WO2019187574A1 - Biosensor - Google Patents

Biosensor Download PDF

Info

Publication number
WO2019187574A1
WO2019187574A1 PCT/JP2019/002472 JP2019002472W WO2019187574A1 WO 2019187574 A1 WO2019187574 A1 WO 2019187574A1 JP 2019002472 W JP2019002472 W JP 2019002472W WO 2019187574 A1 WO2019187574 A1 WO 2019187574A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
conductive
reagent part
biosensor
area
Prior art date
Application number
PCT/JP2019/002472
Other languages
French (fr)
Japanese (ja)
Inventor
直 林野
圭吾 羽田
Original Assignee
Phcホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phcホールディングス株式会社 filed Critical Phcホールディングス株式会社
Publication of WO2019187574A1 publication Critical patent/WO2019187574A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements

Definitions

  • the present invention relates to a biosensor, and more particularly to a biosensor using an electrochemical measurement method.
  • Biosensors are used to measure a substance to be detected in a biological sample in various fields such as the medical field and clinical laboratory field.
  • a biosensor using an electrochemical measurement method is known (for example, Patent Document 1).
  • This biosensor forms a working electrode, a counter electrode, and a reference electrode on an insulating substrate, and is in contact with these electrodes and includes an enzyme reaction layer (also referred to as a reagent unit) including an enzyme and an electron acceptor (hereinafter referred to as a mediator). ) Is formed.
  • an enzyme reaction layer also referred to as a reagent unit
  • an enzyme and an electron acceptor hereinafter referred to as a mediator
  • Is formed Is formed.
  • various substances can be measured by selecting an enzyme that uses the substance to be measured as a substrate.
  • a glucose sensor that measures glucose concentration in a sample solution by selecting glucose oxidase as an enzyme has been put into practical use.
  • HbA1c hemoglobin A1c
  • HbA1c value is a test value indicating the proportion of hemoglobin bound to sugar in hemoglobin in erythrocytes. Since the HbA1c value reflects the average blood glucose level in the past 1 to 2 months, it is less affected by the diet before the test and is important as an index for managing diabetes.
  • the HbA1c value is measured by an HPLC method or an immunization method using an optical spectroscopic method.
  • the test sample is diluted by, for example, about 100 times by hemolysis (hereinafter, in this specification, a sample solution to be measured is subjected to a pretreatment such as hemolysis. Called liquid). Therefore, the HbA1c concentration in the test solution is significantly lower than the glucose concentration, and is usually a low concentration on the order of ⁇ M.
  • a method for measuring the HbA1c value using an electrochemical measurement method has not been put into practical use.
  • the HbA1c value can be measured with high accuracy by using the electrochemical measurement method.
  • proteins other than HbA1c such as hemoglobin, glycated albumin, glucose, cholesterol, lactic acid, ketone bodies (3-hydroxybutyric acid), antibodies, etc. can be measured with high accuracy if the blank current can be reduced. It becomes possible.
  • an object of the present invention is to provide a biosensor used in an electrochemical measurement method, which can measure with high accuracy by reducing blank current.
  • a biosensor of the present invention is a biosensor that analyzes a component in a test solution using a protein and a mediator, and a spacer is interposed between the insulating substrate and the cover. And having at least one formed space portion, and having at least one inner surface of the space portion having a conductive portion and a non-conductive portion, and including a first reagent portion containing the protein and a second mediator. Reagent parts are separately disposed at different locations on the inner surface, and at least one of the first reagent part and the second reagent part is disposed in the non-conductive part.
  • a biosensor capable of highly accurate measurement can be provided by reducing the blank current.
  • FIG. 2 is a perspective view showing an example of a structure of biosensor A according to Embodiment 1.
  • FIG. It is a disassembled perspective view of the biosensor A of FIG. It is a top view of the insulating base material which comprises the biosensor A of FIG. It is a longitudinal cross-sectional view along the longitudinal direction of the biosensor A of FIG. 6 is an exploded perspective view showing an example of a structure of a biosensor B according to Embodiment 2.
  • FIG. It is a longitudinal cross-sectional view along the longitudinal direction of the biosensor B of FIG.
  • FIG. 6 is a plan view of an insulating base material constituting a biosensor C according to a third embodiment.
  • FIG. It is a longitudinal cross-sectional view along the longitudinal direction of the biosensor C which concerns on Embodiment 3.
  • FIG. It is a graph which shows the blank electric current value in a reference example. It is a graph which shows the blank electric current value in a reference example. It is a graph which shows the blank electric current value in a reference example. It is an example of the graph which shows the relationship between the detection electric current value in this invention, and the density
  • the biosensor of the present invention is a biosensor that analyzes a component in a test solution using a protein and a mediator, and is one or more formed through a spacer between an insulating substrate and a cover.
  • the inner surface of the at least one space portion has a conductive portion and a non-conductive portion, and the first reagent portion containing the protein and the second reagent portion containing the mediator are different in the inner surface. It is arrange
  • FIG. 1 is a perspective view showing an example of the structure of the biosensor A according to the present embodiment
  • FIG. 2 is an exploded perspective view.
  • an insulating base material 1 having a conductive portion 4 and a cover 2 are laminated via a spacer 3.
  • FIG. 1 shows an example having a long rectangular piece shape in which the X direction is the longitudinal direction and the Y direction is the width direction.
  • a conductive portion 4 is formed on one main surface of the insulating substrate 1 having a pair of opposing main surfaces.
  • the conductive portion 4 is a conductive portion, and includes a first electrode pair 41 and a second electrode pair 42, a terminal portion 43 formed at one end of the insulating base material 1, a first electrode pair 41, and a second electrode pair 42. And a lead part 44 for connecting the terminal part 43 to each other.
  • FIG. 3 is a plan view of the insulating substrate 1, and the first electrode pair 41 is disposed in the longitudinal direction and sandwiches the pair of working electrodes 41 a and 41 a that are electrically connected to each other and the working electrodes 41 a in plan view.
  • the second electrode pair 42 acts via a working electrode 42a disposed in the longitudinal direction so as to be separated from the first electrode pair 41, and a minute gap (described later) so as to sandwich the working electrode 42a in plan view. It has a pair of counter electrodes 42b and 42b facing the pole 42a.
  • the pair of working electrodes 41a and 41a is connected to the terminal 43a through the lead 44a
  • the two pairs of counter electrodes 41b and 41b are connected to the terminal 43d through the lead 44d
  • the working electrode 42a is connected to the terminal 43b through the lead 44b.
  • the pair of counter electrodes 42b and 42b are connected to the terminal 43c via a lead 44c. 2 and FIG. 3, the structure excluding the first reagent part and the second reagent part described later is shown. Further, the two electrode pairs of the first electrode pair 41 and the second electrode pair 42 can be used when measuring two different types of substances to be detected in the test liquid.
  • the case of measuring two kinds of substances to be detected is, for example, the case of measuring the HbA1c value, measuring the concentration of HbA1c with the first electrode pair 41 and measuring the concentration of Hb with the second electrode pair 42. Can do.
  • the example which used two working electrodes for the 1st electrode pair 41 was shown, it can also be set as the structure using one working electrode similarly to the case of the 2nd electrode pair 42.
  • the spacer 3 only needs to have at least one opening, but in the present embodiment, the spacer 3 has two openings 3a and 3b formed to be separated from each other along the longitudinal direction.
  • the spacer 3 is shorter than the insulating base 1 so that the terminal portion 43 is exposed.
  • the cover 2 has an opening 2a at one end in the longitudinal direction, an opening 2c at the other end, and an opening 2b at an intermediate portion between the opening 2a and the opening 2c.
  • the cover 2 is also made shorter than the insulating base material 1 so that the terminal part 43 is exposed similarly to the case of the spacer 3.
  • the opening of the spacer 3 and the opening of the cover 2 are such that when the spacer 3 and the cover 2 are stacked, the opening 2 b at the center of the cover 2 is the end on the center side of the opening 3 a of the spacer 3. And the opening 2a at one end of the cover 2 is at least partially overlapped with the side end of the opening 3a of the spacer 3, so that the cover 2
  • the opening 2c at the other end of the spacer 3 is disposed so as to at least partially overlap the side end of the opening 3b of the spacer 3.
  • FIG. 4 is a longitudinal sectional view along the longitudinal direction of the biosensor A shown in FIG.
  • the openings 3 a and 3 b of the spacer 3 form two first space portions 6 and second space portions 7 that are independent from each other when the spacer 3 is sandwiched between the insulating base material 1 and the cover 2. ing.
  • one main surface of the insulating base material 1 exposed to a space part comprises the bottom face of a space part.
  • the cover 2 has a pair of opposing main surfaces, and one main surface exposed to the space portion constitutes the top surface of the space portion.
  • the inner surface of the opening part of the spacer 3 comprises the side surface of a space part.
  • the biosensor of the present invention has a conductive portion and a non-conductive portion on the inner surface of the space portion.
  • the conductive portion is a conductive portion, and includes an electrode including a working electrode and a counter electrode, a lead portion, and a terminal portion.
  • the conductive portion in the first space portion 6 is the first electrode pair 41 and the lead portion.
  • the non-conductive portion in the first space portion 6 is a portion that is not conductive, specifically, a portion where no electrode or lead is formed on the insulating base material 1, or the opening 3 a of the spacer 3.
  • a main surface 5 that is not in contact with the cover 2 (hereinafter also referred to as a back surface) can be exemplified.
  • the conductive part in the second space 7 is the second electrode pair 42 and the lead part.
  • the non-conductive portion of the second space portion 7 is a portion of the insulating base material 1 where no electrodes or leads are formed, the inner peripheral surface of the opening 3b of the spacer 3, and a pair of spacers 3 facing each other.
  • the back surface 5 that is not in contact with the cover 2 can be cited.
  • the first reagent part containing protein and the second reagent part containing mediator are separately arranged at different locations on the inner surface of at least one space part, and at least one of the first reagent part and the second reagent part is Arranged in the non-conductive portion.
  • the first reagent portion 8 is disposed on the surfaces of the first electrode pair 41 and the second electrode pair 42 that are conductive portions, and the second reagent portion 9 is non-conductive. It is arranged on the back surface 5 of the cover 2 which is a part.
  • the second reagent portion 9 is disposed on the surface of the second electrode pair 42.
  • the opening 2b in the center of the cover 2 can be used as an introduction opening for the test liquid, and the introduction opening communicates with the space.
  • the space part in the present invention provides a holding area for holding the test liquid and a reaction area for advancing the reaction between the test liquid and the first reagent part and the second reagent part.
  • the reaction region refers to a region occupied by the conductive part and the reagent part arranged in the conductive part.
  • the openings 2 a and 2 c at both ends of the cover 2 provide air to the inside of the first space portion 6 and the second space portion 7, respectively, and the test liquid is supplied from the opening portion 2 b at the center portion of the cover 2. When it is dropped, it works to release the internal air as the test solution is drawn.
  • the area of one reagent part of the first reagent part and the second reagent part may be larger than the area of the other reagent part.
  • one reagent part of the first reagent part and the second reagent part is arranged in the non-conductive part
  • the other reagent part is arranged in the conductive part
  • one of the reagent parts arranged in the non-conductive part The area of the reagent part may be larger than the area of the other reagent part arranged in the conductive part.
  • the area of the second reagent portion 9 disposed on the back surface 5 of the cover 2 that is a non-conductive portion is the first space portion disposed on the surface of the first electrode pair 41 that is a conductive portion.
  • An example larger than the area of one reagent part 8 is shown.
  • the area of the reagent part is an area of the reagent part in plan view.
  • the reagent part is formed by a coating method, it is the area of the coating film in plan view (hereinafter, the area of the coating film in plan view may be referred to as the coating film area).
  • the two 1st reagent parts 8 exist in the same space part (1st space part 6).
  • the area of the reagent part is a total area of two or more reagent parts.
  • the test liquid flowing in from the introduction opening moves from the upstream to the downstream in the space, and at this time, a part of the reagent in the first reagent part and / or the second reagent part is dissolved in the test liquid. May move out of the reaction zone.
  • a sufficient amount of reagent can be supplied to the reaction region.
  • the area of one reagent part arranged in the non-conductive part is larger than the area of the other reagent part arranged in the conductive part, the reagent contained in one reagent part arranged in the non-conductive part Even if a part flows out of the reaction region together with the test solution, a sufficient amount of reagent can be supplied to the working electrode of the conductive portion. As a result, the response value is increased and the S / N ratio is improved, so that highly accurate measurement is possible. Furthermore, it is preferable to arrange the second reagent part in the non-conductive part and make the area of the second reagent part larger than the area of the first reagent part.
  • the area of the reagent part is, for example, in the range of 0.5 mm 2 to 200 mm 2
  • the area of one reagent part is equal to or larger than the area of the other reagent part, preferably 1.05 to 10 times. Times, more preferably 1.5 times to 4 times.
  • the area of one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part may be larger than the area of the working electrode included in the conductive part.
  • the test solution flowing in from the introduction opening moves from the upstream to the downstream in the space portion.
  • a part of the reagent may be dissolved in the test solution and move out of the reaction region.
  • a part of the reagent contained in the reagent part arranged in the non-conductive part flows out of the reaction region and is not supplied to the working electrode.
  • the area of the working electrode is the area of the working electrode in plan view. Specifically, for example, when the area of the reagent part is in the range of 0.5 to 200 mm 2 , the area of one reagent part is equal to or more than the area of the working electrode, preferably 1.5 to 30 times, More preferably, it is 2 to 20 times.
  • the area of one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part is based on the total area of the working electrode area and the counter electrode area of the conductive part. May be larger.
  • the test solution flowing in from the introduction opening moves from the upstream to the downstream in the space portion.
  • a part of the reagent may be dissolved in the test solution and move out of the reaction region.
  • a part of the reagent contained in the reagent part arranged in the non-conductive part flows out of the reaction region and is not supplied to the working electrode.
  • the area of the reagent part arranged in the non-conductive part is larger than the total area of the working electrode area and the counter electrode area, even if a part of the reagent flows out of the reaction region together with the test solution, A sufficient amount of reagent can be supplied to the working electrode and the counter electrode.
  • a sufficient amount of reagent for the reduction reaction reacts on the counter electrode within a fixed time, and a sufficient amount of reagent for the oxidation reaction reacts on the working electrode, increasing the response value and improving the S / N ratio. Therefore, measurement with high accuracy is possible.
  • the area of the working electrode is the area of the working electrode in plan view
  • the area of the counter electrode is the area of the counter electrode in plan view.
  • the area of the reagent part is in the range of 0.5 to 200 mm 2
  • the area of one reagent part is equal to or larger than the total area of the working electrode area and the counter electrode area, preferably It is 1.05 times to 10 times, more preferably 1.5 times to 4 times.
  • one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part is closer to the introduction opening for the test solution than the other reagent part. It may be arranged. As described above, the test solution flowing in from the introduction opening moves from the upstream to the downstream in the space portion. At this time, a part of the reagent may be dissolved in the test solution and move out of the reaction region. At this time, a part of the reagent contained in the reagent part arranged in the non-conductive part flows out of the reaction region and is not supplied to the working electrode.
  • one reagent part arranged in the non-conductive part is arranged closer to the introduction opening for the test solution than the other reagent part, that is, upstream of the other reagent part.
  • the response value increases and the S / N ratio is improved, so that more accurate measurement is possible.
  • at least a part of one reagent part may be arranged so as to be closer to the introduction opening for the test solution than the other reagent part.
  • one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part may be arranged closer to the introduction opening than the working electrode.
  • the test solution flowing in from the introduction opening moves from the upstream to the downstream in the space portion.
  • a part of the reagent may be dissolved in the test solution and move out of the reaction region.
  • a part of the reagent contained in the reagent part arranged in the non-conductive part flows out of the reaction region and is not supplied to the working electrode.
  • one of the reagent parts arranged in the non-conductive part is arranged so as to be closer to the introduction opening for the test solution than the working electrode, that is, by arranging it upstream of the working electrode. Even if a part of the reagent flows out of the reaction region, a sufficient amount of the reagent can be supplied to the working electrode. As a result, the response value increases and the S / N ratio is improved, so that more accurate measurement is possible. It should be noted that at least a part of one of the reagent parts may be arranged so as to be closer to the introduction opening for the test solution than the working electrode.
  • the material used for the insulating substrate is not particularly limited.
  • resin materials or glass materials can be used.
  • Preferred are polyethylene terephthalate, polycarbonate, and polyimide, and more preferred is polyethylene terephthalate.
  • the size of the insulating substrate is not particularly limited. For example, the total length is 5 to 100 mm, the width is 2 to 50 mm, and the thickness is 0.05 to 2 mm.
  • the total length is 7 to 50 mm, the width is 3 to 20 mm, and the thickness is 0.1 to 1 mm. More preferably, the total length is 10 to 30 mm, the width is 3 to 10 mm, and the thickness is 0.1 to 0.6 mm.
  • the conductive part on the insulating substrate is formed of a conductive layer by sputtering or vapor deposition using, for example, carbon, gold, platinum, palladium or the like, and then formed into a predetermined electrode pattern by laser trimming. It can be formed by processing.
  • the laser trimming method the minute gap between the working electrode and the counter electrode, the minute gap between the leads, and the minute gap between the terminals are formed, so that the electrical insulation between the electrodes, between the leads, and between the terminals. Is secured.
  • the material of the spacer is not particularly limited.
  • the same material as the insulating base material can be used.
  • the size of the spacer is not particularly limited.
  • the total length is 5 to 100 mm
  • the width is 2 to 50 mm
  • the thickness is 0.01 to 1 mm
  • the total length is 7 to 50 mm
  • the width is 3 to 20 mm
  • the thickness is 0.05 to 0.5 mm.
  • the total length is 10 to 30 mm
  • the width is 3 to 10 mm
  • the thickness is 0.05 to 0.25 mm.
  • the cover material is not particularly limited.
  • the same material as the insulating base material can be used.
  • the size of the cover is not particularly limited.
  • the total length is 5 to 100 mm
  • the width is 3 to 50 mm
  • the thickness is 0.01 to 0.5 mm
  • the total length is 10 to 50 mm
  • the width is 3 to 20 mm
  • the thickness is 0.05 to 0.25 mm.
  • the total length is 15 to 30 mm
  • the width is 5 to 10 mm
  • the thickness is 0.05 to 0.1 mm.
  • the cover is preferably formed with a plurality of openings used as air holes or test liquid inlets. As the shape of the opening, for example, a circle, an ellipse, a polygon or the like can be used.
  • the maximum diameter is 0.01 to 10 mm, preferably 0.05 to 5 mm, more preferably 0.1 to 2 mm.
  • the opening may be formed by drilling with a laser or a drill, or may be formed by molding using a mold.
