WO2019187622A1 - Downhole plug comprising protection member - Google Patents

Downhole plug comprising protection member Download PDF

Info

Publication number
WO2019187622A1
WO2019187622A1 PCT/JP2019/003604 JP2019003604W WO2019187622A1 WO 2019187622 A1 WO2019187622 A1 WO 2019187622A1 JP 2019003604 W JP2019003604 W JP 2019003604W WO 2019187622 A1 WO2019187622 A1 WO 2019187622A1
Authority
WO
WIPO (PCT)
Prior art keywords
mandrel
plug
pressure
center element
downhole plug
Prior art date
Application number
PCT/JP2019/003604
Other languages
French (fr)
Japanese (ja)
Inventor
輝明 吉井
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to CA3094937A priority Critical patent/CA3094937C/en
Priority to GB2016485.1A priority patent/GB2587124B/en
Priority to CN201980016593.1A priority patent/CN111801484B/en
Priority to US16/982,102 priority patent/US20210108482A1/en
Publication of WO2019187622A1 publication Critical patent/WO2019187622A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/1208Packers; Plugs characterised by the construction of the sealing or packing means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/128Packers; Plugs with a member expanded radially by axial pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/129Packers; Plugs with mechanical slips for hooking into the casing
    • E21B33/1293Packers; Plugs with mechanical slips for hooking into the casing with means for anchoring against downward and upward movement
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/08Down-hole devices using materials which decompose under well-bore conditions

