio [rg / d] is not more than a predetermined value. According to the technology disclosed herein, even in a configuration using a concentrated solution that is diluted at a magnification larger than 10 times on a volume basis, the concentrated composition exhibits excellent stability when diluted, and the polishing composition after dilution is Good polishing performance can be realized. The dilution ratio may be 15 times or more, for example, 25 times or more on a volume basis. The upper limit of the dilution ratio is not particularly limited, but may be about 50 times or less, for example, 40 times or less, typically 35 times or less on a volume basis.
 上記希釈は、所望のタイミングで行うことができる。典型的には、上記希釈は、上記濃縮液に上述の水系溶媒を加えて混合することにより行うことができる。水系溶媒は、典型的には水である。希釈に用いられる液体としては、取扱い性、作業性等の観点から、実質的に水からなる水系溶媒の使用が好ましい。水は、典型的にはイオン交換水である。上記水系溶媒は、例えば、99.5~100体積%が水である水系溶媒である。また、上記水系溶媒が混合溶媒である場合、該水系溶媒の構成成分のうち一部の成分のみを加えて希釈してもよく、それらの構成成分を上記水系溶媒とは異なる量比で含む混合溶媒を加えて希釈してもよい。 The above dilution can be performed at a desired timing. Typically, the dilution can be performed by adding the aqueous solvent to the concentrate and mixing. The aqueous solvent is typically water. As the liquid used for dilution, it is preferable to use an aqueous solvent consisting essentially of water from the viewpoints of handleability and workability. The water is typically ion exchange water. The aqueous solvent is, for example, an aqueous solvent in which 99.5 to 100% by volume is water. In addition, when the aqueous solvent is a mixed solvent, only a part of the components of the aqueous solvent may be added for dilution, and a mixture containing these components in a different ratio from the aqueous solvent. A solvent may be added for dilution.
 <研磨用組成物>
 ここに開示される研磨用組成物は、上述の濃縮液に含まれる砥粒、水溶性高分子および塩基性化合物を含む。また、典型的には水を含み、さらに任意成分として、キレート剤、その他の成分を含み得る。それらの具体例については、上述のとおりであるので、ここでは説明は繰り返さない。なお、研磨用組成物は、研磨液または研磨用スラリーともいう。
<Polishing composition>
The polishing composition disclosed herein contains abrasive grains, a water-soluble polymer, and a basic compound contained in the concentrated liquid described above. Moreover, it typically contains water, and may further contain a chelating agent and other components as optional components. Since these specific examples are as described above, description thereof will not be repeated here. The polishing composition is also referred to as a polishing liquid or a polishing slurry.
 ここに開示される濃縮液を希釈して得られる研磨用組成物における砥粒の含有量は、濃縮液における砥粒濃度および希釈倍率によって決定され得る。一態様において、上記含有量は、好ましくは0.05重量%以上、より好ましくは0.1重量%以上、さらに好ましくは0.3重量%以上である。さらに好ましい一態様において、上記含有量は、例えば0.5重量%以上である。砥粒の含有量の増大によって、より高い研磨レートが実現され得る。また、研磨対象物からの除去性等の観点から、上記含有量は、通常、10重量%以下が適当であり、好ましくは7重量%以下、より好ましくは5重量%以下、さらに好ましくは3重量%以下である。さらに好ましい一態様において、上記含有量は、例えば2重量%以下である。 The content of abrasive grains in the polishing composition obtained by diluting the concentrated liquid disclosed herein can be determined by the abrasive grain concentration and dilution ratio in the concentrated liquid. In one embodiment, the content is preferably 0.05% by weight or more, more preferably 0.1% by weight or more, and further preferably 0.3% by weight or more. In a more preferred embodiment, the content is, for example, 0.5% by weight or more. Higher polishing rates can be achieved by increasing the abrasive content. Further, from the viewpoint of removability from the polishing object, the content is usually suitably 10% by weight or less, preferably 7% by weight or less, more preferably 5% by weight or less, and further preferably 3% by weight. % Or less. In a more preferred embodiment, the content is, for example, 2% by weight or less.
 上記研磨用組成物における水溶性高分子の含有量は、研磨性能や表面品質向上等の観点から、1×10-5重量%以上、例えば5×10-5重量%以上とすることが適当であり、好ましくは1×10-4重量%以上である。好ましい一態様において、上記水溶性高分子の含有量は、例えば2×10-4重量%以上である。上記研磨用組成物における水溶性高分子の含有量の上限は、例えば1重量%以下とすることができる。濃縮液の安定性や研磨レート、洗浄性等の観点から、水溶性高分子の含有量は、好ましくは0.1重量%以下、より好ましくは0.05重量%以下、さらに好ましくは0.02重量%以下である。さらに好ましい一態様において、上記水溶性高分子の含有量は、例えば0.01重量%以下、典型的には0.005重量%以下である。 The content of the water-soluble polymer in the polishing composition is suitably 1 × 10 −5 wt% or more, for example, 5 × 10 −5 wt% or more, from the viewpoint of improving polishing performance and surface quality. Yes, preferably 1 × 10 −4 wt% or more. In a preferred embodiment, the content of the water-soluble polymer is, for example, 2 × 10 −4 wt% or more. The upper limit of the content of the water-soluble polymer in the polishing composition can be, for example, 1% by weight or less. From the viewpoint of the stability of the concentrate, polishing rate, detergency, etc., the content of the water-soluble polymer is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and even more preferably 0.02. % By weight or less. In a more preferred embodiment, the content of the water-soluble polymer is, for example, 0.01% by weight or less, typically 0.005% by weight or less.
