WO2019187246A1 - Input device and input system - Google Patents

Input device and input system Download PDF

Info

Publication number
WO2019187246A1
WO2019187246A1 PCT/JP2018/036789 JP2018036789W WO2019187246A1 WO 2019187246 A1 WO2019187246 A1 WO 2019187246A1 JP 2018036789 W JP2018036789 W JP 2018036789W WO 2019187246 A1 WO2019187246 A1 WO 2019187246A1
Authority
WO
WIPO (PCT)
Prior art keywords
input device
coils
magnetic field
magnetorheological fluid
rotor
Prior art date
Application number
PCT/JP2018/036789
Other languages
French (fr)
Japanese (ja)
Inventor
数明 楠根
竜 中江
勇太 齋藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019187246A1 publication Critical patent/WO2019187246A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/08Controlling members for hand actuation by rotary movement, e.g. hand wheels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G5/00Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member
    • G05G5/03Means for enhancing the operator's awareness of arrival of the controlling member at a command or datum position; Providing feel, e.g. means for creating a counterforce
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H19/00Switches operated by an operating part which is rotatable about a longitudinal axis thereof and which is acted upon directly by a solid body external to the switch, e.g. by a hand
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H19/00Switches operated by an operating part which is rotatable about a longitudinal axis thereof and which is acted upon directly by a solid body external to the switch, e.g. by a hand
    • H01H19/02Details
    • H01H19/03Means for limiting the angle of rotation of the operating part
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H19/00Switches operated by an operating part which is rotatable about a longitudinal axis thereof and which is acted upon directly by a solid body external to the switch, e.g. by a hand
    • H01H19/02Details
    • H01H19/10Movable parts; Contacts mounted thereon
    • H01H19/20Driving mechanisms allowing angular displacement of the operating part to be effective in either direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"