Definitions

  • the present invention relates to a plug, and more particularly to a downhole plug used for closing a well hole.
  • a downhole plug such as a bridge plug or a flack plug is known (for example, Patent Document 1).
  • Patent Document 1 One function of this downhole plug is to close the wellbore during hydraulic fracturing.
  • a downhole plug is sent to a predetermined position of a well hole, and the downhole plug is operated and fixed to a well wall, while an elastic member included in the downhole plug is deformed, Close the well. After that, water is pumped from the ground into the well, and the water pressure is applied to the part closer to the ground than the downhole plug fixed to the well wall.
  • the method of producing is mentioned.
  • Patent Document 2 describes a downhole tool using a polymer composite material containing fibers in order to improve the water pressure resistance.
  • an object of the present invention is to provide a downhole plug excellent in pressure resistance.
  • the present invention is a plug for closing a well hole, A tubular body; An annular elastic member that surrounds the outer peripheral surface of the cylindrical body and deforms under pressure; At least one protective member that surrounds the outer peripheral surface of the cylindrical main body and prevents at least a part of the elastic member from coming into contact with the cylindrical main body; A pair of pressure transmitting means for sandwiching the elastic member in the axial direction of the plug and compressing the elastic member by applying pressure in the axial direction to the elastic member; The cylinder with respect to the maximum axial length ( réelle) of the elastic member in a cross section along the axial direction when the elastic member is deformed by applying a pressure of 50 MPa to the plug in the axial direction.
  • the plug is characterized in that the ratio (b / ieri) of the length (b) in the axial direction of the portion where the main body contacts the elastic member is less than 0.5.
  • a downhole plug excellent in pressure resistance can be provided.
  • the downhole plug (plug) according to Embodiment 1 of the present invention is a plug for closing a wellbore.
  • the downhole plug according to the first embodiment includes a first form that is a form when the downhole plug is sent from the ground to a predetermined position of the wellbore, and a second form in which the downhole plug is operated and fixed to the well. And a third configuration when the downhole plug is under water pressure.
  • the first form corresponds to FIG. 1, and the third form corresponds to FIG.
  • the second form is not shown.
  • FIG. 1 is a schematic view of a cross-section of a downhole plug in a first form at a predetermined position in a well according to the first embodiment.
  • FIG. 2 is a schematic view of a cross-section of the downhole plug in the third embodiment in a state of being subjected to water pressure according to the first embodiment.
  • FIG. 1 and FIG. 2 only one of the cross sections of the downhole plug that is symmetric with respect to the axis (one-dot chain line in the figure) is shown.
  • FIG. 1 shows a state where there is a gap between the well wall and the downhole plug in the well.
  • the downhole plug 20 includes a mandrel (cylindrical main body) 1, a center element (elastic member) 2, a lip (protective member) 3, sockets (pressure transmitting means) 4a and 4b, a cone (Pressure transmission means) 5a and 5b and slips (pressure transmission means) 6a and 6b are provided.
  • the downhole plug 20 further includes equalizer rings (pressure transmission means) 7 a and 7 b, a load ring (pressure transmission means) 8, and a bottom 9.
  • the downhole plug 20 has a cylindrical shape as a whole. In the following description, “axis” or “axial direction” simply refers to the axis or axial direction of the downhole plug 20 that is cylindrical as a whole.
  • the mandrel 1 is a member for ensuring the strength of the downhole plug 20 and is a hollow member that exists along the axis at the center of the downhole plug 20.
  • Various members for constituting the downhole plug 20 are attached to the outer peripheral surface of the mandrel 1 as a whole.
  • the material forming the mandrel 1 examples include metal materials such as aluminum, steel, and stainless steel, fibers, wood, composite materials, and resins.
  • the mandrel 1 may be formed of a composite material containing a reinforcing material such as carbon fiber, specifically, a composite material containing a polymer such as an epoxy resin and a phenol resin, for example.
  • the mandrel 1 is preferably formed of a decomposable resin or a degradable metal. Thereby, after performing a well treatment using the downhole plug 20, the removal of the downhole plug 20 becomes easy.
  • degradable resin or degradable metal refers to biodegradation or hydrolysis, dissolved in water or hydrocarbons in wells, and further decomposed or embrittled by some chemical method. It means a resin or metal that can be disintegrated.
  • the decomposable resin examples include hydroxycarboxylic acid-based aliphatic polyesters such as polylactic acid (PLA) and polyglycolic acid (PGA), lactone-based aliphatic polyesters such as poly-caprolactone (PCL), polyethylene succinate, and polybutylene.
  • hydroxycarboxylic acid-based aliphatic polyesters such as polylactic acid (PLA) and polyglycolic acid (PGA)
  • lactone-based aliphatic polyesters such as poly-caprolactone (PCL)
  • PCL poly-caprolactone
  • polyethylene succinate examples include polybutylene.
  • Diol / dicarboxylic acid aliphatic polyester such as succinate, copolymers of these, for example, glycolic acid / lactic acid copolymer, and mixtures thereof, as well as combinations of aromatic components such as polyethylene adipate / terephthalate And aliphatic polyester.
  • water-soluble resin examples include polyvinyl alcohol, polyvinyl butyral, polyvinyl formal, polyacrylamide (may be N- and N-substituted products), polyacrylic acid, and polymethacrylic acid.
  • Monomers that form these resins examples include ethylene-vinyl alcohol copolymer (EVOH) and acrylamide-acrylic acid-methacrylic acid interpolymers.
  • Examples of the decomposable metal include alloys containing magnesium, aluminum, calcium and the like as main components.
  • the center element 2 is an annular rubber member for filling the gap between the mandrel 1 and the well wall in the downhole plug 20 and closing the well hole, and is deformed by receiving pressure.
  • the center element 2 is attached so as to surround the outer peripheral surface of the mandrel 1.
  • the thickness, elasticity, inner diameter, outer diameter, or axial width of the center element 2 may be appropriately determined according to the size of the mandrel 1 or the pressure applied to the downhole plug 20.
  • the center element 2 is preferably formed of a material that does not lose the function of closing the wellbore even under high temperature and high pressure environments such as 100 ° C. and 30 MPa.
  • Preferable materials for forming the center element 2 include, for example, nitrile rubber, hydrogenated nitrile rubber, acrylic rubber, and fluorine rubber.
  • degradable rubbers such as aliphatic polyester rubber, polyurethane rubber, natural rubber, polyisoprene, acrylic rubber, aliphatic polyester rubber, polyester thermoplastic elastomer, and polyamide thermoplastic elastomer can be used.
  • the lip 3 is a member that prevents the mandrel 1 from being damaged by preventing at least a part of the center element 2 from coming into contact with the mandrel 1 when the downhole plug 20 is used to close the wellbore.
  • the lip 3 is inserted between the mandrel 1 and the center element 2, thereby preventing at least a part of the center element 2 from coming into contact with the mandrel 1.
  • the lip 3 only needs to be inserted at least partially between the mandrel 1 and the center element 2 when pressure is applied to the downhole plug 20.
  • the mandrel 1 is a member for ensuring the strength of the downhole plug 20.
  • the strength of the mandrel 1 is less than the force received from the center element 2. May not be enough.
  • the material forming the mandrel 1 is as described in the section of [Mandrel].
  • the resin material has a lower strength than the metal material, and the non-composite material containing no reinforcing material is the strength of the resin material. Is low.
  • the pressure resistance of the downhole plug 20 is ensured because the downhole plug 20 includes the lip 3.
  • the lip 3 according to the first embodiment is an annular member attached so as to surround the outer peripheral surface of the mandrel 1, and is integrated with a cone 5a described later. That is, the lip 3 is provided as a part of the cone 5a. Specifically, the inner peripheral edge of the cone 5 a that contacts the mandrel 1 protrudes toward the center element 2, and the entire inner peripheral surface of the cone 5 a including the protruding portion contacts the mandrel 1. This protruding portion is a portion corresponding to the lip 3. The inner peripheral edge of the cone 5 a that contacts the mandrel 1 protrudes toward the center element 2 in contact with the mandrel 1, thereby preventing a part of the center element 2 from contacting the mandrel 1.
  • the length of the lip 3 is designed based on a third form to be described later.
  • the thickness of the lip 3 is not particularly limited as long as it does not prevent the lip 3 from moving between the center element 2 and the mandrel 1 when the cone 5a moves to the center element 2 side under pressure. Good. Further, the thickness may be constant, or the thickness may be changed so as to decrease toward the tip of the lip 3 that is the protruding portion. Alternatively, the lip 3 may be designed so that the thickness is constant on the side close to the cone 5a and the thickness is reduced toward the tip on the side close to the tip.
  • the material of the lip 3 is not particularly limited, and materials described as materials for forming the mandrel 1 described above can be used. Among these, for the same reason as the mandrel 1, it is preferably formed of a degradable resin or a degradable metal.
  • the pressure transmission elements constituting the pressure transmission means include sockets 4a and 4b, cones 5a and 5b, slips 6a and 6b, equalizer rings 7a and 7b, and load ring 8.
  • the sockets 4a and 4b are arbitrary members constituting pressure transmission means, and receive deformation of the center element 2 when the center element 2 is deformed by receiving the axial pressure of the downhole plug 20 in the well.
  • Sockets 4 a and 4 b are annular members surrounding the outer peripheral surface of the mandrel 1.
  • the sockets 4a and 4b are attached adjacent to one end of the center element 2, and the socket 4a and the socket 4b are in contact with each other.
  • the socket 4b is attached in contact with the mandrel 1, whereas the socket 4a is not in contact with the mandrel 1. That is, the outer diameters of the sockets 4a and 4b are equal, while the inner diameter of the socket 4a is larger.
  • the socket 4a is movably attached to the socket 4b.
  • the material of the socket is not particularly limited, and materials described as materials for forming the mandrel 1 described above can be used. Among these, for the same reason as the mandrel 1, it is preferably formed of a degradable resin or a degradable metal.
  • the socket 4a is preferably made of a material that can be deformed so that its diameter expands when subjected to pressure.
  • the cones 5a and 5b are members constituting pressure transmission means, and transmit pressure directly and indirectly to the center element 2, respectively.
  • the cones 5 a and 5 b are attached so as to surround the outer peripheral surface of the mandrel 1.
  • the cone 5a is attached adjacent to the end of the center element 2 opposite to the end where the sockets 4a and 4b are in contact.
  • the cone 5 b is attached to the opposite side of the center element 2 adjacent to the sockets 4 a and 4 b on the outer peripheral surface of the mandrel 1. That is, the sockets 4 a and 4 b are interposed between the cone 5 b and the center element 2.
  • the cone 5a is a hollow conical member.
  • the term “conical shape” refers to a cone, a truncated cone, or a combination of a cylinder and these.
  • a hollow shape is a shape which follows the outer peripheral surface of a mandrel, and is a cylindrical shape normally.
  • the lip 3 is provided integrally with the cone 5a.
  • the cone 5a is a hollow having a diameter smaller than the maximum diameter of the conical solid on the side of the center element 2 in the hollow conical solid whose outer diameter increases from the end of the mandrel 1 toward the center element 2.
  • the shape is made by joining the cylinders.
  • the cone 5b is a hollow conical member having a shape in which the outer diameter increases from the end of the mandrel 1 toward the center element 2.
  • the material of the cone is not particularly limited, and materials described as materials for forming the mandrel 1 described above can be used. Among these, for the same reason as the mandrel 1, it is preferably formed of a decomposable resin or a decomposable metal.
  • slips 6 a and 6 b are members constituting pressure transmission means, and indirectly transmit pressure to the center element 2.
  • the slips 6a and 6b are attached so as to surround the outer peripheral surface of the mandrel 1, and are in contact with the cones 5a and 5b, respectively.
  • the slips 6a and 6b are annular members whose inner diameters decrease from the center element 2 side toward the end of the mandrel 1, respectively.
  • the material of the slip is not particularly limited, and materials described as materials for forming the mandrel 1 described above can be used. Among these, for the same reason as the mandrel 1, it is preferably formed of a decomposable resin or a decomposable metal.
  • the equalizer rings 7a and 7b are arbitrary members constituting the pressure transmission means, and slip 6a during the transition from the first form to the second form and from the second form to the third form, which will be described later. In addition to having a function of uniformly expanding the diameters of 6b and 6b, pressure is indirectly transmitted to the center element 2.
  • the equalizer rings 7a and 7b are attached so as to surround the outer peripheral surface of the mandrel 1, and are in contact with the slips 6a and 6b, respectively.
  • the material of the equalizer ring is not particularly limited, and materials described as materials for forming the mandrel 1 can be used. Among these, for the same reason as the mandrel 1, it is preferably formed of a degradable resin or a degradable metal.
  • the load ring 8 is a member that constitutes a pressure transmission means, and receives pressure applied from the wellhead side directly and transmits the pressure to the adjacent member, thereby indirectly transmitting the pressure to the center element 2.
  • the load ring 8 is attached so as to surround the outer peripheral surface of the mandrel 1, and is in contact with the equalizer ring 7a.
  • the material of the load ring is not particularly limited, and materials described as materials for forming the mandrel 1 described above can be used. Among these, for the same reason as the mandrel 1, it is preferably formed of a degradable resin or a degradable metal.
  • a pair of pressure transmission means does not mean that the two pressure transmission means provided so as to sandwich the center element 2 have the same configuration. That is, as long as each functions as a pressure transmission unit, the configuration included in each pressure transmission unit may be different.
  • one pressure transmission means transmits pressure to the center element 2, and the other pressure transmission means plays a role of receiving the center element 2. In this specification, it expresses as a pressure transmission means including such a role.
  • the downhole plug 20 may have a bottom 9 or the like as shown in FIG.
  • the bottom 9 is attached so as to surround the outer peripheral surface of the mandrel 1, but the arrangement of the bottom 9 may be appropriately determined as necessary.
  • the material of the bottom 9 is not particularly limited as long as each function can be exhibited, and materials described as materials for forming the mandrel 1 described above can be used. Among these, for the same reason as the mandrel 1, it is preferably formed of a degradable resin or a degradable metal.
  • the second form of the downhole plug is a form in which the downhole plug 20 is operated and fixed to the well.
  • the center element 2 is expanded in diameter and brought into contact with the well wall, and the mandrel 1 and the well wall
  • the slips 6a and 6b are expanded in diameter.
  • the downhole plug 20 contacts the well wall, the downhole plug 20 is fixed at a predetermined position in the well.
  • At least one of the pair of pressure transmission means moves in the axial direction of the mandrel 1 toward the center element 2, thereby compressing the center element 2 in the axial direction.
  • the outer diameter of the center element 2 is enlarged.
  • the outer peripheral surface of the center element 2 is in contact with the well wall 12 and closes the gap between the mandrel 1 and the well wall.
  • the downhole plug 20 is fixed to the well.
  • the slips 6a and 6b slide on the inclined surfaces of the cones 5a and 5b, respectively, and the slips 6a and 6b contact the well wall 12.
  • pressure is transmitted to the center element 2 indirectly from the cone 5b and directly from the cone 5a and the sockets 4a and 5b, and the center element 2 is compressed and deformed.
  • the center element 2 When the center element 2 is compressed, the center element 2 expands in a direction perpendicular to the axial direction of the mandrel 1 and comes into contact with the well wall 12 so that the downhole plug 20 is fixed to the well.
  • the center element 2 When the center element 2 is deformed by receiving pressure and the center element 2 is pressed against the sockets 4a and 4b, the socket 4a slides on the inclined surface of the socket 4b due to its diameter expanding. It contacts the wall 12.
  • the downhole plug 20 becomes a 2nd form.
  • 3rd form of a downhole plug is a form when the downhole plug 20 is receiving the hydraulic pressure.
  • a third embodiment of the downhole plug 20 will be described with reference to FIG.
  • the flack ball 10 is fed into the well and seated on the ball seat 13 of the downhole plug 20 to close the hollow portion of the mandrel 1. Complete the closure of the hole. Then, water is injected from the wellhead, and water pressure is applied from the wellhead side toward the backside of the wellbore.
  • the downhole plug 20 becomes the 3rd form which the mandrel 1 moved toward the back
  • the mandrel 1 moves according to the water pressure.
  • the center element 2 may be further compressed by moving the one on the wellhead side of the pair of pressure transmission means toward the back side of the wellhole by the water pressure from the wellhead side. In this way, the downhole plug 20 is in the third form.
  • the cone 5a sandwiching the center element and the socket 4 are closer to each other than in the first embodiment. That is, in the third embodiment, there are fewer portions where the mandrel 1 and the center element 2 are in contact with each other than in the first embodiment. The part where the center element 2 and the mandrel 1 are in contact will be described later.
  • the center element 2 is in contact with the mandrel 1, and contact is prevented by the lip 3 at a part thereof.
  • the center element 2 is compressed by applying pressure in the axial direction of the downhole plug 20 and reducing the distance between the cone 5a having the lip 3 and the sockets 4a and 4b. Thereby, in the 3rd form, the field where center element 2 and mandrel 1 contact has changed from the above-mentioned 1st form.
  • the contact portion between the center element 2 and the mandrel 1 in the third embodiment will be described in detail.
  • the downhole plug is about the cross section along the axial direction of the downhole plug 20.
  • the “maximum length (a) in the axial direction of the center element 2” is the width in the axial direction of the center element 2 in the cross section along the axial direction of the downhole plug 20, as shown in FIG. is there. That is, the axial length of the downhole plug 20 in the orthogonal projection of the center element 2 onto the mandrel 1 or the well wall 12.
  • the sum total of the length of each axial direction of these several parts be (a).
  • the length (b) of the shaft portion where the mandrel 1 and the center element 2 are in contact with each other refers to the mandrel 1 and the center in the cross section along the axial direction of the downhole plug 20 as shown in FIG. This is the length in the axial direction of the portion in contact with the element 2.
  • the average value is used as (b).
  • the ratio of (b) to (a) is less than 0.5, but this ratio is preferably as small as possible. For example, it is preferably less than 0.25, more preferably less than 0.1. , 0 is most preferred.
  • the ratio of (b) to (a) that is, the smaller the portion where the mandrel 1 and the center element 2 are in contact with each other in the third embodiment, the force applied to the mandrel 1 from the center element 2, that is, the mandrel 1
  • the force which tightens can be reduced, and breakage of the mandrel 1 can be prevented more effectively.
  • the ratio (b / a) is less than 0.5, the lip 3 is present at the central portion of the axial length of the center element 2. Therefore, the contact between the center element 2 and the mandrel 1 can be prevented at the portion where the force applied to the mandrel 1 is largest, and the mandrel 1 can be more reliably prevented from being damaged.
  • the pressure applied to the downhole plug in the well when performing hydraulic crushing is usually about 30 to 70 MPa. Therefore, if the ratio (b / a) when a pressure of 50 MPa is applied to the downhole plug 20 is less than 0.5, the ratio (b / a) will be less than 0.5 even in the actual use environment. Can be realized. Therefore, the excellent pressure resistance of the downhole plug 20 according to the first embodiment is exhibited in an actual use environment.
  • FIG. 3 is an enlarged schematic view of a part of the cross-section of the downhole plug 20, which is in a state where the water pressure is received in the wellbore, according to a modification of the first embodiment. . As shown in FIG.
  • the tip of the lip 3 extending from the cone 5 a reaches the socket 4 and is in contact with the socket 4.
  • FIG. 4 is a schematic view of a cross-section of the downhole plug when in a predetermined position in the well according to the second embodiment.
  • FIG. 5 is a schematic view of a cross-section of a downhole plug when subjected to water pressure at a wellbore according to Embodiment 2 of the present invention. 4 and 5, only one of the cross-sections of the downhole plug 21 that is symmetrical with respect to the axis (one-dot chain line in the figure) is shown.
  • the lip 3 is not an integral part of the cone 5a, but is an annular member that exists separately from the cone 5a.
  • the lip 3 and the cone 5a are separate bodies, they are provided on the outer peripheral surface of the mandrel 1 so that they are in contact with each other.
  • the lip 3 is located on the side in contact with the center element 2 of the cone 5a, and is in contact with the inner peripheral edge of the cone 5a.
  • the inner diameter of the lip 3a is the same as the inner diameter of the cone 5a, and the outer diameter of the lip 3 is smaller than the outer diameter of the cone 5a.
  • the contact between the center element 2 and the mandrel 1 is prevented by the lip 3 in the cone 5a of the center element 2. Since the lip 3 is in contact with the cone 5a, when the cone 5a moves in the direction of the center element 2, the lip 3 is also pushed and moved.
  • the lip 3 and the cone 5a are in contact with each other, and they may not be fixed with each other or may be fixed.
  • the boundary between the lip 3 and the cone 5a is not particularly limited.
  • a perpendicular line extending from the end of the center element 2 in contact with the cone 5a to the mandrel 1 is used. It may be.
  • FIG. 6 A downhole plug according to Embodiment 3 of the present invention will be described with reference to FIGS. 6 and 7.
  • the first form of the downhole plug corresponds to FIG. 6, and the third form corresponds to FIG.
  • FIG. 6 is an enlarged schematic view of a part of the cross-section of the downhole plug when in a predetermined position in the well according to the third embodiment.
  • the socket 4 a and the socket 4 b are collectively illustrated as the socket 4, and are also referred to as the socket 4 hereinafter.
  • the lip 3 When the pressure of 50 MPa is applied to the downhole plug, the lip 3 may be (b / a) less than 0.5, and its position is not particularly limited.
  • the lip 3 may be integrated with the socket 4 instead of being integrated with the cone 5a.
  • the lip 3 may be divided into two as shown in FIGS. 6B and 6B, and may be integrally formed with the socket 4 and the cone 5a. As for the lip 3 divided into two, the lip 3 integrated with the socket 4 may be longer, the lip 3 integrated with the cone 5a may be longer, or the same length There may be.
  • the lip 3 may be independent from both the socket 4 and the cone 5a and may not be in contact with either the socket 4 or the cone 5a. At this time, the lip 3 may be one or plural.
  • the lip 3 may be a combination of any of the forms described above.
  • FIG. 7 is an enlarged schematic view of a part of the cross-section of the downhole plug when the water pressure is received in the wellbore according to the third embodiment of the present invention.
  • the lip 3 is connected to the socket 4 or the cone 5a.
  • the aspect which is contacting, independently from may be sufficient.
  • FIG. 8 A downhole plug according to Embodiment 4 of the present invention will be described with reference to FIGS.
  • the first form of the downhole plug corresponds to FIG. 8, and the third form corresponds to FIG.
  • the downhole plug according to the present invention when (b / a) is less than 0.5 when a pressure of 50 MPa is applied to the downhole plug, as shown in FIG.
  • the center element 2 may be divided into a plurality and arranged along the axis of the mandrel 1.
  • (a) is the sum total of the maximum length of a some center element.
  • the thickness, elasticity, inner diameter, outer diameter, or axial width of the plurality of center elements may be the same or different.
  • the length of the portion where the mandrel and the center element are in contact is preferably smaller than the maximum length of each center element.
  • a partition 11 may be provided between the plurality of center elements.
  • the partition 11 is not particularly limited as long as it is an annular member surrounding the mandrel 1, but may be a part or all of the pressure transmission means described above.
  • the material of the partition 11 is not particularly limited, it is preferably formed of a decomposable resin or a decomposable metal from the viewpoint that it is easy to remove the downhole plug 20 after the well treatment.
  • FIG. 9 is an enlarged schematic view of a part of the cross-section of the downhole plug when receiving water pressure at the wellbore according to Embodiment 4 of the present invention.
  • the lip 3 is attached so as to surround the outer peripheral surface of the mandrel 1, but the shape may not be annular. That is, when (b / a) is less than 0.5 when a pressure of 50 MPa is applied to the downhole plug, the lip 3 may be divided into two or more on the outer periphery of the mandrel 1.
  • FIG. (A), (b), and (c) of FIG. 10 represent cross sections when cut in a direction perpendicular to the axis of the lip 3, and (a ′), (b ′), and (c ′) of FIG. ) Represents a side view along the axial direction of the lip.
  • FIG. 10 shows a lip 3 composed of two members, lips 3a and 3b.
  • (C) and (c ′) of FIG. 10 show a lip 3 composed of three members, lips 3a, 3b and 3c.
  • the lip 3c has an annular shape, but it may be divided into two or more on the outer periphery of the mandrel 1 like the lips 3a and 3b.
  • each divided lip may be integrated with the socket or the cone, or may be independent.
  • the angle of the dividing surface of the lip 3 is not limited, and may not necessarily be parallel to the mandrel axis.
  • rip 3 of Embodiment 5 uses the average value as (b).
  • the plug for closing the well hole includes at least a cylindrical main body, an annular elastic member surrounding the outer peripheral surface of the cylindrical main body, deformed by pressure, and an elastic member surrounding the outer peripheral surface of the cylindrical main body.
  • the ratio (b / réelle) of the length (b) in the axial direction of the portion where the main body and the elastic member are in contact is less than 0.5.
  • the ratio (b / réelle) of the length (b) in the axial direction of the portion in contact with the member is less than 0.5.
  • At least one of the protective members may be integrated with one of the pressure transmission elements constituting the pressure transmission means.
  • At least one of the protection members may be independent from the pressure transmission means.
  • a plurality of protection members are provided, and one of the plurality of protection members is integrated with one of the pressure transmission elements constituting one of the pair of pressure transmission means. May be integrated with one of the pressure transmission elements constituting the other of the pair of pressure transmission means.
  • One of the pressure transmission elements integrated with the protective member is a pair of conical members that are in contact with the end of the elastic member and whose outer diameter increases from the end of the cylindrical main body toward the elastic member side. It may be.
  • the protective member may be annular. According to this structure, it can prevent more effectively that the cylindrical main body of a plug contacts an elastic member. Therefore, the plug has excellent pressure resistance.
  • the length (b) may be zero. According to this configuration, since the cylindrical main body of the plug does not contact the elastic member, the plug is further excellent in pressure resistance.
  • Example 1 When the center element is deformed by applying a pressure of 50 MPa in the axial direction of the downhole plug, the mandrel and the center element are in contact with the maximum length (a) in the axial direction of the center element in the cross section along the axial direction.
  • a water pressure resistance test was performed on a downhole plug in which the ratio (b / a) of the length (b) in the axial direction of the portion in which it is located is zero.
  • the above-mentioned down hole plug was put in a metal cylinder whose inner diameter was 1.1 times the outer diameter of the down hole plug so that the axes of the down hole plug and the cylinder were parallel.
  • the inside of the cylinder was kept at 90 ° C., and the cylinder was closed by applying a water pressure of 60 to 63 MPa to the axial direction of the downhole plug. Then, the time during which the cylinder was kept closed was measured.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Pens And Brushes (AREA)
  • Earth Drilling (AREA)

Abstract

Provided is a plug with excellent pressure resistance. A downhole plug (20) comprises a mandrel (1), a center element (2), at least one lip (3), and a pressure transmission means. The ratio (b/a) of the length (b) in the axial direction of the portion where the mandrel (1) and the center element (2) are in contact to the maximum length (a) in the axial direction of the center element (2) in a cross section taken along the axial direction in a state where the center element (2) is deformed as a result of a pressure of 50 MPa being applied to the downhole plug (20) in the axial direction is less than 0.5.