  • a biosensor can be manufactured by laminating an insulating base material, a spacer, and a cover in this order, and bonding and integrating them with an adhesive or heat fusion.
  • An epoxy adhesive, an acrylic adhesive, a polyurethane adhesive, a hot melt adhesive, a UV curable adhesive, or the like can be used as the adhesive.
  • the first reagent part includes a protein
  • the second reagent part includes a mediator.
  • the protein include enzymes, antibodies, immunoglobulins, bovine serum albumin, human serum albumin and the like.
  • the enzyme include oxidoreductases such as glucose oxidase, lactate oxidase, cholesterol oxidase, bilirubin oxidase, glucose dehydrogenase, lactate dehydrogenase, fructosyl amino acid oxidase, fructosyl peptide oxidase, and 3-hydroxybutyrate dehydrogenase.
  • oxidoreductases are oxidases or dehydrogenases that act on glucose, lactic acid, cholesterol, bilirubin, glycated amino acids, or glycated peptides, ketone bodies (3-hydroxybutyric acid).
  • the amount of oxidoreductase is, for example, 0.01 to 100 U, preferably 0.05 to 10 U, more preferably 0.1 to 100 U per sensor or per measurement. 5U.
  • Mediators include, but are not limited to, metal complexes (eg, osmium complexes, ruthenium complexes, iron complexes, etc.), quinone compounds (eg, benzoquinone, naphthoquinone, phenanthrenequinone, phenanthrolinequinone, anthraquinone, and derivatives thereof).
  • metal complexes eg, osmium complexes, ruthenium complexes, iron complexes, etc.
  • quinone compounds eg, benzoquinone, naphthoquinone, phenanthrenequinone, phenanthrolinequinone, anthraquinone, and derivatives thereof.
  • a phenazine compound, a viologen compound, a phenothiazine compound, and a phenol compound eg., a viologen compound, a phenothiazine compound, and a phenol compound.
  • the salt examples include, but are not limited to, sodium salt, potassium salt, calcium salt, magnesium salt, lithium salt and the like.
  • the blending amount of the mediator is not particularly limited, and is, for example, 0.1 pmol to 100 ⁇ mol, preferably 10 pmol to 10 ⁇ mol, more preferably 50 pmol to 1 ⁇ mol per measurement or per biosensor. is there.
  • the first reagent part containing the protein and the second reagent part containing the mediator are separately arranged at different locations on the inner surface of the space part. Therefore, the first reagent part containing the protein and the second reagent part containing the mediator Are prepared separately. If necessary, additives such as a buffer and a hydrophilic polymer can be added to the first reagent part and the second reagent part, respectively. An enzyme stabilizer can also be added to the first reagent part. Each of these substances is dissolved in water, applied to the application part, and dried to form a reagent part.
  • the portion to be coated is the first electrode pair that is a conductive portion in the case of the first reagent portion, and the back surface of the cover in the case of the second reagent portion.
  • the terminal of the terminal portion 43 is connected to a measuring device (not shown).
  • test liquid is sucked up with a dropper, and the test liquid is dropped into the opening 2b for introducing the test liquid in the cover 2.
  • the first electrode pair 41 measures the concentration of HbA1c
  • the second electrode pair 42 measures the concentration of Hb.
  • the 1st reagent part 8 of the 1st space part 6 contains fructosyl peptide oxidase, for example, and a 2nd reagent part contains potassium ferricyanide, for example.
  • the fructosyl valyl histidine in the test solution dropped into the test solution introduction opening 2 b of the cover 2 reacts with the fructosyl peptide oxidase of the first reagent unit 8 arranged in the first space 6.
  • the potassium ferricyanide contained in the second reagent unit 9 is reduced to potassium ferrocyanide, but is oxidized to potassium ferricyanide with the application of voltage. Since the oxidation current changes according to the concentration of HbA1c in the test solution, the concentration of HbA1c in the test solution can be measured by measuring the oxidation current.
  • the concentration of Hb can be measured.
  • the HbA1c value can be calculated.
  • a coating film obtained by applying a coating liquid containing both an enzyme and a mediator to an electrode and drying it is used as a reagent part.
  • the first reagent part containing the protein and the second reagent part containing the mediator are arranged separately, and at least one of the first reagent part and the second reagent part is made non-conductive.
  • a crack may occur in the conductive part, which may greatly affect the performance, but at least one of the first reagent part and the second reagent part Can be prevented from being generated on the conductive portion.
  • the first reagent unit is arranged on the surface of the first electrode pair and the second reagent unit is arranged on the back surface of the cover.
  • the first reagent unit is arranged on the back surface of the cover. The same effect can be obtained even if the second reagent part is disposed on the back surface of the first electrode pair.
  • the second reagent part is provided in the second space part and used for measurement of two types of detected substances.
  • the reagent part in the second space part Only one electrode pair can be used for measurement of one kind of two kinds of detected substances, and a plurality of electrode pairs can be provided on the insulating substrate in accordance with the number of detected substances.
  • Embodiment 2 In the first embodiment, an example using two electrode pairs of the first electrode pair and the second electrode pair has been described, but in this embodiment, an example using one electrode pair will be described. In the following description, the description overlapping with the description of Embodiment 1 is omitted.
  • FIG. 5 is an exploded perspective view showing an example of the structure of the biosensor B according to the present embodiment.
  • an insulating base material 21 having a conductive portion 24 and a cover 22 are laminated via a spacer 23.
  • a conductive portion 24 is formed on one main surface of the insulating base material 21 having a pair of opposing main surfaces.
  • the conductive portion 24 is a conductive portion, and includes a first electrode pair 241, a terminal portion 243 formed at one end of the insulating base material 21, and a lead portion 242 that connects the first electrode pair 241 and the terminal portion 43.
  • the first electrode pair 241 has a working electrode 241a and a pair of counter electrodes 241b and 241b facing the working electrode 241a through a minute gap so as to sandwich the working electrode 241a in plan view.
  • the working electrode 241 is connected to the terminal 243a via the lead 242a, and the pair of counter electrodes 241b and 241b is connected to the terminal 243b via the lead 242b.
  • FIG. 6 is a longitudinal sectional view of the biosensor B along the longitudinal direction.
  • the opening 23 a of the spacer 23 forms a first space 26 as one space by sandwiching the spacer 23 between the insulating base material 21 and the cover 22.
  • the conductive portion in the first space portion 26 is the first electrode pair 241 and the lead portion.
  • the non-conductive portion in the first space portion 26 is a portion that is not conductive, specifically, a portion where no electrode or lead is formed on the insulating base material 21, or the opening 23 a of the spacer 23.
  • a main surface 25 hereinafter also referred to as a back surface
  • the first reagent portion 28 is disposed on the surface of the first electrode pair 241 that is a conductive portion, and the second reagent portion 29 is disposed on the back surface 25 of the cover 22 that is a nonconductive portion.
  • the opening 22a at the end in the longitudinal direction of the cover 22 can be used as an opening for introducing the test liquid.
  • the test liquid flows into the first space 26.
  • the first reagent portion 28 and the second reagent portion 29 are in contact with each other.
  • the opening 22b at the center of the cover 22 provides air to the inside of the first space 26, and when the test liquid is dropped from the opening 22a at the end of the cover 22, Along with the pull-in, it works to release the air inside.
  • Biosensor B can be used when measuring one type of substance to be detected.
  • the 1st reagent part 28 of the 1st space part 26 may contain glucose dehydrogenase, for example
  • the 2nd reagent part may contain potassium ferricyanide, for example.
  • the glucose in the test liquid dropped into the test liquid introduction opening 22a of the cover 22 reacts with the glucose dehydrogenase of the first reagent part 28 disposed in the first space part 26, and the second reagent part.
  • the potassium ferricyanide contained in 29 is reduced to potassium ferrocyanide, but is oxidized to potassium ferricyanide with the application of voltage. Since the oxidation current changes according to the glucose concentration in the test solution, the glucose concentration in the test solution can be measured by measuring the oxidation current.
  • the area of one reagent part of the first reagent part and the second reagent part may be larger than the area of the other reagent part.
  • positioned at a nonelectroconductive part may be larger than the area of the working electrode contained in a conductive part.
  • the area of one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part may be larger than the total area of the area of the working electrode and the counter electrode of the conductive part.
  • one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part may be arranged so as to be closer to the introduction opening for the test solution than the other reagent part.
  • one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part may be arranged so as to be closer to the introduction opening than the working electrode.
  • the biosensor according to the present embodiment also has the same effect as the biosensor according to Embodiment 1, and can be suitably used when measuring one kind of substance to be detected.
  • Embodiment 3 In the first embodiment, the example in which the second reagent part is disposed on the back surface of the cover has been described. In the present embodiment, an example in which the second reagent part is disposed in the non-conductive part on the insulating substrate will be described. . In the following description, the description overlapping with the description of Embodiment 1 is omitted.
  • FIG. 7 is a plan view of the insulating substrate 31 used in the biosensor C according to the present embodiment
  • FIG. 8 is a longitudinal sectional view along the longitudinal direction of the biosensor C.
  • a conductive portion 34 is formed on one main surface of the insulating substrate 31 having a pair of opposing main surfaces.
  • the conductive portion 34 includes a first electrode pair 341 and a second electrode pair 342, a terminal portion 343 formed at one end of the insulating base material 31, a first electrode pair 341 or a second electrode pair 342 and a terminal portion 343.
  • a lead portion 344 to be connected is provided.
  • the first electrode pair 341 has a working electrode 341a and a pair of counter electrodes 341b and 341b facing the working electrode 341a through a minute gap so as to sandwich the working electrode 341a in plan view.
  • the second electrode pair 342 is disposed in the longitudinal direction apart from the first electrode pair 341, and faces the working electrode 342a through a minute gap so as to sandwich the working electrode 342a in plan view.
  • a pair of counter electrodes 342b and 342b is provided.
  • the pair of working electrodes 341a and 341a is connected to the terminal 343a via the lead 344a, and the two pairs of counter electrodes 341b and 341b are connected to the terminal 343d via the lead 344d.
  • the working electrode 342a is connected to the terminal 343b via a lead 344b, and the pair of counter electrodes 342b and 342b is connected to the terminal 343c via a lead 344c.
  • Reference numeral 351 denotes a region where a conductive portion is not formed and corresponds to a non-conductive portion. In the case of FIG. 7, a structure excluding a first reagent part and a second reagent part described later is shown.
  • the openings 33 a and 33 b of the spacer 33 form two first space portions 36 and second space portions 37 that are independent from each other when the spacer 33 is sandwiched between the insulating base material 31 and the cover 32. ing.
  • the conductive portion in the first space portion 36 is the first electrode pair 341 and the lead portion.
  • the non-conductive portion in the first space portion 36 is an insulating base material surface 352 as a portion where no electrode or lead is formed in the insulating base material 31 and the inner peripheral surface of the opening 33a of the spacer 33.
  • a main surface 351 that is not in contact with the cover 32 hereinafter also referred to as a back surface
  • the conductive portion in the second space portion 37 is the second electrode pair 42 and the lead portion.
  • the non-conductive portion of the second space portion 37 is a portion of the insulating base 31 where no electrode or lead is formed, an inner peripheral surface of the opening 33b of the spacer 33, and a pair of opposed spacers 33.
  • a back surface 351 that is not in contact with the cover 32 can be cited.
  • the first reagent portion 38 is disposed on the first electrode pair 341 that is a conductive portion, and the second reagent portion 39 is a non-conductive portion. 352.
  • the second reagent portion 39 is disposed on the surface of the second electrode pair 342.
  • the opening 32b at the center of the cover 32 can be used as an opening for introducing the test liquid.
  • the test liquid When the test liquid is dropped into the opening 32b, the test liquid is the first. It flows to the space part 36 and the second space part 37, and contacts the first reagent part 38 and the second reagent part 39 in the first space part 36.
  • the openings 32 a and 32 c at both ends of the cover 32 provide air to the inside of the first space 36 and the second space 37, respectively, and the test liquid is supplied from the opening 32 b at the center of the cover 32. When it is dropped, it works to release the internal air as the test solution is drawn.
  • one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part is arranged so as to be closer to the introduction opening for the test solution than the other reagent part.
  • the second reagent part 39 disposed on the insulating base material surface 352 that is a non-conductive part is more open than the first reagent part 38 as an opening 32 b that is an introduction opening for the test liquid. It is arranged to be close to.
  • the test liquid flowing in from the introduction opening contacts the second reagent part 39 and moves from the upstream to the downstream in the first space 36 while dissolving the reagent contained in the second reagent part 39.
  • the second reagent part 39 arranged on the insulating base surface 352 is arranged so as to be closer to the introduction opening than the first reagent part 38, that is, upstream from the first reagent part 38. Therefore, even if a part of the reagent flows out of the reaction region, a sufficient amount of the reagent can be supplied to the working electrode 341a. As a result, the response value increases and the S / N ratio is improved, so that more accurate measurement is possible.
  • one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part is arranged so as to be closer to the introduction opening than the working electrode.
  • the second reagent part 39 disposed on the insulating base material surface 352 that is a non-conductive part is closer to the opening part 32b that is an opening for introducing the test solution than the working electrode 341a. It is arranged to be.
  • the test liquid flowing in from the introduction opening contacts the second reagent part 39 and moves from the upstream to the downstream in the first space 36 while dissolving the reagent contained in the second reagent part 39.
  • the second reagent part 39 disposed on the insulating base material surface 352 is disposed closer to the introduction opening than the working electrode 341a, that is, disposed upstream of the working electrode 341a. Therefore, even if a part of the reagent flows out of the reaction region, a sufficient amount of reagent can be supplied to the working electrode 341a. As a result, the response value increases and the S / N ratio is improved, so that more accurate measurement is possible.
  • the area of one reagent part of the first reagent part and the second reagent part may be larger than the area of the other reagent part.
  • positioned at a nonelectroconductive part may be larger than the area of the working electrode contained in a conductive part.
  • the area of one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part may be larger than the total area of the area of the working electrode and the counter electrode of the conductive part.
  • the first reagent part 38 is disposed on the first electrode pair 341 which is a conductive part, and the second reagent part 39 is provided with an insulating group which is a non-conductive part.
  • the same effect as in the first embodiment can be obtained.
  • the two electrode pairs of the first electrode pair 341 and the second electrode pair 342 are provided, it can be used when two different kinds of substances to be detected in the test liquid are measured.
  • a coating film obtained by applying a coating solution containing both a protein such as an enzyme and a mediator to an electrode and drying it is used as a reagent part.
  • a coating film using a coating liquid containing both protein and mediator hereinafter referred to as a mixed support coating film
  • a coating film containing protein and a mediator is used as a reagent part.
  • the blank current value was compared for the case (hereinafter referred to as a separate supported coating film).
  • the mixed supported coating film In the mixed supported coating film, a predetermined amount of a reagent solution having the following composition is spotted on a palladium sheet prepared by vapor deposition on an insulating substrate constituting the biosensor A in FIG. % And dried for about 3 hours.
  • This coating film was redissolved in the same amount of sodium phosphate buffer (pH 7.0, 50 mM) as the reagent solution, and the redissolved solution was aspirated and collected.
  • the separate supported coating film was prepared using the same method as that for the mixed supported coating film except that a reagent solution containing no mediator was prepared and the reagent solution was spotted on the supporting sheet.
  • ⁇ Reagent solution Sodium phosphate buffer (pH 7.0) 10 mM Mediator 6mM Protein solution 10 mg / mL or 20 mg / mL
  • Mediator 1-methoxy-5-methylphenazinium methyl sulfate (PMS) 9,10-phenanthrenequinone-2-sulfonic acid sodium salt (PQSA)
  • Fructosyl peptide oxidase FPOX
  • GDH Glucose dehydrogenase
  • IgG Immunoglobulin G
  • BSA Bovine serum albumin
  • the redissolved solution was spotted on the biosensor A shown in FIG. 1 and subjected to electrochemical measurement.
  • the biosensor A was connected to a potentiostat, a voltage of 0.2 V was applied between the working electrode and the counter electrode for 30 seconds, and the current value when 10 seconds had elapsed after application was defined as a blank current.
  • FIG. 9 shows the result of another supported coating film containing only protein
  • FIG. 10 shows the result of the mixed supported coating film using 1-methoxy-5-methylphenazinium methyl sulfate (PMS) as a mediator
  • FIG. 11 shows the results of a mixed supported coating film using sodium 9,10-phenanthrenequinone-2-sulfonate (PQSA) as a mediator.
  • the blank current was 25 nA or less.
  • the blank currents of PMS and PQSA were 235 nA and 18 nA, respectively.
  • the blank current increased as compared with the separate supported coating film of protein and the separately supported coating film of mediator, and particularly increased when PMS was used as the mediator.
  • PMS the blank current
  • the blank current in the case of PQSA, it increased from 75 to 189 nA depending on the type and concentration of protein.
  • PMS it increased from 513 to 2707 nA depending on the type and concentration of protein. From this result, it can be expected that the blank current can be suppressed by using another supported coating film in the reagent part instead of the mixed supported coating film.
  • the reason why the blank current is large is not always clear, but the high concentration state of the enzyme and the mediator is maintained by drying the coating liquid, and the amino group having an electron donating property in the enzyme is the mediator. It is conceivable that the blank current is increased by partially reducing.
  • Example 1 ⁇ Production of biosensor> 1 ⁇ l of the following reagent solution 1 is applied to the surface of the first electrode pair on the insulating base material constituting the biosensor A of FIG. 1 and dried at 25 ° C. and 50% humidity for about 3 hours. Formed. On the other hand, 24 ⁇ L of the following reagent solution 2 was applied to the back surface of the cover constituting the biosensor A of FIG. 1 and dried at 25 ° C. and 50% humidity for about 3 hours to form a second reagent part. And the biosensor shown in FIG. 1 was produced.
  • ⁇ Reagent liquid 1 Sodium phosphate buffer (pH 7.0) 25 mM Glucose dehydrogenase (GDH) 2000 U / mL Carboxymethylcellulose (CMC) 0.2% Dodecyl maltoside 0.0065% ⁇ Reagent liquid 2> 9,10-phenanthrenequinone-2-sulfonic acid sodium salt (PQSA) 10 mM
  • the biosensor A was spotted with 50 ⁇ L of a test solution having the following composition and subjected to electrochemical measurement.
  • the biosensor A was connected to a potentiostat, a voltage of 0.2 V was applied between the working electrode and the counter electrode for 30 seconds, and the current value when 10 seconds had elapsed after the application was measured.
  • ⁇ Test solution Sodium phosphate buffer (pH 7.0) 25 mM Glucose 0, 20, 50, 100 ⁇ M
  • FIG. 12 shows the relationship between the glucose concentration and the detected current value ( ⁇ mark). A linear relationship was obtained in the range of 0-100 ⁇ M.
  • Comparative Example 1 ⁇ Production of biosensor> 4 ⁇ L of the following reagent solution 3 is applied to the surface of the first electrode pair on the insulating substrate constituting the biosensor A of FIG. 1 and dried at 25 ° C. and 50% humidity for about 3 hours to form a reagent part.
  • a biosensor was produced by the same method as in Example 1 except that.
  • the prepared biosensor was spotted, and electrochemical measurement was performed in the same manner as in Example 1.
  • FIG. 12 shows the relationship between the glucose concentration and the detected current value ( ⁇ mark). A linear relationship was obtained in the range of 0-100 ⁇ M.
  • a biosensor capable of highly accurate measurement can be provided.