Definitions

  • This disclosure relates to an input device and an input system.
  • Patent Document 1 describes an input device that can give an operation feeling to an operator when the operator operates.
  • This input device includes an operating body that rotates by an operator's operation and a rotational load applying mechanism that applies a rotational load to the operating body.
  • the rotational load applying mechanism includes a magnetorheological fluid whose viscosity changes according to the strength of the magnetic field, and a coil that generates a magnetic field when energized. Therefore, in a state where a current flows through the coil and a magnetic field is generated, the viscosity of the magnetorheological fluid becomes strong, and a resistance force is generated by the magnetorheological fluid with respect to the movable member that rotates with the operating body. Thereby, a resistance force (rotational load) is transmitted to the operating body, and as a result, the rotational load of the rotating operation can be applied to the operator.
  • Patent Document 1 when the current flowing through the coil is increased, the magnetic field generated is increased, and the torque, that is, the resistance force (rotational load) applied to the operating body increases with the strength of the magnetic field. It is described. Therefore, in this input device, the operation control unit controls the amount of energization to the coil and the timing of energization, thereby applying an arbitrary rotational load to the operator at an arbitrary timing.
  • the input device includes an operating body, a rotor that rotates as the operating body is operated, a magnetorheological fluid that contacts the rotor, and a magnetic field generator that applies a magnetic field to the magnetorheological fluid.
  • the magnetorheological fluid generates a resistance force that suppresses rotation of the rotor by contacting the rotor.
  • the magnetic field generation unit changes the viscosity of the magnetorheological fluid by applying a magnetic field to the magnetorheological fluid to change the magnitude of the resistance force.
  • the magnetic field generator has a plurality of coils that respectively apply magnetic fields to the magnetorheological fluid.
  • This input device can improve the degree of freedom in designing the electrical characteristics related to the viscosity control of the magnetorheological fluid.
  • FIG. 1A is a plan view of the input device according to the first embodiment.
  • 1B is a cross-sectional view of the input device shown in FIG. 1A taken along line X1-X1.
  • FIG. 2 is an enlarged view of the input device shown in FIG. 1B.
  • FIG. 3 is a schematic circuit diagram of the input system according to the first embodiment.
  • FIG. 4 is a schematic circuit diagram of an input device according to a comparative example.
  • FIG. 5 is a graph illustrating a current rising characteristic in the input device according to the comparative example and a current rising characteristic in the input device according to the first embodiment.
  • FIG. 6A is a schematic circuit diagram of the input device according to the first embodiment.
  • FIG. 6B is a schematic circuit diagram of another input device according to the first embodiment.
  • FIG. 7 is a schematic circuit diagram of still another input device according to the first embodiment.
  • FIG. 8 is a cross-sectional view of the input device according to the second embodiment.
  • FIG. 1A is a plan view of an input device 1 according to the first embodiment.
  • 1B is a cross-sectional view of the input device 1 shown in FIG. 1A taken along line X1-X1.
  • the input device 1 includes an operating body 2, a rotor 3, a magnetorheological fluid 4, and a magnetic field generator 5.
  • the input device 1 is a device that receives a user operation on the operation tool 2.
  • the “operation” in the present disclosure includes all cases where the user applies an external force to the operation body 2, and includes, for example, a rotation operation, a slide operation, a push operation, a pulling operation, and the like.
  • the operation tool 2 is configured to be rotatable, and the user rotates the operation tool 2.
  • the input device 1 is a rotation operation type device that receives a rotation operation of the operation body 2 by the user.
  • the input device 1 is a rotary encoder.
  • the rotor 3 rotates as the operating body 2 is operated.
  • the magnetorheological fluid 4 is in contact with the rotor 3 and generates a resistance force that prevents and suppresses the rotation of the rotor 3.
  • the magnetic field generator 5 changes the viscosity of the magnetorheological fluid 4 by applying a magnetic field to the magnetorheological fluid 4 to change the magnitude of the resistance force.
  • the magnetic field generator 5 includes a plurality of coils 51 and 52 that act by applying a magnetic field to the magnetorheological fluid 4.
  • the “magnetoviscous fluid 4” in the present disclosure is a functional fluid having a property that the viscosity reversibly changes according to the strength of an applied magnetic field, more specifically, MRF (Magnetorheological Fluid), As the applied magnetic field increases, the viscosity increases. As the viscosity of the magnetorheological fluid 4 increases, the resistance force against the rotation of the rotor 3 increases.
  • the input device 1 includes the rotor 3, the magnetorheological fluid 4, and the magnetic field generator 5, thereby reducing the magnitude of the resistance force (load) acting on the operating body 2 when operating the operating body 2.
  • the magnetic field generator 5 has a plurality of coils 51 and 52.
  • the plurality of coils 51 and 52 both cause a magnetic field to act on the magnetorheological fluid 4. Therefore, the resistance force acting on the operating body 2 is controlled by the plurality of coils 51 and 52.
  • various electrical characteristics such as rising characteristics of current flowing through the magnetic field generator 5 and current consumption in the magnetic field generator 5 are determined by circuit constants of the plurality of coils 51 and 52. Therefore, according to the input device 1 according to the present embodiment, compared with the case where the resistance force acting on the operating body 2 is controlled by a single coil, the design of electrical characteristics related to the viscosity control of the magnetorheological fluid 4 is improved. The degree of freedom can be improved.
  • the resistance force acting on the operating body is controlled by a single coil.
  • Various electrical characteristics such as the rising characteristics of the current flowing through the coil and the current consumption in the coil are determined by the circuit constant of the single coil. Therefore, the input device disclosed in Patent Document 1 has a low degree of freedom in designing electrical characteristics related to the viscosity control of the magnetorheological fluid.
  • the input device 1 has electrical characteristics related to the viscosity control of the magnetorheological fluid 4 as compared with the conventional input device that controls the resistance force acting on the operating body with a single coil.
  • the degree of freedom of design can be improved.
  • FIG. 3 is a schematic circuit diagram of the input system 100 according to the first embodiment.
  • the input device 1 according to the present embodiment constitutes an input system 100 together with a drive circuit 10 for driving the magnetic field generator 5.
  • the drive circuit 10 is a circuit that applies a magnetic field from the magnetic field generator 5 to the magnetorheological fluid 4 by flowing an excitation current through the plurality of coils 51 and 52.
  • the input system 100 includes the input device 1 and the drive circuit 10 that applies a magnetic field from the magnetic field generator 5 to the magnetorheological fluid 4 by causing an excitation current to flow through the plurality of coils 51 and 52.
  • the drawings referred to below are all schematic diagrams, and the ratios of the sizes and thicknesses of the constituent elements in the drawings do not necessarily reflect actual dimensional ratios.
  • the axial direction along the rotation axis 20 of the operating body 2 is defined as the vertical direction D20, and in particular, the direction in which the operating body 2 protrudes from the cover 8 (upward in FIG. 1B) is described as “upward”.
  • these directions are not intended to limit the use direction of the input device 1.
  • the input device 1 includes a coil bobbin 7, a cover in addition to the operating body 2, the rotor 3, the magnetorheological fluid 4, and the magnetic field generator 5. 8, a body 9 and a case 90 are further provided.
  • the operating body 2 has a cylindrical shape.
  • the operating body 2 is supported by the cover 8 and the body 9 so as to be rotatable about a rotation axis 20 passing through a cylindrical center axis.
  • the operating body 2 includes a coupling portion 21 coupled to the rotor 3 and a support portion 22 supported by the bearing portion 91.
  • the coupling portion 21 is provided at the central portion of the operation body 2 in the up-down direction D20, and the support portion 22 is provided at the lower end portion of the operation body 2.
  • the operation body 2 is not limited to a configuration that is directly operated by a user, and for example, an operation knob or the like may be attached to the operation body 2. In this case, the user operates the operation tool 2 indirectly by operating the operation knob.
  • the rotor 3 has a disk shape centered on the rotating shaft 20 of the operating body 2.
  • the rotor 3 rotates around the rotating shaft 20 of the operating body 2 as the operating body 2 is operated.
  • the rotor 3 is directly coupled to the operating body 2 at the coupling portion 21. Therefore, when the operating body 2 rotates about the rotation shaft 20, the rotor 3 rotates about the rotation shaft 20 together with the operating body 2.
  • the rotor 3 is formed of a magnetic material as an example, and is formed of a ferromagnetic material in the first embodiment.
  • the coil bobbin 7 has a cylindrical shape that surrounds the rotating shaft 20 of the operating body 2 and extends along the rotating shaft 20. That is, the coil bobbin 7 has a hollow portion, and the cover 8 and the body 9 are accommodated in the hollow portion of the coil bobbin 7. A plurality of coils 51, 52 in the magnetic field generator 5 are mounted on the coil bobbin 7.
  • the coil bobbin 7 is made of synthetic resin.
  • the cover 8 has a disk shape with the rotating shaft 20 of the operating body 2 as the center.
  • a through hole 81 having a circular opening is formed in the center of the cover 8 in plan view.
  • the operating body 2 penetrates the cover 8 through the through hole 81 in the vertical direction D20.
  • the cover 8 forms a part of the magnetic circuit. Therefore, the cover 8 is made of a magnetic material, and in this embodiment is made of a ferromagnetic material.
  • the body 9 has a cylindrical shape that extends along the rotation axis 20 of the operation body 2 and has the rotation axis 20 as the center.
  • a bearing 91 is formed at the center of the upper surface of the body 9.
  • the bearing 91 is a recess having a circular opening.
  • the support portion 22 of the operating body 2 is supported by the body 9 while being inserted into the bearing portion 91.
  • the body 9 forms part of the magnetic circuit. Therefore, the body 9 is made of a magnetic material, and in the first embodiment, it is made of a ferromagnetic material.
  • the case 90 has a cylindrical shape with an open top surface and a bottom. At least a part of the coil bobbin 7 is accommodated in the case 90 together with the body 9 so that the plurality of coils 51 and 52 are accommodated in the case 90.
  • the cover 8 and the body 9 are fixed to the coil bobbin 7 in a state of facing each other with a predetermined gap in the vertical direction D20.
  • the cover 8 closes the opening on the upper surface of the coil bobbin 7
  • the body 9 closes the opening on the lower surface of the coil bobbin 7, and the cover 8 is positioned above the body 9.
  • an accommodation space 40 is formed between the lower surface of the cover 8 and the upper surface of the body 9 inside the coil bobbin 7.
  • the rotor 3 is accommodated in the accommodating space 40.
  • the lower surface of the cover 8, the upper surface of the body 9, and the inner peripheral surface of the coil bobbin 7 constitute an inner surface of the accommodation space 40.
  • the rotor 3 is housed in the housing space 40 with a gap from the inner surface of the housing space 40 so as not to contact the cover 8, the body 9, and the coil bobbin 7 even during rotation.
  • the magnetorheological fluid 4 is interposed between the surface of the rotor 3 and the inner surface of the accommodating space 40.
  • the magnetorheological fluid 4 is filled in the accommodation space 40. That is, the rotor 3 is disposed in the magnetorheological fluid 4. Therefore, the gap between the surface of the rotor 3 and the inner surface of the accommodation space 40 is filled with the magnetorheological fluid 4.
  • a packing 71 is mounted between the upper surface of the coil bobbin 7 and the lower surface of the cover 8, and a packing 72 is mounted between the lower surface of the coil bobbin 7 and the inner bottom surface of the case 90. The packing 71 and the packing 72 ensure the airtightness and watertightness of the accommodation space 40.
  • the magnetorheological fluid 4 is a functional fluid whose viscosity increases as the applied magnetic field increases. That is, the viscosity of the magnetorheological fluid 4 is not constant, but changes according to the magnetic field applied to the magnetorheological fluid 4. Since the rotor 3 rotates in contact with the magnetorheological fluid 4, a resistance force corresponding to the viscosity of the magnetorheological fluid 4 is generated against the rotation of the rotor 3. Therefore, if the viscosity of the magnetorheological fluid 4 changes, the magnitude of the resistance force against the rotation of the rotor 3, that is, preventing the rotation to be suppressed, changes, and the resistance force against the operation (rotation) of the operating body 2 connected to the rotor 3 changes. The size also changes. In the present embodiment, the viscosity of the magnetorheological fluid 4 changes between the highest viscosity and the lowest viscosity according to the applied magnetic field.
  • the viscosity of the magnetorheological fluid 4 is at the minimum viscosity, and the resistance force generated in the magnetorheological fluid 4 with respect to the rotation of the rotor 3 is the minimum value.
  • the reaction force (resistance force) acting on the user operating the operating tool 2 from the operating tool 2 is a minimum value, and the operating feeling of the operating tool 2 is relatively light.
  • the maximum magnetic field is applied to the magnetorheological fluid 4, the magnetorheological fluid 4 has the highest viscosity, and the resistance force generated by the magnetorheological fluid 4 with respect to the rotation of the rotor 3 is the maximum value. It becomes.
  • the input device 1 presents a sense of force to the user by changing the magnitude of the reaction force (resistance force) applied from the operation body 2 to the user who operates the operation body 2. Configure the device.
  • the magnetic field generator 5 is an electromagnet device including a plurality of coils 51 and 52.
  • the magnetic field generator 5 has two coils 51 and 52.
  • the two coils 51 and 52 are both attached to the coil bobbin 7.
  • the two coils 51 and 52 are arranged concentrically around the rotation shaft 20 so that the coil 51 is located on the inner side (on the rotation shaft 20 side) and the coil 52 is located on the outer side in plan view. Yes. That is, the coil 51 is closer to the rotating shaft 20 than the coil 52.
  • an electric wire constituting the coil 51 is wound around the outer peripheral surface 7A of the coil bobbin 7, and an electric wire constituting the coil 52 is wound on the electric wire, that is, outside.
  • the two coils 51 and 52 cause a magnetic field to act on the magnetorheological fluid 4 when energized. Since the magnetorheological fluid 4 is filled in the accommodation space 40 inside the coil bobbin 7, the magnetic fields generated respectively by the two coils 51 and 52 mounted on the outer peripheral surface 7 ⁇ / b> A of the coil bobbin 7 are both magnetorheological fluid 4. Will be applied.
  • magnetic fluxes ⁇ 1 and ⁇ 2 that are intensifying each other from the two coils 51 and 52 to the magnetorheological fluid 4 act. That is, a magnetic field in the same direction acts on the magnetorheological fluid 4 from the coil 51 and the coil 52.
  • both the cover 8 and the body 9 constitute a magnetic member 8A made of a magnetic material (ferromagnetic material).
  • the “magnetic member” in the present disclosure is a member that forms part of a magnetic circuit through which at least part of the magnetic fluxes ⁇ 1 and ⁇ 2 generated by the plurality of coils 51 and 52 and acting on the magnetorheological fluid 4 passes. That is, the input device 1 according to the present embodiment includes the cover 8 and the body 9 as the magnetic member 8A.
  • a magnetic field in which one of the cover 8 and the body 9 is “N pole” and the other is “S pole” is applied to the accommodation space 40 formed in the gap between the cover 8 and the body 9.
  • the magnetorheological fluid 4 in the accommodation space 40 is passed through the cover 8 and the body 9 which are magnetic members 8A as shown in FIG.
  • downward magnetic fluxes ⁇ 1 and ⁇ 2 act.
  • the input device 1 further includes a detection circuit 61 in addition to a plurality of (two in the first embodiment) coils 51 and 52 in the magnetic field generator 5.
  • the input system 100 according to the present embodiment further includes a control circuit 62 in addition to the input device 1 and the drive circuit 10.
  • a plurality (two in the first embodiment) of the coils 51 and 52 in the magnetic field generator 5 are electrically connected to the excitation terminal T0 in parallel between the pair of excitation terminals T0.
  • the magnetic fluxes ⁇ 1 and ⁇ 2 in the directions in which the two coils 51 and 52 mutually intensify the magnetorheological fluid 4 are applied to the two coils 51 and 52 when a voltage is applied to the pair of excitation terminals T0.
  • the winding direction is aligned. That is, when a DC voltage is applied between the pair of excitation terminals T0, currents I1 and I2 having the same direction flow through the two coils 51 and 52.
  • the “excitation terminal T0” in the present disclosure may not be a component for connecting an electric wire or the like, and may be, for example, a lead of an electronic component or a part of a conductor included in a circuit board.
  • the circuit constants of the two coils 51 and 52 are equivalent to each other.
  • the inductance of the coil 51 and the inductance of the coil 52 are the same value
  • the resistance value of the coil 51 and the resistance value of the coil 52 are the same value.
  • the “same value” in the present disclosure may include not only a completely matching value but also an error of several percent.
  • the detection circuit 61 is a circuit for taking out the displacement amount (operation amount) of the operation body 2 as an electrical signal.
  • the detection circuit 61 since the input device 1 is a rotary encoder, the detection circuit 61 outputs an electrical signal corresponding to the amount of rotation of the operating body 2 from the output terminal.
  • the detection circuit 61 has a plurality of fixed contacts and a contact brush.
  • the plurality of fixed contacts are fixed in position relative to the case 90.
  • the contact brush moves in accordance with the rotation of the operation body 2 so that any two or more fixed contacts among the plurality of fixed contacts are brought into conduction with the operation of the operation body 2.
  • the detection circuit 61 can output an electrical signal based on a conduction state between the plurality of fixed contacts as an electrical signal corresponding to the rotation amount of the operation body 2.
  • the input device 1 is an incremental rotary encoder. Therefore, the detection circuit 61 can output two A-phase and B-phase electrical signals having a phase difference of 90 degrees.
  • the drive circuit 10 is a circuit that applies a magnetic field from the magnetic field generator 5 to the magnetorheological fluid 4 by flowing an excitation current through a plurality of (in the first embodiment, two) coils 51 and 52.
  • the drive circuit 10 includes a transistor 101 and a resistor 102.
  • the transistor 101 and the resistor 102 are electrically connected in series with the magnetic field generator 5, that is, a parallel circuit including two coils 51 and 52 connected in parallel to each other.
  • the collector of the transistor 101 is electrically connected to one excitation terminal T0, and the emitter of the transistor 101 is electrically connected to the resistor 102.
  • the drive circuit 10 and the magnetic field generator 5 are electrically connected in series to each other to form a series circuit.
  • the transistor 101 of the drive circuit 10 When the transistor 101 of the drive circuit 10 is turned on in a state where the voltage of the voltage value V1 is applied to the series circuit (the drive circuit 10 and the magnetic field generation unit 5), an excitation current flows through the magnetic field generation unit 5. It will be. At this time, the currents I1 and I2 having the same value flow through the two coils 51 and 52 as excitation currents as described above.
  • the current I3 flowing through the transistor 101 of the drive circuit 10 is the sum of the current I1 flowing through the coil 51 and the current I2 flowing through the coil 52, and the circuit constants of the two coils 51 and 52 are equal to each other.
  • the magnitude is twice the current I1 (current I2).
  • the drive circuit 10 changes the intensity of the magnetic field applied from the magnetic field generator 5 to the magnetorheological fluid 4 by changing the magnitude of the current I3 flowing through the transistor 101.
  • the input device 1 outputs an operation signal in accordance with the rotation amount, that is, the displacement amount of the operation body 2.
  • the control circuit 62 is a circuit that controls the drive circuit 10 based on an operation signal output from the input device 1.
  • the control circuit 62 is mainly configured by a computer including a processor and a memory, for example. In this configuration, the function as the control circuit 62 is realized by the processor executing the program recorded in the memory.
  • the program may be recorded in advance in the memory of the computer, but may be written in the memory through an electric communication line, or may be recorded in a recording medium such as a memory card, an optical disk, or a hard disk drive that can be read by the computer. It may be written to memory.
  • a computer processor is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI).
  • the plurality of electronic circuits may be integrated on one chip, or may be distributed on the plurality of chips.
  • the plurality of chips may be integrated into one device, or may be distributed and provided in a plurality of devices.
  • the control circuit 62 receives an operation signal output from the input device 1 in accordance with the amount of displacement of the operating body 2 of the input device 1, that is, the amount of rotation of the operating body 2.
  • the control circuit 62 controls the drive circuit 10 based on the input operation signal, and changes the strength of the magnetic field applied to the magnetorheological fluid 4 from the magnetic field generator 5.
  • the control circuit 62 controls the drive circuit 10 by PWM (Pulse Width Modulation), thereby changing the strength of the magnetic field applied from the magnetic field generator 5 to the magnetorheological fluid 4.