Description

保護部材を備えるダウンホールプラグDownhole plug with protective member
 本発明はプラグに関し、詳細には、坑井孔を閉塞するために用いられるダウンホールプラグに関する。 The present invention relates to a plug, and more particularly to a downhole plug used for closing a well hole.
 シェールオイルまたはシェールガスを採掘するために、ダウンホールツールと呼ばれる種々のツールが開発されている。これらダウンホールツールの1種として、ブリッジプラグまたはフラックプラグ等のダウンホールプラグが知られている(例えば、特許文献1)。このダウンホールプラグの機能の1つは、水圧破砕時に坑井孔の閉塞を行うことである。 In order to mine shale oil or shale gas, various tools called downhole tools have been developed. As one type of these downhole tools, a downhole plug such as a bridge plug or a flack plug is known (for example, Patent Document 1). One function of this downhole plug is to close the wellbore during hydraulic fracturing.
 水圧破砕の方法としては、たとえば、ダウンホールプラグを坑井孔の所定の位置に送り込み、ダウンホールプラグを作動させて坑井壁に固定しつつ、ダウンホールプラグが備える弾性部材を変形させ、坑井孔を閉塞させる。その後、地上から坑井内に水を圧送し、坑井壁に固定されているダウンホールプラグよりも地上側に近い部分に水圧をかけることで、別途爆薬等を用いて形成した穿孔を通じて地層にひび割れを生じさせる方法が挙げられる。 As a method of hydraulic fracturing, for example, a downhole plug is sent to a predetermined position of a well hole, and the downhole plug is operated and fixed to a well wall, while an elastic member included in the downhole plug is deformed, Close the well. After that, water is pumped from the ground into the well, and the water pressure is applied to the part closer to the ground than the downhole plug fixed to the well wall. The method of producing is mentioned.
 したがってダウンホールプラグには、地上からの高水圧に耐え、坑井壁に固定されたまま坑井孔の閉塞を維持することが求められる。これに対し、特許文献2では、耐水圧を向上するため、材料に繊維を含む高分子複合材料を用いたダウンホールツールが記載されている。 Therefore, the downhole plug is required to withstand high water pressure from the ground and to maintain the wellhole blockage while being fixed to the well wall. On the other hand, Patent Document 2 describes a downhole tool using a polymer composite material containing fibers in order to improve the water pressure resistance.
米国特許第2017/234103号明細書US Patent No. 2017/234103 米国特許第2010/288488号明細書US 2010/288488
 しかしながら、ダウンホールプラグの弾性部材を変形させて坑井孔を閉塞した後、高水圧をかける場合、弾性部材の意図しない変形によってダウンホールプラグを構成する他の部品に破損を引き起こしてしまい、ダウンホールプラグの耐圧性が低下するという問題がある。 However, when high pressure is applied after the downhole plug elastic member is deformed to close the wellbore, the unintentional deformation of the elastic member causes damage to other parts that make up the downhole plug. There is a problem that the pressure resistance of the hole plug is lowered.
 よって、本発明は、耐圧性に優れたダウンホールプラグを提供することを目的とする。 Therefore, an object of the present invention is to provide a downhole plug excellent in pressure resistance.
 上記の課題を解決するために、本発明は、坑井孔を閉塞するためのプラグであって、
 筒状本体と、
 上記筒状本体の外周面を囲む、圧力を受けて変形する環状の弾性部材と、
 上記筒状本体の外周面を囲む、上記弾性部材の少なくとも一部が上記筒状本体に接することを妨げる少なくとも1つの保護部材と、
 上記弾性部材を上記プラグの軸方向に挟み、上記弾性部材に該軸方向の圧力を加えて上記弾性部材を圧縮するための一対の圧力伝達手段と、を備え、
 上記プラグに対し上記軸方向へ50MPaの圧力をかけて上記弾性部材を変形させたときの、上記軸方向に沿った断面における、上記弾性部材の軸方向の最大長さ(а)に対する、上記筒状本体と上記弾性部材とが接している部分の軸方向の長さ(b)の比(b/а)が、0.5未満であることを特徴とするプラグである。
In order to solve the above problems, the present invention is a plug for closing a well hole,
A tubular body;
An annular elastic member that surrounds the outer peripheral surface of the cylindrical body and deforms under pressure;
At least one protective member that surrounds the outer peripheral surface of the cylindrical main body and prevents at least a part of the elastic member from coming into contact with the cylindrical main body;
A pair of pressure transmitting means for sandwiching the elastic member in the axial direction of the plug and compressing the elastic member by applying pressure in the axial direction to the elastic member;
The cylinder with respect to the maximum axial length (а) of the elastic member in a cross section along the axial direction when the elastic member is deformed by applying a pressure of 50 MPa to the plug in the axial direction. The plug is characterized in that the ratio (b / а) of the length (b) in the axial direction of the portion where the main body contacts the elastic member is less than 0.5.
 本発明によれば、耐圧性に優れたダウンホールプラグを提供することができる。 According to the present invention, a downhole plug excellent in pressure resistance can be provided.
本発明の実施形態1に係る、坑井内の所定の位置にあるときの、ダウンホールプラグの断面の概略図である。It is the schematic of the cross section of a downhole plug when it exists in the predetermined position in a well based on Embodiment 1 of this invention. 本発明の実施形態1に係る、坑井孔で水圧を受けているときの、ダウンホールプラグの断面の概略図である。It is the schematic of the cross section of a downhole plug when receiving the hydraulic pressure by the well hole based on Embodiment 1 of this invention. 本発明の実施形態1に係る、坑井孔で水圧を受けているときの、ダウンホールプラグの断面の一部を拡大した模式図である。It is the schematic diagram which expanded a part of cross section of the downhole plug when receiving the hydraulic pressure by the wellbore according to Embodiment 1 of the present invention. 本発明の実施形態2に係る、坑井内の所定の位置にあるときの、ダウンホールプラグの断面の概略図である。It is the schematic of the cross section of a downhole plug when it exists in the predetermined position in a well based on Embodiment 2 of this invention. 本発明の実施形態2に係る、坑井孔で水圧を受けているときの、ダウンホールプラグの断面の概略図である。It is the schematic of the cross section of a downhole plug when receiving the hydraulic pressure by the well hole based on Embodiment 2 of this invention. 本発明の実施形態3に係る、坑井内の所定の位置にあるときの、ダウンホールプラグの断面の一部を拡大した模式図である。It is the schematic diagram which expanded a part of cross section of the downhaul plug when it exists in the predetermined position in a well based on Embodiment 3 of this invention. 本発明の実施形態3に係る、坑井孔で水圧を受けているときの、ダウンホールプラグの断面の一部を拡大した模式図である。It is the schematic diagram which expanded a part of cross section of the downhole plug when receiving the hydraulic pressure by the well hole based on Embodiment 3 of this invention. 本発明の実施形態4に係る、坑井内の所定の位置にあるときの、ダウンホールプラグの断面の一部を拡大した模式図である。It is the schematic diagram which expanded a part of cross section of the downhole plug when it exists in the predetermined position in a wellbottle based on Embodiment 4 of this invention. 本発明の実施形態4に係る、坑井孔で水圧を受けているときの、ダウンホールプラグの断面の一部を拡大した模式図である。It is the schematic diagram which expanded a part of cross section of the downhole plug when receiving the hydraulic pressure by the well hole based on Embodiment 4 of this invention. 本発明の実施形態5に係る、リップの断面の一部を示した概略図である。It is the schematic which showed a part of cross section of the lip based on Embodiment 5 of this invention.
 〔実施形態1〕
 本発明の実施形態1に係るダウンホールプラグ(プラグ)は、坑井孔を閉塞するためのプラグである。本実施形態1に係るダウンホールプラグは、地上から坑井孔の所定の位置に送り込まれる際の形態である第1の形態と、ダウンホールプラグが作動して坑井に固定されている第2の形態と、ダウンホールプラグが水圧を受けているときの第3の形態とを有し得る。第1の形態は図1に対応し、第3の形態は図2に対応する。なお、第2の形態は図示していない。図1は、本実施形態1に係る、坑井内の所定の位置にある第1の形態でのダウンホールプラグの断面の概略図である。図2は、本実施形態1に係る、水圧を受けている状態にある第3の形態でのダウンホールプラグの断面の概略図である。図1および図2では、ダウンホールプラグの断面のうち、軸(図中の一点鎖線)に対して対称な断面のうち一方のみを示している。
Embodiment 1
The downhole plug (plug) according to Embodiment 1 of the present invention is a plug for closing a wellbore. The downhole plug according to the first embodiment includes a first form that is a form when the downhole plug is sent from the ground to a predetermined position of the wellbore, and a second form in which the downhole plug is operated and fixed to the well. And a third configuration when the downhole plug is under water pressure. The first form corresponds to FIG. 1, and the third form corresponds to FIG. The second form is not shown. FIG. 1 is a schematic view of a cross-section of a downhole plug in a first form at a predetermined position in a well according to the first embodiment. FIG. 2 is a schematic view of a cross-section of the downhole plug in the third embodiment in a state of being subjected to water pressure according to the first embodiment. In FIG. 1 and FIG. 2, only one of the cross sections of the downhole plug that is symmetric with respect to the axis (one-dot chain line in the figure) is shown.
 以下、本実施形態1に係るダウンホールプラグについて、図1および図2を用いて詳細に述べる。 Hereinafter, the downhole plug according to the first embodiment will be described in detail with reference to FIGS. 1 and 2.
 1.ダウンホールプラグの第1の形態
 ダウンホールプラグの第1の形態について図1を用いて説明する。図1は、坑井内において、坑井壁とダウンホールプラグとの間に空隙がある状態を示している。
1. 1st form of a downhole plug The 1st form of a downhole plug is demonstrated using FIG. FIG. 1 shows a state where there is a gap between the well wall and the downhole plug in the well.
 図1に示すように、ダウンホールプラグ20は、マンドレル(筒状本体)1と、センターエレメント(弾性部材)2と、リップ(保護部材)3と、ソケット(圧力伝達手段)4aおよび4b、コーン(圧力伝達手段)5aおよび5b、およびスリップ(圧力伝達手段)6aおよび6bと、を備えている。ダウンホールプラグ20は、さらに、イコライザーリング(圧力伝達手段)7aおよび7b、ロードリング(圧力伝達手段)8、およびボトム9を有している。ダウンホールプラグ20は全体として円柱状の形態を有している。なお、以下の説明において、単に「軸」または「軸方向」とは、全体として円柱状であるダウンホールプラグ20の軸または軸方向を指す。 As shown in FIG. 1, the downhole plug 20 includes a mandrel (cylindrical main body) 1, a center element (elastic member) 2, a lip (protective member) 3, sockets (pressure transmitting means) 4a and 4b, a cone (Pressure transmission means) 5a and 5b and slips (pressure transmission means) 6a and 6b are provided. The downhole plug 20 further includes equalizer rings (pressure transmission means) 7 a and 7 b, a load ring (pressure transmission means) 8, and a bottom 9. The downhole plug 20 has a cylindrical shape as a whole. In the following description, “axis” or “axial direction” simply refers to the axis or axial direction of the downhole plug 20 that is cylindrical as a whole.
 以下、各部材について、詳細に説明する。 Hereinafter, each member will be described in detail.
 [マンドレル]
 マンドレル1は、ダウンホールプラグ20の強度を確保するための部材であって、ダウンホールプラグ20の中心部に軸に沿って存在する中空形状の部材である。マンドレル1の外周面には、全体としてダウンホールプラグ20を構成するための各種部材が取り付けられている。
[Mandrel]
The mandrel 1 is a member for ensuring the strength of the downhole plug 20 and is a hollow member that exists along the axis at the center of the downhole plug 20. Various members for constituting the downhole plug 20 are attached to the outer peripheral surface of the mandrel 1 as a whole.
 マンドレル1を形成する材料としては、例えば、アルミニウム、スチールおよびステンレス鋼等の金属材料、繊維、木、複合材料および樹脂等が挙げられる。マンドレル1は、例えば炭素繊維等の強化材を含有する複合材、具体的には、例えば、エポキシ樹脂およびフェノール樹脂等の重合体を含有する複合材料等によって形成されていてもよい。 Examples of the material forming the mandrel 1 include metal materials such as aluminum, steel, and stainless steel, fibers, wood, composite materials, and resins. The mandrel 1 may be formed of a composite material containing a reinforcing material such as carbon fiber, specifically, a composite material containing a polymer such as an epoxy resin and a phenol resin, for example.
 中でも、マンドレル1は、分解性樹脂または分解性金属によって形成されていることが好ましい。これにより、ダウンホールプラグ20を用いて坑井処理を行った後に、ダウンホールプラグ20の除去が容易となる。 Of these, the mandrel 1 is preferably formed of a decomposable resin or a degradable metal. Thereby, after performing a well treatment using the downhole plug 20, the removal of the downhole plug 20 becomes easy.
 なお、本明細書において、「分解性樹脂または分解性金属」とは、生分解または加水分解、水または坑井内の炭化水素に溶解、さらには何らかの化学的な方法によって分解または脆化して簡単に崩壊させることのできる樹脂または金属を意味する。 In the present specification, the term “degradable resin or degradable metal” refers to biodegradation or hydrolysis, dissolved in water or hydrocarbons in wells, and further decomposed or embrittled by some chemical method. It means a resin or metal that can be disintegrated.
 分解性樹脂としては、例えば、ポリ乳酸(PLA)およびポリグリコール酸(PGA)等のヒドロキシカルボン酸系脂肪族ポリエステル、ポリ-カプロラクトン(PCL)等のラクトン系脂肪族ポリエステル、ポリエチレンサクシネートおよびポリブチレンサクシネート等のジオール・ジカルボン酸系脂肪族ポリエステル、これらの共重合体、例えば、グリコール酸・乳酸共重合体、並びに、これらの混合物、さらにはポリエチレンアジペート/テレフタレート等の芳香族成分を組み合わせて使用する脂肪族ポリエステル等が挙げられる。 Examples of the decomposable resin include hydroxycarboxylic acid-based aliphatic polyesters such as polylactic acid (PLA) and polyglycolic acid (PGA), lactone-based aliphatic polyesters such as poly-caprolactone (PCL), polyethylene succinate, and polybutylene. Diol / dicarboxylic acid aliphatic polyester such as succinate, copolymers of these, for example, glycolic acid / lactic acid copolymer, and mixtures thereof, as well as combinations of aromatic components such as polyethylene adipate / terephthalate And aliphatic polyester.
 また、水溶性樹脂としては、ポリビニルアルコール、ポリビニルブチラール、ポリビニルホルマール、ポリアクリルアミド(N,N置換物でもよい)、ポリアクリル酸およびポリメタクリル酸等が挙げられ、これらの樹脂を形成する単量体の共重合体、例えば、エチレン-ビニルアルコール共重合体(EVOH)およびアクリルアミド-アクリル酸-メタクリル酸インターポリマー等が挙げられる。 Examples of the water-soluble resin include polyvinyl alcohol, polyvinyl butyral, polyvinyl formal, polyacrylamide (may be N- and N-substituted products), polyacrylic acid, and polymethacrylic acid. Monomers that form these resins Examples of such copolymers include ethylene-vinyl alcohol copolymer (EVOH) and acrylamide-acrylic acid-methacrylic acid interpolymers.
 分解性金属としては、例えば、マグネシウム、アルミニウムおよびカルシウム等を主要成分とした合金が挙げられる。 Examples of the decomposable metal include alloys containing magnesium, aluminum, calcium and the like as main components.
 [センターエレメント]