 また、研磨用組成物における水溶性高分子の含有量は、砥粒100重量部に対して0.001重量部以上とすることが適当であり、研磨性能向上等の観点から、好ましくは0.005重量部以上、より好ましくは0.01重量部以上、さらに好ましくは0.015重量部以上である。さらに好ましい一態様において、研磨用組成物における水溶性高分子の含有量は、砥粒100重量部に対して例えば0.03重量部以上である。上記研磨性能は、具体的には平坦度である。また、安定性や研磨レート等の観点から、水溶性高分子の含有量は、砥粒100重量部に対して10重量部以下とすることが適当であり、好ましくは1重量部以下、より好ましくは0.5重量部以下、さらに好ましくは0.1重量部以下である。さらに好ましい一態様において、水溶性高分子の含有量は、砥粒100重量部に対して例えば0.05重量部以下である。 In addition, the content of the water-soluble polymer in the polishing composition is suitably 0.001 part by weight or more with respect to 100 parts by weight of the abrasive grains. It is 005 weight part or more, More preferably, it is 0.01 weight part or more, More preferably, it is 0.015 weight part or more. In a more preferred embodiment, the content of the water-soluble polymer in the polishing composition is, for example, 0.03 parts by weight or more with respect to 100 parts by weight of the abrasive grains. The polishing performance is specifically flatness. From the viewpoint of stability, polishing rate, etc., the content of the water-soluble polymer is suitably 10 parts by weight or less, preferably 1 part by weight or less, more preferably 100 parts by weight of abrasive grains. Is 0.5 parts by weight or less, more preferably 0.1 parts by weight or less. In a more preferred embodiment, the content of the water-soluble polymer is, for example, 0.05 parts by weight or less with respect to 100 parts by weight of the abrasive grains.
 ここに開示される技術において、研磨用組成物中の塩基性化合物の含有量は、例えば0.001重量%以上、典型的には0.01重量%以上とすることが適当であり、研磨レート向上等の観点から、好ましくは0.05重量%以上、より好ましくは0.07重量%以上、さらに好ましくは0.09重量%以上である。塩基性化合物の含有量の増加によって、安定性も向上し得る。上記塩基性化合物の含有量の上限は、5重量%以下とすることが適当であり、表面品質等の観点から、好ましくは1重量%以下である。好ましい一態様において、上記塩基性化合物の含有量は、例えば0.5重量%以下、典型的には0.2重量%以下である。 In the technique disclosed herein, it is appropriate that the content of the basic compound in the polishing composition is, for example, 0.001% by weight or more, typically 0.01% by weight or more. From the viewpoint of improvement and the like, it is preferably 0.05% by weight or more, more preferably 0.07% by weight or more, and further preferably 0.09% by weight or more. Stability can also be improved by increasing the content of the basic compound. The upper limit of the content of the basic compound is suitably 5% by weight or less, and preferably 1% by weight or less from the viewpoint of surface quality and the like. In a preferred embodiment, the content of the basic compound is, for example, 0.5% by weight or less, typically 0.2% by weight or less.
 ここに開示される技術における研磨用組成物のpHは、8.0以上、例えば8.5以上であることが好ましく、より好ましくは9.0以上、さらに好ましくは9.5以上である。さらに好ましい一態様において、上記pHは、例えば10.0以上である。研磨液のpHが高くなると、研磨レートが向上する傾向にある。研磨液のpHの上限値は特に制限されないが、研磨対象物をよりよく研磨する観点から、12.0以下、例えば11.5以下であることが好ましく、11.0以下であることがより好ましい。表面品質向上の観点から、上記pHは、10.8以下とすることがさらに好ましい。さらに好ましい一態様において、上記pHは、例えば10.6以下、典型的には10.5以下である。なお、上記表面品質向上は、典型的には表面粗さ低減である。上記pHは、例えば、シリコンウェーハの研磨に用いられる研磨液に好ましく適用され得る。上記研磨液は、例えば粗研磨用の研磨液である。 The pH of the polishing composition in the technique disclosed herein is preferably 8.0 or more, for example 8.5 or more, more preferably 9.0 or more, and still more preferably 9.5 or more. In a more preferred embodiment, the pH is, for example, 10.0 or more. When the pH of the polishing liquid increases, the polishing rate tends to improve. Although the upper limit of the pH of the polishing liquid is not particularly limited, it is preferably 12.0 or less, for example, 11.5 or less, and more preferably 11.0 or less, from the viewpoint of better polishing the object to be polished. . From the viewpoint of improving the surface quality, the pH is more preferably 10.8 or less. In a further preferred embodiment, the pH is, for example, 10.6 or less, typically 10.5 or less. The improvement in surface quality is typically a reduction in surface roughness. The pH can be preferably applied to, for example, a polishing liquid used for polishing a silicon wafer. The polishing liquid is, for example, a polishing liquid for rough polishing.
 <用途>
 ここに開示される技術は、シリコン基板(特にシリコンウェーハ)を研磨対象物とする研磨に好ましく適用される。ここでいうシリコンウェーハの典型例はシリコン単結晶ウェーハであり、例えば、シリコン単結晶インゴットをスライスして得られたシリコン単結晶ウェーハである。ここに開示される技術における研磨対象面は、典型的には、シリコンからなる表面である。
<Application>
The technique disclosed herein is preferably applied to polishing using a silicon substrate (particularly a silicon wafer) as an object to be polished. A typical example of the silicon wafer here is a silicon single crystal wafer, for example, a silicon single crystal wafer obtained by slicing a silicon single crystal ingot. The surface to be polished in the technique disclosed herein is typically a surface made of silicon.
 上記シリコン基板には、ここに開示される研磨液を用いた研磨工程の前に、ラッピングやエッチング等の、粗研磨工程より上流の工程においてシリコン基板に適用され得る一般的な処理が施されていてもよい。また、ここに開示される技術においては、上記研磨液を用いた研磨工程の後に、シリコン基板に対して仕上げ研磨工程が実施され得る。上記仕上げ工程は、1または2以上のポリシング工程を含み、ファイナルポリシングを経て、シリコンウェーハは高品質な鏡面に仕上げられる。なお、ファイナルポリシングとは、目的物の製造プロセスにおける最後のポリシング工程を指す。すなわち、ファイナルポリシングとは、その工程の後にはさらなるポリシングを行わない工程を指す。したがって、ここに開示される研磨液や、希釈前の濃縮液は、ラッピングを経たシリコンウェーハのポリシングに用いられ得る。また、上記研磨液や濃縮液は、シリコンウェーハのファイナルポリシング前に行われる粗研磨に用いられ得る。粗研磨は、予備ポリシングともいう。 The silicon substrate is subjected to general treatment that can be applied to the silicon substrate in a process upstream of the rough polishing process, such as lapping and etching, before the polishing process using the polishing liquid disclosed herein. May be. In the technique disclosed herein, a finish polishing step can be performed on the silicon substrate after the polishing step using the polishing liquid. The finishing process includes one or more polishing processes, and the final polishing is performed to finish the silicon wafer into a high-quality mirror surface. Note that final polishing refers to the final polishing step in the manufacturing process of the object. That is, final polishing refers to a process in which no further polishing is performed after that process. Therefore, the polishing liquid disclosed herein and the concentrated liquid before dilution can be used for polishing a silicon wafer that has undergone lapping. Further, the polishing liquid and the concentrated liquid can be used for rough polishing performed before final polishing of the silicon wafer. Rough polishing is also called preliminary polishing.