  • the control circuit 62 stores in advance a correlation between the strength of the magnetic field applied to the magnetorheological fluid 4 from the magnetic field generator 5 and the operation signal, and based on the actually input operation signal.
  • the drive circuit 10 is controlled.
  • the control circuit 62 applies a magnetic field from the magnetic field generator 5 to the magnetorheological fluid 4 when the amount of displacement of the operating body 2 reaches a predetermined value in order to prevent the operating body 2 from being turned too much, thereby generating a large resistance force. Can also be generated.
  • the input system 100 can set the limiter to the displacement amount that is the rotation angle or the rotation amount of the operation body 2.
  • FIG. 4 is a schematic circuit diagram of an input device 1X according to the comparative example.
  • the input device 1 according to the present embodiment is compared with the input device 1X according to the comparative example (see FIG. 4).
  • the input device 1X according to the comparative example illustrated in FIG. 4 is different from the input device 1 according to the present embodiment in that the magnetic field generation unit 5X includes a single coil 50.
  • the on-resistance of the transistor 101 and the electrical resistance of the resistor 102 are zero (0).
  • the input device 1X if the transistor 101 of the drive circuit 10 is in the OFF state, no current flows through the coil 50, and therefore, no magnetic field is applied from the magnetic field generator 5X to the magnetorheological fluid 4.
  • the viscosity of the magnetorheological fluid 4 is at the minimum viscosity, and the resistance force generated in the magnetorheological fluid 4 with respect to the rotation of the rotor 3 is the minimum value.
  • the reaction force (resistance force) acting from 2 is the minimum value.
  • the input device 1X when the transistor 101 of the drive circuit 10 is turned on, a current I0 flows through the coil 50, so that a magnetic field is applied from the magnetic field generator 5X to the magnetorheological fluid 4.
  • the viscosity of the magnetorheological fluid 4 is at the maximum viscosity, and the resistance force generated by the magnetorheological fluid 4 with respect to the rotation of the rotor 3 is the maximum value.
  • the reaction force (resistance force) acting from 2 becomes the maximum value.
  • the elapsed time t from when the transistor 101 is turned on and the current value i (t) of the current I0 flowing through the coil 50 are connected to each other in series.
  • the voltage value V1 of the voltage applied to the series circuit composed of the magnetic field generator 5X and the resistance value R of the coil 50 are expressed by the equation 1 by the inductance L of the coil 50.
  • the current I0 flowing through the coil 50 rises with a time delay due to a time constant (R / L) determined by at least the inductance of the coil 50. become.
  • the delay in the rise of the current I0 flowing through the coil 50 is relative to the rotation of the rotor 3. This leads to a delay in the rise of the resistance force generated in the magnetorheological fluid 4. That is, the rise of the current I0 flowing through the coil 50 is delayed by at least a time constant determined by the inductance of the coil 50, and the response time of the resistance force generated in the magnetorheological fluid 4 to the control of the drive circuit 10 by the control circuit 62 Becomes longer and the responsiveness becomes worse.
  • the magnetic field generator 5 has a plurality of (in the first embodiment, two) coils 51 and 52 that are electrically connected in parallel to each other.
  • the magnetomotive forces are the same, that is, the coil 50 and the plurality of coils 51 and 52.
  • the ampere-turn is equivalent.
  • the number of turns of the coil 50 is equal to the sum of the number of turns of the coil 51 and the number of turns of the coil 52, that is, the same value as twice the number of turns of the coil 51 (coil 52).
  • each of the inductances L51 and L52 of the coil 51 and the coil 52 has a half value (L / 2) of the inductance L of the coil 50, and each of the resistance values R51 and R52 of the coil 51 and the coil 52 is equal to the coil 50.
  • the resistance value R is half the value (R / 2).
  • the voltage value V1 of the voltage applied to the series circuit including the drive circuit 10 and the magnetic field generator 5X connected in series to each other in the input device 1X according to the comparative example is the same as the voltage value V1 of the input device 1 according to the present embodiment. Is equal to the voltage value V1 of the voltage applied to the series circuit including the drive circuit 10 and the magnetic field generator 5 connected to each other.
  • the elapsed time t from when the transistor 101 is turned on, and the current values i (t) of the currents I1 and I2 flowing through the coils 51 and 52, respectively, are expressed by the following equation (2). expressed.
  • the magnitudes (current values) of the currents I1 and I2 flowing through the coils 51 and 52 in the input device 1 according to the present embodiment are the magnitudes of the currents I0 flowing through the coil 50 in the input device 1X according to the comparative example ( Current value). Furthermore, since the current I3 (see FIG. 3) flowing through the transistor 101 of the drive circuit 10 is the sum of the currents I1 and I2 flowing through the coils 51 and 52, the current value of the current I3 is a current value expressed by the following equation (2). This is twice i (t).
  • FIG. 5 is a graph showing the rising characteristics of the current I0 in the input device 1X according to the comparative example and the rising characteristics of the currents I1 and I2 in the input device 1 according to the present embodiment.
  • the horizontal axis indicates the elapsed time t from the time when the transistor 101 is turned on, and the current value i (t).
  • the upper limit of the current value i (t) of the current I0 flowing through the coil 50 is limited by the rising characteristic represented by the above equation (1). Therefore, in the input device 1X according to the comparative example, the current I0 cannot flow in the region A0 that exceeds the rising characteristic of the current I0.
  • the current values i (t) of the currents I1 and I2 flowing through the coils 51 and 52 are twice as large as the current I0 as expressed by the above equation (2). Therefore, the rising slope is doubled. Therefore, in the input device 1 according to the present embodiment, the currents I1 and I2 can also flow through the region A0 that exceeds the rising characteristic of the current I0.
  • the rising of the currents I1 and I2 flowing through the coils 51 and 52 is faster than the input device 1X according to the comparative example, and the rotation of the rotor 3 is reduced.
  • the resistance force generated by the magnetorheological fluid 4 rises faster.
  • the rising characteristics of the currents I1 and I2 flowing through the coils 51 and 52 are improved, and the resistance force generated by the magnetorheological fluid 4 with respect to the control of the drive circuit 10 by the control circuit 62 is improved. Responsiveness is improved.
  • FIGS. 6A and 6B are schematic circuit diagrams of the input device 1 according to the first embodiment.
  • the wiring structure of the plurality of coils 51 and 52 in the input device at least the first structure or the second structure shown in FIGS. 6A and 6B can be employed.
  • the first structure shown in FIG. 6A is a wiring structure that electrically connects a plurality of coils 51 and 52 outside of the input device 1 (parallel connection in this embodiment).
  • the input device 1 includes excitation terminals T1 and T2 which are a plurality of pairs of individual terminals.
  • the plurality of pairs of excitation terminals T1 and T2 are terminals electrically connected to the corresponding coils 51 and 52 so as to correspond to the plurality of coils 51 and 52, respectively.
  • the input apparatus 1 includes two pairs of excitation terminals T1 and T2 including a pair of excitation terminals T1 corresponding to the coil 51 and a pair of terminals T2 corresponding to the coil 52.
  • the pair of excitation terminals T1 is electrically connected to both ends of the coil 51
  • the pair of excitation terminals T2 is electrically connected to both ends of the coil 52.
  • one of the pair of excitation terminals T1 and one of the pair of excitation terminals T2 are electrically connected to each other, and the other of the pair of excitation terminals T1 and the other of the pair of excitation terminals T2 Are electrically connected to each other, whereby the two coils 51 and 52 are electrically connected in parallel.
  • the magnetic field generator 5 further includes a plurality of pairs of excitation terminals T1 and T2 connected to the plurality of coils 51 and 52.
  • Each pair of excitation terminals T1 (T2) of the plurality of pairs of excitation terminals T1, T2 is electrically connected to the corresponding coil 51 (52) of the plurality of coils 51, 52.
  • the second structure shown in FIG. 6B is a wiring structure that performs electrical connection (parallel connection in this embodiment) of the plurality of coils 51 and 52 inside the input device 1.
  • the input device 1 further includes an excitation terminal T3 that is a pair of concentrated terminals.
  • the pair of excitation terminals T ⁇ b> 3 are terminals that are electrically connected to the plurality of coils 51 and 52. That is, the two coils 51 and 52 are electrically connected in parallel with each other inside the input device 1, and the pair of excitation terminals T3 includes two coils 51 and 52 that are connected in parallel with each other. Electrically connected to both ends of the parallel circuit.
  • Modification Example 1 is only one of various embodiments of the present disclosure.
  • the first embodiment can be variously modified according to the design or the like as long as the object of the present disclosure can be achieved.
  • the modifications described below can be applied in appropriate combinations.
  • FIG. 7 is a schematic circuit diagram of another input device 1A according to a first modification of the first embodiment.
  • the same reference numerals are assigned to the same portions as those of the input device 1 shown in FIGS. 6A and 6B.
  • a plurality of (two in the first embodiment) coils 51 and 52 in the magnetic field generator 5A are electrically connected in series between a pair of excitation terminals T0. Connected to T0.
  • the magnetic fluxes ⁇ 1 and ⁇ 2 in the mutually reinforcing direction act on the magnetorheological fluid 4 from the two coils 51 and 52 to act on the two coils 51 and 52. Winding direction is aligned.
  • the input device 1A according to the first modification when a DC voltage is applied between the pair of excitation terminals T0, the current I10 flows through the two coils 51 and 52. At this time, the magnetic fluxes ⁇ 1 and ⁇ 2 in the direction of strengthening each other, that is, the downward magnetic fluxes ⁇ 1 and ⁇ 2 act as shown in FIG.
  • the circuit constants of the two coils 51 and 52 are equivalent to the circuit constants of the two coils 51 and 52 of the magnetic field generation unit 5 in the first embodiment.
  • the current I10 flowing through the transistor 101 of the drive circuit 10 is smaller than the current I3 flowing through the transistor 101 of the drive circuit 10 in the first embodiment. Therefore, according to the input device 1A according to the first modification, it is possible to reduce the power consumption in the magnetic field generation unit 5A.
  • the input system 100 includes a computer in the control circuit 62, for example.
  • the computer mainly includes a processor and memory as hardware.
  • the program may be recorded in advance in the memory of the computer, but may be written in the memory through an electric communication line, or may be recorded in a recording medium such as a memory card, an optical disk, or a hard disk drive that can be read by a computer. May be.
  • a computer processor is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI).
  • the plurality of electronic circuits may be integrated on one chip, or may be distributed on the plurality of chips.
  • the plurality of chips may be integrated into one device, or may be distributed and provided in a plurality of devices.
  • the input system 100 it is not an essential configuration of the input system 100 that a plurality of functions in the input system 100 are integrated in one housing.
  • some components of the input system 100 such as the control circuit 62 are: It may be provided apart from the input device 1.
  • at least some functions of the input system 100 such as the control circuit 62 may be realized by, for example, a server device or a cloud (cloud computing).
  • at least some functions of the input system 100 such as the control circuit 62 may be integrated in the input device 1.
  • the magnetic field generator 5 has a plurality of coils, and is not limited to the two coils 51 and 52, and may have three or more coils.
  • the rise time of the current flowing through the magnetic field generator 5 can be shortened and the rise characteristics are improved as the number of coils increases. Therefore, as the number of coils increases, it can be expected that the responsiveness of the resistance force generated in the magnetorheological fluid 4 to the control of the drive circuit 10 by the control circuit 62 is improved.
  • circuit constants of the plurality of coils 51 and 52 in the magnetic field generator 5 may be different from each other.
  • the inductance of the coil 51 may be different from the inductance of the coil 52
  • the resistance value of the coil 51 may be different from the resistance value of the coil 52.
  • the three or more coils may be in a connection relationship in which parallel connection and series connection are combined.
  • another coil may be electrically connected in series to a parallel circuit including two coils connected in parallel to each other.
  • the rotor 3 is not limited to the configuration directly coupled to the operating body 2, and for example, force is transmitted from the operating body 2 via a transmission mechanism. It may be configured.
  • the transmission mechanism includes, for example, a gear box, and is a mechanism that transmits the force acting on the operation body 2 when the operation body 2 is operated to the rotor 3 to rotate the rotor 3.
  • the transmission mechanism is not limited to the rotation operation of the operation body 2. For example, a force acting on the operation body 2 by a slide operation, a push operation, a pulling operation, or the like on the operation body 2 is transmitted to the rotor 3 to rotate the rotor 3. Also good.
  • the rotor 3 is not limited to the operation body 2 and may be a single member integrated with the operation body 2. In this case, the one member functions as the operation body 2 and the rotor 3.
  • the input device 1 is not limited to an incremental rotary encoder, but may be an absolute rotary encoder, for example. Furthermore, the input device 1 is not limited to a contact type rotary encoder having a plurality of fixed contacts and contact brushes. For example, an optical method having a light emitting element and a light receiving element, a magnetic detection method having a Hall element, or the like A non-contact rotary encoder such as a capacity method may be used.
  • the input device 1 only needs to be configured to output an electrical signal corresponding to the amount of displacement of the operating body 2, and is not limited to a (rotary) encoder, and may be, for example, a (rotary) switch or a variable resistor.
  • the input device 1 is a rotary switch, the on / off state between the output terminals is switched according to the rotation amount of the operating body 2.
  • the input device 1 is a variable resistor, the resistance value between the output terminals changes according to the rotation amount of the operation body 2.
  • the input device 1 may further include a protection element such as a thermal fuse electrically connected in series to each of the plurality of coils 51 and 52 in the magnetic field generator 5.
  • a protection element such as a thermal fuse electrically connected in series to each of the plurality of coils 51 and 52 in the magnetic field generator 5.
  • the magnetorheological fluid 4 comes into contact with the rotor 3 to generate a resistance force that suppresses the rotation of the rotor 3.
  • the magnetorheological fluid 4 may generate a resistance force that suppresses the rotation of the rotor 3 by coming into contact with another member that rotates or moves by the rotation of a gear, a pulley, a blade, or the like. In this case, it expresses as the rotor 3 including another member.
  • FIG. 8 is a cross-sectional view of the input device 1B according to the second embodiment.
  • the input device 1 ⁇ / b> B according to the present embodiment is different from the input device 1 according to the first embodiment in the manner of mounting the two coils 51 and 52 on the coil bobbin 7 in the magnetic field generation unit 5 ⁇ / b> B.
  • the same configurations as those of the first embodiment are denoted by common reference numerals, and description thereof is omitted as appropriate.
  • the case 90 is not shown.
  • the two coils 51 and 52 in the magnetic field generator 5B are mounted on the coil bobbin 7 so as to be aligned in the vertical direction D20, that is, in the direction of the rotating shaft 20 of the operating body 2 (see FIG. 1A).
  • the electric wire and the coil 52 constituting the coil 51 are configured on the outer peripheral surface 7A of the coil bobbin 7 so that the coil 51 is located on the upper side and the coil 52 is located on the lower side and located below the coil 51.
  • the electric wire to be wound is wound.
  • the same operation as that of the input device 1 according to the first embodiment is possible.
  • the configuration described in the second embodiment can be applied in appropriate combination with the configuration (including modifications) described in the first embodiment.
  • the input device (1, 1A, 1B) includes the operating body (2), the rotor (3), the magnetorheological fluid (4), and the magnetic field generator (5, 5A, 5B).
  • the rotor (3) rotates with the operation of the operating body (2).
  • the magnetorheological fluid (4) generates a resistance force against the rotation of the rotor (3) by contacting the rotor (3).
  • the magnetic field generator (5, 5A, 5B) changes the viscosity of the magnetorheological fluid (4) by applying a magnetic field to the magnetorheological fluid (4) to change the magnitude of the resistance force.
  • the magnetic field generator (5, 5A, 5B) has a plurality of coils (51, 52) for applying a magnetic field to the magnetorheological fluid (4).
  • the resistance force acting on the operating body (2) can be controlled by the plurality of coils (51, 52). Therefore, for example, various electrical characteristics such as a rising characteristic of a current flowing through the magnetic field generation unit (5, 5A, 5B) and current consumption in the magnetic field generation unit (5, 5A, 5B) are represented by a plurality of coils (51 , 52). Therefore, according to the input device (1, 1A, 1B), compared to the case where the resistance force acting on the operating body (2) is controlled by a single coil, the electric power relating to the viscosity control of the magnetorheological fluid (4) is controlled. It is possible to improve the degree of freedom in designing the characteristic characteristics.
  • the plurality of coils (51, 52) are electrically connected in parallel between the pair of excitation terminals (T0).
  • T0 the pair of excitation terminals
  • magnetic fluxes ( ⁇ 1, ⁇ 2) in a mutually reinforcing direction act on the magnetorheological fluid (4) from the plurality of coils (51, 52).
  • the rising characteristics of the currents (I1, I2) flowing through the plurality of coils (51, 52) are improved, and the responsiveness of the resistance force generated in the magnetorheological fluid (4) can be improved.
  • the plurality of coils (51, 52) are electrically connected in series between the pair of excitation terminals (T0).
  • T0 the pair of excitation terminals
  • magnetic fluxes ( ⁇ 1, ⁇ 2) in a mutually reinforcing direction act on the magnetorheological fluid (4) from the plurality of coils (51, 52).
  • the power consumption of the plurality of coils (51, 52) can be kept relatively small.
  • the input device (1, 1A, 1B) according to the fourth aspect further includes a magnetic member (8A: cover 8 and body 9) in any one of the first to third aspects.
  • the magnetic member forms part of a magnetic circuit through which at least part of magnetic flux ( ⁇ 1, ⁇ 2) generated by the plurality of coils (51, 52) and acting on the magnetorheological fluid (4) passes.
  • the magnetic flux ( ⁇ 1, ⁇ 2) generated by the plurality of coils (51, 52) acts on the magnetic viscous fluid (4) through the magnetic member, the magnetic viscous fluid (4) can be efficiently processed.
  • a magnetic field can be applied.
  • the input device (1, 1A, 1B) according to the fifth aspect further includes a plurality of pairs of individual terminals (T1, T2) in any one of the first to fourth aspects.
  • the plurality of pairs of individual terminals (T1, T2) are electrically connected to the corresponding coils (51, 52) so as to correspond one-to-one with the plurality of coils (51, 52).
  • the plurality of coils (51, 52) can be electrically connected outside the input device (1, 1A, 1B).
  • the input device (1, 1A, 1B) according to the sixth aspect further includes a pair of concentrated terminals (T3) in any one of the first to fourth aspects.
  • the pair of concentrated terminals (T3) is electrically connected to the plurality of coils (51, 52).
  • the plurality of coils (51, 52) can be electrically connected inside the input device (1, 1A, 1B).
  • the input system (100) according to the seventh aspect includes the input device (1, 1A, 1B) according to any one of the first to sixth aspects, and a drive circuit (10).
  • the drive circuit (10) applies a magnetic field from the magnetic field generator (5, 5A, 5B) to the magnetorheological fluid (4) by flowing an exciting current through the plurality of coils (51, 52).
  • the resistance force acting on the operating body (2) can be controlled by the plurality of coils (51, 52). Therefore, for example, various electrical characteristics such as a rising characteristic of a current flowing through the magnetic field generation unit (5, 5A, 5B) and current consumption in the magnetic field generation unit (5, 5A, 5B) are represented by a plurality of coils (51 , 52). Therefore, according to the input system (100), as compared with the case where the resistance force acting on the operating body (2) is controlled by a single coil, the design of electrical characteristics related to the viscosity control of the magnetorheological fluid (4) The degree of freedom can be improved.
  • the input system (100) according to the eighth aspect further includes a control circuit (62) in the seventh aspect.
  • the control circuit (62) controls the drive circuit (10) based on the operation signal output from the input device (1, 1A, 1B) according to the displacement amount of the operating body (2).
  • the resistance force acting on the operating body (2) can be changed according to the amount of displacement of the operating body (2).
  • the configurations according to the second to sixth aspects are not essential to the input device (1, 1A, 1B) and can be omitted as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Rotary Switch, Piano Key Switch, And Lever Switch (AREA)
  • Mechanical Control Devices (AREA)
  • Position Input By Displaying (AREA)
  • Switch Cases, Indication, And Locking (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