 センターエレメント2は、ダウンホールプラグ20においてマンドレル1と坑井壁の間隙を埋めて坑井孔を閉塞させるための環状のゴム部材であって、圧力を受けて変形する。センターエレメント2は、マンドレル1の外周面を囲んで取り付けられている。
[Center element]
The center element 2 is an annular rubber member for filling the gap between the mandrel 1 and the well wall in the downhole plug 20 and closing the well hole, and is deformed by receiving pressure. The center element 2 is attached so as to surround the outer peripheral surface of the mandrel 1.
 センターエレメント2の厚み、弾性、内径、外径、または軸方向における幅等はマンドレル1の大きさまたはダウンホールプラグ20にかける圧力等に応じて適宜決定すればよい。 The thickness, elasticity, inner diameter, outer diameter, or axial width of the center element 2 may be appropriately determined according to the size of the mandrel 1 or the pressure applied to the downhole plug 20.
 センターエレメント2は、例えば、100℃、30MPa等高温高圧の環境下においても、坑井孔の閉塞機能が失われない材料から形成されていることが好ましい。センターエレメント2を形成する好ましい材料としては、例えばニトリルゴム、水素化ニトリルゴム、アクリルゴムおよびフッ素ゴム等が挙げられる。また、脂肪族ポリエステル系ゴム、ポリウレタンゴム、天然ゴム、ポリイソプレン、アクリルゴム、脂肪族ポリエステルゴム、ポリエステル系熱可塑性エラストマーおよびポリアミド系熱可塑性エラストマー等の分解性ゴムを使用することができる。 The center element 2 is preferably formed of a material that does not lose the function of closing the wellbore even under high temperature and high pressure environments such as 100 ° C. and 30 MPa. Preferable materials for forming the center element 2 include, for example, nitrile rubber, hydrogenated nitrile rubber, acrylic rubber, and fluorine rubber. Also, degradable rubbers such as aliphatic polyester rubber, polyurethane rubber, natural rubber, polyisoprene, acrylic rubber, aliphatic polyester rubber, polyester thermoplastic elastomer, and polyamide thermoplastic elastomer can be used.
 [リップ]
 リップ3は、ダウンホールプラグ20を用いて坑井孔を閉塞する際に、センターエレメント2の少なくとも一部がマンドレル1に接することを妨げて、マンドレル1の破損を防ぐ部材である。本実施形態1では、リップ3が、マンドレル1とセンターエレメント2との間に挿入されていることで、センターエレメント2の少なくとも一部がマンドレル1に接することを妨げている。なお、リップ3は、ダウンホールプラグ20に対して圧力をかけたとき、少なくともその一部がマンドレル1とセンターエレメント2との間に挿入されていればよい。
[lip]
The lip 3 is a member that prevents the mandrel 1 from being damaged by preventing at least a part of the center element 2 from coming into contact with the mandrel 1 when the downhole plug 20 is used to close the wellbore. In the first embodiment, the lip 3 is inserted between the mandrel 1 and the center element 2, thereby preventing at least a part of the center element 2 from coming into contact with the mandrel 1. The lip 3 only needs to be inserted at least partially between the mandrel 1 and the center element 2 when pressure is applied to the downhole plug 20.
 詳細は後述するが、ダウンホールプラグ20が水圧を受け、センターエレメント2が圧縮すると、マンドレル1に対しセンターエレメント2から力が加わる。水圧を受け変形した後の第3の形態において、センターエレメント2がマンドレル1と接する部分がリップ3によって小さくなるため、マンドレル1がセンターエレメント2から受ける力を小さくすることができる。これにより、マンドレル1が破損することを防ぐことができる。リップ3によってマンドレル1の破損を防ぐことで、耐圧性に優れたダウンホールプラグを提供することができる。 Although details will be described later, when the downhole plug 20 receives water pressure and the center element 2 is compressed, force is applied from the center element 2 to the mandrel 1. In the third form after being deformed by water pressure, the portion where the center element 2 is in contact with the mandrel 1 is reduced by the lip 3, so that the force received by the mandrel 1 from the center element 2 can be reduced. Thereby, it can prevent that the mandrel 1 is damaged. By preventing the mandrel 1 from being damaged by the lip 3, a downhole plug having excellent pressure resistance can be provided.
 上述の通り、マンドレル1は、ダウンホールプラグ20の強度を確保するための部材であるが、マンドレル1を形成する材料または厚みなどによっては、マンドレル1の強度が、センターエレメント2から受ける力に対して十分でない場合がある。マンドレル1を形成する材料は[マンドレル]の項目で述べた通りであるが、一般的に、樹脂材料は金属材料よりも強度が低く、樹脂材料の中でも強化材の入っていない非複合材料は強度が低い。このようにマンドレル1の強度が十分でなかった場合であっても、ダウンホールプラグ20がリップ3を備えていることよって、ダウンホールプラグ20の耐圧性が確保される。 As described above, the mandrel 1 is a member for ensuring the strength of the downhole plug 20. However, depending on the material or thickness of the mandrel 1, the strength of the mandrel 1 is less than the force received from the center element 2. May not be enough. The material forming the mandrel 1 is as described in the section of [Mandrel]. Generally, the resin material has a lower strength than the metal material, and the non-composite material containing no reinforcing material is the strength of the resin material. Is low. Thus, even if the strength of the mandrel 1 is not sufficient, the pressure resistance of the downhole plug 20 is ensured because the downhole plug 20 includes the lip 3.
 本実施形態1に係るリップ3は、マンドレル1の外周面を囲んで取り付けられている環状の部材であり、後述のコーン5aと一体になっている。すなわち、リップ3はコーン5aの一部として設けられている。具体的には、コーン5aのマンドレル1と接する内周縁がセンターエレメント2側に突出しており、突出部分も含め、コーン5aの内周面全体がマンドレル1と接する構成を有している。この突出部分がリップ3に相当する部分である。コーン5aのマンドレル1と接する内周縁が、マンドレル1と接した状態でセンターエレメント2側に突出していることにより、センターエレメント2の一部がマンドレル1と接することを妨げている。 The lip 3 according to the first embodiment is an annular member attached so as to surround the outer peripheral surface of the mandrel 1, and is integrated with a cone 5a described later. That is, the lip 3 is provided as a part of the cone 5a. Specifically, the inner peripheral edge of the cone 5 a that contacts the mandrel 1 protrudes toward the center element 2, and the entire inner peripheral surface of the cone 5 a including the protruding portion contacts the mandrel 1. This protruding portion is a portion corresponding to the lip 3. The inner peripheral edge of the cone 5 a that contacts the mandrel 1 protrudes toward the center element 2 in contact with the mandrel 1, thereby preventing a part of the center element 2 from contacting the mandrel 1.
 リップ3の長さは、後述する第3の形態に基づき設計されている。 The length of the lip 3 is designed based on a third form to be described later.
 リップ3の厚みは特に制限されず、圧力を受けてコーン5aがセンターエレメント2側に移動するときに、リップ3がセンターエレメント2とマンドレル1との間で移動することを妨げない厚みであればよい。また、厚みは一定であってもよいし、突出部分であるリップ3の先端に向かって小さくなるように厚みが変化していてもよい。または、リップ3のコーン5aに近い側においては厚みが一定であり、先端に近い側においては先端に向かって厚みが小さくなるように設計されていてもよい。 The thickness of the lip 3 is not particularly limited as long as it does not prevent the lip 3 from moving between the center element 2 and the mandrel 1 when the cone 5a moves to the center element 2 side under pressure. Good. Further, the thickness may be constant, or the thickness may be changed so as to decrease toward the tip of the lip 3 that is the protruding portion. Alternatively, the lip 3 may be designed so that the thickness is constant on the side close to the cone 5a and the thickness is reduced toward the tip on the side close to the tip.
 リップ3の材質は特に限られず、上述のマンドレル1を形成する材料として記載された材料を用いることができる。なかでも、マンドレル1と同じ理由で、分解性樹脂または分解性金属によって形成されていることが好ましい。 The material of the lip 3 is not particularly limited, and materials described as materials for forming the mandrel 1 described above can be used. Among these, for the same reason as the mandrel 1, it is preferably formed of a degradable resin or a degradable metal.
 [圧力伝達手段]
 圧力伝達手段を構成する圧力伝達要素としては、ソケット4aおよび4b、コーン5aおよび5b、スリップ6aおよび6b、イコライザーリング7aおよび7b、並びにロードリング8が含まれる。
[Pressure transmission means]
The pressure transmission elements constituting the pressure transmission means include sockets 4a and 4b, cones 5a and 5b, slips 6a and 6b, equalizer rings 7a and 7b, and load ring 8.
 (ソケット)
 ソケット4aおよび4bは、圧力伝達手段を構成する任意の部材であり、坑井内においてセンターエレメント2がダウンホールプラグ20の軸方向の圧力を受けて変形する際、センターエレメント2の変形を受け止める。
(socket)
The sockets 4a and 4b are arbitrary members constituting pressure transmission means, and receive deformation of the center element 2 when the center element 2 is deformed by receiving the axial pressure of the downhole plug 20 in the well.
 ソケット4aおよび4bは、マンドレル1の外周面を囲んでいる環状の部材である。ソケット4aおよび4bは、センターエレメント2の一端に隣接して取り付けられており、ソケット4aとソケット4bとは接している。ソケット4bはマンドレル1に接して取り付けられているのに対し、ソケット4aはマンドレル1には接していない。すなわち、ソケット4aと4bとについて、その外径は等しい一方、内径についてはソケット4aの方が大きい。また、ソケット4aはソケット4bに対して可動的に取り付けられている。 Sockets 4 a and 4 b are annular members surrounding the outer peripheral surface of the mandrel 1. The sockets 4a and 4b are attached adjacent to one end of the center element 2, and the socket 4a and the socket 4b are in contact with each other. The socket 4b is attached in contact with the mandrel 1, whereas the socket 4a is not in contact with the mandrel 1. That is, the outer diameters of the sockets 4a and 4b are equal, while the inner diameter of the socket 4a is larger. The socket 4a is movably attached to the socket 4b.
 ソケットの材質は特に限られず、上述のマンドレル1を形成する材料として記載された材料を用いることができる。なかでも、マンドレル1と同じ理由で、分解性樹脂または分解性金属によって形成されていることが好ましい。なお、ソケット4aは、圧力を受けた際に径が拡張するように変形し得る材質であることが好ましい。 The material of the socket is not particularly limited, and materials described as materials for forming the mandrel 1 described above can be used. Among these, for the same reason as the mandrel 1, it is preferably formed of a degradable resin or a degradable metal. The socket 4a is preferably made of a material that can be deformed so that its diameter expands when subjected to pressure.
 (コーン)
 コーン5aおよび5bは、圧力伝達手段を構成する部材であり、センターエレメント2に対してそれぞれ、直接的および間接的に圧力を伝達する。
(corn)
The cones 5a and 5b are members constituting pressure transmission means, and transmit pressure directly and indirectly to the center element 2, respectively.
 コーン5aおよび5bは、マンドレル1の外周面を囲んで取り付けられている。コーン5aは、センターエレメント2の、ソケット4aおよび4bが接している端部とは反対側の端部に隣接して取り付けられている。一方、コーン5bは、マンドレル1の外周面上において、ソケット4aおよび4bと隣接して、センターエレメント2とは反対側に取り付けられている。すなわち、コーン5bとセンターエレメント2との間に、ソケット4aおよび4bが介在している。 The cones 5 a and 5 b are attached so as to surround the outer peripheral surface of the mandrel 1. The cone 5a is attached adjacent to the end of the center element 2 opposite to the end where the sockets 4a and 4b are in contact. On the other hand, the cone 5 b is attached to the opposite side of the center element 2 adjacent to the sockets 4 a and 4 b on the outer peripheral surface of the mandrel 1. That is, the sockets 4 a and 4 b are interposed between the cone 5 b and the center element 2.
 コーン5aは、中空の円錐状の部材である。なお、本明細書において「円錐状」とは、円錐、円錐台、または円柱とこれらとを組み合わせた形状等を指すものとする。また、中空の形状は、マンドレルの外周面に沿う形状であり、通常円柱状である。 The cone 5a is a hollow conical member. In the present specification, the term “conical shape” refers to a cone, a truncated cone, or a combination of a cylinder and these. Moreover, a hollow shape is a shape which follows the outer peripheral surface of a mandrel, and is a cylindrical shape normally.
 上述の通り、本実施形態では、リップ3がコーン5aと一体として設けられている。したがって、コーン5aは、マンドレル1の端からセンターエレメント2に向かって外径が拡大する中空の円錐状の立体におけるセンターエレメント2の側に、円錐状の立体の最大径よりも小さい径を有する中空の円柱を接合させた形状をしている。 As described above, in this embodiment, the lip 3 is provided integrally with the cone 5a. Accordingly, the cone 5a is a hollow having a diameter smaller than the maximum diameter of the conical solid on the side of the center element 2 in the hollow conical solid whose outer diameter increases from the end of the mandrel 1 toward the center element 2. The shape is made by joining the cylinders.
 一方、コーン5bは、中空の円錐状の部材であり、マンドレル1の端からセンターエレメント2に向かって外径が拡大する形状をしている。 On the other hand, the cone 5b is a hollow conical member having a shape in which the outer diameter increases from the end of the mandrel 1 toward the center element 2.
 コーンの材質は特に限られず、上述のマンドレル1を形成する材料として記載された材料を用いることができる。なかでもマンドレル1と同じ理由で、分解性樹脂または分解性金属によって形成されていることが好ましい。 The material of the cone is not particularly limited, and materials described as materials for forming the mandrel 1 described above can be used. Among these, for the same reason as the mandrel 1, it is preferably formed of a decomposable resin or a decomposable metal.
 (スリップ)
 スリップ6aおよび6bは、圧力伝達手段を構成する部材であり、センターエレメント2に対して間接的に圧力を伝達する。スリップ6aおよび6bは、マンドレル1の外周面を囲んで取り付けられており、それぞれコーン5aおよび5bに接している。
(slip)
The slips 6 a and 6 b are members constituting pressure transmission means, and indirectly transmit pressure to the center element 2. The slips 6a and 6b are attached so as to surround the outer peripheral surface of the mandrel 1, and are in contact with the cones 5a and 5b, respectively.
 スリップ6aおよび6bはそれぞれセンターエレメント2側からマンドレル1の端に向かって内径が縮小する環状の部材である。 The slips 6a and 6b are annular members whose inner diameters decrease from the center element 2 side toward the end of the mandrel 1, respectively.
 スリップの材質は特に限られず、上述のマンドレル1を形成する材料として記載された材料を用いることができる。なかでもマンドレル1と同じ理由で、分解性樹脂または分解性金属によって形成されていることが好ましい。 The material of the slip is not particularly limited, and materials described as materials for forming the mandrel 1 described above can be used. Among these, for the same reason as the mandrel 1, it is preferably formed of a decomposable resin or a decomposable metal.
 (イコライザーリング)
 イコライザーリング7aおよび7bは、圧力伝達手段を構成する任意の部材であり、後述する第1の形態から第2の形態、および第2の形態から第3の形態への移行の際に、スリップ6aおよび6bの拡径を均一にさせる機能をもつほか、センターエレメント2に対して間接的に圧力を伝達する。イコライザーリング7aおよび7bは、マンドレル1の外周面を囲んで取り付けられており、それぞれスリップ6aおよび6bに接している。
(Equalizer ring)
The equalizer rings 7a and 7b are arbitrary members constituting the pressure transmission means, and slip 6a during the transition from the first form to the second form and from the second form to the third form, which will be described later. In addition to having a function of uniformly expanding the diameters of 6b and 6b, pressure is indirectly transmitted to the center element 2. The equalizer rings 7a and 7b are attached so as to surround the outer peripheral surface of the mandrel 1, and are in contact with the slips 6a and 6b, respectively.
 イコライザーリングの材質としては特に限られず、上述のマンドレル1を形成する材料として記載された材料を用いることができる。なかでも、マンドレル1と同じ理由で、分解性樹脂または分解性金属によって形成されていることが好ましい。 The material of the equalizer ring is not particularly limited, and materials described as materials for forming the mandrel 1 can be used. Among these, for the same reason as the mandrel 1, it is preferably formed of a degradable resin or a degradable metal.
 (ロードリング)
 ロードリング8は、圧力伝達手段を構成する部材であり、坑口側から与えられる圧力を直接受け、隣接する部材に伝えることで、センターエレメント2に対して間接的に圧力を伝達する。ロードリング8は、マンドレル1の外周面を囲んで取り付けられており、イコライザーリング7aに接している。
(Road ring)
The load ring 8 is a member that constitutes a pressure transmission means, and receives pressure applied from the wellhead side directly and transmits the pressure to the adjacent member, thereby indirectly transmitting the pressure to the center element 2. The load ring 8 is attached so as to surround the outer peripheral surface of the mandrel 1, and is in contact with the equalizer ring 7a.
 ロードリングの材質としては特に限られず、上述のマンドレル1を形成する材料として記載された材料を用いることができる。なかでも、マンドレル1と同じ理由で、分解性樹脂または分解性金属によって形成されていることが好ましい。 The material of the load ring is not particularly limited, and materials described as materials for forming the mandrel 1 described above can be used. Among these, for the same reason as the mandrel 1, it is preferably formed of a degradable resin or a degradable metal.
 なお、本明細書において「一対の圧力伝達手段」という場合、センターエレメント2を挟むように設けられている2つの圧力伝達手段が、全く同一の構成を有することを意図するものではない。すなわち、それぞれが圧力伝達手段として機能すれば、各圧力伝達手段に含まれる構成は異なるものであってよい。また、通常は、プラグの一方のみから水圧を受けるため、一方の圧力伝達手段は圧力がセンターエレメント2に伝達し、他方の圧力伝達手段はセンターエレメント2を受け止める役割を果たすものである。本明細書では、このような役割も含めて圧力伝達手段と表現する。 In the present specification, the term “a pair of pressure transmission means” does not mean that the two pressure transmission means provided so as to sandwich the center element 2 have the same configuration. That is, as long as each functions as a pressure transmission unit, the configuration included in each pressure transmission unit may be different. Usually, since the water pressure is received from only one of the plugs, one pressure transmission means transmits pressure to the center element 2, and the other pressure transmission means plays a role of receiving the center element 2. In this specification, it expresses as a pressure transmission means including such a role.
 [その他の部材]
 ダウンホールプラグ20は、上述の部材の他、図1に示した通り、ボトム9等を有していることがある。ボトム9は、マンドレル1の外周面を囲んで取り付けられているが、ボトム9の配置は、必要に応じて適宜決定すればよい。また、ボトム9の材質としてはそれぞれの機能を発揮できるのであれば特に限られず、上述のマンドレル1を形成する材料として記載された材料を用いることができる。なかでも、マンドレル1と同じ理由で、分解性樹脂または分解性金属によって形成されていることが好ましい。
[Other parts]
In addition to the above-described members, the downhole plug 20 may have a bottom 9 or the like as shown in FIG. The bottom 9 is attached so as to surround the outer peripheral surface of the mandrel 1, but the arrangement of the bottom 9 may be appropriately determined as necessary. The material of the bottom 9 is not particularly limited as long as each function can be exhibited, and materials described as materials for forming the mandrel 1 described above can be used. Among these, for the same reason as the mandrel 1, it is preferably formed of a degradable resin or a degradable metal.
 2.ダウンホールプラグの第2の形態
 ダウンホールプラグの第2の形態は、ダウンホールプラグ20が作動して坑井に固定されている形態である。
2. Second Form of Downhole Plug The second form of the downhole plug is a form in which the downhole plug 20 is operated and fixed to the well.
 ダウンホールプラグ20は、坑井内の所定の位置に配置された後、ダウンホールプラグ20を作動させることで、センターエレメント2を拡径させて坑井壁と接触させ、マンドレル1と坑井壁の間とを閉塞するとともに、スリップ6aおよび6bを拡径させる。ダウンホールプラグ20が坑井壁と接触することによって、ダウンホールプラグ20は坑井内の所定の位置に固定される。以下、第1の形態から第2の形態への変化について、第1の形態が図示された図1を参照して説明する。 After the downhole plug 20 is disposed at a predetermined position in the well, by operating the downhole plug 20, the center element 2 is expanded in diameter and brought into contact with the well wall, and the mandrel 1 and the well wall The slips 6a and 6b are expanded in diameter. When the downhole plug 20 contacts the well wall, the downhole plug 20 is fixed at a predetermined position in the well. Hereinafter, a change from the first form to the second form will be described with reference to FIG. 1 in which the first form is shown.
 坑井内でダウンホールプラグ20を作動させると、一対の圧力伝達手段のうち少なくとも一方がセンターエレメント2に向かってマンドレル1の軸方向に動くことで、センターエレメント2が軸方向に圧縮され、これによりセンターエレメント2の外径が拡大する。その結果、センターエレメント2の外周面が坑井壁12と接して、マンドレル1と坑井壁の間隙を閉塞する。これによってダウンホールプラグ20は坑井に固定される。 When the downhole plug 20 is operated in the well, at least one of the pair of pressure transmission means moves in the axial direction of the mandrel 1 toward the center element 2, thereby compressing the center element 2 in the axial direction. The outer diameter of the center element 2 is enlarged. As a result, the outer peripheral surface of the center element 2 is in contact with the well wall 12 and closes the gap between the mandrel 1 and the well wall. As a result, the downhole plug 20 is fixed to the well.
 詳細には、ダウンホールプラグ20を作動させると、スリップ6aおよび6bがそれぞれ、コーン5aおよび5bの斜面を摺動し、スリップ6aおよび6bが坑井壁12と接する。同時に、センターエレメント2には、コーン5bから間接的に、また、コーン5aとソケット4aおよび5bとから直接的に圧力が伝わり、センターエレメント2は圧縮されて変形する。 Specifically, when the downhole plug 20 is operated, the slips 6a and 6b slide on the inclined surfaces of the cones 5a and 5b, respectively, and the slips 6a and 6b contact the well wall 12. At the same time, pressure is transmitted to the center element 2 indirectly from the cone 5b and directly from the cone 5a and the sockets 4a and 5b, and the center element 2 is compressed and deformed.
 センターエレメント2は、圧縮されるとマンドレル1の軸方向とは垂直方向に拡大し、坑井壁12と接することによって、ダウンホールプラグ20が坑井に固定される。なお、センターエレメント2が圧力を受けて変形し、センターエレメント2がソケット4aおよび4bに押し当てられた際、ソケット4aは、その径が拡張することでソケット4bの斜面を摺動して坑井壁12と接する。このように、ダウンホールプラグ20は、第2の形態となる。 When the center element 2 is compressed, the center element 2 expands in a direction perpendicular to the axial direction of the mandrel 1 and comes into contact with the well wall 12 so that the downhole plug 20 is fixed to the well. When the center element 2 is deformed by receiving pressure and the center element 2 is pressed against the sockets 4a and 4b, the socket 4a slides on the inclined surface of the socket 4b due to its diameter expanding. It contacts the wall 12. Thus, the downhole plug 20 becomes a 2nd form.
 3.ダウンホールプラグの第3の形態
 ダウンホールプラグの第3の形態は、ダウンホールプラグ20が水圧を受けているときの形態である。以下、ダウンホールプラグ20の第3の形態について図2を参照して説明する。
3. 3rd form of a downhole plug The 3rd form of a downhole plug is a form when the downhole plug 20 is receiving the hydraulic pressure. Hereinafter, a third embodiment of the downhole plug 20 will be described with reference to FIG.
 ダウンホールプラグ20が坑井内の所定の位置に固定された後、坑井内にフラックボール10を送り込み、ダウンホールプラグ20のボールシート13に着座させることでマンドレル1の中空部を閉塞し、坑井孔の閉塞を完成させる。その後、坑口から水を圧入して、坑口側から坑孔の奥側に向かって水圧をかける。ダウンホールプラグ20は、坑口側から坑孔の奥側に向かって圧力を受けることにより、マンドレル1が坑孔の奥側に向かって移動した第3の形態となる。 After the downhole plug 20 is fixed at a predetermined position in the well, the flack ball 10 is fed into the well and seated on the ball seat 13 of the downhole plug 20 to close the hollow portion of the mandrel 1. Complete the closure of the hole. Then, water is injected from the wellhead, and water pressure is applied from the wellhead side toward the backside of the wellbore. The downhole plug 20 becomes the 3rd form which the mandrel 1 moved toward the back | inner side of a well hole by receiving a pressure toward the back | inner side of a well hole from the well-hole side.
 坑口側から第2の形態のダウンホールプラグ20に水圧をかけると、マンドレル1が水圧に従って移動する。このとき、坑口側からの水圧により、一対の圧力伝達手段のうち坑口側にあるものが坑孔の奥側に向かって移動することで、センターエレメント2をさらに圧縮することもある。このようにして、ダウンホールプラグ20は第3の形態となる。 When water pressure is applied to the downhole plug 20 of the second form from the wellhead side, the mandrel 1 moves according to the water pressure. At this time, the center element 2 may be further compressed by moving the one on the wellhead side of the pair of pressure transmission means toward the back side of the wellhole by the water pressure from the wellhead side. In this way, the downhole plug 20 is in the third form.
 なお、第3の形態では、第1の形態に比べてセンターエレメントを挟むコーン5aとソケット4とが近い位置にある。すなわち、第3の形態では、第1の形態に比べて、マンドレル1とセンターエレメント2とが接している部分が少ない。センターエレメント2とマンドレル1とが接している部分については、後述する。 In the third embodiment, the cone 5a sandwiching the center element and the socket 4 are closer to each other than in the first embodiment. That is, in the third embodiment, there are fewer portions where the mandrel 1 and the center element 2 are in contact with each other than in the first embodiment. The part where the center element 2 and the mandrel 1 are in contact will be described later.
 4.センターエレメントとマンドレルとの接触部分
 上述の通り、センターエレメント2はマンドレル1と接しており、その一部においてリップ3によって接触が妨げられている。そして、第3の形態では、ダウンホールプラグ20の軸方向に圧力が加わり、リップ3を有するコーン5aと、ソケット4aおよび4bとの距離が縮まることでセンターエレメント2が圧縮されている。これにより、第3の形態では、センターエレメント2とマンドレル1との接触する領域が、上述の第1の形態から変化している。第3の形態におけるセンターエレメント2とマンドレル1との接触部分について具体的に説明すれば、ダウンホールプラグ20の第3の形態では、ダウンホールプラグ20の軸方向に沿った断面について、ダウンホールプラグ20に、その軸方向に50MPaの圧力をかけたときの、センターエレメント2の軸方向の最大長さ(a)に対する、マンドレル1とセンターエレメント2とが接している部分の長さの合計(b)の比(b/a)が、0.5未満である。
4). Contact portion between center element and mandrel As described above, the center element 2 is in contact with the mandrel 1, and contact is prevented by the lip 3 at a part thereof. In the third embodiment, the center element 2 is compressed by applying pressure in the axial direction of the downhole plug 20 and reducing the distance between the cone 5a having the lip 3 and the sockets 4a and 4b. Thereby, in the 3rd form, the field where center element 2 and mandrel 1 contact has changed from the above-mentioned 1st form. The contact portion between the center element 2 and the mandrel 1 in the third embodiment will be described in detail. In the third embodiment of the downhole plug 20, the downhole plug is about the cross section along the axial direction of the downhole plug 20. 20, the total length (b) of the portion where the mandrel 1 and the center element 2 are in contact with the maximum axial length (a) of the center element 2 when a pressure of 50 MPa is applied in the axial direction. ) Ratio (b / a) is less than 0.5.
 ここで、「軸方向に50MPaの圧力をかけたとき」とは、ダウンホールプラグ20の軸方向の一方の側から、他方の側に向かって圧力をかけることを意図している。これは、坑口からの水圧入に際して、ダウンホールプラグ20の坑口側から坑井の奥側に向かって圧力がかかることを想定したものである。 Here, “when a pressure of 50 MPa is applied in the axial direction” is intended to apply pressure from one side of the downhole plug 20 in the axial direction toward the other side. This assumes that when water is injected from the wellhead, pressure is applied from the wellhole side of the downhole plug 20 toward the backside of the well.
 ここで、「センターエレメント2の軸方向の最大長さ(a)」とは、図2に示すように、ダウンホールプラグ20の軸方向に沿った断面における、センターエレメント2の軸方向の幅である。すなわち、センターエレメント2の、マンドレル1または坑井壁12への正射影における、ダウンホールプラグ20の軸方向の長さである。なお、具体的な例は後述の実施形態4にて説明するが、センターエレメント2が複数ある場合は、これら複数の部分のそれぞれの軸方向の長さの合計を(a)とする。 Here, the “maximum length (a) in the axial direction of the center element 2” is the width in the axial direction of the center element 2 in the cross section along the axial direction of the downhole plug 20, as shown in FIG. is there. That is, the axial length of the downhole plug 20 in the orthogonal projection of the center element 2 onto the mandrel 1 or the well wall 12. In addition, although a specific example is demonstrated in below-mentioned Embodiment 4, when there are multiple center elements 2, let the sum total of the length of each axial direction of these several parts be (a).
 また、「マンドレル1とセンターエレメント2とが接している軸部分の長さ(b)」とは、図2に示すように、ダウンホールプラグ20の軸方向に沿った断面における、マンドレル1とセンターエレメント2とが接している部分の軸方向の長さである。マンドレル1の外周において、センターエレメント2が接している部分の長さが一定でない場合は、平均値を(b)として用いる。なお、具体的な例は後述の実施形態3にて説明するが、ある断面において、マンドレル1とセンターエレメント2とが接している部分が複数ある場合は、これら複数の部分のそれぞれの軸方向の長さの合計を(b)とする。 Further, “the length (b) of the shaft portion where the mandrel 1 and the center element 2 are in contact with each other” refers to the mandrel 1 and the center in the cross section along the axial direction of the downhole plug 20 as shown in FIG. This is the length in the axial direction of the portion in contact with the element 2. When the length of the portion where the center element 2 is in contact with the outer periphery of the mandrel 1 is not constant, the average value is used as (b). Although a specific example will be described in Embodiment 3 described later, when there are a plurality of portions where the mandrel 1 and the center element 2 are in contact with each other in a certain cross section, the axial directions of these portions are respectively Let the total length be (b).
 (a)に対する(b)の比については上述の通り0.5未満であるが、この比は小さいほど好ましく、例えば0.25未満であることが好ましく、0.1未満であることがより好ましく、0であることが最も好ましい。(a)に対する(b)の比が0とは、すなわち(b)=0であることを指す。 As described above, the ratio of (b) to (a) is less than 0.5, but this ratio is preferably as small as possible. For example, it is preferably less than 0.25, more preferably less than 0.1. , 0 is most preferred. The ratio of (b) to (a) is 0, that is, (b) = 0.
 (a)に対する(b)の比が小さい、すなわち、第3の形態においてマンドレル1とセンターエレメント2とが接している部分が少ないほど、センターエレメント2からマンドレル1に対して加わる力、すなわちマンドレル1を締め付ける力が小さくなり、マンドレル1の破損をより効果的に防ぐことができる。また、センターエレメント2が圧縮され変形する際には、センターエレメント2における軸方向中心部分付近において、変形が最も大きくなり、マンドレル1に加わる力が最も強くなると推察される。比(b/a)が0.5未満であれば、センターエレメント2における軸方向の長さの中心部分には、リップ3が存在することになる。そのため、マンドレル1に対して加わる力が最も大きくなる部分において、センターエレメント2とマンドレル1との接触を防ぐことができ、マンドレル1の破損をより確実に防ぐことが可能となる。 The smaller the ratio of (b) to (a), that is, the smaller the portion where the mandrel 1 and the center element 2 are in contact with each other in the third embodiment, the force applied to the mandrel 1 from the center element 2, that is, the mandrel 1 The force which tightens can be reduced, and breakage of the mandrel 1 can be prevented more effectively. Further, when the center element 2 is compressed and deformed, it is presumed that the deformation becomes the largest and the force applied to the mandrel 1 becomes the strongest in the vicinity of the axial center portion of the center element 2. If the ratio (b / a) is less than 0.5, the lip 3 is present at the central portion of the axial length of the center element 2. Therefore, the contact between the center element 2 and the mandrel 1 can be prevented at the portion where the force applied to the mandrel 1 is largest, and the mandrel 1 can be more reliably prevented from being damaged.
 水圧破砕を行う際に坑井内のダウンホールプラグに加わる圧力は、通常30~70MPa程度である。したがって、ダウンホールプラグ20に50MPaの圧力をかけたときの比(b/a)が0.5未満であれば、実際の使用環境においても比(b/a)が0.5未満となることを実現できる。したがって、本実施形態1に係るダウンホールプラグ20が備える優れた耐圧性が、実際の使用環境において発揮されることになる。 The pressure applied to the downhole plug in the well when performing hydraulic crushing is usually about 30 to 70 MPa. Therefore, if the ratio (b / a) when a pressure of 50 MPa is applied to the downhole plug 20 is less than 0.5, the ratio (b / a) will be less than 0.5 even in the actual use environment. Can be realized. Therefore, the excellent pressure resistance of the downhole plug 20 according to the first embodiment is exhibited in an actual use environment.
 (変形例)
 本実施形態1の変形例について説明する。上述したダウンホールプラグ20では、第3の形態においても、所定の長さでもってセンターエレメント2とマンドレル1とが接している状態となる(すなわち、b>0)。しかしながら、リップ3の軸方向の長さをより長くすることにより、第3の形態において、センターエレメント2のマンドレル1との接触がリップ3により完全に遮られる構成、すなわち(b)=0となる構成であってもよい。(b)=0の場合の形態を図3に示す。図3は、本実施形態1の変形例に係る、坑井孔で水圧を受けている状態である第3の形態を呈しているダウンホールプラグ20の断面の一部を拡大した模式図である。図3に示す通り、変形例であるダウンホールプラグ20の第3の形態では、コーン5aから延びているリップ3の先端がソケット4まで到達し、ソケット4と接した状態となっている。これにより、第1の形態においてマンドレル1と接していたセンターエレメント2の内周面全域にわたって、リップ3が潜り込んだ状態となる。そのため、センターエレメント2のマンドレル1との接触がリップ3により完全に遮られており、マンドレル1とセンターエレメント2とが接している軸部分が存在しなくなる(すなわち(b)=0となる)。これにより、センターエレメント2からマンドレル1にかかる力がより低減し、マンドレル1の破損をより確実に防ぐことができる。
(Modification)
A modification of the first embodiment will be described. In the downhole plug 20 described above, also in the third embodiment, the center element 2 and the mandrel 1 are in contact with each other with a predetermined length (that is, b> 0). However, by making the axial length of the lip 3 longer, in the third embodiment, the contact of the center element 2 with the mandrel 1 is completely blocked by the lip 3, that is, (b) = 0. It may be a configuration. FIG. 3 shows a configuration when (b) = 0. FIG. 3 is an enlarged schematic view of a part of the cross-section of the downhole plug 20, which is in a state where the water pressure is received in the wellbore, according to a modification of the first embodiment. . As shown in FIG. 3, in the third embodiment of the downhole plug 20 as a modification, the tip of the lip 3 extending from the cone 5 a reaches the socket 4 and is in contact with the socket 4. As a result, the lip 3 enters the entire inner peripheral surface of the center element 2 that has been in contact with the mandrel 1 in the first embodiment. Therefore, the contact of the center element 2 with the mandrel 1 is completely blocked by the lip 3, and there is no shaft portion where the mandrel 1 and the center element 2 are in contact (that is, (b) = 0). Thereby, the force applied from the center element 2 to the mandrel 1 is further reduced, and the breakage of the mandrel 1 can be prevented more reliably.
 さらに、(b)=0となった場合、リップ3の先端がソケット4に到達しているため、リップ3がつっかい棒としても機能する。そのため、センターエレメント2が過度に変形することを防ぐことができるとともに、軸方向への耐圧性が向上する。 Furthermore, when (b) = 0, since the tip of the lip 3 has reached the socket 4, the lip 3 also functions as a stiff stick. Therefore, the center element 2 can be prevented from being deformed excessively, and the pressure resistance in the axial direction is improved.
 これ以降の実施形態について、説明の便宜上〔実施形態1〕にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。 For the following embodiments, members having the same functions as those described in [Embodiment 1] are described with the same reference numerals for convenience of description, and the description thereof will not be repeated.
 〔実施形態2〕
 本発明の実施形態2に係るダウンホールプラグについて、図4および図5を用いて説明する。ダウンホールプラグの第1の形態は図4に対応し、第3の形態は図5に対応する。図4は、本実施形態2に係る、坑井内の所定の位置にあるときのダウンホールプラグの断面の概略図である。図5は、本発明の実施形態2に係る、坑井孔で水圧を受けているときの、ダウンホールプラグの断面の概略図である。なお、図4および図5では、ダウンホールプラグ21の断面のうち、軸(図中の一点鎖線)に対して対称な断面のうち一方のみを示している。
[Embodiment 2]
A downhole plug according to Embodiment 2 of the present invention will be described with reference to FIGS. The first form of the downhole plug corresponds to FIG. 4, and the third form corresponds to FIG. FIG. 4 is a schematic view of a cross-section of the downhole plug when in a predetermined position in the well according to the second embodiment. FIG. 5 is a schematic view of a cross-section of a downhole plug when subjected to water pressure at a wellbore according to Embodiment 2 of the present invention. 4 and 5, only one of the cross-sections of the downhole plug 21 that is symmetrical with respect to the axis (one-dot chain line in the figure) is shown.
 実施形態2に係るダウンホールプラグ21では、図4および図5に示すように、リップ3はコーン5aとは一体ではなく、コーン5aから独立して別途存在する環状の部材である。リップ3とコーン5aとは別体であるものの、両者が接するようにマンドレル1の外周面に設けられている。具体的には、リップ3は、コーン5aのセンターエレメント2と接する側に位置し、コーン5aの内周縁に接している。リップ3aの内径は、コーン5aの内径と同じであり、リップ3の外径は、コーン5aの外径よりも小さい。したがって、実施形態2においても、実施形態1と同じように、センターエレメント2のコーン5aにおいて、リップ3によってセンターエレメント2とマンドレル1との接触が妨げられている。また、リップ3はコーン5aと接触しているため、コーン5aがセンターエレメント2方向に移動すると、リップ3も押されて移動することになる。 In the downhole plug 21 according to the second embodiment, as shown in FIGS. 4 and 5, the lip 3 is not an integral part of the cone 5a, but is an annular member that exists separately from the cone 5a. Although the lip 3 and the cone 5a are separate bodies, they are provided on the outer peripheral surface of the mandrel 1 so that they are in contact with each other. Specifically, the lip 3 is located on the side in contact with the center element 2 of the cone 5a, and is in contact with the inner peripheral edge of the cone 5a. The inner diameter of the lip 3a is the same as the inner diameter of the cone 5a, and the outer diameter of the lip 3 is smaller than the outer diameter of the cone 5a. Accordingly, in the second embodiment, as in the first embodiment, the contact between the center element 2 and the mandrel 1 is prevented by the lip 3 in the cone 5a of the center element 2. Since the lip 3 is in contact with the cone 5a, when the cone 5a moves in the direction of the center element 2, the lip 3 is also pushed and moved.
 リップ3とコーン5aとは接触していればよく、別の手段によって互いが固定されていなくてもよいし、固定されていてもよい。 It is sufficient that the lip 3 and the cone 5a are in contact with each other, and they may not be fixed with each other or may be fixed.
 リップ3とコーン5aとの境界は特に限られないが、例えば図4および図5のように、ダウンホールプラグ21の断面において、センターエレメント2のコーン5aに接する端部からマンドレル1におろした垂線であってもよい。 The boundary between the lip 3 and the cone 5a is not particularly limited. For example, as shown in FIGS. 4 and 5, in the cross-section of the downhole plug 21, a perpendicular line extending from the end of the center element 2 in contact with the cone 5a to the mandrel 1 is used. It may be.
 〔実施形態3〕
 本発明の実施形態3に係るダウンホールプラグについて、図6および図7を用いて説明する。ダウンホールプラグの第1の形態は図6に対応し、第3の形態は図7に対応する。
[Embodiment 3]
A downhole plug according to Embodiment 3 of the present invention will be described with reference to FIGS. 6 and 7. The first form of the downhole plug corresponds to FIG. 6, and the third form corresponds to FIG.
 図6は、本実施形態3に係る、坑井内の所定の位置にあるときの、ダウンホールプラグの断面の一部を拡大した模式図である。なお、図6および図7を用いた説明では、ソケット4aとソケット4bとを区別する必要がないため、まとめてソケット4として図示し、以下でもソケット4と記載する。 FIG. 6 is an enlarged schematic view of a part of the cross-section of the downhole plug when in a predetermined position in the well according to the third embodiment. In the description using FIG. 6 and FIG. 7, it is not necessary to distinguish between the socket 4 a and the socket 4 b, so that they are collectively illustrated as the socket 4, and are also referred to as the socket 4 hereinafter.
 リップ3は、ダウンホールプラグに対して50MPaの圧力をかけたときに、(b/a)が、0.5未満となればよく、その位置は特に限られない。 When the pressure of 50 MPa is applied to the downhole plug, the lip 3 may be (b / a) less than 0.5, and its position is not particularly limited.
 具体的には、図6の(a)に示すように、リップ3はコーン5aと一体になっているのではなく、ソケット4と一体になっていてもよい。 Specifically, as shown in FIG. 6A, the lip 3 may be integrated with the socket 4 instead of being integrated with the cone 5a.
 また、リップ3は、図6の(b)および(b’)に示すように2つに分かれており、ソケット4およびコーン5aとそれぞれ一体になっている形態であってもよい。2つに分かれたリップ3については、ソケット4と一体になっているリップ3の方が長くても、コーン5aと一体になっているリップ3の方が長くてもよいし、同じ長さであってもよい。 Further, the lip 3 may be divided into two as shown in FIGS. 6B and 6B, and may be integrally formed with the socket 4 and the cone 5a. As for the lip 3 divided into two, the lip 3 integrated with the socket 4 may be longer, the lip 3 integrated with the cone 5a may be longer, or the same length There may be.
 リップ3は、図6の(c)に示すように、ソケット4およびコーン5aのいずれからも独立し、ソケット4およびコーン5aのいずれとも接しない形態でもよい。このとき、リップ3は1つであっても複数あってもよい。 As shown in FIG. 6C, the lip 3 may be independent from both the socket 4 and the cone 5a and may not be in contact with either the socket 4 or the cone 5a. At this time, the lip 3 may be one or plural.
 さらに、リップ3は、上述の形態のうちいずれを組み合わせたものであってもよい。 Furthermore, the lip 3 may be a combination of any of the forms described above.
 図7は、本発明の実施形態3に係る、坑井孔で水圧を受けているときの、ダウンホールプラグの断面の一部を拡大した模式図である。 FIG. 7 is an enlarged schematic view of a part of the cross-section of the downhole plug when the water pressure is received in the wellbore according to the third embodiment of the present invention.
 リップ3は、上述のように、ダウンホールプラグに対して50MPaの圧力をかけたときに、図7に示した(a)に対する(b)の比が0.5未満であれば、その位置は限られない。なお、図7ではいずれも(b/a)が0より大きい形態を示しているが、好ましくは図3に示した、(b)=0の場合である。 As described above, when the pressure of 50 MPa is applied to the downhole plug, if the ratio of (b) to (a) shown in FIG. Not limited. In FIG. 7, (b / a) is larger than 0 in any case, but preferably (b) = 0 shown in FIG. 3.
 図7の(c)に示したように、マンドレル1とセンターエレメント2とが接している部分が複数ある場合は、これら複数の部分のそれぞれの軸方向の長さ(b1)および(b2)の合計を(b)とする。 As shown in FIG. 7 (c), when there are a plurality of portions where the mandrel 1 and the center element 2 are in contact, the axial lengths (b1) and (b2) of the plurality of portions respectively. Let the total be (b).
 なお、〔実施形態3〕で述べたリップ3のうち少なくとも1つが、ソケット4またはコーン5aと一体になっている場合、〔実施形態2〕で述べたように、リップ3はソケット4またはコーン5aから独立しつつ接している態様であってもよい。 When at least one of the lips 3 described in [Embodiment 3] is integrated with the socket 4 or the cone 5a, as described in [Embodiment 2], the lip 3 is connected to the socket 4 or the cone 5a. The aspect which is contacting, independently from may be sufficient.
 〔実施形態4〕
 本発明の実施形態4に係るダウンホールプラグについて、図8および図9を用いて説明する。ダウンホールプラグの第1の形態は図8に対応し、第3の形態は図9に対応する。
[Embodiment 4]
A downhole plug according to Embodiment 4 of the present invention will be described with reference to FIGS. The first form of the downhole plug corresponds to FIG. 8, and the third form corresponds to FIG.
 本発明に係るダウンホールプラグは、ダウンホールプラグに対して50MPaの圧力をかけたときに、(b/a)が、0.5未満であれば、図8の(a)に示した通り、センターエレメント2が複数に分かれてマンドレル1の軸に沿って並んでいる形態であってもよい。なお、(a)は複数のセンターエレメントの最大長さの合計である。 The downhole plug according to the present invention, when (b / a) is less than 0.5 when a pressure of 50 MPa is applied to the downhole plug, as shown in FIG. The center element 2 may be divided into a plurality and arranged along the axis of the mandrel 1. In addition, (a) is the sum total of the maximum length of a some center element.
 このとき、複数のセンターエレメントの厚み、弾性、内径、外径、または軸方向における幅はそれぞれ同じであっても異なっていてもよい。ただし、マンドレルの破損を防ぐという観点から、複数のセンターエレメントそれぞれにおいて、マンドレルとセンターエレメントの接している部分の長さが、それぞれのセンターエレメントの最大長さよりも小さいことが好ましい。 At this time, the thickness, elasticity, inner diameter, outer diameter, or axial width of the plurality of center elements may be the same or different. However, from the viewpoint of preventing the mandrel from being damaged, in each of the plurality of center elements, the length of the portion where the mandrel and the center element are in contact is preferably smaller than the maximum length of each center element.
 複数のセンターエレメントの間には、図8の(b)に示すように、仕切11が設けられていてもよい。仕切11としては、マンドレル1を囲む環状の部材であれば特に限られないが、前述の圧力伝達手段の一部または全てであってもよい。仕切11の材質は特に限られないが、坑井処理を行った後に、ダウンホールプラグ20の除去が容易となるという観点から、分解性樹脂または分解性金属によって形成されていることが好ましい。 As shown in FIG. 8B, a partition 11 may be provided between the plurality of center elements. The partition 11 is not particularly limited as long as it is an annular member surrounding the mandrel 1, but may be a part or all of the pressure transmission means described above. Although the material of the partition 11 is not particularly limited, it is preferably formed of a decomposable resin or a decomposable metal from the viewpoint that it is easy to remove the downhole plug 20 after the well treatment.
 図9は、本発明の実施形態4に係る、坑井孔で水圧を受けているときの、ダウンホールプラグの断面の一部を拡大した模式図である。 FIG. 9 is an enlarged schematic view of a part of the cross-section of the downhole plug when receiving water pressure at the wellbore according to Embodiment 4 of the present invention.
 上述のように、ダウンホールプラグに対して50MPaの圧力をかけたときに、図9に示した(a)に対する(b)の比が0.5未満であれば、複数のセンターエレメントの間には仕切11を有していても有していなくてもよい。図9ではいずれも(b/a)が0より大きい形態を示しているが、好ましくは図3に示した、(b)=0の場合である。 As described above, when a pressure of 50 MPa is applied to the downhole plug, if the ratio of (b) to (a) shown in FIG. May or may not have a partition 11. FIG. 9 shows a form in which (b / a) is larger than 0, but preferably (b) = 0 shown in FIG.
 なお、センターエレメントが複数存在する場合の(a)は、図9の(b)に示すように、これら複数のセンターエレメントの軸方向の最大長さ(a1)および(a2)の合計を(a)とする。 Note that (a) when there are a plurality of center elements is the sum of the maximum lengths (a1) and (a2) in the axial direction of these center elements (a) as shown in FIG. ).
 〔実施形態5〕
 リップ3は、マンドレル1の外周面を囲んで取り付けられているが、その形状は環状でなくともよい。すなわち、ダウンホールプラグに対して50MPaの圧力をかけたときに、(b/a)が0.5未満であれば、リップ3がマンドレル1の外周において2つ以上に分割された構成でもよい。
[Embodiment 5]
The lip 3 is attached so as to surround the outer peripheral surface of the mandrel 1, but the shape may not be annular. That is, when (b / a) is less than 0.5 when a pressure of 50 MPa is applied to the downhole plug, the lip 3 may be divided into two or more on the outer periphery of the mandrel 1.
 これについて図10を用いて説明する。図10の(a)、(b)および(c)は、リップ3の軸に対して垂直方向に切った時の断面を表し、図10の(a’)、(b’)および(c’)はリップの軸方向に沿った側面図を表す。 This will be described with reference to FIG. (A), (b), and (c) of FIG. 10 represent cross sections when cut in a direction perpendicular to the axis of the lip 3, and (a ′), (b ′), and (c ′) of FIG. ) Represents a side view along the axial direction of the lip.
 図10の(a)、(a’)、(b)および(b’)は、リップ3aおよび3bの2つの部材からなるリップ3を示す。図10の(c)および(c’)は、リップ3a、3bおよび3cの3つの部材からなるリップ3を示す。なお、図10の(c’)において、リップ3cは環状の形状が示されているが、リップ3aおよび3bと同様、マンドレル1の外周において2つ以上に分割されていてもよい。 (A), (a '), (b) and (b') in Fig. 10 show a lip 3 composed of two members, lips 3a and 3b. (C) and (c ′) of FIG. 10 show a lip 3 composed of three members, lips 3a, 3b and 3c. In FIG. 10C ', the lip 3c has an annular shape, but it may be divided into two or more on the outer periphery of the mandrel 1 like the lips 3a and 3b.
 また、分割されている各リップはソケットまたはコーンと一体となっていても良いし、独立していても良い。 Moreover, each divided lip may be integrated with the socket or the cone, or may be independent.
 さらに、図10(b)に示したように、リップ3の分割面の角度は限定されず、必ずしもマンドレル軸に平行でなくても良い。なお、実施形態5のリップ3を備えるダウンホールプラグは、マンドレル1の外周において、センターエレメント2が接している部分の長さが一定ではないため、その平均値を(b)として用いる。 Furthermore, as shown in FIG. 10 (b), the angle of the dividing surface of the lip 3 is not limited, and may not necessarily be parallel to the mandrel axis. In addition, since the length of the part which the center element 2 is contacting in the outer periphery of the mandrel 1 is not constant, the downhole plug provided with the lip | rip 3 of Embodiment 5 uses the average value as (b).
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 〔まとめ〕
 坑井孔を閉塞するためのプラグは、筒状本体と、筒状本体の外周面を囲む、圧力を受けて変形する環状の弾性部材と、筒状本体の外周面を囲む、弾性部材の少なくとも一部が筒状本体に接することを妨げる少なくとも1つの保護部材と、弾性部材をプラグの軸方向に挟み、弾性部材に軸方向の圧力を加えて弾性部材を圧縮するための一対の圧力伝達手段と、を備え、プラグに対し軸方向へ50MPaの圧力をかけて弾性部材を変形させたときの、軸方向に沿った断面における、弾性部材の軸方向の最大長さ(а)に対する、筒状本体と弾性部材とが接している部分の軸方向の長さの(b)の比(b/а)が、0.5未満である。
[Summary]
The plug for closing the well hole includes at least a cylindrical main body, an annular elastic member surrounding the outer peripheral surface of the cylindrical main body, deformed by pressure, and an elastic member surrounding the outer peripheral surface of the cylindrical main body. A pair of pressure transmission means for compressing the elastic member by applying axial pressure to the elastic member by sandwiching the elastic member in the axial direction of the plug and at least one protective member that prevents a part from contacting the cylindrical body And having a cylindrical shape with respect to the maximum axial length (а) of the elastic member in a cross section along the axial direction when the elastic member is deformed by applying a pressure of 50 MPa to the plug in the axial direction. The ratio (b / а) of the length (b) in the axial direction of the portion where the main body and the elastic member are in contact is less than 0.5.
 この構成によれば、プラグの軸方向の一方の側から圧力を受けると、筒状本体の外周面に設けられた一対の圧力伝達手段を介して、同じく筒状本体の外周面に設けられた、一対の圧力伝達手段に挟まれた弾性部材が圧縮されて変形することとなる。その際、同じく筒状本体の外周面に設けられた保護部材により、弾性部材の少なくとも一部が筒状本体に接することが妨げられることになる。具体的には、軸方向へ50MPaの圧力をかけて弾性部材を変形させたときに、軸方向に沿った断面における、弾性部材の軸方向の最大長さ(а)に対する、筒状本体と弾性部材とが接している部分の軸方向の長さ(b)の比(b/а)が、0.5未満となる。弾性部材が圧縮され変形すると、弾性部材から筒状本体に力が加わることになるが、弾性部材と筒状本体とが接している部分が上記の範囲となることにより、筒状本体に加わる力が少なくなる。その結果、筒状本体の破損を防ぐことができ、プラグが耐圧性に優れたものとなる。 According to this configuration, when pressure is received from one side in the axial direction of the plug, it is also provided on the outer peripheral surface of the cylindrical main body via the pair of pressure transmission means provided on the outer peripheral surface of the cylindrical main body. The elastic member sandwiched between the pair of pressure transmission means is compressed and deformed. At that time, at least a part of the elastic member is prevented from coming into contact with the cylindrical main body by the protective member similarly provided on the outer peripheral surface of the cylindrical main body. Specifically, when the elastic member is deformed by applying a pressure of 50 MPa in the axial direction, the cylindrical main body and the elasticity with respect to the maximum axial length (а) of the elastic member in the cross section along the axial direction. The ratio (b / а) of the length (b) in the axial direction of the portion in contact with the member is less than 0.5. When the elastic member is compressed and deformed, a force is applied from the elastic member to the cylindrical main body, but the force applied to the cylindrical main body when the portion where the elastic member and the cylindrical main body are in contact with each other is within the above range. Less. As a result, damage to the cylindrical main body can be prevented, and the plug has excellent pressure resistance.
 また、保護部材の少なくとも1つは、圧力伝達手段を構成する圧力伝達要素の1つと一体になっていてよい。 Further, at least one of the protective members may be integrated with one of the pressure transmission elements constituting the pressure transmission means.
 また、保護部材の少なくとも1つは、圧力伝達手段から独立していてよい。 Also, at least one of the protection members may be independent from the pressure transmission means.
 また、保護部材を複数備えており、複数の保護部材のうちの1つが、一対の圧力伝達手段の一方を構成する圧力伝達要素の1つと一体になっており、複数の保護部材のうちの別の1つが、一対の圧力伝達手段の他方を構成する圧力伝達要素の1つと一体になっていてよい。 In addition, a plurality of protection members are provided, and one of the plurality of protection members is integrated with one of the pressure transmission elements constituting one of the pair of pressure transmission means. May be integrated with one of the pressure transmission elements constituting the other of the pair of pressure transmission means.
 また、保護部材と一体になっている圧力伝達要素の1つは、弾性部材の端に接している、筒状本体の端から弾性部材側に向かって外径が拡大する一対の円錐状の部材であってよい。 One of the pressure transmission elements integrated with the protective member is a pair of conical members that are in contact with the end of the elastic member and whose outer diameter increases from the end of the cylindrical main body toward the elastic member side. It may be.
 また、保護部材は環状であってよい。この構成によれば、プラグの筒状本体が弾性部材に接するのをより効果的に妨げることができる。よってプラグは耐圧性に優れる。 Further, the protective member may be annular. According to this structure, it can prevent more effectively that the cylindrical main body of a plug contacts an elastic member. Therefore, the plug has excellent pressure resistance.
 また、長さ(b)は0であってよい。この構成によれば、プラグの筒状本体は弾性部材に接しないため、プラグはさらに耐圧性に優れる。 Also, the length (b) may be zero. According to this configuration, since the cylindrical main body of the plug does not contact the elastic member, the plug is further excellent in pressure resistance.
 本発明の一実施例について以下に説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。 An embodiment of the present invention will be described below. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail.
 〔実施例1〕
 ダウンホールプラグの軸方向に50MPaの圧力をかけてセンターエレメントを変形させたとき、軸方向に沿った断面における、センターエレメントの軸方向の最大長さ(a)に対する、マンドレルとセンターエレメントとが接している部分の軸方向の長さ(b)の比(b/a)が、0であるダウンホールプラグに対し、耐水圧試験を行った。
[Example 1]
When the center element is deformed by applying a pressure of 50 MPa in the axial direction of the downhole plug, the mandrel and the center element are in contact with the maximum length (a) in the axial direction of the center element in the cross section along the axial direction. A water pressure resistance test was performed on a downhole plug in which the ratio (b / a) of the length (b) in the axial direction of the portion in which it is located is zero.
 内径がダウンホールプラグの外径の1.1倍である金属製の筒に、上述のダウンホールプラグを、ダウンホールプラグと筒との軸が平行になるように入れた。筒中を90℃に保ち、ダウンホールプラグの軸方向に対し60~63MPaの水圧をかけて筒を閉塞した。そして、筒の閉塞が保たれている時間を測定した。 The above-mentioned down hole plug was put in a metal cylinder whose inner diameter was 1.1 times the outer diameter of the down hole plug so that the axes of the down hole plug and the cylinder were parallel. The inside of the cylinder was kept at 90 ° C., and the cylinder was closed by applying a water pressure of 60 to 63 MPa to the axial direction of the downhole plug. Then, the time during which the cylinder was kept closed was measured.
 結果を表1に示す。 The results are shown in Table 1.
 〔比較例1〕
 軸方向に沿った断面における、センターエレメントの軸方向の長さ(a)と、マンドレルとセンターエレメントとが接している部分の軸方向の長さ(b)とが等しいダウンホールツールを用い、温度を90~93℃、水圧を50~53MPaとしたこと以外は実施例1と同様の操作を行った。
[Comparative Example 1]
Using a downhole tool in which the axial length (a) of the center element in the cross section along the axial direction is equal to the axial length (b) of the portion where the mandrel and the center element are in contact with each other, Was the same as in Example 1 except that the temperature was 90 to 93 ° C. and the water pressure was 50 to 53 MPa.
 〔比較例2〕
 軸方向に沿った断面における、センターエレメントの軸方向の長さ(a)と、マンドレルとセンターエレメントとが接している部分の軸方向の長さ(b)とが等しいダウンホールツールを用い、温度を90~93℃としたこと以外は実施例1と同様の操作を行った。
Figure JPOXMLDOC01-appb-T000001
[Comparative Example 2]
Using a downhole tool in which the axial length (a) of the center element in the cross section along the axial direction is equal to the axial length (b) of the portion where the mandrel and the center element are in contact with each other, The same operation as in Example 1 was performed except that the temperature was 90 to 93 ° C.
Figure JPOXMLDOC01-appb-T000001
 1 マンドレル(筒状本体)
 2 センターエレメント(弾性部材)
 3、3a、3b、3c リップ(保護部材)
 4、4a、4b ソケット(圧力伝達手段)
 5a、5b コーン(圧力伝達手段)
 6a、6b スリップ(圧力伝達手段)
 7a、7b リング(圧力伝達手段)
 8 ロードリング(圧力伝達手段)
 9 ボトム
 10 ボール
 11 仕切
 12 坑井壁
 13 ボールシート
 20、21 ダウンホールプラグ(プラグ)

 
1 Mandrel (tubular body)
2 Center element (elastic member)
3, 3a, 3b, 3c Lip (protective member)
4, 4a, 4b Socket (pressure transmission means)
5a, 5b cone (pressure transmission means)
6a, 6b Slip (pressure transmission means)
7a, 7b Ring (pressure transmission means)
8 Load ring (pressure transmission means)
9 Bottom 10 Ball 11 Partition 12 Well wall 13 Ball seat 20, 21 Downhole plug (plug)

Claims (7)

  1.  坑井孔を閉塞するためのプラグであって、
     筒状本体と、
     上記筒状本体の外周面を囲む、圧力を受けて変形する環状の弾性部材と、
     上記筒状本体の外周面を囲む、上記弾性部材の少なくとも一部が上記筒状本体に接することを妨げる少なくとも1つの保護部材と、
     上記弾性部材を上記プラグの軸方向に挟み、上記弾性部材に該軸方向の圧力を加えて上記弾性部材を圧縮するための一対の圧力伝達手段と、を備え、
     上記プラグに対し上記軸方向へ50MPaの圧力をかけて上記弾性部材を変形させたときの、上記軸方向に沿った断面における、上記弾性部材の軸方向の最大長さ(а)に対する、上記筒状本体と上記弾性部材とが接している部分の軸方向の長さ(b)の比(b/а)が、0.5未満であることを特徴とするプラグ。
    A plug for closing a well hole,
    A tubular body;
    An annular elastic member that surrounds the outer peripheral surface of the cylindrical body and deforms under pressure;
    At least one protective member that surrounds the outer peripheral surface of the cylindrical main body and prevents at least a part of the elastic member from coming into contact with the cylindrical main body;
    A pair of pressure transmitting means for sandwiching the elastic member in the axial direction of the plug and compressing the elastic member by applying pressure in the axial direction to the elastic member;
    The cylinder with respect to the maximum axial length (а) of the elastic member in a cross section along the axial direction when the elastic member is deformed by applying a pressure of 50 MPa to the plug in the axial direction. A plug characterized in that the ratio (b / а) of the length (b) in the axial direction of the portion where the main body contacts the elastic member is less than 0.5.
  2.  上記保護部材の少なくとも1つは、上記圧力伝達手段を構成する圧力伝達要素の1つと一体になっていることを特徴とする請求項1に記載のプラグ。 2. The plug according to claim 1, wherein at least one of the protective members is integrated with one of the pressure transmission elements constituting the pressure transmission means.
  3.  上記保護部材の少なくとも1つは、上記圧力伝達手段から独立していることを特徴とする請求項1に記載のプラグ。 The plug according to claim 1, wherein at least one of the protective members is independent of the pressure transmission means.
  4.  上記保護部材を複数備えており、複数の上記保護部材のうちの1つが、上記一対の圧力伝達手段の一方を構成する圧力伝達要素の1つと一体になっており、複数の上記保護部材のうちの別の1つが、上記一対の圧力伝達手段の他方を構成する圧力伝達要素の1つと一体になっていることを特徴とする請求項1に記載のプラグ。 A plurality of the protection members are provided, and one of the plurality of protection members is integrated with one of the pressure transmission elements constituting one of the pair of pressure transmission means. 2. The plug according to claim 1, wherein the other one is integrated with one of the pressure transmission elements constituting the other of the pair of pressure transmission means.
  5.  上記保護部材と一体になっている上記圧力伝達要素の1つは、上記弾性部材の端に接している、上記筒状本体の端から上記弾性部材側に向かって外径が拡大する円錐状の部材であることを特徴とする請求項2に記載のプラグ。 One of the pressure transmission elements integrated with the protective member is a conical shape that is in contact with the end of the elastic member and whose outer diameter increases from the end of the cylindrical body toward the elastic member. The plug according to claim 2, wherein the plug is a member.
  6.  上記保護部材は環状であることを特徴とする請求項1から5のいずれか1項に記載のプラグ。 The plug according to any one of claims 1 to 5, wherein the protective member is annular.
  7.  上記長さ(b)が0であることを特徴とする請求項1から6のいずれか1項に記載のプラグ。

     
    The plug according to any one of claims 1 to 6, wherein the length (b) is zero.

PCT/JP2019/003604 2018-03-30 2019-02-01 Downhole plug comprising protection member WO2019187622A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3094937A CA3094937C (en) 2018-03-30 2019-02-01 Downhole plug with protective member
GB2016485.1A GB2587124B (en) 2018-03-30 2019-02-01 Downhole plug with protective member
CN201980016593.1A CN111801484B (en) 2018-03-30 2019-02-01 Downhole plug with protective member
US16/982,102 US20210108482A1 (en) 2018-03-30 2019-02-01 Downhole plug with protective member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018069248A JP2019178569A (en) 2018-03-30 2018-03-30 Downhole plug with protective member
JP2018-069248 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019187622A1 true WO2019187622A1 (en) 2019-10-03

Family

ID=68058710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003604 WO2019187622A1 (en) 2018-03-30 2019-02-01 Downhole plug comprising protection member

Country Status (6)

Country Link
US (1) US20210108482A1 (en)
JP (1) JP2019178569A (en)
CN (1) CN111801484B (en)
CA (1) CA3094937C (en)
GB (1) GB2587124B (en)
WO (1) WO2019187622A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220389786A1 (en) * 2021-06-02 2022-12-08 Halliburton Energy Services, Inc. Sealing assembly for wellbore operations

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641892A (en) * 1987-04-13 1989-01-06 Drilex Syst Inc Packing aggregate
US20140166317A1 (en) * 2012-12-19 2014-06-19 CNPC USA Corp. Millable bridge plug system
US20140284046A1 (en) * 2009-05-01 2014-09-25 Weatherford/Lamb, Inc. Wellbore Isolation Tool Using Sealing Element Having Shape Memory Polymer
JP2015143459A (en) * 2013-12-27 2015-08-06 株式会社クレハ Winze digging plug with diameter-expandable and annular rubber member formed from decomposable rubber material

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7086481B2 (en) * 2002-10-11 2006-08-08 Weatherford/Lamb Wellbore isolation apparatus, and method for tripping pipe during underbalanced drilling
CA2882455C (en) * 2009-05-01 2017-05-30 Weatherford Technology Holdings, Llc Wellbore isolation tool using sealing element having shape memory polymer
CA2795798C (en) * 2010-04-23 2019-08-27 Smith International, Inc. High pressure and high temperature ball seat
CN202117618U (en) * 2011-03-31 2012-01-18 大庆油田有限责任公司 High temperature and high pressure resistance open hole hook wall packer
CN106089145B (en) * 2011-08-22 2018-12-07 井下技术有限责任公司 A kind of plug for downhole tool
CN202325389U (en) * 2011-10-13 2012-07-11 中国石油化工股份有限公司 Top packer for tail pipe
US10662732B2 (en) * 2014-04-02 2020-05-26 Magnum Oil Tools International, Ltd. Split ring sealing assemblies
CN203130031U (en) * 2013-02-21 2013-08-14 沈阳大华测控技术有限公司 High-pressure hydraulic pressing crack packer
JP6327946B2 (en) * 2013-05-31 2018-05-23 株式会社クレハ Well drilling plug with mandrel formed from degradable material
CN104074487B (en) * 2014-07-11 2017-01-04 中国石油大学(北京) Drawing type packer
JP2016160694A (en) * 2015-03-03 2016-09-05 株式会社クレハ Degradable rubber member for downhole took, downhole tool, and well drilling method
GB2548727B (en) * 2017-05-19 2018-03-28 Ardyne Tech Limited Improvements in or relating to well abandonment and slot recovery
US10760382B2 (en) * 2017-09-26 2020-09-01 Baker Hughes, A Ge Company, Llc Inner and outer downhole structures having downlink activation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641892A (en) * 1987-04-13 1989-01-06 Drilex Syst Inc Packing aggregate
US20140284046A1 (en) * 2009-05-01 2014-09-25 Weatherford/Lamb, Inc. Wellbore Isolation Tool Using Sealing Element Having Shape Memory Polymer
US20140166317A1 (en) * 2012-12-19 2014-06-19 CNPC USA Corp. Millable bridge plug system
JP2015143459A (en) * 2013-12-27 2015-08-06 株式会社クレハ Winze digging plug with diameter-expandable and annular rubber member formed from decomposable rubber material

Also Published As

Publication number Publication date
US20210108482A1 (en) 2021-04-15
CA3094937A1 (en) 2019-10-03
CN111801484A (en) 2020-10-20
CN111801484B (en) 2023-09-19
JP2019178569A (en) 2019-10-17
CA3094937C (en) 2023-08-01
GB2587124A (en) 2021-03-17
GB202016485D0 (en) 2020-12-02
GB2587124B (en) 2022-06-15

Similar Documents

Publication Publication Date Title
US11136854B2 (en) Downhole tool with sealing ring
US11002105B2 (en) Downhole tool with recessed buttons
US10385651B2 (en) Frac plug with retention mechanisim
US7631664B1 (en) Threaded expansion plugs
US7789138B2 (en) Well casing straddle assembly
US20160281455A1 (en) Crushable plug
US10378305B2 (en) Frac plug with retention mechanism
AU2017213504A1 (en) Apparatus for use in a fluid conduit
CN101421491A (en) Device for breaking solid material and method of manufacturing a hose element for such a device
US10633946B2 (en) Frac plug with retention mechanism
WO2019187622A1 (en) Downhole plug comprising protection member
WO2018198881A1 (en) Well closing device and temporary well closing method
US20210301620A1 (en) Downhole tool with sealing ring
US11326416B1 (en) Spiral deployed isolation tool
US20180328137A1 (en) Frac Plug with Retention Mechanism
US12000232B2 (en) Plug, retaining member, and method for well completion using plug
JP2005319978A (en) Puncture preventing device for tire
US20200292105A1 (en) Reinforced hose end connector having a smooth surface inboard end length
CA3063836C (en) Plug, retaining member, and method for well completion using plug
JP5197298B2 (en) Connector
CN211666689U (en) Composite bridge plug
CN212985147U (en) Bridge plug hydraulic setting tool capable of preventing mechanical blockage
JP3479494B2 (en) Chisel with breaker wick
CN111119788A (en) Composite bridge plug
WO1993010330A1 (en) Fracturing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3094937

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 202016485

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20190201

122 Ep: pct application non-entry in european phase

Ref document number: 19777102

Country of ref document: EP

Kind code of ref document: A1