 <研磨>
 研磨対象物の研磨は、例えば以下のようにして行うことができる。すなわち、ここに開示される濃縮液を希釈して研磨用組成物(研磨スラリー)を用意する。次いで、その研磨スラリー(ワーキングスラリー)を研磨対象物に供給し、常法により研磨する。シリコンウェーハの粗研磨においては、典型的には、ラッピング工程を経た研磨対象物(シリコンウェーハ)を研磨装置にセットし、該研磨装置の定盤(研磨定盤)に固定された研磨パッドを通じて上記研磨対象物の表面(研磨対象面)に研磨スラリーを供給する。典型的には、上記研磨スラリーを連続的に供給しつつ、研磨対象物の表面に研磨パッドを押しつけて両者を相対的に移動させる。上記移動は、例えば回転移動である。かかる研磨工程を経て研磨対象物の研磨が完了する。
<Polishing>
Polishing of the object to be polished can be performed, for example, as follows. That is, the concentrate disclosed here is diluted to prepare a polishing composition (polishing slurry). Next, the polishing slurry (working slurry) is supplied to the object to be polished and polished by a conventional method. In rough polishing of a silicon wafer, typically, an object to be polished (silicon wafer) that has undergone a lapping process is set in a polishing apparatus, and the above-mentioned is performed through a polishing pad fixed to a surface plate (polishing surface plate) of the polishing apparatus. A polishing slurry is supplied to the surface of the object to be polished (surface to be polished). Typically, while continuously supplying the polishing slurry, the polishing pad is pressed against the surface of the object to be polished, and the two are relatively moved. The movement is, for example, a rotational movement. The polishing of the object to be polished is completed through this polishing step.
 上記研磨工程で使用される研磨パッドは特に限定されない。例えば、発泡ポリウレタンタイプ、不織布タイプ、スウェードタイプ等の研磨パッドを用いることができる。各研磨パッドは、砥粒を含んでもよく、砥粒を含まなくてもよい。 The polishing pad used in the above polishing process is not particularly limited. For example, a polishing pad of foamed polyurethane type, non-woven fabric type, suede type or the like can be used. Each polishing pad may include abrasive grains or may not include abrasive grains.
 研磨装置としては、研磨対象物の両面を同時に研磨する両面研磨装置を用いてもよく、研磨対象物の片面のみを研磨する片面研磨装置を用いてもよい。特に限定するものではないが、例えば、粗研磨工程においては両面研磨装置を好ましく採用し得る。両面研磨装置は、例えば、バッチ式の両面研磨装置である。研磨装置は、一度に一枚の研磨対象物を研磨するように構成された枚葉式の研磨装置でもよく、同一の定盤上で複数の研磨対象物を同時に研磨し得るバッチ式の研磨装置でもよい。 As the polishing apparatus, a double-side polishing apparatus that simultaneously polishes both sides of the object to be polished, or a single-side polishing apparatus that polishes only one side of the object to be polished may be used. Although not particularly limited, for example, a double-side polishing apparatus can be preferably employed in the rough polishing step. The double-side polishing apparatus is, for example, a batch type double-side polishing apparatus. The polishing apparatus may be a single wafer type polishing apparatus configured to polish one polishing object at a time, or a batch type polishing apparatus capable of simultaneously polishing a plurality of polishing objects on the same surface plate. But you can.
 <洗浄>
 粗研磨工程を終えた研磨対象物は、仕上げ研磨工程を開始する前に、典型的には洗浄される。この洗浄は、適当な洗浄液を用いて行うことができる。使用する洗浄液は特に限定されず、例えば、半導体等の分野において一般的なSC-1洗浄液、SC-2洗浄液等を用いることができる。SC-1洗浄液は、水酸化アンモニウム(NHOH)と過酸化水素(H)と水(HO)との混合液である。SC-2洗浄液は、HClとHとHOとの混合液である。洗浄液の温度は、例えば室温以上、約90℃程度までの範囲とすることができる。ここで室温とは、典型的には約15℃~25℃をいう。洗浄効果を向上させる観点から、50℃~85℃程度の洗浄液を好ましく使用し得る。
<Washing>
The object to be polished that has finished the rough polishing step is typically cleaned before the finish polishing step is started. This washing can be performed using an appropriate washing solution. The cleaning liquid to be used is not particularly limited, and for example, a common SC-1 cleaning liquid, SC-2 cleaning liquid, etc. in the field of semiconductors can be used. The SC-1 cleaning liquid is a mixed liquid of ammonium hydroxide (NH 4 OH), hydrogen peroxide (H 2 O 2 ), and water (H 2 O). The SC-2 cleaning solution is a mixed solution of HCl, H 2 O 2 and H 2 O. The temperature of the cleaning liquid can be, for example, in the range from room temperature to about 90 ° C. Here, room temperature typically means about 15 ° C. to 25 ° C. From the viewpoint of improving the cleaning effect, a cleaning solution of about 50 ° C. to 85 ° C. can be preferably used.
 上述のような粗研磨工程や、洗浄工程、仕上げ研磨工程を経て、研磨対象物の研磨が完了する。上記研磨対象物は、ここではシリコン基板、典型的にはシリコン単結晶ウェーハである。したがって、この明細書によると、上記研磨工程を含む研磨物の製造方法が提供される。上記製造方法は、具体的には、シリコンウェーハの製造方法である。 The polishing of the object to be polished is completed through the rough polishing process, the cleaning process, and the final polishing process as described above. Here, the polishing object is a silicon substrate, typically a silicon single crystal wafer. Therefore, according to this specification, a method for producing a polished article including the polishing step is provided. Specifically, the manufacturing method is a method for manufacturing a silicon wafer.
 以上、本実施形態によると、砥粒、塩基性化合物および水溶性高分子を含むシリコンウェーハ粗研磨用組成物の濃縮液が提供される。前記濃縮液中における前記砥粒の粒子間距離d[nm]に対する前記水溶性高分子の慣性半径rg[nm]の比[rg/d]は4.7以下である。かかる構成の濃縮液は、優れた安定性を示し、希釈後には良好な研磨性能を発揮することができる。上記研磨性能は、典型的には平坦度改善効果である。 As mentioned above, according to this embodiment, the concentrate of the composition for silicon wafer rough polishing containing an abrasive grain, a basic compound, and water-soluble polymer is provided. The ratio [rg / d] of the radius of inertia rg [nm] of the water-soluble polymer to the interparticle distance d [nm] of the abrasive grains in the concentrated liquid is 4.7 or less. The concentrated liquid having such a configuration exhibits excellent stability and can exhibit good polishing performance after dilution. The polishing performance is typically a flatness improving effect.
 ここに開示される濃縮液の好ましい一態様では、前記比[rg/d]は2.5以下である。このように構成することで、より優れた安定性が実現される。 In a preferred embodiment of the concentrate disclosed herein, the ratio [rg / d] is 2.5 or less. By configuring in this way, more excellent stability is realized.
 ここに開示される濃縮液の好ましい一態様では、前記砥粒の粒子間距離dは200nm以下である。ここに開示される技術によると、上記のように砥粒の粒子間距離dが所定値以下であっても、優れた安定性を実現することができる。また、上記のように粒子間距離dが所定値以下の濃縮液は、高濃度に濃縮されたものであり得るので、利便性やコスト低減の点で有利である。 In a preferred embodiment of the concentrate disclosed herein, the interparticle distance d of the abrasive grains is 200 nm or less. According to the technology disclosed herein, excellent stability can be realized even when the inter-particle distance d of the abrasive grains is not more than a predetermined value as described above. Further, as described above, the concentrated solution having the interparticle distance d of not more than a predetermined value can be concentrated at a high concentration, which is advantageous in terms of convenience and cost reduction.
 ここに開示される濃縮液の好ましい一態様では、前記水溶性高分子の慣性半径rgは30nm以上である。ここに開示される技術によると、上記のように水溶性高分子の慣性半径が所定値以上であっても、濃縮液は優れた安定性を実現することができる。また、上記のように水溶性高分子の慣性半径が所定値以上の研磨液は、より優れた研磨性能を発揮することができる。上記研磨性能は、典型的には平坦度改善効果である。 In a preferred embodiment of the concentrate disclosed herein, the water-soluble polymer has an inertia radius rg of 30 nm or more. According to the technique disclosed here, even if the inertial radius of the water-soluble polymer is not less than a predetermined value as described above, the concentrated liquid can realize excellent stability. In addition, as described above, a polishing liquid having a water-soluble polymer having an inertial radius of a predetermined value or more can exhibit more excellent polishing performance. The polishing performance is typically a flatness improving effect.
 ここに開示される濃縮液の好ましい一態様では、前記砥粒の濃度は5重量%以上である。ここに開示される技術によると、上記のように砥粒濃度が所定値以上であっても、優れた安定性を実現することができる。また、上記のように所定値以上の砥粒濃度を有する濃縮液は、高濃度に濃縮されたものであり得るので、利便性やコスト低減の点で有利である。 In a preferred embodiment of the concentrated liquid disclosed herein, the concentration of the abrasive grains is 5% by weight or more. According to the technology disclosed herein, excellent stability can be achieved even when the abrasive grain concentration is a predetermined value or more. Further, as described above, a concentrated liquid having an abrasive concentration equal to or higher than a predetermined value can be concentrated at a high concentration, which is advantageous in terms of convenience and cost reduction.
 ここに開示される濃縮液の好ましい一態様では、前記水溶性高分子の濃度は0.001~0.05重量%の範囲内である。水溶性高分子の濃度を上記の範囲とすることで、濃縮液は安定性に優れる傾向があり、また希釈後の研磨液はより良好な研磨性能を発揮しやすい。 In a preferred embodiment of the concentrate disclosed herein, the concentration of the water-soluble polymer is in the range of 0.001 to 0.05% by weight. By setting the concentration of the water-soluble polymer in the above range, the concentrated solution tends to be excellent in stability, and the diluted polishing solution tends to exhibit better polishing performance.
 ここに開示される好ましい一態様では、前記濃縮液は、体積基準で10倍よりも大きい倍率で希釈されてシリコンウェーハの粗研磨に使用される。ここに開示される技術によると、所定以上の倍率で希釈されるような高濃縮倍率であっても、濃縮液は安定性に優れる。また、上記のように所定以上の濃度に濃縮された濃縮液は、利便性やコスト低減の点で有利である。 In a preferred embodiment disclosed herein, the concentrated solution is diluted by a factor larger than 10 times on a volume basis and used for rough polishing of a silicon wafer. According to the technique disclosed herein, the concentrated solution is excellent in stability even at a high concentration ratio that is diluted at a predetermined magnification or higher. Moreover, the concentrated liquid concentrated to a predetermined concentration or more as described above is advantageous in terms of convenience and cost reduction.
 ここに開示される典型的な一態様では、前記濃縮液は、ラッピングを経たシリコンウェーハのポリシングに用いられる。より具体的には、上記濃縮液は、シリコンウェーハのファイナルポリシング前に行われる粗研磨に用いられる。粗研磨は予備ポリシングともいう。 In a typical embodiment disclosed herein, the concentrated solution is used for polishing a lapped silicon wafer. More specifically, the concentrated solution is used for rough polishing performed before final polishing of the silicon wafer. Rough polishing is also called preliminary polishing.
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「%」は、特に断りがない限り重量基準である。 Hereinafter, some examples relating to the present invention will be described. However, the present invention is not intended to be limited to the examples shown in the examples. In the following description, “%” is based on weight unless otherwise specified.
 ≪実験1≫
 <実施例1-1~1-11および比較例1-1>
 [研磨用組成物の濃縮液の調製]
 砥粒としてのコロイダルシリカ(平均一次粒子径54nm)と、水溶性高分子(HEC、PVP)と、TMAHと、KCOと、イオン交換水とを混合することにより、実施例1-1~1-11および比較例1-1に係る研磨用組成物の濃縮液をそれぞれ調製した。各例の濃縮液における砥粒および水溶性高分子の濃度は表1に示すとおりであり、TMAHおよびKCOの濃度は、それぞれ1.62%および1.05%である。各例に係る濃縮液につき、砥粒の粒子間距離d[nm]を求め、また水溶性高分子の慣性半径rg[nm]を下記の方法で測定し、得られた値から、粒子間距離d[nm]に対する水溶性高分子の慣性半径rg[nm]の比[rg/d]を求めた。各例における砥粒の粒子間距離d[nm]、水溶性高分子の慣性半径rg[nm]および比[rg/d]を表1に示す。
≪Experiment 1≫
<Examples 1-1 to 1-11 and Comparative Example 1-1>
[Preparation of polishing composition concentrate]
By mixing colloidal silica (average primary particle size 54 nm) as abrasive grains, water-soluble polymer (HEC, PVP), TMAH, K 2 CO 3 and ion-exchanged water, Example 1-1 Concentrates of the polishing compositions according to ˜1-11 and Comparative Example 1-1 were prepared. The concentration of the abrasive grains and the water soluble polymer in the concentrate in each example are as shown in Table 1, the concentration of TMAH and K 2 CO 3 is 1.62% and 1.05%. For the concentrated liquid according to each example, the interparticle distance d [nm] of the abrasive grains was determined, and the inertia radius rg [nm] of the water-soluble polymer was measured by the following method. The ratio [rg / d] of the inertial radius rg [nm] of the water-soluble polymer to d [nm] was determined. Table 1 shows the interparticle distance d [nm] of the abrasive grains, the inertial radius rg [nm] and the ratio [rg / d] of the water-soluble polymer in each example.
 [慣性半径の測定方法]
 水溶性高分子の慣性半径rgの測定は、まず、水溶性高分子の濃度が0.1~1mg/mLの範囲になるように水溶液を調製し、調製した各サンプルにつき光散乱光度計「DLS-8000」(大塚電子社製)を用い、測定角度20~150度の範囲で10度毎に測定を行い、1濃法プロット解析により慣性半径[nm]の算出を行った。研磨用組成物の濃縮液中に複数種の水溶性高分子が含まれる場合は、その濃度比となるように水溶性高分子量を調節して測定を行った。
[Measurement method of inertia radius]
In order to measure the inertia radius rg of the water-soluble polymer, first, an aqueous solution was prepared so that the concentration of the water-soluble polymer was in the range of 0.1 to 1 mg / mL, and a light scattering photometer “DLS” was prepared for each of the prepared samples. Using “−8000” (manufactured by Otsuka Electronics Co., Ltd.), measurement was performed every 10 degrees within a measurement angle range of 20 to 150 degrees, and the inertia radius [nm] was calculated by 1-concentration plot analysis. In the case where a plurality of types of water-soluble polymers were contained in the concentrated liquid of the polishing composition, the measurement was performed by adjusting the amount of the water-soluble polymer so that the concentration ratio thereof was reached.
 [安定性]
 各例に係る濃縮液100gを直径2.5cm、高さ25cmのガラス管に入れ、25℃で静置して保管した。保管開始から24時間経過後における上記濃縮液中の水溶性高分子の分離の有無を目視にて下記5基準で評価した。すなわち、水溶性高分子の分離が認められなかった場合は「A」と評価し、分離が認められた場合は、上澄み液の層が2mm未満であった場合を「B」と評価し、上澄み液の層が2mm以上4mm未満であった場合を「C」と評価し、上澄み液の層が4mm以上5mm未満であった場合を「D」と評価し、上澄み液の層が5mm以上であった場合を「E」と評価した。A~Dは実用上合格レベルであり、Eは不合格とみなした。結果を表1に示す。
[Stability]
100 g of the concentrated liquid according to each example was placed in a glass tube having a diameter of 2.5 cm and a height of 25 cm, and was allowed to stand at 25 ° C. and stored. The presence or absence of separation of the water-soluble polymer in the concentrate after 24 hours from the start of storage was evaluated visually according to the following 5 criteria. That is, when separation of the water-soluble polymer was not observed, it was evaluated as “A”. When separation was observed, the case where the supernatant liquid layer was less than 2 mm was evaluated as “B”. The case where the liquid layer was 2 mm or more and less than 4 mm was evaluated as “C”, the case where the supernatant liquid layer was 4 mm or more and less than 5 mm was evaluated as “D”, and the supernatant liquid layer was 5 mm or more. The case was evaluated as “E”. A to D were practically acceptable levels, and E was considered unacceptable. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ≪実験2≫
 <実施例2-1~2-14および比較例2-1~2-2>
 [研磨用組成物の濃縮液の調製]
 砥粒としてのコロイダルシリカ(平均一次粒子径54nm)と、水溶性高分子(HEC、PVP、PVA)と、TMAHと、KCOと、イオン交換水とを混合することにより、実施例2-1~2-14および比較例2-1~2-2に係る研磨用組成物の濃縮液を調製した。各例の濃縮液における砥粒および水溶性高分子の濃度は表2に示すとおりであり、TMAHおよびKCOは、希釈後の研磨用組成物(研磨液)中にそれぞれ0.067%および0.043%となるように濃縮液に添加されている。実施例2-14の研磨用組成物については、ノニオン性界面活性剤として、ポリオキシエチレンラウリルエーテルを0.001%の濃度となるよう添加した。各例に係る濃縮液につき、砥粒の粒子間距離d[nm]を求め、また水溶性高分子の慣性半径rg[nm]を実験1と同じ方法で測定し、得られた値から、粒子間距離d[nm]に対する水溶性高分子の慣性半径rg[nm]の比[rg/d]を求めた。また、濃縮液の安定性についても、実験1と同様の方法で評価を行った。粒子間距離d[nm]、水溶性高分子の慣性半径rg[nm]、比[rg/d]および濃縮液安定性の評価結果を表2に示す。
≪Experiment 2≫
<Examples 2-1 to 2-14 and Comparative Examples 2-1 to 2-2>
[Preparation of polishing composition concentrate]
By mixing colloidal silica (average primary particle diameter 54 nm) as abrasive grains, water-soluble polymer (HEC, PVP, PVA), TMAH, K 2 CO 3 and ion-exchanged water, Example 2 Concentrates of polishing compositions according to -1 to 2-14 and Comparative Examples 2-1 to 2-2 were prepared. The concentrations of the abrasive grains and the water-soluble polymer in the concentrated liquid of each example are as shown in Table 2, and TMAH and K 2 CO 3 are each 0.067% in the polishing composition (polishing liquid) after dilution. And 0.043% to the concentrate. In the polishing composition of Example 2-14, polyoxyethylene lauryl ether was added as a nonionic surfactant to a concentration of 0.001%. For the concentrated liquid according to each example, the interparticle distance d [nm] of the abrasive grains was determined, and the inertial radius rg [nm] of the water-soluble polymer was measured by the same method as in Experiment 1. From the obtained value, the particle The ratio [rg / d] of the inertial radius rg [nm] of the water-soluble polymer to the inter-space distance d [nm] was determined. Further, the stability of the concentrate was also evaluated by the same method as in Experiment 1. Table 2 shows the evaluation results of the interparticle distance d [nm], the radius of inertia rg [nm] of the water-soluble polymer, the ratio [rg / d], and the concentrate stability.
 [シリコンウェーハの研磨]
 各例に係る濃縮液を、イオン交換水を用いて表2に示す希釈倍率(体積基準)で希釈し、研磨液(ワーキングスラリー)を得た。これを用いて下記の条件で粗研磨を実施した。
  (研磨条件)
 研磨装置:日本エンギス社製の片面研磨装置、型式「EJ-380IN」
 研磨パッド:ニッタハース社製、商品名「MH S-15A」
 研磨圧力:26.6kPa
 スラリー流量:100mL/分
 定盤回転数:50rpm
  ヘッド回転数:50rpm
 研磨量:8μm
 ワーク種:Bare Si P<100>
 ワークサイズ:□60mm×60mm
[Silicon wafer polishing]
The concentrated liquid according to each example was diluted with ion exchange water at a dilution rate (volume basis) shown in Table 2 to obtain a polishing liquid (working slurry). Using this, rough polishing was performed under the following conditions.
(Polishing conditions)
Polishing device: Single-side polishing device manufactured by Nippon Engis Co., Ltd. Model “EJ-380IN”
Polishing pad: Product name “MH S-15A”, manufactured by Nitta Haas
Polishing pressure: 26.6 kPa
Slurry flow rate: 100 mL / min Plate rotation speed: 50 rpm
Head rotation speed: 50 rpm
Polishing amount: 8μm
Work species: Bare Si P - <100>
Work size: □ 60mm × 60mm
 [研磨性能(平坦度)]
 GBIRの代替評価として、下記の方法で平坦度を評価した。具体的には、ニコン社製の評価機「DIGIMICRO MH-15M」を用いて、研磨後のウェーハ面につき、縦横ともに6点ずつ等間隔で36点の厚みを測定し、その最大値と最小値の差をウェーハ厚み差と定義し、各例におけるウェーハ厚み差の値を下記の4基準で評価した。すなわち、ウェーハ厚み差が2.5μm未満であった場合を「A」と評価し、ウェーハ厚み差が2.5μm以上3.0μm未満であった場合を「B」と評価し、ウェーハ厚み差が3.0μm以上3.2μm以下であった場合を「C」と評価し、ウェーハ厚み差が3.2μmよりも大きかった場合を「D」と評価した。A~Cは実用上合格レベルであり、Dは不合格とみなした。結果を表2に示す。
[Polishing performance (flatness)]
As an alternative evaluation of GBIR, the flatness was evaluated by the following method. Specifically, using an evaluation machine “DIGIMICRO MH-15M” manufactured by Nikon, the thickness of 36 points is measured at regular intervals of 6 points in the vertical and horizontal directions on the polished wafer surface, and the maximum and minimum values are measured. Was defined as a wafer thickness difference, and the wafer thickness difference value in each example was evaluated according to the following four criteria. That is, the case where the wafer thickness difference was less than 2.5 μm was evaluated as “A”, the case where the wafer thickness difference was 2.5 μm or more and less than 3.0 μm was evaluated as “B”, and the wafer thickness difference was The case where it was 3.0 μm or more and 3.2 μm or less was evaluated as “C”, and the case where the wafer thickness difference was larger than 3.2 μm was evaluated as “D”. A to C were practically acceptable levels, and D was considered unacceptable. The results are shown in Table 2.
 [研磨性能(表面粗さRa)]
 各例に係る粗研磨後のシリコンウェーハ(粗研磨およびその後の洗浄を終えた試験片)につき、非接触表面形状測定機(商品名「NewView 5032」、Zygo社製)を用いて表面粗さRa(算術平均表面粗さ)を測定した。得られた測定値を、比較例2-1の表面粗さRaを100%とする相対値に換算して以下の2段階で評価した。結果を表2に示す。
  A:100%以下
  B:100%超
[Polishing performance (surface roughness Ra)]
For each silicon wafer after rough polishing according to each example (test piece after rough polishing and subsequent cleaning), the surface roughness Ra was measured using a non-contact surface shape measuring device (trade name “NewView 5032”, manufactured by Zygo). (Arithmetic mean surface roughness) was measured. The obtained measured value was converted into a relative value with the surface roughness Ra of Comparative Example 2-1 as 100% and evaluated in the following two steps. The results are shown in Table 2.
A: 100% or less B: More than 100%
 [濃縮効率]
 各例に係る濃縮液の希釈倍率を濃縮効率(濃縮可能倍率)とみなし、下記の3基準で分類した。すなわち、濃縮可能倍率が20倍よりも大きい場合を「A」とし、濃縮可能倍率が10倍よりも大きく20倍以下である場合を「B」とし、濃縮可能倍率が10倍以下の場合を「C」とした。結果を表2に示す。
[Concentration efficiency]
The dilution ratio of the concentrated liquid according to each example was regarded as the concentration efficiency (concentration ratio), and classified according to the following three criteria. That is, the case where the concentration possible concentration is larger than 20 times is “A”, the case where the concentration possible concentration is larger than 10 times and 20 times or less is “B”, and the case where the concentration possible concentration is 10 times or less is “ C ”. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、実験1において、砥粒の粒子間距離d[nm]に対する水溶性高分子の慣性半径rg[nm]の比[rg/d]が4.7以下であった実施例1-1~1-11に係る濃縮液は、安定性の評価が合格レベルであった。特に、上記比[rg/d]が2.5以下であった実施例1-1~1-7および1-11では、安定性の評価結果がAまたはBであり、より優れた安定性を達成することができた。一方、上記比[rg/d]が4.7よりも大きかった比較例1-1では、濃縮液の安定性は不合格レベルであった。 As shown in Table 1, in Experiment 1, the ratio [rg / d] of the radius of inertia rg [nm] of the water-soluble polymer to the interparticle distance d [nm] of the abrasive grains was 4.7 or less. The concentrated solutions according to Examples 1-1 to 1-11 were evaluated as acceptable. In particular, in Examples 1-1 to 1-7 and 1-11 in which the above ratio [rg / d] was 2.5 or less, the stability evaluation result was A or B, and more excellent stability was obtained. Could be achieved. On the other hand, in Comparative Example 1-1 in which the ratio [rg / d] was larger than 4.7, the stability of the concentrate was at a reject level.
 また、表2に示されるように、実験2においても、上記比[rg/d]が4.7以下であった実施例2-1~2-14に係る濃縮液は、安定性の評価が合格レベルであった。特に、上記比[rg/d]が2.5以下であった実施例2-1~2-10、2-13および2-14では、安定性の評価結果がAまたはBであり、より優れた安定性を達成することができた。一方、上記比[rg/d]が4.7よりも大きかった比較例2-1では、濃縮液の安定性は不合格レベルであった。また、水溶性高分子を含む濃縮液を用いた実施例2-1~2-14では、研磨性能(具体的には平坦度)はいずれも合格レベルであったのに対し、水溶性高分子を使用しなかった比較例2-2では、良好な研磨性能(具体的には平坦度)を得ることができなかった。 Further, as shown in Table 2, also in Experiment 2, the concentrates according to Examples 2-1 to 2-14 in which the ratio [rg / d] was 4.7 or less were evaluated for stability. It was a passing level. In particular, in Examples 2-1 to 2-10, 2-13, and 2-14 in which the ratio [rg / d] was 2.5 or less, the stability evaluation result was A or B, which was more excellent. Stability could be achieved. On the other hand, in Comparative Example 2-1, in which the ratio [rg / d] was larger than 4.7, the stability of the concentrated solution was at a reject level. In Examples 2-1 to 2-14 using a concentrated solution containing a water-soluble polymer, the polishing performance (specifically, the flatness) was all acceptable, whereas the water-soluble polymer was In Comparative Example 2-2 in which no was used, good polishing performance (specifically, flatness) could not be obtained.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

Claims (7)

  1.  砥粒、塩基性化合物および水溶性高分子を含むシリコンウェーハ粗研磨用組成物の濃縮液であって、
     前記濃縮液中における前記砥粒の粒子間距離d[nm]に対する前記水溶性高分子の慣性半径rg[nm]の比[rg/d]は4.7以下である、シリコンウェーハ粗研磨用組成物の濃縮液。
    A concentrated liquid for a silicon wafer rough polishing composition comprising abrasive grains, a basic compound and a water-soluble polymer,
    The ratio [rg / d] of the radius of inertia rg [nm] of the water-soluble polymer to the interparticle distance d [nm] of the abrasive grains in the concentrated liquid is 4.7 or less, the composition for rough polishing of silicon wafers Product concentrate.
  2.  前記比[rg/d]は2.5以下である、請求項1に記載の濃縮液。 The concentrated solution according to claim 1, wherein the ratio [rg / d] is 2.5 or less.
  3.  前記砥粒の粒子間距離dは200nm以下である、請求項1または2に記載の濃縮液。 The concentrated liquid according to claim 1 or 2, wherein an interparticle distance d of the abrasive grains is 200 nm or less.
  4.  前記水溶性高分子の慣性半径rgは30nm以上である、請求項1~3のいずれか一項に記載の濃縮液。 The concentrated solution according to any one of claims 1 to 3, wherein the water-soluble polymer has an inertia radius rg of 30 nm or more.
  5.  前記砥粒の濃度は5重量%以上である、請求項1~4のいずれか一項に記載の濃縮液。 The concentrated liquid according to any one of claims 1 to 4, wherein the concentration of the abrasive grains is 5% by weight or more.
  6.  前記水溶性高分子の濃度は0.001~0.05重量%の範囲内である、請求項1~5のいずれか一項に記載の濃縮液。 The concentrated solution according to any one of claims 1 to 5, wherein the concentration of the water-soluble polymer is in the range of 0.001 to 0.05% by weight.
  7.  体積基準で10倍よりも大きい倍率で希釈されてシリコンウェーハの粗研磨に使用される、請求項1~6のいずれか一項に記載の濃縮液。 The concentrated solution according to any one of claims 1 to 6, which is used for rough polishing of a silicon wafer after being diluted at a magnification larger than 10 times on a volume basis.
PCT/JP2017/026405 2016-08-02 2017-07-21 Liquid concentrate of composition for rough-polishing silicon wafers WO2018025655A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018531830A JP6916792B2 (en) 2016-08-02 2017-07-21 Concentrate of composition for rough polishing of silicon wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016152324 2016-08-02
JP2016-152324 2016-08-02

Publications (1)

Publication Number Publication Date
WO2018025655A1 true WO2018025655A1 (en) 2018-02-08

Family

ID=61073634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026405 WO2018025655A1 (en) 2016-08-02 2017-07-21 Liquid concentrate of composition for rough-polishing silicon wafers

Country Status (3)

Country Link
JP (1) JP6916792B2 (en)
TW (1) TWI744369B (en)
WO (1) WO2018025655A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187969A1 (en) * 2018-03-30 2019-10-03 株式会社フジミインコーポレーテッド Polishing composition
EP3605589A4 (en) * 2017-03-30 2020-03-18 Fujimi Incorporated Polishing composition and polishing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326199A (en) * 2000-05-17 2001-11-22 Hitachi Ltd Manufacturing method of semiconductor integrated circuit device
JP2007103515A (en) * 2005-09-30 2007-04-19 Fujimi Inc Polishing method
JP2014130965A (en) * 2012-12-28 2014-07-10 Kao Corp Polishing liquid composition for silicon wafer
WO2015098777A1 (en) * 2013-12-25 2015-07-02 ニッタ・ハース株式会社 Wetting agent for semiconductor substrate, and polishing composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148399A1 (en) * 2013-03-19 2014-09-25 株式会社フジミインコーポレーテッド Polishing composition, method for producing polishing composition, and kit for preparing polishing composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326199A (en) * 2000-05-17 2001-11-22 Hitachi Ltd Manufacturing method of semiconductor integrated circuit device
JP2007103515A (en) * 2005-09-30 2007-04-19 Fujimi Inc Polishing method
JP2014130965A (en) * 2012-12-28 2014-07-10 Kao Corp Polishing liquid composition for silicon wafer
WO2015098777A1 (en) * 2013-12-25 2015-07-02 ニッタ・ハース株式会社 Wetting agent for semiconductor substrate, and polishing composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3605589A4 (en) * 2017-03-30 2020-03-18 Fujimi Incorporated Polishing composition and polishing method
WO2019187969A1 (en) * 2018-03-30 2019-10-03 株式会社フジミインコーポレーテッド Polishing composition

Also Published As

Publication number Publication date
JP6916792B2 (en) 2021-08-11
JPWO2018025655A1 (en) 2019-06-20
TWI744369B (en) 2021-11-01
TW201811975A (en) 2018-04-01

Similar Documents

Publication Publication Date Title
JP6279593B2 (en) Polishing composition, method for producing polishing composition, and method for producing silicon wafer
JP6649828B2 (en) Polishing method of silicon substrate and polishing composition set
TWI781197B (en) Polishing method of substrate and polishing composition set
WO2017150158A1 (en) Method for polishing silicon substrate and polishing composition set
WO2021182155A1 (en) Polishing composition and polishing method
TW201835286A (en) Silicon substrate intermediate polishing composition and silicon substrate polishing composition set
JP6691774B2 (en) Polishing composition and method for producing the same
JP6377656B2 (en) Silicon substrate polishing method and polishing composition set
JP6916792B2 (en) Concentrate of composition for rough polishing of silicon wafer
JP7026043B2 (en) A method for manufacturing a composition for rough polishing a silicon wafer, a composition set for rough polishing a silicon wafer, and a method for polishing a silicon wafer.
KR101732331B1 (en) Composition for polishing silicon wafers
JP6562605B2 (en) Method for producing polishing composition
TWI572703B (en) Silicon wafer grinding composition
KR20220150962A (en) Polishing composition and polishing method
WO2021182278A1 (en) Polishing composition and polishing method
WO2023181929A1 (en) Polishing composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018531830

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836761

Country of ref document: EP

Kind code of ref document: A1