This input device comprises: an operation body; a rotor for operation body operation; a magnetic viscous fluid that comes into contact with the rotor; and a magnetic field generation unit that applies a magnetic field to the magnetic viscous fluid. The magnetic viscous fluid generates resistance for suppressing the rotation of the rotor by contacting the rotor. The magnetic field generation unit changes the viscosity of the magnetic viscous fluid by applying a magnetic field to the magnetic viscous fluid, thereby changing the magnitude of resistance. The magnetic field generation unit has a plurality of coils that each apply a magnetic field to the magnetic viscous fluid.

Description

入力装置及び入力システムInput device and input system
 本開示は、入力装置及び入力システムに関する。 This disclosure relates to an input device and an input system.
 特許文献1には、操作者が操作した際に、操作者に対して操作感触を与えることができる入力装置が記載されている。 Patent Document 1 describes an input device that can give an operation feeling to an operator when the operator operates.
 この入力装置は、操作者の操作により回転動作する操作体と、操作体に対して回転負荷を付与する回転負荷付与機構と、を備えている。回転負荷付与機構は、磁界の強さに応じて粘性が変化する磁気粘性流体と、通電により磁界を発生するコイルと、を備える。そのため、コイルに電流が流れて磁界が発生した状態では、磁気粘性流体の粘性が強くなり、操作体と共に回転動作する可動部材に対して磁気粘性流体にて抵抗力が生じる。これにより、操作体に抵抗力(回転負荷)が伝達し、結果的に、操作者に対して回転操作の回転負荷を付与することができる。 This input device includes an operating body that rotates by an operator's operation and a rotational load applying mechanism that applies a rotational load to the operating body. The rotational load applying mechanism includes a magnetorheological fluid whose viscosity changes according to the strength of the magnetic field, and a coil that generates a magnetic field when energized. Therefore, in a state where a current flows through the coil and a magnetic field is generated, the viscosity of the magnetorheological fluid becomes strong, and a resistance force is generated by the magnetorheological fluid with respect to the movable member that rotates with the operating body. Thereby, a resistance force (rotational load) is transmitted to the operating body, and as a result, the rotational load of the rotating operation can be applied to the operator.
 また、特許文献1には、コイルに流す電流を大きくすると、それに伴って発生する磁界が強くなり、この磁界の強さに伴ってトルク、つまり操作体にかかる抵抗力(回転負荷)が増大することが記載されている。そのため、この入力装置では、操作制御部により、コイルへの通電量及び通電のタイミングを制御することで、操作者に対して任意のタイミングで任意の回転負荷を与える。 Further, in Patent Document 1, when the current flowing through the coil is increased, the magnetic field generated is increased, and the torque, that is, the resistance force (rotational load) applied to the operating body increases with the strength of the magnetic field. It is described. Therefore, in this input device, the operation control unit controls the amount of energization to the coil and the timing of energization, thereby applying an arbitrary rotational load to the operator at an arbitrary timing.
特開2017-173951号公報JP 2017-173951 A
 入力装置は、操作体と、操作体の操作に伴って回転するロータと、ロータに接する磁気粘性流体と、磁気粘性流体に磁界を印加する磁界発生部とを備える。磁気粘性流体は、前記ロータに接することでロータの回転を抑制する抵抗力を発生する。磁界発生部は、磁気粘性流体に磁界を印加することにより磁気粘性流体の粘性を変化させて抵抗力の大きさを変化させる。磁界発生部は、磁気粘性流体に磁界をそれぞれ印加する複数のコイルを有する。 The input device includes an operating body, a rotor that rotates as the operating body is operated, a magnetorheological fluid that contacts the rotor, and a magnetic field generator that applies a magnetic field to the magnetorheological fluid. The magnetorheological fluid generates a resistance force that suppresses rotation of the rotor by contacting the rotor. The magnetic field generation unit changes the viscosity of the magnetorheological fluid by applying a magnetic field to the magnetorheological fluid to change the magnitude of the resistance force. The magnetic field generator has a plurality of coils that respectively apply magnetic fields to the magnetorheological fluid.
 この入力装置は、磁気粘性流体の粘性の制御に関する電気的特性の設計の自由度の向上を図ることができる。 This input device can improve the degree of freedom in designing the electrical characteristics related to the viscosity control of the magnetorheological fluid.
図1Aは、実施形態1に係る入力装置の平面図である。FIG. 1A is a plan view of the input device according to the first embodiment. 図1Bは、図1Aに示す入力装置の線X1-X1における断面図である。1B is a cross-sectional view of the input device shown in FIG. 1A taken along line X1-X1. 図2は、図1Bに示す入力装置の拡大図である。FIG. 2 is an enlarged view of the input device shown in FIG. 1B. 図3は、実施形態1に係る入力システムの概略回路図である。FIG. 3 is a schematic circuit diagram of the input system according to the first embodiment. 図4は、比較例に係る入力装置の概略回路図である。FIG. 4 is a schematic circuit diagram of an input device according to a comparative example. 図5は、比較例に係る入力装置における電流の立ち上がり特性と、実施形態1に係る入力装置における電流の立ち上がり特性とを表すグラフである。FIG. 5 is a graph illustrating a current rising characteristic in the input device according to the comparative example and a current rising characteristic in the input device according to the first embodiment. 図6Aは、実施形態1に係る入力装置の概略回路図である。FIG. 6A is a schematic circuit diagram of the input device according to the first embodiment. 図6Bは、実施形態1に係る他の入力装置の概略回路図である。FIG. 6B is a schematic circuit diagram of another input device according to the first embodiment. 図7は、実施形態1に係るさらに他の入力装置の概略回路図である。FIG. 7 is a schematic circuit diagram of still another input device according to the first embodiment. 図8は、実施形態2に係る入力装置の断面図である。FIG. 8 is a cross-sectional view of the input device according to the second embodiment.
 (実施形態1)
 (1)概要
 図1Aは実施形態1に係る入力装置1の平面図である。図1Bは、図1Aに示す入力装置1の線X1-X1における断面図である。入力装置1は、操作体2と、ロータ3と、磁気粘性流体4と、磁界発生部5とを備えている。
(Embodiment 1)
(1) Overview FIG. 1A is a plan view of an input device 1 according to the first embodiment. 1B is a cross-sectional view of the input device 1 shown in FIG. 1A taken along line X1-X1. The input device 1 includes an operating body 2, a rotor 3, a magnetorheological fluid 4, and a magnetic field generator 5.
 入力装置1は、操作体2に対するユーザの操作を受け付ける装置である。本開示でいう「操作」は、ユーザが操作体2に対して外力を加えること全般を含み、例えば、回転操作、スライド操作、押し操作及び引き操作等が操作体2の操作に含まれる。本実施形態では一例として、操作体2は回転可能に構成されており、ユーザは操作体2を回転操作する。つまり、入力装置1は、ユーザによる操作体2の回転操作を受け付ける回転操作型デバイスである。実施形態1ではより詳細には、入力装置1は、ロータリエンコーダである。 The input device 1 is a device that receives a user operation on the operation tool 2. The “operation” in the present disclosure includes all cases where the user applies an external force to the operation body 2, and includes, for example, a rotation operation, a slide operation, a push operation, a pulling operation, and the like. In this embodiment, as an example, the operation tool 2 is configured to be rotatable, and the user rotates the operation tool 2. That is, the input device 1 is a rotation operation type device that receives a rotation operation of the operation body 2 by the user. In more detail in the first embodiment, the input device 1 is a rotary encoder.
 ロータ3は、操作体2の操作に伴って回転する。磁気粘性流体4は、ロータ3に接することでロータ3の回転を妨げて抑制する抵抗力を発生する。磁界発生部5は、磁気粘性流体4に磁界を印加することにより磁気粘性流体4の粘性を変化させて抵抗力の大きさを変化させる。磁界発生部5は、それぞれ磁気粘性流体4に磁界を印加して作用させる複数のコイル51、52を有する。 The rotor 3 rotates as the operating body 2 is operated. The magnetorheological fluid 4 is in contact with the rotor 3 and generates a resistance force that prevents and suppresses the rotation of the rotor 3. The magnetic field generator 5 changes the viscosity of the magnetorheological fluid 4 by applying a magnetic field to the magnetorheological fluid 4 to change the magnitude of the resistance force. The magnetic field generator 5 includes a plurality of coils 51 and 52 that act by applying a magnetic field to the magnetorheological fluid 4.
 本開示でいう「磁気粘性流体4」は、印加される磁界の強さに応じて粘性が可逆的に変化する性質を有する機能性流体、より詳細には、MRF(Magnetorheological Fluid)であって、印加される磁界が強くなるにつれて粘性が高くなる。磁気粘性流体4の粘性が高くなるほど、ロータ3の回転に対する上記抵抗力が大きくなる。 The “magnetoviscous fluid 4” in the present disclosure is a functional fluid having a property that the viscosity reversibly changes according to the strength of an applied magnetic field, more specifically, MRF (Magnetorheological Fluid), As the applied magnetic field increases, the viscosity increases. As the viscosity of the magnetorheological fluid 4 increases, the resistance force against the rotation of the rotor 3 increases.
 要するに、本実施形態に係る入力装置1は、ロータ3、磁気粘性流体4及び磁界発生部5を備えることにより、操作体2の操作時に操作体2に作用する抵抗力(負荷)の大きさを、変化させることができる。つまり、入力装置1では、磁界発生部5から磁気粘性流体4に印加される磁界を変化させることで磁気粘性流体4の粘性が変化するので、ロータ3の回転時にロータ3に作用する抵抗力の大きさが変化し、結果的に、操作体2に作用する抵抗力の大きさが変化する。したがって、入力装置1は、操作体2を操作するユーザに対して操作体2から作用する反力(抵抗力)の大きさを変化させることにより、ユーザに対して力覚を提示する、いわゆるハプティックデバイスを構成する。 In short, the input device 1 according to the present embodiment includes the rotor 3, the magnetorheological fluid 4, and the magnetic field generator 5, thereby reducing the magnitude of the resistance force (load) acting on the operating body 2 when operating the operating body 2. Can be changed. That is, in the input device 1, since the viscosity of the magnetic viscous fluid 4 is changed by changing the magnetic field applied to the magnetic viscous fluid 4 from the magnetic field generator 5, the resistance force acting on the rotor 3 during the rotation of the rotor 3 is changed. As a result, the magnitude of the resistance force acting on the operating body 2 changes. Therefore, the input device 1 presents a sense of force to the user by changing the magnitude of the reaction force (resistance force) applied from the operation body 2 to the user who operates the operation body 2. Configure the device.
 磁界発生部5は、複数のコイル51、52を有している。複数のコイル51、52は、いずれも磁気粘性流体4に磁界を作用させる。したがって、操作体2に作用する抵抗力を複数のコイル51、52で制御することになる。例えば、磁界発生部5を流れる電流の立ち上がり特性、及び磁界発生部5での消費電流等の種々の電気的特性は、複数のコイル51、52の回路定数で決まることになる。そのため、本実施形態に係る入力装置1によれば、操作体2に作用する抵抗力を単一のコイルで制御する場合に比べると、磁気粘性流体4の粘性の制御に関する電気的特性の設計の自由度の向上を図ることができる。 The magnetic field generator 5 has a plurality of coils 51 and 52. The plurality of coils 51 and 52 both cause a magnetic field to act on the magnetorheological fluid 4. Therefore, the resistance force acting on the operating body 2 is controlled by the plurality of coils 51 and 52. For example, various electrical characteristics such as rising characteristics of current flowing through the magnetic field generator 5 and current consumption in the magnetic field generator 5 are determined by circuit constants of the plurality of coils 51 and 52. Therefore, according to the input device 1 according to the present embodiment, compared with the case where the resistance force acting on the operating body 2 is controlled by a single coil, the design of electrical characteristics related to the viscosity control of the magnetorheological fluid 4 is improved. The degree of freedom can be improved.
 特許文献1に開示されている従来の入力装置では、操作体に作用する抵抗力を単一のコイルで制御する。コイルを流れる電流の立ち上がり特性、及びコイルでの消費電流等の種々の電気的特性が単一のコイルの回路定数で決まることになる。したがって、特許文献1に開示されている入力装置では、磁気粘性流体の粘性の制御に関する電気的特性の設計の自由度が低い。 In the conventional input device disclosed in Patent Document 1, the resistance force acting on the operating body is controlled by a single coil. Various electrical characteristics such as the rising characteristics of the current flowing through the coil and the current consumption in the coil are determined by the circuit constant of the single coil. Therefore, the input device disclosed in Patent Document 1 has a low degree of freedom in designing electrical characteristics related to the viscosity control of the magnetorheological fluid.
 実施形態1に係る入力装置1は、前述のように、操作体に作用する抵抗力を単一のコイルで制御する従来の入力装置に比べると、磁気粘性流体4の粘性の制御に関する電気的特性の設計の自由度の向上を図ることができる。 As described above, the input device 1 according to the first embodiment has electrical characteristics related to the viscosity control of the magnetorheological fluid 4 as compared with the conventional input device that controls the resistance force acting on the operating body with a single coil. The degree of freedom of design can be improved.
 図3は実施形態1に係る入力システム100の概略回路図である。本実施形態に係る入力装置1は、磁界発生部5を駆動するための駆動回路10と共に、入力システム100を構成する。駆動回路10は、複数のコイル51、52に励磁電流を流すことにより、磁界発生部5から磁気粘性流体4に磁界を印加させる回路である。言い換えれば、入力システム100は、入力装置1と、複数のコイル51、52に励磁電流を流すことにより磁界発生部5から磁気粘性流体4に磁界を印加させる駆動回路10と、を備える。 FIG. 3 is a schematic circuit diagram of the input system 100 according to the first embodiment. The input device 1 according to the present embodiment constitutes an input system 100 together with a drive circuit 10 for driving the magnetic field generator 5. The drive circuit 10 is a circuit that applies a magnetic field from the magnetic field generator 5 to the magnetorheological fluid 4 by flowing an excitation current through the plurality of coils 51 and 52. In other words, the input system 100 includes the input device 1 and the drive circuit 10 that applies a magnetic field from the magnetic field generator 5 to the magnetorheological fluid 4 by causing an excitation current to flow through the plurality of coils 51 and 52.
 (2)詳細
 以下、本実施形態に係る入力装置1及びそれを備える入力システム100の構成の詳細について、図面を参照して説明する。以下で参照する図面は、いずれも模式的な図であり、図中の各構成要素の大きさ及び厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。また、以下では、操作体2の回転軸20に沿った軸方向を上下方向D20とし、特に操作体2がカバー8から突出する向き(図1Bの上方)を「上方」として説明する。ただし、これらの方向は、入力装置1の使用方向を限定する趣旨ではない。
(2) Details Hereinafter, details of the configuration of the input device 1 according to the present embodiment and the input system 100 including the same will be described with reference to the drawings. The drawings referred to below are all schematic diagrams, and the ratios of the sizes and thicknesses of the constituent elements in the drawings do not necessarily reflect actual dimensional ratios. In the following description, the axial direction along the rotation axis 20 of the operating body 2 is defined as the vertical direction D20, and in particular, the direction in which the operating body 2 protrudes from the cover 8 (upward in FIG. 1B) is described as “upward”. However, these directions are not intended to limit the use direction of the input device 1.
 (2.1)構造
 本実施形態に係る入力装置1は、図1A及び図1Bに示すように、操作体2、ロータ3、磁気粘性流体4及び磁界発生部5に加えて、コイルボビン7、カバー8、ボディ9及びケース90を更に備えている。
(2.1) Structure As shown in FIGS. 1A and 1B, the input device 1 according to the present embodiment includes a coil bobbin 7, a cover in addition to the operating body 2, the rotor 3, the magnetorheological fluid 4, and the magnetic field generator 5. 8, a body 9 and a case 90 are further provided.
 操作体2は円柱形状を有する。操作体2は、円柱形状の中心軸を通る回転軸20を中心として回転可能にカバー8及びボディ9に支持されている。操作体2は、ロータ3に結合される結合部21と、軸受部91にて支持される支持部22とを有している。結合部21は、上下方向D20における操作体2の中央部に設けられており、支持部22は、操作体2の下端部に設けられている。操作体2は、ユーザによって直接的に操作される構成に限らず、例えば、操作体2に操作つまみ等が取り付けられてもよい。この場合、ユーザは、操作つまみを操作することにより、操作体2を間接的に操作することになる。 The operating body 2 has a cylindrical shape. The operating body 2 is supported by the cover 8 and the body 9 so as to be rotatable about a rotation axis 20 passing through a cylindrical center axis. The operating body 2 includes a coupling portion 21 coupled to the rotor 3 and a support portion 22 supported by the bearing portion 91. The coupling portion 21 is provided at the central portion of the operation body 2 in the up-down direction D20, and the support portion 22 is provided at the lower end portion of the operation body 2. The operation body 2 is not limited to a configuration that is directly operated by a user, and for example, an operation knob or the like may be attached to the operation body 2. In this case, the user operates the operation tool 2 indirectly by operating the operation knob.
 ロータ3は、操作体2の回転軸20を中心とする円盤形状を有する。ロータ3は、操作体2の回転軸20を中心として、操作体2の操作に伴って回転する。本実施形態では、ロータ3は結合部21にて操作体2に直接的に結合されている。そのため、操作体2が回転軸20を中心として回転すると、ロータ3は、操作体2と一緒に回転軸20を中心として回転する。ロータ3は、一例として、磁性材料にて形成されており、実施形態1では強磁性体にて形成されている。 The rotor 3 has a disk shape centered on the rotating shaft 20 of the operating body 2. The rotor 3 rotates around the rotating shaft 20 of the operating body 2 as the operating body 2 is operated. In the present embodiment, the rotor 3 is directly coupled to the operating body 2 at the coupling portion 21. Therefore, when the operating body 2 rotates about the rotation shaft 20, the rotor 3 rotates about the rotation shaft 20 together with the operating body 2. The rotor 3 is formed of a magnetic material as an example, and is formed of a ferromagnetic material in the first embodiment.
 コイルボビン7は、操作体2の回転軸20を中心として囲み回転軸20に沿って延びる円筒形状を有する。つまり、コイルボビン7は中空部分を有し、コイルボビン7の中空部分内には、カバー8及びボディ9が収容される。コイルボビン7には、磁界発生部5における複数のコイル51、52が装着されている。コイルボビン7は、一例として、合成樹脂製である。 The coil bobbin 7 has a cylindrical shape that surrounds the rotating shaft 20 of the operating body 2 and extends along the rotating shaft 20. That is, the coil bobbin 7 has a hollow portion, and the cover 8 and the body 9 are accommodated in the hollow portion of the coil bobbin 7. A plurality of coils 51, 52 in the magnetic field generator 5 are mounted on the coil bobbin 7. As an example, the coil bobbin 7 is made of synthetic resin.
 カバー8は、操作体2の回転軸20を中心とする円盤形状を有する。平面視におけるカバー8の中央部には、円形状を有する開口を有する貫通孔81が形成されている。操作体2は、上下方向D20において貫通孔81を通してカバー8を貫通する。詳しくは後述するが、カバー8は磁気回路の一部を形成する。そのため、カバー8は磁性材料にて形成されており、本実施形態では強磁性体にて形成されている。 The cover 8 has a disk shape with the rotating shaft 20 of the operating body 2 as the center. A through hole 81 having a circular opening is formed in the center of the cover 8 in plan view. The operating body 2 penetrates the cover 8 through the through hole 81 in the vertical direction D20. Although described later in detail, the cover 8 forms a part of the magnetic circuit. Therefore, the cover 8 is made of a magnetic material, and in this embodiment is made of a ferromagnetic material.
 ボディ9は、操作体2の回転軸20に沿って延びて回転軸20を中心とする円柱形状を有する。ボディ9の上面の中央部には、円形状を有する開口を有する凹部からなる軸受部91が形成されている。操作体2の支持部22は、軸受部91に挿入された状態でボディ9にて支持される。詳しくは後述するが、ボディ9は磁気回路の一部を形成する。そのため、ボディ9は磁性材料にて形成されており、実施形態1では強磁性体にて形成されている。 The body 9 has a cylindrical shape that extends along the rotation axis 20 of the operation body 2 and has the rotation axis 20 as the center. A bearing 91 is formed at the center of the upper surface of the body 9. The bearing 91 is a recess having a circular opening. The support portion 22 of the operating body 2 is supported by the body 9 while being inserted into the bearing portion 91. As will be described in detail later, the body 9 forms part of the magnetic circuit. Therefore, the body 9 is made of a magnetic material, and in the first embodiment, it is made of a ferromagnetic material.
 ケース90は、開口する上面を有して底を有する円筒形状を有する。複数のコイル51、52がケース90内に収まるように、コイルボビン7の少なくとも一部がボディ9と共にケース90内に収容されている。 The case 90 has a cylindrical shape with an open top surface and a bottom. At least a part of the coil bobbin 7 is accommodated in the case 90 together with the body 9 so that the plurality of coils 51 and 52 are accommodated in the case 90.