Abstract

Provided is a biosensor used in an electrochemical measurement method, wherein the biosensor is capable of performing measurement with high precision by reducing blank current. This biosensor analyzes a component in a liquid to be tested using a protein and a mediator, wherein the biosensor has one or more space parts formed across a spacer between an insulating substrate and a cover, at least one surface of the space parts has an electroconductive part and a non-electroconductive part, a first reagent part including the protein and a second reagent part including the mediator are individually disposed in different locations on the inner surface, and the first reagent part and/or the second reagent part is disposed in the non-electroconductive part.

Description

バイオセンサBiosensor
 本発明は、バイオセンサに関し、さらに詳しくは電気化学的測定法を用いたバイオセンサに関する。 The present invention relates to a biosensor, and more particularly to a biosensor using an electrochemical measurement method.
 医療分野や臨床検査分野等の種々の分野で生体試料内の検出対象物質を測定するためバイオセンサが用いられている。バイオセンサの一例として、電気化学的測定法を用いたバイオセンサが知られている(例えば、特許文献1)。このバイオセンサは、絶縁性基材上に作用極、対極および参照極を形成し、これらの電極に接して酵素と電子受容体(以下、メディエータという)とを含む酵素反応層(試薬部ともいう)を形成している。このようなバイオセンサによれば、原理的には、測定対象物質を基質とする酵素を選択することによって、様々な物質の測定が可能である。例えば、酵素にグルコースオキシダーゼを選択することで、試料液中のグルコース濃度を測定するグルコースセンサが実用化されている。 Biosensors are used to measure a substance to be detected in a biological sample in various fields such as the medical field and clinical laboratory field. As an example of a biosensor, a biosensor using an electrochemical measurement method is known (for example, Patent Document 1). This biosensor forms a working electrode, a counter electrode, and a reference electrode on an insulating substrate, and is in contact with these electrodes and includes an enzyme reaction layer (also referred to as a reagent unit) including an enzyme and an electron acceptor (hereinafter referred to as a mediator). ) Is formed. According to such a biosensor, in principle, various substances can be measured by selecting an enzyme that uses the substance to be measured as a substrate. For example, a glucose sensor that measures glucose concentration in a sample solution by selecting glucose oxidase as an enzyme has been put into practical use.
 一方、近年、糖尿病診断の指標として、糖化ヘモグロビンや糖化アルブミン等の糖化タンパク質の測定が広く行われている。例えば、ヘモグロビンA1c(以下、HbA1cと略す)は糖化ヘモグロビンの1つであり、HbA1c値は、赤血球中のヘモグロビンのうち、糖と結合しているヘモグロビンの割合を示す検査値である。HbA1c値は、過去1~2ヶ月の平均的な血糖値を反映するため、血液中のグルコース量と比較すると、検査前の食事の影響を受けにくく、糖尿病を管理する指標として重要である。HbA1c値は、光学的分光方法を用い、HPLC法や免疫法により測定されている。 On the other hand, in recent years, glycated proteins such as glycated hemoglobin and glycated albumin have been widely measured as an index for diagnosis of diabetes. For example, hemoglobin A1c (hereinafter abbreviated as HbA1c) is one of glycated hemoglobin, and the HbA1c value is a test value indicating the proportion of hemoglobin bound to sugar in hemoglobin in erythrocytes. Since the HbA1c value reflects the average blood glucose level in the past 1 to 2 months, it is less affected by the diet before the test and is important as an index for managing diabetes. The HbA1c value is measured by an HPLC method or an immunization method using an optical spectroscopic method.
特開平3-202764号公報Japanese Patent Laid-Open No. 3-202864
 HbA1c値を測定する場合、検査試料は、溶血処理により、例えば100倍程度に希釈される(以下、本明細書では、溶血処理等の前処理を行って測定に供される試料液を被検液という)。そのため、被検液中のHbA1c濃度は、グルコース濃度に比べて大幅に低下し、通常、μMオーダーの低濃度となる。このような低濃度のHbA1c濃度を電気化学的測定法で測定しようとすると、ブランク電流の影響が大きくなり、S/N比が低下し、測定が困難となるという問題がある。そのため、電気化学的測定法を用いたHbA1c値の測定方法は実用化されていない。ブランク電流を低減することができれば、電気化学的測定法を用いることで、高精度のHbA1c値測定が可能となることが期待できる。また、被検出物質として、HbA1c以外のタンパク質、例えばヘモグロビン、糖化アルブミン、またはグルコース、コレステロール、乳酸、ケトン体(3-ヒドロキシ酪酸)、抗体等についても、ブランク電流を低減できれば、高精度の測定が可能となる。 When measuring the HbA1c value, the test sample is diluted by, for example, about 100 times by hemolysis (hereinafter, in this specification, a sample solution to be measured is subjected to a pretreatment such as hemolysis. Called liquid). Therefore, the HbA1c concentration in the test solution is significantly lower than the glucose concentration, and is usually a low concentration on the order of μM. When trying to measure such a low concentration of HbA1c by an electrochemical measurement method, there is a problem that the influence of the blank current increases, the S / N ratio decreases, and the measurement becomes difficult. Therefore, a method for measuring the HbA1c value using an electrochemical measurement method has not been put into practical use. If the blank current can be reduced, it can be expected that the HbA1c value can be measured with high accuracy by using the electrochemical measurement method. As a substance to be detected, proteins other than HbA1c, such as hemoglobin, glycated albumin, glucose, cholesterol, lactic acid, ketone bodies (3-hydroxybutyric acid), antibodies, etc. can be measured with high accuracy if the blank current can be reduced. It becomes possible.
 そこで、本発明は、電気化学的測定方法に用いるバイオセンサであって、ブランク電流を低減することで高精度の測定が可能なバイオセンサを提供することを目的とした。 Therefore, an object of the present invention is to provide a biosensor used in an electrochemical measurement method, which can measure with high accuracy by reducing blank current.
 上記課題を解決するため、本発明のバイオセンサは、タンパク質とメディエータとを用いて被検液中の成分を分析するバイオセンサであって、絶縁性基材とカバーとの間にスペーサを介して形成された1つ以上の空間部を有し、少なくとも1つの前記空間部の内面には、導電部と非導電部とを有し、前記タンパク質を含む第1試薬部と前記メディエータを含む第2試薬部は前記内面の異なる場所に別々に配置され、前記第1試薬部と前記第2試薬部の少なくとも一方が、前記非導電部に配置されている、ことを特徴とする。 In order to solve the above problems, a biosensor of the present invention is a biosensor that analyzes a component in a test solution using a protein and a mediator, and a spacer is interposed between the insulating substrate and the cover. And having at least one formed space portion, and having at least one inner surface of the space portion having a conductive portion and a non-conductive portion, and including a first reagent portion containing the protein and a second mediator. Reagent parts are separately disposed at different locations on the inner surface, and at least one of the first reagent part and the second reagent part is disposed in the non-conductive part.
 本発明によれば、ブランク電流を低減することで高精度の測定が可能なバイオセンサを提供することができる。 According to the present invention, a biosensor capable of highly accurate measurement can be provided by reducing the blank current.
実施の形態1に係るバイオセンサAの構造の一例を示す斜視図である。2 is a perspective view showing an example of a structure of biosensor A according to Embodiment 1. FIG. 図1のバイオセンサAの分解斜視図である。It is a disassembled perspective view of the biosensor A of FIG. 図1のバイオセンサAを構成する絶縁性基材の平面図である。It is a top view of the insulating base material which comprises the biosensor A of FIG. 図1のバイオセンサAの長手方向に沿った縦断面図である。It is a longitudinal cross-sectional view along the longitudinal direction of the biosensor A of FIG. 実施の形態2に係るバイオセンサBの構造の一例を示す分解斜視図である。6 is an exploded perspective view showing an example of a structure of a biosensor B according to Embodiment 2. FIG. 図5のバイオセンサBの長手方向に沿った縦断面図である。It is a longitudinal cross-sectional view along the longitudinal direction of the biosensor B of FIG. 実施の形態3に係るバイオセンサCを構成する絶縁性基材の平面図である。FIG. 6 is a plan view of an insulating base material constituting a biosensor C according to a third embodiment. 実施の形態3に係るバイオセンサCの長手方向に沿った縦断面図である。It is a longitudinal cross-sectional view along the longitudinal direction of the biosensor C which concerns on Embodiment 3. FIG. 参考例におけるブランク電流値を示すグラフである。It is a graph which shows the blank electric current value in a reference example. 参考例におけるブランク電流値を示すグラフである。It is a graph which shows the blank electric current value in a reference example. 参考例におけるブランク電流値を示すグラフである。It is a graph which shows the blank electric current value in a reference example. 本発明における検出電流値と被検出物質の濃度の関係を示すグラフの一例である。It is an example of the graph which shows the relationship between the detection electric current value in this invention, and the density | concentration of a to-be-detected substance.
 以下、図面等を参照することで本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 本発明のバイオセンサは、タンパク質とメディエータとを用いて被検液中の成分を分析するバイオセンサであって、絶縁性基材とカバーとの間にスペーサを介して形成された1つ以上の空間部を有し、少なくとも1つの前記空間部の内面には、導電部と非導電部とを有し、前記タンパク質を含む第1試薬部と前記メディエータを含む第2試薬部は前記内面の異なる場所に別々に配置され、前記第1試薬部と前記第2試薬部の少なくとも一方が、前記非導電部に配置されている、ことを特徴とするものである。 The biosensor of the present invention is a biosensor that analyzes a component in a test solution using a protein and a mediator, and is one or more formed through a spacer between an insulating substrate and a cover. The inner surface of the at least one space portion has a conductive portion and a non-conductive portion, and the first reagent portion containing the protein and the second reagent portion containing the mediator are different in the inner surface. It is arrange | positioned separately at a place, At least one of the said 1st reagent part and the said 2nd reagent part is arrange | positioned at the said nonelectroconductive part, It is characterized by the above-mentioned.
 実施の形態1
 図1は本実施の形態に係るバイオセンサAの構造の一例を示す斜視図であり、図2は分解斜視図である。バイオセンサAは、導電部4を有する絶縁性基材1とカバー2とが、スペーサ3を介して積層されている。図1では、X方向を長手方向とし、Y方向を幅方向とする長矩形片形状を有する例を示している。
Embodiment 1
FIG. 1 is a perspective view showing an example of the structure of the biosensor A according to the present embodiment, and FIG. 2 is an exploded perspective view. In the biosensor A, an insulating base material 1 having a conductive portion 4 and a cover 2 are laminated via a spacer 3. FIG. 1 shows an example having a long rectangular piece shape in which the X direction is the longitudinal direction and the Y direction is the width direction.
 対向する一対の主面を有する絶縁性基材1の一方の主面には導電部4が形成されている。導電部4は、導電性部分であり、第1電極対41と第2電極対42、絶縁性基材1の一端部に形成された端子部43、第1電極対41および第2電極対42と端子部43とを接続するリード部44を有している。図3は、絶縁性基材1の平面図であり、第1電極対41は、長手方向に配置され、互いに導通する一対の作用極41a,41aと、平面視で各作用極41aを挟むように微小空隙(後述する)を介して各作用極41aと対向する一対の対極41b、41bを2対、有している。また、第2電極対42は、第1電極対41と離間するように長手方向に配置された作用極42aと、平面視で作用極42aを挟むように微小空隙(後述する)を介して作用極42aと対向する一対の対極42b、42bを有している。一対の作用極41a,41aはリード44aを介して端子43aに接続され、2対の対極41b,41bはリード44dを介して端子43dに接続され、作用極42aはリード44bを介して端子43bに接続され、一対の対極42b、42bはリード44cを介して端子43cに接続されている。なお、図2の場合も図3の場合も、後述する第1試薬部と第2試薬部を除いた構造を示している。また、第1電極対41と第2電極対42の2つの電極対は、被検液中の異なる2種の被検出物質を測定する場合に用いることができる。2種の被検出物質を測定する場合としては、例えば、HbA1c値を測定する場合であり、第1電極対41でHbA1cの濃度を測定し、第2電極対42でHbの濃度を測定することができる。また、第1電極対41には2つの作用極を用いた例を示したが、第2電極対42の場合と同様に1つの作用極を用いた構成とすることもできる。 A conductive portion 4 is formed on one main surface of the insulating substrate 1 having a pair of opposing main surfaces. The conductive portion 4 is a conductive portion, and includes a first electrode pair 41 and a second electrode pair 42, a terminal portion 43 formed at one end of the insulating base material 1, a first electrode pair 41, and a second electrode pair 42. And a lead part 44 for connecting the terminal part 43 to each other. FIG. 3 is a plan view of the insulating substrate 1, and the first electrode pair 41 is disposed in the longitudinal direction and sandwiches the pair of working electrodes 41 a and 41 a that are electrically connected to each other and the working electrodes 41 a in plan view. Two pairs of counter electrodes 41b and 41b facing each working electrode 41a through a minute gap (described later) are provided. The second electrode pair 42 acts via a working electrode 42a disposed in the longitudinal direction so as to be separated from the first electrode pair 41, and a minute gap (described later) so as to sandwich the working electrode 42a in plan view. It has a pair of counter electrodes 42b and 42b facing the pole 42a. The pair of working electrodes 41a and 41a is connected to the terminal 43a through the lead 44a, the two pairs of counter electrodes 41b and 41b are connected to the terminal 43d through the lead 44d, and the working electrode 42a is connected to the terminal 43b through the lead 44b. The pair of counter electrodes 42b and 42b are connected to the terminal 43c via a lead 44c. 2 and FIG. 3, the structure excluding the first reagent part and the second reagent part described later is shown. Further, the two electrode pairs of the first electrode pair 41 and the second electrode pair 42 can be used when measuring two different types of substances to be detected in the test liquid. The case of measuring two kinds of substances to be detected is, for example, the case of measuring the HbA1c value, measuring the concentration of HbA1c with the first electrode pair 41 and measuring the concentration of Hb with the second electrode pair 42. Can do. Moreover, although the example which used two working electrodes for the 1st electrode pair 41 was shown, it can also be set as the structure using one working electrode similarly to the case of the 2nd electrode pair 42. FIG.
 スペーサ3には、少なくとも1つの開口部があればよいが、本実施の形態では、長手方向に沿って互いに離間して形成された2つの開口部3a,3bを有している。また、スペーサ3は、端子部43が露出するように、絶縁性基材1よりも長さを短くしている。また、カバー2は、長手方向の一端部に開口部2a、他端部に開口部2cを有するとともに、開口部2aと開口部2cとの中間部に開口部2bを有している。また、カバー2も、スペーサ3の場合と同様に、端子部43が露出するように、絶縁性基材1よりも長さを短くしている。ここで、スペーサ3の開口部とカバー2の開口部とは、スペーサ3とカバー2とを積層した時に、カバー2の中央部の開口部2bが、スペーサ3の開口部3aの中央側端部と開口部3bの中央側端部の両方と一部が重なるように配置され、またカバー2の一端部の開口2aがスペーサ3の開口部3aの側端部と少なくとも一部が重なり、カバー2の他端部の開口2cがスペーサ3の開口部3bの側端部と少なくとも一部が重なるように配置される。 The spacer 3 only needs to have at least one opening, but in the present embodiment, the spacer 3 has two openings 3a and 3b formed to be separated from each other along the longitudinal direction. The spacer 3 is shorter than the insulating base 1 so that the terminal portion 43 is exposed. The cover 2 has an opening 2a at one end in the longitudinal direction, an opening 2c at the other end, and an opening 2b at an intermediate portion between the opening 2a and the opening 2c. Moreover, the cover 2 is also made shorter than the insulating base material 1 so that the terminal part 43 is exposed similarly to the case of the spacer 3. Here, the opening of the spacer 3 and the opening of the cover 2 are such that when the spacer 3 and the cover 2 are stacked, the opening 2 b at the center of the cover 2 is the end on the center side of the opening 3 a of the spacer 3. And the opening 2a at one end of the cover 2 is at least partially overlapped with the side end of the opening 3a of the spacer 3, so that the cover 2 The opening 2c at the other end of the spacer 3 is disposed so as to at least partially overlap the side end of the opening 3b of the spacer 3.
 図4は、図1に示すバイオセンサAの長手方向に沿った縦断面図である。スペーサ3の開口部3a,3bは、スペーサ3が、絶縁性基材1とカバー2との間に挟まれることにより、互いに独立した2つの第1空間部6と第2空間部7を形成している。第1空間部6と第2空間部7の各空間部において、空間部に露出する絶縁性基材1の一方の主面は空間部の底面を構成する。また、カバー2は、対向する一対の主面を有し、空間部に露出する一方の主面は空間部の頂面を構成する。また、スペーサ3の開口部の内面は空間部の側面を構成する。 FIG. 4 is a longitudinal sectional view along the longitudinal direction of the biosensor A shown in FIG. The openings 3 a and 3 b of the spacer 3 form two first space portions 6 and second space portions 7 that are independent from each other when the spacer 3 is sandwiched between the insulating base material 1 and the cover 2. ing. In each space part of the 1st space part 6 and the 2nd space part 7, one main surface of the insulating base material 1 exposed to a space part comprises the bottom face of a space part. Moreover, the cover 2 has a pair of opposing main surfaces, and one main surface exposed to the space portion constitutes the top surface of the space portion. Moreover, the inner surface of the opening part of the spacer 3 comprises the side surface of a space part.
 本発明のバイオセンサは、空間部の内面に導電部と非導電部を有している。ここで、導電部とは、上記の通り、導電性部分であり、作用極と対極を含む電極と、リード部と、端子部とを含んでいる。第1空間部6における導電部とは、第1電極対41とリード部である。これに対し、第1空間部6における非導電部とは、導電性ではない部分、具体的には、絶縁性基材1において電極やリードが形成されていない部分、スペーサ3の開口部3aの内周面、およびスペーサ3の対向する一対の主面のうち、カバー2と接していない主面5(以下、裏面ともいう)を挙げることができる。また、第2空間部7における導電部とは、第2電極対42とリード部である。これに対し、第2空間部7の非導電部とは、絶縁性基材1において電極やリードが形成されていない部分、スペーサ3の開口部3bの内周面、スペーサ3の対向する一対の主面のうち、カバー2と接していない裏面5挙げることができる。 The biosensor of the present invention has a conductive portion and a non-conductive portion on the inner surface of the space portion. Here, as described above, the conductive portion is a conductive portion, and includes an electrode including a working electrode and a counter electrode, a lead portion, and a terminal portion. The conductive portion in the first space portion 6 is the first electrode pair 41 and the lead portion. On the other hand, the non-conductive portion in the first space portion 6 is a portion that is not conductive, specifically, a portion where no electrode or lead is formed on the insulating base material 1, or the opening 3 a of the spacer 3. Among the inner peripheral surface and the pair of opposing main surfaces of the spacer 3, a main surface 5 that is not in contact with the cover 2 (hereinafter also referred to as a back surface) can be exemplified. The conductive part in the second space 7 is the second electrode pair 42 and the lead part. On the other hand, the non-conductive portion of the second space portion 7 is a portion of the insulating base material 1 where no electrodes or leads are formed, the inner peripheral surface of the opening 3b of the spacer 3, and a pair of spacers 3 facing each other. Among the main surfaces, the back surface 5 that is not in contact with the cover 2 can be cited.
 本発明では、タンパク質を含む第1試薬部とメディエータを含む第2試薬部は少なくとも1つの空間部の内面の異なる場所に別々に配置され、第1試薬部と第2試薬部の少なくとも一方が、非導電部に配置される。本実施の形態では、第1空間部6において、第1試薬部8が、導電部である第1電極対41と第2電極対42の表面に配置され、第2試薬部9が、非導電部であるカバー2の裏面5に配置されている。また、第2空間部7においては、第2電極対42の表面に第2試薬部9を配置している。 In the present invention, the first reagent part containing protein and the second reagent part containing mediator are separately arranged at different locations on the inner surface of at least one space part, and at least one of the first reagent part and the second reagent part is Arranged in the non-conductive portion. In the present embodiment, in the first space portion 6, the first reagent portion 8 is disposed on the surfaces of the first electrode pair 41 and the second electrode pair 42 that are conductive portions, and the second reagent portion 9 is non-conductive. It is arranged on the back surface 5 of the cover 2 which is a part. In the second space portion 7, the second reagent portion 9 is disposed on the surface of the second electrode pair 42.
 なお、カバー2の中央部の開口部2bは、被検液の導入開口として用いることができ、導入開口は空間部と連通している。開口部2bに被検液を滴下すると、被検液は第1空間部6と第2空間部7へと流れていき、第1空間部6では、第1試薬部8と第2試薬部9と接する。即ち、本発明における空間部とは、被検液を保持する保持領域と、被検液と第1試薬部および第2試薬部との反応を進行させる反応領域を提供する。ここで、反応領域とは、導電部と導電部に配置された試薬部とが占める領域をいう。また、カバー2の両端部の開口2a,2cは、それぞれ、第1空間部6と第2空間部7の内部に空気を提供するとともに、カバー2の中央部の開口部2bから被検液が滴下された時には、被検液の引き込みに伴い、内部の空気を逃がす働きをする。 Note that the opening 2b in the center of the cover 2 can be used as an introduction opening for the test liquid, and the introduction opening communicates with the space. When the test solution is dropped into the opening 2b, the test solution flows into the first space 6 and the second space 7, and in the first space 6, the first reagent unit 8 and the second reagent unit 9 are used. Touch. That is, the space part in the present invention provides a holding area for holding the test liquid and a reaction area for advancing the reaction between the test liquid and the first reagent part and the second reagent part. Here, the reaction region refers to a region occupied by the conductive part and the reagent part arranged in the conductive part. The openings 2 a and 2 c at both ends of the cover 2 provide air to the inside of the first space portion 6 and the second space portion 7, respectively, and the test liquid is supplied from the opening portion 2 b at the center portion of the cover 2. When it is dropped, it works to release the internal air as the test solution is drawn.
 また、本実施の形態においては、第1試薬部と第2試薬部の一方の試薬部の面積は、他方の試薬部の面積よりも大きくてもよい。例えば、1つの空間部において、第1試薬部と第2試薬部の一方の試薬部は非導電部に配置され、他方の試薬部は導電部に配置され、非導電部に配置された一方の試薬部の面積は、導電部に配置された他方の試薬部の面積よりも大きくてもよい。図4では、第1空間部6において、非導電部であるカバー2の裏面5に配置された第2試薬部9の面積が、導電部である第1電極対41の表面に配置された第1試薬部8の面積よりも大きい例を示している。ここで、試薬部の面積とは、試薬部の平面視の面積である。例えば、試薬部を塗布法で形成する場合には、塗膜の平面視の面積である(以下、塗膜の平面視の面積を塗膜面積という場合もある)。また、図4では、同じ空間部(第1空間部6)に、2つの第1試薬部8が存在している。同じ空間部に2つ以上の試薬部が存在する場合、試薬部の面積とは、2つ以上の試薬部の合計面積である。 In the present embodiment, the area of one reagent part of the first reagent part and the second reagent part may be larger than the area of the other reagent part. For example, in one space part, one reagent part of the first reagent part and the second reagent part is arranged in the non-conductive part, the other reagent part is arranged in the conductive part, and one of the reagent parts arranged in the non-conductive part The area of the reagent part may be larger than the area of the other reagent part arranged in the conductive part. In FIG. 4, in the first space portion 6, the area of the second reagent portion 9 disposed on the back surface 5 of the cover 2 that is a non-conductive portion is the first space portion disposed on the surface of the first electrode pair 41 that is a conductive portion. An example larger than the area of one reagent part 8 is shown. Here, the area of the reagent part is an area of the reagent part in plan view. For example, when the reagent part is formed by a coating method, it is the area of the coating film in plan view (hereinafter, the area of the coating film in plan view may be referred to as the coating film area). Moreover, in FIG. 4, the two 1st reagent parts 8 exist in the same space part (1st space part 6). When two or more reagent parts exist in the same space part, the area of the reagent part is a total area of two or more reagent parts.
 ここで、導入開口から流入した被検液は、空間部内を上流から下流に移動するが、その際、第1試薬部および/または第2試薬部の試薬の一部は被検液に溶解して反応領域外へ移動する場合がある。しかし、一方の試薬部の面積を、他方の試薬部の面積よりも大きくすることで、十分な試薬量を反応領域に供給することが可能となる。特に、非導電部に配置された一方の試薬部の面積を、導電部に配置された他方の試薬部の面積よりも大きくすると、非導電部に配置された一方の試薬部に含まれる試薬の一部が被検液とともに反応領域外に流出しても、十分な量の試薬を導電部の作用極に供給することが可能となる。これにより、応答値が増加しS/N比が向上するため、精度の高い測定が可能となる。さらに、非導電部に第2試薬部を配置し、第2試薬部の面積を第1試薬部の面積よりも大きくすることが好ましい。被検液と第2試薬部との接触面積を大きくすることで、十分な量のメディエータを反応領域に供給することが可能となる。具体的には、試薬部の面積が、例えば0.5mm~200mmの範囲において、一方の試薬部の面積は、他方の試薬部の面積の等倍以上、好ましくは1.05倍~10倍、より好ましくは1.5倍~4倍である。 Here, the test liquid flowing in from the introduction opening moves from the upstream to the downstream in the space, and at this time, a part of the reagent in the first reagent part and / or the second reagent part is dissolved in the test liquid. May move out of the reaction zone. However, by making the area of one reagent part larger than the area of the other reagent part, a sufficient amount of reagent can be supplied to the reaction region. In particular, if the area of one reagent part arranged in the non-conductive part is larger than the area of the other reagent part arranged in the conductive part, the reagent contained in one reagent part arranged in the non-conductive part Even if a part flows out of the reaction region together with the test solution, a sufficient amount of reagent can be supplied to the working electrode of the conductive portion. As a result, the response value is increased and the S / N ratio is improved, so that highly accurate measurement is possible. Furthermore, it is preferable to arrange the second reagent part in the non-conductive part and make the area of the second reagent part larger than the area of the first reagent part. By increasing the contact area between the test solution and the second reagent part, a sufficient amount of mediator can be supplied to the reaction region. Specifically, when the area of the reagent part is, for example, in the range of 0.5 mm 2 to 200 mm 2 , the area of one reagent part is equal to or larger than the area of the other reagent part, preferably 1.05 to 10 times. Times, more preferably 1.5 times to 4 times.
 また、本実施の形態においては、非導電部に配置された、第1試薬部と第2試薬部の一方の試薬部の面積は、導電部に含まれる作用極の面積より大きくてもよい。上記の通り、導入開口から流入した被検液は、空間部内を上流から下流に移動するが、その際、試薬の一部は被検液に溶解して反応領域外へ移動する場合がある。この時、非導電部に配置された試薬部に含まれる試薬の一部は反応領域外へ流出して作用極に供給されない。しかし、非導電部に配置された試薬部の面積を、導電部の作用極の面積よりも大きくすると、試薬の一部が反応領域外へ流出しても、十分な量の試薬を作用極に供給することが可能となる。これにより、応答値が増加しS/N比が向上するため、より精度の高い測定が可能となる。ここで、作用極の面積とは、作用極の平面視の面積である。具体的には、例えば、試薬部の面積が、0.5~200mmの範囲において、一方の試薬部の面積は、作用極の面積の等倍以上、好ましくは1.5倍~30倍、より好ましくは2倍~20倍である。 In the present embodiment, the area of one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part may be larger than the area of the working electrode included in the conductive part. As described above, the test solution flowing in from the introduction opening moves from the upstream to the downstream in the space portion. At this time, a part of the reagent may be dissolved in the test solution and move out of the reaction region. At this time, a part of the reagent contained in the reagent part arranged in the non-conductive part flows out of the reaction region and is not supplied to the working electrode. However, if the area of the reagent part arranged in the non-conductive part is larger than the area of the working electrode of the conductive part, even if a part of the reagent flows out of the reaction region, a sufficient amount of reagent is used as the working electrode. It becomes possible to supply. As a result, the response value increases and the S / N ratio is improved, so that more accurate measurement is possible. Here, the area of the working electrode is the area of the working electrode in plan view. Specifically, for example, when the area of the reagent part is in the range of 0.5 to 200 mm 2 , the area of one reagent part is equal to or more than the area of the working electrode, preferably 1.5 to 30 times, More preferably, it is 2 to 20 times.
 また、本実施の形態においては、非導電部に配置された第1試薬部と第2試薬部の一方の試薬部の面積は、導電部の作用極の面積と対極の面積との合計面積よりも大きくてもよい。上記の通り、導入開口から流入した被検液は、空間部内を上流から下流に移動するが、その際、試薬の一部は被検液に溶解して反応領域外へ移動する場合がある。この時、非導電部に配置された試薬部に含まれる試薬の一部は反応領域外へ流出して作用極に供給されない。しかし、非導電部に配置された試薬部の面積を、作用極の面積と対極の面積との合計面積よりも大きくすると、試薬の一部が被検液とともに反応領域外へ流出しても、十分な量の試薬を作用極および対極に供給することが可能となる。これにより、一定時間内には、対極上では還元反応に対する十分量な試薬が反応し、作用極上には酸化反応に対する十分量な試薬が反応するため、応答値が増加しS/N比が向上するため、精度の高い測定が可能となる。ここで、作用極の面積とは作用極の平面視の面積であり、対極の面積とは対極の平面視の面積である。具体的には、例えば、試薬部の面積が、0.5~200mmの範囲において、一方の試薬部の面積は、作用極の面積と対極の面積との合計面積の等倍以上、好ましくは1.05倍~10倍、より好ましくは1.5倍~4倍である。 In the present embodiment, the area of one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part is based on the total area of the working electrode area and the counter electrode area of the conductive part. May be larger. As described above, the test solution flowing in from the introduction opening moves from the upstream to the downstream in the space portion. At this time, a part of the reagent may be dissolved in the test solution and move out of the reaction region. At this time, a part of the reagent contained in the reagent part arranged in the non-conductive part flows out of the reaction region and is not supplied to the working electrode. However, if the area of the reagent part arranged in the non-conductive part is larger than the total area of the working electrode area and the counter electrode area, even if a part of the reagent flows out of the reaction region together with the test solution, A sufficient amount of reagent can be supplied to the working electrode and the counter electrode. As a result, a sufficient amount of reagent for the reduction reaction reacts on the counter electrode within a fixed time, and a sufficient amount of reagent for the oxidation reaction reacts on the working electrode, increasing the response value and improving the S / N ratio. Therefore, measurement with high accuracy is possible. Here, the area of the working electrode is the area of the working electrode in plan view, and the area of the counter electrode is the area of the counter electrode in plan view. Specifically, for example, when the area of the reagent part is in the range of 0.5 to 200 mm 2 , the area of one reagent part is equal to or larger than the total area of the working electrode area and the counter electrode area, preferably It is 1.05 times to 10 times, more preferably 1.5 times to 4 times.
 また、本実施の形態において、非導電部に配置された、第1試薬部と第2試薬部の一方の試薬部は、他方の試薬部よりも被検液用の導入開口に近くなるように配置されていてもよい。上記の通り、導入開口から流入した被検液は、空間部内を上流から下流に移動するが、その際、試薬の一部は被検液に溶解して反応領域外へ移動する場合がある。この時、非導電部に配置された試薬部に含まれる試薬の一部は反応領域外へ流出して作用極に供給されない。しかし、非導電部に配置された一方の試薬部は、他方の試薬部よりも被検液用の導入開口に近くなるように配置されているので、すなわち、他方の試薬部よりも上流側に配置することで、試薬の一部が反応領域外に流出したとしても、十分な量の試薬を反応領域に供給することが可能となる。これにより、応答値が増加しS/N比が向上するため、より精度の高い測定が可能となる。なお、一方の試薬部の少なくとも一部が他方の試薬部よりも被検液用の導入開口に近くなるように配置されていればよい。 In the present embodiment, one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part is closer to the introduction opening for the test solution than the other reagent part. It may be arranged. As described above, the test solution flowing in from the introduction opening moves from the upstream to the downstream in the space portion. At this time, a part of the reagent may be dissolved in the test solution and move out of the reaction region. At this time, a part of the reagent contained in the reagent part arranged in the non-conductive part flows out of the reaction region and is not supplied to the working electrode. However, one reagent part arranged in the non-conductive part is arranged closer to the introduction opening for the test solution than the other reagent part, that is, upstream of the other reagent part. By disposing, even if a part of the reagent flows out of the reaction region, a sufficient amount of reagent can be supplied to the reaction region. As a result, the response value increases and the S / N ratio is improved, so that more accurate measurement is possible. It should be noted that at least a part of one reagent part may be arranged so as to be closer to the introduction opening for the test solution than the other reagent part.
 また、本実施の形態において、非導電部に配置された、第1試薬部と第2試薬部の一方の試薬部は、作用極よりも導入開口に近くなるように配置されていてもよい。上記の通り、導入開口から流入した被検液は、空間部内を上流から下流に移動するが、その際、試薬の一部は被検液に溶解して反応領域外へ移動する場合がある。この時、非導電部に配置された試薬部に含まれる試薬の一部は反応領域外へ流出して作用極に供給されない。しかし、非導電部に配置された一方の試薬部は、作用極よりも被検液用の導入開口に近くなるように配置されているので、すなわち、作用極よりも上流側に配置することで、試薬の一部が反応領域外に流出したとしても、十分な量の試薬を作用極に供給することが可能となる。これにより、応答値が増加しS/N比が向上するため、より精度の高い測定が可能となる。なお、一方の試薬部の少なくとも一部が作用極よりも被検液用の導入開口に近くなるように配置されていればよい。 In the present embodiment, one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part may be arranged closer to the introduction opening than the working electrode. As described above, the test solution flowing in from the introduction opening moves from the upstream to the downstream in the space portion. At this time, a part of the reagent may be dissolved in the test solution and move out of the reaction region. At this time, a part of the reagent contained in the reagent part arranged in the non-conductive part flows out of the reaction region and is not supplied to the working electrode. However, one of the reagent parts arranged in the non-conductive part is arranged so as to be closer to the introduction opening for the test solution than the working electrode, that is, by arranging it upstream of the working electrode. Even if a part of the reagent flows out of the reaction region, a sufficient amount of the reagent can be supplied to the working electrode. As a result, the response value increases and the S / N ratio is improved, so that more accurate measurement is possible. It should be noted that at least a part of one of the reagent parts may be arranged so as to be closer to the introduction opening for the test solution than the working electrode.
 絶縁性基材に用いる材料は特に限定されないが、例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリオキシメチレン、モノマーキャストナイロン、ポリブチレンテレフタレート、メタクリル樹脂、ABS樹脂等の樹脂材料、あるいはガラス材料を用いることができる。好ましくはポリエチレンテレフタレート、ポリカーボネート、およびポリイミドであり、より好ましくはポリエチレンテレフタレートである。絶縁性基材の大きさは特に限定されない。例えば、全長は5~100mm、幅は2~50mm、厚さは0.05~2mmであり、好ましくは、全長は7~50mm、幅は3~20mm、厚さは0.1~1mmであり、より好ましくは、全長は10~30mm、幅は3~10mm、厚さは0.1~0.6mmである。 The material used for the insulating substrate is not particularly limited. For example, polyethylene terephthalate, polycarbonate, polyimide, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyoxymethylene, monomer cast nylon, polybutylene terephthalate, methacrylic resin, ABS resin, etc. These resin materials or glass materials can be used. Preferred are polyethylene terephthalate, polycarbonate, and polyimide, and more preferred is polyethylene terephthalate. The size of the insulating substrate is not particularly limited. For example, the total length is 5 to 100 mm, the width is 2 to 50 mm, and the thickness is 0.05 to 2 mm. Preferably, the total length is 7 to 50 mm, the width is 3 to 20 mm, and the thickness is 0.1 to 1 mm. More preferably, the total length is 10 to 30 mm, the width is 3 to 10 mm, and the thickness is 0.1 to 0.6 mm.
 絶縁性基材上の導電部は、例えば、カーボン、金、白金、パラジウム等を材料として、スパッタリング法や蒸着法を用いて導電層を形成し、次いでレーザトリミング法を用いて所定の電極パターンに加工することで形成することができる。ここで、レーザトリミング法により、作用極と対極との間の微小空隙、リード間の微小空隙、および端子間の微小空隙を形成することで、電極間、リード間、および端子間の電気絶縁性を確保している。 The conductive part on the insulating substrate is formed of a conductive layer by sputtering or vapor deposition using, for example, carbon, gold, platinum, palladium or the like, and then formed into a predetermined electrode pattern by laser trimming. It can be formed by processing. Here, by the laser trimming method, the minute gap between the working electrode and the counter electrode, the minute gap between the leads, and the minute gap between the terminals are formed, so that the electrical insulation between the electrodes, between the leads, and between the terminals. Is secured.
 スペーサの材料は特に限定されない。例えば、絶縁性基材と同様の材料を用いることができる。また、スペーサの大きさも特に制限されない。例えば、全長は5~100mm、幅は2~50mm、厚さは0.01~1mm、好ましくは、全長は7~50mm、幅は3~20mm、厚さは0.05~0.5mm、より好ましくは、全長は10~30mm、幅は3~10mm、厚さは0.05~0.25mmである。 The material of the spacer is not particularly limited. For example, the same material as the insulating base material can be used. Further, the size of the spacer is not particularly limited. For example, the total length is 5 to 100 mm, the width is 2 to 50 mm, the thickness is 0.01 to 1 mm, preferably the total length is 7 to 50 mm, the width is 3 to 20 mm, and the thickness is 0.05 to 0.5 mm. Preferably, the total length is 10 to 30 mm, the width is 3 to 10 mm, and the thickness is 0.05 to 0.25 mm.
 カバーの材料は特に限定されない。例えば、絶縁性基材と同様の材料を用いることができる。カバーの大きさも特に制限されない。例えば、全長は5~100mm、幅は3~50mm、厚さは0.01~0.5mm、好ましくは、全長は10~50mm、幅は3~20mm、厚さは0.05~0.25mm、より好ましくは、全長は15~30mm、幅は5~10mm、厚さは0.05~0.1mmである。カバーには空気孔または被検液導入口として用いる複数の開口が形成されていることが好ましい。開口の形状は、例えば、円形、楕円形、多角形等を用いることができる。開口の大きさは、例えば、最大直径が、0.01~10mm、好ましくは0.05~5mm、より好ましくは0.1~2mmである。開口は、レーザやドリルで穿孔して形成してもよく、あるいは金型を用いて成形することで形成することもできる。 The cover material is not particularly limited. For example, the same material as the insulating base material can be used. The size of the cover is not particularly limited. For example, the total length is 5 to 100 mm, the width is 3 to 50 mm, the thickness is 0.01 to 0.5 mm, preferably the total length is 10 to 50 mm, the width is 3 to 20 mm, and the thickness is 0.05 to 0.25 mm. More preferably, the total length is 15 to 30 mm, the width is 5 to 10 mm, and the thickness is 0.05 to 0.1 mm. The cover is preferably formed with a plurality of openings used as air holes or test liquid inlets. As the shape of the opening, for example, a circle, an ellipse, a polygon or the like can be used. As for the size of the opening, for example, the maximum diameter is 0.01 to 10 mm, preferably 0.05 to 5 mm, more preferably 0.1 to 2 mm. The opening may be formed by drilling with a laser or a drill, or may be formed by molding using a mold.
 バイオセンサは、絶縁性基材、スペーサ、およびカバーをこの順で積層し、接着剤や熱融着等で貼り合わせて一体化することで製造することができる。接着剤には、エポキシ系接着剤、アクリル系接着剤、ポリウレタン系接着剤、ホットメルト接着剤、UV硬化性接着剤等を用いることができる。 A biosensor can be manufactured by laminating an insulating base material, a spacer, and a cover in this order, and bonding and integrating them with an adhesive or heat fusion. An epoxy adhesive, an acrylic adhesive, a polyurethane adhesive, a hot melt adhesive, a UV curable adhesive, or the like can be used as the adhesive.
 本発明のバイオセンサは、第1試薬部がタンパク質を含み、第2試薬部がメディエータを含む。タンパク質としては、酵素、抗体、免疫グロブリン、ウシ血清アルブミン、ヒト血清アルブミン等を挙げることができる。酵素としては、例えば、グルコースオキシダーゼ、ラクテートオキシダーゼ、コレステロールオキシダーゼ、ビリルビンオキシダーゼ、グルコースデヒドロゲナーゼ、ラクテートデヒドロゲナーゼ、フルクトシルアミノ酸オキシダーゼ、フルクトシルペプチドオキシダーゼ、3-ヒドロキシ酪酸デヒドロゲナーゼ等の酸化還元酵素を挙げることができる。これらの酸化還元酵素は、グルコース、乳酸、コレステロール、ビリルビン、糖化アミノ酸、または糖化ペプチド、ケトン体(3-ヒドロキシ酪酸)に作用する酸化酵素または脱水素酵素である。酸化還元酵素の量は、例えば、センサ1個当り、もしくは1回の測定当り、例えば、0.01~100Uであり、好ましくは、0.05~10Uであり、より好ましくは、0.1~5Uである。 In the biosensor of the present invention, the first reagent part includes a protein, and the second reagent part includes a mediator. Examples of the protein include enzymes, antibodies, immunoglobulins, bovine serum albumin, human serum albumin and the like. Examples of the enzyme include oxidoreductases such as glucose oxidase, lactate oxidase, cholesterol oxidase, bilirubin oxidase, glucose dehydrogenase, lactate dehydrogenase, fructosyl amino acid oxidase, fructosyl peptide oxidase, and 3-hydroxybutyrate dehydrogenase. These oxidoreductases are oxidases or dehydrogenases that act on glucose, lactic acid, cholesterol, bilirubin, glycated amino acids, or glycated peptides, ketone bodies (3-hydroxybutyric acid). The amount of oxidoreductase is, for example, 0.01 to 100 U, preferably 0.05 to 10 U, more preferably 0.1 to 100 U per sensor or per measurement. 5U.
 メディエータには、限定するものではないが、金属錯体(例えば、オスミウム錯体、ルテニウム錯体、鉄錯体等)、キノン化合物(例えば、ベンゾキノン、ナフトキノン、フェナントレンキノン、フェナントロリンキノン、アントラキノン、及びそれらの誘導体等)、フェナジン化合物、ビオロゲン化合物、フェノチアジン化合物、及びフェノール化合物が挙げられる。より具体的にはフェリシアン化カリウム、ヘキサアンミンルテニウム、フェロセン、ポリ(1-ビニルイミダゾール)-ビス(ビピリジン)クロロオスミウム、ヒドロキノン、2-メチル-1,4-ベンゾキノン、1,2-ナフトキノン-4-スルホン酸塩、9,10-フェナントレンキノン-2-スルホン酸塩、9,10-フェナントレンキノン-2,7-ジスルホン酸塩、1,10-フェナントロリン-5,6-ジオン、アントラキノン-2-スルホン酸塩、1-メトキシ-5-メチルフェナジニウムメチルサルフェート、メチルビオロゲン、ベンジルビオロゲン、メチレンブルー、メチレングリーン、2-アミノフェノール、2-アミノ-4-メチルフェノール、及び2,4-ジアミノフェノールからなる群から選ばれる1種以上が用いられる。上記塩としては、限定するものではないが、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、リチウム塩等が挙げられる。メディエータの配合量は、特に制限されず、1回の測定当り若しくはバイオセンサ1個当り、例えば、0.1pmol~100μmolであり、好ましくは、10pmol~10μmolであり、より好ましくは、50pmol~1μmolである。 Mediators include, but are not limited to, metal complexes (eg, osmium complexes, ruthenium complexes, iron complexes, etc.), quinone compounds (eg, benzoquinone, naphthoquinone, phenanthrenequinone, phenanthrolinequinone, anthraquinone, and derivatives thereof). , A phenazine compound, a viologen compound, a phenothiazine compound, and a phenol compound. More specifically, potassium ferricyanide, hexaammineruthenium, ferrocene, poly (1-vinylimidazole) -bis (bipyridine) chloroosmium, hydroquinone, 2-methyl-1,4-benzoquinone, 1,2-naphthoquinone-4-sulfone Acid salt, 9,10-phenanthrenequinone-2-sulfonate, 9,10-phenanthrenequinone-2,7-disulfonate, 1,10-phenanthroline-5,6-dione, anthraquinone-2-sulfonate 1-methoxy-5-methylphenazinium methyl sulfate, methyl viologen, benzyl viologen, methylene blue, methylene green, 2-aminophenol, 2-amino-4-methylphenol, and 2,4-diaminophenol One or more selected It is. Examples of the salt include, but are not limited to, sodium salt, potassium salt, calcium salt, magnesium salt, lithium salt and the like. The blending amount of the mediator is not particularly limited, and is, for example, 0.1 pmol to 100 μmol, preferably 10 pmol to 10 μmol, more preferably 50 pmol to 1 μmol per measurement or per biosensor. is there.
 本発明では、タンパク質を含む第1試薬部とメディエータを含む第2試薬部を空間部の内面の異なる場所に別々に配置するため、タンパク質を含む第1試薬部とメディエータを含む第2試薬部とは別々に調製する。第1試薬部と第2試薬部には、それぞれ必要に応じて、緩衝剤、親水性高分子等の添加剤を添加することもできる。また、第1試薬部には酵素安定化剤を添加することもできる。これらの各物質を水に溶解させ、被塗布部に塗布し、乾燥させることで、試薬部を形成する。被塗布部とは、本実施の形態では、第1試薬部の場合は、導電部である第1電極対であり、また第2試薬部の場合は、カバーの裏面である。 In the present invention, the first reagent part containing the protein and the second reagent part containing the mediator are separately arranged at different locations on the inner surface of the space part. Therefore, the first reagent part containing the protein and the second reagent part containing the mediator Are prepared separately. If necessary, additives such as a buffer and a hydrophilic polymer can be added to the first reagent part and the second reagent part, respectively. An enzyme stabilizer can also be added to the first reagent part. Each of these substances is dissolved in water, applied to the application part, and dried to form a reagent part. In the present embodiment, the portion to be coated is the first electrode pair that is a conductive portion in the case of the first reagent portion, and the back surface of the cover in the case of the second reagent portion.
 以下、バイオセンサAを用いた被検液の測定手順について、HbA1c値を測定する場合について、図1,4を参照して説明する。
 まず、被検者から採取した検体について、必要に応じて前処理を行い、被検液を用意する。
Hereinafter, the measurement procedure of the test solution using the biosensor A will be described with reference to FIGS. 1 and 4 in the case of measuring the HbA1c value.
First, a sample collected from a subject is pretreated as necessary to prepare a test solution.
 バイオセンサAの第1電極対41を用いて測定する場合、端子部43の端子を測定装置(非図示)に接続する。 When measuring using the first electrode pair 41 of the biosensor A, the terminal of the terminal portion 43 is connected to a measuring device (not shown).
 被検液をスポイトで吸い取り、カバー2の被検液導入用の開口2bに被検液を滴下する。 The test liquid is sucked up with a dropper, and the test liquid is dropped into the opening 2b for introducing the test liquid in the cover 2.
 HbA1c値を測定する場合には、第1電極対41でHbA1cの濃度を測定し、第2電極対42でHbの濃度を測定する。ここで、第1空間部6の第1試薬部8は、例えばフルクトシルペプチドオキシダーゼを含み、第2試薬部は、例えばフェリシアン化カリウムを含む。カバー2の被検液導入用の開口部2bに滴下された被検液中のフルクトシルバリルヒスチジンは、第1空間部6内に配置された第1試薬部8のフルクトシルペプチドオキシダーゼと反応し、第2試薬部9に含まれるフェリシアン化カリウムはフェロシアン化カリウムに還元されるが、電圧印加に伴い、フェリシアン化カリウムに酸化される。その酸化電流は被検液中のHbA1cの濃度に応じて変化するので、その酸化電流を測定することで被検液中のHbA1cの濃度を測定することができる。 When measuring the HbA1c value, the first electrode pair 41 measures the concentration of HbA1c, and the second electrode pair 42 measures the concentration of Hb. Here, the 1st reagent part 8 of the 1st space part 6 contains fructosyl peptide oxidase, for example, and a 2nd reagent part contains potassium ferricyanide, for example. The fructosyl valyl histidine in the test solution dropped into the test solution introduction opening 2 b of the cover 2 reacts with the fructosyl peptide oxidase of the first reagent unit 8 arranged in the first space 6. The potassium ferricyanide contained in the second reagent unit 9 is reduced to potassium ferrocyanide, but is oxidized to potassium ferricyanide with the application of voltage. Since the oxidation current changes according to the concentration of HbA1c in the test solution, the concentration of HbA1c in the test solution can be measured by measuring the oxidation current.
 一方、第2空間部7に導入された被検液中のHbと第2試薬部9に含まれるフェリシアン化カリウムとは酸化還元反応を行う。この反応に伴う電流を第2電極対42で測定することにより、Hbの濃度を測定することができる。これにより、HbA1c値を算出することができる。 On the other hand, Hb in the test solution introduced into the second space portion 7 and potassium ferricyanide contained in the second reagent portion 9 undergo a redox reaction. By measuring the current accompanying this reaction with the second electrode pair 42, the concentration of Hb can be measured. Thereby, the HbA1c value can be calculated.
 従来のバイオセンサでは、酵素とメディエータの両方を含む塗液を電極に塗布して乾燥した塗膜を試薬部として用いていた。これに対し、本実施の形態によれば、タンパク質を含む第1試薬部とメディエータを含む第2試薬部を別々に配置するとともに、第1試薬部と第2試薬部の少なくとも一方を、非導電部に配置することで、従来のバイオセンサに比べ、ブランク電流値を大幅に低下させることが可能となる。これにより、S/N比を高くできるので、低濃度の被検出物質であっても高精度の測定が可能となる。この理由については、従来のバイオセンサでは、酵素とメディエータの両方を含む塗液を電極に塗布して乾燥した塗膜を試薬部として用いていることから、塗液乾燥により酵素とメディエータの高濃度状態が持続し、酵素内の電子供与性をもつアミノ基がメディエータを一部還元することで、ブランク電流を増加させていることが考えられる。また、第1試薬部及び第2試薬部は湿度等の外部環境の影響を受けやすく、膨潤と乾燥が繰り返されることで試薬部と接触している電極上にクラックが発生することがある。第1試薬部及び第2試薬部を導電部に近接して配置した場合、導電部にクラックが発生し、性能に大きく影響することがあるが、第1試薬部と第2試薬部の少なくとも一方を、非導電部に配置することで、導電部上にクラックが発生するのを防止することができる。 In a conventional biosensor, a coating film obtained by applying a coating liquid containing both an enzyme and a mediator to an electrode and drying it is used as a reagent part. On the other hand, according to the present embodiment, the first reagent part containing the protein and the second reagent part containing the mediator are arranged separately, and at least one of the first reagent part and the second reagent part is made non-conductive. By arranging in the part, the blank current value can be greatly reduced as compared with the conventional biosensor. As a result, the S / N ratio can be increased, so that even a low-concentration target substance can be measured with high accuracy. The reason for this is that conventional biosensors use a coating film that is obtained by applying a coating solution containing both enzyme and mediator on the electrode and drying it as a reagent part. It is conceivable that the amino current having an electron-donating property in the enzyme maintains the state and partially reduces the mediator, thereby increasing the blank current. In addition, the first reagent part and the second reagent part are easily affected by the external environment such as humidity, and cracking may occur on the electrode in contact with the reagent part due to repeated swelling and drying. When the first reagent part and the second reagent part are arranged close to the conductive part, a crack may occur in the conductive part, which may greatly affect the performance, but at least one of the first reagent part and the second reagent part Can be prevented from being generated on the conductive portion.
 なお、本実施の形態では、第1試薬部を第1電極対の表面に配置し、第2試薬部をカバーの裏面に配置した例を示したが、第1試薬部をカバーの裏面に配置し、第2試薬部を第1電極対の裏面に配置しても同様の効果を得ることができる。また、本実施の形態では、第2空間部内に第2試薬部を設けて2種の被検出物質の測定に用いる例について説明したが、第2空間部内に試薬部を設けないことで、第1電極対のみを用いて1種の2種の被検出物質の測定に用いることもでき、被検出物質の数に合わせて複数の電極対を絶縁性基材上に設けることができる。 In the present embodiment, the first reagent unit is arranged on the surface of the first electrode pair and the second reagent unit is arranged on the back surface of the cover. However, the first reagent unit is arranged on the back surface of the cover. The same effect can be obtained even if the second reagent part is disposed on the back surface of the first electrode pair. In the present embodiment, an example has been described in which the second reagent part is provided in the second space part and used for measurement of two types of detected substances. However, by not providing the reagent part in the second space part, Only one electrode pair can be used for measurement of one kind of two kinds of detected substances, and a plurality of electrode pairs can be provided on the insulating substrate in accordance with the number of detected substances.
実施の形態2
 実施の形態1では、第1電極対と第2電極対の2つの電極対を用いた例について説明したが、本実施の形態では、1つの電極対を用いた例について説明する。以下の説明では、実施の形態1の説明と重複する部分については説明を省略する。
Embodiment 2
In the first embodiment, an example using two electrode pairs of the first electrode pair and the second electrode pair has been described, but in this embodiment, an example using one electrode pair will be described. In the following description, the description overlapping with the description of Embodiment 1 is omitted.
 図5は、本実施の形態に係るバイオセンサBの構造の一例を示す分解斜視図である。バイオセンサBは、導電部24を有する絶縁性基材21とカバー22とが、スペーサ23を介して積層されている。対向する一対の主面を有する絶縁性基材21の一方の主面には導電部24が形成されている。導電部24は、導電性部分であり、第1電極対241、絶縁性基材21の一端部に形成された端子部243、第1電極対241と端子部43とを接続するリード部242を有している。第1電極対241は、作用極241aと、平面視で作用極241aを挟むように微小空隙を介して作用極241aと対向する一対の対極241b、241bを有している。作用極241はリード242aを介して端子243aに接続され、1対の対極241b,241bはリード242bを介して端子243bに接続されている。 FIG. 5 is an exploded perspective view showing an example of the structure of the biosensor B according to the present embodiment. In the biosensor B, an insulating base material 21 having a conductive portion 24 and a cover 22 are laminated via a spacer 23. A conductive portion 24 is formed on one main surface of the insulating base material 21 having a pair of opposing main surfaces. The conductive portion 24 is a conductive portion, and includes a first electrode pair 241, a terminal portion 243 formed at one end of the insulating base material 21, and a lead portion 242 that connects the first electrode pair 241 and the terminal portion 43. Have. The first electrode pair 241 has a working electrode 241a and a pair of counter electrodes 241b and 241b facing the working electrode 241a through a minute gap so as to sandwich the working electrode 241a in plan view. The working electrode 241 is connected to the terminal 243a via the lead 242a, and the pair of counter electrodes 241b and 241b is connected to the terminal 243b via the lead 242b.
 図6は、バイオセンサBの長手方向に沿った縦断面図である。スペーサ23の開口部23aは、スペーサ23が、絶縁性基材21とカバー22との間に挟まれることにより、1つの空間部として第1空間部26を形成している。第1空間部26における導電部とは、第1電極対241とリード部である。これに対し、第1空間部26における非導電部とは、導電性ではない部分、具体的には、絶縁性基材21において電極やリードが形成されていない部分、スペーサ23の開口部23aの内周面、およびスペーサ23の対向する一対の主面のうち、カバー22と接していない主面25(以下、裏面ともいう)を挙げることができる。 FIG. 6 is a longitudinal sectional view of the biosensor B along the longitudinal direction. The opening 23 a of the spacer 23 forms a first space 26 as one space by sandwiching the spacer 23 between the insulating base material 21 and the cover 22. The conductive portion in the first space portion 26 is the first electrode pair 241 and the lead portion. On the other hand, the non-conductive portion in the first space portion 26 is a portion that is not conductive, specifically, a portion where no electrode or lead is formed on the insulating base material 21, or the opening 23 a of the spacer 23. Among the inner peripheral surface and a pair of opposing main surfaces of the spacer 23, a main surface 25 (hereinafter also referred to as a back surface) that is not in contact with the cover 22 can be given.
 第1空間部26において、第1試薬部28が、導電部である第1電極対241の表面に配置され、第2試薬部29が、非導電部であるカバー22の裏面25に配置されている。カバー22の長手方向端部の開口部22aは、被検液の導入開口として用いることができ、開口部22aに被検液を滴下すると、被検液は第1空間部26へと流れていき、第1空間部26では、第1試薬部28と第2試薬部29と接する。また、カバー22の中央部の開口部22bは、第1空間部26の内部に空気を提供するとともに、カバー22の端部の開口部22aから被検液が滴下された時には、被検液の引き込みに伴い、内部の空気を逃がす働きをする。 In the first space portion 26, the first reagent portion 28 is disposed on the surface of the first electrode pair 241 that is a conductive portion, and the second reagent portion 29 is disposed on the back surface 25 of the cover 22 that is a nonconductive portion. Yes. The opening 22a at the end in the longitudinal direction of the cover 22 can be used as an opening for introducing the test liquid. When the test liquid is dropped into the opening 22a, the test liquid flows into the first space 26. In the first space portion 26, the first reagent portion 28 and the second reagent portion 29 are in contact with each other. The opening 22b at the center of the cover 22 provides air to the inside of the first space 26, and when the test liquid is dropped from the opening 22a at the end of the cover 22, Along with the pull-in, it works to release the air inside.
 バイオセンサBは、1種の被検出物質を測定する場合に用いることができる。例えば、グルコースを測定する場合に用いることができる。この場合、第1空間部26の第1試薬部28が、例えばグルコースデヒドロゲナーゼを含み、第2試薬部が、例えばフェリシアン化カリウムを含んでもよい。カバー22の被検液導入用の開口部22aに滴下された被検液中のグルコースは、第1空間部26内に配置された第1試薬部28のグルコースデヒドロゲナーゼと反応し、第2試薬部29に含まれるフェリシアン化カリウムはフェロシアン化カリウムに還元されるが、電圧印加に伴い、フェリシアン化カリウムに酸化される。その酸化電流は被検液中のグルコースの濃度に応じて変化するので、その酸化電流を測定することで被検液中のグルコースの濃度を測定することができる。 Biosensor B can be used when measuring one type of substance to be detected. For example, it can be used when measuring glucose. In this case, the 1st reagent part 28 of the 1st space part 26 may contain glucose dehydrogenase, for example, and the 2nd reagent part may contain potassium ferricyanide, for example. The glucose in the test liquid dropped into the test liquid introduction opening 22a of the cover 22 reacts with the glucose dehydrogenase of the first reagent part 28 disposed in the first space part 26, and the second reagent part. The potassium ferricyanide contained in 29 is reduced to potassium ferrocyanide, but is oxidized to potassium ferricyanide with the application of voltage. Since the oxidation current changes according to the glucose concentration in the test solution, the glucose concentration in the test solution can be measured by measuring the oxidation current.
 また、本実施の形態においても、実施の形態1の場合と同様に、以下の構成をとることができる。第1試薬部と第2試薬部の一方の試薬部の面積は、他方の試薬部の面積よりも大きくてもよい。また、非導電部に配置された、第1試薬部と第2試薬部の一方の試薬部の面積は、導電部に含まれる作用極の面積より大きくてもよい。また、非導電部に配置された第1試薬部と第2試薬部の一方の試薬部の面積は、導電部の作用極の面積と対極の面積との合計面積よりも大きくてもよい。また、非導電部に配置された、第1試薬部と第2試薬部の一方の試薬部は、他方の試薬部よりも被検液用の導入開口に近くなるように配置されていてもよい。また、非導電部に配置された、第1試薬部と第2試薬部の一方の試薬部は、作用極よりも導入開口に近くなるように配置されていてもよい。 Also in the present embodiment, as in the case of the first embodiment, the following configuration can be adopted. The area of one reagent part of the first reagent part and the second reagent part may be larger than the area of the other reagent part. Moreover, the area of one reagent part of a 1st reagent part and a 2nd reagent part arrange | positioned at a nonelectroconductive part may be larger than the area of the working electrode contained in a conductive part. Further, the area of one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part may be larger than the total area of the area of the working electrode and the counter electrode of the conductive part. Further, one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part may be arranged so as to be closer to the introduction opening for the test solution than the other reagent part. . Moreover, one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part may be arranged so as to be closer to the introduction opening than the working electrode.
 本実施の形態に係るバイオセンサも、実施の形態1に係るバイオセンサを同様の効果を有し、1種の被検出物質を測定する場合に好適に用いることができる。 The biosensor according to the present embodiment also has the same effect as the biosensor according to Embodiment 1, and can be suitably used when measuring one kind of substance to be detected.
実施の形態3
 実施の形態1では、第2試薬部をカバーの裏面に配置した例について説明したが、本実施の形態では、第2試薬部を絶縁性基材上の非導電部に配置した例について説明する。以下の説明では、実施の形態1の説明と重複する部分については説明を省略する。
Embodiment 3
In the first embodiment, the example in which the second reagent part is disposed on the back surface of the cover has been described. In the present embodiment, an example in which the second reagent part is disposed in the non-conductive part on the insulating substrate will be described. . In the following description, the description overlapping with the description of Embodiment 1 is omitted.
 図7は、本実施の形態に係るバイオセンサCに用いる絶縁性基材31の平面図であり、図8は、バイオセンサCの長手方向に沿った縦断面図である。 FIG. 7 is a plan view of the insulating substrate 31 used in the biosensor C according to the present embodiment, and FIG. 8 is a longitudinal sectional view along the longitudinal direction of the biosensor C.
 対向する一対の主面を有する絶縁性基材31の一方の主面には導電部34が形成されている。導電部34は、第1電極対341と第2電極対342、絶縁性基材31の一端部に形成された端子部343、第1電極対341または第2電極対342と端子部343とを接続するリード部344を有している。第1電極対341は、作用極341aと、平面視で作用極341aを挟むように微小空隙を介して作用極341aと対向する一対の対極341b、341bを有している。また、第2電極対342は、第1電極対341と離間して長手方向に配置され、作用極342aと、平面視で作用極342aを挟むように微小空隙を介して作用極342aと対向する一対の対極342b、342bを有している。一対の作用極341a,341aはリード344aを介して端子343aに接続され、2対の対極341b,341bはリード344dを介して端子343dに接続されている。また、作用極342aはリード344bを介して端子343bに接続され、一対の対極342b、342bはリード344cを介して端子343cに接続されている。また、符号351は、導電部が形成されていない領域であり、非導電部に相当する。なお、図7の場合、後述する第1試薬部と第2試薬部を除いた構造を示している。 A conductive portion 34 is formed on one main surface of the insulating substrate 31 having a pair of opposing main surfaces. The conductive portion 34 includes a first electrode pair 341 and a second electrode pair 342, a terminal portion 343 formed at one end of the insulating base material 31, a first electrode pair 341 or a second electrode pair 342 and a terminal portion 343. A lead portion 344 to be connected is provided. The first electrode pair 341 has a working electrode 341a and a pair of counter electrodes 341b and 341b facing the working electrode 341a through a minute gap so as to sandwich the working electrode 341a in plan view. Further, the second electrode pair 342 is disposed in the longitudinal direction apart from the first electrode pair 341, and faces the working electrode 342a through a minute gap so as to sandwich the working electrode 342a in plan view. A pair of counter electrodes 342b and 342b is provided. The pair of working electrodes 341a and 341a is connected to the terminal 343a via the lead 344a, and the two pairs of counter electrodes 341b and 341b are connected to the terminal 343d via the lead 344d. The working electrode 342a is connected to the terminal 343b via a lead 344b, and the pair of counter electrodes 342b and 342b is connected to the terminal 343c via a lead 344c. Reference numeral 351 denotes a region where a conductive portion is not formed and corresponds to a non-conductive portion. In the case of FIG. 7, a structure excluding a first reagent part and a second reagent part described later is shown.
 スペーサ33の開口部33a,33bは、スペーサ33が、絶縁性基材31とカバー32との間に挟まれることにより、互いに独立した2つの第1空間部36と第2空間部37を形成している。第1空間部36における導電部とは、第1電極対341とリード部である。これに対し、第1空間部36における非導電部とは、絶縁性基材31において電極やリードが形成されていない部分としての絶縁性基材面352、スペーサ33の開口部33aの内周面、およびスペーサ33の対向する一対の主面のうち、カバー32と接していない主面351(以下、裏面ともいう)を挙げることができる。また、第2空間部37における導電部とは、第2電極対42とリード部である。これに対し、第2空間部37の非導電部とは、絶縁性基材31において電極やリードが形成されていない部分、スペーサ33の開口部33bの内周面、スペーサ33の対向する一対の主面のうち、カバー32と接していない裏面351を挙げることができる。 The openings 33 a and 33 b of the spacer 33 form two first space portions 36 and second space portions 37 that are independent from each other when the spacer 33 is sandwiched between the insulating base material 31 and the cover 32. ing. The conductive portion in the first space portion 36 is the first electrode pair 341 and the lead portion. On the other hand, the non-conductive portion in the first space portion 36 is an insulating base material surface 352 as a portion where no electrode or lead is formed in the insulating base material 31 and the inner peripheral surface of the opening 33a of the spacer 33. Among the pair of opposing main surfaces of the spacer 33, a main surface 351 that is not in contact with the cover 32 (hereinafter also referred to as a back surface) can be exemplified. The conductive portion in the second space portion 37 is the second electrode pair 42 and the lead portion. On the other hand, the non-conductive portion of the second space portion 37 is a portion of the insulating base 31 where no electrode or lead is formed, an inner peripheral surface of the opening 33b of the spacer 33, and a pair of opposed spacers 33. Among the main surfaces, a back surface 351 that is not in contact with the cover 32 can be cited.
 本実施の形態では、第1空間部36において、第1試薬部38が、導電部である第1電極対341に配置され、第2試薬部39が、非導電部である絶縁性基材面352に配置されている。また、第2空間部37においては、第2電極対342の表面に第2試薬部39を配置している。 In the present embodiment, in the first space portion 36, the first reagent portion 38 is disposed on the first electrode pair 341 that is a conductive portion, and the second reagent portion 39 is a non-conductive portion. 352. In the second space portion 37, the second reagent portion 39 is disposed on the surface of the second electrode pair 342.
 実施の形態1の場合と同様に、カバー32の中央部の開口部32bは、被検液の導入開口として用いることができ、開口部32bに被検液を滴下すると、被検液は第1空間部36と第2空間部37へと流れていき、第1空間部36では、第1試薬部38と第2試薬部39と接する。また、カバー32の両端部の開口32a,32cは、それぞれ、第1空間部36と第2空間部37の内部に空気を提供するとともに、カバー32の中央部の開口部32bから被検液が滴下された時には、被検液の引き込みに伴い、内部の空気を逃がす働きをする。 As in the case of the first embodiment, the opening 32b at the center of the cover 32 can be used as an opening for introducing the test liquid. When the test liquid is dropped into the opening 32b, the test liquid is the first. It flows to the space part 36 and the second space part 37, and contacts the first reagent part 38 and the second reagent part 39 in the first space part 36. Further, the openings 32 a and 32 c at both ends of the cover 32 provide air to the inside of the first space 36 and the second space 37, respectively, and the test liquid is supplied from the opening 32 b at the center of the cover 32. When it is dropped, it works to release the internal air as the test solution is drawn.
 本実施の形態では、非導電部に配置された、第1試薬部と第2試薬部の一方の試薬部は、他方の試薬部よりも被検液用の導入開口に近くなるように配置されている。例えば、図8に示す例では、非導電部である絶縁性基材面352に配置された第2試薬部39は、第1試薬部38よりも、被検液の導入開口である開口部32bに近くなるように配置されている。導入開口から流入した被検液は、第2試薬部39に接触し、第2試薬部39に含まれる試薬を溶解しながら第1空間部36内を上流から下流に移動する。しかし、絶縁性基材面352に配置された第2試薬部39は、第1試薬部38よりも導入開口に近くなるように配置されているので、すなわち、第1試薬部38よりも上流側に配置されているので、試薬の一部が反応領域外に流出したとしても、十分な量の試薬を作用極341aに供給することが可能となる。これにより、応答値が増加しS/N比が向上するため、より精度の高い測定が可能となる。 In the present embodiment, one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part is arranged so as to be closer to the introduction opening for the test solution than the other reagent part. ing. For example, in the example shown in FIG. 8, the second reagent part 39 disposed on the insulating base material surface 352 that is a non-conductive part is more open than the first reagent part 38 as an opening 32 b that is an introduction opening for the test liquid. It is arranged to be close to. The test liquid flowing in from the introduction opening contacts the second reagent part 39 and moves from the upstream to the downstream in the first space 36 while dissolving the reagent contained in the second reagent part 39. However, the second reagent part 39 arranged on the insulating base surface 352 is arranged so as to be closer to the introduction opening than the first reagent part 38, that is, upstream from the first reagent part 38. Therefore, even if a part of the reagent flows out of the reaction region, a sufficient amount of the reagent can be supplied to the working electrode 341a. As a result, the response value increases and the S / N ratio is improved, so that more accurate measurement is possible.
 また、本実施の形態では、非導電部に配置された、第1試薬部と第2試薬部の一方の試薬部は、作用極よりも導入開口に近くなるように配置されている。例えば、図8に示す例では、非導電部である絶縁性基材面352に配置された第2試薬部39は、作用極341aよりも、被検液の導入開口である開口部32bに近くなるように配置されている。導入開口から流入した被検液は、第2試薬部39に接触し、第2試薬部39に含まれる試薬を溶解しながら第1空間部36内を上流から下流に移動する。しかし、絶縁性基材面352に配置された第2試薬部39は、作用極341aよりも導入開口に近くなるように配置されているので、すなわち、作用極341aよりも上流側に配置されているので、試薬の一部が反応領域外に流出したとしても、十分な量の試薬を作用極341aに供給することが可能となる。これにより、応答値が増加しS/N比が向上するため、より精度の高い測定が可能となる。 Further, in the present embodiment, one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part is arranged so as to be closer to the introduction opening than the working electrode. For example, in the example shown in FIG. 8, the second reagent part 39 disposed on the insulating base material surface 352 that is a non-conductive part is closer to the opening part 32b that is an opening for introducing the test solution than the working electrode 341a. It is arranged to be. The test liquid flowing in from the introduction opening contacts the second reagent part 39 and moves from the upstream to the downstream in the first space 36 while dissolving the reagent contained in the second reagent part 39. However, since the second reagent part 39 disposed on the insulating base material surface 352 is disposed closer to the introduction opening than the working electrode 341a, that is, disposed upstream of the working electrode 341a. Therefore, even if a part of the reagent flows out of the reaction region, a sufficient amount of reagent can be supplied to the working electrode 341a. As a result, the response value increases and the S / N ratio is improved, so that more accurate measurement is possible.
 また、本実施の形態においても、実施の形態1の場合と同様に、以下の形態をとることができる。第1試薬部と第2試薬部の一方の試薬部の面積は、他方の試薬部の面積よりも大きくてもよい。また、非導電部に配置された、第1試薬部と第2試薬部の一方の試薬部の面積は、導電部に含まれる作用極の面積より大きくてもよい。また、非導電部に配置された第1試薬部と第2試薬部の一方の試薬部の面積は、導電部の作用極の面積と対極の面積との合計面積よりも大きくてもよい。 Also in the present embodiment, as in the case of the first embodiment, the following modes can be taken. The area of one reagent part of the first reagent part and the second reagent part may be larger than the area of the other reagent part. Moreover, the area of one reagent part of a 1st reagent part and a 2nd reagent part arrange | positioned at a nonelectroconductive part may be larger than the area of the working electrode contained in a conductive part. Further, the area of one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part may be larger than the total area of the area of the working electrode and the counter electrode of the conductive part.
 本実施の形態によれば、第1空間部36において、第1試薬部38を、導電部である第1電極対341に配置し、第2試薬部39を、非導電部である絶縁性基材面352に配置することで、実施の形態1と同様の効果を得ることができる。また、第1電極対341と第2電極対342の2つの電極対を有しているので、被検液中の異なる2種の被検出物質を測定する場合に用いることができる。 According to the present embodiment, in the first space part 36, the first reagent part 38 is disposed on the first electrode pair 341 which is a conductive part, and the second reagent part 39 is provided with an insulating group which is a non-conductive part. By arranging on the material surface 352, the same effect as in the first embodiment can be obtained. Further, since the two electrode pairs of the first electrode pair 341 and the second electrode pair 342 are provided, it can be used when two different kinds of substances to be detected in the test liquid are measured.
 以下に、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
参考例
 従来のバイオセンサでは、タンパク質、例えば酵素と、メディエータの両方を含む塗液を電極に塗布して乾燥した塗膜を試薬部として用いていた。本参考例では、試薬部として、タンパク質とメディエータの両方を含む塗液を用いた塗膜を用いる場合(以下、混合担持塗膜という)と、タンパク質を含む塗膜とメディエータを含む塗膜を用いる場合(以下、別担持塗膜という)とについて、ブランク電流値を比較した。
Reference Example In a conventional biosensor, a coating film obtained by applying a coating solution containing both a protein such as an enzyme and a mediator to an electrode and drying it is used as a reagent part. In this reference example, as a reagent part, when using a coating film using a coating liquid containing both protein and mediator (hereinafter referred to as a mixed support coating film), a coating film containing protein and a mediator is used. The blank current value was compared for the case (hereinafter referred to as a separate supported coating film).
(実験方法)
 混合担持塗膜は、以下の組成の試薬液を、図1のバイオセンサAを構成する絶縁性基材上に蒸着法を用いて作製したパラジウムシートに所定量点着させ、25℃、湿度50%で、約3時間乾燥させて作製した。この塗膜を、試薬液と同量のリン酸ナトリウム緩衝液(pH7.0、50mM)で再溶解し、その再溶解液を吸引して回収した。一方、別担持塗膜は、メディエータを含まない試薬液を調製し、その試薬液を担持用シートに点着した以外は、混合担持塗膜の場合と同様の方法を用いて作製した。
<試薬液>
リン酸ナトリウム緩衝液(pH7.0)           10mM
メディエータ                        6mM
タンパク質溶液         10mg/mLまたは20mg/mL
<メディエータ>
1-メトキシ-5-メチルフェナジニウムメチルスルフェート(PMS)
9,10-フェナントレンキノン-2-スルホン酸ナトリウム(PQSA)
<タンパク質>
フルクトシルペプチドオキシダーゼ(FPOX)
グルコースデヒドロゲナーゼ(GDH)
免疫グロブリンG(IgG)
ウシ血清アルブミン(BSA)
(experimental method)
In the mixed supported coating film, a predetermined amount of a reagent solution having the following composition is spotted on a palladium sheet prepared by vapor deposition on an insulating substrate constituting the biosensor A in FIG. % And dried for about 3 hours. This coating film was redissolved in the same amount of sodium phosphate buffer (pH 7.0, 50 mM) as the reagent solution, and the redissolved solution was aspirated and collected. On the other hand, the separate supported coating film was prepared using the same method as that for the mixed supported coating film except that a reagent solution containing no mediator was prepared and the reagent solution was spotted on the supporting sheet.
<Reagent solution>
Sodium phosphate buffer (pH 7.0) 10 mM
Mediator 6mM
Protein solution 10 mg / mL or 20 mg / mL
<Mediator>
1-methoxy-5-methylphenazinium methyl sulfate (PMS)
9,10-phenanthrenequinone-2-sulfonic acid sodium salt (PQSA)
<Protein>
Fructosyl peptide oxidase (FPOX)
Glucose dehydrogenase (GDH)
Immunoglobulin G (IgG)
Bovine serum albumin (BSA)
 その再溶解液を図1に示すバイオセンサAに点着し、電気化学測定を行った。電気化学測定は、バイオセンサAをポテンショスタットに接続し、作用極-対極間に0.2Vの電圧を30秒間印加し、印加後10秒経過した時の電流値をブランク電流とした。 The redissolved solution was spotted on the biosensor A shown in FIG. 1 and subjected to electrochemical measurement. In the electrochemical measurement, the biosensor A was connected to a potentiostat, a voltage of 0.2 V was applied between the working electrode and the counter electrode for 30 seconds, and the current value when 10 seconds had elapsed after application was defined as a blank current.
 結果を図9~11に示す。また、ブランク電流の数値を表1に示す。図9はタンパク質だけを含む別担持塗膜の結果であり、図10は、メディエータに1-メトキシ-5-メチルフェナジニウムメチルスルフェート(PMS)を用いた混合担持塗膜の結果であり、図11は、メディエータに9,10-フェナントレンキノン-2-スルホン酸ナトリウム(PQSA)を用いた混合担持塗膜の結果である。タンパク質の別担持塗膜の場合、ブランク電流は25nA以下であった。また、メディエータの別担持塗膜の場合、PMSとPQSAのブランク電流は、それぞれ235nA、18nAであった。一方、混合担持塗膜では、タンパク質の別担持塗膜やメディエータの別担持塗膜に比べてブランク電流が増加し、特にメディエータにPMSを用いた場合、顕著に増加した。例えば、PQSAの場合、タンパク質の種類と濃度に応じて、75~189nAまで増加した。これに対し、PMSの場合、タンパク質の種類と濃度に応じて、513~2707nAまで増加した。この結果から、混合担持塗膜ではなく、別担持塗膜を試薬部に用いることで、ブランク電流を抑制できることが期待できる。なお、混合担持塗膜の場合、ブランク電流が大きいことの理由は必ずしも明らかではないが、塗液乾燥により酵素とメディエータの高濃度状態が持続し、酵素内の電子供与性をもつアミノ基がメディエータを一部還元することで、ブランク電流を増加させていることが考えられる。 The results are shown in Figs. Table 1 shows numerical values of the blank current. FIG. 9 shows the result of another supported coating film containing only protein, and FIG. 10 shows the result of the mixed supported coating film using 1-methoxy-5-methylphenazinium methyl sulfate (PMS) as a mediator. FIG. 11 shows the results of a mixed supported coating film using sodium 9,10-phenanthrenequinone-2-sulfonate (PQSA) as a mediator. In the case of another supported coating film of protein, the blank current was 25 nA or less. In the case of another supported coating film of mediator, the blank currents of PMS and PQSA were 235 nA and 18 nA, respectively. On the other hand, in the mixed supported coating film, the blank current increased as compared with the separate supported coating film of protein and the separately supported coating film of mediator, and particularly increased when PMS was used as the mediator. For example, in the case of PQSA, it increased from 75 to 189 nA depending on the type and concentration of protein. On the other hand, in the case of PMS, it increased from 513 to 2707 nA depending on the type and concentration of protein. From this result, it can be expected that the blank current can be suppressed by using another supported coating film in the reagent part instead of the mixed supported coating film. In the case of a mixed supported coating film, the reason why the blank current is large is not always clear, but the high concentration state of the enzyme and the mediator is maintained by drying the coating liquid, and the amino group having an electron donating property in the enzyme is the mediator. It is conceivable that the blank current is increased by partially reducing.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例1
<バイオセンサの作製>
 図1のバイオセンサAを構成する絶縁性基材上の第1電極対の表面に、以下の試薬液1を4μL塗布し、25℃、湿度50%で約3時間乾燥して第1試薬部を形成した。一方、図1のバイオセンサAを構成するカバーの裏面に、以下の試薬液2を24μL塗布し、25℃、湿度50%で約3時間乾燥して第2試薬部を形成した。そして、図1に示すバイオセンサを作製した。
<試薬液1>
リン酸ナトリウム緩衝液(pH7.0)            25mM
グルコースデヒドロゲナーゼ(GDH)        2000U/mL
カルボキシメチルセルロース(CMC)            0.2%
ドデシルマルトシド                  0.0065%
<試薬液2>
9,10-フェナントレンキノン-2-スルホン酸ナトリウム(PQSA) 10mM
Example 1
<Production of biosensor>
1 μl of the following reagent solution 1 is applied to the surface of the first electrode pair on the insulating base material constituting the biosensor A of FIG. 1 and dried at 25 ° C. and 50% humidity for about 3 hours. Formed. On the other hand, 24 μL of the following reagent solution 2 was applied to the back surface of the cover constituting the biosensor A of FIG. 1 and dried at 25 ° C. and 50% humidity for about 3 hours to form a second reagent part. And the biosensor shown in FIG. 1 was produced.
<Reagent liquid 1>
Sodium phosphate buffer (pH 7.0) 25 mM
Glucose dehydrogenase (GDH) 2000 U / mL
Carboxymethylcellulose (CMC) 0.2%
Dodecyl maltoside 0.0065%
<Reagent liquid 2>
9,10-phenanthrenequinone-2-sulfonic acid sodium salt (PQSA) 10 mM
 バイオセンサAに以下の組成の被検液50μLを点着し、電気化学測定を行った。電気化学測定は、バイオセンサAをポテンショスタットに接続し、作用極-対極間に0.2Vの電圧を30秒間印加し、印加後10秒経過した時の電流値を測定した。
<被検液>
リン酸ナトリウム緩衝液(pH7.0)            25mM
グルコース                0,20,50,100μM
The biosensor A was spotted with 50 μL of a test solution having the following composition and subjected to electrochemical measurement. In the electrochemical measurement, the biosensor A was connected to a potentiostat, a voltage of 0.2 V was applied between the working electrode and the counter electrode for 30 seconds, and the current value when 10 seconds had elapsed after the application was measured.
<Test solution>
Sodium phosphate buffer (pH 7.0) 25 mM
Glucose 0, 20, 50, 100 μM
 図12に、グルコース濃度と検出電流値との関係を示す(△印)。0~100μMの範囲で直線関係が得られた。 FIG. 12 shows the relationship between the glucose concentration and the detected current value (Δ mark). A linear relationship was obtained in the range of 0-100 μM.
比較例1
<バイオセンサの作製>
 図1のバイオセンサAを構成する絶縁性基材上の第1電極対の表面に、以下の試薬液3を4μL塗布し、25℃、湿度50%で約3時間乾燥して試薬部を形成した以外は、実施例1と同様の方法により、バイオセンサを作製した。
<試薬液3>
リン酸ナトリウム緩衝液(pH7.0)            25mM
グルコースデヒドロゲナーゼ(GDH)        2000U/mL
9,10-フェナントレンキノン-2-スルホン酸ナトリウム(PQSA) 30mM
カルボキシメチルセルロース(CMC)            0.2%
ドデシルマルトシド                  0.0065%
Comparative Example 1
<Production of biosensor>
4 μL of the following reagent solution 3 is applied to the surface of the first electrode pair on the insulating substrate constituting the biosensor A of FIG. 1 and dried at 25 ° C. and 50% humidity for about 3 hours to form a reagent part. A biosensor was produced by the same method as in Example 1 except that.
<Reagent liquid 3>
Sodium phosphate buffer (pH 7.0) 25 mM
Glucose dehydrogenase (GDH) 2000 U / mL
9,10-phenanthrenequinone-2-sodium sulfonate (PQSA) 30 mM
Carboxymethylcellulose (CMC) 0.2%
Dodecyl maltoside 0.0065%
 作製したバイオセンサに点着し、実施例1の場合と同様の方法により電気化学測定を行った。 The prepared biosensor was spotted, and electrochemical measurement was performed in the same manner as in Example 1.
 図12に、グルコース濃度と検出電流値との関係を示す(○印)。0~100μMの範囲で直線関係が得られた。 FIG. 12 shows the relationship between the glucose concentration and the detected current value (◯ mark). A linear relationship was obtained in the range of 0-100 μM.
(結果)
 図12に示すように、実施例1の場合、比較例1に比べて、ブランク電流値が減少していることがわかる。S/N比(100μMの電流値/ブランク電流値)を算出すると、比較例1が2.29であるのに対し、実施例1では、5.27であった。これにより、本発明によれば、従来に比べ、S/N比を大幅に向上できることが確認できた。
(result)
As shown in FIG. 12, in the case of Example 1, it can be seen that the blank current value is reduced as compared with Comparative Example 1. When the S / N ratio (100 μM current value / blank current value) was calculated, Comparative Example 1 was 2.29, while Example 1 was 5.27. Thereby, according to this invention, it has confirmed that S / N ratio could be improved significantly compared with the past.
 本発明によれば、高精度の測定が可能なバイオセンサを提供することができる。 According to the present invention, a biosensor capable of highly accurate measurement can be provided.
  1,21,31          絶縁性基材
  2,22,32          カバー
  2a,2b,2c         カバー開口部
  22a,22b          カバー開口部
  32a,32b          カバー開口部
  3,23,33          スペーサ
  3a,3b            スペーサ開口部
  23a              スペーサ開口部
  33a,33b          スペーサ開口部
  4,24,34          導電部
  41,241,341       第1電極対
  41a,241a,341a    作用極
  41b,241b,341b    対極
  42,342           第2電極対
  42a,342a         作用極
  42b,342b         対極
  43,343           端子部
  43a,43b,43c,43d  端子
  243a,243b            端子
  343a,343b,343c,343d  端子
  44,242,344           リード部
  44a,44b,44c,44d      リード
  242a,242b            リード
  344a,344b,344c,344d  リード
  5,25,351,352         非導電部
  6,26,36              第1空間部
  7,27,37              第2空間部
  8,28,38              第1試薬部
  9,29,39              第2試薬部
1, 21, 31 Insulating base material 2, 22, 32 Cover 2a, 2b, 2c Cover opening 22a, 22b Cover opening 32a, 32b Cover opening 3, 23, 33 Spacer 3a, 3b Spacer opening 23a Spacer opening Part 33a, 33b Spacer opening 4, 24, 34 Conductive part 41, 241, 341 First electrode pair 41a, 241a, 341a Working electrode 41b, 241b, 341b Counter electrode 42, 342 Second electrode pair 42a, 342a Working electrode 42b, 342b Counter electrode 43,343 Terminal portion 43a, 43b, 43c, 43d terminal 243a, 243b terminal 343a, 343b, 343c, 343d terminal 44, 242 344 Lead portion 44a, 44b, 44c, 44d Lead 242a, 242b Lead 344a, 344b, 344c, 344d Lead 5, 25, 351, 352 Non-conductive portion 6, 26, 36 First space portion 7, 27, 37 Second space Part 8, 28, 38 First reagent part 9, 29, 39 Second reagent part

Claims (14)

  1.  タンパク質とメディエータとを用いて被検液中の成分を分析するバイオセンサであって、
     絶縁性基材とカバーとの間にスペーサを介して形成された1つ以上の空間部を有し、
     少なくとも1つの前記空間部の内面には、導電部と非導電部とを有し、
     前記タンパク質を含む第1試薬部と前記メディエータを含む第2試薬部は前記内面の異なる場所に別々に配置され、前記第1試薬部と前記第2試薬部の少なくとも一方が、前記非導電部に配置されている、バイオセンサ。
    A biosensor that analyzes a component in a test liquid using a protein and a mediator,
    Having one or more spaces formed through a spacer between the insulating base and the cover;
    The inner surface of at least one of the space portions has a conductive portion and a non-conductive portion,
    The first reagent part containing the protein and the second reagent part containing the mediator are separately arranged at different locations on the inner surface, and at least one of the first reagent part and the second reagent part is in the non-conductive part A biosensor is placed.
  2.  前記第1試薬部と前記第2試薬部の一方が、前記非導電部に配置され、他方が前記導電部に配置されている、請求項1記載のバイオセンサ。 The biosensor according to claim 1, wherein one of the first reagent part and the second reagent part is disposed in the non-conductive part and the other is disposed in the conductive part.
  3.  前記第1試薬部が前記導電部に配置され、前記第2試薬部が前記非導電部に配置されている、請求項1または2に記載のバイオセンサ。 The biosensor according to claim 1 or 2, wherein the first reagent part is disposed in the conductive part and the second reagent part is disposed in the non-conductive part.
  4.  前記第1試薬部と前記第2試薬部が、前記非導電部の異なる場所に配置されている、請求項1記載のバイオセンサ。 The biosensor according to claim 1, wherein the first reagent part and the second reagent part are arranged at different locations of the non-conductive part.
  5.  前記絶縁性基材は、対向する一対の主面を有し、前記空間部に露出する一方の主面は前記空間部の底面を構成し、前記カバーは、対向する一対の主面を有し、前記空間部に露出する一方の主面は前記空間部の頂面を構成し、前記スペーサは、少なくとも1つの開口部を有し、前記開口部の内面は前記空間部の側面を構成する、請求項1から4のいずれか1項に記載のバイオセンサ。 The insulating substrate has a pair of opposing main surfaces, one main surface exposed to the space portion constitutes a bottom surface of the space portion, and the cover has a pair of opposing main surfaces. The one main surface exposed to the space portion constitutes the top surface of the space portion, the spacer has at least one opening portion, and the inner surface of the opening portion constitutes the side surface of the space portion. The biosensor according to any one of claims 1 to 4.
  6.  前記底面が前記導電部を有し、前記頂面が前記非導電部を有する、請求項5記載のバイオセンサ。 The biosensor according to claim 5, wherein the bottom surface has the conductive portion and the top surface has the non-conductive portion.
  7.  前記底面が前記導電部と前記非導電部を有する、請求項5記載のバイオセンサ。 The biosensor according to claim 5, wherein the bottom surface has the conductive portion and the non-conductive portion.
  8.  前記導電部が、少なくとも作用極と対極を含む、請求項1から7のいずれか1項に記載のバイオセンサ。 The biosensor according to any one of claims 1 to 7, wherein the conductive portion includes at least a working electrode and a counter electrode.
  9.  前記第1試薬部と前記第2試薬部の一方の試薬部の面積は、他方の試薬部の面積よりも大きい、請求項1から8のいずれか1項に記載のバイオセンサ。 The biosensor according to any one of claims 1 to 8, wherein an area of one reagent part of the first reagent part and the second reagent part is larger than an area of the other reagent part.
  10.  前記第1試薬部と前記第2試薬部の一方の試薬部は前記非導電部に配置され、他方の試薬部は前記導電部に配置され、前記非導電部に配置された前記一方の試薬部の面積は、前記導電部に配置された前記他方の試薬部の面積よりも大きい、請求項9記載のバイオセンサ。 One reagent part of the first reagent part and the second reagent part is arranged in the non-conductive part, the other reagent part is arranged in the conductive part, and the one reagent part arranged in the non-conductive part The biosensor according to claim 9, wherein an area of is larger than an area of the other reagent part arranged in the conductive part.
  11.  前記導電部は、作用極と対極を含み、前記非導電部に配置された、前記第1試薬部と前記第2試薬部の一方の試薬部の面積は、前記作用極の面積よりも大きい、請求項1から8のいずれか1項に記載のバイオセンサ。 The conductive part includes a working electrode and a counter electrode, and the area of one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part is larger than the area of the working electrode. The biosensor according to any one of claims 1 to 8.
  12.  前記導電部は、作用極と対極を含み、前記非導電部に配置された前記第1試薬部と前記第2試薬部の一方の試薬部の面積は、前記作用極の面積と前記対極の面積との合計面積よりも大きい、請求項1から8のいずれか1項に記載のバイオセンサ。 The conductive part includes a working electrode and a counter electrode, and the area of one reagent part of the first reagent part and the second reagent part arranged in the non-conductive part is the area of the working electrode and the area of the counter electrode. The biosensor according to any one of claims 1 to 8, wherein the biosensor is larger than the total area.
  13.  前記カバーは、前記空間部と連通する、被検液用の導入開口を有し、前記非導電部に配置された、前記第1試薬部と前記第2試薬部の一方の試薬部は、他方の試薬部よりも前記導入開口に近くなるように配置されている、請求項1から12のいずれか1項に記載のバイオセンサ。 The cover has an introduction opening for a test liquid that communicates with the space, and one of the first reagent part and the second reagent part arranged in the non-conductive part is the other The biosensor according to any one of claims 1 to 12, wherein the biosensor is disposed so as to be closer to the introduction opening than the reagent portion.
  14.  前記導電部は、作用極と対極を含み、前記カバーは、前記空間部と連通する、被検液用の導入開口を有し、前記非導電部に配置された前記第1試薬部と前記第2試薬部の一方の試薬部は、前記作用極よりも前記導入開口に近くなるように配置されている、請求項1から12のいずれか1項に記載のバイオセンサ。 The conductive part includes a working electrode and a counter electrode, and the cover has an introduction opening for a test solution communicating with the space part, and the first reagent part and the first reagent part arranged in the non-conductive part 13. The biosensor according to claim 1, wherein one reagent part of the two reagent parts is disposed closer to the introduction opening than the working electrode.
PCT/JP2019/002472 2018-03-26 2019-01-25 Biosensor WO2019187574A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-058324 2018-03-26
JP2018058324A JP2021089141A (en) 2018-03-26 2018-03-26 Biosensor

Publications (1)

Publication Number Publication Date
WO2019187574A1 true WO2019187574A1 (en) 2019-10-03

Family

ID=68059001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002472 WO2019187574A1 (en) 2018-03-26 2019-01-25 Biosensor

Country Status (2)

Country Link
JP (1) JP2021089141A (en)
WO (1) WO2019187574A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249103A (en) * 1999-12-27 2001-09-14 Matsushita Electric Ind Co Ltd Biosensor
JP2001343349A (en) * 2000-05-31 2001-12-14 Techno Medica Co Ltd Neutral fat measuring sensor
WO2008007499A1 (en) * 2006-07-13 2008-01-17 Panasonic Corporation Electrochemical immunoassay chip
WO2015002184A1 (en) * 2013-07-05 2015-01-08 株式会社村田製作所 Biosensor
JP2016520844A (en) * 2013-06-07 2016-07-14 ライフスキャン・スコットランド・リミテッド Electrochemical analytical test strip with a soluble electrochemically active coating opposite the bare electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249103A (en) * 1999-12-27 2001-09-14 Matsushita Electric Ind Co Ltd Biosensor
JP2001343349A (en) * 2000-05-31 2001-12-14 Techno Medica Co Ltd Neutral fat measuring sensor
WO2008007499A1 (en) * 2006-07-13 2008-01-17 Panasonic Corporation Electrochemical immunoassay chip
JP2016520844A (en) * 2013-06-07 2016-07-14 ライフスキャン・スコットランド・リミテッド Electrochemical analytical test strip with a soluble electrochemically active coating opposite the bare electrode
WO2015002184A1 (en) * 2013-07-05 2015-01-08 株式会社村田製作所 Biosensor

Also Published As

Publication number Publication date
JP2021089141A (en) 2021-06-10

Similar Documents

Publication Publication Date Title
US10895550B2 (en) Multi-region and potential test sensors, methods, and systems
US9546974B2 (en) Concentration determination in a diffusion barrier layer
JP5385607B2 (en) Gated current measuring instrument
US8702926B2 (en) Oxidizable species as an internal reference in control solutions for biosensors
BRPI0717430A2 (en) BIOSSENSOR SYSTEM HAVING STABILITY AND PERFORMANCE OF LARGER HEMATOCITES
JP2002090331A (en) Biosensor provided with porous thin film having chromatography function
KR20040024489A (en) Mediator stabilized reagent compositions and methods for their use in electrochemical analyte detection assays
US20150362501A1 (en) Biosensor and process for producing same
JP2003501627A (en) Disposable sensor and manufacturing method
Yazdanpanah et al. Glycated hemoglobin-detection methods based on electrochemical biosensors
US20220065876A1 (en) Analysis Techniques for Measuring Glycated Hemoglobin in Undiluted Blood Samples
KR101142591B1 (en) Biosensor
JP2006017720A (en) Method of determining characteristics of enzyme for redox reagent system, electrochemical cell, and system equipped with same
US10329684B2 (en) Method for forming an optical test sensor
WO2019187574A1 (en) Biosensor
WO2010067769A1 (en) Biosensor for electrochemical measurement of 1,5-anhydroglucitol, and measuring method and measuring kit using the same
US11375931B2 (en) Non-invasive transdermal sampling and analysis device incorporating an electrochemical bioassay
WO2019187575A1 (en) Biological substance detection sensor
Sheikholeslam et al. Electrochemical biosensor for glycated hemoglobin (HbA1c)
D’Orazio Electrochemical sensors: a review of techniques and applications in point of care testing
US20230375495A1 (en) Biosensor and related method of manufacture
CN106885832B (en) Method and apparatus for measuring target component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP