WO2019187686A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2019187686A1
WO2019187686A1 PCT/JP2019/004399 JP2019004399W WO2019187686A1 WO 2019187686 A1 WO2019187686 A1 WO 2019187686A1 JP 2019004399 W JP2019004399 W JP 2019004399W WO 2019187686 A1 WO2019187686 A1 WO 2019187686A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
vane
axial direction
curved
inner peripheral
Prior art date
Application number
PCT/JP2019/004399
Other languages
French (fr)
Japanese (ja)
Inventor
山本 真也
和也 本田
健吾 榊原
小林 裕之
謙 並木
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to JP2020510363A priority Critical patent/JPWO2019187686A1/en
Priority to US16/970,104 priority patent/US20210164471A1/en
Priority to DE112019001729.2T priority patent/DE112019001729T5/en
Publication of WO2019187686A1 publication Critical patent/WO2019187686A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3448Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member with axially movable vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/14Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using rotating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • F04C2240/403Electric motor with inverter for speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/20Geometry of the rotor

Definitions

  • the present invention relates to a compressor.
  • Patent Document 1 includes a rotating shaft, a rotor that has a rotor surface and rotates as the rotating shaft rotates, a vane that moves in the axial direction of the rotating shaft as the rotor rotates, and a compression chamber.
  • the compressor is described. In this compressor, the fluid is compressed in the compression chamber by rotating the rotor.
  • the position of the straight line extending in the radial direction continuously decreases from the first angle position to the first angle position of the rotor, and from the first angle position to the first angle position.
  • the vane easily swings in the circumferential direction of the rotor around the radially extending portion where the rotor surface and the end of the vane abut.
  • An object of the present invention is to provide a compressor capable of suppressing the vane from swinging in the circumferential direction of the rotor.
  • a rotating shaft, a rotor surface formed in a ring shape, and a rotor that rotates as the rotating shaft rotates An outer peripheral surface and an inner peripheral surface facing the radial direction of the rotating shaft; a cylindrical portion that houses the rotor; a wall portion having a wall surface facing the rotor surface and the axial direction of the rotating shaft; and the wall
  • the vane is inserted into a vane groove formed in the portion and moved in the axial direction along with the rotation of the rotor, and is partitioned by the rotor surface, the wall surface, and the inner peripheral surface of the cylindrical portion, And a compression chamber in which a change in volume is caused by the vane to suck and compress a fluid, and the vane has an end portion in the axial direction and a vane end portion that comes into contact with the rotor surface, The vane end faces the rotor surface And the rotor surface includes a curved
  • the curved surface includes a concave surface curved in the axial direction so as to be concave toward the wall surface, and a convex surface curved in the axial direction so as to be convex toward the wall surface.
  • the concave surface has a concave inner peripheral edge and a concave outer peripheral edge as both ends in the radial direction, and the curvature radius of the concave inner peripheral edge in the axial direction is larger than the curvature radius of the concave outer peripheral edge in the axial direction.
  • the convex surface has a convex inner peripheral edge and a convex outer peripheral edge as both ends in the radial direction, and the convex surface has a radius of curvature of the convex inner peripheral edge in the axial direction from a curvature radius of the convex outer peripheral edge.
  • a small compressor is provided.
  • a rotating shaft a rotor surface formed in a ring shape, which rotates as the rotating shaft rotates, and the rotor An outer peripheral surface and an inner peripheral surface facing the radial direction of the rotating shaft; a cylindrical portion that houses the rotor; a wall portion having a wall surface facing the rotor surface and the axial direction of the rotating shaft; and the wall
  • the vane is inserted into a vane groove formed in the portion and moved in the axial direction along with the rotation of the rotor, and is partitioned by the rotor surface, the wall surface, and the inner peripheral surface of the cylindrical portion, And a compression chamber in which a change in volume is caused by the vane to suck and compress a fluid, and the vane has an end portion in the axial direction and a vane end portion that comes into contact with the rotor surface, The vane end faces the rotor surface And the rotor surface includes a curved surface
  • a compressor is provided that includes portions with different radii of curvature.
  • FIG. 5 is a cross-sectional view taken along line 5-5 in FIG. 4 in a non-communication state.
  • FIG. 5 is a cross-sectional view taken along line 5-5 in FIG. 4 in a communication state.
  • Sectional drawing which shows typically the contact aspect of a vane and both curved surfaces.
  • the graph which shows the displacement of the axial direction according to the angular position in a rotor surface.
  • Sectional drawing which shows the periphery structure of both rotors at the time of cut
  • the schematic diagram which shows the front contact line seen from the axial direction.
  • (A) is sectional drawing which shows both rotors and its periphery
  • (b) is a development view which shows the state of both rotors and vanes in the state of (a).
  • (A) is sectional drawing which shows both rotors and its periphery
  • (b) is a development view which shows the state of both rotors and vanes in the state of (a).
  • the graph which shows volume change.
  • the schematic diagram which shows another example of a communication mechanism.
  • the schematic diagram which shows another example of a communication mechanism.
  • Sectional drawing which shows the compressor of another example typically.
  • the compressor of this embodiment is mounted and used in a vehicle.
  • the compressor is used in a vehicle air conditioner.
  • the fluid to be compressed by the compressor is a refrigerant containing oil.
  • 1 and 4 show side views of the rotating shaft 12 and the rotors 60 and 80.
  • FIG. 1 and 4 show side views of the rotating shaft 12 and the rotors 60 and 80.
  • the compressor 10 includes a housing 11, a rotating shaft 12, an electric motor 13, an inverter 14, a front cylinder 40, a rear cylinder 50, a front rotor 60 as a first rotor, And a rear rotor 80 as a second rotor.
  • the housing 11 has a cylindrical shape as a whole, and has a suction port 11a through which suction fluid from the outside is sucked and a discharge port 11b through which fluid is discharged.
  • the rotating shaft 12, the electric motor 13, the inverter 14, both cylinders 40 and 50, and both rotors 60 and 80 are accommodated in the housing 11.
  • the housing 11 includes a front housing 21, a rear housing 22, and an inverter cover 23.
  • the front housing 21 has a bottomed cylindrical shape and opens toward the rear housing 22.
  • the suction port 11a is provided at a position between the opening end and the bottom of the side wall of the front housing 21. The position of the suction port 11a is arbitrary.
  • the rear housing 22 has a bottomed cylindrical shape and opens toward the front housing 21.
  • the discharge port 11 b is provided on the side surface of the bottom portion of the rear housing 22. The position of the discharge port 11b is arbitrary.
  • the front housing 21 and the rear housing 22 are unitized with their openings facing each other.
  • the inverter cover 23 is disposed at the bottom of the front housing 21 that is opposite to the rear housing 22.
  • the inverter cover 23 is fixed to the front housing 21 in a state of being abutted against the bottom of the front housing 21.
  • the inverter 14 is accommodated in the inverter cover 23.
  • the inverter 14 drives the electric motor 13.
  • the rotating shaft 12 is supported by the housing 11 in a rotatable state.
  • a ring-shaped first bearing holding portion 31 protruding from the bottom portion is provided at the bottom portion of the front housing 21.
  • a first radial bearing 32 that rotatably supports the first end of the rotating shaft 12 is provided on the radially inner side of the first bearing holding portion 31.
  • a ring-shaped second bearing holding portion 33 protruding from the bottom portion is provided at the bottom portion of the rear housing 22.
  • a second radial bearing 34 is also provided on the radially inner side of the second bearing holding portion 33.
  • the second radial bearing 34 rotatably supports the second end portion on the side opposite to the first end portion of the rotating shaft 12.
  • the axial direction Z of the rotating shaft 12 coincides with the axial direction of the housing 11.
  • the front cylinder 40 houses a front rotor 60.
  • the front cylinder 40 has a bottomed cylindrical shape that is slightly smaller than the rear housing 22.
  • the front cylinder 40 opens toward the bottom of the rear housing 22.
  • the front cylinder 40 has a front cylinder bottom 41 and a front cylinder side wall 42 extending from the front cylinder bottom 41 toward the rear housing 22.
  • the front cylinder side wall portion 42 is a first cylinder portion and enters the inside of the rear housing 22.
  • the front cylinder 40 has a front cylinder inner peripheral surface 43 as a first inner peripheral surface.
  • the front cylinder inner peripheral surface 43 is a cylindrical surface extending in the axial direction Z.
  • the front cylinder 40 further has a front diameter-enlarged surface 44 that is larger in diameter than the front cylinder inner circumferential surface 43.
  • the front diameter-enlarging surface 44 is provided at the front end (opening end) of the front cylinder side wall 42.
  • a front step surface 45 is formed between the front cylinder inner peripheral surface 43 and the front enlarged diameter surface 44.
  • the front cylinder side wall portion 42 is provided with a bulging portion 46 protruding outward in the radial direction of the rotary shaft 12.
  • the bulging portion 46 is provided at the base end of the front cylinder side wall portion 42, that is, near the front cylinder bottom portion 41.
  • the front housing 21 and the rear housing 22 are unitized with the bulging portion 46 interposed therebetween. Both the housings 21 and 22 restrict the positional deviation of the front cylinder 40 in the axial direction Z.
  • the front cylinder bottom 41 is stepped in the axial direction Z.
  • the front cylinder bottom 41 includes a first bottom 41a disposed on the center side, a second bottom 41b disposed radially outside the first bottom 41a and closer to the rear housing 22 than the first bottom 41a. have.
  • the first bottom portion 41a is formed with a front insertion hole 41c through which the rotary shaft 12 can be inserted. The rotating shaft 12 is inserted through the front insertion hole 41c.
  • the front housing 21 and the front cylinder bottom 41 form a motor chamber A1, and the electric motor 13 is accommodated in the motor chamber A1.
  • the electric motor 13 rotates the rotating shaft 12 in the direction indicated by the arrow M when the driving power is supplied from the inverter 14.
  • the suction port 11a is provided in the front housing 21 that forms the motor chamber A1. For this reason, the suction fluid sucked from the suction port 11a is introduced into the motor chamber A1. That is, the suction fluid exists in the motor chamber A1.
  • the inverter 14, the electric motor 13, and both the rotors 60 and 80 are arranged in order in the axial direction Z.
  • the position of each of these components is arbitrary, and the inverter 14 may be disposed outside the electric motor 13 in the radial direction.
  • the rear cylinder 50 has a bottomed cylindrical shape opened toward the bottom of the rear housing 22.
  • the rear cylinder 50 is formed slightly smaller than the front cylinder 40 and is accommodated in the rear housing 22.
  • the rear cylinder 50 is fitted to the front cylinder 40 with the opening end of the rear cylinder 50 butted against the bottom of the rear housing 22.
  • the rear cylinder 50 has an intermediate wall 51 that forms the bottom of the rear cylinder 50, and a rear cylinder side wall 55 that extends from the intermediate wall 51 toward the rear housing 22 in the axial direction Z.
  • the rear cylinder side wall portion 55 corresponds to the second tube portion, and the intermediate wall portion 51 corresponds to the wall portion.
  • the intermediate wall 51 is arranged with the wall thickness direction aligned with the axial direction Z.
  • the intermediate wall portion 51 has a first wall surface 52 and a second wall surface 53 that are orthogonal to the axial direction Z.
  • the intermediate wall portion 51 has a ring shape and is fitted to the front cylinder 40.
  • a wall portion through hole 54 penetrating in the axial direction Z is formed in the intermediate wall portion 51.
  • the wall portion through hole 54 is a through hole having a diameter larger than that of the rotating shaft 12. The rotating shaft 12 is inserted through the wall through hole 54.
  • the rear cylinder side wall 55 has a cylindrical shape extending in the axial direction Z, and has a rear cylinder inner peripheral surface 56 as a second inner peripheral surface and a rear cylinder outer peripheral surface 57.
  • the rear cylinder inner peripheral surface 56 is a cylindrical surface having a smaller diameter than the front cylinder inner peripheral surface 43. For this reason, the rear cylinder inner peripheral surface 56 is disposed on the radially inner side of the front cylinder inner peripheral surface 43.
  • the rear cylinder outer peripheral surface 57 has a step shape because it is a plurality of cylindrical surfaces having different diameters.
  • the rear cylinder outer peripheral surface 57 includes a first part surface 57a, a second part surface 57b having a diameter larger than that of the first part surface 57a, and a third part surface 57c having a diameter larger than that of the second part surface 57b.
  • the first part surface 57 a is in contact with the inner peripheral surface 43 of the front cylinder.
  • the second part surface 57b is in contact with the front enlarged diameter surface 44.
  • the third part surface 57c is flush with the outer peripheral surface of the front cylinder side wall 42.
  • the first rear step surface 58 formed between the two part surfaces 57a and 57b contacts the front step surface 45, and the second rear step surface 59 formed between the two part surfaces 57b and 57c serves as the front cylinder 40. It is in contact with the open end of.
  • the front cylinder bottom 41, the front cylinder inner peripheral surface 43, and the first wall surface 52 form a front storage chamber A ⁇ b> 2 that stores the front rotor 60.
  • the front storage chamber A2 has a cylindrical shape as a whole.
  • the inner bottom surface of the rear housing 22, the rear cylinder inner peripheral surface 56, and the second wall surface 53 form a rear housing chamber A ⁇ b> 3 that houses the rear rotor 80.
  • the rear housing chamber A3 has a cylindrical shape as a whole.
  • both storage chambers A2 and A3 are partitioned by an intermediate wall 51. Both the rotors 60 and 80 are disposed so as to face the axial direction Z with the intermediate wall 51 disposed therebetween.
  • Rotating shaft 12 and both rotors 60 and 80 have the same axis. That is, the compressor 10 has a structure of an axial movement, not an eccentric movement.
  • the circumferential direction of both rotors 60 and 80 coincides with the circumferential direction of the rotary shaft 12, the radial direction of both rotors 60 and 80 coincides with the radial direction R of the rotary shaft 12, and the axial direction of both rotors 60 and 80 is the rotational axis. 12 coincides with the axial direction Z.
  • the circumferential direction, radial direction R, and axial direction Z of the rotating shaft 12 may be appropriately read as the circumferential direction, radial direction, and axial direction of the rotors 60 and 80.
  • the front rotor 60 is ring-shaped and has a front through-hole 61 through which the rotary shaft 12 can be inserted.
  • the front through hole 61 has the same diameter as the rotary shaft 12.
  • the front rotor 60 is attached to the rotary shaft 12 with the rotary shaft 12 inserted through the front through hole 61.
  • the front rotor 60 rotates as the rotating shaft 12 rotates. That is, the front rotor 60 rotates integrally with the rotating shaft 12.
  • the configuration in which the front rotor 60 rotates integrally with the rotary shaft 12 is arbitrary. For example, a configuration in which the front rotor 60 is fixed to the rotary shaft 12 or a configuration in which the front rotor 60 is engaged with the outer periphery of the rotary shaft 12. is there.
  • the front rotor outer peripheral surface 62 which is the outer peripheral surface of the front rotor 60, is a cylindrical surface coaxial with the rotary shaft 12, and the diameter of the front rotor outer peripheral surface 62 is the same as the front cylinder inner peripheral surface 43. However, there may be a slight gap between the front rotor outer peripheral surface 62 and the front cylinder inner peripheral surface 43.
  • the front rotor 60 has a front rotor surface 70 as a first rotor surface facing the first wall surface 52.
  • the front rotor surface 70 has a ring shape.
  • the front rotor surface 70 includes a first front flat surface 71 and a second front flat surface 72 that are orthogonal to the axial direction Z, and a pair of front curved surfaces 73 that connect both the front flat surfaces 71 and 72.
  • the first and second front flat surfaces 71 and 72 correspond to the first and second flat surfaces, respectively.
  • both front flat surfaces 71 and 72 are displaced in the axial direction Z.
  • the second front flat surface 72 is disposed closer to the first wall surface 52 than the first front flat surface 71.
  • the second front flat surface 72 is in contact with the first wall surface 52.
  • both front flat surfaces 71 and 72 are separated from each other in the circumferential direction of the front rotor 60 and are shifted by 180 °.
  • Both front flat surfaces 71 and 72 are fan-shaped.
  • the circumferential positions of the rotors 60 and 80 are referred to as angular positions.
  • the pair of front curved surfaces 73 are each fan-shaped. As shown in FIG. 3, the pair of front curved surfaces 73 oppose each other in a direction orthogonal to the axial direction Z and the arrangement direction of the front flat surfaces 71 and 72. Both front curved surfaces 73 have the same shape.
  • the pair of front curved surfaces 73 connect both front flat surfaces 71 and 72, respectively.
  • One of the pair of front curved surfaces 73 is connected to one end in the circumferential direction of both front flat surfaces 71 and 72, and the other is connected to the other end in the circumferential direction of both front flat surfaces 71 and 72. Yes.
  • the angular position of the boundary portion between the front curved surface 73 and the first front flat surface 71 is defined as a first angular position ⁇ 1, and the angle of the boundary portion between the front curved surface 73 and the second front flat surface 72 is set.
  • the position is defined as a second angular position ⁇ 2.
  • each angular position ⁇ 1, ⁇ 2 is indicated by a broken line, but in reality, the boundary portion is smoothly continuous.
  • the front curved surface 73 is a curved surface displaced in the axial direction Z according to the angular position of the front rotor 60.
  • the front curved surface 73 is curved in the axial direction Z so as to gradually approach the first wall surface 52 as it goes from the first angular position ⁇ 1 to the second angular position ⁇ 2.
  • the pair of front curved surfaces 73 are provided on both sides of the second front flat surface 72 in the circumferential direction.
  • the pair of front curved surfaces 73 are curved so as to gradually move away from the first wall surface 52 as they move away from the second front flat surface 72 in the circumferential direction.
  • the front curved surface 73 is not limited to the first angular position ⁇ 1 and the second angular position ⁇ 2, but the axial direction Z so as to gradually approach or move away from the first wall surface 52 between any two angular positions spaced apart from each other in the circumferential direction. Is curved.
  • the rear rotor 80 is ring-shaped and has a rear through hole 81 through which the rotary shaft 12 can be inserted.
  • the rear through hole 81 has the same diameter as the rotary shaft 12.
  • the rear rotor 80 has the rotary shaft 12 inserted through the rear through hole 81 and is engaged with the front rotor 60.
  • the engagement between the front rotor 60 and the rear rotor 80 will be described later.
  • the rear rotor 80 rotates as the rotating shaft 12 rotates. That is, the rear rotor 80 rotates integrally with the rotating shaft 12.
  • the configuration for rotating the rear rotor 80 integrally with the rotary shaft 12 is arbitrary. For example, there is a configuration in which the rear rotor 80 is fixed to the rotary shaft 12 and a configuration in which the rear rotor 80 is engaged with the outer periphery of the rotary shaft 12.
  • the rear rotor 80 is formed smaller than the front rotor 60.
  • the diameter of the rear rotor 80 is smaller than the diameter of the front rotor 60.
  • a rear rotor outer peripheral surface 82 which is an outer peripheral surface of the rear rotor 80 is a cylindrical surface having a smaller diameter than the front rotor outer peripheral surface 62.
  • the diameter of the rear rotor outer peripheral surface 82 is the same as that of the rear cylinder inner peripheral surface 56. There may be a slight gap between the rear rotor outer peripheral surface 82 and the rear cylinder inner peripheral surface 56.
  • the rear rotor 80 has a rear rotor surface 90 as a second rotor surface facing the second wall surface 53.
  • the rear rotor surface 90 has a ring shape.
  • the rear rotor surface 90 includes a first rear flat surface 91 and a second rear flat surface 92 that are orthogonal to the axial direction Z, and a pair of rear curved surfaces 93 that connect the rear flat surfaces 91 and 92.
  • the first and second rear flat surfaces 91 and 92 correspond to the first and second flat surfaces, respectively.
  • both rear flat surfaces 91 and 92 are displaced in the axial direction Z.
  • the second rear flat surface 92 is disposed closer to the second wall surface 53 than the first rear flat surface 91.
  • the second rear flat surface 92 is in contact with the second wall surface 53.
  • Both rear flat surfaces 91 and 92 are separated from each other in the circumferential direction of the rear rotor 80 and are shifted by 180 °.
  • Both rear flat surfaces 91 and 92 are fan-shaped.
  • the pair of rear curved surfaces 93 are each fan-shaped.
  • the pair of rear curved surfaces 93 oppose each other in a direction orthogonal to the axial direction Z and the arrangement direction of both rear flat surfaces 91 and 92.
  • One of the pair of rear curved surfaces 93 connects one end in the circumferential direction of both rear flat surfaces 91 and 92, and the other end of the other in the circumferential direction of both rear flat surfaces 91 and 92. Connecting each other.
  • Both the rotor surfaces 70 and 90 are disposed so as to face the axial direction Z with the intermediate wall portion 51 disposed therebetween.
  • the distance between the two rotor surfaces 70 and 90 is constant regardless of the angular position and the circumferential position of the two rotor surfaces 70 and 90.
  • the first front flat surface 71 and the second rear flat surface 92 face each other in the axial direction Z
  • the second front flat surface 72 and the first rear flat surface 91 face each other in the axial direction Z.
  • the amount of deviation in the axial direction Z between both front flat surfaces 71 and 72 is the same as the amount of deviation between both rear flat surfaces 91 and 92.
  • the amount of deviation in the axial direction Z between the front flat surfaces 71 and 72 and the amount of deviation between the rear flat surfaces 91 and 92 are referred to as a deviation amount L1.
  • the bending state of the front curved surface 73 is the same as the curved state of the rear curved surface 93. That is, the front curved surface 73 and the rear curved surface 93 are each curved in the same direction so that the separation distance does not vary according to the angular position. Thereby, the separation distance of both rotor surfaces 70 and 90 is constant at any angular position. Both rotor surfaces 70 and 90 have the same shape except that the diameters are different. Since the shapes of the first rear flat surface 91, the second rear flat surface 92, and the rear curved surface 93 are the same as those of the first front flat surface 71, the second front flat surface 72, and the front curved surface 73, a detailed description will be given. Omitted.
  • the compressor 10 includes a vane 100 and a vane groove 110 into which the vane 100 is inserted.
  • the vane 100 moves in the axial direction Z as the rotors 60 and 80 rotate by contacting the rotors 60 and 80.
  • the vane 100 is disposed between the rotors 60 and 80, that is, between the rotor surfaces 70 and 90, with the surface of the vane 100 orthogonal to the circumferential direction of the rotating shaft 12.
  • the vane 100 has a plate shape having a thickness in a direction orthogonal to the axial direction Z.
  • the vane 100 has a first vane end portion 101 and a second vane end portion 102 as both end portions in the axial direction Z.
  • the first vane end portion 101 is in contact with the front rotor surface 70, and the second vane end portion 102 is in contact with the rear rotor surface 90.
  • the vane groove 110 is formed in the rear cylinder 50.
  • the vane groove 110 is formed across both the intermediate wall 51 and the rear cylinder side wall 55.
  • the vane groove 110 is a slit that penetrates the rear cylinder 50 in the radial direction R. Both ends of the vane groove 110 in the radial direction R are open.
  • the vane groove 110 passes through the intermediate wall portion 51. Of the both ends of the vane groove 110 in the axial direction Z, the end on the front rotor 60 side is open. Both side surfaces of the vane groove 110 are opposed to corresponding surfaces of both surfaces of the vane 100.
  • the width of the vane groove 110 that is, the distance between both side surfaces of the vane groove 110 may be equal to or slightly wider than the thickness of the vane 100.
  • the vane groove 110 extends in the axial direction Z from the intermediate wall 51 to the middle of the rear cylinder side wall 55.
  • the vane groove 110 also exists on the radially outer side of the rear rotor 80.
  • the length of the vane groove 110 in the axial direction Z is equal to or longer than the length of the vane 100 in the axial direction Z. Since the vane 100 is inserted into the vane groove 110, the movement of the vane 100 in the circumferential direction is restricted. On the other hand, the vane 100 is allowed to move in the axial direction Z along the vane groove 110.
  • the vane groove 110 allows the vane 100 to be disposed across the two storage chambers A2 and A3, and restricts the rotation of the vane 100 even if both the rotors 60 and 80 rotate.
  • the moving distance of the vane 100 is the amount of displacement (deviation L1) in the axial direction Z between the front flat surfaces 71 and 72 (or between the rear flat surfaces 91 and 92).
  • the vane 100 is in continuous contact with both rotor surfaces 70 and 90 during the rotation of both rotors 60 and 80. That is, the vane 100 does not intermittently abut against both the rotor surfaces 70 and 90, and does not repeat separation and contact periodically.
  • a front compression chamber A4 is formed in the front storage chamber A2 by a front rotor 60 (front rotor surface 70), a front cylinder inner peripheral surface 43, and a first wall surface 52.
  • a rear compression chamber A5 is formed by the rear rotor 80 (rear rotor surface 90), the rear cylinder inner peripheral surface 56, and the second wall surface 53.
  • the volume is periodically changed by the vane 100 as the rotary shaft 12 rotates, and the fluid is sucked / compressed. That is, the vane 100 causes a volume change in both the compression chambers A4 and A5. This point will be described later.
  • the front compression chamber A4 is larger than the rear compression chamber A5. That is, the maximum volume of the front compression chamber A4 is larger than the maximum volume of the rear compression chamber A5.
  • the front rotor 60 is formed with an introduction port 111 for introducing the suction fluid in the motor chamber A1 into the front compression chamber A4.
  • the introduction port 111 has an oval shape that is long in the radial direction R.
  • the shape of the introduction port 111 is not limited to this, and is arbitrary.
  • the introduction port 111 passes through the front rotor 60 in the axial direction Z.
  • the introduction port 111 is disposed near the outer peripheral end of the front rotor 60.
  • the introduction port 111 communicates with the front compression chamber A4 at a phase where the volume of the front compression chamber A4 increases, and is disposed at a position where it does not communicate with the front compression chamber A4 at a phase where the volume of the front compression chamber A4 decreases.
  • the introduction port 111 is provided in the vicinity of the boundary between the second front flat surface 72 and the front curved surface 73, specifically, in the vicinity of the circumferential end of the front curved surface 73 near the second front flat surface 72. Further, the introduction port 111 is formed on the front curved surface 73 opposite to the rotation direction with respect to the second front flat surface 72.
  • the front cylinder 40 is formed with a communication hole 112 communicating with the introduction port 111.
  • the communication hole 112 is provided at a position corresponding to the introduction port 111.
  • the communication hole 112 is formed at a position overlapping the locus of the introduction port 111 when the front rotor 60 rotates as viewed from the axial direction Z.
  • the communication holes 112 extend in the circumferential direction of the rotating shaft 12, and the four communication holes 112 are separated from each other in the circumferential direction. Thereby, even if the position of the introduction port 111 fluctuates as the front rotor 60 rotates, the communication between the introduction port 111 and the communication hole 112 is easily maintained.
  • the rear rotor 80 is formed with a discharge port 113 for discharging the compressed fluid compressed in the rear compression chamber A5.
  • the discharge port 113 passes through the rear rotor 80 in the axial direction Z.
  • the discharge port 113 is formed smaller than the introduction port 111.
  • the discharge port 113 is circular.
  • the shape of the discharge port 113 is not limited to this, and is arbitrary.
  • the discharge port 113 communicates with the rear compression chamber A5 at a phase where the volume of the rear compression chamber A5 decreases, and is disposed at a position where it does not communicate with the rear compression chamber A5 at a phase where the volume of the rear compression chamber A5 increases.
  • the discharge port 113 is provided near the boundary between the second rear flat surface 92 and the rear curved surface 93, specifically, at the circumferential end of the rear curved surface 93 close to the second rear flat surface 92. Further, the discharge port 113 is formed on the rear curved surface 93 on the rotation direction side with respect to the second rear flat surface 92.
  • the introduction port 111 When viewed from the axial direction Z, the introduction port 111 is not on the opposite side of the discharge port 113 with respect to a center line passing through the centers of the rotors 60 and 80 and extending in the direction in which the flat surfaces 71 and 72 are arranged. It is arranged on the same side as 113.
  • the positions of the introduction port 111 and the discharge port 113 are arbitrary.
  • a discharge valve that closes the discharge port 113 and opens the discharge port 113 based on the application of the specified pressure may be provided.
  • a discharge valve is not essential.
  • the compressor 10 includes a discharge chamber A6 into which the compressed fluid discharged from the discharge port 113 flows, and a discharge flow path 114 that connects the discharge chamber A6 and the discharge port 11b.
  • the discharge chamber A6 is formed by the rear cylinder 50 and the rear housing 22.
  • the discharge chamber A6 is disposed between the discharge port 113 and the rear housing 22.
  • the discharge chamber A6 is formed in a ring shape so as to overlap the locus of the discharge port 113 as the rear rotor 80 rotates as viewed from the axial direction Z. Thereby, according to the angular position of the rear rotor 80, the situation where the discharge port 113 and discharge chamber A6 do not communicate can be suppressed.
  • the fluid discharged from the discharge port 113 is discharged from the discharge port 11b via the discharge chamber A6 and the discharge flow path 114.
  • the compressor 10 includes a communication mechanism 120 that switches between a communication state in which both compression chambers A4 and A5 are in communication and a non-communication state in which both compression chambers A4 and A5 are not in communication.
  • a detailed configuration of the communication mechanism 120 will be described below.
  • the communication mechanism 120 includes a front boss portion 121 as a first boss portion provided in the front rotor 60, a front rotary valve 122 as a first engagement portion, and a rear rotor 80.
  • a rear boss portion 123 as a second boss portion provided and a rear rotary valve 124 as a second engagement portion are provided.
  • the front boss 121 protrudes from the front rotor surface 70 toward the rear rotor 80.
  • the front boss portion 121 protrudes toward the rear rotor surface 90 rather than the second front flat surface 72.
  • the front boss portion 121 is formed of a cylinder provided at the inner peripheral end portion of the front rotor surface 70.
  • the rotating shaft 12 is inserted through the front boss portion 121.
  • the outer diameter of the front boss 121 is substantially the same as the diameter of the wall through hole 54.
  • the front boss portion 121 is fitted in a slidable state from the first wall surface 52 to the wall portion through hole 54.
  • the front rotary valve 122 protrudes from the front end surface of the front boss portion 121 toward the rear rotor 80.
  • Two front rotary valves 122 are provided at positions separated in the circumferential direction.
  • Both front rotary valves 122 are fan-shaped.
  • the inner peripheral surfaces of both front rotary valves 122 are flush with the inner peripheral surface of the front boss portion 121 and are in contact with the outer peripheral surface of the rotating shaft 12.
  • the outer peripheral surfaces of both front rotary valves 122 are flush with the outer peripheral surface of the front boss portion 121.
  • the rear boss portion 123 protrudes from the rear rotor surface 90 toward the front rotor 60.
  • the rear boss portion 123 protrudes toward the front rotor surface 70 from the second rear flat surface 92.
  • the rear boss portion 123 is formed of a cylinder provided at the inner peripheral end portion of the rear rotor surface 90.
  • the rotating shaft 12 is inserted through the rear boss portion 123.
  • the outer diameter of the rear boss portion 123 is substantially the same as the diameter of the wall portion through hole 54.
  • the rear boss portion 123 is fitted in a slidable state from the second wall surface 53 to the wall portion through hole 54.
  • the rear rotary valve 124 protrudes from the front end surface of the rear boss portion 123 toward the front rotor 60.
  • the rear rotary valve 124 is a columnar body having a curved inner peripheral surface and outer peripheral surface.
  • the inner peripheral surface of the rear rotary valve 124 is flush with the inner peripheral surface of the rear boss portion 123 and is in contact with the outer peripheral surface of the rotating shaft 12.
  • the outer peripheral surface of the rear rotary valve 124 is flush with the outer peripheral surfaces of both front rotary valves 122.
  • the circumferential length of the rear rotary valve 124 is the same as the circumferential distance between the front rotary valves 122.
  • the rear rotary valve 124 is engaged with the two front rotary valves 122 in the circumferential direction.
  • the rear rotary valve 124 is fitted between the two rotary valves 122 by being sandwiched between the two front rotary valves 122 from the circumferential direction.
  • the relative positions in the circumferential direction of the rotors 60 and 80 are defined.
  • the two front rotary valves 122 and the rear rotary valve 124 form a single fan-like connecting valve 125.
  • the connection valve 125 is disposed in the wall through hole 54. Both rotary valves 122 and 124 are engaged with each other in the wall through hole 54.
  • the connecting valve 125 is not a closed ring shape but a fan shape. For this reason, an open space 126 in which fluid can move is formed in the wall portion through hole 54.
  • the open space 126 is formed between the rotating shaft 12 and the wall inner peripheral surface 54 a that is the inner peripheral surface of the wall through hole 54.
  • the open space 126 is formed by both end surfaces of the connection valve 125 in the circumferential direction, the outer peripheral surface of the rotating shaft 12, and the wall inner peripheral surface 54a.
  • the connecting valve 125 has a valve outer peripheral surface 125 a having the same diameter as the wall through hole 54.
  • the valve outer peripheral surface 125 a is configured by the outer peripheral surfaces of both rotary valves 122 and 124. Since the outer peripheral surfaces of the rotary valves 122 and 124 are flush with each other, the valve outer peripheral surface 125a becomes one continuous peripheral surface.
  • the valve outer peripheral surface 125 a is in contact with the wall inner peripheral surface 54 a of the wall through hole 54.
  • the wall inner peripheral surface 54a is also an inner peripheral surface of the intermediate wall portion 51 formed in a ring shape.
  • the communication mechanism 120 includes a communication channel 130 that allows the compression chambers A4 and A5 to communicate with each other.
  • the communication flow path 130 includes a front side opening 131, a rear side opening 132, and a communication groove 133.
  • the front side opening 131 and the rear side opening 132 are formed in the intermediate wall 51. Both openings 131 and 132 are spaced apart from each other in the circumferential direction of the rotors 60 and 80.
  • the front side opening 131 and the rear side opening 132 are disposed on both sides of the vane 100.
  • the front opening 131 is on one surface of the vane 100 located on the opposite side of the rotation direction of the rotors 60 and 80
  • the rear opening 132 is a vane located on the rotation direction of the rotors 60 and 80. It is formed on the other surface of 100, respectively. Both openings 131 and 132 communicate with the vane groove 110.
  • the front opening 131 opens toward the front compression chamber A4 and the wall through hole 54.
  • the front opening 131 is formed on both the first wall surface 52 and the wall inner peripheral surface 54a of the intermediate wall 51.
  • the front opening 131 is configured to allow the fluid in the front compression chamber A4 to flow into the wall through hole 54.
  • the front opening 131 is not formed on the second wall surface 53. That is, the front opening 131 does not penetrate the intermediate wall 51 in the axial direction Z, and does not directly communicate with the front compression chamber A4 and the rear compression chamber A5.
  • the rear side opening 132 opens toward the rear compression chamber A5 and the wall through hole 54.
  • the rear side opening 132 is formed on both the second wall surface 53 and the wall portion inner peripheral surface 54 a of the intermediate wall portion 51.
  • the rear opening 132 is configured to allow the fluid in the rear compression chamber A5 to flow into the wall through hole 54.
  • the rear side opening 132 is not formed in the first wall surface 52. That is, the rear side opening 132 does not penetrate the intermediate wall 51 in the axial direction Z, and does not directly connect the front compression chamber A4 and the rear compression chamber A5.
  • the front side opening 131 has a semi-U shape and extends in the radial direction R.
  • the rear side opening 132 has a semi-U shape symmetrical to the front side opening 131.
  • the shape of both opening parts 131 and 132 is not restricted to this, but is arbitrary.
  • the vane 100 partitions the front side opening 131 and the rear side opening 132. The vane 100 restricts fluid from flowing directly from the front opening 131 toward the rear opening 132.
  • the communication groove 133 is a portion recessed radially outward from the wall inner peripheral surface 54a.
  • the communication groove 133 is disposed between the front-side opening 131 and the rear-side opening 132 in the wall inner peripheral surface 54 a so as to bypass the vane 100.
  • the communication groove 133 extends in the circumferential direction of the wall inner peripheral surface 54a.
  • the communication groove 133 communicates with the rear side opening 132 and communicates with the open space 126.
  • the circumferential direction of the wall inner peripheral surface 54a coincides with the circumferential direction of both rotors 60 and 80. For this reason, it can be said that the circumferential direction of the wall inner peripheral surface 54 a is also the circumferential direction of both rotors 60 and 80.
  • the communication groove 133 is not in direct communication with the front side opening 131.
  • the communication groove 133 and the front side opening 131 are separated from each other in the circumferential direction of the wall inner peripheral surface 54a. For this reason, the fluid does not flow directly into the communication groove 133 from the front side opening 131. Between the communication groove 133 and the front side opening 131 on the wall inner peripheral surface 54a, the communication groove 133 is not formed, and a grooveless surface 54aa exists.
  • FIG. 5 shows a case where the connecting valve 125 is disposed on the radially inner side of the front opening 131.
  • the connection valve 125 closes the opening portion on the radially inner side of the front side opening 131.
  • both compression chambers A4 and A5 are in a non-communication state where they are not in communication.
  • the connection valve 125 is disposed radially inward with respect to the grooveless surface 54aa, the valve outer peripheral surface 125a of the connection valve 125 is in contact with the grooveless surface 54aa.
  • fluid leakage from the front opening 131 toward the communication groove 133 is restricted.
  • FIG. 6 shows a case where the connecting valve 125 moves in the circumferential direction of the rotors 60 and 80 with respect to the front opening 131.
  • the connecting valve 125 does not block the opening portion on the radially inner side of the front opening 131.
  • the inflow of the fluid from the front side opening 131 toward the communication groove 133 is allowed through the open space 126. Therefore, the fluid in the front compression chamber A4 moves to the rear compression chamber A5 through the front side opening 131 ⁇ the open space 126 ⁇ the communication groove 133 ⁇ the rear side opening 132. Accordingly, a communication state is established in which both compression chambers A4 and A5 are in communication.
  • connection valve 125 moves between a closed position that closes the front opening 131 and an open position that opens the front opening 131 according to the angular position of the rotors 60 and 80.
  • connection valve 125 moves to the open position, the front side opening 131 and the communication groove 133 communicate with each other through the open space 126.
  • the communication period between the front compression chamber A4 and the rear compression chamber A5 in one cycle of rotation of the rotors 60 and 80 depending on the circumferential length of the valve outer peripheral surface 125a (the angle range occupied by the connecting valve 125). Is defined.
  • the timing at which the two compression chambers A4 and A5 communicate with each other in one rotation period of the rotors 60 and 80 is defined by the angular position of the connection valve 125. Therefore, by adjusting the angular position of the connecting valve 125 and the circumferential length of the valve outer peripheral surface 125a, the timing and communication period at which the compression chambers A4 and A5 communicate with each other can be adjusted.
  • the inner end surface 103 which is the end surface on the radially inner side of the vane 100, is in contact with the outer peripheral surfaces of the boss portions 121 and 123 and the valve outer peripheral surface 125a.
  • the outer peripheral surfaces of both boss portions 121 and 123 are flush, the outer peripheral surfaces of both boss portions 121 and 123 are flush with the valve outer circumferential surface 125a, and the outer circumferential surfaces of both rotary valves 122 and 124 are flush.
  • the inner end surface 103 of the vane 100 is a concave surface curved with the same curvature as the outer peripheral surfaces of the boss portions 121 and 123 and the valve outer peripheral surface 125a. Therefore, the inner end surface 103 of the vane 100 is in surface contact with the outer peripheral surfaces of the boss portions 121 and 123 and the valve outer peripheral surface 125a.
  • the outer end surface 104 which is the end surface on the radially outer side of the vane 100 is flush with the first part surface 57a of the rear cylinder 50.
  • the outer end surface 104 of the vane 100 is in contact with the front cylinder inner peripheral surface 43 of the front cylinder 40.
  • the vane 100 is sandwiched from the radial direction R by the outer peripheral surfaces of both the boss portions 121 and 123, the valve outer peripheral surface 125a, and the front cylinder inner peripheral surface 43. Thereby, the position shift of the radial direction R of the vane 100 can be suppressed.
  • the fluid can be prevented from leaking from the boundary portion.
  • FIG. 8 is a graph showing the displacement in the axial direction Z of the front rotor surface 70 according to the angular position.
  • the solid line in FIG. 8 indicates the displacement in the axial direction Z of the inner peripheral end of the front rotor surface 70.
  • a one-dot chain line in FIG. 8 indicates the displacement in the axial direction Z of the outer peripheral end of the front rotor surface 70.
  • the vertical axis of the graph in FIG. 8 indicates the amount of displacement in the axial direction Z with respect to the first front flat surface 71.
  • the front rotor surface 70 approaches the first wall surface 52 as the displacement in the axial direction Z increases from “0”.
  • FIG. 8 can also be said to be a graph showing the displacement of the rear rotor surface 90 in the axial direction Z.
  • the solid line in FIG. 8 indicates the displacement in the axial direction Z of the inner peripheral end of the rear rotor surface 90.
  • a one-dot chain line in FIG. 8 indicates the displacement in the axial direction Z of the outer peripheral end of the rear rotor surface 90.
  • the vertical axis of the graph in FIG. 8 indicates the amount of displacement in the axial direction Z with respect to the first rear flat surface 91.
  • the rear rotor surface 90 approaches the second wall surface 53 as the displacement in the axial direction Z increases from “0”.
  • both vane end portions 101 and 102 have a curved shape that is convex in a direction in which both vane end portions 101 and 102 are separated from each other.
  • the first vane end portion 101 is curved so as to be convex toward the front rotor surface 70
  • the second vane end portion 102 is curved so as to be convex toward the rear rotor surface 90.
  • Both vane end portions 101 and 102 extend in a vertical direction orthogonal to the axial direction Z and are not inclined in the axial direction Z.
  • the vane end portions 101 and 102 are in linear contact with the curved surfaces 73 and 93 that are curved in the axial direction Z.
  • the contact portions between the vane end portions 101 and 102 and the curved surfaces 73 and 93 are shifted in accordance with the degree of bending of the curved surfaces 73 and 93 with respect to the axial direction Z, specifically, the curvature of the curved surfaces 73 and 93.
  • both curved surfaces 73 and 93 will be described.
  • the front rotor surface 70 will be described, but the same applies to the rear rotor surface 90.
  • Both front flat surfaces 71 and 72 are planes orthogonal to the axial direction Z. For this reason, the inner peripheral end and the outer peripheral end of both front flat surfaces 71 and 72 are not displaced regardless of the angular position.
  • the vicinity of 0 ° corresponds to the second front flat surface 72
  • the vicinity of 180 ° corresponds to the first front flat surface 71.
  • the front curved surface 73 has a front concave surface 74 that is curved in the axial direction Z so as to be concave toward the first wall surface 52, and a convex toward the first wall surface 52. And a front convex surface 75 that is curved in the axial direction Z.
  • the front concave surface 74 is disposed closer to the first front flat surface 71 than the second front flat surface 72 and is continuous with the first front flat surface 71.
  • the front convex surface 75 is disposed closer to the second front flat surface 72 than the first front flat surface 71 and is continuous with the second front flat surface 72.
  • the front concave surface 74 is connected to the front convex surface 75.
  • the front curved surface 73 has an inflection point (inflection angle position) ⁇ m.
  • the angle range occupied by the front concave surface 74 is the same as the angle range occupied by the front convex surface 75, and the angular positions of 90 ° and 270 ° respectively correspond to the inflection points ⁇ m. Both the angular ranges may be different, and the inflection point ⁇ m is not limited to the angular position and is arbitrary.
  • the front concave surface 74 includes a front concave inner peripheral end 74 a and a front concave outer peripheral end 74 b as both ends in the radial direction R.
  • the front convex surface 75 includes, as both ends in the radial direction R, a front convex inner peripheral end 75a and a front convex outer peripheral end 75b. Both inner peripheral ends 74a, 75a and both outer peripheral ends 74b, 75b are arcuate.
  • Both the inner peripheral ends 74 a and 75 a constitute the inner peripheral end of the front curved surface 73.
  • the diameters of both inner peripheral ends 74 a and 75 a are the same as the outer diameter of the front boss portion 121.
  • Both inner peripheral ends 74a and 75a are connected to each other.
  • the front concave inner peripheral end 74 a is connected to the inner peripheral end of the first front flat surface 71, and the front convex inner peripheral end 75 a is connected to the inner peripheral end of the second front flat surface 72.
  • the displacement waveform in the axial direction Z of the inner peripheral end of the front rotor surface 70 is a smooth curve.
  • Both the outer peripheral ends 74 b and 75 b constitute the outer peripheral end of the front curved surface 73. Both outer peripheral ends 74b and 75b are connected to each other.
  • the front concave outer peripheral end 74 b is connected to the outer peripheral end of the first front flat surface 71, and the front convex outer peripheral end 75 b is connected to the outer peripheral end of the second front flat surface 72.
  • the displacement waveform in the axial direction Z of the outer peripheral end of the front rotor surface 70 is a smooth curve.
  • the curvature indicating the degree of displacement in the axial direction Z according to the angular position is changed between the inner peripheral ends 74a and 75a and the outer peripheral ends 74b and 75b.
  • the curvature means the curvature with respect to the axial direction Z
  • the curvature radius means the curvature radius of the curvature with respect to the axial direction Z. That is, the curvature and the radius of curvature are parameters indicating the displacement with respect to the axial direction Z.
  • the curvature and the radius of curvature of the arcs of the inner peripheral ends 74a and 75a and the outer peripheral ends 74b and 75b viewed from the axial direction Z are shown. It is not a thing.
  • the curvature radius of the front concave inner peripheral edge 74a is smaller than the curvature radius of the front concave outer peripheral edge 74b.
  • the curvature of the displacement curve in the axial direction Z of the front concave inner peripheral edge 74a with respect to the angle change (phase) is smaller than the curvature of the displacement curve in the axial direction Z of the front concave outer peripheral edge 74b with respect to the angular change. .
  • the difference in the axial direction Z between the front concave outer peripheral end 74b and the front concave inner peripheral end 74a gradually increases from the first front flat surface 71 toward the inflection point ⁇ m.
  • the curvature radius of the front convex inner peripheral edge 75a is smaller than the curvature radius of the front convex outer peripheral edge 75b.
  • the curvature of the displacement curve in the axial direction Z of the front convex inner peripheral edge 75a with respect to the angle change (phase) is larger than the curvature of the displacement curve in the axial direction Z of the front convex outer peripheral edge 75b with respect to the angular change. .
  • the difference between the front convex surface outer peripheral end 75b and the front convex inner peripheral end 75a is gradually reduced from the inflection point ⁇ m toward the second front flat surface 72.
  • the front curved surface 73 gradually inclines so that the inner peripheral end is farther from the first wall surface 52 than the outer peripheral end as it goes from the first front flat surface 71 to the inflection point ⁇ m, and the second curved surface 73
  • the inner peripheral end and the outer peripheral end are formed so as to approach the same position in the axial direction Z toward the front flat surface 72. That is, at the inflection point ⁇ m, which is the boundary portion between the front concave surface 74 and the front convex surface 75, the difference in the axial direction Z between the outer peripheral end and the inner peripheral end of the front curved surface 73 is maximized.
  • the front curved surface 73 in the circumferential direction there is no difference between the outer peripheral end and the inner peripheral end, and both are arranged at the same position in the axial direction Z.
  • the rear curved surface 93 has a rear concave surface 94 that is curved in the axial direction Z so as to be concave toward the second wall surface 53, and a direction toward the second wall surface 53. And a rear convex surface 95 curved in the axial direction Z so as to be convex.
  • the rear curved surface 93 has an inflection point ⁇ m at the same angular position as the front curved surface 73.
  • the rear concave surface 94 is connected to the rear convex surface 95.
  • the front concave surface 74 and the rear convex surface 95 are opposed to each other in the axial direction Z, and the front convex surface 75 and the rear concave surface 94 are opposed to each other in the axial direction Z.
  • the rear concave surface 94 has a rear concave inner peripheral end 94a and a rear concave outer peripheral end 94b.
  • the rear convex surface 95 has a rear convex inner peripheral end 95a connected to the rear concave inner peripheral end 94a and a rear convex outer peripheral end 95b connected to the rear concave outer peripheral end 94b.
  • the curvature of the rear concave surface 94 and the rear convex surface 95 is the same as the curvature of the front concave surface 74 and the front convex surface 75.
  • the curvature radius of the rear concave inner peripheral edge 94a is smaller than the curvature radius of the rear concave outer peripheral edge 94b, and the curvature radius of the rear convex inner peripheral edge 95a is smaller than the curvature radius of the rear convex outer peripheral edge 95b.
  • the front concave surface 74 is formed such that the radius of curvature gradually decreases from the front concave outer peripheral end 74b toward the front concave inner peripheral end 74a.
  • the front convex surface 75 is formed such that the radius of curvature gradually decreases from the front convex surface outer peripheral end 75b toward the front convex inner peripheral end 75a.
  • the front curved surface 73 and the rear curved surface 93 are at the inflection point ⁇ m (boundary portion between the concave surfaces 74 and 94 and the convex surfaces 75 and 95) at the inner peripheral end rather than the outer peripheral end.
  • ⁇ m boundary portion between the concave surfaces 74 and 94 and the convex surfaces 75 and 95
  • the vane 100 is disposed at an angular position corresponding to the inflection point ⁇ m
  • the first vane end portion 101 abuts both the inner peripheral end and the outer peripheral end of the front curved surface 73
  • the second vane end portion 102 abuts both the inner peripheral end and the outer peripheral end of the rear curved surface 93.
  • the front curved surface 73 and the rear curved surface 93 are gradually recessed from the outer peripheral end toward the inner peripheral end at least at the inflection point ⁇ m, and are directed from the inflection point ⁇ m to both angular positions ⁇ 1 and ⁇ 2. Accordingly, the recess from the outer peripheral end to the inner peripheral end becomes gentle.
  • a contact manner between the curved surfaces 73 and 93 configured as described above and the vane end portions 101 and 102 will be described in detail.
  • the front curved surface 73 is in line contact with the first vane end portion 101.
  • a contact line (contact line) between the front curved surface 73 and the first vane end 101 is referred to as a front contact line (front contact line) P1.
  • the first vane end portion 101 extends in the vertical direction orthogonal to the axial direction Z, and the position in the axial direction Z is not displaced.
  • the curvature radius of the front curved surface 73 is different between the inner peripheral end and the outer peripheral end, and is displaced in the axial direction Z between the inner peripheral end and the outer peripheral end at least at the inflection point ⁇ m.
  • the angular position where the front curved surface 73 contacts the first vane end portion 101 is different between the inner peripheral end and the outer peripheral end of the front curved surface 73.
  • the front contact line P1 is not a straight line extending in the radial direction R but a curved line.
  • the rear curved surface 93 is in line contact with the second vane end portion 102.
  • a contact line (contact line) between the rear curved surface 93 and the second vane end portion 102 is referred to as a rear contact line (rear contact line) P2.
  • the second vane end portion 102 extends in the vertical direction orthogonal to the axial direction Z, and the position in the axial direction Z is not displaced.
  • the curvature radius of the rear curved surface 93 is different between the inner peripheral end and the outer peripheral end, and is displaced in the axial direction Z between the inner peripheral end and the outer peripheral end at least at the inflection point ⁇ m.
  • the rear contact line P2 is not a straight line extending in the radial direction R but a curved line.
  • the vane thickness D which is the thickness of the vane 100, is such that the vane end portions 101 and 102 change from the inner peripheral end to the outer peripheral end with respect to the curved surfaces 73 and 93 regardless of the angular positions of the curved surfaces 73 and 93. It is set so that it may contact
  • the vane thickness D can also be said to be the length of the vane 100 in a direction orthogonal to both the axial direction Z and the longitudinal directions of the vane end portions 101 and 102. Therefore, the thickness direction of the vane 100 is a direction orthogonal to both the axial direction Z and the longitudinal directions of the vane end portions 101 and 102.
  • the curvature radii of the vane end portions 101 and 102 that are curved so as to be convex toward the rotor surfaces 70 and 90 are such that the vane end portions 101 and 102 are curved surfaces 73 and 102 regardless of the angular positions of the rotors 60 and 80. If it can contact 93 from an inner peripheral end to an outer peripheral end, it is arbitrary. For example, the larger the radius of curvature of the vane end portions 101 and 102, the greater the difference in the circumferential direction of the contact position between the inner and outer peripheral ends of both curved surfaces 73 and 93. In consideration of this point, the curvature radius of the vane end portions 101 and 102 may be larger than the curvature radius when the vane end portions 101 and 102 are semicircular. Thereby, contact line P1, P2 can be bent more.
  • the rear curved surface 93 facing the front curved surface 73 is It is curved in the axial direction Z so as to be separated from the second wall surface 53 so that the distance from the front curved surface 73 is constant. That is, when either one of the curved surfaces 73 and 93 is uphill, the other is downhill. Accordingly, when viewed from the axial direction Z, the front contact line P1 is curved in the direction opposite to the rear contact line P2.
  • the distance between the curved surfaces 73 and 93 is constant as long as the distance is constant at the same angular position.
  • the distance between the curved surfaces 73 and 93 at an arbitrary radial position is constant and does not vary depending on the angular position.
  • the constant separation distance includes some error as long as the rotors 60 and 80 can rotate within a range where the vane end portions 101 and 102 and the curved surfaces 73 and 93 are in contact with each other.
  • FIGS. 14B is a development view showing both rotors 60 and 80 and the vane 100 in the state shown in FIG. 14A
  • FIG. 15B is a diagram showing both rotors 60 in the state shown in FIG. , 80 and the vane 100.
  • FIGS. 14B and 15B schematically show both openings 131 and 132 provided in the intermediate wall 51 and the open space 126. The state in which both openings 131 and 132 are connected via the open space 126 corresponds to the state in which both compression chambers A4 and A5 are in communication.
  • the vane 100 when the vane 100 is in contact with the second front flat surface 72 and the first rear flat surface 91, the vane 100 does not enter the front storage chamber A2.
  • the front compression chamber A4 there is one front compression chamber A4, the front compression chamber A4 is filled with suction fluid, and the front compression chamber A4 has a maximum volume.
  • first rear compression chamber A5a and second rear compression chamber are partitioned by the vane 100 and a contact portion between the second rear flat surface 92 and the second wall surface 53, and are adjacent to each other in the circumferential direction.
  • the first rear compression chamber A5a communicates with the rear side opening 132, but does not communicate with the discharge port 113.
  • the second rear compression chamber A5b communicates with the discharge port 113, but does not communicate with the rear side opening 132.
  • the vane 100 has a first rear compression chamber A5a communicating with the rear side opening 132 and a second rear communicating with the discharge port 113 so that the rear side opening 132 and the discharge port 113 do not directly communicate with each other. Partitions the compression chamber A5b.
  • both the rotors 60 and 80 are rotated.
  • the vane 100 moves in the axial direction Z (left and right direction in FIG. 14), and a part of the vane 100 enters the front storage chamber A2.
  • two front compression chambers A4 are formed on both sides of the vane 100.
  • the first front compression chamber A4a and the second front compression chamber A4b are partitioned by a contact portion between the second front flat surface 72 and the first wall surface 52 and the vane 100, and are adjacent to each other in the circumferential direction.
  • the first front compression chamber A4a communicates with the introduction port 111 but does not communicate with the front opening 131.
  • the second front compression chamber A4b communicates with the front opening 131, but does not communicate with the introduction port 111.
  • the vane 100 includes a first front compression chamber A4a that communicates with the introduction port 111 and a second front that communicates with the front opening 131 so that the introduction port 111 and the front opening 131 do not directly communicate with each other.
  • the compression chamber A4b is partitioned.
  • the volumes of the compression chambers A4 and A5 change.
  • the volume increases and the suction fluid is sucked from the introduction port 111
  • the volume decreases and the suction fluid is compressed.
  • the second rear compression chamber A5b the volume is reduced and the fluid is compressed.
  • the first rear compression chamber A5a the space itself is widened, but the fluid does not flow into the first rear compression chamber A5a because the communication mechanism 120 is in a non-communication state.
  • both the compression chambers A4 and A5 (the second front compression chamber A4b and the first rear flat surface 92).
  • the compression chamber A5a) communicates.
  • an intermediate pressure fluid higher in pressure than the suction fluid compressed in the second front compression chamber A4b is introduced into the first rear compression chamber A5a. That is, the communication flow path 130 connects the second front compression chamber A4b and the first rear compression chamber A5a.
  • the first front compression chamber A4a has a phase of 0 ° to
  • the 360 ° front compression chamber A4 and the second front compression chamber A4b are front compression chambers A4 having a phase of 360 ° to 720 °. That is, the space formed by the front rotor surface 70, the first wall surface 52, and the inner peripheral surface 43 of the front cylinder is divided by the vane 100 into the front compression chamber A4 having a phase of 0 ° to 360 ° and the phase of 360 ° to 720 °.
  • the front compression chamber A4 is partitioned.
  • the vane 100 divides the space into a first chamber into which fluid is sucked and a second chamber into which fluid is discharged, and the first chamber and A volume change of the second chamber (increasing the volume of the first chamber and decreasing the volume of the second chamber) is caused.
  • the first rear compression chamber A5a and the second rear compression chamber A5b are identical to the first rear compression chamber A5a and the second rear compression chamber A5b.
  • the communication flow path 130 is a flow path that connects the front compression chamber A4 having a phase of 360 ° to 720 ° (compression stage) and the rear compression chamber A5 having a phase of 0 ° to 360 ° (suction stage).
  • the communication mechanism 120 communicates or disconnects the front compression chamber A4 having a phase of 360 ° to 720 ° and the rear compression chamber A5 having a phase of 0 ° to 360 °.
  • the change in volume of both compression chambers A4 and A5 will be described with reference to FIG.
  • the broken line indicates the volume change of the front compression chamber A4
  • the alternate long and short dash line indicates the volume change of the rear compression chamber A5
  • the solid line indicates the substantial volume change of both the compression chambers A4 and A5.
  • the total volume change is shown respectively.
  • a phase difference accompanies the volume change of both compression chambers A4 and A5.
  • the phase difference is such that both rotor surfaces 70 and 90 are curved in the axial direction Z so that the distance between them is constant, and the volume of both compression chambers A4 and A5 is changed by one vane 100.
  • the phase difference is realized by connecting the compression chambers A4 and A5 in the latter half of the compression stage of the front compression chamber A4.
  • the volume change of the rear compression chamber A5 is advanced in phase as compared with the volume change of the front compression chamber A4.
  • the compression chambers A4 and A5 communicate with each other in the latter half of the compression operation of the suction fluid in the front compression chamber A4, and the suction of the intermediate pressure fluid into the rear compression chamber A5 is started, so that the volume of the rear compression chamber A5 is increased. Is configured to increase.
  • the volume change of the entire compressor 10 is a graph in which the volume change of the front compression chamber A4 and the volume change of the rear compression chamber A5 are connected.
  • both contact lines P1 and P2 are not straight lines extending in the radial direction R but curved slightly in the circumferential direction. This makes it difficult for the vane 100 to swing in the circumferential direction around at least one of the contact lines P1, P2.
  • the compressor 10 has a rotating shaft 12, a front rotor surface 70 formed in a ring shape, and rotates with the rotation of the rotating shaft 12, and a front rotor outer peripheral surface 62 and a radial direction. And a front cylinder side wall portion 42 having a front cylinder inner circumferential surface 43 facing R and accommodating the front rotor 60.
  • the compressor 10 is inserted into an intermediate wall portion 51 having a first wall surface 52 facing the front rotor surface 70 in the axial direction Z, and a vane groove 110 formed in the intermediate wall portion 51, and as the front rotor 60 rotates. And a vane 100 that moves in the axial direction Z.
  • the compressor 10 is defined by the front rotor surface 70, the first wall surface 52, and the front cylinder inner peripheral surface 43, and the volume is changed by the vane 100 as the front rotor 60 rotates, so that fluid is sucked and compressed.
  • a compression chamber A4 is provided.
  • the vane 100 has a first vane end portion 101 that is an end portion in the axial direction Z that contacts the front rotor surface 70.
  • the first vane end portion 101 is curved so as to be convex toward the front rotor surface 70, and extends in a direction orthogonal to the axial direction Z.
  • the front rotor surface 70 includes a front curved surface 73 that is displaced and curved in the axial direction Z according to its angular position.
  • the front curved surface 73 includes a front concave surface 74 that is curved in the axial direction Z so as to be concave toward the first wall surface 52, and a front convex surface 75 that is curved in the axial direction Z so as to be convex toward the first wall surface 52.
  • the front concave surface 74 is formed such that the radius of curvature of the front concave inner peripheral end 74a, which is both ends of the front concave surface 74 in the radial direction R, is smaller than the curvature radius of the front concave outer peripheral end 74b.
  • the front convex surface 75 is formed so that the radius of curvature of the front convex surface inner peripheral end 75a, which is both ends of the front convex surface 75 in the radial direction R, is smaller than the curvature radius of the front convex surface outer peripheral end 75b.
  • the front contact line P1 which is the contact position between the first vane end portion 101 and the front rotor surface 70, tends to be curved. This makes it difficult for the vane 100 to swing around the front contact line P1 as compared with the configuration in which the front contact line P1 is linear.
  • the curvature radius is changed between the front concave inner peripheral edge 74a and the front concave outer peripheral edge 74b so that the front contact line P1 becomes a curve, and the front convex inner peripheral edge 75a and the front convex outer peripheral edge 75b
  • the curvature radius was changed with.
  • the fluid leakage due to the oscillation of the vane 100 is, for example, fluid leakage from the boundary portion between the first vane end portion 101 and the front rotor surface 70.
  • the first chamber (the first front compression chamber A4a or the second front compression chamber A4b or the suction) is performed from the second chamber (the second front compression chamber A4b or the second rear compression chamber A5b) where the compression is performed via the boundary portion.
  • a fluid leakage into the first rear compression chamber A5a) is conceivable.
  • the vane 100 is inserted into the vane groove 110. Accordingly, the rotation of the vane 100 in the circumferential direction can be restricted by the contact between the vane 100 and the vane groove 110.
  • the vane 100 is inserted into the vane groove 110 so as to be movable in the axial direction Z.
  • a slight gap (clearance) is provided between the vane 100 and the vane groove 110.
  • the vane 100 can swing in the vane groove 110.
  • the swinging of the vane 100 in the vane groove 110 can be suppressed by making the front contact line P1 curved. Thereby, the swing of the vane 100 in the vane groove 110 can be suppressed while smoothly moving the vane 100 in the axial direction Z.
  • the vane 100 is a plate having a thickness in a direction orthogonal to both the axial direction Z and the longitudinal direction of the first vane end portion 101.
  • the vane thickness D is set so that the first vane end portion 101 abuts from the inner peripheral end to the outer peripheral end of the front curved surface 73 regardless of the angular position of the front rotor 60. According to this configuration, regardless of the angular position of the front curved surface 73, the state in which the first vane end portion 101 is in contact from the inner peripheral end to the outer peripheral end of the front curved surface 73 is maintained.
  • the inner peripheral end of the front curved surface 73 is most recessed with respect to the outer peripheral end at the inflection point ⁇ m.
  • the vane thickness D is set such that the first vane end portion 101 comes into contact with the inner peripheral end of the front curved surface 73 when the vane 100 is disposed at an angular position corresponding to the inflection point ⁇ m. It is good to be set to. As a result, regardless of the angular position of the front rotor 60, the first vane end portion 101 is expected to contact from the inner peripheral end to the outer peripheral end of the front curved surface 73.
  • the front rotor surface 70 is a first front flat surface 71 that is separated from the first wall surface 52, and a second that is circumferentially separated from the first front flat surface 71 and is in contact with the first wall surface 52.
  • the front curved surface 73 connects both the front flat surfaces 71 and 72, and is curved in the axial direction Z so as to gradually approach the first wall surface 52 from the first front flat surface 71 toward the second front flat surface 72. is doing.
  • the front concave surface 74 is disposed closer to the first front flat surface 71 than the second front flat surface 72, and the front convex surface 75 is disposed closer to the second front flat surface 72 than the first front flat surface 71. Yes.
  • the front concave surface 74 is connected to the front convex surface 75.
  • the difference between the inner peripheral end and the outer peripheral end of the front curved surface 73 is maximized at the boundary portion between the front concave surface 74 and the front convex surface 75, and gradually increases toward both front flat surfaces 71 and 72.
  • the connection location (near both angle position (theta) 1, (theta) 2) of the front curved surface 73 and both front flat surfaces 71 and 72 can be made into a smooth curved surface. Therefore, the front rotor surface 70 and the first vane end 101 can be smoothly slid along with the rotation of the front rotor 60.
  • the front compression chamber A4 (first front compression chamber A4a) on the suction side is compressed by the contact portion between the second front flat surface 72 and the first wall surface 52 and the vane 100, and compression is performed. It is possible to partition the front compression chamber A4 (second front compression chamber A4b) to be performed. Thereby, the leakage of the fluid between 1st and 2nd front compression chamber A4a, 4b can be suppressed, and efficiency improves.
  • the compressor 10 has a rear rotor 80 that rotates with the rotation of the rotary shaft 12, a rear cylinder inner peripheral surface 56 that faces the rear rotor outer peripheral surface 82 in the radial direction R, and accommodates the rear rotor 80. And a rear cylinder side wall 55.
  • the rear rotor 80 has a rear rotor surface 90 that is opposed to the front rotor surface 70 in the axial direction Z and formed in a ring shape.
  • the intermediate wall portion 51 is disposed between the rotors 60 and 80 and has a second wall surface 53 facing the rear rotor surface 90 in the axial direction Z.
  • the vane 100 has a second vane end 102 that contacts the rear rotor surface 90.
  • the compressor 10 is defined by a rear rotor surface 90, a second wall surface 53, and a rear cylinder inner peripheral surface 56, and a volume change is generated by the vane 100 as the rear rotor 80 rotates, and a fluid is sucked and compressed. A5 is provided.
  • the rear rotor surface 90 has a rear curved surface 93 including a rear concave surface 94 and a rear convex surface 95 as a second concave surface and a second convex surface.
  • the front concave surface 74 and the rear convex surface 95 are opposed to each other in the axial direction Z, and the front convex surface 75 and the rear concave surface 94 are opposed to each other in the axial direction Z.
  • the curved surfaces 73 and 93 have an inflection point ⁇ m at the same angular position, and at least at the inflection point ⁇ m, the inner peripheral ends of the curved surfaces 73 and 93 are inclined so as to be separated from the outer peripheral end. is doing.
  • the distance between the inner peripheral ends of the curved surfaces 73 and 93 is larger than the distance between the outer peripheral ends.
  • the rotation of the rotors 60 and 80 causes the vane 100 to move in the axial direction Z in a state where both the vane end portions 101 and 102 are in contact with both the rotor surfaces 70 and 90.
  • Fluid suction and compression are performed at A4 and A5.
  • fluid can be sucked and compressed in both the compression chambers A4 and A5 without providing the vane 100 corresponding to each of the compression chambers A4 and A5.
  • the curvature radius of the inner peripheral end of both concave surfaces 74 and 94 is smaller than the curvature radius of the outer peripheral end, and the curvature radius of the inner peripheral end of both convex surfaces 75 and 95 is smaller than the curvature radius of the outer peripheral end. Is also getting smaller. Thereby, since both the contact lines P1 and P2 which are contact lines between the curved surfaces 73 and 93 and the vane end portions 101 and 102 can be curved, the swing of the vane 100 can be more preferably suppressed. .
  • the inner peripheral ends of the two curved surfaces 73 and 93 are inclined so as to be separated from each other than the outer peripheral end. .
  • the vane end portions 101 and 102 are in contact with the inner peripheral ends of the curved surfaces 73 and 93. . This makes it difficult for a gap to be formed between the vane end portions 101 and 102 and the curved surfaces 73 and 93 while making both the contact lines P1 and P2 curved.
  • the rear rotor surface 90 includes both rear flat surfaces 91 and 92 disposed at positions shifted in the axial direction Z from each other.
  • the second rear flat surface 92 is in contact with the second wall surface 53.
  • the rear curved surface 93 connects both rear flat surfaces 91 and 92.
  • the first front flat surface 71 and the second rear flat surface 92 are opposed to each other, and the second front flat surface 72 and the first rear flat surface 91 are opposed to each other. According to this configuration, since the first rear flat surface 91 is disposed at a position facing the second front flat surface 72, the distance between the two is constant, and the movement of the vane 100 is not easily affected. A gap is less likely to occur between the rotor surfaces 70 and 90. The same applies to the rear compression chamber A5.
  • the front rotor surface 70 includes a second front flat surface 72 as a contact surface in contact with the first wall surface 52.
  • the pair of front curved surfaces 73 are provided on both sides in the circumferential direction of the rotary shaft 12 with respect to the second front flat surface 72.
  • the pair of front curved surfaces 73 are each curved in the axial direction Z so as to gradually move away from the second front flat surface 72 as they move away from the second front flat surface 72 in the circumferential direction.
  • the pair of front curved surfaces 73 are formed such that a front contact line P1 that is a contact line with the first vane end portion 101 is bent in the circumferential direction. That is, the pair of front curved surfaces 73 are formed so that the curvature of the displacement curve in the axial direction Z with respect to the change in angle differs according to the position in the radial direction R. According to this structure, there exists an effect of (1).
  • the above embodiment may be modified as follows. The above embodiment and each of the following different examples may be combined with each other within a technically consistent range.
  • the rear rotor 80 may have a larger diameter than the front rotor 60.
  • Both rotors 60 and 80 have different diameters, but are not limited to this, and may have the same diameter. That is, the volume of both compression chambers A4 and A5 may be the same. Both front flat surfaces 71 and 72 and both rear flat surfaces 91 and 92 may be omitted. That is, the entire rotor surfaces 70 and 90 may be curved surfaces.
  • the first vane end portion 101 and the front rotor surface 70 are not limited to a configuration in which the first vane end portion 101 and the front rotor surface 70 are in contact with each other from the inner peripheral end to the outer peripheral end. Further, the first vane end portion 101 and the front rotor surface 70 are not limited to the configuration in which the first vane end portion 101 and the front rotor surface 70 are in contact with each other over the entire circumference, but may be configured to contact over a part of the angle range. The same applies to the second vane end portion 102 and the rear rotor surface 90.
  • the number of vanes 100 is arbitrary and may be plural, for example. Further, the circumferential position of the vane 100 is arbitrary.
  • the shapes of the vane 100 and the vane groove 110 are not limited to those of the embodiments as long as the movement of the vane 100 in the axial direction Z is allowed, but the movement in the circumferential direction is restricted.
  • the vane may be fan-shaped.
  • the vane may be configured to move in the axial direction Z like a pendulum around a predetermined location. That is, the vane is not limited to linear motion, and may be configured to move in the axial direction Z by rotational motion.
  • both cylinders 40 and 50 are arbitrary.
  • the bulging portion 46 may be omitted.
  • both cylinders 40 and 50 were separate bodies, they may be integrally formed.
  • the specific shapes of the housings 21 and 22 are also arbitrary.
  • Both cylinders 40 and 50 may be omitted.
  • the inner peripheral surface of the housing 11 may divide both compression chambers A4 and A5.
  • the housing 11 corresponds to a “first cylinder part” and a “second cylinder part”.
  • the electric motor 13 and the inverter 14 may be omitted. That is, the electric motor 13 and the inverter 14 are not essential in the compressor 10.
  • Both rotors 60 and 80 may be fixed to the rotary shaft 12 so as to rotate integrally with the rotary shaft 12, or only one of them is attached to the rotary shaft 12 so as to rotate integrally, and the other is the rotary shaft.
  • the rotary shaft 12 may be attached to the rotary shaft 12 in a rotatable state. Even in this case, since the rotary valves 122 and 124 are engaged in the circumferential direction, the other rotor rotates as the rotor of the rotors 60 and 80 rotates.
  • the outer peripheral surfaces of the boss portions 121 and 123 are not flush with each other and may be stepped.
  • the inner end face 103 of the vane 100 is preferably stepped so that no gap is formed.
  • the communication mechanism 200 may be formed so as to bypass the intermediate wall portion 51.
  • the communication mechanism 200 may communicate both the compression chambers A4 and A5 via the communication channel 201 formed in both the cylinder side walls 42 and 55.
  • the communication channel 201 forms a front-side opening formed in a portion of the front cylinder inner peripheral surface 43 that defines the second front compression chamber A4b, and a first rear compression chamber A5a of the rear cylinder inner peripheral surface 56. A rear-side opening in the portion to be connected, and connects the openings.
  • the communication mechanism 200 switches to a non-communication state when the phase of the front compression chamber A4 is 0 ° to 360 °, and switches to a communication state when the phase of the front compression chamber A4 is 360 ° to 720 °. .
  • both boss portions 121 and 123 and both rotary valves 122 and 124 may be omitted. That is, it is not essential that the rotors 60 and 80 are in contact with or engaged with each other. In this configuration, it is preferable that the wall portion through-hole 54 is reduced in diameter so that the wall portion inner peripheral surface 54a and the rotary shaft 12 are in contact with or close to each other. Further, the inner end surface 103 of the vane 100 may be in direct contact with the rotating shaft 12.
  • the communication groove 133 may communicate with both the openings 131 and 132.
  • the connection valve 125 may have a completely closed ring shape in which the open space 126 is not formed. That is, the rotary valves 122 and 124 may be formed over the entire circumference in the engaged state. Further, when the communication groove 133 communicates with both of the openings 131 and 132, the rotary valves 122 and 124 may be omitted and the boss tip surfaces 121a and 123a may be in direct contact with each other. That is, the rotary valves 122 and 124 are not essential. Even in this case, it can be said that the communication mechanism 120 is in a non-communication state when the phase of the front compression chamber A4 is 0 to 360 °, and is switched to a communication state when the phase is 360 ° to 720 °.
  • the specific engagement mode is arbitrary.
  • two rear rotary valves 124 are provided, and the front rotary valve 124 is disposed between the front and rear rotary valves 124.
  • a configuration in which the rotary valve 122 is disposed and engaged may be employed.
  • the front concave surface 74 and the front convex surface 75, and the rear concave surface 94 and the rear convex surface 95 may be configured to change the curvature only in one of them. That is, it is sufficient that at least one of the contact lines P1, P2 is curved.
  • Both compression chambers A4 and A5 do not need to communicate. That is, the communication mechanism 120 may be omitted.
  • the compressor 10 may be configured such that the suction fluid is sucked and the compressed fluid is discharged in each of the compression chambers A4 and A5.
  • a discharge port may be provided in the front rotor 60 and compressed fluid may be discharged from the discharge port, or a suction port may be provided in the rear rotor 80 and suction fluid may be introduced from the suction port.
  • Either one of the rotors 60 and 80 may be omitted.
  • the front rotor 60 may be omitted.
  • the front compression chamber A4 is also omitted. That is, two rotors and two compression chambers are not essential.
  • a suction port 211 may be formed in the intermediate wall portion 51 so that the suction fluid is introduced into the rear compression chamber A5.
  • an urging portion 212 that urges the vane 100 against the rear rotor surface 90 may be provided.
  • the vane 100 moves in the axial direction Z while sliding on the rear rotor surface 90 as the rear rotor 80 rotates.
  • a volume change occurs in the rear compression chamber A5, and the suction fluid is sucked and compressed in the rear compression chamber A5.
  • the length of the vane 100 in the radial direction R may be the same as the length of the rear rotor surface 90 in the radial direction R.
  • the vane groove 110 is formed only in the intermediate wall portion 51 and may not be formed in the rear cylinder side wall portion 55.
  • the inner end surface 103 of the vane 100 may be in contact with the rotating shaft 12 (specifically, the outer peripheral surface of the rotating shaft 12). Further, when the front rotor 60 is omitted, the first rear flat surface 91 may be omitted.
  • the curvature of the inner end surface 103 of the vane 100 may be smaller than the curvature of the outer peripheral surface of the front boss portion 121. That is, the inner end surface 103 of the vane 100 may be recessed outwardly in the radial direction R and bend more gently than the outer peripheral surface of the front boss portion 121.
  • the curvature of the inner end surface 103 of the vane 100 is the same as the curvature of the outer peripheral surface of the front boss portion 121, the curvature of the inner end surface 103 of the vane 100 becomes the same as that of the outer peripheral surface of the front boss portion 121 due to manufacturing errors. Can be greater than curvature. In this case, both ends of the inner end surface 103 of the vane 100 may be caught by the outer peripheral surface of the front boss portion 121, and the vane 100 may not move in the axial direction Z, or both ends of the inner end surface 103 of the vane 100 may be worn. is there.
  • the second front compression chamber A4b has a contact between the inner end surface 103 of the vane 100 and the outer peripheral surface of the front boss portion 121. There is a gap between them.
  • the compressed fluid flows between the inner end surface 103 of the vane 100 and the outer peripheral surface of the front boss portion 121. The compressed fluid presses the vane 100 outward in the radial direction R, so that the gap between the outer end surface 104 of the vane 100 and the inner peripheral surface 43 of the front cylinder can be sealed.
  • the outer peripheral surface of the front boss portion 121 is flush with the outer peripheral surface of the rear boss portion 123. For this reason, it can be said that the curvature of the inner end surface 103 of the vane 100 is smaller than the curvature of the outer peripheral surface of the rear boss portion 123.
  • the outer peripheral surfaces of both boss portions 121 and 123 are flush with the valve outer peripheral surface 125a. For this reason, it can be said that the curvature of the inner end surface 103 of the vane 100 is smaller than the curvature of the valve outer peripheral surface 125a.
  • both the boss portions 121 and 123 can be said to be rotor cylinder portions that rotate with the rotation of the rotation shaft 12 in that the rotation shaft 12 is inserted into both the boss portions 121 and 123.
  • the curvature of the inner end surface 103 of the vane 100 is smaller than the curvature of the outer peripheral surface of the rotor cylinder portion.
  • the curvature of the inner end surface 103 of the vane 100 is convex toward the outer side in the radial direction R. It is better that the curvature is smaller than the curvature of the outer peripheral surface of the rotating shaft 12 that is curved.
  • the outer end surface 104 of the vane 100 shows the outer end surface 104 of the vane 100 curved so as to be convex outward in the radial direction R and the inner periphery of the front cylinder of the front cylinder 40 curved so as to be convex outward in the radial direction R.
  • a surface 43 is shown.
  • the curvature of the outer end surface 104 of the vane 100 may be larger than the curvature of the front cylinder inner peripheral surface 43 of the front cylinder 40. That is, the outer end surface 104 of the vane 100 may be convex outward in the radial direction R and may be curved more than the inner peripheral surface 43 of the front cylinder. According to this configuration, it is possible to suppress the curvature of the outer end surface 104 of the vane 100 from being smaller than the curvature of the inner peripheral surface 43 of the front cylinder due to a manufacturing error or the like.
  • the curvature of the outer end surface 104 of the vane 100 and the curvature of the front cylinder inner peripheral surface 43 are the same, the curvature of the outer end surface 104 of the vane 100 is greater than the curvature of the front cylinder inner peripheral surface 43 due to manufacturing errors. Can also be smaller. In this case, both ends of the outer end surface 104 of the vane 100 may be caught by the inner peripheral surface 43 of the front cylinder, and the vane 100 may not easily move in the axial direction Z, or both ends of the outer end surface 104 of the vane 100 may be worn. .
  • the outer end surface 104 of the vane 100 is curved to be larger than the front cylinder inner peripheral surface 43, a gap is formed between the outer end surface 104 of the vane 100 and the front cylinder inner peripheral surface 43 in the second front compression chamber A4b. Occurs.
  • the compressed fluid flows between the outer end surface 104 of the vane 100 and the front cylinder inner peripheral surface 43. The compressed fluid presses the vane 100 inward in the radial direction R, so that the gap between the inner end surface 103 of the vane 100 and the outer peripheral surface of the front boss portion 121 can be sealed.
  • the curvature of the inner end surface 103 of the vane 100 may be the same as the curvature of the outer peripheral surface of the front boss portion 121, and the curvature of the outer end surface 104 of the vane 100 may be larger than the curvature of the inner peripheral surface 43 of the front cylinder. Further, the curvature of the inner end face 103 of the vane 100 may be smaller than the curvature of the outer peripheral face of the front boss portion 121, and the curvature of the outer end face 104 of the vane 100 may be the same as the curvature of the front cylinder inner peripheral face 43.
  • the curvature may be different between the portion disposed in the first front compression chamber A4a and the portion disposed in the second front compression chamber A4b.
  • the outer end face 104 of the vane 100 is provided with a first outer end face 221 provided in the first front compression chamber A4a (rotation direction side) and having a curvature larger than that of the front cylinder inner peripheral face 43, and a second front compression face.
  • a second outer end face 222 provided in the chamber A4b (opposite to the rotation direction) and having a larger curvature than the first outer end face 221 may be included.
  • the first outer end surface 221 is closer to the rotation direction than the second outer end surface 222. According to this configuration, in addition to the effects described above, the sealing performance is improved.
  • the curvature of the first outer end surface 221 is closer to the curvature of the inner peripheral surface 43 of the front cylinder than the curvature of the second outer end surface 222. For this reason, the contact portion between the first outer end surface 221 and the front cylinder inner peripheral surface 43 is easily extended in the circumferential direction, and the contact area between the first outer end surface 221 and the front cylinder inner peripheral surface 43 is increased. Thereby, the sealing performance between the outer end surface 104 of the vane 100 and the inner peripheral surface 43 of the front cylinder is improved.
  • the second outer end face 222 in the second front compression chamber A4b is curved to be larger than the first outer end face 221. Therefore, in the second front compression chamber A4b, a gap is easily formed between the second outer end surface 222 and the front cylinder inner peripheral surface 43. Thereby, the compressed fluid easily enters between the second outer end face 222 and the front cylinder inner peripheral face 43. Since this compressed fluid presses the vane 100 in the radial direction R, the sealing property between the inner end surface 103 of the vane 100 and the outer peripheral surface of the front boss portion 121 is improved.
  • the vane 100 may be composed of a plurality of parts.
  • the vane 100 is provided between the vane main body inserted into the vane groove 110 and the vane main body and the front rotor surface 70, and is in contact with the front rotor surface 70.
  • a tip seal In this case, the front tip seal or the end of the front tip seal constitutes the end of the vane 100 in the axial direction Z, and corresponds to the “vane end”.
  • the vane 100 may include a rear tip seal that is provided between the vane body and the rear rotor surface 90 and abuts against the rear rotor surface 90.
  • the rear tip seal or the end of the rear tip seal corresponds to the “vane end”.
  • the compressor 10 may be used other than the air conditioner.
  • the compressor 10 may be used to supply compressed air to a fuel cell mounted on a fuel cell vehicle.
  • the mounting target of the compressor 10 is not limited to the vehicle and is arbitrary.
  • the fluid to be compressed by the compressor 10 is not limited to the refrigerant containing oil, but is arbitrary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

This compressor is provided with: a rotating shaft; a front rotor which has a front rotor surface; an intermediate wall section which has a first wall surface facing the front rotor surface in an axial direction; and a vane which is inserted in a vane groove formed in the intermediate wall section and which moves in the axial direction as the front rotor rotates. The vane has a first vane end section, the first vane end section being the end section thereof in the axial direction, which is in contact with the front rotor surface. The first vane end section is curved to protrude toward the front rotor surface and extends in a direction perpendicular to the axial direction. The front rotor surface includes a front curved surface which is curved in the axial direction Z so as to be displaced in the axial direction in accordance with the angular position of the front rotor surface.

Description

圧縮機Compressor
 本発明は、圧縮機に関する。 The present invention relates to a compressor.
 特許文献1には、回転軸と、ロータ面を有しかつ回転軸の回転に伴って回転するロータと、ロータの回転に伴って回転軸の軸方向に移動するベーンと、圧縮室とを備えた圧縮機について記載されている。この圧縮機では、ロータが回転することで、圧縮室で流体が圧縮される。 Patent Document 1 includes a rotating shaft, a rotor that has a rotor surface and rotates as the rotating shaft rotates, a vane that moves in the axial direction of the rotating shaft as the rotor rotates, and a compression chamber. The compressor is described. In this compressor, the fluid is compressed in the compression chamber by rotating the rotor.
 この文献には、第3の実施例として、径方向に延びた直線の位置がロータの最初の角度から第1の角度位置までは連続的に低くなり、第1の角度位置から最初の角度位置までは連続的に高くなる曲面からなるロータ面と、ロータ面と当接する端部を有するベーンとが記載されている。 In this document, as a third embodiment, the position of the straight line extending in the radial direction continuously decreases from the first angle position to the first angle position of the rotor, and from the first angle position to the first angle position. Until now, a rotor surface composed of a curved surface that continuously increases and a vane having an end abutting against the rotor surface are described.
 上記の構成では、ロータ面とベーンの端部とが当接する径方向に延びる箇所を中心に、ベーンがロータの周方向に揺動し易い。 In the above configuration, the vane easily swings in the circumferential direction of the rotor around the radially extending portion where the rotor surface and the end of the vane abut.
特開昭51-97006号公報JP 51-97006 A
 本発明の目的は、ベーンがロータの周方向に揺動することを抑制できる圧縮機を提供することである。 An object of the present invention is to provide a compressor capable of suppressing the vane from swinging in the circumferential direction of the rotor.
 上記課題を解決するため、本発明の第一の態様によれば、回転軸と、リング状に形成されたロータ面を有し、前記回転軸の回転に伴って回転するロータと、前記ロータの外周面と前記回転軸の径方向に対向する内周面を有し、前記ロータを収容する筒部と、前記ロータ面と前記回転軸の軸方向に対向する壁面を有する壁部と、前記壁部に形成されたベーン溝に挿入され、前記ロータの回転に伴って前記軸方向に移動するベーンと、前記ロータ面、前記壁面及び前記筒部の内周面によって区画され、前記ロータの回転に伴って前記ベーンによって容積変化が生じて流体の吸入及び圧縮が行われる圧縮室とを備え、前記ベーンは、前記軸方向の端部であって前記ロータ面と当接するベーン端部を有し、前記ベーン端部は、前記ロータ面に向けて凸となるように湾曲し、かつ前記軸方向と直交する方向に延び、前記ロータ面は、前記軸方向に湾曲した湾曲面を含み、前記湾曲面は、その角度位置に応じて前記軸方向に変位するように湾曲し、前記湾曲面は、前記壁面に向けて凹となるように前記軸方向に湾曲した凹面と、前記壁面に向けて凸となるように前記軸方向に湾曲した凸面とを含み、前記凹面は、前記径方向の両端として凹面内周端及び凹面外周端を有し、前記凹面では、前記軸方向における前記凹面内周端の曲率半径が、前記凹面外周端の曲率半径よりも小さく、前記凸面は、前記径方向の両端として凸面内周端及び凸面外周端を有し、前記凸面では、前記軸方向における前記凸面内周端の曲率半径が、前記凸面外周端の曲率半径よりも小さい、圧縮機が提供される。 In order to solve the above-described problems, according to a first aspect of the present invention, a rotating shaft, a rotor surface formed in a ring shape, and a rotor that rotates as the rotating shaft rotates, An outer peripheral surface and an inner peripheral surface facing the radial direction of the rotating shaft; a cylindrical portion that houses the rotor; a wall portion having a wall surface facing the rotor surface and the axial direction of the rotating shaft; and the wall The vane is inserted into a vane groove formed in the portion and moved in the axial direction along with the rotation of the rotor, and is partitioned by the rotor surface, the wall surface, and the inner peripheral surface of the cylindrical portion, And a compression chamber in which a change in volume is caused by the vane to suck and compress a fluid, and the vane has an end portion in the axial direction and a vane end portion that comes into contact with the rotor surface, The vane end faces the rotor surface And the rotor surface includes a curved surface curved in the axial direction, and the curved surface is displaced in the axial direction according to the angular position. The curved surface includes a concave surface curved in the axial direction so as to be concave toward the wall surface, and a convex surface curved in the axial direction so as to be convex toward the wall surface. The concave surface has a concave inner peripheral edge and a concave outer peripheral edge as both ends in the radial direction, and the curvature radius of the concave inner peripheral edge in the axial direction is larger than the curvature radius of the concave outer peripheral edge in the axial direction. The convex surface has a convex inner peripheral edge and a convex outer peripheral edge as both ends in the radial direction, and the convex surface has a radius of curvature of the convex inner peripheral edge in the axial direction from a curvature radius of the convex outer peripheral edge. A small compressor is provided.
 上記課題を解決するため、本発明の第二の態様によれば、回転軸と、リング状に形成されたロータ面を有し、前記回転軸の回転に伴って回転するロータと、前記ロータの外周面と前記回転軸の径方向に対向する内周面を有し、前記ロータを収容する筒部と、前記ロータ面と前記回転軸の軸方向に対向する壁面を有する壁部と、前記壁部に形成されたベーン溝に挿入され、前記ロータの回転に伴って前記軸方向に移動するベーンと、前記ロータ面、前記壁面及び前記筒部の内周面によって区画され、前記ロータの回転に伴って前記ベーンによって容積変化が生じて流体の吸入及び圧縮が行われる圧縮室とを備え、前記ベーンは、前記軸方向の端部であって前記ロータ面と当接するベーン端部を有し、前記ベーン端部は、前記ロータ面に向けて凸となるように湾曲し、かつ前記軸方向と直交する方向に延び、前記ロータ面は、前記軸方向に湾曲した湾曲面を含み、前記湾曲面は、その角度位置に応じて前記軸方向に変位するように湾曲し、前記湾曲面は、前記湾曲面と前記ベーン端部との当接線の少なくとも一部が前記ロータの周方向に曲がるように、前記径方向の位置に応じて前記軸方向に対する曲率半径が異なる部分を含む、圧縮機が提供される。 In order to solve the above-described problem, according to a second aspect of the present invention, a rotating shaft, a rotor surface formed in a ring shape, which rotates as the rotating shaft rotates, and the rotor An outer peripheral surface and an inner peripheral surface facing the radial direction of the rotating shaft; a cylindrical portion that houses the rotor; a wall portion having a wall surface facing the rotor surface and the axial direction of the rotating shaft; and the wall The vane is inserted into a vane groove formed in the portion and moved in the axial direction along with the rotation of the rotor, and is partitioned by the rotor surface, the wall surface, and the inner peripheral surface of the cylindrical portion, And a compression chamber in which a change in volume is caused by the vane to suck and compress a fluid, and the vane has an end portion in the axial direction and a vane end portion that comes into contact with the rotor surface, The vane end faces the rotor surface And the rotor surface includes a curved surface curved in the axial direction, and the curved surface is displaced in the axial direction according to the angular position. The curved surface with respect to the axial direction according to the radial position so that at least a part of the contact line between the curved surface and the vane end portion bends in the circumferential direction of the rotor. A compressor is provided that includes portions with different radii of curvature.
圧縮機の概要を示す断面図。Sectional drawing which shows the outline | summary of a compressor. 主要な構成の分解斜視図。The exploded perspective view of main composition. 図2とは反対側から見た主要な構成の分解斜視図。The disassembled perspective view of the main structures seen from the opposite side to FIG. 図1の部分拡大図。The elements on larger scale of FIG. 非連通状態における図4の5-5線断面図。FIG. 5 is a cross-sectional view taken along line 5-5 in FIG. 4 in a non-communication state. 連通状態における図4の5-5線断面図。FIG. 5 is a cross-sectional view taken along line 5-5 in FIG. 4 in a communication state. ベーンと両湾曲面との当接態様を模式的に示す断面図。Sectional drawing which shows typically the contact aspect of a vane and both curved surfaces. ロータ面における角度位置に応じた軸方向の変位を示すグラフ。The graph which shows the displacement of the axial direction according to the angular position in a rotor surface. フロントロータの正面図。The front view of a front rotor. リアロータの正面図。The front view of a rear rotor. 変曲点付近で切断した場合の両ロータ及びベーンの周辺構造を示す断面図。Sectional drawing which shows the periphery structure of both rotors at the time of cut | disconnecting in the vicinity of an inflection point. 軸方向から見たフロント当接線を示す模式図。The schematic diagram which shows the front contact line seen from the axial direction. 軸方向から見たリア当接線を示す模式図。The schematic diagram which shows the rear contact line seen from the axial direction. (a)は両ロータ及びその周辺を示す断面図、(b)は(a)の状態における両ロータ及びベーンの様子を示す展開図。(A) is sectional drawing which shows both rotors and its periphery, (b) is a development view which shows the state of both rotors and vanes in the state of (a). (a)は両ロータ及びその周辺を示す断面図、(b)は(a)の状態における両ロータ及びベーンの様子を示す展開図。(A) is sectional drawing which shows both rotors and its periphery, (b) is a development view which shows the state of both rotors and vanes in the state of (a). 容積変化を示すグラフ。The graph which shows volume change. 連通機構の別例を示す模式図。The schematic diagram which shows another example of a communication mechanism. 連通機構の別例を示す模式図。The schematic diagram which shows another example of a communication mechanism. 別例の圧縮機を模式的に示す断面図。Sectional drawing which shows the compressor of another example typically. 別例のベーンを模式的に示す断面図。Sectional drawing which shows the vane of another example typically. 図20の部分拡大図。The elements on larger scale of FIG. 別例のベーンを模式的に示す断面図。Sectional drawing which shows the vane of another example typically.
 以下、圧縮機の一実施形態について図面を用いて説明する。本実施形態の圧縮機は、車両に搭載されて使用される。圧縮機は、車両用空調装置に用いられる。圧縮機の圧縮対象となる流体は、オイルを含む冷媒である。図1及び図4は、回転軸12及び両ロータ60,80の側面図を示す。 Hereinafter, an embodiment of a compressor will be described with reference to the drawings. The compressor of this embodiment is mounted and used in a vehicle. The compressor is used in a vehicle air conditioner. The fluid to be compressed by the compressor is a refrigerant containing oil. 1 and 4 show side views of the rotating shaft 12 and the rotors 60 and 80. FIG.
 図1に示すように、圧縮機10は、ハウジング11と、回転軸12と、電動モータ13と、インバータ14と、フロントシリンダ40と、リアシリンダ50と、第1ロータとしてのフロントロータ60と、第2ロータとしてのリアロータ80とを備えている。ハウジング11は、全体として筒状であり、外部からの吸入流体が吸入される吸入口11a、及び流体が吐出される吐出口11bを有している。回転軸12、電動モータ13、インバータ14、両シリンダ40,50及び両ロータ60,80は、ハウジング11内に収容されている。 As shown in FIG. 1, the compressor 10 includes a housing 11, a rotating shaft 12, an electric motor 13, an inverter 14, a front cylinder 40, a rear cylinder 50, a front rotor 60 as a first rotor, And a rear rotor 80 as a second rotor. The housing 11 has a cylindrical shape as a whole, and has a suction port 11a through which suction fluid from the outside is sucked and a discharge port 11b through which fluid is discharged. The rotating shaft 12, the electric motor 13, the inverter 14, both cylinders 40 and 50, and both rotors 60 and 80 are accommodated in the housing 11.
 ハウジング11は、フロントハウジング21と、リアハウジング22と、インバータカバー23とを備えている。フロントハウジング21は、有底筒状であり、リアハウジング22に向けて開口している。吸入口11aは、フロントハウジング21の側壁部において開口端部と底部との間の位置に設けられている。吸入口11aの位置は任意である。リアハウジング22は、有底筒状であり、フロントハウジング21に向けて開口している。吐出口11bは、リアハウジング22の底部の側面に設けられている。吐出口11bの位置は任意である。 The housing 11 includes a front housing 21, a rear housing 22, and an inverter cover 23. The front housing 21 has a bottomed cylindrical shape and opens toward the rear housing 22. The suction port 11a is provided at a position between the opening end and the bottom of the side wall of the front housing 21. The position of the suction port 11a is arbitrary. The rear housing 22 has a bottomed cylindrical shape and opens toward the front housing 21. The discharge port 11 b is provided on the side surface of the bottom portion of the rear housing 22. The position of the discharge port 11b is arbitrary.
 フロントハウジング21とリアハウジング22とは、それらの開口部同士を向き合せた状態でユニット化されている。インバータカバー23は、リアハウジング22と反対側であるフロントハウジング21の底部に配置されている。インバータカバー23は、フロントハウジング21の底部に突き合せられた状態でフロントハウジング21に固定されている。 The front housing 21 and the rear housing 22 are unitized with their openings facing each other. The inverter cover 23 is disposed at the bottom of the front housing 21 that is opposite to the rear housing 22. The inverter cover 23 is fixed to the front housing 21 in a state of being abutted against the bottom of the front housing 21.
 インバータカバー23内には、インバータ14が収容されている。インバータ14は、電動モータ13を駆動させる。回転軸12は、回転可能な状態でハウジング11に支持されている。フロントハウジング21の底部には、底部から突出したリング状の第1軸受保持部31が設けられている。第1軸受保持部31の径方向内側には、回転軸12の第1端部を回転可能に支持する第1ラジアル軸受32が設けられている。リアハウジング22の底部には、底部から突出したリング状の第2軸受保持部33が設けられている。第2軸受保持部33の径方向内側にも、第2ラジアル軸受34が設けられている。第2ラジアル軸受34は、回転軸12の第1端部と反対側の第2端部を回転可能に支持する。回転軸12の軸方向Zは、ハウジング11の軸方向と一致している。 The inverter 14 is accommodated in the inverter cover 23. The inverter 14 drives the electric motor 13. The rotating shaft 12 is supported by the housing 11 in a rotatable state. A ring-shaped first bearing holding portion 31 protruding from the bottom portion is provided at the bottom portion of the front housing 21. A first radial bearing 32 that rotatably supports the first end of the rotating shaft 12 is provided on the radially inner side of the first bearing holding portion 31. A ring-shaped second bearing holding portion 33 protruding from the bottom portion is provided at the bottom portion of the rear housing 22. A second radial bearing 34 is also provided on the radially inner side of the second bearing holding portion 33. The second radial bearing 34 rotatably supports the second end portion on the side opposite to the first end portion of the rotating shaft 12. The axial direction Z of the rotating shaft 12 coincides with the axial direction of the housing 11.
 図1~図4に示すように、フロントシリンダ40は、フロントロータ60を収容する。フロントシリンダ40は、リアハウジング22よりも一回り小さく形成された有底筒状である。フロントシリンダ40は、リアハウジング22の底部に向けて開口している。フロントシリンダ40は、フロントシリンダ底部41と、フロントシリンダ底部41からリアハウジング22に向けて延びるフロントシリンダ側壁部42とを有している。フロントシリンダ側壁部42は、第1筒部であり、リアハウジング22の内側に入り込んでいる。 As shown in FIGS. 1 to 4, the front cylinder 40 houses a front rotor 60. The front cylinder 40 has a bottomed cylindrical shape that is slightly smaller than the rear housing 22. The front cylinder 40 opens toward the bottom of the rear housing 22. The front cylinder 40 has a front cylinder bottom 41 and a front cylinder side wall 42 extending from the front cylinder bottom 41 toward the rear housing 22. The front cylinder side wall portion 42 is a first cylinder portion and enters the inside of the rear housing 22.
 図3及び図4に示すように、フロントシリンダ40は、第1内周面としてのフロントシリンダ内周面43を有している。フロントシリンダ内周面43は、軸方向Zに延びた円筒面である。フロントシリンダ40は、更に、フロントシリンダ内周面43よりも拡径したフロント拡径面44を有している。フロント拡径面44は、フロントシリンダ側壁部42の先端部(開口端部)に設けられている。フロントシリンダ内周面43とフロント拡径面44との間には、フロント段差面45が形成されている。 3 and 4, the front cylinder 40 has a front cylinder inner peripheral surface 43 as a first inner peripheral surface. The front cylinder inner peripheral surface 43 is a cylindrical surface extending in the axial direction Z. The front cylinder 40 further has a front diameter-enlarged surface 44 that is larger in diameter than the front cylinder inner circumferential surface 43. The front diameter-enlarging surface 44 is provided at the front end (opening end) of the front cylinder side wall 42. A front step surface 45 is formed between the front cylinder inner peripheral surface 43 and the front enlarged diameter surface 44.
 フロントシリンダ側壁部42には、回転軸12の径方向外側に張り出した膨出部46が設けられている。膨出部46は、フロントシリンダ側壁部42の基端、即ち、フロントシリンダ底部41付近に設けられている。フロントハウジング21とリアハウジング22とは、膨出部46を挟んだ状態でユニット化されている。両ハウジング21,22は、フロントシリンダ40の軸方向Zの位置ずれを規制している。 The front cylinder side wall portion 42 is provided with a bulging portion 46 protruding outward in the radial direction of the rotary shaft 12. The bulging portion 46 is provided at the base end of the front cylinder side wall portion 42, that is, near the front cylinder bottom portion 41. The front housing 21 and the rear housing 22 are unitized with the bulging portion 46 interposed therebetween. Both the housings 21 and 22 restrict the positional deviation of the front cylinder 40 in the axial direction Z.
 図4に示すように、フロントシリンダ底部41は、軸方向Zに段差状である。フロントシリンダ底部41は、中央側に配置されている第1底部41aと、第1底部41aの径方向外側でかつ第1底部41aよりもリアハウジング22の近くに配置されている第2底部41bとを有している。第1底部41aには、回転軸12が挿通可能なフロント挿通孔41cが形成されている。回転軸12は、フロント挿通孔41cに挿通されている。 As shown in FIG. 4, the front cylinder bottom 41 is stepped in the axial direction Z. The front cylinder bottom 41 includes a first bottom 41a disposed on the center side, a second bottom 41b disposed radially outside the first bottom 41a and closer to the rear housing 22 than the first bottom 41a. have. The first bottom portion 41a is formed with a front insertion hole 41c through which the rotary shaft 12 can be inserted. The rotating shaft 12 is inserted through the front insertion hole 41c.
 図1に示すように、フロントハウジング21及びフロントシリンダ底部41は、モータ室A1を形成し、モータ室A1に電動モータ13を収容している。電動モータ13は、インバータ14から駆動電力が供給されることにより、回転軸12を矢印Mで示す方向に回転させる。吸入口11aは、モータ室A1を形成するフロントハウジング21に設けられている。このため、吸入口11aから吸入された吸入流体は、モータ室A1に導入される。つまり、モータ室A1内には吸入流体が存在する。 As shown in FIG. 1, the front housing 21 and the front cylinder bottom 41 form a motor chamber A1, and the electric motor 13 is accommodated in the motor chamber A1. The electric motor 13 rotates the rotating shaft 12 in the direction indicated by the arrow M when the driving power is supplied from the inverter 14. The suction port 11a is provided in the front housing 21 that forms the motor chamber A1. For this reason, the suction fluid sucked from the suction port 11a is introduced into the motor chamber A1. That is, the suction fluid exists in the motor chamber A1.
 圧縮機10内では、インバータ14、電動モータ13及び両ロータ60,80が軸方向Zに順に並んでいる。これら各部品の位置は、任意であり、インバータ14を電動モータ13の径方向外側に配置してもよい。 In the compressor 10, the inverter 14, the electric motor 13, and both the rotors 60 and 80 are arranged in order in the axial direction Z. The position of each of these components is arbitrary, and the inverter 14 may be disposed outside the electric motor 13 in the radial direction.
 図2~図4に示すように、リアシリンダ50は、リアハウジング22の底部に向けて開口した有底筒状である。リアシリンダ50は、フロントシリンダ40よりも一回り小さく形成され、リアハウジング22内に収容されている。リアシリンダ50は、リアシリンダ50の開口端をリアハウジング22の底部に突き合せた状態でフロントシリンダ40に嵌合されている。 As shown in FIGS. 2 to 4, the rear cylinder 50 has a bottomed cylindrical shape opened toward the bottom of the rear housing 22. The rear cylinder 50 is formed slightly smaller than the front cylinder 40 and is accommodated in the rear housing 22. The rear cylinder 50 is fitted to the front cylinder 40 with the opening end of the rear cylinder 50 butted against the bottom of the rear housing 22.
 リアシリンダ50は、リアシリンダ50の底部を構成する中間壁部51と、中間壁部51からリアハウジング22に向けて軸方向Zに延びるリアシリンダ側壁部55とを有している。リアシリンダ側壁部55が第2筒部に、中間壁部51が壁部にそれぞれ対応する。 The rear cylinder 50 has an intermediate wall 51 that forms the bottom of the rear cylinder 50, and a rear cylinder side wall 55 that extends from the intermediate wall 51 toward the rear housing 22 in the axial direction Z. The rear cylinder side wall portion 55 corresponds to the second tube portion, and the intermediate wall portion 51 corresponds to the wall portion.
 図4に示すように、中間壁部51は、壁厚方向を軸方向Zと一致させて配置されている。このため、中間壁部51は、軸方向Zに直交する第1壁面52と第2壁面53とを有している。中間壁部51は、リング状であり、フロントシリンダ40に嵌合されている。中間壁部51には、軸方向Zに貫通した壁部貫通孔54が形成されている。壁部貫通孔54は、回転軸12よりも大径の貫通孔である。回転軸12は、壁部貫通孔54に挿通されている。 As shown in FIG. 4, the intermediate wall 51 is arranged with the wall thickness direction aligned with the axial direction Z. For this reason, the intermediate wall portion 51 has a first wall surface 52 and a second wall surface 53 that are orthogonal to the axial direction Z. The intermediate wall portion 51 has a ring shape and is fitted to the front cylinder 40. In the intermediate wall portion 51, a wall portion through hole 54 penetrating in the axial direction Z is formed. The wall portion through hole 54 is a through hole having a diameter larger than that of the rotating shaft 12. The rotating shaft 12 is inserted through the wall through hole 54.
 リアシリンダ側壁部55は、軸方向Zに延びた円筒状であり、第2内周面としてのリアシリンダ内周面56と、リアシリンダ外周面57とを有している。リアシリンダ内周面56は、フロントシリンダ内周面43よりも小径の円筒面である。このため、リアシリンダ内周面56は、フロントシリンダ内周面43の径方向内側に配置されている。リアシリンダ外周面57は、直径が異なる複数の円筒面であることで、段差状である。リアシリンダ外周面57は、第1パーツ面57aと、第1パーツ面57aよりも拡径された第2パーツ面57bと、第2パーツ面57bよりも拡径された第3パーツ面57cとを有している。 The rear cylinder side wall 55 has a cylindrical shape extending in the axial direction Z, and has a rear cylinder inner peripheral surface 56 as a second inner peripheral surface and a rear cylinder outer peripheral surface 57. The rear cylinder inner peripheral surface 56 is a cylindrical surface having a smaller diameter than the front cylinder inner peripheral surface 43. For this reason, the rear cylinder inner peripheral surface 56 is disposed on the radially inner side of the front cylinder inner peripheral surface 43. The rear cylinder outer peripheral surface 57 has a step shape because it is a plurality of cylindrical surfaces having different diameters. The rear cylinder outer peripheral surface 57 includes a first part surface 57a, a second part surface 57b having a diameter larger than that of the first part surface 57a, and a third part surface 57c having a diameter larger than that of the second part surface 57b. Have.
 第1パーツ面57aは、フロントシリンダ内周面43と当接している。第2パーツ面57bは、フロント拡径面44と当接している。第3パーツ面57cは、フロントシリンダ側壁部42の外周面と面一である。両パーツ面57a,57bの間に形成された第1リア段差面58が、フロント段差面45と当接し、両パーツ面57b,57cの間に形成された第2リア段差面59がフロントシリンダ40の開口端に当接している。 The first part surface 57 a is in contact with the inner peripheral surface 43 of the front cylinder. The second part surface 57b is in contact with the front enlarged diameter surface 44. The third part surface 57c is flush with the outer peripheral surface of the front cylinder side wall 42. The first rear step surface 58 formed between the two part surfaces 57a and 57b contacts the front step surface 45, and the second rear step surface 59 formed between the two part surfaces 57b and 57c serves as the front cylinder 40. It is in contact with the open end of.
 図4に示すように、フロントシリンダ底部41と、フロントシリンダ内周面43と、第1壁面52とが、フロントロータ60を収容するフロント収容室A2を形成している。フロント収容室A2は、全体として円柱状である。リアハウジング22の内側底面と、リアシリンダ内周面56と、第2壁面53とが、リアロータ80を収容するリア収容室A3を形成している。リア収容室A3は、全体として円柱状である。 As shown in FIG. 4, the front cylinder bottom 41, the front cylinder inner peripheral surface 43, and the first wall surface 52 form a front storage chamber A <b> 2 that stores the front rotor 60. The front storage chamber A2 has a cylindrical shape as a whole. The inner bottom surface of the rear housing 22, the rear cylinder inner peripheral surface 56, and the second wall surface 53 form a rear housing chamber A <b> 3 that houses the rear rotor 80. The rear housing chamber A3 has a cylindrical shape as a whole.
 リアシリンダ内周面56の直径がフロントシリンダ内周面43の直径よりも小さいため、リア収容室A3はフロント収容室A2よりも小さく、リア収容室A3の体積はフロント収容室A2の体積よりも小さい。両収容室A2,A3は、中間壁部51によって仕切られている。両ロータ60,80は、それらの間に中間壁部51を配置して、軸方向Zに対向するようにそれぞれ配置されている。 Since the diameter of the rear cylinder inner peripheral surface 56 is smaller than the diameter of the front cylinder inner peripheral surface 43, the rear storage chamber A3 is smaller than the front storage chamber A2, and the volume of the rear storage chamber A3 is larger than the volume of the front storage chamber A2. small. Both storage chambers A2 and A3 are partitioned by an intermediate wall 51. Both the rotors 60 and 80 are disposed so as to face the axial direction Z with the intermediate wall 51 disposed therebetween.
 回転軸12及び両ロータ60,80は、同一軸を有する。つまり、圧縮機10は、偏芯運動ではなく、軸心運動の構造を有する。両ロータ60,80の周方向は回転軸12の周方向と一致し、両ロータ60,80の径方向は回転軸12の径方向Rと一致し、両ロータ60,80の軸方向は回転軸12の軸方向Zと一致している。このため、回転軸12の周方向、径方向R及び軸方向Zは、適宜両ロータ60,80の周方向、径方向及び軸方向と読み替えてよい。 Rotating shaft 12 and both rotors 60 and 80 have the same axis. That is, the compressor 10 has a structure of an axial movement, not an eccentric movement. The circumferential direction of both rotors 60 and 80 coincides with the circumferential direction of the rotary shaft 12, the radial direction of both rotors 60 and 80 coincides with the radial direction R of the rotary shaft 12, and the axial direction of both rotors 60 and 80 is the rotational axis. 12 coincides with the axial direction Z. For this reason, the circumferential direction, radial direction R, and axial direction Z of the rotating shaft 12 may be appropriately read as the circumferential direction, radial direction, and axial direction of the rotors 60 and 80.
 図2~図4に示すように、フロントロータ60は、リング状であり、回転軸12が挿通可能なフロント貫通孔61を有している。フロント貫通孔61は、回転軸12と同径である。フロントロータ60は、フロント貫通孔61に回転軸12が挿通された状態で回転軸12に取り付けられている。 As shown in FIGS. 2 to 4, the front rotor 60 is ring-shaped and has a front through-hole 61 through which the rotary shaft 12 can be inserted. The front through hole 61 has the same diameter as the rotary shaft 12. The front rotor 60 is attached to the rotary shaft 12 with the rotary shaft 12 inserted through the front through hole 61.
 フロントロータ60は、回転軸12の回転に伴って回転する。つまり、フロントロータ60は、回転軸12と一体に回転する。フロントロータ60が回転軸12と一体回転する構成は、任意であるが、例えば、フロントロータ60を回転軸12に固定した構成や、フロントロータ60を回転軸12の外周に係合した構成などがある。 The front rotor 60 rotates as the rotating shaft 12 rotates. That is, the front rotor 60 rotates integrally with the rotating shaft 12. The configuration in which the front rotor 60 rotates integrally with the rotary shaft 12 is arbitrary. For example, a configuration in which the front rotor 60 is fixed to the rotary shaft 12 or a configuration in which the front rotor 60 is engaged with the outer periphery of the rotary shaft 12. is there.
 フロントロータ60の外周面であるフロントロータ外周面62は、回転軸12と同軸の円筒面であり、フロントロータ外周面62の直径はフロントシリンダ内周面43と同一である。ただし、フロントロータ外周面62とフロントシリンダ内周面43との間には、若干の隙間があってもよい。 The front rotor outer peripheral surface 62, which is the outer peripheral surface of the front rotor 60, is a cylindrical surface coaxial with the rotary shaft 12, and the diameter of the front rotor outer peripheral surface 62 is the same as the front cylinder inner peripheral surface 43. However, there may be a slight gap between the front rotor outer peripheral surface 62 and the front cylinder inner peripheral surface 43.
 フロントロータ60は、第1壁面52と対向する第1ロータ面としてのフロントロータ面70を有している。フロントロータ面70は、リング状である。フロントロータ面70は、軸方向Zと直交する第1フロント平坦面71及び第2フロント平坦面72と、両フロント平坦面71,72を繋ぐ一対のフロント湾曲面73とを備えている。第1及び第2フロント平坦面71,72は、第1及び第2平坦面にそれぞれ対応している。 The front rotor 60 has a front rotor surface 70 as a first rotor surface facing the first wall surface 52. The front rotor surface 70 has a ring shape. The front rotor surface 70 includes a first front flat surface 71 and a second front flat surface 72 that are orthogonal to the axial direction Z, and a pair of front curved surfaces 73 that connect both the front flat surfaces 71 and 72. The first and second front flat surfaces 71 and 72 correspond to the first and second flat surfaces, respectively.
 図4に示すように、両フロント平坦面71,72は、軸方向Zにずれている。第2フロント平坦面72は、第1フロント平坦面71よりも第1壁面52の近くに配置されている。第2フロント平坦面72は第1壁面52に当接している。また、両フロント平坦面71,72は、フロントロータ60の周方向に離間し、180°ずれている。両フロント平坦面71,72は扇状である。以降の説明では、両ロータ60,80の周方向位置を角度位置と称す。 As shown in FIG. 4, both front flat surfaces 71 and 72 are displaced in the axial direction Z. The second front flat surface 72 is disposed closer to the first wall surface 52 than the first front flat surface 71. The second front flat surface 72 is in contact with the first wall surface 52. Further, both front flat surfaces 71 and 72 are separated from each other in the circumferential direction of the front rotor 60 and are shifted by 180 °. Both front flat surfaces 71 and 72 are fan-shaped. In the following description, the circumferential positions of the rotors 60 and 80 are referred to as angular positions.
 一対のフロント湾曲面73はそれぞれ扇状である。図3に示すように、一対のフロント湾曲面73は、軸方向Zと両フロント平坦面71,72の並び方向とに直交する方向に対向している。両フロント湾曲面73は同一形状である。一対のフロント湾曲面73はそれぞれ、両フロント平坦面71,72を繋いでいる。一対のフロント湾曲面73のうち一方は両フロント平坦面71,72の周方向の一方の端部同士を、他方は両フロント平坦面71,72の周方向の他方の端部同士をそれぞれ繋いでいる。 The pair of front curved surfaces 73 are each fan-shaped. As shown in FIG. 3, the pair of front curved surfaces 73 oppose each other in a direction orthogonal to the axial direction Z and the arrangement direction of the front flat surfaces 71 and 72. Both front curved surfaces 73 have the same shape. The pair of front curved surfaces 73 connect both front flat surfaces 71 and 72, respectively. One of the pair of front curved surfaces 73 is connected to one end in the circumferential direction of both front flat surfaces 71 and 72, and the other is connected to the other end in the circumferential direction of both front flat surfaces 71 and 72. Yes.
 図3に示すように、フロント湾曲面73と第1フロント平坦面71との境界部分の角度位置を第1角度位置θ1とし、フロント湾曲面73と第2フロント平坦面72との境界部分の角度位置を第2角度位置θ2とする。図3中、各角度位置θ1,θ2を破線で示すが、実際には、境界部分は滑らかに連続している。 As shown in FIG. 3, the angular position of the boundary portion between the front curved surface 73 and the first front flat surface 71 is defined as a first angular position θ1, and the angle of the boundary portion between the front curved surface 73 and the second front flat surface 72 is set. The position is defined as a second angular position θ2. In FIG. 3, each angular position θ1, θ2 is indicated by a broken line, but in reality, the boundary portion is smoothly continuous.
 フロント湾曲面73は、フロントロータ60の角度位置に応じて軸方向Zに変位した湾曲面である。フロント湾曲面73は、第1角度位置θ1から第2角度位置θ2に向かうにしたがって徐々に第1壁面52に近づくように軸方向Zに湾曲している。一対のフロント湾曲面73は、第2フロント平坦面72の周方向の両側に設けられている。一対のフロント湾曲面73は、第2フロント平坦面72から周方向に離れるにしたがって徐々に第1壁面52から離れるようにそれぞれ湾曲している。フロント湾曲面73は、第1角度位置θ1及び第2角度位置θ2に限られず、周方向に互いに離間した任意の2つの角度位置間で徐々に第1壁面52に近づくか遠ざかるように軸方向Zに湾曲している。 The front curved surface 73 is a curved surface displaced in the axial direction Z according to the angular position of the front rotor 60. The front curved surface 73 is curved in the axial direction Z so as to gradually approach the first wall surface 52 as it goes from the first angular position θ1 to the second angular position θ2. The pair of front curved surfaces 73 are provided on both sides of the second front flat surface 72 in the circumferential direction. The pair of front curved surfaces 73 are curved so as to gradually move away from the first wall surface 52 as they move away from the second front flat surface 72 in the circumferential direction. The front curved surface 73 is not limited to the first angular position θ1 and the second angular position θ2, but the axial direction Z so as to gradually approach or move away from the first wall surface 52 between any two angular positions spaced apart from each other in the circumferential direction. Is curved.
 図2~図4に示すように、リアロータ80は、リング状であり、回転軸12が挿通可能なリア貫通孔81を有している。リア貫通孔81は、回転軸12と同径である。リアロータ80は、リア貫通孔81に回転軸12が挿通されかつフロントロータ60と係合している。フロントロータ60とリアロータ80との係合については後述する。リアロータ80は、回転軸12の回転に伴って回転する。つまり、リアロータ80は、回転軸12と一体に回転する。リアロータ80が回転軸12と一体回転するための構成は、任意であるが、例えば、リアロータ80を回転軸12に固定した構成や、リアロータ80を回転軸12の外周に係合した構成がある。 As shown in FIGS. 2 to 4, the rear rotor 80 is ring-shaped and has a rear through hole 81 through which the rotary shaft 12 can be inserted. The rear through hole 81 has the same diameter as the rotary shaft 12. The rear rotor 80 has the rotary shaft 12 inserted through the rear through hole 81 and is engaged with the front rotor 60. The engagement between the front rotor 60 and the rear rotor 80 will be described later. The rear rotor 80 rotates as the rotating shaft 12 rotates. That is, the rear rotor 80 rotates integrally with the rotating shaft 12. The configuration for rotating the rear rotor 80 integrally with the rotary shaft 12 is arbitrary. For example, there is a configuration in which the rear rotor 80 is fixed to the rotary shaft 12 and a configuration in which the rear rotor 80 is engaged with the outer periphery of the rotary shaft 12.
 リアロータ80は、フロントロータ60よりも小さく形成されている。リアロータ80の直径は、フロントロータ60の直径よりも小さい。リアロータ80の外周面であるリアロータ外周面82は、フロントロータ外周面62よりも小径の円筒面である。リアロータ外周面82の直径はリアシリンダ内周面56と同一である。リアロータ外周面82とリアシリンダ内周面56との間には、若干の隙間があってもよい。 The rear rotor 80 is formed smaller than the front rotor 60. The diameter of the rear rotor 80 is smaller than the diameter of the front rotor 60. A rear rotor outer peripheral surface 82 which is an outer peripheral surface of the rear rotor 80 is a cylindrical surface having a smaller diameter than the front rotor outer peripheral surface 62. The diameter of the rear rotor outer peripheral surface 82 is the same as that of the rear cylinder inner peripheral surface 56. There may be a slight gap between the rear rotor outer peripheral surface 82 and the rear cylinder inner peripheral surface 56.
 図2及び図4に示すように、リアロータ80は、第2壁面53と対向する第2ロータ面としてのリアロータ面90を有している。リアロータ面90は、リング状である。リアロータ面90は、軸方向Zと直交する第1リア平坦面91及び第2リア平坦面92と、両リア平坦面91,92を繋ぐ一対のリア湾曲面93とを備えている。第1及び第2リア平坦面91,92は、第1及び第2平坦面にそれぞれ対応している。 2 and 4, the rear rotor 80 has a rear rotor surface 90 as a second rotor surface facing the second wall surface 53. The rear rotor surface 90 has a ring shape. The rear rotor surface 90 includes a first rear flat surface 91 and a second rear flat surface 92 that are orthogonal to the axial direction Z, and a pair of rear curved surfaces 93 that connect the rear flat surfaces 91 and 92. The first and second rear flat surfaces 91 and 92 correspond to the first and second flat surfaces, respectively.
 図5に示すように、両リア平坦面91,92は軸方向Zにずれている。第2リア平坦面92は、第1リア平坦面91よりも第2壁面53の近くに配置されている。第2リア平坦面92は第2壁面53に当接している。両リア平坦面91,92は、リアロータ80の周方向に離間し、180°ずれている。両リア平坦面91,92は扇状である。 As shown in FIG. 5, both rear flat surfaces 91 and 92 are displaced in the axial direction Z. The second rear flat surface 92 is disposed closer to the second wall surface 53 than the first rear flat surface 91. The second rear flat surface 92 is in contact with the second wall surface 53. Both rear flat surfaces 91 and 92 are separated from each other in the circumferential direction of the rear rotor 80 and are shifted by 180 °. Both rear flat surfaces 91 and 92 are fan-shaped.
 一対のリア湾曲面93はそれぞれ扇状である。一対のリア湾曲面93は、軸方向Zと両リア平坦面91,92の並び方向とに直交する方向に対向している。一対のリア湾曲面93のうち一方は、両リア平坦面91,92の周方向の一方の端部同士を繋いでおり、他方は、両リア平坦面91,92の周方向の他方の端部同士を繋いでいる。 The pair of rear curved surfaces 93 are each fan-shaped. The pair of rear curved surfaces 93 oppose each other in a direction orthogonal to the axial direction Z and the arrangement direction of both rear flat surfaces 91 and 92. One of the pair of rear curved surfaces 93 connects one end in the circumferential direction of both rear flat surfaces 91 and 92, and the other end of the other in the circumferential direction of both rear flat surfaces 91 and 92. Connecting each other.
 両ロータ面70,90は、それらの間に中間壁部51を配置して、軸方向Zに対向するようにそれぞれ配置されている。両ロータ面70,90間の距離は、両ロータ面70,90の角度位置や周方向位置に関わらず一定である。図5に示すように、第1フロント平坦面71と第2リア平坦面92とが軸方向Zに、第2フロント平坦面72と第1リア平坦面91とが軸方向Zにそれぞれ対向している。両フロント平坦面71,72間の軸方向Zのずれ量は、両リア平坦面91,92間のずれ量と同一である。両フロント平坦面71,72間の軸方向Zのずれ量及び両リア平坦面91,92間のずれ量を、ずれ量L1と称す。 Both the rotor surfaces 70 and 90 are disposed so as to face the axial direction Z with the intermediate wall portion 51 disposed therebetween. The distance between the two rotor surfaces 70 and 90 is constant regardless of the angular position and the circumferential position of the two rotor surfaces 70 and 90. As shown in FIG. 5, the first front flat surface 71 and the second rear flat surface 92 face each other in the axial direction Z, and the second front flat surface 72 and the first rear flat surface 91 face each other in the axial direction Z. Yes. The amount of deviation in the axial direction Z between both front flat surfaces 71 and 72 is the same as the amount of deviation between both rear flat surfaces 91 and 92. The amount of deviation in the axial direction Z between the front flat surfaces 71 and 72 and the amount of deviation between the rear flat surfaces 91 and 92 are referred to as a deviation amount L1.
 図4に示すように、フロント湾曲面73の湾曲具合は、リア湾曲面93の湾曲具合と同一である。すなわち、フロント湾曲面73とリア湾曲面93とは、その角度位置に応じて離間距離が変動しないように、同一方向にそれぞれ湾曲している。これにより、両ロータ面70,90の離間距離は、いずれの角度位置であっても一定である。両ロータ面70,90は、径が異なる点を除き、同一形状である。第1リア平坦面91、第2リア平坦面92、リア湾曲面93の形状は、第1フロント平坦面71、第2フロント平坦面72、フロント湾曲面73と同様であるため、詳細な説明を省略する。 As shown in FIG. 4, the bending state of the front curved surface 73 is the same as the curved state of the rear curved surface 93. That is, the front curved surface 73 and the rear curved surface 93 are each curved in the same direction so that the separation distance does not vary according to the angular position. Thereby, the separation distance of both rotor surfaces 70 and 90 is constant at any angular position. Both rotor surfaces 70 and 90 have the same shape except that the diameters are different. Since the shapes of the first rear flat surface 91, the second rear flat surface 92, and the rear curved surface 93 are the same as those of the first front flat surface 71, the second front flat surface 72, and the front curved surface 73, a detailed description will be given. Omitted.
 図2~図4に示すように、圧縮機10は、ベーン100と、ベーン100が挿入されるベーン溝110とを備えている。ベーン100は、両ロータ60,80と当接することで、両ロータ60,80の回転に伴って軸方向Zに移動する。ベーン100は、ベーン100の表面を回転軸12の周方向に直交させて、両ロータ60,80の間、即ち、両ロータ面70,90の間に配置されている。ベーン100は、軸方向Zと直交する方向に厚さを有する板状である。 2 to 4, the compressor 10 includes a vane 100 and a vane groove 110 into which the vane 100 is inserted. The vane 100 moves in the axial direction Z as the rotors 60 and 80 rotate by contacting the rotors 60 and 80. The vane 100 is disposed between the rotors 60 and 80, that is, between the rotor surfaces 70 and 90, with the surface of the vane 100 orthogonal to the circumferential direction of the rotating shaft 12. The vane 100 has a plate shape having a thickness in a direction orthogonal to the axial direction Z.
 ベーン100は、軸方向Zの両端部として、第1ベーン端部101及び第2ベーン端部102を有している。第1ベーン端部101はフロントロータ面70と当接し、第2ベーン端部102はリアロータ面90に当接している。 The vane 100 has a first vane end portion 101 and a second vane end portion 102 as both end portions in the axial direction Z. The first vane end portion 101 is in contact with the front rotor surface 70, and the second vane end portion 102 is in contact with the rear rotor surface 90.
 図2に示すように、ベーン溝110は、リアシリンダ50に形成されている。ベーン溝110は、中間壁部51及びリアシリンダ側壁部55の双方に跨って形成されている。ベーン溝110は、リアシリンダ50を径方向Rに貫通したスリットである。ベーン溝110の径方向Rの両端部は開口している。ベーン溝110は、中間壁部51を貫通している。ベーン溝110の軸方向Zの両端部のうちフロントロータ60側の端部は開口している。ベーン溝110の両側面は、ベーン100の両表面のうち対応する表面と対向している。ベーン溝110の幅、即ち、ベーン溝110の両側面間の距離は、ベーン100の厚さと同一又はそれよりも若干広いとよい。 As shown in FIG. 2, the vane groove 110 is formed in the rear cylinder 50. The vane groove 110 is formed across both the intermediate wall 51 and the rear cylinder side wall 55. The vane groove 110 is a slit that penetrates the rear cylinder 50 in the radial direction R. Both ends of the vane groove 110 in the radial direction R are open. The vane groove 110 passes through the intermediate wall portion 51. Of the both ends of the vane groove 110 in the axial direction Z, the end on the front rotor 60 side is open. Both side surfaces of the vane groove 110 are opposed to corresponding surfaces of both surfaces of the vane 100. The width of the vane groove 110, that is, the distance between both side surfaces of the vane groove 110 may be equal to or slightly wider than the thickness of the vane 100.
 図4に示すように、ベーン溝110は、中間壁部51からリアシリンダ側壁部55の途中まで軸方向Zに延びている。ベーン溝110は、リアロータ80の径方向外側にも存在している。ベーン溝110の軸方向Zの長さは、ベーン100の軸方向Zの長さと同一又はそれよりも長い。ベーン100がベーン溝110に挿入されることで、ベーン100の周方向への移動が規制されている。一方、ベーン100は、ベーン溝110に沿って軸方向Zに移動することが許容されている。 As shown in FIG. 4, the vane groove 110 extends in the axial direction Z from the intermediate wall 51 to the middle of the rear cylinder side wall 55. The vane groove 110 also exists on the radially outer side of the rear rotor 80. The length of the vane groove 110 in the axial direction Z is equal to or longer than the length of the vane 100 in the axial direction Z. Since the vane 100 is inserted into the vane groove 110, the movement of the vane 100 in the circumferential direction is restricted. On the other hand, the vane 100 is allowed to move in the axial direction Z along the vane groove 110.
 この構成によれば、両ロータ60,80が回転すると、ベーン100は、両ロータ面70,90上を滑りながら軸方向Zに移動する。これにより、ベーン100の第1ベーン端部101がフロント収容室A2に入り込んだり、第2ベーン端部102がリア収容室A3に入り込んだりする。一方、ベーン100は、ベーン溝110の両側面と当接することで、周方向への移動が規制されている。このため、両ロータ60,80が回転しても、ベーン100は回転しない。 According to this configuration, when both the rotors 60 and 80 rotate, the vane 100 moves in the axial direction Z while sliding on both the rotor surfaces 70 and 90. As a result, the first vane end portion 101 of the vane 100 enters the front storage chamber A2, and the second vane end portion 102 enters the rear storage chamber A3. On the other hand, the movement of the vane 100 in the circumferential direction is restricted by contacting the both side surfaces of the vane groove 110. For this reason, even if both rotors 60 and 80 rotate, the vane 100 does not rotate.
 ベーン溝110は、ベーン100を両収容室A2,A3に跨って配置可能とし、かつ両ロータ60,80が回転してもベーン100の回転を規制する。ベーン100の移動距離は、両フロント平坦面71,72間(又は両リア平坦面91,92間)の軸方向Zの変位量(ずれ量L1)である。ベーン100は、両ロータ60,80の回転中、両ロータ面70,90と継続して当接している。つまり、ベーン100は、両ロータ面70,90に対して、断続的に当接せず、定期的に離間及び当接を繰り返さない。 The vane groove 110 allows the vane 100 to be disposed across the two storage chambers A2 and A3, and restricts the rotation of the vane 100 even if both the rotors 60 and 80 rotate. The moving distance of the vane 100 is the amount of displacement (deviation L1) in the axial direction Z between the front flat surfaces 71 and 72 (or between the rear flat surfaces 91 and 92). The vane 100 is in continuous contact with both rotor surfaces 70 and 90 during the rotation of both rotors 60 and 80. That is, the vane 100 does not intermittently abut against both the rotor surfaces 70 and 90, and does not repeat separation and contact periodically.
 図4に示すように、フロント収容室A2には、フロントロータ60(フロントロータ面70)と、フロントシリンダ内周面43と、第1壁面52とによって、フロント圧縮室A4が形成されている。 As shown in FIG. 4, a front compression chamber A4 is formed in the front storage chamber A2 by a front rotor 60 (front rotor surface 70), a front cylinder inner peripheral surface 43, and a first wall surface 52.
 リア収容室A3には、リアロータ80(リアロータ面90)と、リアシリンダ内周面56と、第2壁面53とによって、リア圧縮室A5が形成されている。両圧縮室A4,A5では、回転軸12の回転に伴いベーン100によって周期的に容積変化が生じて、流体の吸入/圧縮が行われる。つまり、ベーン100は、両圧縮室A4,A5において容積変化を生じさせる。この点については後述する。 In the rear housing chamber A3, a rear compression chamber A5 is formed by the rear rotor 80 (rear rotor surface 90), the rear cylinder inner peripheral surface 56, and the second wall surface 53. In both the compression chambers A4 and A5, the volume is periodically changed by the vane 100 as the rotary shaft 12 rotates, and the fluid is sucked / compressed. That is, the vane 100 causes a volume change in both the compression chambers A4 and A5. This point will be described later.
 フロントロータ60がリアロータ80よりも大きく形成されているため、フロント圧縮室A4はリア圧縮室A5よりも大きい。すなわち、フロント圧縮室A4の最大容積は、リア圧縮室A5の最大容積よりも大きい。 Since the front rotor 60 is formed larger than the rear rotor 80, the front compression chamber A4 is larger than the rear compression chamber A5. That is, the maximum volume of the front compression chamber A4 is larger than the maximum volume of the rear compression chamber A5.
 図2及び図3に示すように、フロントロータ60には、フロント圧縮室A4にモータ室A1内の吸入流体を導入する導入ポート111が形成されている。導入ポート111は、径方向Rに長いオーバル状である。導入ポート111の形状は、これに限られず、任意である。 2 and 3, the front rotor 60 is formed with an introduction port 111 for introducing the suction fluid in the motor chamber A1 into the front compression chamber A4. The introduction port 111 has an oval shape that is long in the radial direction R. The shape of the introduction port 111 is not limited to this, and is arbitrary.
 導入ポート111は、フロントロータ60を軸方向Zに貫通している。導入ポート111は、フロントロータ60の外周端部付近に配置されている。導入ポート111は、フロント圧縮室A4の容積が大きくなる位相でフロント圧縮室A4に連通する一方、フロント圧縮室A4の容積が小さくなる位相でフロント圧縮室A4に連通しない位置に配置されている。 The introduction port 111 passes through the front rotor 60 in the axial direction Z. The introduction port 111 is disposed near the outer peripheral end of the front rotor 60. The introduction port 111 communicates with the front compression chamber A4 at a phase where the volume of the front compression chamber A4 increases, and is disposed at a position where it does not communicate with the front compression chamber A4 at a phase where the volume of the front compression chamber A4 decreases.
 導入ポート111は、第2フロント平坦面72とフロント湾曲面73との境界付近、具体的には、第2フロント平坦面72に近いフロント湾曲面73の周方向端部付近に設けられている。更に、導入ポート111は、第2フロント平坦面72に対して回転方向と反対側のフロント湾曲面73に形成されている。 The introduction port 111 is provided in the vicinity of the boundary between the second front flat surface 72 and the front curved surface 73, specifically, in the vicinity of the circumferential end of the front curved surface 73 near the second front flat surface 72. Further, the introduction port 111 is formed on the front curved surface 73 opposite to the rotation direction with respect to the second front flat surface 72.
 図2及び図3に示すように、フロントシリンダ40には、導入ポート111と連通する連通孔112が形成されている。連通孔112は、導入ポート111に対応する位置に設けられている。連通孔112は、軸方向Zから見て、フロントロータ60が回転した場合の導入ポート111の軌跡と重なる位置に形成されている。連通孔112は回転軸12の周方向に延び、4つの連通孔112が互いに周方向に離間している。これにより、フロントロータ60の回転に伴って導入ポート111の位置が変動しても、導入ポート111と連通孔112との連通が維持され易い。 As shown in FIGS. 2 and 3, the front cylinder 40 is formed with a communication hole 112 communicating with the introduction port 111. The communication hole 112 is provided at a position corresponding to the introduction port 111. The communication hole 112 is formed at a position overlapping the locus of the introduction port 111 when the front rotor 60 rotates as viewed from the axial direction Z. The communication holes 112 extend in the circumferential direction of the rotating shaft 12, and the four communication holes 112 are separated from each other in the circumferential direction. Thereby, even if the position of the introduction port 111 fluctuates as the front rotor 60 rotates, the communication between the introduction port 111 and the communication hole 112 is easily maintained.
 リアロータ80には、リア圧縮室A5で圧縮された圧縮流体を吐出する吐出ポート113が形成されている。吐出ポート113は、リアロータ80を軸方向Zに貫通している。吐出ポート113は、導入ポート111よりも小さく形成されている。吐出ポート113は、円形である。吐出ポート113の形状は、これに限られず、任意である。 The rear rotor 80 is formed with a discharge port 113 for discharging the compressed fluid compressed in the rear compression chamber A5. The discharge port 113 passes through the rear rotor 80 in the axial direction Z. The discharge port 113 is formed smaller than the introduction port 111. The discharge port 113 is circular. The shape of the discharge port 113 is not limited to this, and is arbitrary.
 吐出ポート113は、リア圧縮室A5の容積が小さくなる位相でリア圧縮室A5に連通する一方、リア圧縮室A5の容積が大きくなる位相でリア圧縮室A5に連通しない位置に配置されている。吐出ポート113は、第2リア平坦面92とリア湾曲面93との境界付近、具体的には、第2リア平坦面92に近いリア湾曲面93の周方向端部に設けられている。更に、吐出ポート113は、第2リア平坦面92に対して回転方向側にあるリア湾曲面93に形成されている。 The discharge port 113 communicates with the rear compression chamber A5 at a phase where the volume of the rear compression chamber A5 decreases, and is disposed at a position where it does not communicate with the rear compression chamber A5 at a phase where the volume of the rear compression chamber A5 increases. The discharge port 113 is provided near the boundary between the second rear flat surface 92 and the rear curved surface 93, specifically, at the circumferential end of the rear curved surface 93 close to the second rear flat surface 92. Further, the discharge port 113 is formed on the rear curved surface 93 on the rotation direction side with respect to the second rear flat surface 92.
 軸方向Zから見て、導入ポート111は、両ロータ60,80の中心を通りかつ両平坦面71,72の並び方向に延びる中心線を基準に、吐出ポート113と反対側でなく、吐出ポート113と同じ側に配置されている。導入ポート111及び吐出ポート113の位置は任意である。吐出ポート113を塞ぐと共に規定圧力が付与されたことに基づいて吐出ポート113を開放させる吐出弁が設けてもよい。吐出弁は必須でない。 When viewed from the axial direction Z, the introduction port 111 is not on the opposite side of the discharge port 113 with respect to a center line passing through the centers of the rotors 60 and 80 and extending in the direction in which the flat surfaces 71 and 72 are arranged. It is arranged on the same side as 113. The positions of the introduction port 111 and the discharge port 113 are arbitrary. A discharge valve that closes the discharge port 113 and opens the discharge port 113 based on the application of the specified pressure may be provided. A discharge valve is not essential.
 図1に示すように、圧縮機10は、吐出ポート113から吐出された圧縮流体が流れ込む吐出室A6と、吐出室A6と吐出口11bとを繋ぐ吐出流路114とを備えている。吐出室A6は、リアシリンダ50とリアハウジング22とによって形成されている。吐出室A6は、吐出ポート113とリアハウジング22との間に配置されている。吐出室A6は、軸方向Zから見て、リアロータ80の回転に伴う吐出ポート113の軌跡と重なるようにリング状に形成されている。これにより、リアロータ80の角度位置に応じて、吐出ポート113と吐出室A6とが連通しない事態を抑制できる。この構成によれば、吐出ポート113から吐出される流体は、吐出室A6及び吐出流路114を介して吐出口11bから吐出される。 As shown in FIG. 1, the compressor 10 includes a discharge chamber A6 into which the compressed fluid discharged from the discharge port 113 flows, and a discharge flow path 114 that connects the discharge chamber A6 and the discharge port 11b. The discharge chamber A6 is formed by the rear cylinder 50 and the rear housing 22. The discharge chamber A6 is disposed between the discharge port 113 and the rear housing 22. The discharge chamber A6 is formed in a ring shape so as to overlap the locus of the discharge port 113 as the rear rotor 80 rotates as viewed from the axial direction Z. Thereby, according to the angular position of the rear rotor 80, the situation where the discharge port 113 and discharge chamber A6 do not communicate can be suppressed. According to this configuration, the fluid discharged from the discharge port 113 is discharged from the discharge port 11b via the discharge chamber A6 and the discharge flow path 114.
 圧縮機10は、両圧縮室A4,A5が連通している連通状態と両圧縮室A4,A5が連通していない非連通状態とに切り替わる連通機構120を備えている。連通機構120の詳細な構成について以下説明する。 The compressor 10 includes a communication mechanism 120 that switches between a communication state in which both compression chambers A4 and A5 are in communication and a non-communication state in which both compression chambers A4 and A5 are not in communication. A detailed configuration of the communication mechanism 120 will be described below.
 図2~図4に示すように、連通機構120は、フロントロータ60に設けられた第1ボス部としてのフロントボス部121と、第1係合部としてのフロントロータリバルブ122と、リアロータ80に設けられた第2ボス部としてのリアボス部123と、第2係合部としてのリアロータリバルブ124とを備えている。 As shown in FIGS. 2 to 4, the communication mechanism 120 includes a front boss portion 121 as a first boss portion provided in the front rotor 60, a front rotary valve 122 as a first engagement portion, and a rear rotor 80. A rear boss portion 123 as a second boss portion provided and a rear rotary valve 124 as a second engagement portion are provided.
 フロントボス部121は、フロントロータ面70からリアロータ80に向けて突出している。フロントボス部121は、第2フロント平坦面72よりもリアロータ面90に向けて突出している。フロントボス部121は、フロントロータ面70の内周端部に設けられた円筒からなる。回転軸12は、フロントボス部121に挿通されている。フロントボス部121の外径は、壁部貫通孔54の径と略同一である。フロントボス部121は、第1壁面52から壁部貫通孔54に摺動可能な状態で嵌合している。 The front boss 121 protrudes from the front rotor surface 70 toward the rear rotor 80. The front boss portion 121 protrudes toward the rear rotor surface 90 rather than the second front flat surface 72. The front boss portion 121 is formed of a cylinder provided at the inner peripheral end portion of the front rotor surface 70. The rotating shaft 12 is inserted through the front boss portion 121. The outer diameter of the front boss 121 is substantially the same as the diameter of the wall through hole 54. The front boss portion 121 is fitted in a slidable state from the first wall surface 52 to the wall portion through hole 54.
 図3に示すように、フロントロータリバルブ122は、フロントボス部121の先端面からリアロータ80に向けて突出している。2つのフロントロータリバルブ122が、周方向に離間する位置に設けられている。 As shown in FIG. 3, the front rotary valve 122 protrudes from the front end surface of the front boss portion 121 toward the rear rotor 80. Two front rotary valves 122 are provided at positions separated in the circumferential direction.
 両フロントロータリバルブ122は扇状である。両フロントロータリバルブ122の内周面は、フロントボス部121の内周面と面一であり、回転軸12の外周面と当接している。両フロントロータリバルブ122の外周面は、フロントボス部121の外周面と面一である。 Both front rotary valves 122 are fan-shaped. The inner peripheral surfaces of both front rotary valves 122 are flush with the inner peripheral surface of the front boss portion 121 and are in contact with the outer peripheral surface of the rotating shaft 12. The outer peripheral surfaces of both front rotary valves 122 are flush with the outer peripheral surface of the front boss portion 121.
 図2及び図4に示すように、リアボス部123は、リアロータ面90からフロントロータ60に向けて突出している。リアボス部123は、第2リア平坦面92よりもフロントロータ面70に向けて突出している。リアボス部123は、リアロータ面90の内周端部に設けられた円筒からなる。回転軸12は、リアボス部123に挿通されている。リアボス部123の外径は、壁部貫通孔54の径と略同一である。リアボス部123は、第2壁面53から壁部貫通孔54に摺動可能な状態で嵌合している。 2 and 4, the rear boss portion 123 protrudes from the rear rotor surface 90 toward the front rotor 60. The rear boss portion 123 protrudes toward the front rotor surface 70 from the second rear flat surface 92. The rear boss portion 123 is formed of a cylinder provided at the inner peripheral end portion of the rear rotor surface 90. The rotating shaft 12 is inserted through the rear boss portion 123. The outer diameter of the rear boss portion 123 is substantially the same as the diameter of the wall portion through hole 54. The rear boss portion 123 is fitted in a slidable state from the second wall surface 53 to the wall portion through hole 54.
 リアロータリバルブ124は、リアボス部123の先端面からフロントロータ60に向けて突出している。リアロータリバルブ124は、湾曲した内周面及び外周面を有する柱状体からなる。リアロータリバルブ124の内周面は、リアボス部123の内周面と面一であり、回転軸12の外周面と当接している。リアロータリバルブ124の外周面は、両フロントロータリバルブ122の外周面と面一である。リアロータリバルブ124の周方向の長さは、両フロントロータリバルブ122の周方向の離間距離と同じである。 The rear rotary valve 124 protrudes from the front end surface of the rear boss portion 123 toward the front rotor 60. The rear rotary valve 124 is a columnar body having a curved inner peripheral surface and outer peripheral surface. The inner peripheral surface of the rear rotary valve 124 is flush with the inner peripheral surface of the rear boss portion 123 and is in contact with the outer peripheral surface of the rotating shaft 12. The outer peripheral surface of the rear rotary valve 124 is flush with the outer peripheral surfaces of both front rotary valves 122. The circumferential length of the rear rotary valve 124 is the same as the circumferential distance between the front rotary valves 122.
 図5及び図6に示すように、リアロータリバルブ124は、2つのフロントロータリバルブ122に対して周方向に係合している。リアロータリバルブ124は、2つのフロントロータリバルブ122によって周方向から挟まれることで、両ロータリバルブ122の間に嵌合されている。両ロータリバルブ122,124が嵌合することで、両ロータ60,80の周方向の相対位置が規定されている。 5 and 6, the rear rotary valve 124 is engaged with the two front rotary valves 122 in the circumferential direction. The rear rotary valve 124 is fitted between the two rotary valves 122 by being sandwiched between the two front rotary valves 122 from the circumferential direction. When the rotary valves 122 and 124 are fitted, the relative positions in the circumferential direction of the rotors 60 and 80 are defined.
 両フロントロータリバルブ122とリアロータリバルブ124とによって、1つの扇状の連結バルブ125が形成されている。連結バルブ125は、壁部貫通孔54内に配置されている。両ロータリバルブ122,124は、壁部貫通孔54内で互いに係合している。 The two front rotary valves 122 and the rear rotary valve 124 form a single fan-like connecting valve 125. The connection valve 125 is disposed in the wall through hole 54. Both rotary valves 122 and 124 are engaged with each other in the wall through hole 54.
 連結バルブ125は、閉じたリング状ではなく、扇状である。このため、壁部貫通孔54内には、流体の移動が可能な開放空間126が形成されている。開放空間126は、回転軸12と、壁部貫通孔54の内周面である壁部内周面54aとの間に形成されている。開放空間126は、連結バルブ125の周方向の両端面と、回転軸12の外周面と、壁部内周面54aとによって形成されている。 The connecting valve 125 is not a closed ring shape but a fan shape. For this reason, an open space 126 in which fluid can move is formed in the wall portion through hole 54. The open space 126 is formed between the rotating shaft 12 and the wall inner peripheral surface 54 a that is the inner peripheral surface of the wall through hole 54. The open space 126 is formed by both end surfaces of the connection valve 125 in the circumferential direction, the outer peripheral surface of the rotating shaft 12, and the wall inner peripheral surface 54a.
 連結バルブ125は、壁部貫通孔54の直径と同一径のバルブ外周面125aを有している。バルブ外周面125aは、両ロータリバルブ122,124の外周面によって構成されている。両ロータリバルブ122,124の外周面は面一であるため、バルブ外周面125aは連続する1つの周面となる。バルブ外周面125aは、壁部貫通孔54の壁部内周面54aと当接している。壁部内周面54aは、リング状に形成された中間壁部51の内周面でもある。 The connecting valve 125 has a valve outer peripheral surface 125 a having the same diameter as the wall through hole 54. The valve outer peripheral surface 125 a is configured by the outer peripheral surfaces of both rotary valves 122 and 124. Since the outer peripheral surfaces of the rotary valves 122 and 124 are flush with each other, the valve outer peripheral surface 125a becomes one continuous peripheral surface. The valve outer peripheral surface 125 a is in contact with the wall inner peripheral surface 54 a of the wall through hole 54. The wall inner peripheral surface 54a is also an inner peripheral surface of the intermediate wall portion 51 formed in a ring shape.
 連通機構120は、両圧縮室A4,A5を連通させる連通流路130を備えている。連通流路130は、フロント側開口部131と、リア側開口部132と、連通溝133とを有している。 The communication mechanism 120 includes a communication channel 130 that allows the compression chambers A4 and A5 to communicate with each other. The communication flow path 130 includes a front side opening 131, a rear side opening 132, and a communication groove 133.
 図5に示すように、フロント側開口部131及びリア側開口部132は、中間壁部51に形成されている。両開口部131,132は、両ロータ60,80の周方向に離間している。フロント側開口部131及びリア側開口部132は、ベーン100の両側に配置されている。フロント側開口部131は、両ロータ60,80の回転方向と反対側に位置するベーン100の一方の面上に、リア側開口部132は、両ロータ60,80の回転方向側に位置するベーン100の他方の面上にそれぞれ形成されている。両開口部131,132は、ベーン溝110と連通している。 As shown in FIG. 5, the front side opening 131 and the rear side opening 132 are formed in the intermediate wall 51. Both openings 131 and 132 are spaced apart from each other in the circumferential direction of the rotors 60 and 80. The front side opening 131 and the rear side opening 132 are disposed on both sides of the vane 100. The front opening 131 is on one surface of the vane 100 located on the opposite side of the rotation direction of the rotors 60 and 80, and the rear opening 132 is a vane located on the rotation direction of the rotors 60 and 80. It is formed on the other surface of 100, respectively. Both openings 131 and 132 communicate with the vane groove 110.
 図3に示すように、フロント側開口部131は、フロント圧縮室A4及び壁部貫通孔54に向けて開口している。フロント側開口部131は、中間壁部51における第1壁面52及び壁部内周面54aの双方に形成されている。フロント側開口部131は、フロント圧縮室A4の流体を壁部貫通孔54に流入させるように構成されている。 As shown in FIG. 3, the front opening 131 opens toward the front compression chamber A4 and the wall through hole 54. The front opening 131 is formed on both the first wall surface 52 and the wall inner peripheral surface 54a of the intermediate wall 51. The front opening 131 is configured to allow the fluid in the front compression chamber A4 to flow into the wall through hole 54.
 フロント側開口部131は、第2壁面53に形成されていない。つまり、フロント側開口部131は、軸方向Zに中間壁部51を貫通しておらず、フロント圧縮室A4とリア圧縮室A5とを直接連通していない。 The front opening 131 is not formed on the second wall surface 53. That is, the front opening 131 does not penetrate the intermediate wall 51 in the axial direction Z, and does not directly communicate with the front compression chamber A4 and the rear compression chamber A5.
 図2に示すように、リア側開口部132は、リア圧縮室A5及び壁部貫通孔54に向けて開口している。リア側開口部132は、中間壁部51における第2壁面53及び壁部内周面54aの双方に形成されている。リア側開口部132は、リア圧縮室A5の流体を壁部貫通孔54に流入させるように構成されている。一方、リア側開口部132は、第1壁面52に形成されていない。つまり、リア側開口部132は、軸方向Zに中間壁部51を貫通しておらず、フロント圧縮室A4とリア圧縮室A5とを直接連通していない。 As shown in FIG. 2, the rear side opening 132 opens toward the rear compression chamber A5 and the wall through hole 54. The rear side opening 132 is formed on both the second wall surface 53 and the wall portion inner peripheral surface 54 a of the intermediate wall portion 51. The rear opening 132 is configured to allow the fluid in the rear compression chamber A5 to flow into the wall through hole 54. On the other hand, the rear side opening 132 is not formed in the first wall surface 52. That is, the rear side opening 132 does not penetrate the intermediate wall 51 in the axial direction Z, and does not directly connect the front compression chamber A4 and the rear compression chamber A5.
 図5に示すように、フロント側開口部131は、半U字状であり、径方向Rに延びている。リア側開口部132は、フロント側開口部131と対称の半U字状である。両開口部131,132の形状は、これに限られず、任意である。ベーン100は、フロント側開口部131とリア側開口部132とを仕切る。ベーン100は、フロント側開口部131からリア側開口部132に向けて流体が直接流れることを規制する。 As shown in FIG. 5, the front side opening 131 has a semi-U shape and extends in the radial direction R. The rear side opening 132 has a semi-U shape symmetrical to the front side opening 131. The shape of both opening parts 131 and 132 is not restricted to this, but is arbitrary. The vane 100 partitions the front side opening 131 and the rear side opening 132. The vane 100 restricts fluid from flowing directly from the front opening 131 toward the rear opening 132.
 連通溝133は、壁部内周面54aから径方向外側に凹んだ部分である。連通溝133は、ベーン100を迂回するように壁部内周面54aにおけるフロント側開口部131とリア側開口部132との間に配置されている。連通溝133は、壁部内周面54aの周方向に延びている。連通溝133は、リア側開口部132に連通し、開放空間126に連通している。壁部内周面54aの周方向は、両ロータ60,80の周方向と一致している。このため、壁部内周面54aの周方向は、両ロータ60,80の周方向とも言える。 The communication groove 133 is a portion recessed radially outward from the wall inner peripheral surface 54a. The communication groove 133 is disposed between the front-side opening 131 and the rear-side opening 132 in the wall inner peripheral surface 54 a so as to bypass the vane 100. The communication groove 133 extends in the circumferential direction of the wall inner peripheral surface 54a. The communication groove 133 communicates with the rear side opening 132 and communicates with the open space 126. The circumferential direction of the wall inner peripheral surface 54a coincides with the circumferential direction of both rotors 60 and 80. For this reason, it can be said that the circumferential direction of the wall inner peripheral surface 54 a is also the circumferential direction of both rotors 60 and 80.
 一方、連通溝133は、フロント側開口部131と直接連通していない。連通溝133とフロント側開口部131とは、壁部内周面54aの周方向に離間している。このため、流体は、フロント側開口部131から連通溝133に直接流入しない。壁部内周面54aにおける連通溝133とフロント側開口部131との間には、連通溝133が形成されておらず、溝なし面54aaが存在している。 On the other hand, the communication groove 133 is not in direct communication with the front side opening 131. The communication groove 133 and the front side opening 131 are separated from each other in the circumferential direction of the wall inner peripheral surface 54a. For this reason, the fluid does not flow directly into the communication groove 133 from the front side opening 131. Between the communication groove 133 and the front side opening 131 on the wall inner peripheral surface 54a, the communication groove 133 is not formed, and a grooveless surface 54aa exists.
 図5は、連結バルブ125がフロント側開口部131の径方向内側に配置されている場合を示す。この場合、連結バルブ125は、フロント側開口部131の径方向内側の開口部分を塞ぐ。これにより、フロント側開口部131から連通溝133に向かう流体の流入が規制される。したがって、両圧縮室A4,A5は連通していない非連通状態となる。特に、連結バルブ125が溝なし面54aaに対して径方向内側に配置されている場合、連結バルブ125のバルブ外周面125aが溝なし面54aaに当接している。これにより、フロント側開口部131から連通溝133に向かう流体の漏れが規制されている。 FIG. 5 shows a case where the connecting valve 125 is disposed on the radially inner side of the front opening 131. In this case, the connection valve 125 closes the opening portion on the radially inner side of the front side opening 131. As a result, the inflow of fluid from the front side opening 131 toward the communication groove 133 is restricted. Therefore, both compression chambers A4 and A5 are in a non-communication state where they are not in communication. In particular, when the connection valve 125 is disposed radially inward with respect to the grooveless surface 54aa, the valve outer peripheral surface 125a of the connection valve 125 is in contact with the grooveless surface 54aa. As a result, fluid leakage from the front opening 131 toward the communication groove 133 is restricted.
 図6は、連結バルブ125がフロント側開口部131に対して両ロータ60,80の周方向に移動した場合を示す。この場合、連結バルブ125は、フロント側開口部131の径方向内側の開口部分を塞がない。これにより、開放空間126を介して、フロント側開口部131から連通溝133に向かう流体の流入が許容されている。したがって、フロント圧縮室A4の流体は、フロント側開口部131→開放空間126→連通溝133→リア側開口部132を通って、リア圧縮室A5に移動する。従って、両圧縮室A4,A5が連通している連通状態となる。 FIG. 6 shows a case where the connecting valve 125 moves in the circumferential direction of the rotors 60 and 80 with respect to the front opening 131. In this case, the connecting valve 125 does not block the opening portion on the radially inner side of the front opening 131. Thereby, the inflow of the fluid from the front side opening 131 toward the communication groove 133 is allowed through the open space 126. Therefore, the fluid in the front compression chamber A4 moves to the rear compression chamber A5 through the front side opening 131 → the open space 126 → the communication groove 133 → the rear side opening 132. Accordingly, a communication state is established in which both compression chambers A4 and A5 are in communication.
 連結バルブ125は、両ロータ60,80の角度位置に応じて、フロント側開口部131を塞ぐ閉鎖位置と、フロント側開口部131を開放する開放位置との間を移動する。連結バルブ125が開放位置に移動すると、開放空間126を介してフロント側開口部131と連通溝133とが連通する。 The connection valve 125 moves between a closed position that closes the front opening 131 and an open position that opens the front opening 131 according to the angular position of the rotors 60 and 80. When the connection valve 125 moves to the open position, the front side opening 131 and the communication groove 133 communicate with each other through the open space 126.
 この構成では、バルブ外周面125aの周方向の長さ(連結バルブ125が占める角度範囲)によって、両ロータ60,80の回転の1周期のうちフロント圧縮室A4とリア圧縮室A5との連通期間が規定される。また、連結バルブ125の角度位置によって、両ロータ60,80の回転の1周期のうち両圧縮室A4,A5が連通するタイミングが規定される。したがって、連結バルブ125の角度位置やバルブ外周面125aの周方向の長さを調整すれば、両圧縮室A4,A5が連通するタイミングや連通期間が調整される。 In this configuration, the communication period between the front compression chamber A4 and the rear compression chamber A5 in one cycle of rotation of the rotors 60 and 80 depending on the circumferential length of the valve outer peripheral surface 125a (the angle range occupied by the connecting valve 125). Is defined. The timing at which the two compression chambers A4 and A5 communicate with each other in one rotation period of the rotors 60 and 80 is defined by the angular position of the connection valve 125. Therefore, by adjusting the angular position of the connecting valve 125 and the circumferential length of the valve outer peripheral surface 125a, the timing and communication period at which the compression chambers A4 and A5 communicate with each other can be adjusted.
 図4及び図5に示すように、ベーン100の径方向内側の端面である内側端面103は、両ボス部121,123の外周面及びバルブ外周面125aに当接している。両ボス部121,123の外周面は面一であり、両ボス部121,123の外周面はバルブ外周面125aと面一であり、両ロータリバルブ122,124の外周面は面一である。ベーン100の内側端面103は、両ボス部121,123の外周面及びバルブ外周面125aと同一曲率で湾曲した凹面である。よって、ベーン100の内側端面103は、両ボス部121,123の外周面及びバルブ外周面125aと面接触している。 As shown in FIGS. 4 and 5, the inner end surface 103, which is the end surface on the radially inner side of the vane 100, is in contact with the outer peripheral surfaces of the boss portions 121 and 123 and the valve outer peripheral surface 125a. The outer peripheral surfaces of both boss portions 121 and 123 are flush, the outer peripheral surfaces of both boss portions 121 and 123 are flush with the valve outer circumferential surface 125a, and the outer circumferential surfaces of both rotary valves 122 and 124 are flush. The inner end surface 103 of the vane 100 is a concave surface curved with the same curvature as the outer peripheral surfaces of the boss portions 121 and 123 and the valve outer peripheral surface 125a. Therefore, the inner end surface 103 of the vane 100 is in surface contact with the outer peripheral surfaces of the boss portions 121 and 123 and the valve outer peripheral surface 125a.
 ベーン100の径方向外側の端面である外側端面104は、リアシリンダ50の第1パーツ面57aと面一である。ベーン100の外側端面104は、フロントシリンダ40のフロントシリンダ内周面43と当接している。ベーン100は、両ボス部121,123の外周面及びバルブ外周面125aと、フロントシリンダ内周面43とによって径方向Rから挟まれている。これにより、ベーン100の径方向Rの位置ずれを抑制できる。また、ベーン100(内側端面103)と両ボス部121,123の外周面及びバルブ外周面125aとの間の境界部分、又は、ベーン100(外側端面104)とフロントシリンダ内周面43との間の境界部分から流体が漏れることを抑制できる。 The outer end surface 104 which is the end surface on the radially outer side of the vane 100 is flush with the first part surface 57a of the rear cylinder 50. The outer end surface 104 of the vane 100 is in contact with the front cylinder inner peripheral surface 43 of the front cylinder 40. The vane 100 is sandwiched from the radial direction R by the outer peripheral surfaces of both the boss portions 121 and 123, the valve outer peripheral surface 125a, and the front cylinder inner peripheral surface 43. Thereby, the position shift of the radial direction R of the vane 100 can be suppressed. Further, a boundary portion between the vane 100 (inner end surface 103) and the outer peripheral surfaces of the boss portions 121 and 123 and the valve outer peripheral surface 125a, or between the vane 100 (outer end surface 104) and the front cylinder inner peripheral surface 43. The fluid can be prevented from leaking from the boundary portion.
 両ベーン端部101,102及び両湾曲面73,93について、図2~図4に加えて、図7~図13を用いて詳細に説明する。図8,図12,図13は、曲率変化や当接線の湾曲具合を模式的に示す。 Both vane end portions 101 and 102 and both curved surfaces 73 and 93 will be described in detail with reference to FIGS. 7 to 13 in addition to FIGS. 8, FIG. 12, and FIG. 13 schematically show the curvature change and the curve of the contact line.
 図8は、角度位置に応じたフロントロータ面70の軸方向Zの変位を示すグラフである。図8の実線は、フロントロータ面70の内周端の軸方向Zの変位を示す。図8の一点鎖線は、フロントロータ面70の外周端の軸方向Zの変位を示す。図8のグラフの縦軸は、第1フロント平坦面71を基準とする軸方向Zの変位量を示す。図8中、軸方向Zの変位が「0」から離れるほど、フロントロータ面70が第1壁面52に近づいていることを示す。 FIG. 8 is a graph showing the displacement in the axial direction Z of the front rotor surface 70 according to the angular position. The solid line in FIG. 8 indicates the displacement in the axial direction Z of the inner peripheral end of the front rotor surface 70. A one-dot chain line in FIG. 8 indicates the displacement in the axial direction Z of the outer peripheral end of the front rotor surface 70. The vertical axis of the graph in FIG. 8 indicates the amount of displacement in the axial direction Z with respect to the first front flat surface 71. In FIG. 8, the front rotor surface 70 approaches the first wall surface 52 as the displacement in the axial direction Z increases from “0”.
 図8は、リアロータ面90の軸方向Zの変位を示すグラフとも言える。この場合、図8の実線は、リアロータ面90の内周端の軸方向Zの変位を示す。図8の一点鎖線は、リアロータ面90の外周端の軸方向Zの変位を示す。図8のグラフの縦軸は、第1リア平坦面91を基準とする軸方向Zの変位量を示す。図8中、軸方向Zの変位が「0」から離れるほど、リアロータ面90が第2壁面53に近づいていることを示す。 FIG. 8 can also be said to be a graph showing the displacement of the rear rotor surface 90 in the axial direction Z. In this case, the solid line in FIG. 8 indicates the displacement in the axial direction Z of the inner peripheral end of the rear rotor surface 90. A one-dot chain line in FIG. 8 indicates the displacement in the axial direction Z of the outer peripheral end of the rear rotor surface 90. The vertical axis of the graph in FIG. 8 indicates the amount of displacement in the axial direction Z with respect to the first rear flat surface 91. In FIG. 8, the rear rotor surface 90 approaches the second wall surface 53 as the displacement in the axial direction Z increases from “0”.
 図7に示すように、両ベーン端部101,102は、両ベーン端部101,102が互いに離れる方向に凸となった湾曲形状である。第1ベーン端部101は、フロントロータ面70に向けて凸となるように湾曲し、第2ベーン端部102は、リアロータ面90に向けて凸となるように湾曲している。両ベーン端部101,102は、軸方向Zと直交する鉛直方向に延び、軸方向Zに傾斜していない。 As shown in FIG. 7, both vane end portions 101 and 102 have a curved shape that is convex in a direction in which both vane end portions 101 and 102 are separated from each other. The first vane end portion 101 is curved so as to be convex toward the front rotor surface 70, and the second vane end portion 102 is curved so as to be convex toward the rear rotor surface 90. Both vane end portions 101 and 102 extend in a vertical direction orthogonal to the axial direction Z and are not inclined in the axial direction Z.
 ベーン端部101,102は、軸方向Zに湾曲している湾曲面73,93に対して線状に当接している。ベーン端部101,102と湾曲面73,93との当接箇所は、湾曲面73,93の軸方向Zに対する湾曲具合、詳細には、湾曲面73,93の曲率に応じて、ずれる。 The vane end portions 101 and 102 are in linear contact with the curved surfaces 73 and 93 that are curved in the axial direction Z. The contact portions between the vane end portions 101 and 102 and the curved surfaces 73 and 93 are shifted in accordance with the degree of bending of the curved surfaces 73 and 93 with respect to the axial direction Z, specifically, the curvature of the curved surfaces 73 and 93.
 次に、両湾曲面73,93について説明する。以下、フロントロータ面70について説明するが、リアロータ面90についても同様である。
 両フロント平坦面71,72は、軸方向Zに直交する平面である。このため、両フロント平坦面71,72の内周端及び外周端は、角度位置に関わらず、変位しない。図8中、0°付近が第2フロント平坦面72に対応し、180°付近が第1フロント平坦面71に対応する。
Next, both curved surfaces 73 and 93 will be described. Hereinafter, the front rotor surface 70 will be described, but the same applies to the rear rotor surface 90.
Both front flat surfaces 71 and 72 are planes orthogonal to the axial direction Z. For this reason, the inner peripheral end and the outer peripheral end of both front flat surfaces 71 and 72 are not displaced regardless of the angular position. In FIG. 8, the vicinity of 0 ° corresponds to the second front flat surface 72, and the vicinity of 180 ° corresponds to the first front flat surface 71.
 図4及び図8に示すように、フロント湾曲面73は、第1壁面52に向けて凹となるように軸方向Zに湾曲しているフロント凹面74と、第1壁面52に向けて凸となるように軸方向Zに湾曲しているフロント凸面75とを有している。 As shown in FIGS. 4 and 8, the front curved surface 73 has a front concave surface 74 that is curved in the axial direction Z so as to be concave toward the first wall surface 52, and a convex toward the first wall surface 52. And a front convex surface 75 that is curved in the axial direction Z.
 フロント凹面74は、第2フロント平坦面72よりも第1フロント平坦面71の近くに配置され、かつ第1フロント平坦面71と連続している。フロント凸面75は、第1フロント平坦面71よりも第2フロント平坦面72の近くに配置され、第2フロント平坦面72と連続している。フロント凹面74は、フロント凸面75と繋がっている。フロント湾曲面73は、変曲点(変曲角度位置)θmを有する。 The front concave surface 74 is disposed closer to the first front flat surface 71 than the second front flat surface 72 and is continuous with the first front flat surface 71. The front convex surface 75 is disposed closer to the second front flat surface 72 than the first front flat surface 71 and is continuous with the second front flat surface 72. The front concave surface 74 is connected to the front convex surface 75. The front curved surface 73 has an inflection point (inflection angle position) θm.
 フロント凹面74が占める角度範囲は、フロント凸面75が占める角度範囲と同一であり、90°及び270°の角度位置が変曲点θmにそれぞれ相当する。両角度範囲は、異なっていてもよいし、変曲点θmは、上記角度位置に限られず、任意である。 The angle range occupied by the front concave surface 74 is the same as the angle range occupied by the front convex surface 75, and the angular positions of 90 ° and 270 ° respectively correspond to the inflection points θm. Both the angular ranges may be different, and the inflection point θm is not limited to the angular position and is arbitrary.
 図9に示すように、フロント凹面74は、径方向Rの両端として、フロント凹面内周端74a及びフロント凹面外周端74bを備えている。同様に、フロント凸面75は、径方向Rの両端として、フロント凸面内周端75a及びフロント凸面外周端75bを備えている。両内周端74a,75a及び両外周端74b,75bはいずれも円弧状である。 As shown in FIG. 9, the front concave surface 74 includes a front concave inner peripheral end 74 a and a front concave outer peripheral end 74 b as both ends in the radial direction R. Similarly, the front convex surface 75 includes, as both ends in the radial direction R, a front convex inner peripheral end 75a and a front convex outer peripheral end 75b. Both inner peripheral ends 74a, 75a and both outer peripheral ends 74b, 75b are arcuate.
 両内周端74a,75aは、フロント湾曲面73の内周端を構成している。両内周端74a,75aの径は、フロントボス部121の外径と同一である。両内周端74a,75aは互いに繋がっている。フロント凹面内周端74aは、第1フロント平坦面71の内周端に繋がっており、フロント凸面内周端75aは、第2フロント平坦面72の内周端に繋がっている。図8の実線で示すように、フロントロータ面70の内周端の軸方向Zの変位波形は、滑らかな曲線となる。 Both the inner peripheral ends 74 a and 75 a constitute the inner peripheral end of the front curved surface 73. The diameters of both inner peripheral ends 74 a and 75 a are the same as the outer diameter of the front boss portion 121. Both inner peripheral ends 74a and 75a are connected to each other. The front concave inner peripheral end 74 a is connected to the inner peripheral end of the first front flat surface 71, and the front convex inner peripheral end 75 a is connected to the inner peripheral end of the second front flat surface 72. As indicated by the solid line in FIG. 8, the displacement waveform in the axial direction Z of the inner peripheral end of the front rotor surface 70 is a smooth curve.
 両外周端74b,75bは、フロント湾曲面73の外周端を構成している。両外周端74b,75bは互いに繋がっている。フロント凹面外周端74bは、第1フロント平坦面71の外周端に繋がっており、フロント凸面外周端75bは、第2フロント平坦面72の外周端に繋がっている。図8の一点鎖線で示すように、フロントロータ面70の外周端の軸方向Zの変位波形は、滑らかな曲線となる。 Both the outer peripheral ends 74 b and 75 b constitute the outer peripheral end of the front curved surface 73. Both outer peripheral ends 74b and 75b are connected to each other. The front concave outer peripheral end 74 b is connected to the outer peripheral end of the first front flat surface 71, and the front convex outer peripheral end 75 b is connected to the outer peripheral end of the second front flat surface 72. As indicated by the one-dot chain line in FIG. 8, the displacement waveform in the axial direction Z of the outer peripheral end of the front rotor surface 70 is a smooth curve.
 ここで、内周端74a,75aと外周端74b,75bとで、角度位置に応じた軸方向Zの変位具合を示す曲率が変化している。以降の説明で、曲率は、軸方向Zに対する曲率を意味し、曲率半径は、軸方向Zに対する曲率の曲率半径を意味する。つまり、曲率及び曲率半径は、軸方向Zに対する変位を示すパラメータであり、例えば、軸方向Zから見た両内周端74a,75a及び両外周端74b,75bの円弧の曲率及び曲率半径を示すものではない。 Here, the curvature indicating the degree of displacement in the axial direction Z according to the angular position is changed between the inner peripheral ends 74a and 75a and the outer peripheral ends 74b and 75b. In the following description, the curvature means the curvature with respect to the axial direction Z, and the curvature radius means the curvature radius of the curvature with respect to the axial direction Z. That is, the curvature and the radius of curvature are parameters indicating the displacement with respect to the axial direction Z. For example, the curvature and the radius of curvature of the arcs of the inner peripheral ends 74a and 75a and the outer peripheral ends 74b and 75b viewed from the axial direction Z are shown. It is not a thing.
 詳細には、フロント凹面内周端74aの曲率半径は、フロント凹面外周端74bの曲率半径よりも小さい。図8に示すように、角度変化(位相)に対するフロント凹面内周端74aの軸方向Zの変位曲線の曲率は、角度変化に対するフロント凹面外周端74bの軸方向Zの変位曲線の曲率よりも小さい。これにより、フロント凹面74においては、第1フロント平坦面71から変曲点θmに向かうに従って、フロント凹面外周端74bとフロント凹面内周端74aとの軸方向Zの差が徐々に大きくなる。 Specifically, the curvature radius of the front concave inner peripheral edge 74a is smaller than the curvature radius of the front concave outer peripheral edge 74b. As shown in FIG. 8, the curvature of the displacement curve in the axial direction Z of the front concave inner peripheral edge 74a with respect to the angle change (phase) is smaller than the curvature of the displacement curve in the axial direction Z of the front concave outer peripheral edge 74b with respect to the angular change. . Thereby, in the front concave surface 74, the difference in the axial direction Z between the front concave outer peripheral end 74b and the front concave inner peripheral end 74a gradually increases from the first front flat surface 71 toward the inflection point θm.
 また、フロント凸面内周端75aの曲率半径は、フロント凸面外周端75bの曲率半径よりも小さい。図8に示すように、角度変化(位相)に対するフロント凸面内周端75aの軸方向Zの変位曲線の曲率は、角度変化に対するフロント凸面外周端75bの軸方向Zの変位曲線の曲率よりも大きい。これにより、フロント凸面75においては、変曲点θmから第2フロント平坦面72に向かうに従って、フロント凸面外周端75bとフロント凸面内周端75aとの差が徐々に小さくなる。 Also, the curvature radius of the front convex inner peripheral edge 75a is smaller than the curvature radius of the front convex outer peripheral edge 75b. As shown in FIG. 8, the curvature of the displacement curve in the axial direction Z of the front convex inner peripheral edge 75a with respect to the angle change (phase) is larger than the curvature of the displacement curve in the axial direction Z of the front convex outer peripheral edge 75b with respect to the angular change. . Thereby, in the front convex surface 75, the difference between the front convex surface outer peripheral end 75b and the front convex inner peripheral end 75a is gradually reduced from the inflection point θm toward the second front flat surface 72.
 すなわち、フロント湾曲面73は、第1フロント平坦面71から変曲点θmに向かうに従って内周端が外周端よりも第1壁面52から離れるように徐々に傾斜し、変曲点θmから第2フロント平坦面72に向かうに従って内周端と外周端とが軸方向Zにおいて同一位置に近づくように形成されている。つまり、フロント凹面74とフロント凸面75との境界部分である変曲点θmにおいて、フロント湾曲面73における外周端と内周端との軸方向Zの差が最大となる。一方、フロント湾曲面73における周方向の両端では、外周端と内周端との差はなく、両者は軸方向Zの同一位置に配置される。 That is, the front curved surface 73 gradually inclines so that the inner peripheral end is farther from the first wall surface 52 than the outer peripheral end as it goes from the first front flat surface 71 to the inflection point θm, and the second curved surface 73 The inner peripheral end and the outer peripheral end are formed so as to approach the same position in the axial direction Z toward the front flat surface 72. That is, at the inflection point θm, which is the boundary portion between the front concave surface 74 and the front convex surface 75, the difference in the axial direction Z between the outer peripheral end and the inner peripheral end of the front curved surface 73 is maximized. On the other hand, at both ends of the front curved surface 73 in the circumferential direction, there is no difference between the outer peripheral end and the inner peripheral end, and both are arranged at the same position in the axial direction Z.
 同様に、図4及び図8に示すように、リア湾曲面93は、第2壁面53に向けて凹となるように軸方向Zに湾曲しているリア凹面94と、第2壁面53に向けて凸となるように軸方向Zに湾曲しているリア凸面95とを有している。リア湾曲面93は、フロント湾曲面73と同一角度位置にて変曲点θmを有する。リア凹面94は、リア凸面95と繋がっている。フロント凹面74とリア凸面95とが軸方向Zに対向しており、フロント凸面75とリア凹面94とが軸方向Zに対向している。 Similarly, as shown in FIGS. 4 and 8, the rear curved surface 93 has a rear concave surface 94 that is curved in the axial direction Z so as to be concave toward the second wall surface 53, and a direction toward the second wall surface 53. And a rear convex surface 95 curved in the axial direction Z so as to be convex. The rear curved surface 93 has an inflection point θm at the same angular position as the front curved surface 73. The rear concave surface 94 is connected to the rear convex surface 95. The front concave surface 74 and the rear convex surface 95 are opposed to each other in the axial direction Z, and the front convex surface 75 and the rear concave surface 94 are opposed to each other in the axial direction Z.
 図10に示すように、リア凹面94は、リア凹面内周端94a及びリア凹面外周端94bを有している。リア凸面95は、リア凹面内周端94aと繋がっているリア凸面内周端95a、及びリア凹面外周端94bと繋がっているリア凸面外周端95bを有している。 As shown in FIG. 10, the rear concave surface 94 has a rear concave inner peripheral end 94a and a rear concave outer peripheral end 94b. The rear convex surface 95 has a rear convex inner peripheral end 95a connected to the rear concave inner peripheral end 94a and a rear convex outer peripheral end 95b connected to the rear concave outer peripheral end 94b.
 リア凹面94及びリア凸面95の湾曲具合は、フロント凹面74及びフロント凸面75の湾曲具合と同一である。リア凹面内周端94aの曲率半径はリア凹面外周端94bの曲率半径よりも小さく、リア凸面内周端95aの曲率半径はリア凸面外周端95bの曲率半径よりも小さい。 The curvature of the rear concave surface 94 and the rear convex surface 95 is the same as the curvature of the front concave surface 74 and the front convex surface 75. The curvature radius of the rear concave inner peripheral edge 94a is smaller than the curvature radius of the rear concave outer peripheral edge 94b, and the curvature radius of the rear convex inner peripheral edge 95a is smaller than the curvature radius of the rear convex outer peripheral edge 95b.
 フロント凹面74は、フロント凹面外周端74bからフロント凹面内周端74aに向かうに従って曲率半径が徐々に小さくなるように形成されている。フロント凸面75は、フロント凸面外周端75bからフロント凸面内周端75aに向かうに従って曲率半径が徐々に小さくなるように形成されている。これにより、フロント凹面74及びフロント凸面75における径方向Rの曲率変化が連続的になっている。 The front concave surface 74 is formed such that the radius of curvature gradually decreases from the front concave outer peripheral end 74b toward the front concave inner peripheral end 74a. The front convex surface 75 is formed such that the radius of curvature gradually decreases from the front convex surface outer peripheral end 75b toward the front convex inner peripheral end 75a. Thereby, the curvature change of the radial direction R in the front concave surface 74 and the front convex surface 75 is continuous.
 図11に示すように、フロント湾曲面73とリア湾曲面93とは、少なくとも変曲点θm(凹面74,94と凸面75,95との境界部分)において、外周端よりも内周端の方が第2壁面53から離れるように互いに軸方向Zに傾斜している。そして、ベーン100が変曲点θmに対応する角度位置に配置されているとき、第1ベーン端部101はフロント湾曲面73の内周端及び外周端の双方に当接し、第2ベーン端部102はリア湾曲面93の内周端及び外周端の双方に当接している。 As shown in FIG. 11, the front curved surface 73 and the rear curved surface 93 are at the inflection point θm (boundary portion between the concave surfaces 74 and 94 and the convex surfaces 75 and 95) at the inner peripheral end rather than the outer peripheral end. Are inclined in the axial direction Z so as to be separated from the second wall surface 53. When the vane 100 is disposed at an angular position corresponding to the inflection point θm, the first vane end portion 101 abuts both the inner peripheral end and the outer peripheral end of the front curved surface 73, and the second vane end portion 102 abuts both the inner peripheral end and the outer peripheral end of the rear curved surface 93.
 換言すれば、フロント湾曲面73及びリア湾曲面93では、少なくとも変曲点θmにおいて、外周端から内周端に向けて徐々に凹んでおり、変曲点θmから両角度位置θ1,θ2に向かうに従って、外周端から内周端への凹みが緩やかになる。 In other words, the front curved surface 73 and the rear curved surface 93 are gradually recessed from the outer peripheral end toward the inner peripheral end at least at the inflection point θm, and are directed from the inflection point θm to both angular positions θ1 and θ2. Accordingly, the recess from the outer peripheral end to the inner peripheral end becomes gentle.
 上記のように構成された湾曲面73,93とベーン端部101,102との当接態様について詳細に説明する。
 図12に示すように、フロント湾曲面73は、第1ベーン端部101と線接触している。フロント湾曲面73と第1ベーン端部101との当接線(接触線)をフロント当接線(フロント接触線)P1という。
A contact manner between the curved surfaces 73 and 93 configured as described above and the vane end portions 101 and 102 will be described in detail.
As shown in FIG. 12, the front curved surface 73 is in line contact with the first vane end portion 101. A contact line (contact line) between the front curved surface 73 and the first vane end 101 is referred to as a front contact line (front contact line) P1.
 上述したとおり、第1ベーン端部101は、軸方向Zと直交する鉛直方向に延びており、軸方向Zの位置は変位しない。一方で、フロント湾曲面73は、内周端と外周端とで曲率半径が異なっており、少なくとも変曲点θmでは、内周端と外周端とで軸方向Zに変位している。このため、フロント湾曲面73において第1ベーン端部101と当接する角度位置が、フロント湾曲面73の内周端と外周端とで異なる。これにより、フロント当接線P1は、径方向Rに延びた直線ではなく、曲線となる。 As described above, the first vane end portion 101 extends in the vertical direction orthogonal to the axial direction Z, and the position in the axial direction Z is not displaced. On the other hand, the curvature radius of the front curved surface 73 is different between the inner peripheral end and the outer peripheral end, and is displaced in the axial direction Z between the inner peripheral end and the outer peripheral end at least at the inflection point θm. For this reason, the angular position where the front curved surface 73 contacts the first vane end portion 101 is different between the inner peripheral end and the outer peripheral end of the front curved surface 73. Thereby, the front contact line P1 is not a straight line extending in the radial direction R but a curved line.
 同様に、図13に示すように、リア湾曲面93は第2ベーン端部102と線接触している。リア湾曲面93と第2ベーン端部102との当接線(接触線)をリア当接線(リア接触線)P2という。 Similarly, as shown in FIG. 13, the rear curved surface 93 is in line contact with the second vane end portion 102. A contact line (contact line) between the rear curved surface 93 and the second vane end portion 102 is referred to as a rear contact line (rear contact line) P2.
 上述したとおり、第2ベーン端部102は、軸方向Zと直交する鉛直方向に延びており、軸方向Zの位置は変位しない。一方で、リア湾曲面93は、内周端と外周端とで曲率半径が異なっており、少なくとも変曲点θmでは、内周端と外周端とで軸方向Zに変位している。このため、フロント当接線P1と同様に、リア当接線P2は、径方向Rに延びた直線ではなく、曲線となる。 As described above, the second vane end portion 102 extends in the vertical direction orthogonal to the axial direction Z, and the position in the axial direction Z is not displaced. On the other hand, the curvature radius of the rear curved surface 93 is different between the inner peripheral end and the outer peripheral end, and is displaced in the axial direction Z between the inner peripheral end and the outer peripheral end at least at the inflection point θm. For this reason, as with the front contact line P1, the rear contact line P2 is not a straight line extending in the radial direction R but a curved line.
 ここで、ベーン100の厚さであるベーン厚さDは、湾曲面73,93の角度位置に関わらず、ベーン端部101,102が湾曲面73,93に対して内周端から外周端に亘って当接するように設定されている。詳細には、ベーン厚さDは、ベーン100が変曲点θmに対応する角度位置に配置されているときにベーン端部101,102が湾曲面73,93の内周端と当接するように設定されている。ベーン厚さDとは、軸方向Z及び両ベーン端部101,102の長手方向の双方に直交する方向におけるベーン100の長さとも言える。よって、ベーン100の厚さ方向は、軸方向Z及び両ベーン端部101,102の長手方向の双方と直交する方向である。 Here, the vane thickness D, which is the thickness of the vane 100, is such that the vane end portions 101 and 102 change from the inner peripheral end to the outer peripheral end with respect to the curved surfaces 73 and 93 regardless of the angular positions of the curved surfaces 73 and 93. It is set so that it may contact | abut over. Specifically, the vane thickness D is set so that the vane end portions 101 and 102 come into contact with the inner peripheral ends of the curved surfaces 73 and 93 when the vane 100 is disposed at an angular position corresponding to the inflection point θm. Is set. The vane thickness D can also be said to be the length of the vane 100 in a direction orthogonal to both the axial direction Z and the longitudinal directions of the vane end portions 101 and 102. Therefore, the thickness direction of the vane 100 is a direction orthogonal to both the axial direction Z and the longitudinal directions of the vane end portions 101 and 102.
 ロータ面70,90に向けて凸となるように湾曲しているベーン端部101,102の曲率半径は、ベーン端部101,102が両ロータ60,80の角度位置に関わらず湾曲面73,93に対して内周端から外周端に亘って接触することができれば、任意である。例えば、ベーン端部101,102の曲率半径が大きいほど、両湾曲面73,93の内周端と外周端とにおける当接位置の周方向の差が大きくなり易い。この点を考慮して、ベーン端部101,102の曲率半径を、ベーン端部101,102が半円形状である場合の曲率半径よりも大きくしてもよい。これにより、当接線P1,P2を、より湾曲させることができる。 The curvature radii of the vane end portions 101 and 102 that are curved so as to be convex toward the rotor surfaces 70 and 90 are such that the vane end portions 101 and 102 are curved surfaces 73 and 102 regardless of the angular positions of the rotors 60 and 80. If it can contact 93 from an inner peripheral end to an outer peripheral end, it is arbitrary. For example, the larger the radius of curvature of the vane end portions 101 and 102, the greater the difference in the circumferential direction of the contact position between the inner and outer peripheral ends of both curved surfaces 73 and 93. In consideration of this point, the curvature radius of the vane end portions 101 and 102 may be larger than the curvature radius when the vane end portions 101 and 102 are semicircular. Thereby, contact line P1, P2 can be bent more.
 フロント湾曲面73が第1角度位置θ1から第2角度位置θ2に向かうに従って第1壁面52に近づくように軸方向Zに湾曲している場合、フロント湾曲面73と対向するリア湾曲面93は、フロント湾曲面73との離間距離が一定となるように第2壁面53から離れるように軸方向Zに湾曲している。すなわち、両湾曲面73,93のうちいずれか一方が登り傾斜である場合、他方は下り傾斜となる。したがって、軸方向Zから見て、フロント当接線P1は、リア当接線P2と逆方向に湾曲している。 When the front curved surface 73 is curved in the axial direction Z so as to approach the first wall surface 52 from the first angular position θ1 toward the second angular position θ2, the rear curved surface 93 facing the front curved surface 73 is It is curved in the axial direction Z so as to be separated from the second wall surface 53 so that the distance from the front curved surface 73 is constant. That is, when either one of the curved surfaces 73 and 93 is uphill, the other is downhill. Accordingly, when viewed from the axial direction Z, the front contact line P1 is curved in the direction opposite to the rear contact line P2.
 両湾曲面73,93の離間距離が一定となるとは、同一半径の角度位置において離間距離が一定となっていればよい。径が異なる点を除いて、両湾曲面73,93が同一形状である場合、両湾曲面73,93の任意の半径位置での離間距離は、角度位置に応じて変動することなく、一定になる。また、離間距離が一定とは、ベーン端部101,102と両湾曲面73,93とが当接している範囲内で両ロータ60,80が回転することができれば、多少の誤差を含む。 The distance between the curved surfaces 73 and 93 is constant as long as the distance is constant at the same angular position. When the curved surfaces 73 and 93 have the same shape except that the diameters are different, the distance between the curved surfaces 73 and 93 at an arbitrary radial position is constant and does not vary depending on the angular position. Become. In addition, the constant separation distance includes some error as long as the rotors 60 and 80 can rotate within a range where the vane end portions 101 and 102 and the curved surfaces 73 and 93 are in contact with each other.
 次に、図14及び図15を用いて導入ポート111、吐出ポート113及び両開口部131,132の位置関係と、圧縮室A4,A5とについて詳細に説明する。
 図14(b)は、図14(a)に示す状態の両ロータ60,80及びベーン100を示す展開図であり、図15(b)は、図15(a)に示す状態の両ロータ60,80及びベーン100を示す展開図である。図14(b)及び図15(b)は、中間壁部51に設けた両開口部131,132と開放空間126を模式的に示す。両開口部131,132が開放空間126を介して繋がっている状態が、両圧縮室A4,A5が連通した状態に対応する。
Next, the positional relationship between the introduction port 111, the discharge port 113, and both the openings 131 and 132, and the compression chambers A4 and A5 will be described in detail with reference to FIGS.
14B is a development view showing both rotors 60 and 80 and the vane 100 in the state shown in FIG. 14A, and FIG. 15B is a diagram showing both rotors 60 in the state shown in FIG. , 80 and the vane 100. FIGS. 14B and 15B schematically show both openings 131 and 132 provided in the intermediate wall 51 and the open space 126. The state in which both openings 131 and 132 are connected via the open space 126 corresponds to the state in which both compression chambers A4 and A5 are in communication.
 図14A及び図14Bに示すように、ベーン100が第2フロント平坦面72及び第1リア平坦面91と当接しているとき、ベーン100は、フロント収容室A2に入り込んでいない。この場合、フロント圧縮室A4は1つであり、フロント圧縮室A4に吸入流体が充填され、フロント圧縮室A4は最大容積となる。 14A and 14B, when the vane 100 is in contact with the second front flat surface 72 and the first rear flat surface 91, the vane 100 does not enter the front storage chamber A2. In this case, there is one front compression chamber A4, the front compression chamber A4 is filled with suction fluid, and the front compression chamber A4 has a maximum volume.
 一方、ベーン100の一部はリア収容室A3に入り込んでいるため、リア収容室A3内には、ベーン100の両側に2つのリア圧縮室A5(第1リア圧縮室A5a及び第2リア圧縮室A5b)が形成されている。第1リア圧縮室A5aと第2リア圧縮室A5bとは、第2リア平坦面92と第2壁面53との当接箇所と、ベーン100とによって仕切られ、かつ周方向に隣接している。 On the other hand, since a part of the vane 100 has entered the rear housing chamber A3, there are two rear compression chambers A5 (first rear compression chamber A5a and second rear compression chamber) on both sides of the vane 100 in the rear housing chamber A3. A5b) is formed. The first rear compression chamber A5a and the second rear compression chamber A5b are partitioned by the vane 100 and a contact portion between the second rear flat surface 92 and the second wall surface 53, and are adjacent to each other in the circumferential direction.
 第1リア圧縮室A5aは、リア側開口部132と連通している一方、吐出ポート113と連通していない。第2リア圧縮室A5bは、吐出ポート113と連通している一方、リア側開口部132と連通していない。ベーン100は、リア側開口部132と吐出ポート113とが直接連通しないように、リア側開口部132と連通している第1リア圧縮室A5aと、吐出ポート113と連通している第2リア圧縮室A5bとを仕切っている。 The first rear compression chamber A5a communicates with the rear side opening 132, but does not communicate with the discharge port 113. The second rear compression chamber A5b communicates with the discharge port 113, but does not communicate with the rear side opening 132. The vane 100 has a first rear compression chamber A5a communicating with the rear side opening 132 and a second rear communicating with the discharge port 113 so that the rear side opening 132 and the discharge port 113 do not directly communicate with each other. Partitions the compression chamber A5b.
 その後、電動モータ13によって回転軸12が回転すると、両ロータ60,80が回転する。すると、ベーン100が軸方向Z(図14中、左右方向)に移動し、ベーン100の一部がフロント収容室A2内に入り込む。これにより、図15Bに示すように、ベーン100の両側に2つのフロント圧縮室A4(第1フロント圧縮室A4a及び第2フロント圧縮室A4b)が形成される。第1フロント圧縮室A4aと第2フロント圧縮室A4bとは、第2フロント平坦面72と第1壁面52との当接箇所と、ベーン100とによって仕切られ、かつ周方向に隣接している。 Thereafter, when the rotating shaft 12 is rotated by the electric motor 13, both the rotors 60 and 80 are rotated. Then, the vane 100 moves in the axial direction Z (left and right direction in FIG. 14), and a part of the vane 100 enters the front storage chamber A2. Thereby, as shown in FIG. 15B, two front compression chambers A4 (first front compression chamber A4a and second front compression chamber A4b) are formed on both sides of the vane 100. The first front compression chamber A4a and the second front compression chamber A4b are partitioned by a contact portion between the second front flat surface 72 and the first wall surface 52 and the vane 100, and are adjacent to each other in the circumferential direction.
 第1フロント圧縮室A4aは、導入ポート111と連通している一方、フロント側開口部131と連通していない。第2フロント圧縮室A4bは、フロント側開口部131と連通している一方、導入ポート111と連通していない。ベーン100は、導入ポート111とフロント側開口部131とが直接連通しないように、導入ポート111と連通している第1フロント圧縮室A4aと、フロント側開口部131と連通している第2フロント圧縮室A4bとを仕切っている。 The first front compression chamber A4a communicates with the introduction port 111 but does not communicate with the front opening 131. The second front compression chamber A4b communicates with the front opening 131, but does not communicate with the introduction port 111. The vane 100 includes a first front compression chamber A4a that communicates with the introduction port 111 and a second front that communicates with the front opening 131 so that the introduction port 111 and the front opening 131 do not directly communicate with each other. The compression chamber A4b is partitioned.
 この状態で両ロータ60,80が回転すると、両圧縮室A4,A5の容積が変化する。第1フロント圧縮室A4aでは、容積が増加して導入ポート111から吸入流体が吸入される一方、第2フロント圧縮室A4bでは容積が減少して吸入流体が圧縮される。同様に、第2リア圧縮室A5bでは、容積が減少して流体が圧縮される。一方、第1リア圧縮室A5aでは、空間自体は広くなるが、連通機構120が非連通状態であるため、第1リア圧縮室A5aに流体が流入しない。 When the rotors 60 and 80 rotate in this state, the volumes of the compression chambers A4 and A5 change. In the first front compression chamber A4a, the volume increases and the suction fluid is sucked from the introduction port 111, while in the second front compression chamber A4b, the volume decreases and the suction fluid is compressed. Similarly, in the second rear compression chamber A5b, the volume is reduced and the fluid is compressed. On the other hand, in the first rear compression chamber A5a, the space itself is widened, but the fluid does not flow into the first rear compression chamber A5a because the communication mechanism 120 is in a non-communication state.
 その後、図15A及び図15Bに示すように、ベーン100が第1フロント平坦面71及び第2リア平坦面92を通り過ぎた後に、両圧縮室A4,A5(第2フロント圧縮室A4b及び第1リア圧縮室A5a)が連通する。これにより、第2フロント圧縮室A4bで圧縮された吸入流体よりも高圧の中間圧流体が、第1リア圧縮室A5aに導入される。つまり、連通流路130は、第2フロント圧縮室A4bと第1リア圧縮室A5aとを連通させる。 After that, as shown in FIGS. 15A and 15B, after the vane 100 passes through the first front flat surface 71 and the second rear flat surface 92, both the compression chambers A4 and A5 (the second front compression chamber A4b and the first rear flat surface 92). The compression chamber A5a) communicates. As a result, an intermediate pressure fluid higher in pressure than the suction fluid compressed in the second front compression chamber A4b is introduced into the first rear compression chamber A5a. That is, the communication flow path 130 connects the second front compression chamber A4b and the first rear compression chamber A5a.
 その後、ベーン100が第2フロント平坦面72及び第1リア平坦面91に当接する位置まで両ロータ60,80が回転すると、第2フロント圧縮室A4b内の中間圧流体が全て第1リア圧縮室A5a内に導入され、両圧縮室A4,A5が非連通となる。一方、導入された中間圧流体は、次の両ロータ60,80の回転時に第2リア圧縮室A5bの流体として圧縮されて、吐出ポート113から吐出される。この場合、中間圧流体は、第2リア圧縮室A5bにて更に圧縮されるため、吐出ポート113からは、中間圧流体よりも高圧にされた圧縮流体が吐出される。 After that, when the rotors 60 and 80 are rotated to a position where the vane 100 contacts the second front flat surface 72 and the first rear flat surface 91, all the intermediate pressure fluid in the second front compression chamber A4b is all in the first rear compression chamber. Introduced into A5a, both compression chambers A4 and A5 are disconnected. On the other hand, the introduced intermediate pressure fluid is compressed as a fluid in the second rear compression chamber A5b when the next rotors 60 and 80 are rotated, and is discharged from the discharge port 113. In this case, since the intermediate pressure fluid is further compressed in the second rear compression chamber A5b, the compressed fluid having a pressure higher than that of the intermediate pressure fluid is discharged from the discharge port 113.
 両ロータ60,80が回転することで、両圧縮室A4,A5では、720°(両ロータ60,80の2回転分)を1周期とする吸入及び圧縮のサイクル動作が繰り返される。ここでは、フロント圧縮室A4で圧縮された中間圧流体がリア圧縮室A5で再度圧縮される2段圧縮が行われる。 By rotating both rotors 60 and 80, in both compression chambers A4 and A5, the suction and compression cycle operations with one cycle of 720 ° (two rotations of both rotors 60 and 80) are repeated. Here, two-stage compression is performed in which the intermediate pressure fluid compressed in the front compression chamber A4 is compressed again in the rear compression chamber A5.
 両フロント圧縮室A4a,A4bを区別して説明したが、フロント圧縮室A4で720°を1周期とするサイクル動作が行われる点に着目すれば、第1フロント圧縮室A4aは、位相が0°~360°のフロント圧縮室A4であり、第2フロント圧縮室A4bは、位相が360°~720°のフロント圧縮室A4である。つまり、フロントロータ面70、第1壁面52及びフロントシリンダ内周面43によって形成された空間は、ベーン100によって、位相が0°~360°のフロント圧縮室A4と、位相が360°~720°のフロント圧縮室A4とに仕切られている。換言すれば、ベーン100は、上記空間を、流体が吸入される第1室と流体が吐出される第2室とに仕切った状態で、両ロータ60,80の回転に伴って第1室及び第2室の容積変化(第1室の容積を増加、第2室の容積を減少)を生じさせる。第1リア圧縮室A5a及び第2リア圧縮室A5bについても上記と同様である。 Although the two front compression chambers A4a and A4b have been described separately, paying attention to the fact that a cycle operation with one cycle of 720 ° is performed in the front compression chamber A4, the first front compression chamber A4a has a phase of 0 ° to The 360 ° front compression chamber A4 and the second front compression chamber A4b are front compression chambers A4 having a phase of 360 ° to 720 °. That is, the space formed by the front rotor surface 70, the first wall surface 52, and the inner peripheral surface 43 of the front cylinder is divided by the vane 100 into the front compression chamber A4 having a phase of 0 ° to 360 ° and the phase of 360 ° to 720 °. The front compression chamber A4 is partitioned. In other words, the vane 100 divides the space into a first chamber into which fluid is sucked and a second chamber into which fluid is discharged, and the first chamber and A volume change of the second chamber (increasing the volume of the first chamber and decreasing the volume of the second chamber) is caused. The same applies to the first rear compression chamber A5a and the second rear compression chamber A5b.
 連通流路130は、位相が360°~720°(圧縮段階)のフロント圧縮室A4と、位相が0°~360°(吸入段階)のリア圧縮室A5とを連通させる流路である。連通機構120は、位相が360°~720°のフロント圧縮室A4と、位相が0°~360°のリア圧縮室A5とを連通したり、非連通にしたりする。 The communication flow path 130 is a flow path that connects the front compression chamber A4 having a phase of 360 ° to 720 ° (compression stage) and the rear compression chamber A5 having a phase of 0 ° to 360 ° (suction stage). The communication mechanism 120 communicates or disconnects the front compression chamber A4 having a phase of 360 ° to 720 ° and the rear compression chamber A5 having a phase of 0 ° to 360 °.
 次に、図16を用いて、両圧縮室A4,A5の容積変化について説明する。図16中、破線はフロント圧縮室A4の容積変化を、一点鎖線はリア圧縮室A5の容積変化を、実線は両圧縮室A4,A5を合わせた実質的な容積変化、すなわち、圧縮機10の全体の容積変化をそれぞれ示す。両圧縮室A4,A5の容積変化には、位相差が伴う。位相差は、両ロータ面70,90がそれらの離間距離を一定にすべく軸方向Zに湾曲しかつ1つのベーン100で両圧縮室A4,A5の容積変化を実現している。また、位相差は、フロント圧縮室A4の圧縮段階の後半に両圧縮室A4,A5が連通することで実現されている。 Next, the change in volume of both compression chambers A4 and A5 will be described with reference to FIG. In FIG. 16, the broken line indicates the volume change of the front compression chamber A4, the alternate long and short dash line indicates the volume change of the rear compression chamber A5, and the solid line indicates the substantial volume change of both the compression chambers A4 and A5. The total volume change is shown respectively. A phase difference accompanies the volume change of both compression chambers A4 and A5. The phase difference is such that both rotor surfaces 70 and 90 are curved in the axial direction Z so that the distance between them is constant, and the volume of both compression chambers A4 and A5 is changed by one vane 100. Further, the phase difference is realized by connecting the compression chambers A4 and A5 in the latter half of the compression stage of the front compression chamber A4.
 図16に示すように、リア圧縮室A5の容積変化は、フロント圧縮室A4の容積変化と比較して、位相が進んでいる。圧縮機10は、フロント圧縮室A4における吸入流体の圧縮動作の後半段階で両圧縮室A4,A5が連通し、リア圧縮室A5への中間圧流体の吸入が開始されてリア圧縮室A5の容積が増加するように構成されている。このため、図16の実線に示すように、圧縮機10全体の容積変化は、フロント圧縮室A4の容積変化とリア圧縮室A5の容積変化とを繋いだようなグラフとなる。 As shown in FIG. 16, the volume change of the rear compression chamber A5 is advanced in phase as compared with the volume change of the front compression chamber A4. In the compressor 10, the compression chambers A4 and A5 communicate with each other in the latter half of the compression operation of the suction fluid in the front compression chamber A4, and the suction of the intermediate pressure fluid into the rear compression chamber A5 is started, so that the volume of the rear compression chamber A5 is increased. Is configured to increase. For this reason, as shown by the solid line in FIG. 16, the volume change of the entire compressor 10 is a graph in which the volume change of the front compression chamber A4 and the volume change of the rear compression chamber A5 are connected.
 次に、本実施形態の作用について説明する。
 図12及び図13に示すように、両当接線P1,P2は、径方向Rに延びた直線ではなく、周方向に若干湾曲した曲線である。これにより、両当接線P1,P2の少なくとも一方を中心にベーン100が周方向に揺動しにくくなる。
Next, the operation of this embodiment will be described.
As shown in FIGS. 12 and 13, both contact lines P1 and P2 are not straight lines extending in the radial direction R but curved slightly in the circumferential direction. This makes it difficult for the vane 100 to swing in the circumferential direction around at least one of the contact lines P1, P2.
 以上詳述した本実施形態によれば以下の効果を奏する。
 (1)圧縮機10は、回転軸12と、リング状に形成されたフロントロータ面70を有しかつ回転軸12の回転に伴って回転するフロントロータ60と、フロントロータ外周面62と径方向Rに対向するフロントシリンダ内周面43を有しかつフロントロータ60を収容しているフロントシリンダ側壁部42とを備えている。圧縮機10は、フロントロータ面70と軸方向Zに対向する第1壁面52を有する中間壁部51と、中間壁部51に形成されたベーン溝110に挿入されかつフロントロータ60の回転に伴って軸方向Zに移動するベーン100とを備えている。圧縮機10は、フロントロータ面70、第1壁面52及びフロントシリンダ内周面43によって区画されかつフロントロータ60の回転に伴ってベーン100によって容積変化が生じて流体の吸入及び圧縮が行われるフロント圧縮室A4を備えている。
According to the embodiment described above in detail, the following effects are obtained.
(1) The compressor 10 has a rotating shaft 12, a front rotor surface 70 formed in a ring shape, and rotates with the rotation of the rotating shaft 12, and a front rotor outer peripheral surface 62 and a radial direction. And a front cylinder side wall portion 42 having a front cylinder inner circumferential surface 43 facing R and accommodating the front rotor 60. The compressor 10 is inserted into an intermediate wall portion 51 having a first wall surface 52 facing the front rotor surface 70 in the axial direction Z, and a vane groove 110 formed in the intermediate wall portion 51, and as the front rotor 60 rotates. And a vane 100 that moves in the axial direction Z. The compressor 10 is defined by the front rotor surface 70, the first wall surface 52, and the front cylinder inner peripheral surface 43, and the volume is changed by the vane 100 as the front rotor 60 rotates, so that fluid is sucked and compressed. A compression chamber A4 is provided.
 ベーン100は、フロントロータ面70と当接する軸方向Zの端部である第1ベーン端部101を有している。第1ベーン端部101は、フロントロータ面70に向けて凸となるように湾曲し、軸方向Zと直交する方向に延びている。フロントロータ面70は、その角度位置に応じて軸方向Zに変位及び湾曲しているフロント湾曲面73を含む。 The vane 100 has a first vane end portion 101 that is an end portion in the axial direction Z that contacts the front rotor surface 70. The first vane end portion 101 is curved so as to be convex toward the front rotor surface 70, and extends in a direction orthogonal to the axial direction Z. The front rotor surface 70 includes a front curved surface 73 that is displaced and curved in the axial direction Z according to its angular position.
 フロント湾曲面73は、第1壁面52に向けて凹となるように軸方向Zに湾曲したフロント凹面74と、第1壁面52に向けて凸となるように軸方向Zに湾曲したフロント凸面75とを含む。フロント凹面74は、フロント凹面74の径方向Rの両端であるフロント凹面内周端74aの曲率半径がフロント凹面外周端74bの曲率半径よりも小さくなるように形成されている。フロント凸面75は、フロント凸面75の径方向Rの両端であるフロント凸面内周端75aの曲率半径がフロント凸面外周端75bの曲率半径よりも小さくなるように形成されている。 The front curved surface 73 includes a front concave surface 74 that is curved in the axial direction Z so as to be concave toward the first wall surface 52, and a front convex surface 75 that is curved in the axial direction Z so as to be convex toward the first wall surface 52. Including. The front concave surface 74 is formed such that the radius of curvature of the front concave inner peripheral end 74a, which is both ends of the front concave surface 74 in the radial direction R, is smaller than the curvature radius of the front concave outer peripheral end 74b. The front convex surface 75 is formed so that the radius of curvature of the front convex surface inner peripheral end 75a, which is both ends of the front convex surface 75 in the radial direction R, is smaller than the curvature radius of the front convex surface outer peripheral end 75b.
 この構成によれば、第1ベーン端部101とフロントロータ面70との当接箇所であるフロント当接線P1が曲線状となり易い。これにより、フロント当接線P1が直線状である構成と比較して、フロント当接線P1を中心にベーン100が揺動し難くなる。 According to this configuration, the front contact line P1, which is the contact position between the first vane end portion 101 and the front rotor surface 70, tends to be curved. This makes it difficult for the vane 100 to swing around the front contact line P1 as compared with the configuration in which the front contact line P1 is linear.
 詳述すると、フロントロータ60の回転に伴って、回転しないベーン100の第1ベーン端部101がフロントロータ面70と当接している場合、ベーン100が、フロント当接線P1を中心に揺動するおそれがある。 More specifically, as the front rotor 60 rotates, when the first vane end 101 of the non-rotating vane 100 is in contact with the front rotor surface 70, the vane 100 swings about the front contact line P1. There is a fear.
 これに対して、フロント当接線P1が曲線となるように、フロント凹面内周端74aとフロント凹面外周端74bとで曲率半径を変化させるとともに、フロント凸面内周端75aとフロント凸面外周端75bとで曲率半径を変化させた。これにより、フロント当接線P1が直線である場合よりも、ベーン100の姿勢が安定し、ベーン100の揺動が生じ難くなる。したがって、ベーン100の揺動に起因する騒音、振動及び流体の漏れを抑制できる。 On the other hand, the curvature radius is changed between the front concave inner peripheral edge 74a and the front concave outer peripheral edge 74b so that the front contact line P1 becomes a curve, and the front convex inner peripheral edge 75a and the front convex outer peripheral edge 75b The curvature radius was changed with. Thereby, the attitude | position of the vane 100 is stabilized rather than the case where the front contact line P1 is a straight line, and the vane 100 does not rock easily. Therefore, noise, vibration and fluid leakage due to the swing of the vane 100 can be suppressed.
 ベーン100の揺動に起因する流体の漏れとは、例えば、第1ベーン端部101とフロントロータ面70との境界部分からの流体の漏れである。詳細には、上記境界部分を介して、圧縮が行われる第2室(第2フロント圧縮室A4b又は第2リア圧縮室A5b)から、吸入が行われる第1室(第1フロント圧縮室A4a又は第1リア圧縮室A5a)への流体の漏れなどが考えられる。 The fluid leakage due to the oscillation of the vane 100 is, for example, fluid leakage from the boundary portion between the first vane end portion 101 and the front rotor surface 70. Specifically, the first chamber (the first front compression chamber A4a or the second front compression chamber A4b or the suction) is performed from the second chamber (the second front compression chamber A4b or the second rear compression chamber A5b) where the compression is performed via the boundary portion. A fluid leakage into the first rear compression chamber A5a) is conceivable.
 (2)ベーン100は、ベーン溝110に挿入されている。これにより、ベーン100とベーン溝110との当接によって、ベーン100の周方向の回転を規制することができる。ここで、ベーン100は、ベーン溝110に軸方向Zに移動可能に挿入される。ベーン100の軸方向Zへの移動を円滑に行うため、ベーン100とベーン溝110との間には、若干の隙間(クリアランス)が設けられている。このため、ベーン100は、ベーン溝110内で揺動し得る。この点、本実施形態によれば、フロント当接線P1を曲線状にすることで、ベーン溝110内でのベーン100の揺動を抑制できる。これにより、ベーン100の軸方向Zへの移動を円滑に行いつつ、ベーン溝110内でのベーン100の揺動を抑制できる。 (2) The vane 100 is inserted into the vane groove 110. Accordingly, the rotation of the vane 100 in the circumferential direction can be restricted by the contact between the vane 100 and the vane groove 110. Here, the vane 100 is inserted into the vane groove 110 so as to be movable in the axial direction Z. In order to smoothly move the vane 100 in the axial direction Z, a slight gap (clearance) is provided between the vane 100 and the vane groove 110. For this reason, the vane 100 can swing in the vane groove 110. In this regard, according to the present embodiment, the swinging of the vane 100 in the vane groove 110 can be suppressed by making the front contact line P1 curved. Thereby, the swing of the vane 100 in the vane groove 110 can be suppressed while smoothly moving the vane 100 in the axial direction Z.
 (3)ベーン100は、軸方向Z及び第1ベーン端部101の長手方向の双方と直交する方向に厚さを有する板状である。ベーン厚さDは、フロントロータ60の角度位置に関わらず、第1ベーン端部101がフロント湾曲面73の内周端から外周端に亘って当接するように設定されている。この構成によれば、フロント湾曲面73の角度位置に関わらず、第1ベーン端部101がフロント湾曲面73の内周端から外周端に亘って当接している状態が維持される。これにより、フロント当接線P1を曲線としつつ、第1ベーン端部101とフロント湾曲面73とが当接しない箇所が生じ難くなる。よって、第1ベーン端部101とフロント湾曲面73との境界部分から流体が漏れることを抑制できる。 (3) The vane 100 is a plate having a thickness in a direction orthogonal to both the axial direction Z and the longitudinal direction of the first vane end portion 101. The vane thickness D is set so that the first vane end portion 101 abuts from the inner peripheral end to the outer peripheral end of the front curved surface 73 regardless of the angular position of the front rotor 60. According to this configuration, regardless of the angular position of the front curved surface 73, the state in which the first vane end portion 101 is in contact from the inner peripheral end to the outer peripheral end of the front curved surface 73 is maintained. As a result, a portion where the first vane end portion 101 and the front curved surface 73 do not contact each other is less likely to occur while the front contact line P <b> 1 is a curve. Therefore, it is possible to prevent fluid from leaking from the boundary portion between the first vane end portion 101 and the front curved surface 73.
 既に説明したとおり、変曲点θmにおいて、フロント湾曲面73の内周端が外周端に対して最も凹む。この点を鑑みれば、ベーン厚さDは、ベーン100が変曲点θmに対応する角度位置に配置されているときに第1ベーン端部101がフロント湾曲面73の内周端と当接するように設定されているとよい。これにより、フロントロータ60の角度位置に関わらず、第1ベーン端部101がフロント湾曲面73の内周端から外周端に亘って当接することが期待される。 As already described, the inner peripheral end of the front curved surface 73 is most recessed with respect to the outer peripheral end at the inflection point θm. In view of this point, the vane thickness D is set such that the first vane end portion 101 comes into contact with the inner peripheral end of the front curved surface 73 when the vane 100 is disposed at an angular position corresponding to the inflection point θm. It is good to be set to. As a result, regardless of the angular position of the front rotor 60, the first vane end portion 101 is expected to contact from the inner peripheral end to the outer peripheral end of the front curved surface 73.
 (4)フロントロータ面70は、第1壁面52から離間している第1フロント平坦面71と、第1フロント平坦面71から周方向に離間しかつ第1壁面52に当接している第2フロント平坦面72とを含む。フロント湾曲面73は、両フロント平坦面71,72を繋ぐものであり、第1フロント平坦面71から第2フロント平坦面72に向かうに従って徐々に第1壁面52に近づくように軸方向Zに湾曲している。フロント凹面74は、第2フロント平坦面72よりも第1フロント平坦面71の近くに配置され、フロント凸面75は、第1フロント平坦面71よりも第2フロント平坦面72の近くに配置されている。フロント凹面74は、フロント凸面75と繋がっている。 (4) The front rotor surface 70 is a first front flat surface 71 that is separated from the first wall surface 52, and a second that is circumferentially separated from the first front flat surface 71 and is in contact with the first wall surface 52. A front flat surface 72. The front curved surface 73 connects both the front flat surfaces 71 and 72, and is curved in the axial direction Z so as to gradually approach the first wall surface 52 from the first front flat surface 71 toward the second front flat surface 72. is doing. The front concave surface 74 is disposed closer to the first front flat surface 71 than the second front flat surface 72, and the front convex surface 75 is disposed closer to the second front flat surface 72 than the first front flat surface 71. Yes. The front concave surface 74 is connected to the front convex surface 75.
 この構成によれば、フロント凹面74とフロント凸面75との境界部分にてフロント湾曲面73の内周端と外周端との差が最大となり、両フロント平坦面71,72に向かうに従って徐々に両者の差が小さくなる。これにより、フロント湾曲面73と両フロント平坦面71,72との接続箇所(両角度位置θ1,θ2付近)を、滑らかな曲面とすることができる。したがって、フロントロータ60の回転に伴うフロントロータ面70と第1ベーン端部101とを円滑に摺動させることができる。 According to this configuration, the difference between the inner peripheral end and the outer peripheral end of the front curved surface 73 is maximized at the boundary portion between the front concave surface 74 and the front convex surface 75, and gradually increases toward both front flat surfaces 71 and 72. The difference of becomes smaller. Thereby, the connection location (near both angle position (theta) 1, (theta) 2) of the front curved surface 73 and both front flat surfaces 71 and 72 can be made into a smooth curved surface. Therefore, the front rotor surface 70 and the first vane end 101 can be smoothly slid along with the rotation of the front rotor 60.
 (5)特に、第2フロント平坦面72と第1壁面52との当接箇所と、ベーン100とによって、吸入が行われる側のフロント圧縮室A4(第1フロント圧縮室A4a)と、圧縮が行われる側のフロント圧縮室A4(第2フロント圧縮室A4b)とを仕切ることができる。これにより、第1及び第2フロント圧縮室A4a,4b間の流体の漏れを抑制することができ、効率が向上する。 (5) In particular, the front compression chamber A4 (first front compression chamber A4a) on the suction side is compressed by the contact portion between the second front flat surface 72 and the first wall surface 52 and the vane 100, and compression is performed. It is possible to partition the front compression chamber A4 (second front compression chamber A4b) to be performed. Thereby, the leakage of the fluid between 1st and 2nd front compression chamber A4a, 4b can be suppressed, and efficiency improves.
 (6)圧縮機10は、回転軸12の回転に伴って回転するリアロータ80と、リアロータ外周面82と径方向Rに対向するリアシリンダ内周面56を有しかつリアロータ80を収容しているリアシリンダ側壁部55とを備えている。リアロータ80は、フロントロータ面70に対して軸方向Zに対向しかつリング状に形成されたリアロータ面90を有している。中間壁部51は、両ロータ60,80の間に配置され、リアロータ面90と軸方向Zに対向する第2壁面53を有している。ベーン100は、リアロータ面90と当接する第2ベーン端部102を有している。圧縮機10は、リアロータ面90、第2壁面53及びリアシリンダ内周面56によって区画されかつリアロータ80の回転に伴ってベーン100によって容積変化が生じて流体の吸入及び圧縮が行われるリア圧縮室A5を備えている。 (6) The compressor 10 has a rear rotor 80 that rotates with the rotation of the rotary shaft 12, a rear cylinder inner peripheral surface 56 that faces the rear rotor outer peripheral surface 82 in the radial direction R, and accommodates the rear rotor 80. And a rear cylinder side wall 55. The rear rotor 80 has a rear rotor surface 90 that is opposed to the front rotor surface 70 in the axial direction Z and formed in a ring shape. The intermediate wall portion 51 is disposed between the rotors 60 and 80 and has a second wall surface 53 facing the rear rotor surface 90 in the axial direction Z. The vane 100 has a second vane end 102 that contacts the rear rotor surface 90. The compressor 10 is defined by a rear rotor surface 90, a second wall surface 53, and a rear cylinder inner peripheral surface 56, and a volume change is generated by the vane 100 as the rear rotor 80 rotates, and a fluid is sucked and compressed. A5 is provided.
 リアロータ面90は、第2凹面及び第2凸面としてのリア凹面94及びリア凸面95を含むリア湾曲面93を有している。フロント凹面74とリア凸面95とが軸方向Zに対向しており、フロント凸面75とリア凹面94とが軸方向Zに対向している。また、両湾曲面73,93は、同一角度位置にて変曲点θmを有し、少なくとも当該変曲点θmにおいて両湾曲面73,93の内周端が外周端よりも互いに離れるように傾斜している。すなわち、少なくとも変曲点θmにおいて、両湾曲面73,93の内周端間距離が外周端間距離よりも大きい。そして、ベーン100が変曲点θmに対応する角度位置に配置されているとき、ベーン端部101,102は湾曲面73,93の内周端に当接している。 The rear rotor surface 90 has a rear curved surface 93 including a rear concave surface 94 and a rear convex surface 95 as a second concave surface and a second convex surface. The front concave surface 74 and the rear convex surface 95 are opposed to each other in the axial direction Z, and the front convex surface 75 and the rear concave surface 94 are opposed to each other in the axial direction Z. The curved surfaces 73 and 93 have an inflection point θm at the same angular position, and at least at the inflection point θm, the inner peripheral ends of the curved surfaces 73 and 93 are inclined so as to be separated from the outer peripheral end. is doing. That is, at least at the inflection point θm, the distance between the inner peripheral ends of the curved surfaces 73 and 93 is larger than the distance between the outer peripheral ends. When the vane 100 is disposed at an angular position corresponding to the inflection point θm, the vane end portions 101 and 102 are in contact with the inner peripheral ends of the curved surfaces 73 and 93.
 この構成によれば、両ロータ60,80が回転することによって、両ベーン端部101,102が両ロータ面70,90に当接した状態でベーン100が軸方向Zに移動し、両圧縮室A4,A5にて流体の吸入と圧縮とが行われる。これにより、両圧縮室A4,A5のそれぞれに対応させてベーン100を設けることなく、両圧縮室A4,A5にて流体の吸入と圧縮とを行うことができる。 According to this configuration, the rotation of the rotors 60 and 80 causes the vane 100 to move in the axial direction Z in a state where both the vane end portions 101 and 102 are in contact with both the rotor surfaces 70 and 90. Fluid suction and compression are performed at A4 and A5. As a result, fluid can be sucked and compressed in both the compression chambers A4 and A5 without providing the vane 100 corresponding to each of the compression chambers A4 and A5.
 また、本実施形態によれば、両凹面74,94において内周端の曲率半径が外周端の曲率半径よりも小さく、両凸面75,95において内周端の曲率半径が外周端の曲率半径よりも小さくなっている。これにより、湾曲面73,93とベーン端部101,102との当接線である両当接線P1,P2の双方を曲線状にすることができるため、ベーン100の揺動をより好適に抑制できる。 Further, according to the present embodiment, the curvature radius of the inner peripheral end of both concave surfaces 74 and 94 is smaller than the curvature radius of the outer peripheral end, and the curvature radius of the inner peripheral end of both convex surfaces 75 and 95 is smaller than the curvature radius of the outer peripheral end. Is also getting smaller. Thereby, since both the contact lines P1 and P2 which are contact lines between the curved surfaces 73 and 93 and the vane end portions 101 and 102 can be curved, the swing of the vane 100 can be more preferably suppressed. .
 ここで、上記のように両湾曲面73,93が構成されることにより、少なくとも変曲点θmにおいて両湾曲面73,93の内周端が外周端よりも互いに離れるように傾斜することとなる。この点、本実施形態によれば、ベーン100が変曲点θmに対応する角度位置に配置されているとき、ベーン端部101,102が湾曲面73,93の内周端に当接している。これにより、両当接線P1,P2の双方を曲線状にしつつ、ベーン端部101,102と湾曲面73,93との間に隙間が生じ難くなる。 Here, by configuring the two curved surfaces 73 and 93 as described above, at least the inflection point θm, the inner peripheral ends of the two curved surfaces 73 and 93 are inclined so as to be separated from each other than the outer peripheral end. . In this regard, according to the present embodiment, when the vane 100 is disposed at an angular position corresponding to the inflection point θm, the vane end portions 101 and 102 are in contact with the inner peripheral ends of the curved surfaces 73 and 93. . This makes it difficult for a gap to be formed between the vane end portions 101 and 102 and the curved surfaces 73 and 93 while making both the contact lines P1 and P2 curved.
 (7)リアロータ面90は、互いに軸方向Zにずれた位置に配置された両リア平坦面91,92を備えている。第2リア平坦面92は第2壁面53に当接している。リア湾曲面93は、両リア平坦面91,92を繋いでいる。第1フロント平坦面71と第2リア平坦面92とが対向し、第2フロント平坦面72と第1リア平坦面91とが対向している。この構成によれば、第2フロント平坦面72と対向する位置に第1リア平坦面91を配置したため、両者の離間距離が一定になり、ベーン100の移動に支障が生じ難くなり、ベーン100と両ロータ面70,90との間に隙間が生じ難くなる。リア圧縮室A5についても同様である。 (7) The rear rotor surface 90 includes both rear flat surfaces 91 and 92 disposed at positions shifted in the axial direction Z from each other. The second rear flat surface 92 is in contact with the second wall surface 53. The rear curved surface 93 connects both rear flat surfaces 91 and 92. The first front flat surface 71 and the second rear flat surface 92 are opposed to each other, and the second front flat surface 72 and the first rear flat surface 91 are opposed to each other. According to this configuration, since the first rear flat surface 91 is disposed at a position facing the second front flat surface 72, the distance between the two is constant, and the movement of the vane 100 is not easily affected. A gap is less likely to occur between the rotor surfaces 70 and 90. The same applies to the rear compression chamber A5.
 (8)フロントロータ面70は、第1壁面52に当接している当接面としての第2フロント平坦面72を含む。一対のフロント湾曲面73は、第2フロント平坦面72に対して回転軸12の周方向の両側に設けられている。一対のフロント湾曲面73は、第2フロント平坦面72から周方向に離れるにしたがって徐々に第2フロント平坦面72から離れるように軸方向Zにそれぞれ湾曲している。また、一対のフロント湾曲面73は、第1ベーン端部101との当接線であるフロント当接線P1が周方向に曲がるように形成されている。即ち、一対のフロント湾曲面73は、径方向Rの位置に応じて角度変化に対する軸方向Zの変位曲線の曲率が異なるように形成されている。この構成によれば、(1)の効果を奏する。 (8) The front rotor surface 70 includes a second front flat surface 72 as a contact surface in contact with the first wall surface 52. The pair of front curved surfaces 73 are provided on both sides in the circumferential direction of the rotary shaft 12 with respect to the second front flat surface 72. The pair of front curved surfaces 73 are each curved in the axial direction Z so as to gradually move away from the second front flat surface 72 as they move away from the second front flat surface 72 in the circumferential direction. The pair of front curved surfaces 73 are formed such that a front contact line P1 that is a contact line with the first vane end portion 101 is bent in the circumferential direction. That is, the pair of front curved surfaces 73 are formed so that the curvature of the displacement curve in the axial direction Z with respect to the change in angle differs according to the position in the radial direction R. According to this structure, there exists an effect of (1).
 上記実施形態は、以下のように変更してもよい。上記実施形態及び以下の各別例は、技術的に矛盾しない範囲で、互いに組み合わせてもよい。
 リアロータ80がフロントロータ60よりも大径であってもよい。
The above embodiment may be modified as follows. The above embodiment and each of the following different examples may be combined with each other within a technically consistent range.
The rear rotor 80 may have a larger diameter than the front rotor 60.
 両ロータ60,80は異径であったが、これに限られず、同径でもよい。つまり、両圧縮室A4,A5の容積は同一でもよい。
 両フロント平坦面71,72及び両リア平坦面91,92を省略してもよい。つまり、ロータ面70,90の全体が湾曲面でもよい。
Both rotors 60 and 80 have different diameters, but are not limited to this, and may have the same diameter. That is, the volume of both compression chambers A4 and A5 may be the same.
Both front flat surfaces 71 and 72 and both rear flat surfaces 91 and 92 may be omitted. That is, the entire rotor surfaces 70 and 90 may be curved surfaces.
 第1ベーン端部101とフロントロータ面70とは、内周端から外周端までの全部に亘って当接する構成に限られず、一部の径方向範囲に亘って当接する構成でもよい。また、第1ベーン端部101とフロントロータ面70とは、全周に亘って当接する構成に限られず、一部の角度範囲に亘って当接する構成でもよい。第2ベーン端部102とリアロータ面90とについても同様である。 The first vane end portion 101 and the front rotor surface 70 are not limited to a configuration in which the first vane end portion 101 and the front rotor surface 70 are in contact with each other from the inner peripheral end to the outer peripheral end. Further, the first vane end portion 101 and the front rotor surface 70 are not limited to the configuration in which the first vane end portion 101 and the front rotor surface 70 are in contact with each other over the entire circumference, but may be configured to contact over a part of the angle range. The same applies to the second vane end portion 102 and the rear rotor surface 90.
 ベーン100の数は任意であり、例えば複数でもよい。また、ベーン100の周方向位置は任意である。
 ベーン100及びベーン溝110の形状は、ベーン100の軸方向Zの移動を許容する一方、周方向の移動が規制されれば、各実施形態のものに限られず任意である。例えばベーンは扇状でもよい。
The number of vanes 100 is arbitrary and may be plural, for example. Further, the circumferential position of the vane 100 is arbitrary.
The shapes of the vane 100 and the vane groove 110 are not limited to those of the embodiments as long as the movement of the vane 100 in the axial direction Z is allowed, but the movement in the circumferential direction is restricted. For example, the vane may be fan-shaped.
 また、ベーンは、所定箇所を中心として振り子のように軸方向Zに移動する構成でもよい。つまり、ベーンは、直線運動に限られず、回転運動によって軸方向Zに移動する構成でもよい。 Further, the vane may be configured to move in the axial direction Z like a pendulum around a predetermined location. That is, the vane is not limited to linear motion, and may be configured to move in the axial direction Z by rotational motion.
 両シリンダ40,50の具体的な形状は任意である。例えば、膨出部46を省略してもよい。また、両シリンダ40,50は別体であったが、一体形成されていてもよい。
 同様に、両ハウジング21,22の具体的な形状についても任意である。
The specific shapes of both cylinders 40 and 50 are arbitrary. For example, the bulging portion 46 may be omitted. Moreover, although both cylinders 40 and 50 were separate bodies, they may be integrally formed.
Similarly, the specific shapes of the housings 21 and 22 are also arbitrary.
 両シリンダ40,50を省略してもよい。この場合、ハウジング11の内周面が両圧縮室A4,A5を区画するとよい。この構成では、ハウジング11が「第1筒部」及び「第2筒部」に対応する。 Both cylinders 40 and 50 may be omitted. In this case, the inner peripheral surface of the housing 11 may divide both compression chambers A4 and A5. In this configuration, the housing 11 corresponds to a “first cylinder part” and a “second cylinder part”.
 電動モータ13及びインバータ14を省略してもよい。つまり、電動モータ13及びインバータ14は圧縮機10において必須ではない。
 両ロータ60,80は回転軸12と一体回転するように、それぞれ回転軸12に固定されていてもよいし、いずれか一方のみが一体回転するように回転軸12に取り付けられ、他方が回転軸12に対して回転可能な状態で回転軸12に取り付けられていてもよい。この場合であっても、両ロータリバルブ122,124が周方向に係合しているため、両ロータ60,80のうち一方のロータの回転に伴って他方のロータが回転することとなる。
The electric motor 13 and the inverter 14 may be omitted. That is, the electric motor 13 and the inverter 14 are not essential in the compressor 10.
Both rotors 60 and 80 may be fixed to the rotary shaft 12 so as to rotate integrally with the rotary shaft 12, or only one of them is attached to the rotary shaft 12 so as to rotate integrally, and the other is the rotary shaft. The rotary shaft 12 may be attached to the rotary shaft 12 in a rotatable state. Even in this case, since the rotary valves 122 and 124 are engaged in the circumferential direction, the other rotor rotates as the rotor of the rotors 60 and 80 rotates.
 両ボス部121,123の外周面は面一となっておらず段差状になっていてもよい。この場合、ベーン100の内側端面103は、隙間が形成されないように同じく段差状となっているとよい。 The outer peripheral surfaces of the boss portions 121 and 123 are not flush with each other and may be stepped. In this case, the inner end face 103 of the vane 100 is preferably stepped so that no gap is formed.
 図17及び図18に示すように、連通機構200は、中間壁部51を迂回するように形成されていてもよい。例えば、連通機構200は、両シリンダ側壁部42,55に形成された連通流路201を介して両圧縮室A4,A5を連通してもよい。連通流路201は、フロントシリンダ内周面43のうち第2フロント圧縮室A4bを区画する部分に形成されたフロント側開口部と、リアシリンダ内周面56のうち第1リア圧縮室A5aを形成する部分にあるリア側開口部とを有し、それら開口部同士を繋ぐ。この場合、連通機構200は、フロント圧縮室A4の位相が0°~360°の場合に非連通状態となり、フロント圧縮室A4の位相が360°~720°の場合に連通状態となるように切り替わる。 As shown in FIGS. 17 and 18, the communication mechanism 200 may be formed so as to bypass the intermediate wall portion 51. For example, the communication mechanism 200 may communicate both the compression chambers A4 and A5 via the communication channel 201 formed in both the cylinder side walls 42 and 55. The communication channel 201 forms a front-side opening formed in a portion of the front cylinder inner peripheral surface 43 that defines the second front compression chamber A4b, and a first rear compression chamber A5a of the rear cylinder inner peripheral surface 56. A rear-side opening in the portion to be connected, and connects the openings. In this case, the communication mechanism 200 switches to a non-communication state when the phase of the front compression chamber A4 is 0 ° to 360 °, and switches to a communication state when the phase of the front compression chamber A4 is 360 ° to 720 °. .
 この場合、両ボス部121,123及び両ロータリバルブ122,124を省略してもよい。つまり、両ロータ60,80が当接又は係合していることは必須ではない。
 この構成においては、壁部貫通孔54を縮径して、壁部内周面54aと回転軸12とが当接又は近接しているとよい。また、ベーン100の内側端面103は回転軸12に直接当接していてもよい。
In this case, both boss portions 121 and 123 and both rotary valves 122 and 124 may be omitted. That is, it is not essential that the rotors 60 and 80 are in contact with or engaged with each other.
In this configuration, it is preferable that the wall portion through-hole 54 is reduced in diameter so that the wall portion inner peripheral surface 54a and the rotary shaft 12 are in contact with or close to each other. Further, the inner end surface 103 of the vane 100 may be in direct contact with the rotating shaft 12.
 連通溝133が両開口部131,132の双方に連通していてもよい。この場合、連結バルブ125は開放空間126が形成されない完全に閉じたリング状となっていてもよい。すなわち、両ロータリバルブ122,124は、係合状態において全周に亘って形成されている構成でもよい。また、連通溝133が両開口部131,132の双方に連通している場合、両ロータリバルブ122,124を省略して、両ボス先端面121a,123a同士が直接当接する構成でもよい。すなわち、両ロータリバルブ122,124は必須ではない。この場合であっても、連通機構120は、フロント圧縮室A4の位相が0~360°である場合に非連通状態となり、360°~720°である場合に連通状態とに切り替わるものと言える。 The communication groove 133 may communicate with both the openings 131 and 132. In this case, the connection valve 125 may have a completely closed ring shape in which the open space 126 is not formed. That is, the rotary valves 122 and 124 may be formed over the entire circumference in the engaged state. Further, when the communication groove 133 communicates with both of the openings 131 and 132, the rotary valves 122 and 124 may be omitted and the boss tip surfaces 121a and 123a may be in direct contact with each other. That is, the rotary valves 122 and 124 are not essential. Even in this case, it can be said that the communication mechanism 120 is in a non-communication state when the phase of the front compression chamber A4 is 0 to 360 °, and is switched to a communication state when the phase is 360 ° to 720 °.
 両ロータリバルブ122,124は、周方向に係合していれば、その具体的な係合態様は任意であり、例えばリアロータリバルブ124が2つ設けられ、両リアロータリバルブ124の間にフロントロータリバルブ122が配置されて係合している構成でもよい。 As long as both the rotary valves 122 and 124 are engaged in the circumferential direction, the specific engagement mode is arbitrary. For example, two rear rotary valves 124 are provided, and the front rotary valve 124 is disposed between the front and rear rotary valves 124. A configuration in which the rotary valve 122 is disposed and engaged may be employed.
 両開口部131,132は互いに周方向に離間して配置されていれば、その具体的な位置は任意である。
 フロント凹面74及びフロント凸面75と、リア凹面94及びリア凸面95とのうち、いずれか一方のみについて曲率変化が生じるように構成されてもよい。つまり、両当接線P1,P2のうち少なくとも一方が曲線状となっていればよい。
As long as both the openings 131 and 132 are spaced apart from each other in the circumferential direction, the specific positions thereof are arbitrary.
The front concave surface 74 and the front convex surface 75, and the rear concave surface 94 and the rear convex surface 95 may be configured to change the curvature only in one of them. That is, it is sufficient that at least one of the contact lines P1, P2 is curved.
 両圧縮室A4,A5は連通していなくてもよい。つまり、連通機構120を省略してもよい。この場合、圧縮機10は、両圧縮室A4,A5のそれぞれにおいて、吸入流体が吸入されかつ圧縮された流体が吐出されるように構成されているとよい。例えば、フロントロータ60に吐出ポートを設け、当該吐出ポートから圧縮流体が吐出されてもよく、リアロータ80に吸入ポートを設け、当該吸入ポートから吸入流体を導入されるようにしてもよい。 Both compression chambers A4 and A5 do not need to communicate. That is, the communication mechanism 120 may be omitted. In this case, the compressor 10 may be configured such that the suction fluid is sucked and the compressed fluid is discharged in each of the compression chambers A4 and A5. For example, a discharge port may be provided in the front rotor 60 and compressed fluid may be discharged from the discharge port, or a suction port may be provided in the rear rotor 80 and suction fluid may be introduced from the suction port.
 両ロータ60,80のいずれか一方を省略してもよい。例えば、図19に示すように、フロントロータ60を省略してもよい。この場合、フロント圧縮室A4も省略される。つまり、2つのロータ及び2つの圧縮室は必須ではない。 Either one of the rotors 60 and 80 may be omitted. For example, as shown in FIG. 19, the front rotor 60 may be omitted. In this case, the front compression chamber A4 is also omitted. That is, two rotors and two compression chambers are not essential.
 この構成においては、リア圧縮室A5に吸入流体が導入されるように、中間壁部51に、吸入ポート211が形成されているとよい。また、ベーン100をリアロータ面90に対して付勢する付勢部212が設けられているとよい。この構成によれば、リアロータ80の回転に伴ってベーン100がリアロータ面90を摺動しながら軸方向Zに移動する。これにより、リア圧縮室A5において容積変化が生じ、リア圧縮室A5において吸入流体の吸入及び圧縮が行われる。 In this configuration, a suction port 211 may be formed in the intermediate wall portion 51 so that the suction fluid is introduced into the rear compression chamber A5. Further, an urging portion 212 that urges the vane 100 against the rear rotor surface 90 may be provided. According to this configuration, the vane 100 moves in the axial direction Z while sliding on the rear rotor surface 90 as the rear rotor 80 rotates. As a result, a volume change occurs in the rear compression chamber A5, and the suction fluid is sucked and compressed in the rear compression chamber A5.
 なお、フロントロータ60を省略した場合、ベーン100の径方向Rの長さは、リアロータ面90の径方向Rの長さと同一でもよい。この場合、ベーン溝110は中間壁部51のみに形成され、リアシリンダ側壁部55に形成されていなくてもよい。 When the front rotor 60 is omitted, the length of the vane 100 in the radial direction R may be the same as the length of the rear rotor surface 90 in the radial direction R. In this case, the vane groove 110 is formed only in the intermediate wall portion 51 and may not be formed in the rear cylinder side wall portion 55.
 また、本別例においては、ベーン100の内側端面103は、回転軸12(詳細には回転軸12の外周面)に当接するとよい。また、フロントロータ60を省略した場合には、第1リア平坦面91を省略してもよい。 In this example, the inner end surface 103 of the vane 100 may be in contact with the rotating shaft 12 (specifically, the outer peripheral surface of the rotating shaft 12). Further, when the front rotor 60 is omitted, the first rear flat surface 91 may be omitted.
 図20及び図21は、径方向R外側に向けて凹となるように湾曲したベーン100の内側端面103と、径方向R外側に向けて凸となるように湾曲したフロントボス部121の外周面とを示す。図20及び図21に示すように、ベーン100の内側端面103の曲率は、フロントボス部121の外周面の曲率よりも小さくてもよい。つまり、ベーン100の内側端面103は、径方向R外側に凹むとともに、フロントボス部121の外周面よりも緩やかに湾曲してもよい。この構成によれば、製造誤差などに起因してベーン100の内側端面103の曲率がフロントボス部121の外周面の曲率よりも大きくなることを抑制できる。これにより、ベーン100の内側端面103の曲率がフロントボス部121の外周面の曲率よりも大きくなることにより生じる不都合を抑制できる。 20 and 21 show the outer peripheral surface of the inner end surface 103 of the vane 100 curved so as to be concave toward the outer side in the radial direction R and the front boss portion 121 curved so as to be convex toward the outer side in the radial direction R. It shows. As shown in FIGS. 20 and 21, the curvature of the inner end surface 103 of the vane 100 may be smaller than the curvature of the outer peripheral surface of the front boss portion 121. That is, the inner end surface 103 of the vane 100 may be recessed outwardly in the radial direction R and bend more gently than the outer peripheral surface of the front boss portion 121. According to this structure, it can suppress that the curvature of the inner side end surface 103 of the vane 100 becomes larger than the curvature of the outer peripheral surface of the front boss | hub part 121 resulting from a manufacturing error. Thereby, the inconvenience which arises when the curvature of the inner side end surface 103 of the vane 100 becomes larger than the curvature of the outer peripheral surface of the front boss part 121 can be suppressed.
 詳述すると、仮にベーン100の内側端面103の曲率とフロントボス部121の外周面の曲率とを同一にすると、製造誤差などによってベーン100の内側端面103の曲率がフロントボス部121の外周面の曲率よりも大きくなり得る。この場合、ベーン100の内側端面103の両端がフロントボス部121の外周面に引っ掛かってベーン100が軸方向Zに移動し難くなったり、ベーン100の内側端面103の両端が摩耗したりする虞がある。 More specifically, if the curvature of the inner end surface 103 of the vane 100 is the same as the curvature of the outer peripheral surface of the front boss portion 121, the curvature of the inner end surface 103 of the vane 100 becomes the same as that of the outer peripheral surface of the front boss portion 121 due to manufacturing errors. Can be greater than curvature. In this case, both ends of the inner end surface 103 of the vane 100 may be caught by the outer peripheral surface of the front boss portion 121, and the vane 100 may not move in the axial direction Z, or both ends of the inner end surface 103 of the vane 100 may be worn. is there.
 この点、本別例によれば、積極的に、ベーン100の内側端面103をフロントボス部121の外周面よりも緩やかに湾曲させることにより、製造誤差などが生じた場合であっても、ベーン100の内側端面103の曲率がフロントボス部121の外周面の曲率よりも大きくなることを抑制できる。これにより、ベーン100の内側端面103の曲率がフロントボス部121の外周面の曲率よりも大きくなることにより生じる不都合を抑制できる。 In this regard, according to this example, even if a manufacturing error or the like occurs by actively curving the inner end surface 103 of the vane 100 more gently than the outer peripheral surface of the front boss portion 121, It is possible to suppress the curvature of the inner end surface 103 of 100 from becoming larger than the curvature of the outer peripheral surface of the front boss portion 121. Thereby, the inconvenience which arises when the curvature of the inner side end surface 103 of the vane 100 becomes larger than the curvature of the outer peripheral surface of the front boss part 121 can be suppressed.
 また、ベーン100の内側端面103がフロントボス部121の外周面よりも緩やかに湾曲しているため、第2フロント圧縮室A4bでは、ベーン100の内側端面103とフロントボス部121の外周面との間に隙間が生じる。第2フロント圧縮室A4bでは、ベーン100の内側端面103とフロントボス部121の外周面との間に圧縮流体が流れ込む。この圧縮流体がベーン100を径方向R外側に押圧することで、ベーン100の外側端面104とフロントシリンダ内周面43との間をシールすることができる。 Further, since the inner end surface 103 of the vane 100 is more gently curved than the outer peripheral surface of the front boss portion 121, the second front compression chamber A4b has a contact between the inner end surface 103 of the vane 100 and the outer peripheral surface of the front boss portion 121. There is a gap between them. In the second front compression chamber A4b, the compressed fluid flows between the inner end surface 103 of the vane 100 and the outer peripheral surface of the front boss portion 121. The compressed fluid presses the vane 100 outward in the radial direction R, so that the gap between the outer end surface 104 of the vane 100 and the inner peripheral surface 43 of the front cylinder can be sealed.
 ちなみに、フロントボス部121の外周面は、リアボス部123の外周面と面一である。このため、ベーン100の内側端面103の曲率は、リアボス部123の外周面の曲率よりも小さいともいえる。同様に、両ボス部121,123の外周面は、バルブ外周面125aと面一である。このため、ベーン100の内側端面103の曲率は、バルブ外周面125aの曲率よりも小さいともいえる。 Incidentally, the outer peripheral surface of the front boss portion 121 is flush with the outer peripheral surface of the rear boss portion 123. For this reason, it can be said that the curvature of the inner end surface 103 of the vane 100 is smaller than the curvature of the outer peripheral surface of the rear boss portion 123. Similarly, the outer peripheral surfaces of both boss portions 121 and 123 are flush with the valve outer peripheral surface 125a. For this reason, it can be said that the curvature of the inner end surface 103 of the vane 100 is smaller than the curvature of the valve outer peripheral surface 125a.
 ここで、回転軸12が両ボス部121,123に挿通されている点で、両ボス部121,123(及び連結バルブ125)は、回転軸12の回転に伴って回転するロータ筒部ともいえる。この場合、ベーン100の内側端面103の曲率は、ロータ筒部の外周面の曲率よりも小さいともいえる。 Here, both the boss portions 121 and 123 (and the connection valve 125) can be said to be rotor cylinder portions that rotate with the rotation of the rotation shaft 12 in that the rotation shaft 12 is inserted into both the boss portions 121 and 123. . In this case, it can be said that the curvature of the inner end surface 103 of the vane 100 is smaller than the curvature of the outer peripheral surface of the rotor cylinder portion.
 なお、図19に示す別例のように、ベーン100の内側端面103を回転軸12の外周面に当接させる場合、ベーン100の内側端面103の曲率は、径方向R外側に向けて凸となるように湾曲した回転軸12の外周面の曲率よりも小さい方がよい。 19, when the inner end surface 103 of the vane 100 is brought into contact with the outer peripheral surface of the rotary shaft 12 as in another example, the curvature of the inner end surface 103 of the vane 100 is convex toward the outer side in the radial direction R. It is better that the curvature is smaller than the curvature of the outer peripheral surface of the rotating shaft 12 that is curved.
 また、図20は、径方向R外側に向けて凸となるように湾曲したベーン100の外側端面104と、径方向R外側に向けて凸となるように湾曲したフロントシリンダ40のフロントシリンダ内周面43とを示す。図20に示すように、ベーン100の外側端面104の曲率は、フロントシリンダ40のフロントシリンダ内周面43の曲率よりも大きくてもよい。つまり、ベーン100の外側端面104は、径方向R外側に向けて凸であるとともに、フロントシリンダ内周面43よりも大きく湾曲してもよい。
この構成によれば、製造誤差などに起因してベーン100の外側端面104の曲率がフロントシリンダ内周面43の曲率よりも小さくなることを抑制できる。
20 shows the outer end surface 104 of the vane 100 curved so as to be convex outward in the radial direction R and the inner periphery of the front cylinder of the front cylinder 40 curved so as to be convex outward in the radial direction R. A surface 43 is shown. As shown in FIG. 20, the curvature of the outer end surface 104 of the vane 100 may be larger than the curvature of the front cylinder inner peripheral surface 43 of the front cylinder 40. That is, the outer end surface 104 of the vane 100 may be convex outward in the radial direction R and may be curved more than the inner peripheral surface 43 of the front cylinder.
According to this configuration, it is possible to suppress the curvature of the outer end surface 104 of the vane 100 from being smaller than the curvature of the inner peripheral surface 43 of the front cylinder due to a manufacturing error or the like.
 詳述すると、仮にベーン100の外側端面104の曲率とフロントシリンダ内周面43の曲率とを同一にすると、製造誤差などによってベーン100の外側端面104の曲率がフロントシリンダ内周面43の曲率よりも小さくなり得る。この場合、ベーン100の外側端面104の両端がフロントシリンダ内周面43に引っ掛かってベーン100が軸方向Zに移動し難くなったり、ベーン100の外側端面104の両端が摩耗したりする虞がある。 More specifically, if the curvature of the outer end surface 104 of the vane 100 and the curvature of the front cylinder inner peripheral surface 43 are the same, the curvature of the outer end surface 104 of the vane 100 is greater than the curvature of the front cylinder inner peripheral surface 43 due to manufacturing errors. Can also be smaller. In this case, both ends of the outer end surface 104 of the vane 100 may be caught by the inner peripheral surface 43 of the front cylinder, and the vane 100 may not easily move in the axial direction Z, or both ends of the outer end surface 104 of the vane 100 may be worn. .
 この点、本別例によれば、積極的に、ベーン100の外側端面104をフロントシリンダ内周面43よりも大きく湾曲させることにより、製造誤差などが生じた場合であっても、ベーン100の外側端面104の曲率がフロントシリンダ内周面43の曲率よりも小さくなることを抑制できる。これにより、ベーン100の外側端面104の曲率がフロントシリンダ内周面43の曲率よりも小さくなることにより生じる不都合を抑制できる。 In this respect, according to this example, even if a manufacturing error or the like occurs by actively bending the outer end surface 104 of the vane 100 to be larger than the inner peripheral surface 43 of the front cylinder, It can suppress that the curvature of the outer side end surface 104 becomes smaller than the curvature of the front cylinder internal peripheral surface 43. FIG. Thereby, the inconvenience caused by the curvature of the outer end face 104 of the vane 100 being smaller than the curvature of the front cylinder inner peripheral face 43 can be suppressed.
 また、ベーン100の外側端面104がフロントシリンダ内周面43よりも大きく湾曲しているため、第2フロント圧縮室A4bでは、ベーン100の外側端面104とフロントシリンダ内周面43との間に隙間が生じる。第2フロント圧縮室A4bでは、ベーン100の外側端面104とフロントシリンダ内周面43との間に圧縮流体が流れ込む。この圧縮流体がベーン100を径方向R内側に押圧することで、ベーン100の内側端面103とフロントボス部121の外周面との間をシールすることができる。 Further, since the outer end surface 104 of the vane 100 is curved to be larger than the front cylinder inner peripheral surface 43, a gap is formed between the outer end surface 104 of the vane 100 and the front cylinder inner peripheral surface 43 in the second front compression chamber A4b. Occurs. In the second front compression chamber A4b, the compressed fluid flows between the outer end surface 104 of the vane 100 and the front cylinder inner peripheral surface 43. The compressed fluid presses the vane 100 inward in the radial direction R, so that the gap between the inner end surface 103 of the vane 100 and the outer peripheral surface of the front boss portion 121 can be sealed.
 ベーン100の内側端面103の曲率がフロントボス部121の外周面の曲率と同一であり、且つ、ベーン100の外側端面104の曲率がフロントシリンダ内周面43の曲率よりも大きくてもよい。また、ベーン100の内側端面103の曲率がフロントボス部121の外周面の曲率よりも小さく、且つ、ベーン100の外側端面104の曲率がフロントシリンダ内周面43の曲率と同一でもよい。 The curvature of the inner end surface 103 of the vane 100 may be the same as the curvature of the outer peripheral surface of the front boss portion 121, and the curvature of the outer end surface 104 of the vane 100 may be larger than the curvature of the inner peripheral surface 43 of the front cylinder. Further, the curvature of the inner end face 103 of the vane 100 may be smaller than the curvature of the outer peripheral face of the front boss portion 121, and the curvature of the outer end face 104 of the vane 100 may be the same as the curvature of the front cylinder inner peripheral face 43.
 図22に示すように、ベーン100の外側端面104において、第1フロント圧縮室A4aに配置される部分と、第2フロント圧縮室A4bに配置される部分とで、曲率を異ならせてもよい。詳細には、ベーン100の外側端面104は、第1フロント圧縮室A4a(回転方向側)に設けられかつフロントシリンダ内周面43よりも大きい曲率を有する第1外側端面221と、第2フロント圧縮室A4b(回転方向と反対側)に設けられかつ第1外側端面221よりも大きい曲率を有する第2外側端面222とを含んでもよい。第1外側端面221は、第2外側端面222よりも回転方向側にある。この構成によれば、上述した効果に加えて、シール性が向上する。 22, on the outer end face 104 of the vane 100, the curvature may be different between the portion disposed in the first front compression chamber A4a and the portion disposed in the second front compression chamber A4b. Specifically, the outer end face 104 of the vane 100 is provided with a first outer end face 221 provided in the first front compression chamber A4a (rotation direction side) and having a curvature larger than that of the front cylinder inner peripheral face 43, and a second front compression face. A second outer end face 222 provided in the chamber A4b (opposite to the rotation direction) and having a larger curvature than the first outer end face 221 may be included. The first outer end surface 221 is closer to the rotation direction than the second outer end surface 222. According to this configuration, in addition to the effects described above, the sealing performance is improved.
 詳述すると、本別例によれば、第1外側端面221の曲率が、第2外側端面222の曲率よりもフロントシリンダ内周面43の曲率に近似している。このため、第1外側端面221とフロントシリンダ内周面43との当接箇所が周方向に延び易くなり、第1外側端面221とフロントシリンダ内周面43との当接面積が増大する。これにより、ベーン100の外側端面104とフロントシリンダ内周面43とのシール性が向上する。 More specifically, according to this separate example, the curvature of the first outer end surface 221 is closer to the curvature of the inner peripheral surface 43 of the front cylinder than the curvature of the second outer end surface 222. For this reason, the contact portion between the first outer end surface 221 and the front cylinder inner peripheral surface 43 is easily extended in the circumferential direction, and the contact area between the first outer end surface 221 and the front cylinder inner peripheral surface 43 is increased. Thereby, the sealing performance between the outer end surface 104 of the vane 100 and the inner peripheral surface 43 of the front cylinder is improved.
 一方、第2フロント圧縮室A4bにある第2外側端面222は、第1外側端面221よりも大きく湾曲している。このため、第2フロント圧縮室A4bでは、第2外側端面222とフロントシリンダ内周面43との間に隙間が形成され易い。これにより、圧縮流体が第2外側端面222とフロントシリンダ内周面43との間に入り込み易くなる。この圧縮流体がベーン100を径方向R内側に押圧するため、ベーン100の内側端面103とフロントボス部121の外周面とのシール性が向上する。 On the other hand, the second outer end face 222 in the second front compression chamber A4b is curved to be larger than the first outer end face 221. Therefore, in the second front compression chamber A4b, a gap is easily formed between the second outer end surface 222 and the front cylinder inner peripheral surface 43. Thereby, the compressed fluid easily enters between the second outer end face 222 and the front cylinder inner peripheral face 43. Since this compressed fluid presses the vane 100 in the radial direction R, the sealing property between the inner end surface 103 of the vane 100 and the outer peripheral surface of the front boss portion 121 is improved.
 ベーン100は、複数の部品で構成されていてもよく、例えば、ベーン溝110に挿入されるベーン本体と、ベーン本体とフロントロータ面70との間に設けられ、フロントロータ面70と当接するフロントチップシールと、を備えていてもよい。この場合、フロントチップシール又はフロントチップシールの端部がベーン100の軸方向Zの端部を構成しており、「ベーン端部」に対応する。 The vane 100 may be composed of a plurality of parts. For example, the vane 100 is provided between the vane main body inserted into the vane groove 110 and the vane main body and the front rotor surface 70, and is in contact with the front rotor surface 70. And a tip seal. In this case, the front tip seal or the end of the front tip seal constitutes the end of the vane 100 in the axial direction Z, and corresponds to the “vane end”.
 同様に、ベーン100は、ベーン本体とリアロータ面90との間に設けられ、リアロータ面90と当接するリアチップシールを備えてもよい。この場合、リアチップシール又はリアチップシールの端部が「ベーン端部」に対応する。 Similarly, the vane 100 may include a rear tip seal that is provided between the vane body and the rear rotor surface 90 and abuts against the rear rotor surface 90. In this case, the rear tip seal or the end of the rear tip seal corresponds to the “vane end”.
 圧縮機10は、空調装置以外に用いられてもよい。例えば、圧縮機10は、燃料電池車両に搭載された燃料電池に対して圧縮空気を供給するのに用いられてもよい。
 圧縮機10の搭載対象は、車両に限られず、任意である。
The compressor 10 may be used other than the air conditioner. For example, the compressor 10 may be used to supply compressed air to a fuel cell mounted on a fuel cell vehicle.
The mounting target of the compressor 10 is not limited to the vehicle and is arbitrary.
 圧縮機10の圧縮対象の流体は、オイルを含む冷媒に限られず、任意である。 The fluid to be compressed by the compressor 10 is not limited to the refrigerant containing oil, but is arbitrary.

Claims (10)

  1. 回転軸と、
     リング状に形成されたロータ面を有し、前記回転軸の回転に伴って回転するロータと、
     前記ロータの外周面と前記回転軸の径方向に対向する内周面を有し、前記ロータを収容する筒部と、
     前記ロータ面と前記回転軸の軸方向に対向する壁面を有する壁部と、
     前記壁部に形成されたベーン溝に挿入され、前記ロータの回転に伴って前記軸方向に移動するベーンと、
     前記ロータ面、前記壁面及び前記筒部の内周面によって区画され、前記ロータの回転に伴って前記ベーンによって容積変化が生じて流体の吸入及び圧縮が行われる圧縮室とを備え、
     前記ベーンは、前記軸方向の端部であって前記ロータ面と当接するベーン端部を有し、
     前記ベーン端部は、前記ロータ面に向けて凸となるように湾曲し、かつ前記軸方向と直交する方向に延び、
     前記ロータ面は、前記軸方向に湾曲した湾曲面を含み、
     前記湾曲面は、その角度位置に応じて前記軸方向に変位するように湾曲し、
     前記湾曲面は、
     前記壁面に向けて凹となるように前記軸方向に湾曲した凹面と、
     前記壁面に向けて凸となるように前記軸方向に湾曲した凸面とを含み、
     前記凹面は、前記径方向の両端として凹面内周端及び凹面外周端を有し、
     前記凹面では、前記軸方向における前記凹面内周端の曲率半径が、前記凹面外周端の曲率半径よりも小さく、
     前記凸面は、前記径方向の両端として凸面内周端及び凸面外周端を有し、
     前記凸面では、前記軸方向における前記凸面内周端の曲率半径が、前記凸面外周端の曲率半径よりも小さい、圧縮機。
    A rotation axis;
    A rotor surface having a rotor shape formed in a ring shape, and rotating with the rotation of the rotating shaft;
    A cylindrical portion having an outer peripheral surface of the rotor and an inner peripheral surface facing the radial direction of the rotating shaft, and housing the rotor;
    A wall portion having a wall surface facing the rotor surface and the axial direction of the rotation shaft;
    A vane inserted into a vane groove formed in the wall and moving in the axial direction as the rotor rotates;
    A compression chamber that is partitioned by the rotor surface, the wall surface, and an inner peripheral surface of the cylindrical portion, and in which a volume change is generated by the vane as the rotor rotates, and fluid is sucked and compressed;
    The vane has an end in the axial direction and a vane end that contacts the rotor surface;
    The vane end portion is curved so as to be convex toward the rotor surface, and extends in a direction perpendicular to the axial direction,
    The rotor surface includes a curved surface curved in the axial direction,
    The curved surface is curved so as to be displaced in the axial direction according to the angular position,
    The curved surface is
    A concave surface curved in the axial direction so as to be concave toward the wall surface;
    A convex surface curved in the axial direction so as to be convex toward the wall surface,
    The concave surface has a concave inner peripheral edge and a concave outer peripheral edge as both ends in the radial direction,
    In the concave surface, the radius of curvature of the concave inner peripheral edge in the axial direction is smaller than the radius of curvature of the concave outer peripheral edge,
    The convex surface has a convex inner peripheral edge and a convex outer peripheral edge as both ends in the radial direction,
    In the convex surface, the curvature radius of the convex inner peripheral edge in the axial direction is smaller than the curvature radius of the convex outer peripheral end.
  2. 請求項1に記載の圧縮機において、
     前記ベーンは、前記軸方向及び前記ベーン端部の長手方向の双方と直交する方向に厚さを有する板状であり、
     前記ベーンの厚さは、前記湾曲面の角度位置に関わらず、前記ベーン端部が前記湾曲面の内周端から外周端に亘って当接するように設定されている、圧縮機。
    The compressor according to claim 1,
    The vane is a plate having a thickness in a direction orthogonal to both the axial direction and the longitudinal direction of the vane end,
    The compressor is configured such that the thickness of the vane is set so that the vane end portion abuts from the inner peripheral end to the outer peripheral end of the curved surface regardless of the angular position of the curved surface.
  3. 請求項1又は2に記載の圧縮機において、
     前記ロータ面は、前記軸方向と直交する第1平坦面及び第2平坦面を有し、
     前記第1平坦面は、前記壁面から前記軸方向に離間し、
     前記第2平坦面は、前記第1平坦面から周方向に離間した位置に設けられ、前記壁面に当接し、
     前記湾曲面は、前記第1平坦面と前記第2平坦面とを繋ぐと共に、前記第1平坦面から前記第2平坦面に向かうにしたがって徐々に前記壁面に近づくように前記軸方向に湾曲し、
     前記凹面は、前記第2平坦面よりも前記第1平坦面の近くに配置され、
     前記凸面は、前記第1平坦面よりも前記第2平坦面の近くに配置され、
     前記凹面は、前記凸面と繋がっている、圧縮機。
    The compressor according to claim 1 or 2,
    The rotor surface has a first flat surface and a second flat surface orthogonal to the axial direction,
    The first flat surface is spaced apart from the wall surface in the axial direction;
    The second flat surface is provided at a position spaced in the circumferential direction from the first flat surface, abuts on the wall surface,
    The curved surface connects the first flat surface and the second flat surface, and bends in the axial direction so as to gradually approach the wall surface from the first flat surface toward the second flat surface. ,
    The concave surface is disposed closer to the first flat surface than the second flat surface;
    The convex surface is disposed closer to the second flat surface than the first flat surface,
    The concave surface is a compressor connected to the convex surface.
  4. 請求項1~3のうちいずれか一項に記載の圧縮機において、
     前記ロータとして、前記軸方向に対向配置されている第1ロータ及び第2ロータと、
     前記筒部として、前記第1ロータの外周面と前記径方向に対向する第1内周面を有しかつ前記第1ロータを収容している第1筒部、及び前記第2ロータの外周面と前記径方向に対向する第2内周面を有しかつ前記第2ロータを収容している第2筒部と、
     前記圧縮室として第1圧縮室及び第2圧縮室とを備え、
     前記第1ロータは、前記ロータ面として第1ロータ面を有し、
     前記第2ロータは、前記ロータ面として前記第1ロータ面と前記軸方向に対向する第2ロータ面を有し、
     前記ベーンは、前記両ロータ面の間に配置され、前記ベーン端部として前記第1ロータ面と当接する第1ベーン端部及び前記第2ロータ面と当接する第2ベーン端部を有し、
     前記壁部は、前記第1ロータと前記第2ロータとの間に配置され、前記壁面として前記第1ロータ面と前記軸方向に対向する第1壁面及び前記第2ロータ面と前記軸方向に対向する第2壁面を有し、
     前記第1圧縮室は、前記第1ロータ面、前記第1壁面及び前記第1内周面によって区画され、前記第1ロータの回転に伴って前記ベーンによって容積変化が生じて流体の吸入及び圧縮が行われる室であり、
     前記第2圧縮室は、前記第2ロータ面、前記第2壁面及び前記第2内周面によって区画され、前記第2ロータの回転に伴って前記ベーンによって容積変化が生じて流体の吸入及び圧縮が行われる室であり、
     前記第1ロータ面は、互いに繋がっている第1凹面及び第1凸面を有する第1湾曲面を含み、
     前記第2ロータ面は、互いに繋がっている第2凹面及び第2凸面を有する前記湾曲面としての第2湾曲面を含み、
     前記第1凹面及び前記第2凸面が前記軸方向に対向し、
     前記第1凸面及び前記第2凹面が前記軸方向に対向し、
     前記第1湾曲面と前記第2湾曲面とは、同一角度位置にて変曲点を有し、少なくとも前記変曲点において、前記両湾曲面の内周端が外周端よりも互いに離れるように傾斜し、
     前記ベーンが前記変曲点に対応する角度位置に配置されているとき、前記第1ベーン端部が前記第1湾曲面の内周端に当接し、かつ前記第2ベーン端部が前記第2湾曲面の内周端に当接している、圧縮機。
    The compressor according to any one of claims 1 to 3,
    As the rotor, a first rotor and a second rotor that are arranged to face each other in the axial direction;
    As the cylindrical portion, a first cylindrical portion having a first inner peripheral surface opposed to the outer peripheral surface of the first rotor in the radial direction and accommodating the first rotor, and an outer peripheral surface of the second rotor And a second cylindrical portion having a second inner peripheral surface facing the radial direction and containing the second rotor,
    A first compression chamber and a second compression chamber as the compression chamber;
    The first rotor has a first rotor surface as the rotor surface;
    The second rotor has a second rotor surface facing the first rotor surface in the axial direction as the rotor surface,
    The vane is disposed between the two rotor surfaces, and has a first vane end that contacts the first rotor surface and a second vane end that contacts the second rotor surface as the vane end,
    The wall portion is disposed between the first rotor and the second rotor, and as the wall surface, the first wall surface facing the first rotor surface and the axial direction, and the second rotor surface and the axial direction. Having an opposing second wall;
    The first compression chamber is defined by the first rotor surface, the first wall surface, and the first inner peripheral surface, and a change in volume is generated by the vane as the first rotor rotates, so that fluid suction and compression are performed. Is a room where
    The second compression chamber is defined by the second rotor surface, the second wall surface, and the second inner peripheral surface, and a change in volume is generated by the vane as the second rotor rotates, so that fluid suction and compression are performed. Is a room where
    The first rotor surface includes a first curved surface having a first concave surface and a first convex surface connected to each other,
    The second rotor surface includes a second curved surface as the curved surface having a second concave surface and a second convex surface connected to each other,
    The first concave surface and the second convex surface are opposed in the axial direction;
    The first convex surface and the second concave surface are opposed in the axial direction;
    The first curved surface and the second curved surface have an inflection point at the same angular position, and at least at the inflection point, the inner peripheral ends of the two curved surfaces are separated from each other than the outer peripheral end. Tilt,
    When the vane is disposed at an angular position corresponding to the inflection point, the first vane end is in contact with the inner peripheral end of the first curved surface, and the second vane end is the second A compressor in contact with the inner peripheral end of the curved surface.
  5. 請求項1~4のうちいずれか一項に記載の圧縮機において、
     前記凹面は、前記凹面外周端から前記凹面内周端に向かうに従って徐々に前記軸方向の曲率半径が小さくなるように形成され、
     前記凸面は、前記凸面外周端から前記凸面内周端に向かうに従って徐々に前記軸方向の曲率半径が小さくなるように形成されている、圧縮機。
    The compressor according to any one of claims 1 to 4,
    The concave surface is formed such that the radius of curvature in the axial direction gradually decreases from the outer peripheral end of the concave surface toward the inner peripheral end of the concave surface,
    The said convex surface is a compressor formed so that the curvature radius of the said axial direction may become small gradually as it goes to the said convex surface inner peripheral end from the said convex surface outer peripheral end.
  6. 請求項1~5のうちいずれか一項に記載の圧縮機において、
     前記ベーンの径方向内側の端面は、前記回転軸が挿入されかつ前記回転軸の回転に伴って回転するロータ筒部の外周面と当接しており、
     前記ベーンの径方向内側の端面の曲率は、前記ロータ筒部の外周面の曲率よりも小さい、圧縮機。
    In the compressor according to any one of claims 1 to 5,
    The end surface on the radially inner side of the vane is in contact with the outer peripheral surface of the rotor cylinder portion into which the rotating shaft is inserted and rotated with the rotation of the rotating shaft,
    A compressor in which a curvature of a radially inner end face of the vane is smaller than a curvature of an outer peripheral face of the rotor cylinder portion.
  7. 請求項1~5のうちいずれか一項に記載の圧縮機において、
     前記ベーンの径方向内側の端面は、前記回転軸の外周面と当接しており、
     前記ベーンの径方向内側の端面の曲率は、前記回転軸の外周面の曲率よりも小さい、圧縮機。
    In the compressor according to any one of claims 1 to 5,
    An end surface on the radially inner side of the vane is in contact with an outer peripheral surface of the rotating shaft,
    A compressor in which the curvature of the end surface on the radially inner side of the vane is smaller than the curvature of the outer peripheral surface of the rotating shaft.
  8. 請求項1~7のうちいずれか一項に記載の圧縮機において、
     前記ベーンの径方向外側の端面は、前記筒部の内周面と当接しており、
     前記ベーンの径方向外側の端面の曲率は、前記筒部の内周面の曲率よりも大きい、圧縮機。
    The compressor according to any one of claims 1 to 7,
    The radially outer end surface of the vane is in contact with the inner peripheral surface of the cylindrical portion,
    A compressor in which a curvature of an end face on the radially outer side of the vane is larger than a curvature of an inner peripheral face of the cylindrical portion.
  9. 請求項8に記載の圧縮機において、
     前記ベーンの径方向外側の端面は、
     前記回転軸の回転方向側に配置されかつ前記筒部の内周面よりも大きい曲率を有する第1外側端面と、
     前記回転軸の回転方向と反対側に配置されかつ前記第1外側端面よりも大きい曲率を有する第2外側端面と
     を有する、圧縮機。
    The compressor according to claim 8, wherein
    The end surface on the radially outer side of the vane is
    A first outer end surface that is disposed on the rotation direction side of the rotation shaft and has a curvature larger than an inner peripheral surface of the cylindrical portion;
    A compressor having a second outer end surface disposed on a side opposite to a rotation direction of the rotating shaft and having a curvature larger than that of the first outer end surface.
  10. 回転軸と、
     リング状に形成されたロータ面を有し、前記回転軸の回転に伴って回転するロータと、
     前記ロータの外周面と前記回転軸の径方向に対向する内周面を有し、前記ロータを収容する筒部と、
     前記ロータ面と前記回転軸の軸方向に対向する壁面を有する壁部と、
     前記壁部に形成されたベーン溝に挿入され、前記ロータの回転に伴って前記軸方向に移動するベーンと、
     前記ロータ面、前記壁面及び前記筒部の内周面によって区画され、前記ロータの回転に伴って前記ベーンによって容積変化が生じて流体の吸入及び圧縮が行われる圧縮室とを備え、
     前記ベーンは、前記軸方向の端部であって前記ロータ面と当接するベーン端部を有し、
     前記ベーン端部は、前記ロータ面に向けて凸となるように湾曲し、かつ前記軸方向と直交する方向に延び、
     前記ロータ面は、前記軸方向に湾曲した湾曲面を含み、
     前記湾曲面は、その角度位置に応じて前記軸方向に変位するように湾曲し、
     前記湾曲面は、前記湾曲面と前記ベーン端部との当接線の少なくとも一部が前記ロータの周方向に曲がるように、前記径方向の位置に応じて前記軸方向に対する曲率半径が異なる部分を含む、圧縮機。
    A rotation axis;
    A rotor surface having a rotor shape formed in a ring shape, and rotating with the rotation of the rotating shaft;
    A cylindrical portion having an outer peripheral surface of the rotor and an inner peripheral surface facing the radial direction of the rotating shaft, and housing the rotor;
    A wall portion having a wall surface facing the rotor surface and the axial direction of the rotation shaft;
    A vane inserted into a vane groove formed in the wall and moving in the axial direction as the rotor rotates;
    A compression chamber that is partitioned by the rotor surface, the wall surface, and an inner peripheral surface of the cylindrical portion, and in which a volume change is generated by the vane as the rotor rotates, and fluid is sucked and compressed;
    The vane has an end in the axial direction and a vane end that contacts the rotor surface;
    The vane end portion is curved so as to be convex toward the rotor surface, and extends in a direction perpendicular to the axial direction,
    The rotor surface includes a curved surface curved in the axial direction,
    The curved surface is curved so as to be displaced in the axial direction according to the angular position,
    The curved surface includes a portion having a radius of curvature different from the axial direction according to the radial position so that at least a part of a contact line between the curved surface and the vane end portion bends in a circumferential direction of the rotor. Including compressor.
PCT/JP2019/004399 2018-03-30 2019-02-07 Compressor WO2019187686A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020510363A JPWO2019187686A1 (en) 2018-03-30 2019-02-07 Compressor
US16/970,104 US20210164471A1 (en) 2018-03-30 2019-02-07 Compressor
DE112019001729.2T DE112019001729T5 (en) 2018-03-30 2019-02-07 COMPRESSOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018070070 2018-03-30
JP2018-070070 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019187686A1 true WO2019187686A1 (en) 2019-10-03

Family

ID=68061353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004399 WO2019187686A1 (en) 2018-03-30 2019-02-07 Compressor

Country Status (4)

Country Link
US (1) US20210164471A1 (en)
JP (1) JPWO2019187686A1 (en)
DE (1) DE112019001729T5 (en)
WO (1) WO2019187686A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5557684A (en) * 1978-10-20 1980-04-28 Nippon Soken Inc Rotary cam-type fluid machine
JP2002155878A (en) * 2000-11-17 2002-05-31 Zexel Valeo Climate Control Corp Vane, and vane type compressor provided with the same
CN1420270A (en) * 2001-11-19 2003-05-28 乐金电子(天津)电器有限公司 Blade of compressor
JP2006132348A (en) * 2004-11-02 2006-05-25 Sanyo Electric Co Ltd Compressor
JP2015014250A (en) * 2013-07-05 2015-01-22 株式会社日本自動車部品総合研究所 Axial vane type compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108278202A (en) * 2018-02-07 2018-07-13 浙江广播电视大学 The acceleration-decelerations curved surface volume impeller pumps such as one kind three leaves distortion plane
JP2019178669A (en) * 2018-03-30 2019-10-17 株式会社豊田自動織機 Compressor
JP2020105982A (en) * 2018-12-27 2020-07-09 株式会社豊田自動織機 Compressor
KR20200096868A (en) * 2019-02-06 2020-08-14 가부시키가이샤 도요다 지도숏키 Compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5557684A (en) * 1978-10-20 1980-04-28 Nippon Soken Inc Rotary cam-type fluid machine
JP2002155878A (en) * 2000-11-17 2002-05-31 Zexel Valeo Climate Control Corp Vane, and vane type compressor provided with the same
CN1420270A (en) * 2001-11-19 2003-05-28 乐金电子(天津)电器有限公司 Blade of compressor
JP2006132348A (en) * 2004-11-02 2006-05-25 Sanyo Electric Co Ltd Compressor
JP2015014250A (en) * 2013-07-05 2015-01-22 株式会社日本自動車部品総合研究所 Axial vane type compressor

Also Published As

Publication number Publication date
DE112019001729T5 (en) 2020-12-24
JPWO2019187686A1 (en) 2021-02-12
US20210164471A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
WO2013172144A1 (en) Gas compressor
JP2015132238A (en) Scroll type compressor
JP5766764B2 (en) Vane type compressor
JP2020122450A (en) Compressor
WO2019187686A1 (en) Compressor
KR20190114735A (en) Compressor
CN113464428B (en) Scroll compressor having a discharge port
US20200248689A1 (en) Compressor
KR20200081271A (en) Compressor
WO2015098097A1 (en) Cylinder-rotation-type compressor
JP2019178672A (en) Compressor
JP2020105983A (en) Compressor
JP2019178677A (en) Compressor
JP7047792B2 (en) Compressor
JP2019178670A (en) Compressor
JP2019178680A (en) Compressor
JP2020159313A (en) Compressor
WO2020166290A1 (en) Compressor
JP2020066999A (en) Compressor
JP2019178671A (en) Compressor
JP2020084784A (en) Compressor
KR20200081272A (en) Compressor
WO2020179652A1 (en) Compressor
JP2020153244A (en) Compressor
JP2020133573A (en) Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775244

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510363

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19775244

Country of ref document: EP

Kind code of ref document: A1