 ここで、カバー8及びボディ9は、上下方向D20において、所定の隙間を空けて互いに対向した状態で、コイルボビン7に固定されている。カバー8はコイルボビン7の上面の開口を塞ぎ、ボディ9はコイルボビン7の下面の開口を塞いでおり、カバー8はボディ9の上方に位置する。これにより、コイルボビン7の内側において、カバー8の下面とボディ9の上面との間には収容空間40が形成されることになる。 Here, the cover 8 and the body 9 are fixed to the coil bobbin 7 in a state of facing each other with a predetermined gap in the vertical direction D20. The cover 8 closes the opening on the upper surface of the coil bobbin 7, the body 9 closes the opening on the lower surface of the coil bobbin 7, and the cover 8 is positioned above the body 9. As a result, an accommodation space 40 is formed between the lower surface of the cover 8 and the upper surface of the body 9 inside the coil bobbin 7.
 ロータ3は収容空間40内に収容される。カバー8の下面とボディ9の上面とコイルボビン7の内周面とは収容空間40の内側面を構成する。ロータ3は、回転時においてもカバー8、ボディ9及びコイルボビン7に接触しないように、収容空間40の内側面に対して隙間を空けた状態で、収容空間40内に収容される。 The rotor 3 is accommodated in the accommodating space 40. The lower surface of the cover 8, the upper surface of the body 9, and the inner peripheral surface of the coil bobbin 7 constitute an inner surface of the accommodation space 40. The rotor 3 is housed in the housing space 40 with a gap from the inner surface of the housing space 40 so as not to contact the cover 8, the body 9, and the coil bobbin 7 even during rotation.
 ロータ3の表面と収容空間40の内側面との間には、磁気粘性流体4が介在する。本実施形態では、磁気粘性流体4は収容空間40に充填されている。つまり、ロータ3は、磁気粘性流体4中に配置されることになる。そのため、ロータ3の表面と収容空間40の内側面との間の隙間は、磁気粘性流体4にて満たされることになる。コイルボビン7の上面とカバー8の下面との間にはパッキン71が装着され、コイルボビン7の下面とケース90の内底面との間にはパッキン72が装着されている。パッキン71及びパッキン72により、収容空間40の気密性と水密性が確保される。 The magnetorheological fluid 4 is interposed between the surface of the rotor 3 and the inner surface of the accommodating space 40. In the present embodiment, the magnetorheological fluid 4 is filled in the accommodation space 40. That is, the rotor 3 is disposed in the magnetorheological fluid 4. Therefore, the gap between the surface of the rotor 3 and the inner surface of the accommodation space 40 is filled with the magnetorheological fluid 4. A packing 71 is mounted between the upper surface of the coil bobbin 7 and the lower surface of the cover 8, and a packing 72 is mounted between the lower surface of the coil bobbin 7 and the inner bottom surface of the case 90. The packing 71 and the packing 72 ensure the airtightness and watertightness of the accommodation space 40.
 ここで、磁気粘性流体4は、印加される磁界が強くなるにつれて粘性が高くなる機能性流体である。つまり、磁気粘性流体4の粘性は一定ではなく、磁気粘性流体4に印加される磁界に応じて変化する。そして、ロータ3は、磁気粘性流体4に接した状態で回転するので、ロータ3の回転に対しては、磁気粘性流体4の粘性に応じた抵抗力が発生する。したがって、磁気粘性流体4の粘性が変化すれば、ロータ3の回転に対するすなわち回転を妨げて抑制する抵抗力の大きさが変化し、ロータ3に繋がる操作体2の操作(回転)に対する抵抗力の大きさも変化する。本実施形態では、磁気粘性流体4の粘性は、最高粘度と最低粘度との間で、印加される磁界に応じて変化する。 Here, the magnetorheological fluid 4 is a functional fluid whose viscosity increases as the applied magnetic field increases. That is, the viscosity of the magnetorheological fluid 4 is not constant, but changes according to the magnetic field applied to the magnetorheological fluid 4. Since the rotor 3 rotates in contact with the magnetorheological fluid 4, a resistance force corresponding to the viscosity of the magnetorheological fluid 4 is generated against the rotation of the rotor 3. Therefore, if the viscosity of the magnetorheological fluid 4 changes, the magnitude of the resistance force against the rotation of the rotor 3, that is, preventing the rotation to be suppressed, changes, and the resistance force against the operation (rotation) of the operating body 2 connected to the rotor 3 changes. The size also changes. In the present embodiment, the viscosity of the magnetorheological fluid 4 changes between the highest viscosity and the lowest viscosity according to the applied magnetic field.
 すなわち、磁気粘性流体4に磁界が印加されていない状態では、磁気粘性流体4の粘性は最低粘度にあって、ロータ3の回転に対して磁気粘性流体4で発生する抵抗力は最小値となる。このとき、操作体2を操作するユーザに対して操作体2から作用する反力(抵抗力)は最小値となり、操作体2の操作感は比較的軽くなる。一方、磁気粘性流体4に最大の磁界が印加されている状態では、磁気粘性流体4の粘性は最高粘度にあって、ロータ3の回転に対して磁気粘性流体4で発生する抵抗力は最大値となる。このとき、操作体2を操作するユーザに対して操作体2から作用する反力(抵抗力)は最大値となり、操作体2の操作感は重くなる。したがって、入力装置1は、操作体2を操作するユーザに対して操作体2から作用する反力(抵抗力)の大きさを変化させることにより、ユーザに対して力覚を提示する、いわゆるハプティックデバイスを構成する。 That is, in a state where no magnetic field is applied to the magnetorheological fluid 4, the viscosity of the magnetorheological fluid 4 is at the minimum viscosity, and the resistance force generated in the magnetorheological fluid 4 with respect to the rotation of the rotor 3 is the minimum value. . At this time, the reaction force (resistance force) acting on the user operating the operating tool 2 from the operating tool 2 is a minimum value, and the operating feeling of the operating tool 2 is relatively light. On the other hand, when the maximum magnetic field is applied to the magnetorheological fluid 4, the magnetorheological fluid 4 has the highest viscosity, and the resistance force generated by the magnetorheological fluid 4 with respect to the rotation of the rotor 3 is the maximum value. It becomes. At this time, the reaction force (resistance force) applied from the operating tool 2 to the user who operates the operating tool 2 becomes the maximum value, and the operating feeling of the operating tool 2 becomes heavy. Therefore, the input device 1 presents a sense of force to the user by changing the magnitude of the reaction force (resistance force) applied from the operation body 2 to the user who operates the operation body 2. Configure the device.
 磁界発生部5は、複数のコイル51、52を含む電磁石装置である。本実施形態では、磁界発生部5は、2つのコイル51、52を有している。2つのコイル51、52は、いずれもコイルボビン7に装着されている。2つのコイル51、52は、平面視において、コイル51が内側に位置し、(回転軸20側)、コイル52が外側に位置するように、回転軸20を中心とする同心円状に配置されている。すなわち、コイル52に比べてコイル51は回転軸20により近い。具体的には、コイルボビン7の外周面7Aにコイル51を構成する電線が巻き付けられ、その電線の上すなわち外側にコイル52を構成する電線が巻き付けられている。 The magnetic field generator 5 is an electromagnet device including a plurality of coils 51 and 52. In the present embodiment, the magnetic field generator 5 has two coils 51 and 52. The two coils 51 and 52 are both attached to the coil bobbin 7. The two coils 51 and 52 are arranged concentrically around the rotation shaft 20 so that the coil 51 is located on the inner side (on the rotation shaft 20 side) and the coil 52 is located on the outer side in plan view. Yes. That is, the coil 51 is closer to the rotating shaft 20 than the coil 52. Specifically, an electric wire constituting the coil 51 is wound around the outer peripheral surface 7A of the coil bobbin 7, and an electric wire constituting the coil 52 is wound on the electric wire, that is, outside.
 2つのコイル51、52は、通電時に磁気粘性流体4にそれぞれ磁界を作用させる。磁気粘性流体4は、コイルボビン7の内側の収容空間40に充填されているので、コイルボビン7の外周面7Aに装着された2つのコイル51、52でそれぞれ発生する磁界は、いずれも磁気粘性流体4に印加されることになる。ここで、2つのコイル51、52への通電時には、図2に示すように、2つのコイル51、52から磁気粘性流体4に相互に強め合う向きの磁束φ1、φ2が作用する。つまり、コイル51及びコイル52から磁気粘性流体4に対しては、同じ向きの磁界が作用する。 The two coils 51 and 52 cause a magnetic field to act on the magnetorheological fluid 4 when energized. Since the magnetorheological fluid 4 is filled in the accommodation space 40 inside the coil bobbin 7, the magnetic fields generated respectively by the two coils 51 and 52 mounted on the outer peripheral surface 7 </ b> A of the coil bobbin 7 are both magnetorheological fluid 4. Will be applied. Here, when the two coils 51 and 52 are energized, as shown in FIG. 2, magnetic fluxes φ 1 and φ 2 that are intensifying each other from the two coils 51 and 52 to the magnetorheological fluid 4 act. That is, a magnetic field in the same direction acts on the magnetorheological fluid 4 from the coil 51 and the coil 52.
 ここで、本実施形態では、カバー8及びボディ9は、いずれも磁性材料(強磁性体)からなる磁性部材8Aを構成する。本開示でいう「磁性部材」は、複数のコイル51、52で発生して磁気粘性流体4に作用する磁束φ1、φ2の少なくとも一部が通る磁気回路の一部を形成する部材である。すなわち、本実施形態に係る入力装置1は、磁性部材8Aとしてのカバー8及びボディ9を備えている。 Here, in this embodiment, both the cover 8 and the body 9 constitute a magnetic member 8A made of a magnetic material (ferromagnetic material). The “magnetic member” in the present disclosure is a member that forms part of a magnetic circuit through which at least part of the magnetic fluxes φ1 and φ2 generated by the plurality of coils 51 and 52 and acting on the magnetorheological fluid 4 passes. That is, the input device 1 according to the present embodiment includes the cover 8 and the body 9 as the magnetic member 8A.
 そのため、カバー8とボディ9との間の隙間に形成された収容空間40に対しては、カバー8とボディ9との一方が「N極」、他方が「S極」となる磁界が印加されることになる。一例として、カバー8がN極、ボディ9がS極である場合、収容空間40内の磁気粘性流体4に対しては、磁性部材8Aであるカバー8及びボディ9を通して、図2に示すように、下向きの磁束φ1、φ2が作用することになる。 Therefore, a magnetic field in which one of the cover 8 and the body 9 is “N pole” and the other is “S pole” is applied to the accommodation space 40 formed in the gap between the cover 8 and the body 9. Will be. As an example, when the cover 8 is an N pole and the body 9 is an S pole, the magnetorheological fluid 4 in the accommodation space 40 is passed through the cover 8 and the body 9 which are magnetic members 8A as shown in FIG. Thus, downward magnetic fluxes φ1 and φ2 act.
 (2.2)回路構成
 次に、本実施形態に係る入力装置1及び入力システム100の回路構成について、図3を参照して説明する。
(2.2) Circuit Configuration Next, the circuit configuration of the input device 1 and the input system 100 according to the present embodiment will be described with reference to FIG.
 本実施形態に係る入力装置1は、磁界発生部5における複数(実施形態1では2つ)のコイル51、52に加えて、検知回路61を更に備えている。また、本実施形態に係る入力システム100は、入力装置1及び駆動回路10に加えて、制御回路62を更に備えている。 The input device 1 according to the present embodiment further includes a detection circuit 61 in addition to a plurality of (two in the first embodiment) coils 51 and 52 in the magnetic field generator 5. The input system 100 according to the present embodiment further includes a control circuit 62 in addition to the input device 1 and the drive circuit 10.
 磁界発生部5における複数(実施形態1では2つ)のコイル51、52は、一対の励磁端子T0間において電気的に並列に励磁端子T0に接続されている。ここで、2つのコイル51、52は、一対の励磁端子T0への電圧の印加時に、2つのコイル51、52から磁気粘性流体4に相互に強め合う向きの磁束φ1、φ2が作用するように、巻線方向が揃えられている。つまり、一対の励磁端子T0間に直流電圧が印加された場合には、2つのコイル51、52には同じ向きの電流I1、I2が流れる。このとき、磁気粘性流体4に相互に強め合う向きの磁束φ1、φ2、つまり図2に示すように、下向きの磁束φ1、φ2が作用する。本開示でいう「励磁端子T0」は、電線等を接続するための部品でなくてもよく、例えば、電子部品のリード、又は回路基板に含まれる導体の一部等であってもよい。 A plurality (two in the first embodiment) of the coils 51 and 52 in the magnetic field generator 5 are electrically connected to the excitation terminal T0 in parallel between the pair of excitation terminals T0. Here, the magnetic fluxes φ1 and φ2 in the directions in which the two coils 51 and 52 mutually intensify the magnetorheological fluid 4 are applied to the two coils 51 and 52 when a voltage is applied to the pair of excitation terminals T0. The winding direction is aligned. That is, when a DC voltage is applied between the pair of excitation terminals T0, currents I1 and I2 having the same direction flow through the two coils 51 and 52. At this time, the magnetic fluxes φ1 and φ2 in the direction of strengthening each other, that is, the downward magnetic fluxes φ1 and φ2 act as shown in FIG. The “excitation terminal T0” in the present disclosure may not be a component for connecting an electric wire or the like, and may be, for example, a lead of an electronic component or a part of a conductor included in a circuit board.
 ここで、2つのコイル51、52の回路定数は、互いに同値である。具体的には、コイル51のインダクタンスとコイル52のインダクタンスとは同値であって、コイル51の抵抗値とコイル52の抵抗値とは同値である。これにより、一対の励磁端子T0間に直流電圧が印加された場合、2つのコイル51、52に流れる電流I1、I2は互いに同値となる。ただし、本開示でいう「同値」は、完全に一致する値だけでなく、数%程度の誤差を含んでいてもよい。 Here, the circuit constants of the two coils 51 and 52 are equivalent to each other. Specifically, the inductance of the coil 51 and the inductance of the coil 52 are the same value, and the resistance value of the coil 51 and the resistance value of the coil 52 are the same value. Thus, when a DC voltage is applied between the pair of excitation terminals T0, the currents I1 and I2 flowing through the two coils 51 and 52 have the same value. However, the “same value” in the present disclosure may include not only a completely matching value but also an error of several percent.
 検知回路61は、操作体2の変位量(操作量)を電気的な信号として取り出すための回路である。本実施形態では入力装置1はロータリエンコーダであるので、検知回路61は、操作体2の回転量に応じた電気信号を、出力端子から出力する。 The detection circuit 61 is a circuit for taking out the displacement amount (operation amount) of the operation body 2 as an electrical signal. In this embodiment, since the input device 1 is a rotary encoder, the detection circuit 61 outputs an electrical signal corresponding to the amount of rotation of the operating body 2 from the output terminal.
 一例として、検知回路61は、複数の固定接点と、接点ブラシと、を有する。複数の固定接点は、ケース90に対して位置固定されている。接点ブラシは、操作体2の操作に伴って、複数の固定接点のうちいずれか2つ以上の固定接点間を導通させるように、操作体2の回転に伴って移動する。これにより、検知回路61は、複数の固定接点間の導通状態に基づく電気信号を、操作体2の回転量に応じた電気信号として出力可能である。ここで、入力装置1は、インクリメンタル形のロータリエンコーダである。したがって、検知回路61は、90度の位相差を有する2つのA相及びB相の電気信号を出力することが可能である。 As an example, the detection circuit 61 has a plurality of fixed contacts and a contact brush. The plurality of fixed contacts are fixed in position relative to the case 90. The contact brush moves in accordance with the rotation of the operation body 2 so that any two or more fixed contacts among the plurality of fixed contacts are brought into conduction with the operation of the operation body 2. Thereby, the detection circuit 61 can output an electrical signal based on a conduction state between the plurality of fixed contacts as an electrical signal corresponding to the rotation amount of the operation body 2. Here, the input device 1 is an incremental rotary encoder. Therefore, the detection circuit 61 can output two A-phase and B-phase electrical signals having a phase difference of 90 degrees.
 駆動回路10は、複数(実施形態1では2つ)のコイル51、52に励磁電流を流すことにより、磁界発生部5から磁気粘性流体4に磁界を印加させる回路である。本実施形態では一例として、図3に示すように、駆動回路10は、トランジスタ101及び抵抗102を有する。トランジスタ101及び抵抗102は、磁界発生部5すなわち互いに並列に接続された2つのコイル51、52よりなる並列回路と電気的に直列に接続されている。具体的には、トランジスタ101のコレクタは一方の励磁端子T0に電気的に接続されており、トランジスタ101のエミッタは抵抗102に電気的に接続されている。 The drive circuit 10 is a circuit that applies a magnetic field from the magnetic field generator 5 to the magnetorheological fluid 4 by flowing an excitation current through a plurality of (in the first embodiment, two) coils 51 and 52. In this embodiment, as an example, as illustrated in FIG. 3, the drive circuit 10 includes a transistor 101 and a resistor 102. The transistor 101 and the resistor 102 are electrically connected in series with the magnetic field generator 5, that is, a parallel circuit including two coils 51 and 52 connected in parallel to each other. Specifically, the collector of the transistor 101 is electrically connected to one excitation terminal T0, and the emitter of the transistor 101 is electrically connected to the resistor 102.
 このように、駆動回路10及び磁界発生部5は電気的に互いに直列に接続され、直列回路を構成する。この直列回路(駆動回路10及び磁界発生部5)に対して電圧値V1の電圧が印加された状態で、駆動回路10のトランジスタ101がオンすることにより、磁界発生部5には励磁電流が流れることになる。このとき、2つのコイル51、52には、上述したように同値の電流I1、I2が励磁電流として流れることになる。駆動回路10のトランジスタ101を流れる電流I3は、コイル51を流れる電流I1とコイル52を流れる電流I2との和であり、2つのコイル51、52の回路定数は互いに同値であるので、電流I3の大きさは電流I1(電流I2)の2倍になる。ここで、駆動回路10は、トランジスタ101に流れる電流I3の大きさを変化させることにより、磁界発生部5から磁気粘性流体4に印加される磁界の強さを変化させる。 Thus, the drive circuit 10 and the magnetic field generator 5 are electrically connected in series to each other to form a series circuit. When the transistor 101 of the drive circuit 10 is turned on in a state where the voltage of the voltage value V1 is applied to the series circuit (the drive circuit 10 and the magnetic field generation unit 5), an excitation current flows through the magnetic field generation unit 5. It will be. At this time, the currents I1 and I2 having the same value flow through the two coils 51 and 52 as excitation currents as described above. The current I3 flowing through the transistor 101 of the drive circuit 10 is the sum of the current I1 flowing through the coil 51 and the current I2 flowing through the coil 52, and the circuit constants of the two coils 51 and 52 are equal to each other. The magnitude is twice the current I1 (current I2). Here, the drive circuit 10 changes the intensity of the magnetic field applied from the magnetic field generator 5 to the magnetorheological fluid 4 by changing the magnitude of the current I3 flowing through the transistor 101.
 入力装置1は、操作体2の回転量すなわち変位量に応じて操作信号を出力する。制御回路62は、入力装置1から出力される操作信号に基づいて、駆動回路10を制御する回路である。制御回路62は、例えば、プロセッサ及びメモリを含むコンピュータを主構成とする。この構成では、メモリに記録されたプログラムをプロセッサが実行することによって、制御回路62としての機能が実現される。プログラムは、コンピュータのメモリに予め記録されていてもよいが、電気通信回線を通じてメモリに書き込まれてもよいし、コンピュータで読み取り可能なメモリカード、光学ディスク又はハードディスクドライブ等の記録媒体に記録されてメモリに書き込まれてもよい。コンピュータのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1ないし複数の電子回路で構成される。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。 The input device 1 outputs an operation signal in accordance with the rotation amount, that is, the displacement amount of the operation body 2. The control circuit 62 is a circuit that controls the drive circuit 10 based on an operation signal output from the input device 1. The control circuit 62 is mainly configured by a computer including a processor and a memory, for example. In this configuration, the function as the control circuit 62 is realized by the processor executing the program recorded in the memory. The program may be recorded in advance in the memory of the computer, but may be written in the memory through an electric communication line, or may be recorded in a recording medium such as a memory card, an optical disk, or a hard disk drive that can be read by the computer. It may be written to memory. A computer processor is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI). The plurality of electronic circuits may be integrated on one chip, or may be distributed on the plurality of chips. The plurality of chips may be integrated into one device, or may be distributed and provided in a plurality of devices.
 制御回路62には、入力装置1の操作体2の変位量すなわち操作体2の回転量に応じて入力装置1から出力される操作信号が入力される。制御回路62は、入力された操作信号に基づいて駆動回路10を制御し、磁界発生部5から磁気粘性流体4に印加される磁界の強さを変化させる。これにより、操作体2に作用する抵抗力は、操作体2の変位量に応じて変化する。本実施形態では、一例として、制御回路62は、駆動回路10をPWM(Pulse Width Modulation)制御することにより、磁界発生部5から磁気粘性流体4に印加される磁界の強さを変化させる。ここで、制御回路62は、例えば、磁界発生部5から磁気粘性流体4に印加される磁界の強さと操作信号との相関関係を予め記憶しており、実際に入力された操作信号に基づいて駆動回路10を制御する。 The control circuit 62 receives an operation signal output from the input device 1 in accordance with the amount of displacement of the operating body 2 of the input device 1, that is, the amount of rotation of the operating body 2. The control circuit 62 controls the drive circuit 10 based on the input operation signal, and changes the strength of the magnetic field applied to the magnetorheological fluid 4 from the magnetic field generator 5. As a result, the resistance force acting on the operating tool 2 changes according to the amount of displacement of the operating tool 2. In the present embodiment, as an example, the control circuit 62 controls the drive circuit 10 by PWM (Pulse Width Modulation), thereby changing the strength of the magnetic field applied from the magnetic field generator 5 to the magnetorheological fluid 4. Here, for example, the control circuit 62 stores in advance a correlation between the strength of the magnetic field applied to the magnetorheological fluid 4 from the magnetic field generator 5 and the operation signal, and based on the actually input operation signal. The drive circuit 10 is controlled.
 制御回路62は、操作体2の回し過ぎを防止するために、操作体2の変位量が所定値に達した時点で、磁界発生部5から磁気粘性流体4に磁界を印加させ、大きな抵抗力を発生させることもできる。この場合、操作体2の変位量が所定値より小さい場合には、磁界発生部5から磁気粘性流体4に磁界を印加しない。これにより、入力システム100は、操作体2の回転角又は回転量である変位量にリミッタを設定することができる。 The control circuit 62 applies a magnetic field from the magnetic field generator 5 to the magnetorheological fluid 4 when the amount of displacement of the operating body 2 reaches a predetermined value in order to prevent the operating body 2 from being turned too much, thereby generating a large resistance force. Can also be generated. In this case, when the displacement amount of the operating body 2 is smaller than a predetermined value, no magnetic field is applied from the magnetic field generator 5 to the magnetorheological fluid 4. Thereby, the input system 100 can set the limiter to the displacement amount that is the rotation angle or the rotation amount of the operation body 2.
 (2.3)比較例との対比
 図4は比較例に係る入力装置1Xの概略回路図である。次に、本実施形態に係る入力装置1と、比較例に係る入力装置1X(図4参照)とを対比する。図4に示す比較例に係る入力装置1Xは、磁界発生部5Xが単一のコイル50からなる点で、本実施形態に係る入力装置1と相違する。また、以下の説明においては、トランジスタ101のオン抵抗及び抵抗102の電気抵抗はゼロ(0)と仮定する。
(2.3) Comparison with Comparative Example FIG. 4 is a schematic circuit diagram of an input device 1X according to the comparative example. Next, the input device 1 according to the present embodiment is compared with the input device 1X according to the comparative example (see FIG. 4). The input device 1X according to the comparative example illustrated in FIG. 4 is different from the input device 1 according to the present embodiment in that the magnetic field generation unit 5X includes a single coil 50. In the following description, it is assumed that the on-resistance of the transistor 101 and the electrical resistance of the resistor 102 are zero (0).
 比較例に係る入力装置1Xにおいて、駆動回路10のトランジスタ101がオフ状態にあれば、コイル50に電流が流れないため、磁界発生部5Xから磁気粘性流体4に磁界が印加されない。この状態では、磁気粘性流体4の粘性は最低粘度にあって、ロータ3の回転に対して磁気粘性流体4で発生する抵抗力は最小値となり、操作体2を操作するユーザに対して操作体2から作用する反力(抵抗力)は最小値となる。 In the input device 1X according to the comparative example, if the transistor 101 of the drive circuit 10 is in the OFF state, no current flows through the coil 50, and therefore, no magnetic field is applied from the magnetic field generator 5X to the magnetorheological fluid 4. In this state, the viscosity of the magnetorheological fluid 4 is at the minimum viscosity, and the resistance force generated in the magnetorheological fluid 4 with respect to the rotation of the rotor 3 is the minimum value. The reaction force (resistance force) acting from 2 is the minimum value.
 比較例に係る入力装置1Xにおいて、駆動回路10のトランジスタ101がオンすると、コイル50に電流I0が流れることにより、磁界発生部5Xから磁気粘性流体4に磁界が印加される。この状態では、磁気粘性流体4の粘性は最高粘度にあって、ロータ3の回転に対して磁気粘性流体4で発生する抵抗力は最大値となり、操作体2を操作するユーザに対して操作体2から作用する反力(抵抗力)が最大値となる。 In the input device 1X according to the comparative example, when the transistor 101 of the drive circuit 10 is turned on, a current I0 flows through the coil 50, so that a magnetic field is applied from the magnetic field generator 5X to the magnetorheological fluid 4. In this state, the viscosity of the magnetorheological fluid 4 is at the maximum viscosity, and the resistance force generated by the magnetorheological fluid 4 with respect to the rotation of the rotor 3 is the maximum value. The reaction force (resistance force) acting from 2 becomes the maximum value.
 ここで、比較例に係る入力装置1Xにおいて、トランジスタ101がオンした時点からの経過時間tと、コイル50を流れる電流I0の電流値i(t)とは、互いに直列に接続された駆動回路10及び磁界発生部5Xよりなる直列回路に印加される電圧の電圧値V1と、コイル50の抵抗値Rと、はコイル50のインダクタンスLとにより数1の式で表される。 Here, in the input device 1X according to the comparative example, the elapsed time t from when the transistor 101 is turned on and the current value i (t) of the current I0 flowing through the coil 50 are connected to each other in series. The voltage value V1 of the voltage applied to the series circuit composed of the magnetic field generator 5X and the resistance value R of the coil 50 are expressed by the equation 1 by the inductance L of the coil 50.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 要するに、比較例に係る入力装置1Xでは、コイル50への通電が開始した後、コイル50を流れる電流I0は、少なくともコイル50のインダクタンスにて定まる時定数(R/L)による時間遅れをもって立ち上がることになる。 In short, in the input device 1X according to the comparative example, after energization of the coil 50 is started, the current I0 flowing through the coil 50 rises with a time delay due to a time constant (R / L) determined by at least the inductance of the coil 50. become.
 しかも、磁気粘性流体4に印加される磁界の強さは、コイル50を流れる電流I0の大きさに略比例するため、コイル50を流れる電流I0の立ち上がりの遅れは、ロータ3の回転に対して磁気粘性流体4で発生する抵抗力の立ち上がりの遅れにつながる。すなわち、少なくともコイル50のインダクタンスにより定まる時定数により、コイル50を流れる電流I0の立ち上がりが遅れることになり、制御回路62による駆動回路10の制御に対する、磁気粘性流体4で発生する抵抗力の応答時間が長くなり応答性が悪くなる。 Moreover, since the strength of the magnetic field applied to the magnetorheological fluid 4 is substantially proportional to the magnitude of the current I0 flowing through the coil 50, the delay in the rise of the current I0 flowing through the coil 50 is relative to the rotation of the rotor 3. This leads to a delay in the rise of the resistance force generated in the magnetorheological fluid 4. That is, the rise of the current I0 flowing through the coil 50 is delayed by at least a time constant determined by the inductance of the coil 50, and the response time of the resistance force generated in the magnetorheological fluid 4 to the control of the drive circuit 10 by the control circuit 62 Becomes longer and the responsiveness becomes worse.
 これに対して、本実施形態に係る入力装置1では、磁界発生部5は、電気的に互いに並列に接続された複数(実施形態1では2つ)のコイル51、52を有している。ここで、比較例に係る入力装置1Xの磁界発生部5Xと、本実施形態に係る入力装置1の磁界発生部5とでは、起磁力が同値、つまりコイル50と、複数のコイル51、52とでアンペアターン(Ampere-Turn)が同値であると仮定する。この場合、コイル50の巻数は、コイル51の巻数とコイル52の巻数との合計と同値、つまりコイル51(コイル52)の巻数の2倍と同値である。そのため、コイル51及びコイル52の各々のインダクタンスL51、L52は、コイル50のインダクタンスLの半分の値(L/2)になり、コイル51及びコイル52の各々の抵抗値R51、R52は、コイル50の抵抗値Rの半分の値(R/2)になる。さらに、比較例に係る入力装置1Xの互いに直列に接続された駆動回路10及び磁界発生部5Xよりなる直列回路に印加される電圧の電圧値V1は、本実施形態に係る入力装置1の互いに直列に接続された駆動回路10及び磁界発生部5よりなる直列回路に印加される電圧の電圧値V1と同値である。 On the other hand, in the input device 1 according to the present embodiment, the magnetic field generator 5 has a plurality of (in the first embodiment, two) coils 51 and 52 that are electrically connected in parallel to each other. Here, in the magnetic field generation unit 5X of the input device 1X according to the comparative example and the magnetic field generation unit 5 of the input device 1 according to the present embodiment, the magnetomotive forces are the same, that is, the coil 50 and the plurality of coils 51 and 52. Suppose that the ampere-turn is equivalent. In this case, the number of turns of the coil 50 is equal to the sum of the number of turns of the coil 51 and the number of turns of the coil 52, that is, the same value as twice the number of turns of the coil 51 (coil 52). Therefore, each of the inductances L51 and L52 of the coil 51 and the coil 52 has a half value (L / 2) of the inductance L of the coil 50, and each of the resistance values R51 and R52 of the coil 51 and the coil 52 is equal to the coil 50. The resistance value R is half the value (R / 2). Furthermore, the voltage value V1 of the voltage applied to the series circuit including the drive circuit 10 and the magnetic field generator 5X connected in series to each other in the input device 1X according to the comparative example is the same as the voltage value V1 of the input device 1 according to the present embodiment. Is equal to the voltage value V1 of the voltage applied to the series circuit including the drive circuit 10 and the magnetic field generator 5 connected to each other.
 本実施形態に係る入力装置1において、トランジスタ101がオンした時点からの経過時間tと、コイル51、52をそれぞれ流れる電流I1、I2の電流値i(t)とは、下記数2の式で表される。 In the input device 1 according to the present embodiment, the elapsed time t from when the transistor 101 is turned on, and the current values i (t) of the currents I1 and I2 flowing through the coils 51 and 52, respectively, are expressed by the following equation (2). expressed.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 すなわち、本実施形態に係る入力装置1においてコイル51、52の各々を流れる電流I1、I2の大きさ(電流値)は、比較例に係る入力装置1Xにおいてコイル50を流れる電流I0の大きさ(電流値)の2倍になる。さらに、駆動回路10のトランジスタ101を流れる電流I3(図3参照)は、コイル51、52を流れる電流I1、I2の和であるので、電流I3の電流値は、数2で表される電流値i(t)の2倍になる。 That is, the magnitudes (current values) of the currents I1 and I2 flowing through the coils 51 and 52 in the input device 1 according to the present embodiment are the magnitudes of the currents I0 flowing through the coil 50 in the input device 1X according to the comparative example ( Current value). Furthermore, since the current I3 (see FIG. 3) flowing through the transistor 101 of the drive circuit 10 is the sum of the currents I1 and I2 flowing through the coils 51 and 52, the current value of the current I3 is a current value expressed by the following equation (2). This is twice i (t).
 図5は、比較例に係る入力装置1Xにおける電流I0の立ち上がり特性と、本実施形態に係る入力装置1における各電流I1、I2の立ち上がり特性と、を表すグラフである。図5では、横軸はトランジスタ101がオンした時点からの経過時間tを示し、電流値i(t)を示す。 FIG. 5 is a graph showing the rising characteristics of the current I0 in the input device 1X according to the comparative example and the rising characteristics of the currents I1 and I2 in the input device 1 according to the present embodiment. In FIG. 5, the horizontal axis indicates the elapsed time t from the time when the transistor 101 is turned on, and the current value i (t).
 すなわち、比較例に係る入力装置1Xにおいては、上記数1の式で表される立ち上がり特性によってコイル50を流れる電流I0の電流値i(t)の上限が制限される。そのため、比較例に係る入力装置1Xでは、電流I0の立ち上がり特性を超える領域A0には電流I0を流すことはできない。一方、本実施形態に係る入力装置1においては、コイル51、52を流れる電流I1、I2の電流値i(t)は、上記数2の式で表されるように、電流I0の2倍となるため、その立ち上がりの傾きも2倍となる。したがって、本実施形態に係る入力装置1では、電流I0の立ち上がり特性を超える領域A0にも、電流I1、I2を流すことができる。 That is, in the input device 1X according to the comparative example, the upper limit of the current value i (t) of the current I0 flowing through the coil 50 is limited by the rising characteristic represented by the above equation (1). Therefore, in the input device 1X according to the comparative example, the current I0 cannot flow in the region A0 that exceeds the rising characteristic of the current I0. On the other hand, in the input device 1 according to the present embodiment, the current values i (t) of the currents I1 and I2 flowing through the coils 51 and 52 are twice as large as the current I0 as expressed by the above equation (2). Therefore, the rising slope is doubled. Therefore, in the input device 1 according to the present embodiment, the currents I1 and I2 can also flow through the region A0 that exceeds the rising characteristic of the current I0.
 その結果、本実施形態に係る入力装置1によれば、比較例に係る入力装置1Xと比較して、コイル51、52を流れる電流I1、I2の立ち上がりが速くなり、ロータ3の回転に対して磁気粘性流体4で発生する抵抗力の立ち上がりも速くなる。すなわち、本実施形態に係る入力装置1では、コイル51、52を流れる電流I1、I2の立ち上がり特性が改善され、制御回路62による駆動回路10の制御に対する、磁気粘性流体4で発生する抵抗力の応答性が改善される。 As a result, according to the input device 1 according to the present embodiment, the rising of the currents I1 and I2 flowing through the coils 51 and 52 is faster than the input device 1X according to the comparative example, and the rotation of the rotor 3 is reduced. The resistance force generated by the magnetorheological fluid 4 rises faster. In other words, in the input device 1 according to the present embodiment, the rising characteristics of the currents I1 and I2 flowing through the coils 51 and 52 are improved, and the resistance force generated by the magnetorheological fluid 4 with respect to the control of the drive circuit 10 by the control circuit 62 is improved. Responsiveness is improved.
 (2.4)配線構造
 次に、磁界発生部5における複数(実施形態1では2つ)のコイル51、52の配線構造について説明する。図6Aと図6Bは、実施形態1に係る入力装置1の概略回路図である。
(2.4) Wiring Structure Next, the wiring structure of a plurality (two in the first embodiment) of the coils 51 and 52 in the magnetic field generator 5 will be described. 6A and 6B are schematic circuit diagrams of the input device 1 according to the first embodiment.
 入力装置1における複数のコイル51、52の配線構造としては、少なくとも図6Aと図6Bにそれぞれ示す第1の構造又は第2の構造を採用可能である。 As the wiring structure of the plurality of coils 51 and 52 in the input device 1, at least the first structure or the second structure shown in FIGS. 6A and 6B can be employed.
 図6Aに示す第1の構造は、入力装置1の外部で複数のコイル51、52の電気的な接続(本実施形態では並列接続)を行う配線構造である。この場合、入力装置1は、複数対の個別端子である励磁端子T1、T2を備える。複数対の励磁端子T1、T2は、複数のコイル51、52と一対一に対応するように、各々が対応するコイル51、52と電気的に接続された端子である。図6Aの例では、入力装置1は、コイル51に対応する一対の励磁端子T1と、コイル52に対応する一対の端子T2と、の2対の励磁端子T1、T2を備えている。つまり、一対の励磁端子T1はコイル51の両端に電気的に接続され、一対の励磁端子T2はコイル52の両端に電気的に接続されている。この場合、入力装置1の外部で、一対の励磁端子T1の一方と一対の励磁端子T2の一方とが互いに電気的に接続され、一対の励磁端子T1の他方と一対の励磁端子T2の他方とが互いに電気的に接続されることにより、2つのコイル51、52は電気的に並列に接続される。すなわち、磁界発生部5は、複数のコイル51、52に接続された複数の対の励磁端子T1、T2をさらに有する。複数の対の励磁端子T1、T2のぞれぞれの対の励磁端子T1(T2)は、複数のコイル51、52のうちの対応するコイル51(52)に電気的に接続されている。 The first structure shown in FIG. 6A is a wiring structure that electrically connects a plurality of coils 51 and 52 outside of the input device 1 (parallel connection in this embodiment). In this case, the input device 1 includes excitation terminals T1 and T2 which are a plurality of pairs of individual terminals. The plurality of pairs of excitation terminals T1 and T2 are terminals electrically connected to the corresponding coils 51 and 52 so as to correspond to the plurality of coils 51 and 52, respectively. In the example of FIG. 6A, the input apparatus 1 includes two pairs of excitation terminals T1 and T2 including a pair of excitation terminals T1 corresponding to the coil 51 and a pair of terminals T2 corresponding to the coil 52. That is, the pair of excitation terminals T1 is electrically connected to both ends of the coil 51, and the pair of excitation terminals T2 is electrically connected to both ends of the coil 52. In this case, outside the input device 1, one of the pair of excitation terminals T1 and one of the pair of excitation terminals T2 are electrically connected to each other, and the other of the pair of excitation terminals T1 and the other of the pair of excitation terminals T2 Are electrically connected to each other, whereby the two coils 51 and 52 are electrically connected in parallel. That is, the magnetic field generator 5 further includes a plurality of pairs of excitation terminals T1 and T2 connected to the plurality of coils 51 and 52. Each pair of excitation terminals T1 (T2) of the plurality of pairs of excitation terminals T1, T2 is electrically connected to the corresponding coil 51 (52) of the plurality of coils 51, 52.
 図6Bに示す第2の構造は、入力装置1の内部で複数のコイル51、52の電気的な接続(本実施形態では並列接続)を行う配線構造である。この場合、入力装置1は、一対の集中端子である励磁端子T3を更に備える。一対の励磁端子T3は、複数のコイル51、52と電気的に接続された端子である。つまり、2つのコイル51、52は、入力装置1の内部において互いに電気的に並列に接続されており、一対の励磁端子T3は、他が印並列に接続された2つのコイル51、52よりなる並列回路の両端にそれぞれ電気的に接続されている。 The second structure shown in FIG. 6B is a wiring structure that performs electrical connection (parallel connection in this embodiment) of the plurality of coils 51 and 52 inside the input device 1. In this case, the input device 1 further includes an excitation terminal T3 that is a pair of concentrated terminals. The pair of excitation terminals T <b> 3 are terminals that are electrically connected to the plurality of coils 51 and 52. That is, the two coils 51 and 52 are electrically connected in parallel with each other inside the input device 1, and the pair of excitation terminals T3 includes two coils 51 and 52 that are connected in parallel with each other. Electrically connected to both ends of the parallel circuit.
 (3)変形例
 実施形態1は、本開示の様々な実施形態の一つに過ぎない。実施形態1は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。以下に説明する変形例は、適宜組み合わせて適用可能である。
(3) Modification Example 1 is only one of various embodiments of the present disclosure. The first embodiment can be variously modified according to the design or the like as long as the object of the present disclosure can be achieved. The modifications described below can be applied in appropriate combinations.
 (3.1)第1変形例
 図7は、実施形態1の第1変形例に係る他の入力装置1Aの概略回路図である。図7において、図6Aと図6Bに示す入力装置1と同じ部分には同じ参照番号を付す。入力装置1Aは、図7に示すように、磁界発生部5Aにおける複数(実施形態1では2つ)のコイル51、52が、一対の励磁端子T0間において互いに電気的に直列に一対の励磁端子T0に接続されている。ここで、一対の励磁端子T0への電圧の印加時に、2つのコイル51、52から磁気粘性流体4に相互に強め合う向きの磁束φ1、φ2が作用するように、2つのコイル51、52の巻線方向が揃えられている。
(3.1) First Modification FIG. 7 is a schematic circuit diagram of another input device 1A according to a first modification of the first embodiment. In FIG. 7, the same reference numerals are assigned to the same portions as those of the input device 1 shown in FIGS. 6A and 6B. As shown in FIG. 7, in the input device 1A, a plurality of (two in the first embodiment) coils 51 and 52 in the magnetic field generator 5A are electrically connected in series between a pair of excitation terminals T0. Connected to T0. Here, when the voltages are applied to the pair of excitation terminals T0, the magnetic fluxes φ1 and φ2 in the mutually reinforcing direction act on the magnetorheological fluid 4 from the two coils 51 and 52 to act on the two coils 51 and 52. Winding direction is aligned.
 つまり、第1変形例に係る入力装置1Aによれば、一対の励磁端子T0間に直流電圧が印加された場合には、2つのコイル51、52には電流I10が流れる。このとき、磁気粘性流体4に相互に強め合う向きの磁束φ1、φ2、つまり図2に示すように、下向きの磁束φ1、φ2が作用する。ここで、2つのコイル51、52の回路定数は、実施形態1における磁界発生部5の2つのコイル51、52の回路定数と同値である。この場合、駆動回路10のトランジスタ101に流れる電流I10は、実施形態1において駆動回路10のトランジスタ101を流れる電流I3に比べて小さくなる。そのため、第1変形例に係る入力装置1Aによれば、磁界発生部5Aでの消費電力を小さく抑えることが可能である。 That is, according to the input device 1A according to the first modification, when a DC voltage is applied between the pair of excitation terminals T0, the current I10 flows through the two coils 51 and 52. At this time, the magnetic fluxes φ1 and φ2 in the direction of strengthening each other, that is, the downward magnetic fluxes φ1 and φ2 act as shown in FIG. Here, the circuit constants of the two coils 51 and 52 are equivalent to the circuit constants of the two coils 51 and 52 of the magnetic field generation unit 5 in the first embodiment. In this case, the current I10 flowing through the transistor 101 of the drive circuit 10 is smaller than the current I3 flowing through the transistor 101 of the drive circuit 10 in the first embodiment. Therefore, according to the input device 1A according to the first modification, it is possible to reduce the power consumption in the magnetic field generation unit 5A.
 (3.2)その他の変形例
 以下、実施形態1の第1変形例以外の変形例を列挙する。
(3.2) Other Modifications Modifications other than the first modification of the first embodiment are listed below.
 入力システム100は、例えば、制御回路62に、コンピュータを含んでいる。コンピュータは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。プログラムは、コンピュータのメモリに予め記録されていてもよいが、電気通信回線を通じてメモリに書き込まれてもよいし、コンピュータで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の記録媒体に記録されていてもよい。コンピュータのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1ないし複数の電子回路で構成される。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。 The input system 100 includes a computer in the control circuit 62, for example. The computer mainly includes a processor and memory as hardware. The program may be recorded in advance in the memory of the computer, but may be written in the memory through an electric communication line, or may be recorded in a recording medium such as a memory card, an optical disk, or a hard disk drive that can be read by a computer. May be. A computer processor is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI). The plurality of electronic circuits may be integrated on one chip, or may be distributed on the plurality of chips. The plurality of chips may be integrated into one device, or may be distributed and provided in a plurality of devices.
 また、入力システム100における複数の機能が、1つの筐体内に集約されていることは入力システム100に必須の構成ではなく、例えば、制御回路62等の入力システム100の一部の構成要素は、入力装置1から離れて設けられていてもよい。さらに、制御回路62等、入力システム100の少なくとも一部の機能は、例えば、サーバ装置又はクラウド(クラウドコンピューティング)等によって実現されてもよい。反対に、制御回路62等、入力システム100の少なくとも一部の機能が、入力装置1に集約されていてもよい。 In addition, it is not an essential configuration of the input system 100 that a plurality of functions in the input system 100 are integrated in one housing. For example, some components of the input system 100 such as the control circuit 62 are: It may be provided apart from the input device 1. Furthermore, at least some functions of the input system 100 such as the control circuit 62 may be realized by, for example, a server device or a cloud (cloud computing). Conversely, at least some functions of the input system 100 such as the control circuit 62 may be integrated in the input device 1.
 また、磁界発生部5は複数のコイルを有しており、2つのコイル51、52に限らず、3つ以上のコイルを有していてもよい。特に、複数のコイルが電気的に並列に接続されている場合には、コイルの個数が増えるほど、磁界発生部5を流れる電流の立ち上がり時間を短くすることができ立ち上がり特性が向上する。したがって、コイルの個数が増えるほど、制御回路62による駆動回路10の制御に対する、磁気粘性流体4で発生する抵抗力の応答性の向上が期待できる。 In addition, the magnetic field generator 5 has a plurality of coils, and is not limited to the two coils 51 and 52, and may have three or more coils. In particular, when a plurality of coils are electrically connected in parallel, the rise time of the current flowing through the magnetic field generator 5 can be shortened and the rise characteristics are improved as the number of coils increases. Therefore, as the number of coils increases, it can be expected that the responsiveness of the resistance force generated in the magnetorheological fluid 4 to the control of the drive circuit 10 by the control circuit 62 is improved.
 また、磁界発生部5における複数のコイル51、52の回路定数は、互いに異なる値であってもよい。例えば、コイル51のインダクタンスはコイル52のインダクタンスと異なっていてもよいし、コイル51の抵抗値はコイル52の抵抗値と異なっていてもよい。 Further, the circuit constants of the plurality of coils 51 and 52 in the magnetic field generator 5 may be different from each other. For example, the inductance of the coil 51 may be different from the inductance of the coil 52, and the resistance value of the coil 51 may be different from the resistance value of the coil 52.
 さらに、磁界発生部5が3つ以上のコイルを有する場合、3つ以上のコイルは、並列接続と直列接続とを組み合わせた接続関係にあってもよい。例えば、磁界発生部5が3つのコイルを有する場合には、互いに並列に接続された2つのコイルよりなる並列回路に別のコイルが電気的に直列に接続されていてもよい。 Furthermore, when the magnetic field generation unit 5 has three or more coils, the three or more coils may be in a connection relationship in which parallel connection and series connection are combined. For example, when the magnetic field generating unit 5 includes three coils, another coil may be electrically connected in series to a parallel circuit including two coils connected in parallel to each other.
 また、ロータ3は、操作体2の操作に伴って回転する限り、操作体2に対して直接的に結合されている構成に限らず、例えば、伝達機構を介して操作体2から力が伝達される構成であってもよい。伝達機構は、例えば、ギアボックス等を含み、操作体2の操作時に操作体2に作用する力をロータ3に伝達し、ロータ3を回転させる機構である。伝達機構は、操作体2の回転操作に限らず、例えば、操作体2に対するスライド操作、押し操作及び引き操作等により操作体2に作用する力をロータ3に伝達し、ロータ3を回転させてもよい。 Further, as long as the rotor 3 rotates in accordance with the operation of the operating body 2, the rotor 3 is not limited to the configuration directly coupled to the operating body 2, and for example, force is transmitted from the operating body 2 via a transmission mechanism. It may be configured. The transmission mechanism includes, for example, a gear box, and is a mechanism that transmits the force acting on the operation body 2 when the operation body 2 is operated to the rotor 3 to rotate the rotor 3. The transmission mechanism is not limited to the rotation operation of the operation body 2. For example, a force acting on the operation body 2 by a slide operation, a push operation, a pulling operation, or the like on the operation body 2 is transmitted to the rotor 3 to rotate the rotor 3. Also good.
 また、ロータ3は、操作体2と別体に限らず、操作体2と一体となっている1つの部材であってもよい。この場合、その1つの部材が、操作体2及びロータ3として機能する。 Further, the rotor 3 is not limited to the operation body 2 and may be a single member integrated with the operation body 2. In this case, the one member functions as the operation body 2 and the rotor 3.
 また、入力装置1は、インクリメンタル形のロータリエンコーダに限らず、例えば、アブソリュート形のロータリエンコーダでもよい。さらに、入力装置1は、複数の固定接点と接点ブラシとを有する接点式のロータリエンコーダに限らず、例えば、発光素子及び受光素子を有する光学方式、ホール素子等を有する磁気検知方式、又は静電容量方式等の無接点式のロータリエンコーダであってもよい。 Further, the input device 1 is not limited to an incremental rotary encoder, but may be an absolute rotary encoder, for example. Furthermore, the input device 1 is not limited to a contact type rotary encoder having a plurality of fixed contacts and contact brushes. For example, an optical method having a light emitting element and a light receiving element, a magnetic detection method having a Hall element, or the like A non-contact rotary encoder such as a capacity method may be used.
 また、入力装置1は、操作体2の変位量に応じた電気信号を出力する構成であればよく、(ロータリ)エンコーダに限らず、例えば、(ロータリ)スイッチ又は可変抵抗器等でもよい。入力装置1がロータリスイッチの場合、操作体2の回転量に応じて、出力端子間のオンオフ状態が切り替わる。入力装置1が可変抵抗器の場合、操作体2の回転量に応じて出力端子間の抵抗値が変化する。 Further, the input device 1 only needs to be configured to output an electrical signal corresponding to the amount of displacement of the operating body 2, and is not limited to a (rotary) encoder, and may be, for example, a (rotary) switch or a variable resistor. When the input device 1 is a rotary switch, the on / off state between the output terminals is switched according to the rotation amount of the operating body 2. When the input device 1 is a variable resistor, the resistance value between the output terminals changes according to the rotation amount of the operation body 2.
 また、入力装置1は、磁界発生部5における複数のコイル51、52の各々に電気的に直列に接続された温度ヒューズ等の保護素子を更に備えていてもよい。 Further, the input device 1 may further include a protection element such as a thermal fuse electrically connected in series to each of the plurality of coils 51 and 52 in the magnetic field generator 5.
 実施形態1では磁気粘性流体4はロータ3に接することでロータ3の回転を抑制する抵抗力を発生する。磁気粘性流体4は、歯車やプーリ、羽根等の回転により回転もしくは移動する別部材と接することでロータ3の回転を抑制する抵抗力を発生してもよい。この場合、別部材を含めてロータ3と表現する。 In the first embodiment, the magnetorheological fluid 4 comes into contact with the rotor 3 to generate a resistance force that suppresses the rotation of the rotor 3. The magnetorheological fluid 4 may generate a resistance force that suppresses the rotation of the rotor 3 by coming into contact with another member that rotates or moves by the rotation of a gear, a pulley, a blade, or the like. In this case, it expresses as the rotor 3 including another member.
 (実施形態2)
 図8は、実施形態2に係る入力装置1Bの断面図である。本実施形態に係る入力装置1Bは、図8に示すように、磁界発生部5Bにおける2つのコイル51、52のコイルボビン7への装着の態様が、実施形態1に係る入力装置1と相違する。以下、実施形態1と同様の構成については、共通の符号を付して適宜説明を省略する。図8では、ケース90の図示を省略している。
(Embodiment 2)
FIG. 8 is a cross-sectional view of the input device 1B according to the second embodiment. As shown in FIG. 8, the input device 1 </ b> B according to the present embodiment is different from the input device 1 according to the first embodiment in the manner of mounting the two coils 51 and 52 on the coil bobbin 7 in the magnetic field generation unit 5 </ b> B. Hereinafter, the same configurations as those of the first embodiment are denoted by common reference numerals, and description thereof is omitted as appropriate. In FIG. 8, the case 90 is not shown.
 本実施形態における入力装置1Bでは、磁界発生部5Bにおける2つのコイル51、52は、上下方向D20、つまり操作体2の回転軸20(図1A参照)の方向に並ぶように、コイルボビン7に装着されている。具体的には、コイル51が上側に位置し、コイル52が下側に位置してコイル51より下方に位置するように、コイルボビン7の外周面7Aにコイル51を構成する電線及びコイル52を構成する電線が巻き付けられている。 In the input device 1B according to the present embodiment, the two coils 51 and 52 in the magnetic field generator 5B are mounted on the coil bobbin 7 so as to be aligned in the vertical direction D20, that is, in the direction of the rotating shaft 20 of the operating body 2 (see FIG. 1A). Has been. Specifically, the electric wire and the coil 52 constituting the coil 51 are configured on the outer peripheral surface 7A of the coil bobbin 7 so that the coil 51 is located on the upper side and the coil 52 is located on the lower side and located below the coil 51. The electric wire to be wound is wound.
 本実施形態に係る入力装置1Bにおいても、実施形態1に係る入力装置1と同様の動作が可能である。 Also in the input device 1B according to the present embodiment, the same operation as that of the input device 1 according to the first embodiment is possible.
 実施形態2で説明した構成は、実施形態1で説明した構成(変形例を含む)と適宜組み合わせて適用可能である。 The configuration described in the second embodiment can be applied in appropriate combination with the configuration (including modifications) described in the first embodiment.
 (まとめ)
 以上説明したように、第1の態様に係る入力装置(1、1A、1B)は、操作体(2)と、ロータ(3)と、磁気粘性流体(4)と、磁界発生部(5、5A、5B)と、を備える。ロータ(3)は、操作体(2)の操作に伴って回転する。磁気粘性流体(4)は、ロータ(3)に接することでロータ(3)の回転に対する抵抗力を発生する。磁界発生部(5、5A、5B)は、磁気粘性流体(4)に磁界を印加することにより磁気粘性流体(4)の粘性を変化させて抵抗力の大きさを変化させる。磁界発生部(5、5A、5B)は、それぞれ磁気粘性流体(4)に磁界を作用させる複数のコイル(51、52)を有する。
(Summary)
As described above, the input device (1, 1A, 1B) according to the first aspect includes the operating body (2), the rotor (3), the magnetorheological fluid (4), and the magnetic field generator (5, 5A, 5B). The rotor (3) rotates with the operation of the operating body (2). The magnetorheological fluid (4) generates a resistance force against the rotation of the rotor (3) by contacting the rotor (3). The magnetic field generator (5, 5A, 5B) changes the viscosity of the magnetorheological fluid (4) by applying a magnetic field to the magnetorheological fluid (4) to change the magnitude of the resistance force. The magnetic field generator (5, 5A, 5B) has a plurality of coils (51, 52) for applying a magnetic field to the magnetorheological fluid (4).
 この態様によれば、操作体(2)に作用する抵抗力を複数のコイル(51、52)で制御することができる。そのため、例えば、磁界発生部(5、5A、5B)を流れる電流の立ち上がり特性、及び磁界発生部(5、5A、5B)での消費電流等の種々の電気的特性は、複数のコイル(51、52)の回路定数で決まることになる。したがって、入力装置(1、1A、1B)によれば、操作体(2)に作用する抵抗力を単一のコイルで制御する場合に比べると、磁気粘性流体(4)の粘性の制御に関する電気的特性の設計の自由度の向上を図ることができる。 According to this aspect, the resistance force acting on the operating body (2) can be controlled by the plurality of coils (51, 52). Therefore, for example, various electrical characteristics such as a rising characteristic of a current flowing through the magnetic field generation unit (5, 5A, 5B) and current consumption in the magnetic field generation unit (5, 5A, 5B) are represented by a plurality of coils (51 , 52). Therefore, according to the input device (1, 1A, 1B), compared to the case where the resistance force acting on the operating body (2) is controlled by a single coil, the electric power relating to the viscosity control of the magnetorheological fluid (4) is controlled. It is possible to improve the degree of freedom in designing the characteristic characteristics.
 第2の態様に係る入力装置(1、1A、1B)では、第1の態様において、複数のコイル(51、52)は、一対の励磁端子(T0)間において電気的に並列に接続される。一対の励磁端子(T0)への電圧の印加時に、複数のコイル(51、52)から磁気粘性流体(4)に相互に強め合う向きの磁束(φ1、φ2)が作用する。 In the input device (1, 1A, 1B) according to the second aspect, in the first aspect, the plurality of coils (51, 52) are electrically connected in parallel between the pair of excitation terminals (T0). . When a voltage is applied to the pair of excitation terminals (T0), magnetic fluxes (φ1, φ2) in a mutually reinforcing direction act on the magnetorheological fluid (4) from the plurality of coils (51, 52).
 この態様によれば、複数のコイル(51、52)を流れる電流(I1、I2)の立ち上がり特性が改善され、磁気粘性流体(4)で発生する抵抗力の応答性の向上を図ることができる。 According to this aspect, the rising characteristics of the currents (I1, I2) flowing through the plurality of coils (51, 52) are improved, and the responsiveness of the resistance force generated in the magnetorheological fluid (4) can be improved. .
 第3の態様に係る入力装置(1、1A、1B)では、第1の態様において、複数のコイル(51、52)は、一対の励磁端子(T0)間において電気的に直列に接続される。一対の励磁端子(T0)への電圧の印加時に、複数のコイル(51、52)から磁気粘性流体(4)に相互に強め合う向きの磁束(φ1、φ2)が作用する。 In the input device (1, 1A, 1B) according to the third aspect, in the first aspect, the plurality of coils (51, 52) are electrically connected in series between the pair of excitation terminals (T0). . When a voltage is applied to the pair of excitation terminals (T0), magnetic fluxes (φ1, φ2) in a mutually reinforcing direction act on the magnetorheological fluid (4) from the plurality of coils (51, 52).
 この態様によれば、複数のコイル(51、52)での消費電力を比較的小さく抑えることができる。 According to this aspect, the power consumption of the plurality of coils (51, 52) can be kept relatively small.
 第4の態様に係る入力装置(1、1A、1B)は、第1~3のいずれかの態様において、磁性部材(8A:カバー8及びボディ9)を更に備える。磁性部材は、複数のコイル(51、52)で発生して磁気粘性流体(4)に作用する磁束(φ1、φ2)の少なくとも一部が通る磁気回路の一部を形成する。 The input device (1, 1A, 1B) according to the fourth aspect further includes a magnetic member (8A: cover 8 and body 9) in any one of the first to third aspects. The magnetic member forms part of a magnetic circuit through which at least part of magnetic flux (φ1, φ2) generated by the plurality of coils (51, 52) and acting on the magnetorheological fluid (4) passes.
 この態様によれば、複数のコイル(51、52)で発生した磁束(φ1、φ2)が磁性部材を通して磁気粘性流体(4)に作用するため、磁気粘性流体(4)に対して効率的に磁界を印加することができる。 According to this aspect, since the magnetic flux (φ1, φ2) generated by the plurality of coils (51, 52) acts on the magnetic viscous fluid (4) through the magnetic member, the magnetic viscous fluid (4) can be efficiently processed. A magnetic field can be applied.
 第5の態様に係る入力装置(1、1A、1B)は、第1~4のいずれかの態様において、複数対の個別端子(T1、T2)を更に備える。複数対の個別端子(T1、T2)は、複数のコイル(51、52)と一対一に対応するように各々が対応するコイル(51、52)と電気的に接続されている。 The input device (1, 1A, 1B) according to the fifth aspect further includes a plurality of pairs of individual terminals (T1, T2) in any one of the first to fourth aspects. The plurality of pairs of individual terminals (T1, T2) are electrically connected to the corresponding coils (51, 52) so as to correspond one-to-one with the plurality of coils (51, 52).
 この態様によれば、入力装置(1、1A、1B)の外部で複数のコイル(51、52)の電気的な接続を行うことができる。 According to this aspect, the plurality of coils (51, 52) can be electrically connected outside the input device (1, 1A, 1B).
 第6の態様に係る入力装置(1、1A、1B)は、第1~4のいずれかの態様において、一対の集中端子(T3)を更に備える。一対の集中端子(T3)は、複数のコイル(51、52)と電気的に接続されている。 The input device (1, 1A, 1B) according to the sixth aspect further includes a pair of concentrated terminals (T3) in any one of the first to fourth aspects. The pair of concentrated terminals (T3) is electrically connected to the plurality of coils (51, 52).
 この態様によれば、入力装置(1、1A、1B)の内部で複数のコイル(51、52)の電気的な接続を行うことができる。 According to this aspect, the plurality of coils (51, 52) can be electrically connected inside the input device (1, 1A, 1B).
 第7の態様に係る入力システム(100)は、第1~6のいずれかの態様に係る入力装置(1、1A、1B)と、駆動回路(10)と、を備える。駆動回路(10)は、複数のコイル(51、52)に励磁電流を流すことにより磁界発生部(5、5A、5B)から磁気粘性流体(4)に磁界を印加させる。 The input system (100) according to the seventh aspect includes the input device (1, 1A, 1B) according to any one of the first to sixth aspects, and a drive circuit (10). The drive circuit (10) applies a magnetic field from the magnetic field generator (5, 5A, 5B) to the magnetorheological fluid (4) by flowing an exciting current through the plurality of coils (51, 52).
 この態様によれば、操作体(2)に作用する抵抗力を複数のコイル(51、52)で制御することができる。そのため、例えば、磁界発生部(5、5A、5B)を流れる電流の立ち上がり特性、及び磁界発生部(5、5A、5B)での消費電流等の種々の電気的特性は、複数のコイル(51、52)の回路定数で決まることになる。したがって、入力システム(100)によれば、操作体(2)に作用する抵抗力を単一のコイルで制御する場合に比べると、磁気粘性流体(4)の粘性の制御に関する電気的特性の設計の自由度の向上を図ることができる。 According to this aspect, the resistance force acting on the operating body (2) can be controlled by the plurality of coils (51, 52). Therefore, for example, various electrical characteristics such as a rising characteristic of a current flowing through the magnetic field generation unit (5, 5A, 5B) and current consumption in the magnetic field generation unit (5, 5A, 5B) are represented by a plurality of coils (51 , 52). Therefore, according to the input system (100), as compared with the case where the resistance force acting on the operating body (2) is controlled by a single coil, the design of electrical characteristics related to the viscosity control of the magnetorheological fluid (4) The degree of freedom can be improved.
 第8の態様に係る入力システム(100)は、第7の態様において、制御回路(62)を更に備える。制御回路(62)は、操作体(2)の変位量に応じて入力装置(1、1A、1B)から出力される操作信号に基づいて、駆動回路(10)を制御する。 The input system (100) according to the eighth aspect further includes a control circuit (62) in the seventh aspect. The control circuit (62) controls the drive circuit (10) based on the operation signal output from the input device (1, 1A, 1B) according to the displacement amount of the operating body (2).
 この態様によれば、操作体(2)に作用する抵抗力は、操作体(2)の変位量に応じて変化させることができる。 According to this aspect, the resistance force acting on the operating body (2) can be changed according to the amount of displacement of the operating body (2).
 第2~6の態様に係る構成については、入力装置(1、1A、1B)に必須の構成ではなく、適宜省略可能である。 The configurations according to the second to sixth aspects are not essential to the input device (1, 1A, 1B) and can be omitted as appropriate.
1,1A,1B  入力装置
2  操作体
3  ロータ
4  磁気粘性流体
5,5A,5B  磁界発生部
8  カバー(磁性部材)
8A  磁性部材
9  ボディ(磁性部材)
10  駆動回路
51,52  コイル
62  制御回路
100  入力システム
T0  励磁端子
T1,T2  励磁端子(個別端子)
T3  励磁端子(集中端子)
φ1,φ2  磁束
1, 1A, 1B Input device 2 Operating body 3 Rotor 4 Magnetorheological fluid 5, 5A, 5B Magnetic field generator 8 Cover (magnetic member)
8A Magnetic member 9 Body (magnetic member)
10 Drive circuit 51, 52 Coil 62 Control circuit 100 Input system T0 Excitation terminal T1, T2 Excitation terminal (individual terminal)
T3 Excitation terminal (concentrated terminal)
φ1, φ2 magnetic flux

Claims (9)

  1. 操作体と、
    前記操作体の操作に伴って回転するロータと、
    前記ロータに接することで前記ロータの回転を抑制する抵抗力を発生する磁気粘性流体と、
    前記磁気粘性流体に磁界を印加することにより前記磁気粘性流体の粘性を変化させて前記抵抗力の大きさを変化させる磁界発生部と、
    を備え、
    前記磁界発生部は、前記磁気粘性流体に磁界をそれぞれ印加する複数のコイルを有する、入力装置。
    An operating body;
    A rotor that rotates as the operating body is operated;
    A magnetorheological fluid that generates a resistance force that suppresses rotation of the rotor by contacting the rotor;
    A magnetic field generator that changes the viscosity of the magnetorheological fluid by applying a magnetic field to the magnetorheological fluid to change the magnitude of the resistance force; and
    With
    The input device, wherein the magnetic field generation unit includes a plurality of coils that respectively apply magnetic fields to the magnetorheological fluid.
  2. 前記磁界発生部は、前記複数のコイルに接続された一対の励磁端子をさらに有する、請求項1に記載の入力装置。 The input device according to claim 1, wherein the magnetic field generation unit further includes a pair of excitation terminals connected to the plurality of coils.
  3. 前記一対の励磁端子に電圧を印加した時に、前記複数のコイルから前記磁気粘性流体に相互に強め合う向きの磁束が作用するように、前記複数のコイルは前記一対の励磁端子間において電気的に互いに並列に前記一対の励磁端子に接続されている、請求項2に記載の入力装置。 The plurality of coils are electrically connected between the pair of excitation terminals such that when a voltage is applied to the pair of excitation terminals, magnetic fluxes in a mutually reinforcing direction act on the magnetorheological fluid from the plurality of coils. The input device according to claim 2, wherein the input device is connected to the pair of excitation terminals in parallel with each other.
  4. 前記一対の励磁端子に電圧を印加した時に、前記複数のコイルから前記磁気粘性流体に相互に強め合う向きの磁束が作用するように、前記複数のコイルは前記一対の励磁端子間において電気的に互いに直列に前記一対の励磁端子に接続されている、請求項2に記載の入力装置。 The plurality of coils are electrically connected between the pair of excitation terminals such that when a voltage is applied to the pair of excitation terminals, magnetic fluxes in a mutually reinforcing direction act on the magnetorheological fluid from the plurality of coils. The input device according to claim 2, wherein the input device is connected to the pair of excitation terminals in series with each other.
  5. 前記磁界発生部は、前記複数のコイルに接続された複数の対の励磁端子をさらに有し、
    前記複数の対の励磁端子のぞれぞれの対の励磁端子は、前記複数のコイルのうちの対応するコイルに電気的に接続されている、請求項1に記載の入力装置。
    The magnetic field generation unit further includes a plurality of pairs of excitation terminals connected to the plurality of coils,
    The input device according to claim 1, wherein each of the plurality of pairs of excitation terminals is electrically connected to a corresponding coil of the plurality of coils.
  6. 前記複数のコイルで発生して前記磁気粘性流体に作用する磁束の少なくとも一部が通る磁気回路の一部を形成する磁性部材をさらに備えた、請求項1から3のいずれか1項に記載の入力装置。 4. The magnetic member according to claim 1, further comprising a magnetic member that forms a part of a magnetic circuit through which at least a part of a magnetic flux generated by the plurality of coils and acting on the magnetorheological fluid passes. Input device.
  7. 前記磁気粘性流体は、前記ロータに接することで前記ロータの回転を抑制する抵抗力を発生する、請求項1から6のいずれか一項に記載の入力装置。 The input device according to claim 1, wherein the magnetorheological fluid generates a resistance force that suppresses rotation of the rotor by being in contact with the rotor.
  8. 請求項1から7のいずれか1項に記載の入力装置と、
    前記複数のコイルに励磁電流を流すことにより前記磁界発生部から前記磁気粘性流体に磁界を印加させる駆動回路と、
    を備えた入力システム。
    An input device according to any one of claims 1 to 7,
    A drive circuit for applying a magnetic field from the magnetic field generator to the magnetorheological fluid by flowing an excitation current through the plurality of coils;
    With input system.
  9. 前記操作体の変位量に応じて前記入力装置から出力される操作信号に基づいて、前記駆動回路を制御する制御回路をさらに備えた、請求項8に記載の入力システム。 The input system according to claim 8, further comprising a control circuit that controls the drive circuit based on an operation signal output from the input device in accordance with a displacement amount of the operation body.
PCT/JP2018/036789 2018-03-30 2018-10-02 Input device and input system WO2019187246A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018069719A JP2021099896A (en) 2018-03-30 2018-03-30 Input device and input system
JP2018-069719 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019187246A1 true WO2019187246A1 (en) 2019-10-03

Family

ID=68060987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036789 WO2019187246A1 (en) 2018-03-30 2018-10-02 Input device and input system

Country Status (2)

Country Link
JP (1) JP2021099896A (en)
WO (1) WO2019187246A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002108470A (en) * 2000-06-19 2002-04-10 Koninkl Philips Electronics Nv Rotatable fluid knob electronically controlled as tactile controlling element
JP2004175257A (en) * 2002-11-28 2004-06-24 Toyota Motor Corp Steering gear for vehicle
JP2014149857A (en) * 2008-04-29 2014-08-21 Commissariat A L'energie Atomique & Aux Energies Alternatives Force feedback interface improving operation feeling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002108470A (en) * 2000-06-19 2002-04-10 Koninkl Philips Electronics Nv Rotatable fluid knob electronically controlled as tactile controlling element
JP2004175257A (en) * 2002-11-28 2004-06-24 Toyota Motor Corp Steering gear for vehicle
JP2014149857A (en) * 2008-04-29 2014-08-21 Commissariat A L'energie Atomique & Aux Energies Alternatives Force feedback interface improving operation feeling

Also Published As

Publication number Publication date
JP2021099896A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
JP6509359B2 (en) Integrated electric power steering apparatus and method of manufacturing the same
JP6540986B2 (en) Electric rotating machine
JP5072977B2 (en) Electric power steering device
JP5619279B2 (en) Electric power steering device
JP4203055B2 (en) Electric power steering device
JP5528329B2 (en) Control device-integrated electric power steering apparatus motor and electric power steering apparatus
JP4628460B2 (en) Rotating electric machine and manufacturing method thereof
EP1271752A1 (en) Device for increasing the rotation speed of a permanent magnet motor
JP6354641B2 (en) Electronic equipment
JP5067574B2 (en) Current sensor
JP6862570B2 (en) Electric power steering device
WO2019187246A1 (en) Input device and input system
JP2007010042A (en) Vehicle control system
JP2015220885A (en) Mechatronic drive device
JP2007043527A (en) Coil antenna
JP2012010465A (en) Motor controller and vehicular steering device
US20020101122A1 (en) Electromechanically controlled changeover switch
EP3806294A1 (en) Motor device
US2123182A (en) Motor control
JP4996093B2 (en) Motor and module IC
KR102258297B1 (en) motor module
JP7479107B1 (en) Electric drive device and electric power steering device
JP6105385B2 (en) Circuit parts and motors
JP2656122B2 (en) Motor drive
KR102584225B1 (en) Stator structure for small size motor module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912669

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18912669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP