WO2019187154A1 - Energy generation device, control method, and program - Google Patents

Energy generation device, control method, and program Download PDF

Info

Publication number
WO2019187154A1
WO2019187154A1 PCT/JP2018/013983 JP2018013983W WO2019187154A1 WO 2019187154 A1 WO2019187154 A1 WO 2019187154A1 JP 2018013983 W JP2018013983 W JP 2018013983W WO 2019187154 A1 WO2019187154 A1 WO 2019187154A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
supply
power
demand
unit
Prior art date
Application number
PCT/JP2018/013983
Other languages
French (fr)
Japanese (ja)
Inventor
穣 辻
山本 祐司
石川 淳
宮島 一嘉
山田 隆之
由似子 古賀
茂朗 江坂
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2018/013983 priority Critical patent/WO2019187154A1/en
Priority to JP2020508918A priority patent/JP6941728B2/en
Publication of WO2019187154A1 publication Critical patent/WO2019187154A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an energy generation device, a control method, and a program.
  • Patent Documents 1 to 5 A technique for generating hydrogen with electric power generated using renewable energy is known (see, for example, Patent Documents 1 to 5).
  • Patent Document 6 discloses that CEMS is realized by extending hydrogen supply pipes around the city.
  • Patent Document 7 discloses that a boiler, a micro turbine, or the like may be combined with a system capable of co-production of hydrogen production and power generation.
  • Patent Literature [Patent Literature 1] Patent No. 630158 [Patent Literature 2] JP 2017-76611 [Patent Literature 3] No. 4775790 [Patent Literature 4] JP Patent Publication No. 2003-257443 [Patent Literature 5] Patent No. 4328069
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2007-265732
  • Patent Document 7 Japanese Patent Application Publication No. 2007-523443
  • an energy generator in a first aspect of the present invention, includes a reforming unit that decomposes a raw material gas containing hydrogen and carbon using electric power to generate hydrogen and carbon dioxide, for example.
  • the energy generation device includes, for example, a hydrogen storage unit that stores hydrogen.
  • the energy generation device includes a power generation unit that generates electric power using at least one of hydrogen generated by the reforming unit and hydrogen stored in the hydrogen storage unit, for example.
  • the energy generation device includes, for example, a first pipe that transfers hydrogen generated by the reforming unit to the power generation unit.
  • the energy generation device includes, for example, a second pipe that transfers hydrogen generated by the reforming unit to the hydrogen storage unit.
  • the energy generation device includes a transfer restriction unit that restricts transfer of hydrogen in at least one of the first pipe and the second pipe, for example.
  • the energy generation apparatus may include a supply request acquisition unit that acquires a supply request for requesting the supply of carbon dioxide.
  • the energy generation device may include a power supply / demand acquisition unit that acquires power supply / demand information indicating a power supply / demand situation in the energy generation device or a power network that can transmit / receive power to / from the energy generation device.
  • the energy generation device may include a hydrogen supply and demand acquisition unit that acquires hydrogen supply and demand information indicating a hydrogen supply and demand situation in the energy generation device.
  • the energy generation apparatus determines whether to respond to the supply request based on (i) the power supply / demand situation indicated by the power supply / demand information and (ii) the hydrogen supply / demand situation indicated by the hydrogen supply / demand information.
  • a response determination unit may be provided.
  • the response determination unit responds to (i) the power supply / demand situation indicated by the power supply / demand information, (ii) the hydrogen supply / demand situation indicated by the hydrogen supply / demand information, and (iii) the supply request. Whether or not to meet the supply request may be determined based on the amount of hydrogen generated by the reforming unit. In the above energy generation device, the response determination unit satisfies the hydrogen surplus condition indicated by the hydrogen supply / demand information in advance, and the power supply surplus condition indicated by the power supply / demand information It may be determined that the supply request is not satisfied when a predetermined power excess condition is satisfied.
  • the energy generating device may include a power generation control unit that determines whether or not to operate the power generation unit.
  • a power generation control unit that determines whether or not to operate the power generation unit.
  • the determination unit may determine to respond to the supply request.
  • the control unit may determine not to operate the power generation unit.
  • the energy generator described above is configured to supply hydrogen when the excess hydrogen supply indicated by the hydrogen supply / demand information satisfies the excess hydrogen condition and the excess power supply indicated by the power supply / demand information satisfies the excess power condition.
  • the energy generating apparatus is configured such that at least a part of carbon dioxide generated by the reforming unit is disposed in a part of a pipe for transferring to a field where plants or agricultural products are grown, and transferred to the field.
  • a flow rate control unit that adjusts the flow rate may be provided.
  • the flow rate control unit may include a pipe for releasing at least a part of the carbon dioxide generated by the reforming unit into the atmosphere.
  • the reforming unit may decompose the raw material gas using electric power to generate hydrogen, carbon dioxide, and heat.
  • the power generation unit may generate electric power and heat using at least one of hydrogen generated by the reforming unit and hydrogen stored in the hydrogen storage unit.
  • the energy generation device may include a heat storage unit that accumulates heat generated by at least one of the reforming unit and the power generation unit.
  • a control method is provided.
  • Said control method is a method for controlling an energy generator, for example.
  • the energy generation device includes, for example, a reforming unit that decomposes a raw material gas containing hydrogen and carbon using electric power to generate hydrogen and carbon dioxide.
  • the energy generation device includes, for example, a hydrogen storage unit that stores hydrogen.
  • the energy generation device includes, for example, a power generation unit that generates electric power using at least one of hydrogen generated by the reforming unit and hydrogen stored in the hydrogen storage unit.
  • the above control method includes, for example, a supply request acquisition stage for acquiring a supply request for requesting the supply of carbon dioxide.
  • the above control method includes, for example, an energy supply / demand acquisition stage for acquiring power supply / demand information indicating an energy supply / demand situation in an energy generation device or a power network that can transmit / receive power to / from the energy generation device, and the control method includes, for example, an energy generation device
  • There is a hydrogen supply and demand acquisition stage for acquiring hydrogen supply and demand information indicating the hydrogen supply and demand situation.
  • the above control method determines, for example, whether to respond to the supply request based on (i) the power supply / demand situation indicated by the power supply / demand information and (ii) the hydrogen supply / demand situation indicated by the hydrogen supply / demand information. A response determination stage.
  • the excessive hydrogen supply condition indicated by the hydrogen supply and demand information satisfies a predetermined hydrogen excess condition, and the excessive power supply condition indicated by the power supply and demand information is predetermined. Determining that the supply request is not met if the specified power overage condition is satisfied.
  • the above control method is used when the excessive hydrogen supply condition indicated by the hydrogen supply / demand information does not satisfy the excessive hydrogen condition and the excessive power supply condition indicated by the power supply / demand information satisfies the excessive power condition.
  • the method may include the step of deciding to meet the request and deciding not to operate the power generation unit.
  • a program is provided.
  • a non-transitory computer readable medium storing the above program may be provided.
  • the above program is a program for causing a computer to execute a control method for controlling the energy generating device, for example.
  • Said program may be a program for making a computer perform the control method which concerns on said 2nd aspect.
  • An example of the system configuration of energy management system 100 is shown roughly.
  • An example of a system configuration of agricultural facility 122 is shown roughly.
  • An example of an internal configuration of controller 240 is shown roughly.
  • An example of the internal configuration of the flow control unit 272 is schematically shown.
  • An example of a system configuration of energy management facility 124 is shown roughly.
  • An example of an internal configuration of energy management part 132 is shown roughly.
  • An example of the information processing in the adjustment part 632 is shown schematically.
  • An example of an internal configuration of the vehicle allocation management unit 134 is schematically shown.
  • An example of data table 900 is shown roughly.
  • FIG. 1 schematically shows an example of the system configuration of the energy management system 100.
  • the energy management system 100 includes, for example, one or more (sometimes referred to as one or more) agricultural facilities 122, one or more energy management facilities 124, and one or more consumer facilities 126. And a management server 130.
  • the management server 130 includes, for example, an energy management unit 132 and a vehicle allocation management unit 134.
  • the energy management system 100 may be an example of an energy management device and a hydrogen utilization system.
  • the agricultural facility 122 may be an example of an energy generation device.
  • the energy management facility 124 may be an example of an energy generation device.
  • the supply and demand facility 126 may be an example of an energy generation device.
  • the management server 130 may be an example of an energy management device.
  • the energy management unit 132 may be an example of an energy management device.
  • each of the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126 is electrically connected to the power grid 12.
  • Each of the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126 can transmit and receive power to and from the power network 12.
  • each unit of the energy management system 100 is connected via the communication network 14. Information can be sent and received between each other.
  • the power network 12 is electrically connected to a commercial power source (not shown).
  • the power network 12 may be a power system provided by a power company or a power transmission company.
  • the power network 12 may include a plurality of power companies or a power system of a plurality of power transmission companies.
  • the power system may be a system in which power generation, power transformation, power transmission, and power distribution are integrated.
  • element A and element B are electrically connected” is not limited to the case where element A and element B are physically connected.
  • the input winding and output winding of the transformer are not physically connected, but are electrically connected.
  • a member for electrically connecting the element A and the element B may be interposed between the element A and the element B. Examples of the member include a conductor, a switch or switch, a transformer, and the like.
  • the communication network 14 may be a wired communication transmission line, a wireless communication transmission line, or a combination of a wireless communication transmission line and a wired communication transmission line.
  • the communication network 14 may include a wireless packet communication network, the Internet, a P2P network, a dedicated line, a VPN, a power line communication line, and the like.
  • the communication network 14 may include (i) a mobile communication network such as a mobile phone line network, (ii) a wireless MAN (for example, WiMAX (registered trademark)), a wireless LAN (for example, WiFi (registered trademark)). Or a wireless communication network such as Bluetooth (registered trademark), Zigbee (registered trademark), NFC (Near Field Communication), or the like.
  • each part of the energy management system 100 may transmit and receive information to and from at least one of the one or more fuel cell vehicles 22 and the one or more electric vehicles 24 via the communication network 14.
  • each unit of the energy management system 100 may transmit / receive information to / from at least one of the one or more communication terminals 32 via the communication network 14.
  • At least one of the agricultural facility 122 and the energy management facility 124 may send and receive hydrogen to and from the fuel cell vehicle 22.
  • at least one of the agricultural facility 122 and the energy management facility 124 transfers at least one of hydrogen generated by the facility and hydrogen stored in the facility to a hydrogen storage container of the fuel cell vehicle 22.
  • At least one of the agricultural facility 122 and the energy management facility 124 may receive hydrogen from the hydrogen storage container of the fuel cell vehicle 22.
  • At least one of the agricultural facility 122 and the energy management facility 124 may transmit and receive electric power to and from the electric vehicle 24.
  • at least one of the agricultural facility 122 and the energy management facility 124 charges the storage battery of the electric vehicle 24 with the electric power generated by the facility.
  • At least one of the agricultural facility 122 and the energy management facility 124 may receive power from the storage battery of the electric vehicle 24.
  • the fuel cell vehicle 22 and the electric vehicle 24 belong to a service provider (sometimes referred to as an administrator of the fuel cell vehicle 22 or the electric vehicle 24) that dispatches a mobile body equipped with a hydrogen storage container or a storage battery. It can be an occupancy.
  • the fuel cell vehicle 22 and the electric vehicle 24 may be owned or occupied by a business operator that provides a rental car service.
  • the electric vehicle 24 may be an example of a moving body on which a storage battery can be mounted.
  • the fuel cell vehicle 22 may be an example of a moving body on which a fuel cell can be mounted.
  • the fuel cell vehicle 22 may be an example of a moving body on which a hydrogen storage container can be mounted.
  • the hydrogen storage container mounted on the fuel cell vehicle 22 may be an example of a portable hydrogen storage container.
  • the portable hydrogen storage container is carried by an animal or a moving body.
  • the portable hydrogen storage container may be attached to or carried by an animal, may be mounted on a moving body, and may be pulled by the moving body.
  • the storage battery mounted on the electric vehicle 24 may be an example of a portable power storage device.
  • the portable power storage device is carried by an animal or a moving body.
  • the portable power storage device may be attached to or carried by an animal, may be mounted on a moving body, or may be pulled by the moving body.
  • the moving body may be a device that travels on land, may be a device that flies in the air, or may be a device that sails in water or water.
  • the moving body may move by a user's operation, or may move by an autonomous moving function (sometimes referred to as auto cruise, cruise control, etc.) by a computer mounted on the moving body.
  • Examples of the moving body include a vehicle, a ship, and a flying body. Examples of the vehicle include an automobile, a motorcycle, and a train.
  • Examples of automobiles include engine cars, electric cars, fuel cell cars, hybrid cars, work machines, and the like.
  • motorcycles As motorcycles, (i) motorcycles, (ii) three-wheeled motorcycles, (iii) Segway (registered trademark), kickboards with a power unit (registered trademark), standing rides having a power unit such as a skateboard with a power unit
  • the ship examples include a ship, a hovercraft, a water bike, a submarine, a submarine, and an underwater scooter.
  • Examples of flying objects include airplanes, airships or balloons, balloons, helicopters, and drones.
  • the communication terminal 32 is a communication terminal used by the user of the energy management system 100, and details thereof are not particularly limited.
  • Examples of the communication terminal 32 include a personal computer and a portable terminal.
  • Examples of the portable terminal include a mobile phone, a smartphone, a PDA, a tablet, a notebook computer or a laptop computer, and a wearable computer.
  • the communication terminal 32 may be used as a user interface of the energy management system 100.
  • the energy management system 100 manages the supply and demand of energy in the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126.
  • the energy management system 100 may manage the supply and demand of energy sources in the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126.
  • energy include electricity and heat.
  • Examples of the energy source include hydrogen, city gas, propane gas, alcohol, petroleum, kerosene, and gasoline.
  • the agricultural facility 122 receives power from the power grid 12 (may be referred to as power reception, power purchase, etc.).
  • the agricultural facility 122 may supply power to the power grid 12 (sometimes referred to as power transmission, power sale, etc.).
  • the power grid 12 sometimes referred to as power transmission, power sale, etc.
  • at least one of a device that consumes power, a device that supplies power, a device that consumes hydrogen, and a device that supplies hydrogen is disposed in the agricultural facility 122.
  • the agricultural facility 122 includes a field where plants or agricultural products are grown.
  • heat generated when electric power and hydrogen are generated is supplied to the farm.
  • Water or water vapor generated during generation of electric power and hydrogen may be supplied to the field.
  • Carbon dioxide generated during the generation of hydrogen may be supplied to the field.
  • the agricultural facility 122 may be a facility including a farm field among the supply and demand facility 126. Details of the agricultural facility 122 will be described later.
  • the energy management facility 124 manages the supply amount of energy. This maintains a balance between energy demand and supply.
  • the energy management facility 124 may manage the supply amount of the energy source. This maintains a balance between the demand and supply of energy sources.
  • the energy management facility 124 for example, power generation equipment, power storage equipment, hydrogen production equipment, and the like are arranged. Details of the energy management facility 124 will be described later.
  • the supply and demand facility 126 receives power from the power network 12.
  • the supply and demand facility 126 may supply power to the power network 12.
  • at least one of a device that consumes power and a device that supplies power is arranged in the supply and demand facility 126.
  • the supply and demand facility 126 may be provided with at least one of a device that consumes hydrogen and a device that supplies hydrogen.
  • the supply and demand facility 126 may have the same configuration as the agricultural facility 122 except that it does not include an agricultural field.
  • the energy management unit 132 of the management server 130 manages the supply and demand of energy in the agricultural facility 122, the energy management facility 124, and the consumer facility 126.
  • the management server 130 may manage the supply and demand of energy sources in the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126. Details of the energy management unit 132 will be described later.
  • the vehicle allocation management unit 134 of the management server 130 manages one or more fuel cell vehicles 22 and one or more electric vehicles 24.
  • the vehicle allocation management unit 134 may adjust the supply and demand of energy or energy sources by dispatching the fuel cell vehicle 22 or the electric vehicle 24 to at least one of the energy management facility 124 and the supply and demand facility 126. Details of the vehicle allocation management unit 134 will be described later.
  • the fuel cell vehicle 22 can carry hydrogen between at least two of the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126.
  • the electric vehicle 24 can carry electricity between at least two of the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126.
  • the fuel cell vehicle 22 may supply hydrogen to at least one of the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126.
  • the fuel cell vehicle 22 may receive hydrogen from at least one of the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126.
  • the fuel cell vehicle 22 and the electric vehicle 24 may supply power to at least one of the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126.
  • the electric vehicle 24 may receive power from at least one of the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126.
  • Each unit of the energy management system 100 may be realized by hardware, may be realized by software, or may be realized by hardware and software. At least a part of each part of the energy management system 100 may be realized by a single server or may be realized by a plurality of servers. At least a part of each part of the energy management system 100 may be realized on a virtual machine or a cloud system.
  • each part of the energy management system 100 may be realized by a personal computer or a portable terminal.
  • the portable terminal include a mobile phone, a smartphone, a PDA, a tablet, a notebook computer or a laptop computer, and a wearable computer.
  • Each unit of the energy management system 100 may store information using a distributed ledger technology such as a block chain or a distributed network.
  • the information processing apparatus includes, for example, (i) a data processing apparatus having a processor such as a CPU and GPU, a ROM, a RAM, a communication interface, and the like (ii) a keyboard, a touch panel, a camera, a microphone, various sensors, and a GPS receiver. (Iii) an output device such as a display device, a speaker, and a vibration device, and (iv) a storage device (including an external storage device) such as a memory and an HDD.
  • a data processing apparatus having a processor such as a CPU and GPU, a ROM, a RAM, a communication interface, and the like
  • a keyboard such as a touch panel, a camera, a microphone, various sensors, and a GPS receiver.
  • an output device such as a display device, a speaker, and a vibration device
  • a storage device including an external storage device
  • the data processing apparatus or the storage device may store a program.
  • the above program may be stored in a non-transitory computer-readable recording medium.
  • the above program is executed by a processor to cause the information processing apparatus to execute an operation defined by the program.
  • the program may be stored in a computer-readable medium such as a CD-ROM, DVD-ROM, memory, hard disk, or may be stored in a storage device connected to a network.
  • the program may be installed in a computer constituting at least a part of the energy management system 100 from a computer-readable medium or a storage device connected to a network.
  • the computer may function as at least a part of each part of the energy management system 100 by executing the program.
  • the program that causes the computer to function as at least a part of each part of the energy management system 100 may include a module that defines the operation of each part of the energy management system 100. These programs or modules work on a data processing device, an input device, an output device, a storage device, and the like to cause the computer to function as each part of the energy management system 100, or to allow the computer to perform an information processing method in each part of the energy management system 100. Or let it run.
  • the information processing described in the program functions as a specific means in which the software related to the program and various hardware resources of the energy management system 100 cooperate when the program is read by the computer. . And the energy management system 100 according to the said use purpose is constructed
  • the above program may be a program for causing a computer to execute various information processing methods in the management server 130.
  • the information processing method in the management server 130 includes, for example, a first supply and demand information indicating a power supply and demand and a hydrogen supply and demand in a hydrogen generation system that generates hydrogen using power and a first supply and demand information acquisition stage to acquire.
  • the information processing method includes, for example, a second supply / demand information acquisition stage for acquiring second supply / demand information indicating power supply / demand and hydrogen supply / demand in each of one or a plurality of trigeneration systems.
  • the above information processing method is, for example, based on the first supply and demand information and the second supply and demand situation, (i) an upper limit value of the amount of power that the hydrogen generation system can receive from the power grid in a specific period; (ii) A target value of the amount of hydrogen generated by the hydrogen generation system in a specific period; (iii) an upper limit value of the amount of power that each of the one or more trigeneration systems can transmit to the power grid in a specific period; and (Iv) A supply and demand management stage for determining at least one target value of the amount of power generated by each of the one or more trigeneration systems in a specific period.
  • the information processing method in the management server 130 may be a control method for controlling the energy generating device.
  • the energy generation device for example, decomposes a raw material gas containing hydrogen and carbon using electric power to generate hydrogen and carbon dioxide, a hydrogen storage unit that stores hydrogen, A power generation unit that generates electric power using at least one of hydrogen generated by the reforming unit and hydrogen stored in the hydrogen storage unit.
  • the above control method includes, for example, a supply request acquisition stage for acquiring a supply request for requesting the supply of carbon dioxide.
  • the above control method includes, for example, an electric power supply / demand acquisition stage for acquiring electric power supply / demand information indicating an electric power supply / demand situation in an energy generator or an electric power network that can transmit and receive energy to / from the energy generator.
  • the above control method includes, for example, a hydrogen supply / demand acquisition stage for acquiring hydrogen supply / demand information indicating a hydrogen supply / demand situation in the energy generation device.
  • the above control method determines, for example, whether to respond to the supply request based on (i) the power supply / demand situation indicated by the power supply / demand information and (ii) the hydrogen supply / demand situation indicated by the hydrogen supply / demand information. A response determination stage.
  • FIG. 2 schematically shows an example of the system configuration of the agricultural facility 122.
  • the agricultural facility 122 includes, for example, a farm field 210, an electric power load 220, a distributed power facility 230, a controller 240, and a trigeneration system 250.
  • a temperature sensor 212 and a carbon dioxide sensor 214 are arranged in the farm field 210.
  • the trigeneration system 250 includes, for example, a reformer 260, a fuel cell 262, a pipe 263, a hydrogen storage facility 264, a pipe 265, and an automatic valve 266.
  • the trigeneration system 250 may include a flow rate control unit 272 and a pipe 274.
  • the trigeneration system 250 may include a heat storage device 282, a heat exchanger 284, and an automatic valve 286.
  • a transfer restriction member such as an automatic valve or a flow rate adjusting valve may be arranged at a position indicated by a circle.
  • the controller 240 may be an example of an energy management device.
  • the trigeneration system 250 may be an example of an energy generation device, a first trigeneration system, and a second trigeneration system.
  • the reformer 260 may be an example of a carbon dioxide generating unit, a heat generating unit, and a reforming unit.
  • the fuel cell 262 may be an example of a power generation unit and a heat generation unit.
  • the pipe 263 may be an example of a first pipe.
  • the hydrogen storage facility 264 may be an example of a hydrogen storage unit.
  • the pipe 265 may be an example of a second pipe.
  • the automatic valve 266 may be an example of a transfer restriction unit.
  • plants or agricultural products are cultivated in the field 210.
  • Examples of agricultural products include cereals, vegetables, fruits, tea, mushrooms, and mycelia.
  • One or more temperature sensors 212 may be arranged in the farm field 210. The temperature sensor 212 measures the air temperature, water temperature, soil temperature, and the like at various points in the farm field 210.
  • One or more carbon dioxide sensors 214 may be arranged in the field 210. The carbon dioxide sensor 214 measures the carbon dioxide concentration in the air at various locations on the field 210. The temperature sensor 212 and the carbon dioxide sensor 214 may output information indicating the measurement result to the controller 240.
  • the temperature sensor 212 and the carbon dioxide sensor 214 may be an example of sensors arranged in the farm field 210. In addition to the temperature sensor 212 and the carbon dioxide sensor 214, various sensors may be arranged in the farm field 210. For example, a humidity sensor is arranged in the farm field 210.
  • the power load 220 uses electricity.
  • the power load 220 may be an electric device that consumes power.
  • the operation of at least a portion of the power load 220 may be controlled by the controller 240.
  • the distribution power facility 230 controls the distribution of power between the power network 12 and the wiring inside the agricultural facility 122.
  • the distribution power facility 230 controls power transmission / reception between the power network 12 and the trigeneration system 250.
  • the distribution power equipment 230 may control the distribution of electric power inside the agricultural facility 122.
  • the distribution power facility 230 controls the supply of power from the trigeneration system 250 to the power load 220.
  • the distribution power facility 230 may convert alternating current into direct current, or may convert direct current into alternating current.
  • the distribution power facility 230 may adjust at least one of the voltage and frequency of electricity.
  • the operation of the distribution power facility 230 may be controlled by the controller 240.
  • the distribution power facility 230 may include one or more watt-hour meters.
  • the distributed power equipment 230 may measure at least one of the instantaneous power [kW] and the power [kWh] of electricity supplied from the power network 12 to the agricultural facility 122.
  • the distribution power equipment 230 may measure at least one of the instantaneous electric power [kW] and the electric energy [kWh] supplied from the agricultural facility 122 to the power grid 12.
  • the distribution power facility 230 may measure at least one of instantaneous electric power [kW] and electric energy [kWh] generated by the trigeneration system 250. At least one of the instantaneous electric power [kW] and the electric energy [kWh] consumed by one or more electric devices arranged inside the agricultural facility 122 may be measured.
  • the distribution power facility 230 may output information indicating at least one of the measured instantaneous power [kW] and power amount [kWh] to the controller 240.
  • the controller 240 controls the operation of the power load 220, the distribution power facility 230, and the trigeneration system 250.
  • the controller 240 acquires information indicating the measurement results of the temperature sensor 212 and the carbon dioxide sensor 214.
  • the controller 240 may control at least one operation of the power load 220, the distribution power facility 230, and the trigeneration system 250 based on the measurement result of at least one of the temperature sensor 212 and the carbon dioxide sensor 214.
  • the controller 240 manages the supply and demand of energy and energy sources in the agricultural facility 122.
  • the controller 240 may, for example, (i) power consumption in the power load 220, (ii) power consumption and power generation in the trigeneration system 250, (iii) hydrogen consumption, hydrogen generation and hydrogen residue in the trigeneration system 250.
  • Amount (iv) Information indicating at least one of the carbon dioxide generation amount in the trigeneration system 250 and (v) the heat consumption amount, the heat generation amount, and the heat storage amount in the trigeneration system 250 is acquired.
  • the controller 240 may control at least one operation of the power load 220, the distribution power facility 230, and the trigeneration system 250 based on the above information.
  • the controller 240 cooperates with the management server 130 to adjust the excess or deficiency of energy and energy sources in the agricultural facility 122 or the community to which the agricultural facility 122 belongs. For example, the controller 240 transmits information regarding the supply and demand state of at least one of energy and energy sources in the agricultural facility 122 to the management server 130. The controller 240 may send a request for adjusting the excess and deficiency of energy and energy sources in the agricultural facility 122 to the management server 130.
  • the controller 240 may acquire information on the supply and demand state of at least one of energy and energy source in the community from the management server 130.
  • the controller 240 may manage power transmission / reception between the agricultural facility 122 and the power grid 12 based on information acquired from the management server 130. Details of the controller 240 will be described later.
  • the trigeneration system 250 generates electricity, heat, and carbon dioxide and supplies them to the outside.
  • the trigeneration system 250 may generate hydrogen and supply the hydrogen to the outside.
  • the trigeneration system 250 supplies heat and carbon dioxide to the field 210.
  • the trigeneration system 250 supplies power to the power load 220 or the power network 12.
  • the reformer 260 decomposes the raw material gas containing hydrogen and carbon to generate hydrogen and carbon dioxide.
  • the reformer 260 may generate heat by decomposing the raw material gas.
  • the reformer 260 may decompose the raw material gas using electric power.
  • the hydrogen generated by the reformer 260 is transferred to the fuel cell 262 via the pipe 263, for example.
  • the hydrogen generated by the reformer 260 is transferred to the hydrogen storage facility 264 via the pipe 265, for example.
  • the hydrogen generated by the reformer 260 is transferred to the field 210 via, for example, a pipe 274.
  • the heat generated by the reformer 260 is transferred to at least one of the heat storage device 282 and the heat exchanger 284 via, for example, an arbitrary heat medium transfer pipe.
  • the fuel cell 262 generates electric power using hydrogen.
  • the fuel cell 262 may generate heat using hydrogen.
  • the fuel cell 262 is supplied with at least one of hydrogen generated by the reformer 260 and hydrogen stored in the hydrogen storage facility 264.
  • the fuel cell 262 may supply power to at least one of the power network 12 and the field 210 via the distribution power facility 230.
  • the heat generated by the fuel cell 262 is transferred to at least one of the heat storage device 282 and the heat exchanger 284 via, for example, an arbitrary heat transfer pipe.
  • a member that restricts the transfer of the heat medium may be disposed in the pipe that supplies heat from the fuel cell 262 to the heat storage device 282.
  • a member that restricts the transfer of the heat medium may be disposed in the pipe that supplies heat from the fuel cell 262 to the heat exchanger 284.
  • the member that restricts the transfer of the heat medium may be an automatic valve. The operation of the automatic valve may be controlled by the controller 240 or a control device (not shown) of the trigeneration system 250.
  • the hydrogen storage facility 264 stores hydrogen supplied from the outside.
  • the hydrogen storage facility 264 stores the hydrogen supplied from the reformer 260 in a hydrogen storage container (not shown).
  • the hydrogen storage facility 264 may store the hydrogen supplied from the fuel cell vehicle 22 in the hydrogen storage container.
  • the method for storing hydrogen is not particularly limited.
  • Hydrogen may be stored at a relatively high pressure or may be stored at a relatively low pressure.
  • Hydrogen may be stored in a gaseous state, may be stored in a liquid state, or may be stored in a state absorbed by a hydrogen storage material.
  • the hydrogen storage facility 264 may supply hydrogen to the outside.
  • the hydrogen storage facility 264 supplies hydrogen to the fuel cell 262.
  • the hydrogen storage facility 264 may supply hydrogen to the fuel cell vehicle 22.
  • a member that restricts the transfer of hydrogen may be disposed in a pipe that supplies hydrogen from the hydrogen storage facility 264 to the fuel cell 262.
  • a member that restricts the transfer of hydrogen may be disposed in a pipe that supplies hydrogen from the hydrogen storage facility 264 to the fuel cell vehicle 22.
  • the member that restricts the transfer of hydrogen may be an automatic valve. The operation of the automatic valve may be controlled by the controller 240 or a control device (not shown) of the trigeneration system 250.
  • the automatic valve 266 limits the transfer of hydrogen in at least one of the pipe 263 and the pipe 265. Thereby, the transfer destination and transfer amount of hydrogen generated by the reformer 260 are controlled.
  • the operation of the automatic valve 266 may be controlled by the controller 240 or the control device (not shown) of the trigeneration system 250.
  • the flow rate control unit 272 limits the transfer of carbon dioxide from the reformer 260 to the field 210.
  • the flow rate control unit 272 may be disposed in a part of the pipe 274. Thereby, the amount of carbon dioxide transferred to the field 210 is controlled.
  • the operation of the flow control unit 272 may be controlled by the controller 240 or a control device (not shown) of the trigeneration system 250. Details of the flow rate control unit 272 will be described later.
  • the heat storage device 282 accumulates heat generated by at least one of the reformer 260 and the fuel cell 262.
  • the heat exchanger 284 converts the heat generated by at least one of the reformer 260 and the fuel cell 262 or the heat accumulated in the heat storage device 282 into a temperature adjustment device (not shown) of the field 210. No).
  • the heat exchange method in the heat exchanger 284 is not particularly limited.
  • the automatic valve 286 limits the transfer of the heat medium that transmits the heat generated by the reformer 260.
  • the transfer of the heat medium is limited in at least one of a pipe that transfers the heat medium from the reformer 260 to the heat storage apparatus 282 and a pipe that transfers the heat medium from the reformer 260 to the heat storage apparatus 282. Thereby, the transfer destination and transfer amount of the heat generated by the reformer 260 are controlled.
  • the operation of the automatic valve 266 may be controlled by the controller 240 or the control device (not shown) of the trigeneration system 250.
  • FIG. 3 schematically shows an example of the internal configuration of the controller 240.
  • the controller 240 includes, for example, an air conditioning management unit 322, a power supply / demand management unit 324, a hydrogen supply / demand management unit 326, and a system control unit 330.
  • the system control unit 330 includes a power supply control unit 332, a hydrogen supply control unit 334, a carbon dioxide supply control unit 336, a heat supply control unit 338, and a vehicle allocation request unit 342.
  • the power supply / demand management unit 324 may be an example of a power supply / demand acquisition unit.
  • the hydrogen supply and demand management unit 326 may be an example of a hydrogen supply and demand acquisition unit.
  • the system control unit 330 may be an example of an energy management device.
  • the power supply control unit 332 may be an example of a power generation control unit.
  • the carbon dioxide supply control unit 336 may be an example of a supply request acquisition unit and a response determination unit.
  • the dispatch request unit 342 may be an example of a dispatch request transmission unit.
  • the air conditioning management unit 322 manages at least one of the temperature, humidity, and carbon dioxide concentration of the field 210.
  • the air conditioning management unit 322 may manage at least one of the temperature, humidity, and carbon dioxide concentration of the air in the field 210.
  • You may manage at least one of the temperature of the culture medium of the agricultural field 210, and humidity.
  • the air conditioning management unit 322 acquires information indicating the measurement results of various sensors arranged in the field 210.
  • the air conditioning management unit 322 outputs various requests to the system control unit 330 based on the measurement result of the sensor. For example, the air conditioning management unit 322 outputs a heat request for requesting heat supply based on the measurement result of the temperature sensor 212.
  • the air conditioning management unit 322 may output a carbon dioxide request for requesting the supply of carbon dioxide based on the measurement result of the carbon dioxide sensor 214.
  • the air conditioning management unit 322 outputs a humidification request for requesting humidification based on the measurement result of the humidity sensor.
  • the carbon dioxide request may be an example of a supply request.
  • the power supply / demand management unit 324 manages the power supply / demand in the agricultural facility 122.
  • the power supply / demand management unit 324 acquires information indicating the power supply / demand situation of the agricultural facility 122 (sometimes referred to as power supply / demand information).
  • the power supply and demand management unit 324 may acquire information indicating the power consumption in the agricultural facility 122 from the distributed power facility 230.
  • the power supply and demand management unit 324 may acquire information indicating the power supply amount in the agricultural facility 122 from the distributed power facility 230.
  • the power supply / demand management unit 324 may acquire information indicating the power generation amount of the trigeneration system 250 from the distribution power facility 230.
  • the power supply and demand management unit 324 may acquire information indicating the amount of power transmitted from the agricultural facility 122 to the power network 12 from the distributed power facility 230.
  • the power supply / demand management unit 324 may predict the power consumption in the agricultural facility 122.
  • the power supply / demand management unit 324 may predict the power supply amount in the agricultural facility 122.
  • the power supply / demand management unit 324 may acquire information indicating the power supply / demand situation in the community to which the agricultural facility 122 belongs from the management server 130.
  • the power supply / demand situation in the community may be power supply / demand information in the power network 12.
  • the contents indicated by the power supply / demand information of the community may be the same as the power supply / demand information of the agricultural facility 122.
  • the power supply / demand situation in the community may be an example of the power supply / demand situation in the agricultural facility 122.
  • the hydrogen supply and demand management unit 326 manages the hydrogen supply and demand in the agricultural facility 122.
  • the hydrogen supply and demand management unit 326 acquires information indicating the hydrogen supply and demand situation in the agricultural facility 122 (sometimes referred to as hydrogen supply and demand information).
  • the hydrogen supply and demand management unit 326 may acquire information indicating the hydrogen consumption in the fuel cell 262 from the trigeneration system 250.
  • the hydrogen supply / demand management unit 326 may acquire information indicating the hydrogen supply amount to the hydrogen storage container mounted on the fuel cell vehicle 22 from the trigeneration system 250.
  • the hydrogen supply and demand management unit 326 may acquire information indicating the amount of hydrogen produced in the reformer 260 from the trigeneration system 250.
  • the hydrogen supply / demand management unit 326 may acquire information indicating the remaining amount of hydrogen in the hydrogen storage facility 264 from the trigeneration system 250.
  • the hydrogen supply and demand management unit 326 may predict the hydrogen consumption in the trigeneration system 250.
  • the hydrogen supply and demand management unit 326 may predict the hydrogen production amount in the trigeneration system 250.
  • the hydrogen supply and demand management unit 326 may predict the remaining amount of hydrogen in the trigeneration system 250.
  • the hydrogen supply and demand management unit 326 may acquire information indicating the hydrogen supply and demand situation in the community to which the agricultural facility 122 belongs from the management server 130.
  • the content indicated by the hydrogen supply / demand information of the community may be the same as the hydrogen supply / demand information of the agricultural facility 122.
  • the supply and demand situation of hydrogen in the community may be an example of the supply and demand situation of hydrogen in the agricultural facility 122.
  • the system control unit 330 controls operations of the power load 220, the distribution power facility 230, and the trigeneration system 250.
  • the system control unit 330 may control communication between the controller 240 and the management server 130.
  • the system control unit 330 may have a communication interface.
  • the communication interface may correspond to a plurality of communication methods.
  • the power supply control unit 332 controls the supply of power in the trigeneration system 250. For example, the power supply control unit 332 determines whether to operate the fuel cell 262. The power supply control unit 332 may determine whether to operate the fuel cell 262 based on (i) the power supply / demand situation in the agricultural facility 122 and (ii) the hydrogen supply / demand situation in the agricultural facility 122. .
  • the power supply control unit 332 includes information indicating one or more periods based on (i) a power supply / demand situation in the agricultural facility 122, and (ii) a hydrogen supply / demand situation in the agricultural facility 122; An operation schedule in which the power generation amount in each period is associated is generated.
  • the power supply control unit 332 operates the fuel cell 262 according to the operation schedule.
  • the power supply control unit 332 may determine whether or not to operate the fuel cell 262 based on the excessive power supply in the agricultural facility 122. For example, the power supply control unit 332 does not operate the fuel cell 262 when the excess power supply in the agricultural facility 122 satisfies a specific condition (sometimes referred to as an excessive power condition), or Then, it is decided to stop the fuel cell 262. The power supply control unit 332 may determine to operate the fuel cell 262 when the excessive power supply in the agricultural facility 122 does not satisfy the above condition.
  • a specific condition sometimes referred to as an excessive power condition
  • the excess state of power supply may be a parameter indicating the degree of power surplus or tightness.
  • the excess state of the power supply may be represented by a continuous numerical value or may be represented by a stepwise division. Each division may be distinguished by a symbol or a character, and may be distinguished by a number.
  • the excess state of power supply and demand may be determined based on at least one of surplus power and power supply surplus. For example, (i) the ratio of surplus power or supply surplus power in the agricultural facility 122 to demand power in the agricultural facility 122; (ii) surplus in the agricultural facility 122 relative to the power supply capacity in the agricultural facility 122; It is determined based on the ratio of electric power or supply surplus capacity.
  • the excess state of power supply and demand may be determined based on the power supply and demand situation in the community to which the agricultural facility 122 belongs. For example, (i) the ratio of surplus power or supply surplus power in the power network 12 to demand power in the community, and (ii) the ratio of surplus power or surplus power supply in the community to the power supply capacity in the power network 12 It is determined based on the above.
  • the power supply / demand situation in the power network 12 may be an example of the power supply / demand situation in the community to which the agricultural facility 122 belongs.
  • the power supply control unit 332 may control power supply to at least one of the one or more power loads 220. As a result, the power supply control unit 332 can regulate power supply and demand of the agricultural facility 122 by limiting power consumption in the agricultural facility 122.
  • the hydrogen supply control unit 334 controls the supply of hydrogen in the trigeneration system 250. For example, the hydrogen supply control unit 334 determines whether to operate the reformer 260. The hydrogen supply control unit 334 determines whether to operate the reformer 260 based on (i) the power supply / demand situation in the agricultural facility 122 and (ii) the hydrogen supply / demand situation in the agricultural facility 122. Good.
  • the hydrogen supply control unit 334 includes information indicating one or more periods based on (i) a power supply / demand situation in the agricultural facility 122, and (ii) a hydrogen supply / demand situation in the agricultural facility 122; An operation schedule in which the amount of hydrogen generated in each period is associated is generated.
  • the hydrogen supply control unit 334 operates the reformer 260 according to the operation schedule.
  • the hydrogen supply control unit 334 may determine whether or not to operate the reformer 260 based on the excessive hydrogen supply in the agricultural facility 122. For example, the hydrogen supply control unit 334 does not operate the reformer 260 when the excessive hydrogen supply in the agricultural facility 122 satisfies a specific condition (sometimes referred to as an excessive hydrogen condition). Alternatively, it is determined to stop the reformer 260. The hydrogen supply control unit 334 may determine to operate the reformer 260 when the excess power supply in the agricultural facility 122 does not satisfy the above condition.
  • a specific condition sometimes referred to as an excessive hydrogen condition
  • the excess of hydrogen supply may be a parameter indicating the degree of excess or tightness of hydrogen.
  • the excess degree of hydrogen supply may be represented by a continuous numerical value or by a stepwise division. Each division may be distinguished by a symbol or a character, and may be distinguished by a number.
  • the excess state of hydrogen supply and demand may be determined based on at least one of the surplus hydrogen amount and the hydrogen supply capacity.
  • the excess of hydrogen supply / demand is (i) the ratio of surplus hydrogen amount or supply capacity in the agricultural facility 122 to the hydrogen demand in the agricultural facility 122, and (ii) the agricultural facility in relation to the hydrogen supply capacity in the agricultural facility 122. It is determined based on the amount of surplus hydrogen at 122 or the ratio of surplus supply capacity.
  • the excess state of hydrogen supply and demand may be determined based on the hydrogen supply and demand situation in the community to which the agricultural facility 122 belongs.
  • the excess of hydrogen supply and demand is, for example, (i) the ratio of surplus hydrogen amount or supply surplus capacity in the community to the hydrogen demand in the community, and (ii) surplus hydrogen amount or surplus supply capacity in the community relative to the hydrogen supply capacity in the community It is determined based on the ratio of.
  • the hydrogen supply control unit 334 controls the supply path and supply amount of hydrogen generated by the reformer 260.
  • the hydrogen supply control unit 334 controls the operation of the automatic valve 266.
  • the hydrogen supply control part 334 can control the transfer destination of hydrogen and the transfer amount to each transfer destination.
  • the carbon dioxide supply control unit 336 controls the supply of carbon dioxide in the trigeneration system 250. For example, the carbon dioxide supply control unit 336 determines whether to operate the reformer 260. The carbon dioxide supply control unit 336 determines whether to operate the reformer 260 based on (i) the power supply / demand situation in the agricultural facility 122 and (ii) the hydrogen supply / demand situation in the agricultural facility 122. It's okay.
  • the carbon dioxide supply control unit 336 acquires the carbon dioxide request output by the air conditioning management unit 322.
  • the carbon dioxide supply control unit 336 acquires the power supply / demand information of the agricultural facility 122 from the power supply / demand management unit 324.
  • the carbon dioxide supply control unit 336 acquires the hydrogen supply / demand information of the agricultural facility 122 from the hydrogen supply / demand management unit 326.
  • the carbon dioxide supply control unit 336 determines whether to respond to the carbon dioxide request based on (i) the power supply / demand situation indicated by the power supply / demand information, and (ii) the hydrogen supply / demand situation indicated by the hydrogen supply / demand information. decide.
  • the carbon dioxide supply control is performed.
  • the unit 336 determines that the carbon dioxide request is not met.
  • the excessive hydrogen supply condition indicated by the hydrogen supply and demand information does not satisfy the excessive hydrogen condition, and the excessive power supply condition indicated by the power supply and demand information satisfies the excessive power condition, carbon dioxide.
  • Supply controller 336 may determine to respond to the carbon dioxide request. When it is determined to meet the carbon dioxide request, the carbon dioxide supply control unit 336 executes at least one of a process for operating the reformer 260 and a process for controlling the flow rate control unit 272. Good.
  • the carbon dioxide supply control unit 336 When the required amount of carbon dioxide is specified in the carbon dioxide request, the carbon dioxide supply control unit 336, for example, when the required amount of carbon dioxide is generated, the excessive hydrogen supply and the excessive power supply. To decide. When the determined excess of hydrogen supply satisfies the excess hydrogen condition and the determined excess of power supply satisfies the excess power condition, the carbon dioxide supply control unit 336 does not respond to the carbon dioxide request. May be determined.
  • the carbon dioxide supply control unit 336 calculates the amount of carbon dioxide that can be supplied by the trigeneration system 250 based on the supply and demand information of hydrogen and electric power, and sends the amount of carbon dioxide to the air conditioning management unit 322. You may be notified.
  • the air conditioning management unit 322 may output the carbon dioxide request again by changing the required amount of carbon dioxide.
  • the air conditioning management unit 322 outputs a carbon dioxide request for requesting the supply of carbon dioxide within the range of the amount of carbon dioxide that can be supplied by the trigeneration system 250 because the required amount of carbon dioxide is not specified. May be.
  • the carbon dioxide supply control unit 336 controls the supply path and supply amount of carbon dioxide generated by the reformer 260.
  • the carbon dioxide supply control unit 336 controls the operation of the flow rate control unit 272.
  • the carbon dioxide supply control unit 336 can control the transfer destination of carbon dioxide and the transfer amount to each transfer destination.
  • the carbon dioxide supply control unit 336 controls the amount of carbon dioxide supplied to the farm field 210.
  • the heat supply control unit 338 controls the supply of heat in the trigeneration system 250. For example, the heat supply control unit 338 determines whether or not to operate at least one of the reformer 260 and the fuel cell 262. The heat supply controller 338 may determine whether to operate at least one of the reformer 260 and the fuel cell 262 based on the amount of heat stored in the heat storage device 282. The heat supply control unit 338 operates at least one of the reformer 260 and the fuel cell 262 based on (i) the power supply / demand situation in the agricultural facility 122 and (ii) the hydrogen supply / demand situation in the agricultural facility 122. Or not.
  • the heat supply control unit 338 acquires the heat request output from the air conditioning management unit 322.
  • the heat supply control unit 338 determines whether or not to respond to the heat request based on the amount of heat stored in the heat storage device 282. When the amount of heat required by the heat request is equal to or less than the amount of heat stored in the heat storage device 282, it may be determined not to operate the reformer 260 and the fuel cell 262. Thereafter, the heat supply control unit 338 operates the heat storage device 282 and the heat exchanger 284 to execute processing for supplying heat to the farm field 210.
  • the heat supply control unit 338 acquires the power supply / demand information of the agricultural facility 122 from the power supply / demand management unit 324.
  • the heat supply control unit 338 acquires the hydrogen supply / demand information of the agricultural facility 122 from the hydrogen supply / demand management unit 326.
  • the heat supply control unit 338 determines whether or not to respond to the heat request based on (i) the power supply / demand situation indicated by the power supply / demand information, and (ii) the hydrogen supply / demand situation indicated by the hydrogen supply / demand information. decide.
  • the heat supply control unit 338 determines that the heat demand is not met. In another embodiment, when the hydrogen supply excess condition indicated by the hydrogen supply / demand information does not satisfy the hydrogen excess condition, and the power supply excess condition indicated by the power supply / demand information satisfies the power excess condition, the heat supply The control unit 338 may determine to respond to the heat request. The heat supply control unit 338 may determine which of the reformer 260 and the fuel cell 262 is to be operated based on the hydrogen supply / demand information and the power supply / demand information. When it is determined to meet the heat demand, the heat supply control unit 338 performs at least one of processing for operating at least one of the reformer 260 and the fuel cell 262 and processing for controlling the automatic valve 286. May be performed.
  • the heat supply control unit 338 determines, for example, the excessive hydrogen supply and the excessive power supply when the required amount of heat is generated. If the determined excess of hydrogen supply satisfies the excess hydrogen condition and the determined excess of power supply satisfies the excess power condition, the heat supply control unit 338 determines that the heat demand is not met. You can do it.
  • the heat supply control unit 338 may calculate the amount of heat that can be supplied by the trigeneration system 250 based on the supply and demand information of hydrogen and electric power, and notify the air conditioning management unit 322 of the amount of heat.
  • the air conditioning management unit 322 may output the heat request again by changing the required heat amount. Note that the air conditioning management unit 322 may output a heat request that requests the supply of heat within the range of the amount of heat that can be supplied by the trigeneration system 250 because the required amount of heat is not specified.
  • the vehicle allocation request unit 342 transmits a vehicle allocation request for requesting dispatch of at least one of the fuel cell vehicle 22 and the electric vehicle 24 to the management server 130.
  • the above vehicle allocation request may be a request to the administrator of the fuel cell vehicle 22 or the electric vehicle 24.
  • the dispatch request may be an example of a dispatch request.
  • the vehicle allocation request unit 342 transmits a vehicle allocation request for requesting dispatch of the fuel cell vehicle 22 to the management server 130. .
  • the allocation request may include information indicating the amount of hydrogen released from the hydrogen storage facility 264.
  • the vehicle allocation request unit 342 sends a vehicle allocation request for requesting dispatch of the fuel cell vehicle 22 or the electric vehicle 24 to the management server 130. Send to.
  • the dispatch request may include information indicating the amount of electric power that is insufficient in the agricultural facility 122.
  • FIG. 4 schematically shows an example of the internal configuration of the flow control unit 272.
  • the flow rate control unit 272 includes, for example, a pipe 410, an automatic valve 412, and a flow rate adjustment valve 414.
  • the flow rate control unit 272 may include a pipe 420 and a relief valve 422.
  • the pipe 410 and the pipe 420 transfer at least a part of the carbon dioxide generated by the reformer 260 to the field 210.
  • the automatic valve 412 and the flow rate adjustment valve 414 are arranged in a part of the pipe 410 and adjust the amount of carbon dioxide transferred to the farm field 210.
  • the operation of the automatic valve 412 may be controlled by the controller 240.
  • the opening degree of the flow rate adjustment valve 414 may be manually adjusted or controlled by the controller 240.
  • the relief valve 422 is arranged in a part of the pipe 420.
  • the pipe 420 is configured such that when the reformer 260 generates carbon dioxide with the automatic valve 412 closed, the pressure of the pipe 420 increases. When the pressure of the pipe 420 exceeds the set value of the relief valve 422, the relief valve 422 is opened and carbon dioxide inside the pipe 420 is released into the atmosphere.
  • FIG. 5 schematically shows an example of the system configuration of the energy management facility 124.
  • the energy management facility 124 includes, for example, one or more power generation facilities 520, one or more power storage facilities 530, a distribution power facility 540, one or more hydrogen production facilities 550, and one or more hydrogen storage facilities. 552 and a control device 560.
  • the power generation facility 520 includes, for example, one or more fuel cells 522.
  • the power generation facility 520 may include one or more solar power generation devices 524.
  • the power generation facility 520 generates electric power.
  • the power storage facility 530 stores electric power. The operations of the power generation facility 520 and the power storage facility 530 may be controlled by the control device 560.
  • the distribution power facility 540 controls the distribution of power between the power network 12 and the wiring inside the energy management facility 124.
  • the distribution power facility 540 may control the distribution of power within the energy management facility 124.
  • the distribution power facility 540 may convert alternating current into direct current, or may convert direct current into alternating current.
  • the distribution power facility 540 may adjust at least one of the voltage and frequency of electricity. The operation of the distribution power facility 540 may be controlled by the control device 560.
  • the hydrogen production facility 550 generates hydrogen.
  • the hydrogen production facility 550 may produce hydrogen using electric power.
  • the hydrogen production facility 550 uses the power supplied from at least one of the power network 12, the power generation facility 520, and the power storage facility 530 to produce hydrogen.
  • the operation of the hydrogen production facility 550 may be controlled by the controller 560.
  • the details of the hydrogen production process in the hydrogen production facility 550 are not particularly limited.
  • the hydrogen production facility 550 produces hydrogen by an electrochemical method, for example.
  • the hydrogen production facility 550 may produce hydrogen by a chemical technique or may produce hydrogen by a biological technique. As described above, hydrogen may be an example of an energy source.
  • the hydrogen storage facility 552 stores the hydrogen produced by the hydrogen production facility 550.
  • the hydrogen storage facility 552 stores the hydrogen produced by the hydrogen production facility 550 in a hydrogen storage container (not shown).
  • the method for storing hydrogen is not particularly limited.
  • Hydrogen may be stored at a relatively high pressure or may be stored at a relatively low pressure.
  • Hydrogen may be stored in a gaseous state, may be stored in a liquid state, or may be stored in a state absorbed by a hydrogen storage material.
  • the hydrogen storage facility 264 may supply hydrogen to the outside.
  • the hydrogen storage facility 264 may supply hydrogen to the fuel cell vehicle 22.
  • the operation of the hydrogen production facility 550 may be controlled by the controller 560.
  • control device 560 controls operations of the power generation facility 520, the power storage facility 530, the distribution power facility 540, the hydrogen production facility 550, and the hydrogen storage facility 552.
  • the control device 560 adjusts the supply and demand of energy and energy sources in the community to which the energy management facility 124 belongs.
  • the control device 560 may control at least one operation of the power generation facility 520, the power storage facility 530, the distribution power facility 540, the hydrogen production facility 550, and the hydrogen storage facility 552 based on an instruction from the management server 130.
  • the control device 560 may have a configuration similar to that of the controller 240 within a technically consistent range.
  • FIG. 6 schematically shows an example of the internal configuration of the energy management unit 132.
  • the energy management unit 132 includes, for example, an electric power supply / demand management unit 612, a hydrogen supply / demand management unit 614, a request acquisition unit 622, a request processing unit 624, and a settlement unit 632.
  • the power supply / demand management unit 612 may be an example of a first supply / demand information acquisition unit, a second supply / demand information acquisition unit, and a power transmission / reception amount management unit.
  • the hydrogen supply and demand management unit 614 may be an example of a first supply and demand information acquisition unit and a second supply and demand information acquisition unit.
  • the request acquisition unit 622 may be an example of a first request acquisition unit.
  • the request processing unit 624 may be an example of an energy management device.
  • the settlement unit 632 may be an example of a power transmission / reception amount adjustment unit.
  • the power supply and demand management unit 612 manages the power supply and demand of the community that is the management target of the management server 130.
  • the power supply and demand management unit 612 manages the power supply and demand of a community that includes one or more agricultural facilities 122, one or more energy management facilities 124, and one or more supply and demand facility 126.
  • the power supply / demand management unit 612 may acquire information indicating the power supply / demand in the agricultural facility 122 from the controller 240 of the agricultural facility 122. More specifically, the power supply / demand management unit 612 may acquire information indicating the power supply / demand in the trigeneration system 250 of the agricultural facility 122 from the controller 240 of the agricultural facility 122. Similarly, the power supply and demand management unit 612 may acquire information indicating the power supply and demand in the supply and demand facility 126.
  • the power supply / demand management unit 612 may acquire information indicating the power supply / demand in the energy management facility 124 from the control device 560 of the energy management facility 124. More specifically, the power supply / demand management unit 612 may acquire information indicating the power supply / demand in the hydrogen production facility 550 of the energy management facility 124 from the control device 560 of the energy management facility 124.
  • the power supply and demand management unit 612 may manage information indicating at least one of the power transmission amount and the power reception amount between the agricultural facility 122 and the power network 12. For example, the power supply / demand management unit 612 may manage information indicating at least one of the power transmission amount and the power reception amount between the trigeneration system 250 of the agricultural facility 122 and the power network 12 from the controller 240 of the agricultural facility 122. Similarly, the power supply and demand management unit 612 may manage information indicating at least one of the power transmission amount and the power reception amount between the supply and demand facility 126 and the agricultural facility 122 and the power grid 12.
  • the power supply / demand management unit 612 may manage information indicating at least one of the power transmission amount and the power reception amount between the energy management facility 124 and the power network 12. For example, the power supply / demand management unit 612 manages information indicating at least one of the power transmission amount and the power reception amount between the hydrogen production facility 550 of the energy management facility 124 and the power grid 12 from the control device 560 of the energy management facility 124. It's okay.
  • the hydrogen supply and demand management unit 614 may acquire information indicating the hydrogen supply and demand in the agricultural facility 122 from the controller 240 of the agricultural facility 122. More specifically, the hydrogen supply and demand management unit 614 may acquire information indicating the hydrogen supply and demand in the trigeneration system 250 of the agricultural facility 122 from the controller 240 of the agricultural facility 122.
  • the hydrogen supply and demand management unit 614 may acquire information indicating the hydrogen supply and demand at the energy management facility 124 from the control device 560 of the energy management facility 124. More specifically, the hydrogen supply and demand management unit 614 may acquire information indicating the hydrogen supply and demand in the hydrogen production facility 550 of the energy management facility 124 from the control device 560 of the energy management facility 124.
  • the request acquisition unit 622 acquires various requests.
  • the request acquisition unit 622 may acquire a request from at least one of the agricultural facility 122, the energy management facility 124, the supply and demand facility 126, the fuel cell vehicle 22, the electric vehicle 24, and the communication terminal 32.
  • the request acquisition unit 622 acquires a permission request for requesting permission for power transmission from the trigeneration system 250 to the power grid 12 from the controller 240 of the agricultural facility 122.
  • the permission request may be an example of a first request.
  • the request processing unit 624 may generate various requests for adjusting power supply and demand in the community. For example, the request processing unit 624 acquires information indicating the power supply / demand of the trigeneration system 250 of the agricultural facility 122 and information indicating the power supply / demand of the hydrogen production facility 550 of the energy management facility 124 from the power supply / demand management unit 612. . Further, the request processing unit 624 acquires information indicating the hydrogen supply / demand of the trigeneration system 250 of the agricultural facility 122 and information indicating the hydrogen supply / demand of the hydrogen production facility 550 of the energy management facility 124 from the hydrogen supply / demand management unit 614. .
  • the request processing unit 624 (i) the upper limit value of the amount of power that the hydrogen production facility 550 of the energy management facility 124 can receive from the power network in a specific period. (Ii) the target value of the amount of hydrogen generated by the hydrogen production facility 550 of the energy management facility 124 in a specific period; (iii) the trigeneration system 250 of the agricultural facility 122 transmits power to the power system in a specific period. And (iv) a target value of the amount of power generated by the trigeneration system 250 of the agricultural facility 122 in a specific period may be determined.
  • the request processing unit 624 may transmit information indicating the determined upper limit value or target value to at least one of the agricultural facility 122 and the energy management facility 124.
  • the request processing unit 624 may process various requests acquired by the request acquisition unit 622. For example, when the request acquisition unit 622 acquires the permission request, the request processing unit 624 receives information indicating the power supply / demand of the trigeneration system 250 of the agricultural facility 122 and the hydrogen production of the energy management facility 124 from the power supply / demand management unit 612. Information indicating power supply and demand of the facility 550 is acquired. Further, the request processing unit 624 acquires information indicating the hydrogen supply / demand of the trigeneration system 250 of the agricultural facility 122 and information indicating the hydrogen supply / demand of the hydrogen production facility 550 of the energy management facility 124 from the hydrogen supply / demand management unit 614. .
  • the request processing unit 624 reads from the trigeneration system 250 based on the information indicating the power supply / demand of the trigeneration system 250 of the agricultural facility 122 and the information indicating the power supply / demand of the hydrogen production facility 550 of the energy management facility 124. Whether to allow power transmission to the power grid 12 is determined.
  • the request processing unit 624 determines to prohibit power transmission when the excess hydrogen supply in the hydrogen production facility 550 of the energy management facility 124 satisfies a predetermined first condition.
  • the first condition may be a case where the excess amount of hydrogen exceeds a predetermined degree.
  • the settlement unit 632 generates a report indicating the power supply / demand situation for each unit period for each of the one or more agricultural facilities 122, the one or more energy management facilities 124, and the one or more supply and demand facility 126.
  • Examples of the length of the unit period include one day, one week, and one month.
  • the settlement unit 632 determines the amount of power supplied to the power grid 12 by the agricultural facility 122 that transmitted the permission request.
  • the energy management facility 124 may execute a process for replacing the amount of power used to produce hydrogen.
  • the request processing unit 624 subtracts the amount of power transmitted from the trigeneration system 250 of the agricultural facility 122 according to the permission from the amount of power received from the power network 12 of the hydrogen production facility 550 of the energy management facility 124. To do.
  • the request processing unit 624 adds the transmission amount from the trigeneration system 250 of the agricultural facility 122 according to the permission to the power grid 12 to the transmission amount from the hydrogen production facility 550 of the energy management facility 124 to the power grid. To do.
  • FIG. 7 schematically shows an example of information processing in the settlement unit 632.
  • the settlement unit 632 subtracts the amount of power sold by the agricultural facility 122 to the power network 12 from the amount of power purchased by the energy management facility 124 from the power network 12.
  • the amount of power supplied from the agricultural facility 122 to the power grid 12 can be read as the amount of power used by the energy management facility 124 to produce hydrogen.
  • FIG. 8 schematically shows an example of the internal configuration of the dispatch management unit 134.
  • the vehicle allocation management unit 134 includes, for example, a vehicle management unit 822, an application change unit 824, a vehicle allocation request acquisition unit 832, and a vehicle allocation unit 834.
  • the vehicle management unit 822 may be an example of a moving body management unit.
  • the vehicle allocation request acquisition unit 832 may be an example of a second request acquisition unit.
  • the vehicle allocation unit 834 may be an example of a second determination unit.
  • the vehicle management unit 822 manages at least one of the fuel cell vehicle 22 and the electric vehicle 24. Specifically, the vehicle management unit 822 manages information indicating at least one state of one or more fuel cell vehicles 22 and one or more electric vehicles 24.
  • the information indicating the state of the fuel cell vehicle 22 may include information indicating the remaining amount of hydrogen in the fuel cell vehicle 22.
  • the information indicating the state of the electric vehicle 24 may include information indicating the remaining battery level of the electric vehicle 24.
  • the position of the vehicle, the use of the vehicle, the type of the vehicle, the use status of the vehicle, etc. are exemplified.
  • Examples of the use of the vehicle include a use that is lent to a user of a rental car service, a use that is used as a power supply device, a use that is used as a hydrogen transport device, and the like.
  • Examples of types of vehicles include fuel cell vehicles, electric vehicles, engine vehicles that carry portable hydrogen storage containers, and engine vehicles that carry portable power storage devices.
  • Examples of the usage status of the vehicle include the status of the vehicle, the scheduled time when the status of the vehicle is next available, and the position of the vehicle at the scheduled time. Examples of the status include states such as being available, being used, and being maintained.
  • the usage changing unit 824 changes the usage of the vehicle for at least one of the one or more fuel cell vehicles 22 and the one or more electric vehicles 24.
  • the usage changing unit 824 may change the usage of the vehicle based on at least one of the power supply / demand situation and the hydrogen supply / demand situation in the community. For example, the usage changing unit 824 determines the number of vehicles to be allocated to each usage based on at least one of the power supply / demand situation and the hydrogen supply / demand situation in the community.
  • the usage changing unit 824 may change the usage of each vehicle based on the determination result.
  • the usage changing unit 824 increases the number of vehicles allocated to the usage of being rented to the user of the rental car service in the tourist season as compared with other periods.
  • the number of vehicles allocated for use as a hydrogen carrying device is increased compared to other periods.
  • the vehicle allocation request acquisition unit 832 acquires a vehicle allocation request from each facility of the energy management system 100.
  • the dispatch request acquisition unit 832 acquires a dispatch request from the agricultural facility 122.
  • the dispatch request may be an example of a second request.
  • the vehicle allocation unit 834 manages the use of the vehicle managed by the vehicle allocation management unit 134. For example, when the vehicle allocation request acquisition unit 832 acquires a vehicle allocation request from the agricultural facility 122, the vehicle allocation unit 834 determines a vehicle to be moved to the agricultural facility 122 among one or more vehicles managed by the vehicle allocation management unit 134.
  • the dispatching unit 834 is in the state of (i) the state of power supply and demand and hydrogen supply and demand in the agricultural facility 122 or the trigeneration system 250 of the farming facility 122, and (ii) the state of one or more vehicles managed by the dispatching management unit 134. Based on this, the vehicle to be moved to the agricultural facility 122 is determined.
  • the dispatch unit 834 when the excess hydrogen supply in the trigeneration system 250 of the agricultural facility 122 satisfies the second condition, the dispatch unit 834 sends a vehicle whose remaining hydrogen amount satisfies the third condition to the agricultural facility 122. It is determined as a vehicle to be moved.
  • the second condition may be a condition that an excessive degree of hydrogen supply exceeds a predetermined level.
  • the third condition may be a condition that the remaining amount of hydrogen is smaller than a predetermined value.
  • the third condition may be a condition that the remaining amount of hydrogen is a sufficient amount to reach the agricultural facility 122 and is smaller than a predetermined value.
  • the vehicle allocation unit 834 determines that the vehicle remaining in the battery satisfies the fourth condition as the agricultural facility 122.
  • the vehicle to be moved to is determined.
  • the second condition may be a condition that an excessive degree of hydrogen supply exceeds a predetermined level.
  • the fourth condition may be a condition that the remaining battery level is smaller than a predetermined value.
  • the fourth condition may be a condition that the remaining battery level is sufficient to reach the agricultural facility 122 and is smaller than a predetermined value.
  • FIG. 9 schematically shows an example of the data table 900.
  • the data table 900 may be an example of a data structure of a database managed by the vehicle management unit 822.
  • the data table 900 includes (i) vehicle identification information 912, (ii) information 914 indicating the current position of the vehicle, information 916 indicating the use of the vehicle, information 918 indicating the type of the vehicle, hydrogen At least one of information 920 indicating the remaining amount, information 922 indicating the status of the vehicle, and information 924 indicating the scheduled time when the status of the vehicle becomes available next is stored in association with each other.

Abstract

The present invention comprises: a reformation unit that decomposes, using electric power, a raw material gas including hydrogen and carbon to generate hydrogen and carbon dioxide; a hydrogen storage unit that stores hydrogen; an electric power generation unit that generates electric power using at least one of the hydrogen generated by the reformation unit and the hydrogen stored in the hydrogen storage unit; a first piping that transports the hydrogen generated by the reformation unit to the electric power generation unit; a second piping that transports the hydrogen generated by the reformation unit to the hydrogen storage unit; and a transport restriction unit that restricts the transport of hydrogen in at least one of the first piping and the second piping.

Description

エネルギ発生装置、制御方法、及び、プログラムEnergy generating device, control method, and program
 本発明は、エネルギ発生装置、制御方法、及び、プログラムに関する。 The present invention relates to an energy generation device, a control method, and a program.
 再生可能エネルギを利用して発電された電力で水素を発生させる技術が知られている(例えば、特許文献1~5を参照)。特許文献6には、街中に水素供給配管を張り巡らせてCEMSを実現することが開示されている。特許文献7には、水素の生産及び発電の併産が可能なシステムに、ボイラ、マイクロタービンなどを組み合わせてもよいことが開示されている。
 [先行技術文献]
 [特許文献]
 [特許文献1] 特許第6030158号
 [特許文献2] 特開2017-76611号
 [特許文献3] 第4775790号
 [特許文献4] 特開2003-257443号公報
 [特許文献5] 特許第4328069号
 [特許文献6] 特開2007-265732号
 [特許文献7] 特表2007-523443号公報
A technique for generating hydrogen with electric power generated using renewable energy is known (see, for example, Patent Documents 1 to 5). Patent Document 6 discloses that CEMS is realized by extending hydrogen supply pipes around the city. Patent Document 7 discloses that a boiler, a micro turbine, or the like may be combined with a system capable of co-production of hydrogen production and power generation.
[Prior art documents]
[Patent Literature]
[Patent Literature 1] Patent No. 630158 [Patent Literature 2] JP 2017-76611 [Patent Literature 3] No. 4775790 [Patent Literature 4] JP Patent Publication No. 2003-257443 [Patent Literature 5] Patent No. 4328069 Patent Document 6] Japanese Patent Application Laid-Open No. 2007-265732 [Patent Document 7] Japanese Patent Application Publication No. 2007-523443
解決しようとする課題Challenges to be solved
 水素を利用したトリジェネレーションシステムを構築して、二酸化炭素、熱及び電気を供給する場合、二酸化炭素を供給するタイミングと、電気を供給するタイミングとを一致させることが難しい。 When building a trigeneration system using hydrogen and supplying carbon dioxide, heat and electricity, it is difficult to match the timing of supplying carbon dioxide with the timing of supplying electricity.
一般的開示General disclosure
 本発明の第1の態様においては、エネルギ発生装置が提供される。上記のエネルギ発生装置は、例えば、電力を利用して水素及び炭素を含む原料ガスを分解し、水素及び二酸化炭素を発生させる改質部を備える。上記のエネルギ発生装置は、例えば、水素を貯蔵する水素貯蔵部を備える。上記のエネルギ発生装置は、例えば、改質部が発生させた水素及び水素貯蔵部に貯蔵された水素の少なくとも一方を利用して電力を発生させる発電部を備える。上記のエネルギ発生装置は、例えば、改質部が発生させた水素を発電部に移送する第1配管を備える。上記のエネルギ発生装置は、例えば、改質部が発生させた水素を水素貯蔵部に移送する第2配管を備える。上記のエネルギ発生装置は、例えば、第1配管及び第2配管の少なくとも一方における水素の移送を制限する移送制限部を備える。 In a first aspect of the present invention, an energy generator is provided. The energy generator includes a reforming unit that decomposes a raw material gas containing hydrogen and carbon using electric power to generate hydrogen and carbon dioxide, for example. The energy generation device includes, for example, a hydrogen storage unit that stores hydrogen. The energy generation device includes a power generation unit that generates electric power using at least one of hydrogen generated by the reforming unit and hydrogen stored in the hydrogen storage unit, for example. The energy generation device includes, for example, a first pipe that transfers hydrogen generated by the reforming unit to the power generation unit. The energy generation device includes, for example, a second pipe that transfers hydrogen generated by the reforming unit to the hydrogen storage unit. The energy generation device includes a transfer restriction unit that restricts transfer of hydrogen in at least one of the first pipe and the second pipe, for example.
 上記のエネルギ発生装置は、二酸化炭素の供給を要求する供給要求を取得する供給要求取得部を備えてよい。上記のエネルギ発生装置は、エネルギ発生装置又はエネルギ発生装置と送受電できる電力網における電力の需給状況を示す電力需給情報を取得する電力需給取得部を備えてよい。上記のエネルギ発生装置は、エネルギ発生装置における水素の需給状況を示す水素需給情報を取得する水素需給取得部を備えてよい。上記のエネルギ発生装置は、(i)電力需給情報により示される電力の需給状況、及び、(ii)水素需給情報により示される水素の需給状況に基づいて、供給要求に応じるか否かを決定する応答決定部を備えてよい。 The energy generation apparatus may include a supply request acquisition unit that acquires a supply request for requesting the supply of carbon dioxide. The energy generation device may include a power supply / demand acquisition unit that acquires power supply / demand information indicating a power supply / demand situation in the energy generation device or a power network that can transmit / receive power to / from the energy generation device. The energy generation device may include a hydrogen supply and demand acquisition unit that acquires hydrogen supply and demand information indicating a hydrogen supply and demand situation in the energy generation device. The energy generation apparatus determines whether to respond to the supply request based on (i) the power supply / demand situation indicated by the power supply / demand information and (ii) the hydrogen supply / demand situation indicated by the hydrogen supply / demand information. A response determination unit may be provided.
 上記のエネルギ発生装置において、応答決定部は、(i)電力需給情報により示される電力の需給状況、(ii)水素需給情報により示される水素の需給状況、及び、(iii)供給要求に応じることにより改質部が発生させる水素の量に基づいて、供給要求に応じるか否かを決定してよい。上記のエネルギ発生装置において、応答決定部は、水素需給情報により示される水素供給の過剰具合が予め定められた水素過剰条件を満足し、且つ、電力需給情報により示される電力供給の過剰具合が予め定められた電力過剰条件を満足する場合に、供給要求に応じないことを決定してよい。 In the above energy generator, the response determination unit responds to (i) the power supply / demand situation indicated by the power supply / demand information, (ii) the hydrogen supply / demand situation indicated by the hydrogen supply / demand information, and (iii) the supply request. Whether or not to meet the supply request may be determined based on the amount of hydrogen generated by the reforming unit. In the above energy generation device, the response determination unit satisfies the hydrogen surplus condition indicated by the hydrogen supply / demand information in advance, and the power supply surplus condition indicated by the power supply / demand information It may be determined that the supply request is not satisfied when a predetermined power excess condition is satisfied.
 上記のエネルギ発生装置は、発電部を稼働させるか否かを決定する発電制御部を備えてよい。上記のエネルギ発生装置において、水素需給情報により示される水素供給の過剰具合が水素過剰条件を満足せず、且つ、電力需給情報により示される電力供給の過剰具合が電力過剰条件を満足する場合、応答決定部は、供給要求に応じることを決定してよい。上記のエネルギ発生装置において、水素需給情報により示される水素供給の過剰具合が水素過剰条件を満足せず、且つ、電力需給情報により示される電力供給の過剰具合が電力過剰条件を満足する場合、発電制御部は、発電部を稼働させないことを決定してよい。上記のエネルギ発生装置は、水素需給情報により示される水素供給の過剰具合が水素過剰条件を満足し、且つ、電力需給情報により示される電力供給の過剰具合が電力過剰条件を満足する場合に、水素貯蔵容器又は蓄電池を搭載した移動体を派遣するサービスの提供者に対して、移動体の派遣を要求する派遣要求を送信する派遣要求送信部を備えてよい。 The energy generating device may include a power generation control unit that determines whether or not to operate the power generation unit. In the above energy generation device, if the excessive hydrogen supply condition indicated by the hydrogen supply / demand information does not satisfy the excessive hydrogen condition, and the excessive power supply condition indicated by the power supply / demand information satisfies the excessive power condition, a response is made. The determination unit may determine to respond to the supply request. In the above energy generator, if the excess hydrogen supply indicated by the hydrogen supply / demand information does not satisfy the excess hydrogen condition, and if the excess power supply indicated by the power supply / demand information satisfies the excess power condition, The control unit may determine not to operate the power generation unit. The energy generator described above is configured to supply hydrogen when the excess hydrogen supply indicated by the hydrogen supply / demand information satisfies the excess hydrogen condition and the excess power supply indicated by the power supply / demand information satisfies the excess power condition. You may provide the dispatch request transmission part which transmits the dispatch request | requirement which requests | requires dispatch of a mobile body with respect to the provider of the service which dispatches the mobile body carrying a storage container or a storage battery.
 上記のエネルギ発生装置は、改質部が発生させた二酸化炭素の少なくとも一部を、植物又は農産物が栽培される圃場に移送するための配管の一部に配され、圃場に移送される二酸化炭素の流量を調整する流量制御部を備えてよい。上記のエネルギ発生装置において、流量制御部は、改質部が発生させた二酸化炭素の少なくとも一部を大気中に放出するための配管を有してよい。上記のエネルギ発生装置において、改質部は、電力を利用して原料ガスを分解し、水素、二酸化炭素及び熱を発生させてよい。上記のエネルギ発生装置において、発電部は、改質部が発生させた水素及び水素貯蔵部に貯蔵された水素の少なくとも一方を利用して電力及び熱を発生させてよい。上記のエネルギ発生装置は、改質部及び発電部の少なくとも一方が発生させた熱を蓄積する蓄熱部を備えてよい。 The energy generating apparatus is configured such that at least a part of carbon dioxide generated by the reforming unit is disposed in a part of a pipe for transferring to a field where plants or agricultural products are grown, and transferred to the field. A flow rate control unit that adjusts the flow rate may be provided. In the above energy generation device, the flow rate control unit may include a pipe for releasing at least a part of the carbon dioxide generated by the reforming unit into the atmosphere. In the above energy generator, the reforming unit may decompose the raw material gas using electric power to generate hydrogen, carbon dioxide, and heat. In the energy generating apparatus, the power generation unit may generate electric power and heat using at least one of hydrogen generated by the reforming unit and hydrogen stored in the hydrogen storage unit. The energy generation device may include a heat storage unit that accumulates heat generated by at least one of the reforming unit and the power generation unit.
 本発明の第2の態様においては、制御方法が提供される。上記の制御方法は、例えば、エネルギ発生装置を制御するための方法である。上記の制御方法において、エネルギ発生装置は、例えば、電力を利用して水素及び炭素を含む原料ガスを分解し、水素及び二酸化炭素を発生させる改質部を備える。上記の制御方法において、エネルギ発生装置は、例えば、水素を貯蔵する水素貯蔵部を備える。上記の制御方法において、エネルギ発生装置は、例えば、改質部が発生させた水素及び水素貯蔵部に貯蔵された水素の少なくとも一方を利用して電力を発生させる発電部を備える。 In the second aspect of the present invention, a control method is provided. Said control method is a method for controlling an energy generator, for example. In the above control method, the energy generation device includes, for example, a reforming unit that decomposes a raw material gas containing hydrogen and carbon using electric power to generate hydrogen and carbon dioxide. In the above control method, the energy generation device includes, for example, a hydrogen storage unit that stores hydrogen. In the above control method, the energy generation device includes, for example, a power generation unit that generates electric power using at least one of hydrogen generated by the reforming unit and hydrogen stored in the hydrogen storage unit.
 上記の制御方法は、例えば、二酸化炭素の供給を要求する供給要求を取得する供給要求取得段階を有する。上記の制御方法は、例えば、エネルギ発生装置又はエネルギ発生装置と送受電できる電力網における電力の需給状況を示す電力需給情報を取得する電力需給取得段階と、上記の制御方法は、例えば、エネルギ発生装置における水素の需給状況を示す水素需給情報を取得する水素需給取得段階を有する。上記の制御方法は、例えば、(i)電力需給情報により示される電力の需給状況、及び、(ii)水素需給情報により示される水素の需給状況に基づいて、供給要求に応じるか否かを決定する応答決定段階を有する。 The above control method includes, for example, a supply request acquisition stage for acquiring a supply request for requesting the supply of carbon dioxide. The above control method includes, for example, an energy supply / demand acquisition stage for acquiring power supply / demand information indicating an energy supply / demand situation in an energy generation device or a power network that can transmit / receive power to / from the energy generation device, and the control method includes, for example, an energy generation device There is a hydrogen supply and demand acquisition stage for acquiring hydrogen supply and demand information indicating the hydrogen supply and demand situation. The above control method determines, for example, whether to respond to the supply request based on (i) the power supply / demand situation indicated by the power supply / demand information and (ii) the hydrogen supply / demand situation indicated by the hydrogen supply / demand information. A response determination stage.
 上記の制御方法において、応答決定段階は、水素需給情報により示される水素供給の過剰具合が予め定められた水素過剰条件を満足し、且つ、電力需給情報により示される電力供給の過剰具合が予め定められた電力過剰条件を満足する場合に、供給要求に応じないことを決定する段階を有してよい。上記の制御方法は、水素需給情報により示される水素供給の過剰具合が水素過剰条件を満足せず、且つ、電力需給情報により示される電力供給の過剰具合が電力過剰条件を満足する場合に、供給要求に応じることを決定し、発電部を稼働させないことを決定する段階を有してよい。上記の制御方法は、水素需給情報により示される水素供給の過剰具合が水素過剰条件を満足し、且つ、電力需給情報により示される電力供給の過剰具合が電力過剰条件を満足する場合に、水素貯蔵容器又は蓄電池を搭載した移動体を派遣するサービスの提供者に対して、移動体の派遣を要求する派遣要求を送信する派遣要求送信段階を有してよい。 In the control method, in the response determination stage, the excessive hydrogen supply condition indicated by the hydrogen supply and demand information satisfies a predetermined hydrogen excess condition, and the excessive power supply condition indicated by the power supply and demand information is predetermined. Determining that the supply request is not met if the specified power overage condition is satisfied. The above control method is used when the excessive hydrogen supply condition indicated by the hydrogen supply / demand information does not satisfy the excessive hydrogen condition and the excessive power supply condition indicated by the power supply / demand information satisfies the excessive power condition. The method may include the step of deciding to meet the request and deciding not to operate the power generation unit. In the above control method, when the hydrogen supply excess condition indicated by the hydrogen supply / demand information satisfies the hydrogen excess condition and the power supply excess condition indicated by the power supply / demand information satisfies the power excess condition, You may have the dispatch request transmission stage which transmits the dispatch request | requirement which requests | requires dispatch of a mobile body with respect to the provider of the service which dispatches the mobile body carrying a container or a storage battery.
 本発明の第3の態様においては、プログラムが提供される。上記のプログラムを格納する非一時的コンピュータ可読媒体が提供されてもよい。上記のプログラムは、例えば、コンピュータに、エネルギ発生装置を制御するための制御方法を実行させるためのプログラムである。上記のプログラムは、コンピュータに、上記の第2の態様に係る制御方法を実行させるためのプログラムであってよい。 In the third aspect of the present invention, a program is provided. A non-transitory computer readable medium storing the above program may be provided. The above program is a program for causing a computer to execute a control method for controlling the energy generating device, for example. Said program may be a program for making a computer perform the control method which concerns on said 2nd aspect.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
エネルギ管理システム100のシステム構成の一例を概略的に示す。An example of the system configuration of energy management system 100 is shown roughly. 農業施設122のシステム構成の一例を概略的に示す。An example of a system configuration of agricultural facility 122 is shown roughly. コントローラ240の内部構成の一例を概略的に示す。An example of an internal configuration of controller 240 is shown roughly. 流量制御部272の内部構成の一例を概略的に示す。An example of the internal configuration of the flow control unit 272 is schematically shown. エネルギ管理施設124のシステム構成の一例を概略的に示す。An example of a system configuration of energy management facility 124 is shown roughly. エネルギ管理部132の内部構成の一例を概略的に示す。An example of an internal configuration of energy management part 132 is shown roughly. 精算部632における情報処理の一例を概略的に示す。An example of the information processing in the adjustment part 632 is shown schematically. 配車管理部134の内部構成の一例を概略的に示す。An example of an internal configuration of the vehicle allocation management unit 134 is schematically shown. データテーブル900の一例を概略的に示す。An example of data table 900 is shown roughly.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。なお、図面において、同一または類似の部分には同一の参照番号を付して、重複する説明を省く場合がある。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention. In the drawings, the same or similar parts are denoted by the same reference numerals, and redundant description may be omitted.
 [エネルギ管理システム100の概要]
 図1は、エネルギ管理システム100のシステム構成の一例を概略的に示す。本実施形態において、エネルギ管理システム100は、例えば、1又は複数(1以上と称される場合がある。)の農業施設122と、1以上のエネルギ管理施設124と、1以上の需給家施設126と、管理サーバ130とを備える。本実施形態において、管理サーバ130は、例えば、エネルギ管理部132と、配車管理部134とを有する。
 エネルギ管理システム100は、エネルギ管理装置及び水素利用システムの一例であってよい。農業施設122は、エネルギ発生装置の一例であってよい。エネルギ管理施設124は、エネルギ発生装置の一例であってよい。需給家施設126は、エネルギ発生装置の一例であってよい。管理サーバ130は、エネルギ管理装置の一例であってよい。エネルギ管理部132は、エネルギ管理装置の一例であってよい。
[Outline of energy management system 100]
FIG. 1 schematically shows an example of the system configuration of the energy management system 100. In the present embodiment, the energy management system 100 includes, for example, one or more (sometimes referred to as one or more) agricultural facilities 122, one or more energy management facilities 124, and one or more consumer facilities 126. And a management server 130. In the present embodiment, the management server 130 includes, for example, an energy management unit 132 and a vehicle allocation management unit 134.
The energy management system 100 may be an example of an energy management device and a hydrogen utilization system. The agricultural facility 122 may be an example of an energy generation device. The energy management facility 124 may be an example of an energy generation device. The supply and demand facility 126 may be an example of an energy generation device. The management server 130 may be an example of an energy management device. The energy management unit 132 may be an example of an energy management device.
 本実施形態において、農業施設122、エネルギ管理施設124及び需給家施設126のそれぞれは、電力網12と電気的に接続される。農業施設122、エネルギ管理施設124及び需給家施設126のそれぞれは、電力網12との間で電力を送受することができる、本実施形態において、エネルギ管理システム100の各部は、通信ネットワーク14を介して互いに情報を送受することができる。 In this embodiment, each of the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126 is electrically connected to the power grid 12. Each of the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126 can transmit and receive power to and from the power network 12. In this embodiment, each unit of the energy management system 100 is connected via the communication network 14. Information can be sent and received between each other.
 本実施形態において、電力網12は、商用電源(図示されていない。)と電気的に接続される。電力網12は、電力事業者又は送電事業者により提供される電力系統であってよい。電力網12は、複数の電力事業者又は複数の送電事業者の電力系統を含んでよい。電力系統は、発電、変電、送電、配電が統合されたシステムであってよい。 In the present embodiment, the power network 12 is electrically connected to a commercial power source (not shown). The power network 12 may be a power system provided by a power company or a power transmission company. The power network 12 may include a plurality of power companies or a power system of a plurality of power transmission companies. The power system may be a system in which power generation, power transformation, power transmission, and power distribution are integrated.
 ここで、「要素A及び要素Bが電気的に接続される」とは、要素A及び要素Bが物理的に接続されている場合に限定されない。例えば、変圧器の入力巻線と出力巻線とは物理的には接続されていないが、電気的には接続されている。また、要素A及び要素Bとの間に、要素A及び要素Bを電気的に接続するための部材が介在していてもよい。上記の部材としては、導電体、開閉器又はスイッチ、変成器などが例示される。 Here, “element A and element B are electrically connected” is not limited to the case where element A and element B are physically connected. For example, the input winding and output winding of the transformer are not physically connected, but are electrically connected. Further, a member for electrically connecting the element A and the element B may be interposed between the element A and the element B. Examples of the member include a conductor, a switch or switch, a transformer, and the like.
 本実施形態において、通信ネットワーク14は、有線通信の伝送路であってもよく、無線通信の伝送路であってもよく、無線通信の伝送路及び有線通信の伝送路の組み合わせであってもよい。通信ネットワーク14は、無線パケット通信網、インターネット、P2Pネットワーク、専用回線、VPN、電力線通信回線などを含んでもよい。通信ネットワーク14は、(i)携帯電話回線網などの移動体通信網を含んでもよく、(ii)無線MAN(例えば、WiMAX(登録商標)である。)、無線LAN(例えば、WiFi(登録商標)である。)、Bluetooth(登録商標)、Zigbee(登録商標)、NFC(Near Field Communication)などの無線通信網を含んでもよい。 In the present embodiment, the communication network 14 may be a wired communication transmission line, a wireless communication transmission line, or a combination of a wireless communication transmission line and a wired communication transmission line. . The communication network 14 may include a wireless packet communication network, the Internet, a P2P network, a dedicated line, a VPN, a power line communication line, and the like. The communication network 14 may include (i) a mobile communication network such as a mobile phone line network, (ii) a wireless MAN (for example, WiMAX (registered trademark)), a wireless LAN (for example, WiFi (registered trademark)). Or a wireless communication network such as Bluetooth (registered trademark), Zigbee (registered trademark), NFC (Near Field Communication), or the like.
 本実施形態において、エネルギ管理システム100の各部は、通信ネットワーク14を介して、1以上の燃料電池車22及び1以上の電気自動車24の少なくとも1つとの間で互いに情報を送受してよい。本実施形態において、エネルギ管理システム100の各部は、通信ネットワーク14を介して、1以上の通信端末32の少なくとも1つとの間で互いに情報を送受してよい。 In this embodiment, each part of the energy management system 100 may transmit and receive information to and from at least one of the one or more fuel cell vehicles 22 and the one or more electric vehicles 24 via the communication network 14. In the present embodiment, each unit of the energy management system 100 may transmit / receive information to / from at least one of the one or more communication terminals 32 via the communication network 14.
 本実施形態において、農業施設122及びエネルギ管理施設124の少なくとも一方は、燃料電池車22との間で互いに水素を送受してよい。例えば、農業施設122及びエネルギ管理施設124の少なくとも一方は、当該施設が生成した水素及び当該施設に貯蔵された水素の少なくとも一方を、燃料電池車22の水素貯蔵容器に移送する。農業施設122及びエネルギ管理施設124の少なくとも一方は、燃料電池車22の水素貯蔵容器から水素を受領してよい。 In this embodiment, at least one of the agricultural facility 122 and the energy management facility 124 may send and receive hydrogen to and from the fuel cell vehicle 22. For example, at least one of the agricultural facility 122 and the energy management facility 124 transfers at least one of hydrogen generated by the facility and hydrogen stored in the facility to a hydrogen storage container of the fuel cell vehicle 22. At least one of the agricultural facility 122 and the energy management facility 124 may receive hydrogen from the hydrogen storage container of the fuel cell vehicle 22.
 本実施形態において、農業施設122及びエネルギ管理施設124の少なくとも一方は、電気自動車24との間で互いに電力を送受してよい。例えば、農業施設122及びエネルギ管理施設124の少なくとも一方は、当該施設が生成した電力により、電気自動車24の蓄電池を充電する。農業施設122及びエネルギ管理施設124の少なくとも一方は、電気自動車24の蓄電池から電力を受領してよい。 In the present embodiment, at least one of the agricultural facility 122 and the energy management facility 124 may transmit and receive electric power to and from the electric vehicle 24. For example, at least one of the agricultural facility 122 and the energy management facility 124 charges the storage battery of the electric vehicle 24 with the electric power generated by the facility. At least one of the agricultural facility 122 and the energy management facility 124 may receive power from the storage battery of the electric vehicle 24.
 燃料電池車22及び電気自動車24は、水素貯蔵容器又は蓄電池を搭載した移動体を派遣するサービスの提供者(燃料電池車22又は電気自動車24の管理者と称する場合がある。)の所有物又は占有物であってよい。例えば、燃料電池車22及び電気自動車24は、レンタカーサービスを提供する事業者の所有物又は占有物であってよい。 The fuel cell vehicle 22 and the electric vehicle 24 belong to a service provider (sometimes referred to as an administrator of the fuel cell vehicle 22 or the electric vehicle 24) that dispatches a mobile body equipped with a hydrogen storage container or a storage battery. It can be an occupancy. For example, the fuel cell vehicle 22 and the electric vehicle 24 may be owned or occupied by a business operator that provides a rental car service.
 電気自動車24は、蓄電池を搭載できる移動体の一例であってよい。燃料電池車22は、燃料電池を搭載できる移動体の一例であってよい。燃料電池車22は、水素貯蔵容器を搭載できる移動体の一例であってよい。 The electric vehicle 24 may be an example of a moving body on which a storage battery can be mounted. The fuel cell vehicle 22 may be an example of a moving body on which a fuel cell can be mounted. The fuel cell vehicle 22 may be an example of a moving body on which a hydrogen storage container can be mounted.
 燃料電池車22に搭載された水素貯蔵容器は、可搬型の水素貯蔵容器の一例であってよい。可搬型の水素貯蔵容器は、動物又は移動体により運搬される。可搬型の水素貯蔵容器は、動物に装着又は携帯されてもよく、移動体に搭載されてもよく、移動体に牽引されてもよい。電気自動車24に搭載された蓄電池は、可搬型の蓄電装置の一例であってよい。可搬型の蓄電装置は、動物又は移動体により運搬される。可搬型の蓄電装置は、動物に装着又は携帯されてもよく、移動体に搭載されてもよく、移動体に牽引されてもよい。 The hydrogen storage container mounted on the fuel cell vehicle 22 may be an example of a portable hydrogen storage container. The portable hydrogen storage container is carried by an animal or a moving body. The portable hydrogen storage container may be attached to or carried by an animal, may be mounted on a moving body, and may be pulled by the moving body. The storage battery mounted on the electric vehicle 24 may be an example of a portable power storage device. The portable power storage device is carried by an animal or a moving body. The portable power storage device may be attached to or carried by an animal, may be mounted on a moving body, or may be pulled by the moving body.
 移動体は、陸上を走行する機器であってもよく、空中を飛行する機器であってもよく、水中又は水上を航行する機器であってもよい。移動体は、ユーザの操作により移動してもよく、当該移動体に搭載されたコンピュータによる自律移動機能(オートクルーズ、クルーズコントロールなどと称される場合がある。)により移動してもよい。移動体としては、車両、船舶、飛行体などが例示される。車両としては、自動車、自動二輪車、電車などが例示される。 The moving body may be a device that travels on land, may be a device that flies in the air, or may be a device that sails in water or water. The moving body may move by a user's operation, or may move by an autonomous moving function (sometimes referred to as auto cruise, cruise control, etc.) by a computer mounted on the moving body. Examples of the moving body include a vehicle, a ship, and a flying body. Examples of the vehicle include an automobile, a motorcycle, and a train.
 自動車としては、エンジン車、電気自動車、燃料電池車、ハイブリッド車、作業機械などが例示される。自動二輪車としては、(i)バイク、(ii)三輪バイク、(iii)セグウェイ(登録商標)、動力ユニット付きキックボード(登録商標)、動力ユニット付きスケートボードのような、動力ユニットを有する立ち乗り二輪車などが例示される。船舶としては、船、ホバークラフト、水上バイク、潜水艦、潜水艇、水中スクータなどが例示される。飛行体としては、飛行機、飛行船又は風船、気球、ヘリコプター、ドローンなどが例示される。 Examples of automobiles include engine cars, electric cars, fuel cell cars, hybrid cars, work machines, and the like. As motorcycles, (i) motorcycles, (ii) three-wheeled motorcycles, (iii) Segway (registered trademark), kickboards with a power unit (registered trademark), standing rides having a power unit such as a skateboard with a power unit A motorcycle is exemplified. Examples of the ship include a ship, a hovercraft, a water bike, a submarine, a submarine, and an underwater scooter. Examples of flying objects include airplanes, airships or balloons, balloons, helicopters, and drones.
 本実施形態において、通信端末32は、エネルギ管理システム100のユーザが利用する通信端末であり、その詳細については特に限定されない。通信端末32としては、パーソナルコンピュータ、携帯端末などが例示される。携帯端末としては、携帯電話、スマートフォン、PDA、タブレット、ノートブック・コンピュータ又はラップトップ・コンピュータ、ウエアラブル・コンピュータなどが例示される。通信端末32は、エネルギ管理システム100のユーザインタフェースとして使用されてよい。 In this embodiment, the communication terminal 32 is a communication terminal used by the user of the energy management system 100, and details thereof are not particularly limited. Examples of the communication terminal 32 include a personal computer and a portable terminal. Examples of the portable terminal include a mobile phone, a smartphone, a PDA, a tablet, a notebook computer or a laptop computer, and a wearable computer. The communication terminal 32 may be used as a user interface of the energy management system 100.
 本実施形態において、エネルギ管理システム100は、農業施設122、エネルギ管理施設124及び需給家施設126におけるエネルギの需給を管理する。エネルギ管理システム100は、農業施設122、エネルギ管理施設124及び需給家施設126におけるエネルギ源の需給を管理してもよい。エネルギとしては、電気、熱などが例示される。エネルギ源としては、水素、都市ガス、プロパンガス、アルコール、石油、灯油、ガソリンなどが例示される。 In this embodiment, the energy management system 100 manages the supply and demand of energy in the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126. The energy management system 100 may manage the supply and demand of energy sources in the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126. Examples of energy include electricity and heat. Examples of the energy source include hydrogen, city gas, propane gas, alcohol, petroleum, kerosene, and gasoline.
 本実施形態において、農業施設122は、電力網12から電力を受領(受電、買電などと称される場合がある。)する。農業施設122は、電力網12に電力を供給(送電、売電などと称される場合がある。)してよい。農業施設122には、例えば、電力を消費する機器、電力を供給する機器、水素を消費する機器、及び、水素を供給する機器の少なくとも1つが配される。 In this embodiment, the agricultural facility 122 receives power from the power grid 12 (may be referred to as power reception, power purchase, etc.). The agricultural facility 122 may supply power to the power grid 12 (sometimes referred to as power transmission, power sale, etc.). For example, at least one of a device that consumes power, a device that supplies power, a device that consumes hydrogen, and a device that supplies hydrogen is disposed in the agricultural facility 122.
 本実施形態において、農業施設122は、植物又は農産物が栽培される圃場を備える。農業施設122においては、例えば、電力及び水素の発生時に生じた熱が、圃場に供給される。電力及び水素の発生時に生じた水又は水蒸気が、圃場に供給されてもよい。水素の発生時に生じた二酸化炭素が、圃場に供給されてもよい。農業施設122は、需給家施設126のうち、圃場を備える施設であってよい。農業施設122の詳細は後述される。 In this embodiment, the agricultural facility 122 includes a field where plants or agricultural products are grown. In the agricultural facility 122, for example, heat generated when electric power and hydrogen are generated is supplied to the farm. Water or water vapor generated during generation of electric power and hydrogen may be supplied to the field. Carbon dioxide generated during the generation of hydrogen may be supplied to the field. The agricultural facility 122 may be a facility including a farm field among the supply and demand facility 126. Details of the agricultural facility 122 will be described later.
 本実施形態において、エネルギ管理施設124は、エネルギの供給量を管理する。これにより、エネルギの需要と供給とのバランスが維持される。エネルギ管理施設124は、エネルギ源の供給量を管理してもよい。これにより、エネルギ源の需要と供給とのバランスが維持される。エネルギ管理施設124には、例えば、発電設備、蓄電設備、水素製造設備などが配される。エネルギ管理施設124の詳細は後述される。 In this embodiment, the energy management facility 124 manages the supply amount of energy. This maintains a balance between energy demand and supply. The energy management facility 124 may manage the supply amount of the energy source. This maintains a balance between the demand and supply of energy sources. In the energy management facility 124, for example, power generation equipment, power storage equipment, hydrogen production equipment, and the like are arranged. Details of the energy management facility 124 will be described later.
 本実施形態において、需給家施設126は、電力網12から電力を受領する。需給家施設126は、電力網12に電力を供給してもよい。需給家施設126には、例えば、電力を消費する機器及び電力を供給する機器の少なくとも一方が配される。需給家施設126には、水素を消費する機器及び水素を供給する機器の少なくとも一方が配されてもよい。需給家施設126は、圃場を備えない点を除いて、農業施設122と同様の構成を有してもよい。 In the present embodiment, the supply and demand facility 126 receives power from the power network 12. The supply and demand facility 126 may supply power to the power network 12. For example, at least one of a device that consumes power and a device that supplies power is arranged in the supply and demand facility 126. The supply and demand facility 126 may be provided with at least one of a device that consumes hydrogen and a device that supplies hydrogen. The supply and demand facility 126 may have the same configuration as the agricultural facility 122 except that it does not include an agricultural field.
 本実施形態において、管理サーバ130のエネルギ管理部132は、農業施設122、エネルギ管理施設124及び需給家施設126におけるエネルギの需給を管理する。管理サーバ130は、農業施設122、エネルギ管理施設124及び需給家施設126におけるエネルギ源の需給を管理してもよい。エネルギ管理部132の詳細は後述される。 In this embodiment, the energy management unit 132 of the management server 130 manages the supply and demand of energy in the agricultural facility 122, the energy management facility 124, and the consumer facility 126. The management server 130 may manage the supply and demand of energy sources in the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126. Details of the energy management unit 132 will be described later.
 本実施形態において、管理サーバ130の配車管理部134は、1以上の燃料電池車22及び1以上の電気自動車24を管理する。配車管理部134は、燃料電池車22又は電気自動車24を、エネルギ管理施設124及び需給家施設126の少なくとも1つに派遣されることで、エネルギ又はエネルギ源の需給を調整してよい。配車管理部134の詳細は後述される。 In the present embodiment, the vehicle allocation management unit 134 of the management server 130 manages one or more fuel cell vehicles 22 and one or more electric vehicles 24. The vehicle allocation management unit 134 may adjust the supply and demand of energy or energy sources by dispatching the fuel cell vehicle 22 or the electric vehicle 24 to at least one of the energy management facility 124 and the supply and demand facility 126. Details of the vehicle allocation management unit 134 will be described later.
 例えば、燃料電池車22は、農業施設122、エネルギ管理施設124及び需給家施設126の少なくとも2つの間で、水素を運搬することができる。電気自動車24は、農業施設122、エネルギ管理施設124及び需給家施設126の少なくとも2つの間で、電気を運搬することができる。 For example, the fuel cell vehicle 22 can carry hydrogen between at least two of the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126. The electric vehicle 24 can carry electricity between at least two of the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126.
 燃料電池車22は、農業施設122、エネルギ管理施設124及び需給家施設126の少なくとも1つに水素を供給してよい。燃料電池車22は、農業施設122、エネルギ管理施設124及び需給家施設126の少なくとも1つから水素を受領してよい。燃料電池車22及び電気自動車24は、農業施設122、エネルギ管理施設124及び需給家施設126の少なくとも1つに電力を供給してよい。電気自動車24は、農業施設122、エネルギ管理施設124及び需給家施設126の少なくとも1つから電力を受領してよい。 The fuel cell vehicle 22 may supply hydrogen to at least one of the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126. The fuel cell vehicle 22 may receive hydrogen from at least one of the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126. The fuel cell vehicle 22 and the electric vehicle 24 may supply power to at least one of the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126. The electric vehicle 24 may receive power from at least one of the agricultural facility 122, the energy management facility 124, and the supply and demand facility 126.
 [エネルギ管理システム100の各部の具体的な構成]
 エネルギ管理システム100の各部は、ハードウェアにより実現されてもよく、ソフトウエアにより実現されてもよく、ハードウェア及びソフトウエアにより実現されてもよい。エネルギ管理システム100の各部は、その少なくとも一部が、単一のサーバによって実現されてもよく、複数のサーバによって実現されてもよい。エネルギ管理システム100の各部は、その少なくとも一部が、仮想マシン上又はクラウドシステム上で実現されてもよい。
[Specific Configuration of Each Part of Energy Management System 100]
Each unit of the energy management system 100 may be realized by hardware, may be realized by software, or may be realized by hardware and software. At least a part of each part of the energy management system 100 may be realized by a single server or may be realized by a plurality of servers. At least a part of each part of the energy management system 100 may be realized on a virtual machine or a cloud system.
 エネルギ管理システム100の各部は、その少なくとも一部が、パーソナルコンピュータ又は携帯端末によって実現されてもよい。携帯端末としては、携帯電話、スマートフォン、PDA、タブレット、ノートブック・コンピュータ又はラップトップ・コンピュータ、ウエアラブル・コンピュータなどが例示される。エネルギ管理システム100の各部は、ブロックチェーンなどの分散型台帳技術又は分散型ネットワークを利用して、情報を格納してもよい。 At least a part of each part of the energy management system 100 may be realized by a personal computer or a portable terminal. Examples of the portable terminal include a mobile phone, a smartphone, a PDA, a tablet, a notebook computer or a laptop computer, and a wearable computer. Each unit of the energy management system 100 may store information using a distributed ledger technology such as a block chain or a distributed network.
 エネルギ管理システム100を構成する構成要素の少なくとも一部がソフトウエアにより実現される場合、当該ソフトウエアにより実現される構成要素は、一般的な構成の情報処理装置において、当該構成要素に関する動作を規定したプログラムを起動することにより実現されてよい。上記の情報処理装置は、例えば、(i)CPU、GPUなどのプロセッサ、ROM、RAM、通信インタフェースなどを有するデータ処理装置と、(ii)キーボード、タッチパネル、カメラ、マイク、各種センサ、GPS受信機などの入力装置と、(iii)表示装置、スピーカ、振動装置などの出力装置と、(iv)メモリ、HDDなどの記憶装置(外部記憶装置を含む。)とを備える。 When at least a part of the constituent elements constituting the energy management system 100 is realized by software, the constituent elements realized by the software define the operations related to the constituent elements in an information processing apparatus having a general configuration. It may be realized by starting the program. The information processing apparatus includes, for example, (i) a data processing apparatus having a processor such as a CPU and GPU, a ROM, a RAM, a communication interface, and the like (ii) a keyboard, a touch panel, a camera, a microphone, various sensors, and a GPS receiver. (Iii) an output device such as a display device, a speaker, and a vibration device, and (iv) a storage device (including an external storage device) such as a memory and an HDD.
 上記の情報処理装置において、上記のデータ処理装置又は記憶装置は、プログラムを格納してよい。上記のプログラムは、非一時的なコンピュータ可読記録媒体に格納されてよい。上記のプログラムは、プロセッサによって実行されることにより、上記の情報処理装置に、当該プログラムによって規定された動作を実行させる。 In the information processing apparatus, the data processing apparatus or the storage device may store a program. The above program may be stored in a non-transitory computer-readable recording medium. The above program is executed by a processor to cause the information processing apparatus to execute an operation defined by the program.
 プログラムは、CD-ROM、DVD-ROM、メモリ、ハードディスクなどのコンピュータ読み取り可能な媒体に記憶されていてもよく、ネットワークに接続された記憶装置に記憶されていてもよい。プログラムは、コンピュータ読み取り可能な媒体又はネットワークに接続された記憶装置から、エネルギ管理システム100の少なくとも一部を構成するコンピュータにインストールされてよい。プログラムが実行されることにより、コンピュータが、エネルギ管理システム100の各部の少なくとも一部として機能してもよい。 The program may be stored in a computer-readable medium such as a CD-ROM, DVD-ROM, memory, hard disk, or may be stored in a storage device connected to a network. The program may be installed in a computer constituting at least a part of the energy management system 100 from a computer-readable medium or a storage device connected to a network. The computer may function as at least a part of each part of the energy management system 100 by executing the program.
 コンピュータをエネルギ管理システム100の各部の少なくとも一部として機能させるプログラムは、エネルギ管理システム100の各部の動作を規定したモジュールを備えてよい。これらのプログラム又はモジュールは、データ処理装置、入力装置、出力装置、記憶装置等に働きかけて、コンピュータをエネルギ管理システム100の各部として機能させたり、コンピュータにエネルギ管理システム100の各部における情報処理方法を実行させたりする。プログラムに記述された情報処理は、当該プログラムがコンピュータに読込まれることにより、当該プログラムに関連するソフトウエアと、エネルギ管理システム100の各種のハードウェア資源とが協働した具体的手段として機能する。そして、上記の具体的手段が、本実施形態におけるコンピュータの使用目的に応じた情報の演算又は加工を実現することにより、当該使用目的に応じたエネルギ管理システム100が構築される。 The program that causes the computer to function as at least a part of each part of the energy management system 100 may include a module that defines the operation of each part of the energy management system 100. These programs or modules work on a data processing device, an input device, an output device, a storage device, and the like to cause the computer to function as each part of the energy management system 100, or to allow the computer to perform an information processing method in each part of the energy management system 100. Or let it run. The information processing described in the program functions as a specific means in which the software related to the program and various hardware resources of the energy management system 100 cooperate when the program is read by the computer. . And the energy management system 100 according to the said use purpose is constructed | assembled, when said concrete means implement | achieves the calculation or processing of the information according to the use purpose of the computer in this embodiment.
 上記のプログラムは、コンピュータに、管理サーバ130における各種の情報処理方法を実行させるためのプログラムであってよい。一実施形態において、管理サーバ130における情報処理方法は、例えば、電力を利用して水素を発生させる水素発生システムにおける電力需給及び水素需給を示す第1需給情報と取得する第1需給情報取得段階を有する。上記の情報処理方法は、例えば、1又は複数のトリジェネレーションシステムのそれぞれにおける電力需給及び水素需給を示す第2需給情報と取得する第2需給情報取得段階を有する。上記の情報処理方法は、例えば、第1需給情報及び第2需給状況に基づいて、(i)特定の期間において、水素発生システムが電力網から受電することのできる電力量の上限値、(ii)特定の期間において、水素発生システムが発生させる水素量の目標値、(iii)特定の期間において、1又は複数のトリジェネレーションシステムのそれぞれが電力網に送電することのできる電力量の上限値、及び、(iv)特定の期間において、1又は複数のトリジェネレーションシステムのそれぞれが発生させる電力量の目標値の少なくとも1つを決定する需給管理段階を有する。 The above program may be a program for causing a computer to execute various information processing methods in the management server 130. In one embodiment, the information processing method in the management server 130 includes, for example, a first supply and demand information indicating a power supply and demand and a hydrogen supply and demand in a hydrogen generation system that generates hydrogen using power and a first supply and demand information acquisition stage to acquire. Have. The information processing method includes, for example, a second supply / demand information acquisition stage for acquiring second supply / demand information indicating power supply / demand and hydrogen supply / demand in each of one or a plurality of trigeneration systems. The above information processing method is, for example, based on the first supply and demand information and the second supply and demand situation, (i) an upper limit value of the amount of power that the hydrogen generation system can receive from the power grid in a specific period; (ii) A target value of the amount of hydrogen generated by the hydrogen generation system in a specific period; (iii) an upper limit value of the amount of power that each of the one or more trigeneration systems can transmit to the power grid in a specific period; and (Iv) A supply and demand management stage for determining at least one target value of the amount of power generated by each of the one or more trigeneration systems in a specific period.
 他の実施形態において、管理サーバ130における情報処理方法は、エネルギ発生装置を制御するための制御方法であってよい。上記の制御方法において、エネルギ発生装置は、例えば、電力を利用して水素及び炭素を含む原料ガスを分解し、水素及び二酸化炭素を発生させる改質部と、水素を貯蔵する水素貯蔵部と、改質部が発生させた水素及び水素貯蔵部に貯蔵された水素の少なくとも一方を利用して電力を発生させる発電部とを備える。 In another embodiment, the information processing method in the management server 130 may be a control method for controlling the energy generating device. In the above control method, the energy generation device, for example, decomposes a raw material gas containing hydrogen and carbon using electric power to generate hydrogen and carbon dioxide, a hydrogen storage unit that stores hydrogen, A power generation unit that generates electric power using at least one of hydrogen generated by the reforming unit and hydrogen stored in the hydrogen storage unit.
 上記の制御方法は、例えば、二酸化炭素の供給を要求する供給要求を取得する供給要求取得段階を有する。上記の制御方法は、例えば、エネルギ発生装置又はエネルギ発生装置と送受電できる電力網における電力の需給状況を示す電力需給情報を取得する電力需給取得段階を有する。上記の制御方法は、例えば、エネルギ発生装置における水素の需給状況を示す水素需給情報を取得する水素需給取得段階を有する。上記の制御方法は、例えば、(i)電力需給情報により示される電力の需給状況、及び、(ii)水素需給情報により示される水素の需給状況に基づいて、供給要求に応じるか否かを決定する応答決定段階を有する。 The above control method includes, for example, a supply request acquisition stage for acquiring a supply request for requesting the supply of carbon dioxide. The above control method includes, for example, an electric power supply / demand acquisition stage for acquiring electric power supply / demand information indicating an electric power supply / demand situation in an energy generator or an electric power network that can transmit and receive energy to / from the energy generator. The above control method includes, for example, a hydrogen supply / demand acquisition stage for acquiring hydrogen supply / demand information indicating a hydrogen supply / demand situation in the energy generation device. The above control method determines, for example, whether to respond to the supply request based on (i) the power supply / demand situation indicated by the power supply / demand information and (ii) the hydrogen supply / demand situation indicated by the hydrogen supply / demand information. A response determination stage.
 図2は、農業施設122のシステム構成の一例を概略的に示す。本実施形態において、農業施設122は、例えば、圃場210と、電力負荷220と、配分電設備230と、コントローラ240と、トリジェネレーションシステム250とを備える。本実施形態において、圃場210には、例えば、温度センサ212と、二酸化炭素センサ214とが配される。本実施形態において、トリジェネレーションシステム250は、例えば、改質器260と、燃料電池262と、配管263と、水素貯蔵設備264と、配管265と、自動弁266とを備える。トリジェネレーションシステム250は、流量制御部272及び配管274を備えてもよい。トリジェネレーションシステム250は、蓄熱機器282と、熱交換器284と、自動弁286とを備えてよい。なお、図2において、丸印で示される箇所に、自動弁、流量調整弁などの移送制限部材が配されてよい。 FIG. 2 schematically shows an example of the system configuration of the agricultural facility 122. In the present embodiment, the agricultural facility 122 includes, for example, a farm field 210, an electric power load 220, a distributed power facility 230, a controller 240, and a trigeneration system 250. In the present embodiment, for example, a temperature sensor 212 and a carbon dioxide sensor 214 are arranged in the farm field 210. In the present embodiment, the trigeneration system 250 includes, for example, a reformer 260, a fuel cell 262, a pipe 263, a hydrogen storage facility 264, a pipe 265, and an automatic valve 266. The trigeneration system 250 may include a flow rate control unit 272 and a pipe 274. The trigeneration system 250 may include a heat storage device 282, a heat exchanger 284, and an automatic valve 286. In FIG. 2, a transfer restriction member such as an automatic valve or a flow rate adjusting valve may be arranged at a position indicated by a circle.
 コントローラ240は、エネルギ管理装置の一例であってよい。トリジェネレーションシステム250は、エネルギ発生装置、第1トリジェネレーションシステム及び第2トリジェネレーションシステムの一例であってよい。改質器260は、二酸化炭素発生部、発熱部及び改質部の一例であってよい。燃料電池262は、発電部及び発熱部の一例であってよい。配管263は、第1配管の一例であってよい。水素貯蔵設備264は、水素貯蔵部の一例であってよい。配管265は、第2配管の一例であってよい。自動弁266は、移送制限部の一例であってよい。 The controller 240 may be an example of an energy management device. The trigeneration system 250 may be an example of an energy generation device, a first trigeneration system, and a second trigeneration system. The reformer 260 may be an example of a carbon dioxide generating unit, a heat generating unit, and a reforming unit. The fuel cell 262 may be an example of a power generation unit and a heat generation unit. The pipe 263 may be an example of a first pipe. The hydrogen storage facility 264 may be an example of a hydrogen storage unit. The pipe 265 may be an example of a second pipe. The automatic valve 266 may be an example of a transfer restriction unit.
 本実施形態において、圃場210では、植物又は農産物が栽培される。農産物としては、穀類、野菜、果物、茶、キノコ類又は菌糸類などを例示することができる。圃場210には、1以上の温度センサ212が配されてよい。温度センサ212は、圃場210の各所における気温、水温、土壌の温度などを測定する。圃場210には、1以上の二酸化炭素センサ214が配されてよい。二酸化炭素センサ214は、圃場210の各所における空気中の二酸化炭素濃度を測定する。温度センサ212及び二酸化炭素センサ214は、測定結果を示す情報をコントローラ240に出力してよい。 In the present embodiment, plants or agricultural products are cultivated in the field 210. Examples of agricultural products include cereals, vegetables, fruits, tea, mushrooms, and mycelia. One or more temperature sensors 212 may be arranged in the farm field 210. The temperature sensor 212 measures the air temperature, water temperature, soil temperature, and the like at various points in the farm field 210. One or more carbon dioxide sensors 214 may be arranged in the field 210. The carbon dioxide sensor 214 measures the carbon dioxide concentration in the air at various locations on the field 210. The temperature sensor 212 and the carbon dioxide sensor 214 may output information indicating the measurement result to the controller 240.
 温度センサ212及び二酸化炭素センサ214は、圃場210に配されるセンサの一例であってよい。圃場210には、温度センサ212及び二酸化炭素センサ214の他にも、各種のセンサが配されてよい。例えば、圃場210には、湿度センサが配される。 The temperature sensor 212 and the carbon dioxide sensor 214 may be an example of sensors arranged in the farm field 210. In addition to the temperature sensor 212 and the carbon dioxide sensor 214, various sensors may be arranged in the farm field 210. For example, a humidity sensor is arranged in the farm field 210.
 本実施形態において、電力負荷220は、電気を使用する。電力負荷220は、電力を消費する電気機器であってよい。電力負荷220の少なくとも一部の動作は、コントローラ240により制御されてよい。 In this embodiment, the power load 220 uses electricity. The power load 220 may be an electric device that consumes power. The operation of at least a portion of the power load 220 may be controlled by the controller 240.
 本実施形態において、配分電設備230は、電力網12と、農業施設122の内部の配線との間の電力の流通を制御する。例えば、配分電設備230は、電力網12と、トリジェネレーションシステム250との間における電力の授受を制御する。配分電設備230は、農業施設122の内部における電力の流通を制御してもよい。例えば、配分電設備230は、トリジェネレーションシステム250から電力負荷220への電力の供給を制御する。配分電設備230は、交流を直流に変換してもよく、直流を交流に変換してもよい。配分電設備230は、電気の電圧及び周波数の少なくとも一方を調整してもよい。配分電設備230の動作は、コントローラ240により制御されてよい。 In this embodiment, the distribution power facility 230 controls the distribution of power between the power network 12 and the wiring inside the agricultural facility 122. For example, the distribution power facility 230 controls power transmission / reception between the power network 12 and the trigeneration system 250. The distribution power equipment 230 may control the distribution of electric power inside the agricultural facility 122. For example, the distribution power facility 230 controls the supply of power from the trigeneration system 250 to the power load 220. The distribution power facility 230 may convert alternating current into direct current, or may convert direct current into alternating current. The distribution power facility 230 may adjust at least one of the voltage and frequency of electricity. The operation of the distribution power facility 230 may be controlled by the controller 240.
 配分電設備230は、1又は複数の電力量計を備えてよい。配分電設備230は、電力網12から農業施設122に供給された電気の瞬時電力[kW]及び電力量[kWh]の少なくとも一方を計測してよい。配分電設備230は、農業施設122から電力網12に供給された電気の瞬時電力[kW]及び電力量[kWh]の少なくとも一方を計測してよい。配分電設備230は、トリジェネレーションシステム250が発電した電気の瞬時電力[kW]及び電力量[kWh]の少なくとも一方を計測してよい。農業施設122の内部に配された1以上の電気機器が消費した電気の瞬時電力[kW]及び電力量[kWh]の少なくとも一方を計測してよい。配分電設備230は、計測された瞬時電力[kW]及び電力量[kWh]の少なくとも一方を示す情報をコントローラ240に出力してよい。 The distribution power facility 230 may include one or more watt-hour meters. The distributed power equipment 230 may measure at least one of the instantaneous power [kW] and the power [kWh] of electricity supplied from the power network 12 to the agricultural facility 122. The distribution power equipment 230 may measure at least one of the instantaneous electric power [kW] and the electric energy [kWh] supplied from the agricultural facility 122 to the power grid 12. The distribution power facility 230 may measure at least one of instantaneous electric power [kW] and electric energy [kWh] generated by the trigeneration system 250. At least one of the instantaneous electric power [kW] and the electric energy [kWh] consumed by one or more electric devices arranged inside the agricultural facility 122 may be measured. The distribution power facility 230 may output information indicating at least one of the measured instantaneous power [kW] and power amount [kWh] to the controller 240.
 本実施形態において、コントローラ240は、電力負荷220、配分電設備230及びトリジェネレーションシステム250の動作を制御する。コントローラ240は、温度センサ212及び二酸化炭素センサ214の測定結果を示す情報を取得する。コントローラ240は、温度センサ212及び二酸化炭素センサ214の少なくとも一方の測定結果に基づいて、電力負荷220、配分電設備230及びトリジェネレーションシステム250の少なくとも1つの動作を制御してよい。 In this embodiment, the controller 240 controls the operation of the power load 220, the distribution power facility 230, and the trigeneration system 250. The controller 240 acquires information indicating the measurement results of the temperature sensor 212 and the carbon dioxide sensor 214. The controller 240 may control at least one operation of the power load 220, the distribution power facility 230, and the trigeneration system 250 based on the measurement result of at least one of the temperature sensor 212 and the carbon dioxide sensor 214.
 本実施形態において、コントローラ240は、農業施設122におけるエネルギ及びエネルギ源の需給を管理する。コントローラ240は、例えば、(i)電力負荷220における電力消費量、(ii)トリジェネレーションシステム250における電力消費量及び発電量、(iii)トリジェネレーションシステム250における水素消費量、水素発生量及び水素残量(iv)トリジェネレーションシステム250における二酸化炭素発生量、並びに、(v)トリジェネレーションシステム250における熱消費量、発熱量及び蓄熱量の少なくとも1つを示す情報を取得する。コントローラ240は、上記の情報に基づいて、電力負荷220、配分電設備230及びトリジェネレーションシステム250の少なくとも1つの動作を制御してよい。 In this embodiment, the controller 240 manages the supply and demand of energy and energy sources in the agricultural facility 122. The controller 240 may, for example, (i) power consumption in the power load 220, (ii) power consumption and power generation in the trigeneration system 250, (iii) hydrogen consumption, hydrogen generation and hydrogen residue in the trigeneration system 250. Amount (iv) Information indicating at least one of the carbon dioxide generation amount in the trigeneration system 250 and (v) the heat consumption amount, the heat generation amount, and the heat storage amount in the trigeneration system 250 is acquired. The controller 240 may control at least one operation of the power load 220, the distribution power facility 230, and the trigeneration system 250 based on the above information.
 本実施形態において、コントローラ240は、管理サーバ130と協働して、農業施設122又は農業施設122が所属するコミュニティにおけるエネルギ及びエネルギ源の過不足を調整する。コントローラ240は、例えば、農業施設122におけるエネルギ及びエネルギ源の少なくとも一方の需給状態に関する情報を、管理サーバ130に送信する。コントローラ240は、農業施設122におけるエネルギ及びエネルギ源の過不足を調整するための要求を、管理サーバ130に送信してよい。 In the present embodiment, the controller 240 cooperates with the management server 130 to adjust the excess or deficiency of energy and energy sources in the agricultural facility 122 or the community to which the agricultural facility 122 belongs. For example, the controller 240 transmits information regarding the supply and demand state of at least one of energy and energy sources in the agricultural facility 122 to the management server 130. The controller 240 may send a request for adjusting the excess and deficiency of energy and energy sources in the agricultural facility 122 to the management server 130.
 コントローラ240は、コミュニティにおけるエネルギ及びエネルギ源の少なくとも一方の需給状態に関する情報を、管理サーバ130から取得してよい。コントローラ240は、管理サーバ130から取得した情報に基づいて、農業施設122と電力網12との間の送受電を管理してよい。コントローラ240の詳細は後述される。 The controller 240 may acquire information on the supply and demand state of at least one of energy and energy source in the community from the management server 130. The controller 240 may manage power transmission / reception between the agricultural facility 122 and the power grid 12 based on information acquired from the management server 130. Details of the controller 240 will be described later.
 本実施形態において、トリジェネレーションシステム250は、電気、熱及び二酸化炭素を発生させ、外部に供給する。トリジェネレーションシステム250は、水素を発生させて、当該水素を外部に供給してもよい。例えば、トリジェネレーションシステム250は、熱及び二酸化炭素を、圃場210に供給する。トリジェネレーションシステム250は、電力を、電力負荷220又は電力網12に供給する。 In this embodiment, the trigeneration system 250 generates electricity, heat, and carbon dioxide and supplies them to the outside. The trigeneration system 250 may generate hydrogen and supply the hydrogen to the outside. For example, the trigeneration system 250 supplies heat and carbon dioxide to the field 210. The trigeneration system 250 supplies power to the power load 220 or the power network 12.
 本実施形態において、改質器260は、水素及び炭素を含む原料ガスを分解して、水素及び二酸化炭素を発生させる。改質器260は、原料ガスを分解して熱を発生させてもよい。改質器260は、電力を利用して原料ガスを分解してよい。改質器260が発生させた水素は、例えば、配管263を介して、燃料電池262に移送される。改質器260が発生させた水素は、例えば、配管265を介して、水素貯蔵設備264に移送される。改質器260が発生させた水素は、例えば、配管274を介して、圃場210に移送される。改質器260が発生させた熱は、例えば、任意の熱媒体の移送配管を介して、蓄熱機器282及び熱交換器284の少なくとも一方に移送される。 In the present embodiment, the reformer 260 decomposes the raw material gas containing hydrogen and carbon to generate hydrogen and carbon dioxide. The reformer 260 may generate heat by decomposing the raw material gas. The reformer 260 may decompose the raw material gas using electric power. The hydrogen generated by the reformer 260 is transferred to the fuel cell 262 via the pipe 263, for example. The hydrogen generated by the reformer 260 is transferred to the hydrogen storage facility 264 via the pipe 265, for example. The hydrogen generated by the reformer 260 is transferred to the field 210 via, for example, a pipe 274. The heat generated by the reformer 260 is transferred to at least one of the heat storage device 282 and the heat exchanger 284 via, for example, an arbitrary heat medium transfer pipe.
 本実施形態において、燃料電池262は、水素を利用して電力を発生させる。燃料電池262は、水素を利用して熱を発生させてもよい。燃料電池262には、改質器260が発生させた水素、及び、水素貯蔵設備264に貯蔵された水素の少なくとも一方が供給される。燃料電池262は、配分電設備230を介して、電力網12及び圃場210の少なくとも一方に電力を供給してよい。 In this embodiment, the fuel cell 262 generates electric power using hydrogen. The fuel cell 262 may generate heat using hydrogen. The fuel cell 262 is supplied with at least one of hydrogen generated by the reformer 260 and hydrogen stored in the hydrogen storage facility 264. The fuel cell 262 may supply power to at least one of the power network 12 and the field 210 via the distribution power facility 230.
 燃料電池262が発生させた熱は、例えば、任意の熱媒体の移送配管を介して、蓄熱機器282及び熱交換器284の少なくとも一方に移送される。燃料電池262から蓄熱機器282に熱を供給する配管には、熱媒体の移送を制限する部材が配されてよい。燃料電池262から熱交換器284に熱を供給する配管には、熱媒体の移送を制限する部材が配されてよい。熱媒体の移送を制限する部材は、自動弁であってよい。自動弁の動作は、コントローラ240又はトリジェネレーションシステム250の制御装置(図示されていない。)により制御されてよい。 The heat generated by the fuel cell 262 is transferred to at least one of the heat storage device 282 and the heat exchanger 284 via, for example, an arbitrary heat transfer pipe. A member that restricts the transfer of the heat medium may be disposed in the pipe that supplies heat from the fuel cell 262 to the heat storage device 282. A member that restricts the transfer of the heat medium may be disposed in the pipe that supplies heat from the fuel cell 262 to the heat exchanger 284. The member that restricts the transfer of the heat medium may be an automatic valve. The operation of the automatic valve may be controlled by the controller 240 or a control device (not shown) of the trigeneration system 250.
 本実施形態において、水素貯蔵設備264は、外部から供給された水素を貯蔵する。例えば、水素貯蔵設備264は、改質器260から供給された水素を、水素貯蔵容器(図示されていない。)に貯蔵する。水素貯蔵設備264は、燃料電池車22から供給された水素を、当該水素貯蔵容器に貯蔵してもよい。水素の貯蔵方法は、特に限定されない。水素は、比較的高圧で貯蔵されてもよく、比較的低圧で貯蔵されてもよい。水素は、気体状態で貯蔵されてもよく、液体状態で貯蔵されてもよく、水素吸蔵物質に吸収された状態で貯蔵されてよい。 In this embodiment, the hydrogen storage facility 264 stores hydrogen supplied from the outside. For example, the hydrogen storage facility 264 stores the hydrogen supplied from the reformer 260 in a hydrogen storage container (not shown). The hydrogen storage facility 264 may store the hydrogen supplied from the fuel cell vehicle 22 in the hydrogen storage container. The method for storing hydrogen is not particularly limited. Hydrogen may be stored at a relatively high pressure or may be stored at a relatively low pressure. Hydrogen may be stored in a gaseous state, may be stored in a liquid state, or may be stored in a state absorbed by a hydrogen storage material.
 水素貯蔵設備264は、外部に水素を供給してよい。例えば、水素貯蔵設備264は、燃料電池262に水素を供給する。水素貯蔵設備264は、燃料電池車22に水素を供給してもよい。水素貯蔵設備264から燃料電池262に水素を供給する配管には、水素の移送を制限する部材が配されてよい。水素貯蔵設備264から燃料電池車22に水素を供給する配管には、水素の移送を制限する部材が配されてよい。水素の移送を制限する部材は、自動弁であってよい。自動弁の動作は、コントローラ240又はトリジェネレーションシステム250の制御装置(図示されていない。)により制御されてよい。 The hydrogen storage facility 264 may supply hydrogen to the outside. For example, the hydrogen storage facility 264 supplies hydrogen to the fuel cell 262. The hydrogen storage facility 264 may supply hydrogen to the fuel cell vehicle 22. A member that restricts the transfer of hydrogen may be disposed in a pipe that supplies hydrogen from the hydrogen storage facility 264 to the fuel cell 262. A member that restricts the transfer of hydrogen may be disposed in a pipe that supplies hydrogen from the hydrogen storage facility 264 to the fuel cell vehicle 22. The member that restricts the transfer of hydrogen may be an automatic valve. The operation of the automatic valve may be controlled by the controller 240 or a control device (not shown) of the trigeneration system 250.
 本実施形態において、自動弁266は、配管263及び配管265の少なくとも一方における水素の移送を制限する。これにより、改質器260が発生させた水素の移送先及び移送量が制御される。自動弁266の動作は、コントローラ240又はトリジェネレーションシステム250の制御装置(図示されていない。)により制御されてよい。 In the present embodiment, the automatic valve 266 limits the transfer of hydrogen in at least one of the pipe 263 and the pipe 265. Thereby, the transfer destination and transfer amount of hydrogen generated by the reformer 260 are controlled. The operation of the automatic valve 266 may be controlled by the controller 240 or the control device (not shown) of the trigeneration system 250.
 本実施形態において、流量制御部272は、改質器260から圃場210への二酸化炭素の移送を制限する。流量制御部272は、配管274の一部に配されてよい。これにより、圃場210への二酸化炭素の移送量が制御される。流量制御部272の動作は、コントローラ240又はトリジェネレーションシステム250の制御装置(図示されていない。)により制御されてよい。流量制御部272の詳細は、後述される。 In the present embodiment, the flow rate control unit 272 limits the transfer of carbon dioxide from the reformer 260 to the field 210. The flow rate control unit 272 may be disposed in a part of the pipe 274. Thereby, the amount of carbon dioxide transferred to the field 210 is controlled. The operation of the flow control unit 272 may be controlled by the controller 240 or a control device (not shown) of the trigeneration system 250. Details of the flow rate control unit 272 will be described later.
 本実施形態において、蓄熱機器282は、改質器260及び燃料電池262の少なくとも一方が発生させた熱を蓄積する。本実施形態において、熱交換器284は、改質器260及び燃料電池262の少なくとも一方が発生させた熱、又は、蓄熱機器282に蓄積された熱を、圃場210の温度調整機器(図示されていない。)に伝達する。熱交換器284における熱交換方式は特に限定されない。 In the present embodiment, the heat storage device 282 accumulates heat generated by at least one of the reformer 260 and the fuel cell 262. In the present embodiment, the heat exchanger 284 converts the heat generated by at least one of the reformer 260 and the fuel cell 262 or the heat accumulated in the heat storage device 282 into a temperature adjustment device (not shown) of the field 210. No). The heat exchange method in the heat exchanger 284 is not particularly limited.
 本実施形態において、自動弁286は、改質器260が発生させた熱を伝達する熱媒体の移送を制限する。改質器260から蓄熱機器282に熱媒体を移送させる配管、及び、改質器260から蓄熱機器282に熱媒体を移送させる配管の少なくとも一方における、熱媒体の移送を制限する。これにより、改質器260が発生させた熱の移送先及び移送量が制御される。自動弁266の動作は、コントローラ240又はトリジェネレーションシステム250の制御装置(図示されていない。)により制御されてよい。 In the present embodiment, the automatic valve 286 limits the transfer of the heat medium that transmits the heat generated by the reformer 260. The transfer of the heat medium is limited in at least one of a pipe that transfers the heat medium from the reformer 260 to the heat storage apparatus 282 and a pipe that transfers the heat medium from the reformer 260 to the heat storage apparatus 282. Thereby, the transfer destination and transfer amount of the heat generated by the reformer 260 are controlled. The operation of the automatic valve 266 may be controlled by the controller 240 or the control device (not shown) of the trigeneration system 250.
 図3は、コントローラ240の内部構成の一例を概略的に示す。本実施形態において、コントローラ240は、例えば、空調管理部322と、電力需給管理部324と、水素需給管理部326と、システム制御部330とを備える。本実施形態において、システム制御部330は、電力供給制御部332と、水素供給制御部334と、二酸化炭素供給制御部336と、熱供給制御部338と、配車要求部342とを有する。 FIG. 3 schematically shows an example of the internal configuration of the controller 240. In the present embodiment, the controller 240 includes, for example, an air conditioning management unit 322, a power supply / demand management unit 324, a hydrogen supply / demand management unit 326, and a system control unit 330. In the present embodiment, the system control unit 330 includes a power supply control unit 332, a hydrogen supply control unit 334, a carbon dioxide supply control unit 336, a heat supply control unit 338, and a vehicle allocation request unit 342.
 電力需給管理部324は、電力需給取得部の一例であってよい。水素需給管理部326は、水素需給取得部の一例であってよい。システム制御部330は、エネルギ管理装置の一例であってよい。電力供給制御部332は発電制御部の一例であってよい。二酸化炭素供給制御部336は、供給要求取得部及び応答決定部の一例であってよい。配車要求部342は、派遣要求送信部の一例であってよい。 The power supply / demand management unit 324 may be an example of a power supply / demand acquisition unit. The hydrogen supply and demand management unit 326 may be an example of a hydrogen supply and demand acquisition unit. The system control unit 330 may be an example of an energy management device. The power supply control unit 332 may be an example of a power generation control unit. The carbon dioxide supply control unit 336 may be an example of a supply request acquisition unit and a response determination unit. The dispatch request unit 342 may be an example of a dispatch request transmission unit.
 本実施形態において、空調管理部322は、圃場210の温度、湿度及び二酸化炭素濃度の少なくとも1つを管理する。空調管理部322は、圃場210の空気の温度、湿度及び二酸化炭素濃度の少なくとも1つを管理してよい。圃場210の培地の温度及び湿度の少なくとも一方を管理してもよい。 In this embodiment, the air conditioning management unit 322 manages at least one of the temperature, humidity, and carbon dioxide concentration of the field 210. The air conditioning management unit 322 may manage at least one of the temperature, humidity, and carbon dioxide concentration of the air in the field 210. You may manage at least one of the temperature of the culture medium of the agricultural field 210, and humidity.
 空調管理部322は、圃場210に配された各種のセンサの測定結果を示す情報を取得する。空調管理部322は、上記のセンサの測定結果に基づいて、システム制御部330に各種の要求を出力する。例えば、空調管理部322は、温度センサ212の測定結果に基づいて、熱の供給を要求する熱要求を出力する。空調管理部322は、二酸化炭素センサ214の測定結果に基づいて、二酸化炭素の供給を要求する二酸化炭素要求を出力してよい。空調管理部322は、湿度センサの測定結果に基づいて、加湿を要求する加湿要求を出力する。二酸化炭素要求は、供給要求の一例であってよい。 The air conditioning management unit 322 acquires information indicating the measurement results of various sensors arranged in the field 210. The air conditioning management unit 322 outputs various requests to the system control unit 330 based on the measurement result of the sensor. For example, the air conditioning management unit 322 outputs a heat request for requesting heat supply based on the measurement result of the temperature sensor 212. The air conditioning management unit 322 may output a carbon dioxide request for requesting the supply of carbon dioxide based on the measurement result of the carbon dioxide sensor 214. The air conditioning management unit 322 outputs a humidification request for requesting humidification based on the measurement result of the humidity sensor. The carbon dioxide request may be an example of a supply request.
 本実施形態において、電力需給管理部324は、農業施設122における電力需給を管理する。例えば、電力需給管理部324は、農業施設122における電力の需給状況を示す情報(電力需給情報と称される場合がある。)を取得する。 In this embodiment, the power supply / demand management unit 324 manages the power supply / demand in the agricultural facility 122. For example, the power supply / demand management unit 324 acquires information indicating the power supply / demand situation of the agricultural facility 122 (sometimes referred to as power supply / demand information).
 電力需給管理部324は、配分電設備230から、農業施設122における電力消費量を示す情報を取得してよい。電力需給管理部324は、配分電設備230から、農業施設122における電力供給量を示す情報を取得してもよい。電力需給管理部324は、配分電設備230から、トリジェネレーションシステム250の発電量を示す情報を取得してよい。電力需給管理部324は、配分電設備230から、農業施設122から電力網12への送電量を示す情報を取得してよい。電力需給管理部324は、農業施設122における電力消費量を予測してもよい。電力需給管理部324は、農業施設122における電力供給量を予測してもよい。 The power supply and demand management unit 324 may acquire information indicating the power consumption in the agricultural facility 122 from the distributed power facility 230. The power supply and demand management unit 324 may acquire information indicating the power supply amount in the agricultural facility 122 from the distributed power facility 230. The power supply / demand management unit 324 may acquire information indicating the power generation amount of the trigeneration system 250 from the distribution power facility 230. The power supply and demand management unit 324 may acquire information indicating the amount of power transmitted from the agricultural facility 122 to the power network 12 from the distributed power facility 230. The power supply / demand management unit 324 may predict the power consumption in the agricultural facility 122. The power supply / demand management unit 324 may predict the power supply amount in the agricultural facility 122.
 電力需給管理部324は、管理サーバ130から、農業施設122が所属するコミュニティにおける電力の需給状況を示す情報を取得してもよい。コミュニティにおける電力の需給状況は、電力網12における電力の需給情報であってよい。コミュニティの電力需給情報により示される内容は、農業施設122の電力需給情報と同様であってよい。コミュニティにおける電力の需給状況は、農業施設122における電力の需給状況の一例であってよい。 The power supply / demand management unit 324 may acquire information indicating the power supply / demand situation in the community to which the agricultural facility 122 belongs from the management server 130. The power supply / demand situation in the community may be power supply / demand information in the power network 12. The contents indicated by the power supply / demand information of the community may be the same as the power supply / demand information of the agricultural facility 122. The power supply / demand situation in the community may be an example of the power supply / demand situation in the agricultural facility 122.
 本実施形態において、水素需給管理部326は、農業施設122における水素需給を管理する。例えば、水素需給管理部326は、農業施設122における水素の需給状況を示す情報(水素需給情報と称される場合がある。)を取得する。 In this embodiment, the hydrogen supply and demand management unit 326 manages the hydrogen supply and demand in the agricultural facility 122. For example, the hydrogen supply and demand management unit 326 acquires information indicating the hydrogen supply and demand situation in the agricultural facility 122 (sometimes referred to as hydrogen supply and demand information).
 水素需給管理部326は、トリジェネレーションシステム250から、燃料電池262における水素消費量を示す情報を取得してよい。水素需給管理部326は、トリジェネレーションシステム250から、燃料電池車22に搭載された水素貯蔵容器への水素供給量を示す情報を取得してよい。水素需給管理部326は、トリジェネレーションシステム250から、改質器260における水素製造量を示す情報を取得してよい。水素需給管理部326は、トリジェネレーションシステム250から、水素貯蔵設備264の水素残量を示す情報を取得してよい。水素需給管理部326は、トリジェネレーションシステム250における水素消費量を予測してもよい。水素需給管理部326は、トリジェネレーションシステム250における水素製造量を予測してもよい。水素需給管理部326は、トリジェネレーションシステム250における水素残量量を予測してもよい。 The hydrogen supply and demand management unit 326 may acquire information indicating the hydrogen consumption in the fuel cell 262 from the trigeneration system 250. The hydrogen supply / demand management unit 326 may acquire information indicating the hydrogen supply amount to the hydrogen storage container mounted on the fuel cell vehicle 22 from the trigeneration system 250. The hydrogen supply and demand management unit 326 may acquire information indicating the amount of hydrogen produced in the reformer 260 from the trigeneration system 250. The hydrogen supply / demand management unit 326 may acquire information indicating the remaining amount of hydrogen in the hydrogen storage facility 264 from the trigeneration system 250. The hydrogen supply and demand management unit 326 may predict the hydrogen consumption in the trigeneration system 250. The hydrogen supply and demand management unit 326 may predict the hydrogen production amount in the trigeneration system 250. The hydrogen supply and demand management unit 326 may predict the remaining amount of hydrogen in the trigeneration system 250.
 水素需給管理部326は、管理サーバ130から、農業施設122が所属するコミュニティにおける水素の需給状況を示す情報を取得してもよい。コミュニティの水素需給情報により示される内容は、農業施設122の水素需給情報と同様であってよい。コミュニティにおける水素の需給状況は、農業施設122における水素の需給状況の一例であってよい。 The hydrogen supply and demand management unit 326 may acquire information indicating the hydrogen supply and demand situation in the community to which the agricultural facility 122 belongs from the management server 130. The content indicated by the hydrogen supply / demand information of the community may be the same as the hydrogen supply / demand information of the agricultural facility 122. The supply and demand situation of hydrogen in the community may be an example of the supply and demand situation of hydrogen in the agricultural facility 122.
 システム制御部330は、電力負荷220、配分電設備230及びトリジェネレーションシステム250の動作を制御する。システム制御部330は、コントローラ240と管理サーバ130との間の通信を制御してよい。システム制御部330は、通信インタフェースを有してよい。上記の通信インタフェースは、複数の通信方式に対応してよい。 The system control unit 330 controls operations of the power load 220, the distribution power facility 230, and the trigeneration system 250. The system control unit 330 may control communication between the controller 240 and the management server 130. The system control unit 330 may have a communication interface. The communication interface may correspond to a plurality of communication methods.
 本実施形態において、電力供給制御部332は、トリジェネレーションシステム250における電力の供給を制御する。例えば、電力供給制御部332は、燃料電池262を稼働させるか否かを決定する。電力供給制御部332は、(i)農業施設122における電力の需給状況、及び、(ii)農業施設122における水素の需給状況に基づいて、燃料電池262を稼働させるか否かを決定してよい。 In the present embodiment, the power supply control unit 332 controls the supply of power in the trigeneration system 250. For example, the power supply control unit 332 determines whether to operate the fuel cell 262. The power supply control unit 332 may determine whether to operate the fuel cell 262 based on (i) the power supply / demand situation in the agricultural facility 122 and (ii) the hydrogen supply / demand situation in the agricultural facility 122. .
 一実施形態において、電力供給制御部332は、(i)農業施設122における電力の需給状況、及び、(ii)農業施設122における水素の需給状況に基づいて、1以上の期間を示す情報と、各期間における発電量とが対応付けられた稼働スケジュールを生成する。電力供給制御部332は、稼働スケジュールに従って、燃料電池262を稼働させる。 In one embodiment, the power supply control unit 332 includes information indicating one or more periods based on (i) a power supply / demand situation in the agricultural facility 122, and (ii) a hydrogen supply / demand situation in the agricultural facility 122; An operation schedule in which the power generation amount in each period is associated is generated. The power supply control unit 332 operates the fuel cell 262 according to the operation schedule.
 他の実施形態において、電力供給制御部332は、農業施設122における電力供給の過剰具合に基づいて、燃料電池262を稼働させるか否かを決定してよい。例えば、電力供給制御部332は、農業施設122における電力供給の過剰具合が特定の条件(電力過剰条件と称される場合がある。)を満足する場合に、燃料電池262を稼働させないこと、又は、燃料電池262を停止することを決定する。電力供給制御部332は、農業施設122における電力供給の過剰具合が上記の条件を満足しない場合に、燃料電池262を稼働させることを決定してもよい。 In another embodiment, the power supply control unit 332 may determine whether or not to operate the fuel cell 262 based on the excessive power supply in the agricultural facility 122. For example, the power supply control unit 332 does not operate the fuel cell 262 when the excess power supply in the agricultural facility 122 satisfies a specific condition (sometimes referred to as an excessive power condition), or Then, it is decided to stop the fuel cell 262. The power supply control unit 332 may determine to operate the fuel cell 262 when the excessive power supply in the agricultural facility 122 does not satisfy the above condition.
 電力供給の過剰具合は、電力の過剰又は逼迫の程度を示すパラメータであってよい。電力供給の過剰具合は、連続的な数値により表されてもよく、段階的な区分により表されてもよい。各区分は、記号又は文字により区別されてもよく、数字により区別されてもよい。 The excess state of power supply may be a parameter indicating the degree of power surplus or tightness. The excess state of the power supply may be represented by a continuous numerical value or may be represented by a stepwise division. Each division may be distinguished by a symbol or a character, and may be distinguished by a number.
 電力需給の過剰具合は、余剰電力、及び、電力の供給余力の少なくとも一方に基づいて決定されてよい。電力需給の過剰具合は、例えば、(i)農業施設122における需要電力に対する、農業施設122における余剰電力又は供給余力の割合、(ii)農業施設122における電力の供給能力に対する、農業施設122における余剰電力又は供給余力の割合などに基づいて決定される。 The excess state of power supply and demand may be determined based on at least one of surplus power and power supply surplus. For example, (i) the ratio of surplus power or supply surplus power in the agricultural facility 122 to demand power in the agricultural facility 122; (ii) surplus in the agricultural facility 122 relative to the power supply capacity in the agricultural facility 122; It is determined based on the ratio of electric power or supply surplus capacity.
 電力需給の過剰具合は、農業施設122が所属するコミュニティにおける電力の需給状況に基づいて決定されてもよい。電力需給の過剰具合は、例えば、(i)コミュニティにおける需要電力に対する、電力網12における余剰電力又は供給余力の割合、(ii)電力網12における電力の供給能力に対する、コミュニティにおける余剰電力又は供給余力の割合などに基づいて決定される。電力網12における電力需給の状況は、農業施設122が所属するコミュニティにおける電力の需給状況の一例であってよい。 The excess state of power supply and demand may be determined based on the power supply and demand situation in the community to which the agricultural facility 122 belongs. For example, (i) the ratio of surplus power or supply surplus power in the power network 12 to demand power in the community, and (ii) the ratio of surplus power or surplus power supply in the community to the power supply capacity in the power network 12 It is determined based on the above. The power supply / demand situation in the power network 12 may be an example of the power supply / demand situation in the community to which the agricultural facility 122 belongs.
 電力供給制御部332は、1以上の電力負荷220の少なくとも1つへの電力の供給を制御してもよい。これにより、電力供給制御部332は、農業施設122における電力の消費を制限して、農業施設122の電力需給を調整することができる。 The power supply control unit 332 may control power supply to at least one of the one or more power loads 220. As a result, the power supply control unit 332 can regulate power supply and demand of the agricultural facility 122 by limiting power consumption in the agricultural facility 122.
 本実施形態において、水素供給制御部334は、トリジェネレーションシステム250における水素の供給を制御する。例えば、水素供給制御部334は、改質器260を稼働させるか否かを決定する。水素供給制御部334は、(i)農業施設122における電力の需給状況、及び、(ii)農業施設122における水素の需給状況に基づいて、改質器260を稼働させるか否かを決定してよい。 In this embodiment, the hydrogen supply control unit 334 controls the supply of hydrogen in the trigeneration system 250. For example, the hydrogen supply control unit 334 determines whether to operate the reformer 260. The hydrogen supply control unit 334 determines whether to operate the reformer 260 based on (i) the power supply / demand situation in the agricultural facility 122 and (ii) the hydrogen supply / demand situation in the agricultural facility 122. Good.
 一実施形態において、水素供給制御部334は、(i)農業施設122における電力の需給状況、及び、(ii)農業施設122における水素の需給状況に基づいて、1以上の期間を示す情報と、各期間における水素発生量とが対応付けられた稼働スケジュールを生成する。水素供給制御部334は、稼働スケジュールに従って、改質器260を稼働させる。 In one embodiment, the hydrogen supply control unit 334 includes information indicating one or more periods based on (i) a power supply / demand situation in the agricultural facility 122, and (ii) a hydrogen supply / demand situation in the agricultural facility 122; An operation schedule in which the amount of hydrogen generated in each period is associated is generated. The hydrogen supply control unit 334 operates the reformer 260 according to the operation schedule.
 他の実施形態において、水素供給制御部334は、農業施設122における水素供給の過剰具合に基づいて、改質器260を稼働させるか否かを決定してよい。例えば、水素供給制御部334は、農業施設122における水素供給の過剰具合が特定の条件(水素過剰条件と称される場合がある。)を満足する場合に、改質器260を稼働させないこと、又は、改質器260を停止することを決定する。水素供給制御部334は、農業施設122における電力供給の過剰具合が上記の条件を満足しない場合に、改質器260を稼働させることを決定してもよい。 In another embodiment, the hydrogen supply control unit 334 may determine whether or not to operate the reformer 260 based on the excessive hydrogen supply in the agricultural facility 122. For example, the hydrogen supply control unit 334 does not operate the reformer 260 when the excessive hydrogen supply in the agricultural facility 122 satisfies a specific condition (sometimes referred to as an excessive hydrogen condition). Alternatively, it is determined to stop the reformer 260. The hydrogen supply control unit 334 may determine to operate the reformer 260 when the excess power supply in the agricultural facility 122 does not satisfy the above condition.
 水素供給の過剰具合は、水素の過剰又は逼迫の程度を示すパラメータであってよい。水素供給の過剰具合は、連続的な数値により表されてもよく、段階的な区分により表されてもよい。各区分は、記号又は文字により区別されてもよく、数字により区別されてもよい。 The excess of hydrogen supply may be a parameter indicating the degree of excess or tightness of hydrogen. The excess degree of hydrogen supply may be represented by a continuous numerical value or by a stepwise division. Each division may be distinguished by a symbol or a character, and may be distinguished by a number.
 水素需給の過剰具合は、余剰水素量、及び、水素の供給余力の少なくとも一方に基づいて決定されてよい。水素需給の過剰具合は、例えば、(i)農業施設122における水素の需要量に対する、農業施設122における余剰水素量又は供給余力の割合、(ii)農業施設122における水素の供給能力に対する、農業施設122における余剰水素量又は供給余力の割合などに基づいて決定される。 The excess state of hydrogen supply and demand may be determined based on at least one of the surplus hydrogen amount and the hydrogen supply capacity. For example, the excess of hydrogen supply / demand is (i) the ratio of surplus hydrogen amount or supply capacity in the agricultural facility 122 to the hydrogen demand in the agricultural facility 122, and (ii) the agricultural facility in relation to the hydrogen supply capacity in the agricultural facility 122. It is determined based on the amount of surplus hydrogen at 122 or the ratio of surplus supply capacity.
 水素需給の過剰具合は、農業施設122が所属するコミュニティにおける水素の需給状況に基づいて決定されてもよい。水素需給の過剰具合は、例えば、(i)コミュニティにおける水素の需要量に対する、コミュニティにおける余剰水素量又は供給余力の割合、(ii)コミュニティにおける水素の供給能力に対する、コミュニティにおける余剰水素量又は供給余力の割合などに基づいて決定される。 The excess state of hydrogen supply and demand may be determined based on the hydrogen supply and demand situation in the community to which the agricultural facility 122 belongs. The excess of hydrogen supply and demand is, for example, (i) the ratio of surplus hydrogen amount or supply surplus capacity in the community to the hydrogen demand in the community, and (ii) surplus hydrogen amount or surplus supply capacity in the community relative to the hydrogen supply capacity in the community It is determined based on the ratio of.
 本実施形態において、水素供給制御部334は、改質器260が発生させた水素の供給経路及び供給量を制御する。例えば、水素供給制御部334は、自動弁266の動作を制御する。これにより、水素供給制御部334は、水素の移送先と、各移送先への移送量とを制御することができる。 In the present embodiment, the hydrogen supply control unit 334 controls the supply path and supply amount of hydrogen generated by the reformer 260. For example, the hydrogen supply control unit 334 controls the operation of the automatic valve 266. Thereby, the hydrogen supply control part 334 can control the transfer destination of hydrogen and the transfer amount to each transfer destination.
 本実施形態において、二酸化炭素供給制御部336は、トリジェネレーションシステム250における二酸化炭素の供給を制御する。例えば、二酸化炭素供給制御部336は、改質器260を稼働させるか否かを決定する。二酸化炭素供給制御部336は、(i)農業施設122における電力の需給状況、及び、(ii)農業施設122における水素の需給状況に基づいて、改質器260を稼働させるか否かを決定してよい。 In the present embodiment, the carbon dioxide supply control unit 336 controls the supply of carbon dioxide in the trigeneration system 250. For example, the carbon dioxide supply control unit 336 determines whether to operate the reformer 260. The carbon dioxide supply control unit 336 determines whether to operate the reformer 260 based on (i) the power supply / demand situation in the agricultural facility 122 and (ii) the hydrogen supply / demand situation in the agricultural facility 122. It's okay.
 例えば、二酸化炭素供給制御部336は、空調管理部322が出力した二酸化炭素要求を取得する。二酸化炭素供給制御部336は、電力需給管理部324から、農業施設122の電力需給情報を取得する。二酸化炭素供給制御部336は、水素需給管理部326から、農業施設122の水素需給情報を取得する。二酸化炭素供給制御部336は、(i)電力需給情報により示される電力の需給状況、及び、(ii)水素需給情報により示される水素の需給状況に基づいて、二酸化炭素要求に応じるか否かを決定する。 For example, the carbon dioxide supply control unit 336 acquires the carbon dioxide request output by the air conditioning management unit 322. The carbon dioxide supply control unit 336 acquires the power supply / demand information of the agricultural facility 122 from the power supply / demand management unit 324. The carbon dioxide supply control unit 336 acquires the hydrogen supply / demand information of the agricultural facility 122 from the hydrogen supply / demand management unit 326. The carbon dioxide supply control unit 336 determines whether to respond to the carbon dioxide request based on (i) the power supply / demand situation indicated by the power supply / demand information, and (ii) the hydrogen supply / demand situation indicated by the hydrogen supply / demand information. decide.
 一実施形態において、水素需給情報により示される水素供給の過剰具合が水素過剰条件を満足し、且つ、電力需給情報により示される電力供給の過剰具合が電力過剰条件を満足する場合、二酸化炭素供給制御部336は、二酸化炭素要求に応じないことを決定する。他の実施形態において、水素需給情報により示される水素供給の過剰具合が水素過剰条件を満足せず、且つ、電力需給情報により示される電力供給の過剰具合が電力過剰条件を満足する場合、二酸化炭素供給制御部336は、二酸化炭素要求に応じることを決定してよい。二酸化炭素要求に応じることが決定された場合、二酸化炭素供給制御部336は、改質器260を稼働させるための処理、及び、流量制御部272を制御するための処理の少なくとも一方を実行してよい。 In one embodiment, when the excess hydrogen supply condition indicated by the hydrogen supply / demand information satisfies the excess hydrogen condition and the excess power supply condition indicated by the power supply / demand information satisfies the excess power condition, the carbon dioxide supply control is performed. The unit 336 determines that the carbon dioxide request is not met. In another embodiment, when the excessive hydrogen supply condition indicated by the hydrogen supply and demand information does not satisfy the excessive hydrogen condition, and the excessive power supply condition indicated by the power supply and demand information satisfies the excessive power condition, carbon dioxide. Supply controller 336 may determine to respond to the carbon dioxide request. When it is determined to meet the carbon dioxide request, the carbon dioxide supply control unit 336 executes at least one of a process for operating the reformer 260 and a process for controlling the flow rate control unit 272. Good.
 二酸化炭素要求において、二酸化炭素の要求量が指定されている場合、二酸化炭素供給制御部336は、例えば、当該要求量の二酸化炭素を発生させた場合における水素供給の過剰具合及び電力供給の過剰具合を決定する。決定された水素供給の過剰具合が水素過剰条件を満足し、且つ、決定された電力供給の過剰具合が電力過剰条件を満足する場合、二酸化炭素供給制御部336は、二酸化炭素要求に応じないことを決定してよい。 When the required amount of carbon dioxide is specified in the carbon dioxide request, the carbon dioxide supply control unit 336, for example, when the required amount of carbon dioxide is generated, the excessive hydrogen supply and the excessive power supply. To decide. When the determined excess of hydrogen supply satisfies the excess hydrogen condition and the determined excess of power supply satisfies the excess power condition, the carbon dioxide supply control unit 336 does not respond to the carbon dioxide request. May be determined.
 この場合において、二酸化炭素供給制御部336は、水素及び電力の需給情報に基づいて、トリジェネレーションシステム250が供給することのできる二酸化炭素量を算出して、当該二酸化炭素量を空調管理部322に通知してよい。空調管理部322は、二酸化炭素の要求量を変えて、再度、二酸化炭素要求を出力してよい。なお、空調管理部322は、二酸化炭素の要求量が指定されておらず、トリジェネレーションシステム250が供給することのできる二酸化炭素量の範囲内で二酸化炭素の供給を要求する二酸化炭素要求を出力してもよい。 In this case, the carbon dioxide supply control unit 336 calculates the amount of carbon dioxide that can be supplied by the trigeneration system 250 based on the supply and demand information of hydrogen and electric power, and sends the amount of carbon dioxide to the air conditioning management unit 322. You may be notified. The air conditioning management unit 322 may output the carbon dioxide request again by changing the required amount of carbon dioxide. The air conditioning management unit 322 outputs a carbon dioxide request for requesting the supply of carbon dioxide within the range of the amount of carbon dioxide that can be supplied by the trigeneration system 250 because the required amount of carbon dioxide is not specified. May be.
 本実施形態において、二酸化炭素供給制御部336は、改質器260が発生させた二酸化炭素の供給経路及び供給量を制御する。例えば、二酸化炭素供給制御部336は、流量制御部272の動作を制御する。これにより、二酸化炭素供給制御部336は、二酸化炭素の移送先と、各移送先への移送量とを制御することができる。具体的には、二酸化炭素供給制御部336は、圃場210への二酸化炭素の供給量を制御する。 In this embodiment, the carbon dioxide supply control unit 336 controls the supply path and supply amount of carbon dioxide generated by the reformer 260. For example, the carbon dioxide supply control unit 336 controls the operation of the flow rate control unit 272. Thereby, the carbon dioxide supply control unit 336 can control the transfer destination of carbon dioxide and the transfer amount to each transfer destination. Specifically, the carbon dioxide supply control unit 336 controls the amount of carbon dioxide supplied to the farm field 210.
 本実施形態において、熱供給制御部338は、トリジェネレーションシステム250における熱の供給を制御する。例えば、熱供給制御部338は、改質器260及び燃料電池262の少なくとも一方を稼働させるか否かを決定する。熱供給制御部338は、蓄熱機器282に蓄えられている熱量に基づいて、改質器260及び燃料電池262の少なくとも一方を稼働させるか否かを決定してよい。熱供給制御部338は、(i)農業施設122における電力の需給状況、及び、(ii)農業施設122における水素の需給状況に基づいて、改質器260及び燃料電池262の少なくとも一方を稼働させるか否かを決定してよい。 In this embodiment, the heat supply control unit 338 controls the supply of heat in the trigeneration system 250. For example, the heat supply control unit 338 determines whether or not to operate at least one of the reformer 260 and the fuel cell 262. The heat supply controller 338 may determine whether to operate at least one of the reformer 260 and the fuel cell 262 based on the amount of heat stored in the heat storage device 282. The heat supply control unit 338 operates at least one of the reformer 260 and the fuel cell 262 based on (i) the power supply / demand situation in the agricultural facility 122 and (ii) the hydrogen supply / demand situation in the agricultural facility 122. Or not.
 例えば、熱供給制御部338は、空調管理部322が出力した熱要求を取得する。熱供給制御部338は、蓄熱機器282に蓄えられている熱量に基づいて、熱要求に応じるか否かを決定する。熱要求により要求される熱量が、蓄熱機器282に蓄えられている熱量以下である場合、改質器260及び燃料電池262を稼働させないことを決定してよい。その後、熱供給制御部338は、蓄熱機器282及び熱交換器284を稼働させて、圃場210に熱を供給するための処理を実行する。 For example, the heat supply control unit 338 acquires the heat request output from the air conditioning management unit 322. The heat supply control unit 338 determines whether or not to respond to the heat request based on the amount of heat stored in the heat storage device 282. When the amount of heat required by the heat request is equal to or less than the amount of heat stored in the heat storage device 282, it may be determined not to operate the reformer 260 and the fuel cell 262. Thereafter, the heat supply control unit 338 operates the heat storage device 282 and the heat exchanger 284 to execute processing for supplying heat to the farm field 210.
 一方、熱要求により要求される熱量が、蓄熱機器282に蓄えられている熱量を超える場合、熱供給制御部338は、電力需給管理部324から、農業施設122の電力需給情報を取得する。熱供給制御部338は、水素需給管理部326から、農業施設122の水素需給情報を取得する。また、熱供給制御部338は、(i)電力需給情報により示される電力の需給状況、及び、(ii)水素需給情報により示される水素の需給状況に基づいて、熱要求に応じるか否かを決定する。 On the other hand, when the amount of heat required by the heat request exceeds the amount of heat stored in the heat storage device 282, the heat supply control unit 338 acquires the power supply / demand information of the agricultural facility 122 from the power supply / demand management unit 324. The heat supply control unit 338 acquires the hydrogen supply / demand information of the agricultural facility 122 from the hydrogen supply / demand management unit 326. In addition, the heat supply control unit 338 determines whether or not to respond to the heat request based on (i) the power supply / demand situation indicated by the power supply / demand information, and (ii) the hydrogen supply / demand situation indicated by the hydrogen supply / demand information. decide.
 一実施形態において、水素需給情報により示される水素供給の過剰具合が水素過剰条件を満足し、且つ、電力需給情報により示される電力供給の過剰具合が電力過剰条件を満足する場合、熱供給制御部338は、熱要求に応じないことを決定する。他の実施形態において、水素需給情報により示される水素供給の過剰具合が水素過剰条件を満足せず、且つ、電力需給情報により示される電力供給の過剰具合が電力過剰条件を満足する場合、熱供給制御部338は、熱要求に応じることを決定してよい。熱供給制御部338は、水素需給情報及び電力需給情報に基づいて、改質器260及び燃料電池262の何れを稼働させるかを決定してよい。熱要求に応じることが決定された場合、熱供給制御部338は、改質器260及び燃料電池262の少なくとも一方を稼働させるための処理、及び、自動弁286を制御するための処理の少なくとも一方を実行してよい。 In one embodiment, when the hydrogen supply excess condition indicated by the hydrogen supply and demand information satisfies the hydrogen excess condition, and the power supply excess condition indicated by the power supply and demand information satisfies the power excess condition, the heat supply control unit 338 determines that the heat demand is not met. In another embodiment, when the hydrogen supply excess condition indicated by the hydrogen supply / demand information does not satisfy the hydrogen excess condition, and the power supply excess condition indicated by the power supply / demand information satisfies the power excess condition, the heat supply The control unit 338 may determine to respond to the heat request. The heat supply control unit 338 may determine which of the reformer 260 and the fuel cell 262 is to be operated based on the hydrogen supply / demand information and the power supply / demand information. When it is determined to meet the heat demand, the heat supply control unit 338 performs at least one of processing for operating at least one of the reformer 260 and the fuel cell 262 and processing for controlling the automatic valve 286. May be performed.
 熱要求において、熱の要求量が指定されている場合、熱供給制御部338は、例えば、当該要求量の熱を発生させた場合における水素供給の過剰具合及び電力供給の過剰具合を決定する。決定された水素供給の過剰具合が水素過剰条件を満足し、且つ、決定された電力供給の過剰具合が電力過剰条件を満足する場合、熱供給制御部338は、熱要求に応じないことを決定してよい。 When the required amount of heat is specified in the heat request, the heat supply control unit 338 determines, for example, the excessive hydrogen supply and the excessive power supply when the required amount of heat is generated. If the determined excess of hydrogen supply satisfies the excess hydrogen condition and the determined excess of power supply satisfies the excess power condition, the heat supply control unit 338 determines that the heat demand is not met. You can do it.
 この場合において、熱供給制御部338は、水素及び電力の需給情報に基づいて、トリジェネレーションシステム250が供給することのできる熱量を算出して、当該熱量を空調管理部322に通知してよい。空調管理部322は、熱の要求量を変えて、再度、熱要求を出力してよい。なお、空調管理部322は、熱の要求量が指定されておらず、トリジェネレーションシステム250が供給することのできる熱量の範囲内で熱の供給を要求する熱要求を出力してもよい。 In this case, the heat supply control unit 338 may calculate the amount of heat that can be supplied by the trigeneration system 250 based on the supply and demand information of hydrogen and electric power, and notify the air conditioning management unit 322 of the amount of heat. The air conditioning management unit 322 may output the heat request again by changing the required heat amount. Note that the air conditioning management unit 322 may output a heat request that requests the supply of heat within the range of the amount of heat that can be supplied by the trigeneration system 250 because the required amount of heat is not specified.
 本実施形態において、配車要求部342は、燃料電池車22及び電気自動車24の少なくとも一方の派遣を要求する配車要求を、管理サーバ130に送信する。上記の配車要求は、燃料電池車22又は電気自動車24の管理者に対する要求であってよい。配車要求部342は、例えば、水素需給情報により示される水素供給の過剰具合が水素過剰条件を満足し、且つ、電力需給情報により示される電力供給の過剰具合が電力過剰条件を満足する場合に、配車要求を送信してよい。配車要求は派遣要求の一例であってよい。 In the present embodiment, the vehicle allocation request unit 342 transmits a vehicle allocation request for requesting dispatch of at least one of the fuel cell vehicle 22 and the electric vehicle 24 to the management server 130. The above vehicle allocation request may be a request to the administrator of the fuel cell vehicle 22 or the electric vehicle 24. The vehicle allocation request unit 342, for example, when the hydrogen supply excess condition indicated by the hydrogen supply and demand information satisfies the hydrogen excess condition and the power supply excess condition indicated by the power supply and demand information satisfies the power excess condition, A dispatch request may be sent. The dispatch request may be an example of a dispatch request.
 一実施形態において、水素貯蔵設備264の水素残量が予め定められた閾値を超えている場合、配車要求部342は、燃料電池車22の派遣を要求する配車要求を、管理サーバ130に送信する。配車要求は、水素貯蔵設備264からの水素の放出量を示す情報を含んでよい。他の実施形態において、農業施設122における電力需要が予め定められた閾値を超えている場合、配車要求部342は、燃料電池車22又は電気自動車24の派遣を要求する配車要求を、管理サーバ130に送信する。配車要求は、農業施設122において不足する電力量を示す情報を含んでよい。 In one embodiment, when the hydrogen remaining amount of the hydrogen storage facility 264 exceeds a predetermined threshold, the vehicle allocation request unit 342 transmits a vehicle allocation request for requesting dispatch of the fuel cell vehicle 22 to the management server 130. . The allocation request may include information indicating the amount of hydrogen released from the hydrogen storage facility 264. In another embodiment, when the power demand at the agricultural facility 122 exceeds a predetermined threshold, the vehicle allocation request unit 342 sends a vehicle allocation request for requesting dispatch of the fuel cell vehicle 22 or the electric vehicle 24 to the management server 130. Send to. The dispatch request may include information indicating the amount of electric power that is insufficient in the agricultural facility 122.
 図4は、流量制御部272の内部構成の一例を概略的に示す。本実施形態において、流量制御部272は、例えば、配管410と、自動弁412と、流量調整弁414とを備える。流量制御部272は、配管420と、リリーフ弁422とを備えてもよい。 FIG. 4 schematically shows an example of the internal configuration of the flow control unit 272. In the present embodiment, the flow rate control unit 272 includes, for example, a pipe 410, an automatic valve 412, and a flow rate adjustment valve 414. The flow rate control unit 272 may include a pipe 420 and a relief valve 422.
 配管410及び配管420は、改質器260が発生させた二酸化炭素の少なくとも一部を、圃場210に移送する。自動弁412及び流量調整弁414は、配管410の一部に配され、圃場210に移送される二酸化炭素の量を調整する。自動弁412の動作は、コントローラ240により制御されてよい。流量調整弁414の開度は、手動で調整されてもよく、コントローラ240により制御されてもよい。 The pipe 410 and the pipe 420 transfer at least a part of the carbon dioxide generated by the reformer 260 to the field 210. The automatic valve 412 and the flow rate adjustment valve 414 are arranged in a part of the pipe 410 and adjust the amount of carbon dioxide transferred to the farm field 210. The operation of the automatic valve 412 may be controlled by the controller 240. The opening degree of the flow rate adjustment valve 414 may be manually adjusted or controlled by the controller 240.
 リリーフ弁422は、配管420の一部に配される。本実施形態において、配管420は、自動弁412が閉じている状態で改質器260が二酸化炭素を発生させると、配管420の圧力が上昇するように構成されている。配管420の圧力がリリーフ弁422の設定値を超えると、リリーフ弁422が開き、配管420の内部の二酸化炭素が大気中に放出される。 The relief valve 422 is arranged in a part of the pipe 420. In the present embodiment, the pipe 420 is configured such that when the reformer 260 generates carbon dioxide with the automatic valve 412 closed, the pressure of the pipe 420 increases. When the pressure of the pipe 420 exceeds the set value of the relief valve 422, the relief valve 422 is opened and carbon dioxide inside the pipe 420 is released into the atmosphere.
 図5は、エネルギ管理施設124のシステム構成の一例を概略的に示す。本実施形態において、エネルギ管理施設124は、例えば、1以上の発電設備520と、1以上の蓄電設備530と、配分電設備540と、1以上の水素製造設備550と、1以上の水素貯蔵設備552と、制御装置560とを備える。本実施形態において、発電設備520は、例えば、1以上の燃料電池522を有する。発電設備520は、1以上の太陽光発電装置524を有してもよい。 FIG. 5 schematically shows an example of the system configuration of the energy management facility 124. In the present embodiment, the energy management facility 124 includes, for example, one or more power generation facilities 520, one or more power storage facilities 530, a distribution power facility 540, one or more hydrogen production facilities 550, and one or more hydrogen storage facilities. 552 and a control device 560. In the present embodiment, the power generation facility 520 includes, for example, one or more fuel cells 522. The power generation facility 520 may include one or more solar power generation devices 524.
 本実施形態において、発電設備520は、電力を発生させる。本実施形態において、蓄電設備530は、電力を蓄積する。発電設備520及び蓄電設備530の動作は、制御装置560により制御されてよい。 In this embodiment, the power generation facility 520 generates electric power. In the present embodiment, the power storage facility 530 stores electric power. The operations of the power generation facility 520 and the power storage facility 530 may be controlled by the control device 560.
 本実施形態において、配分電設備540は、電力網12と、エネルギ管理施設124の内部の配線との間の電力の流通を制御する。配分電設備540は、エネルギ管理施設124の内部における電力の流通を制御してもよい。配分電設備540は、交流を直流に変換してもよく、直流を交流に変換してもよい。配分電設備540は、電気の電圧及び周波数の少なくとも一方を調整してもよい。配分電設備540の動作は、制御装置560により制御されてよい。 In this embodiment, the distribution power facility 540 controls the distribution of power between the power network 12 and the wiring inside the energy management facility 124. The distribution power facility 540 may control the distribution of power within the energy management facility 124. The distribution power facility 540 may convert alternating current into direct current, or may convert direct current into alternating current. The distribution power facility 540 may adjust at least one of the voltage and frequency of electricity. The operation of the distribution power facility 540 may be controlled by the control device 560.
 本実施形態において、水素製造設備550は、水素を発生させる。水素製造設備550は、電力を利用して水素を製造してよい。例えば、水素製造設備550は、電力網12、発電設備520及び蓄電設備530の少なくとも1つから供給された電力を利用して、水素を製造する。水素製造設備550の動作は、制御装置560により制御されてよい。 In this embodiment, the hydrogen production facility 550 generates hydrogen. The hydrogen production facility 550 may produce hydrogen using electric power. For example, the hydrogen production facility 550 uses the power supplied from at least one of the power network 12, the power generation facility 520, and the power storage facility 530 to produce hydrogen. The operation of the hydrogen production facility 550 may be controlled by the controller 560.
 水素製造設備550における水素の製造工程の詳細は特に限定されない。水素製造設備550は、例えば、電気化学的手法により水素を製造する。水素製造設備550は、化学的手法により水素を製造してもよく、生物学的手法により水素を製造してもよい。上述のとおり、水素は、エネルギ源の一例であってよい。 The details of the hydrogen production process in the hydrogen production facility 550 are not particularly limited. The hydrogen production facility 550 produces hydrogen by an electrochemical method, for example. The hydrogen production facility 550 may produce hydrogen by a chemical technique or may produce hydrogen by a biological technique. As described above, hydrogen may be an example of an energy source.
 本実施形態において、水素貯蔵設備552は、水素製造設備550が製造した水素を貯蔵する。例えば、水素貯蔵設備552は、水素製造設備550が製造した水素を水素貯蔵容器(図示されていない。)に貯蔵する。水素の貯蔵方法は、特に限定されない。水素は、比較的高圧で貯蔵されてもよく、比較的低圧で貯蔵されてもよい。水素は、気体状態で貯蔵されてもよく、液体状態で貯蔵されてもよく、水素吸蔵物質に吸収された状態で貯蔵されてよい。 In this embodiment, the hydrogen storage facility 552 stores the hydrogen produced by the hydrogen production facility 550. For example, the hydrogen storage facility 552 stores the hydrogen produced by the hydrogen production facility 550 in a hydrogen storage container (not shown). The method for storing hydrogen is not particularly limited. Hydrogen may be stored at a relatively high pressure or may be stored at a relatively low pressure. Hydrogen may be stored in a gaseous state, may be stored in a liquid state, or may be stored in a state absorbed by a hydrogen storage material.
 水素貯蔵設備264は、外部に水素を供給してよい。水素貯蔵設備264は、燃料電池車22に水素を供給してもよい。水素製造設備550の動作は、制御装置560により制御されてよい。 The hydrogen storage facility 264 may supply hydrogen to the outside. The hydrogen storage facility 264 may supply hydrogen to the fuel cell vehicle 22. The operation of the hydrogen production facility 550 may be controlled by the controller 560.
 本実施形態において、制御装置560は、発電設備520、蓄電設備530、配分電設備540、水素製造設備550及び水素貯蔵設備552の動作を制御する。制御装置560は、エネルギ管理施設124が所属するコミュニティにおけるエネルギ及びエネルギ源の需給を調整する。制御装置560は、管理サーバ130からの指示に基づいて、発電設備520、蓄電設備530、配分電設備540、水素製造設備550及び水素貯蔵設備552の少なくとも1つの動作を制御してよい。制御装置560は、技術的に矛盾しない範囲において、コントローラ240と同様の構成を有してよい。 In the present embodiment, the control device 560 controls operations of the power generation facility 520, the power storage facility 530, the distribution power facility 540, the hydrogen production facility 550, and the hydrogen storage facility 552. The control device 560 adjusts the supply and demand of energy and energy sources in the community to which the energy management facility 124 belongs. The control device 560 may control at least one operation of the power generation facility 520, the power storage facility 530, the distribution power facility 540, the hydrogen production facility 550, and the hydrogen storage facility 552 based on an instruction from the management server 130. The control device 560 may have a configuration similar to that of the controller 240 within a technically consistent range.
 図6は、エネルギ管理部132の内部構成の一例を概略的に示す。本実施形態において、エネルギ管理部132は、例えば、電力需給管理部612と、水素需給管理部614と、要求取得部622と、要求処理部624と、精算部632とを備える。 FIG. 6 schematically shows an example of the internal configuration of the energy management unit 132. In the present embodiment, the energy management unit 132 includes, for example, an electric power supply / demand management unit 612, a hydrogen supply / demand management unit 614, a request acquisition unit 622, a request processing unit 624, and a settlement unit 632.
 電力需給管理部612は、第1需給情報取得部、第2需給情報取得部及び送受電量管理部の一例であってよい。水素需給管理部614は、第1需給情報取得部及び第2需給情報取得部の一例であってよい。要求取得部622は、第1要求取得部の一例であってよい。要求処理部624は、エネルギ管理装置の一例であってよい。精算部632は、送受電量調整部の一例であってよい。 The power supply / demand management unit 612 may be an example of a first supply / demand information acquisition unit, a second supply / demand information acquisition unit, and a power transmission / reception amount management unit. The hydrogen supply and demand management unit 614 may be an example of a first supply and demand information acquisition unit and a second supply and demand information acquisition unit. The request acquisition unit 622 may be an example of a first request acquisition unit. The request processing unit 624 may be an example of an energy management device. The settlement unit 632 may be an example of a power transmission / reception amount adjustment unit.
 本実施形態において、電力需給管理部612は、管理サーバ130の管理対象となるコミュニティの電力需給を管理する。例えば、電力需給管理部612は、1以上の農業施設122、1以上のエネルギ管理施設124、及び、1以上の需給家施設126を含むコミュニティの電力需給を管理する。 In the present embodiment, the power supply and demand management unit 612 manages the power supply and demand of the community that is the management target of the management server 130. For example, the power supply and demand management unit 612 manages the power supply and demand of a community that includes one or more agricultural facilities 122, one or more energy management facilities 124, and one or more supply and demand facility 126.
 電力需給管理部612は、農業施設122のコントローラ240から、農業施設122における電力需給を示す情報を取得してよい。より具体的には、電力需給管理部612は、農業施設122のコントローラ240から、農業施設122のトリジェネレーションシステム250における電力需給を示す情報を取得してよい。同様にして、電力需給管理部612は、需給家施設126における電力需給を示す情報を取得してよい。 The power supply / demand management unit 612 may acquire information indicating the power supply / demand in the agricultural facility 122 from the controller 240 of the agricultural facility 122. More specifically, the power supply / demand management unit 612 may acquire information indicating the power supply / demand in the trigeneration system 250 of the agricultural facility 122 from the controller 240 of the agricultural facility 122. Similarly, the power supply and demand management unit 612 may acquire information indicating the power supply and demand in the supply and demand facility 126.
 電力需給管理部612は、エネルギ管理施設124の制御装置560から、エネルギ管理施設124における電力需給を示す情報を取得してよい。より具体的には、電力需給管理部612は、エネルギ管理施設124の制御装置560から、エネルギ管理施設124の水素製造設備550における電力需給を示す情報を取得してよい。 The power supply / demand management unit 612 may acquire information indicating the power supply / demand in the energy management facility 124 from the control device 560 of the energy management facility 124. More specifically, the power supply / demand management unit 612 may acquire information indicating the power supply / demand in the hydrogen production facility 550 of the energy management facility 124 from the control device 560 of the energy management facility 124.
 電力需給管理部612は、農業施設122と、電力網12との間における送電量及び受電量の少なくとも一方を示す情報を管理してよい。例えば、電力需給管理部612は、農業施設122のコントローラ240から、農業施設122のトリジェネレーションシステム250と、電力網12との間における送電量及び受電量の少なくとも一方を示す情報を管理してよい。同様にして、電力需給管理部612は、需給家施設126農業施設122と、電力網12との間における送電量及び受電量の少なくとも一方を示す情報を管理してよい。 The power supply and demand management unit 612 may manage information indicating at least one of the power transmission amount and the power reception amount between the agricultural facility 122 and the power network 12. For example, the power supply / demand management unit 612 may manage information indicating at least one of the power transmission amount and the power reception amount between the trigeneration system 250 of the agricultural facility 122 and the power network 12 from the controller 240 of the agricultural facility 122. Similarly, the power supply and demand management unit 612 may manage information indicating at least one of the power transmission amount and the power reception amount between the supply and demand facility 126 and the agricultural facility 122 and the power grid 12.
 電力需給管理部612は、エネルギ管理施設124と、電力網12との間における送電量及び受電量の少なくとも一方を示す情報を管理してよい。例えば、電力需給管理部612は、エネルギ管理施設124の制御装置560から、エネルギ管理施設124の水素製造設備550と、電力網12との間における送電量及び受電量の少なくとも一方を示す情報を管理してよい。 The power supply / demand management unit 612 may manage information indicating at least one of the power transmission amount and the power reception amount between the energy management facility 124 and the power network 12. For example, the power supply / demand management unit 612 manages information indicating at least one of the power transmission amount and the power reception amount between the hydrogen production facility 550 of the energy management facility 124 and the power grid 12 from the control device 560 of the energy management facility 124. It's okay.
 本実施形態において、水素需給管理部614は、農業施設122のコントローラ240から、農業施設122における水素需給を示す情報を取得してよい。より具体的には、水素需給管理部614は、農業施設122のコントローラ240から、農業施設122のトリジェネレーションシステム250における水素需給を示す情報を取得してよい。 In this embodiment, the hydrogen supply and demand management unit 614 may acquire information indicating the hydrogen supply and demand in the agricultural facility 122 from the controller 240 of the agricultural facility 122. More specifically, the hydrogen supply and demand management unit 614 may acquire information indicating the hydrogen supply and demand in the trigeneration system 250 of the agricultural facility 122 from the controller 240 of the agricultural facility 122.
 水素需給管理部614は、エネルギ管理施設124の制御装置560から、エネルギ管理施設124における水素需給を示す情報を取得してよい。より具体的には、水素需給管理部614は、エネルギ管理施設124の制御装置560から、エネルギ管理施設124の水素製造設備550における水素需給を示す情報を取得してよい。 The hydrogen supply and demand management unit 614 may acquire information indicating the hydrogen supply and demand at the energy management facility 124 from the control device 560 of the energy management facility 124. More specifically, the hydrogen supply and demand management unit 614 may acquire information indicating the hydrogen supply and demand in the hydrogen production facility 550 of the energy management facility 124 from the control device 560 of the energy management facility 124.
 本実施形態において、要求取得部622は、各種の要求を取得する。要求取得部622は、農業施設122、エネルギ管理施設124,需給家施設126、燃料電池車22、電気自動車24及び通信端末32の少なくとも1つからの要求を取得してよい。例えば、要求取得部622は、農業施設122のコントローラ240から、トリジェネレーションシステム250から電力網12への送電の許可を要求する許諾要求を取得する。許諾要求は、第1要求の一例であってよい。 In the present embodiment, the request acquisition unit 622 acquires various requests. The request acquisition unit 622 may acquire a request from at least one of the agricultural facility 122, the energy management facility 124, the supply and demand facility 126, the fuel cell vehicle 22, the electric vehicle 24, and the communication terminal 32. For example, the request acquisition unit 622 acquires a permission request for requesting permission for power transmission from the trigeneration system 250 to the power grid 12 from the controller 240 of the agricultural facility 122. The permission request may be an example of a first request.
 本実施形態において、要求処理部624は、コミュニティにおける電力需給を調整するための各種の要求を生成してよい。例えば、要求処理部624は、電力需給管理部612から、農業施設122のトリジェネレーションシステム250の電力需給を示す情報と、エネルギ管理施設124の水素製造設備550の電力需給を示す情報とを取得する。また、要求処理部624は、水素需給管理部614から、農業施設122のトリジェネレーションシステム250の水素需給を示す情報と、エネルギ管理施設124の水素製造設備550の水素需給を示す情報とを取得する。 In the present embodiment, the request processing unit 624 may generate various requests for adjusting power supply and demand in the community. For example, the request processing unit 624 acquires information indicating the power supply / demand of the trigeneration system 250 of the agricultural facility 122 and information indicating the power supply / demand of the hydrogen production facility 550 of the energy management facility 124 from the power supply / demand management unit 612. . Further, the request processing unit 624 acquires information indicating the hydrogen supply / demand of the trigeneration system 250 of the agricultural facility 122 and information indicating the hydrogen supply / demand of the hydrogen production facility 550 of the energy management facility 124 from the hydrogen supply / demand management unit 614. .
 要求処理部624は、上記の電力需給及び水素需給を示す情報に基づいて、(i)特定の期間において、エネルギ管理施設124の水素製造設備550が電力網から受電することのできる電力量の上限値、(ii)特定の期間において、エネルギ管理施設124の水素製造設備550が発生させる水素量の目標値、(iii)特定の期間において、農業施設122のトリジェネレーションシステム250が電力系統に送電することのできる電力量の上限値、及び、(iv)特定の期間において、農業施設122のトリジェネレーションシステム250が発生させる電力量の目標値の少なくとも1つを決定してよい。要求処理部624は、決定された上限値又は目標値を示す情報を、農業施設122及びエネルギ管理施設124の少なくとも一方に送信してよい。 Based on the information indicating the power supply and demand and the hydrogen supply and demand, the request processing unit 624 (i) the upper limit value of the amount of power that the hydrogen production facility 550 of the energy management facility 124 can receive from the power network in a specific period. (Ii) the target value of the amount of hydrogen generated by the hydrogen production facility 550 of the energy management facility 124 in a specific period; (iii) the trigeneration system 250 of the agricultural facility 122 transmits power to the power system in a specific period. And (iv) a target value of the amount of power generated by the trigeneration system 250 of the agricultural facility 122 in a specific period may be determined. The request processing unit 624 may transmit information indicating the determined upper limit value or target value to at least one of the agricultural facility 122 and the energy management facility 124.
 要求処理部624は、要求取得部622が取得した各種の要求を処理してもよい。例えば、要求取得部622が許諾要求を取得した場合、要求処理部624は、電力需給管理部612から、農業施設122のトリジェネレーションシステム250の電力需給を示す情報と、エネルギ管理施設124の水素製造設備550の電力需給を示す情報とを取得する。また、要求処理部624は、水素需給管理部614から、農業施設122のトリジェネレーションシステム250の水素需給を示す情報と、エネルギ管理施設124の水素製造設備550の水素需給を示す情報とを取得する。 The request processing unit 624 may process various requests acquired by the request acquisition unit 622. For example, when the request acquisition unit 622 acquires the permission request, the request processing unit 624 receives information indicating the power supply / demand of the trigeneration system 250 of the agricultural facility 122 and the hydrogen production of the energy management facility 124 from the power supply / demand management unit 612. Information indicating power supply and demand of the facility 550 is acquired. Further, the request processing unit 624 acquires information indicating the hydrogen supply / demand of the trigeneration system 250 of the agricultural facility 122 and information indicating the hydrogen supply / demand of the hydrogen production facility 550 of the energy management facility 124 from the hydrogen supply / demand management unit 614. .
 次に、要求処理部624は、農業施設122のトリジェネレーションシステム250の電力需給を示す情報と、エネルギ管理施設124の水素製造設備550の電力需給を示す情報とに基づいて、トリジェネレーションシステム250から電力網12への送電の許否を決定する。 Next, the request processing unit 624 reads from the trigeneration system 250 based on the information indicating the power supply / demand of the trigeneration system 250 of the agricultural facility 122 and the information indicating the power supply / demand of the hydrogen production facility 550 of the energy management facility 124. Whether to allow power transmission to the power grid 12 is determined.
 例えば、要求処理部624は、エネルギ管理施設124の水素製造設備550における水素供給の過剰具合が予め定められた第1条件を満足する場合に、送電を禁止することを決定する。第1条件は、水素の過剰具合が予め定められた程度を超えている場合であってよい。 For example, the request processing unit 624 determines to prohibit power transmission when the excess hydrogen supply in the hydrogen production facility 550 of the energy management facility 124 satisfies a predetermined first condition. The first condition may be a case where the excess amount of hydrogen exceeds a predetermined degree.
 本実施形態において、精算部632は、1以上の農業施設122、1以上のエネルギ管理施設124及び1以上の需給家施設126のそれぞれについて、単位期間ごとの電力需給の状況を示すレポートを生成する。単位期間の長さは、1日、1週間、1ヵ月などが例示される。 In the present embodiment, the settlement unit 632 generates a report indicating the power supply / demand situation for each unit period for each of the one or more agricultural facilities 122, the one or more energy management facilities 124, and the one or more supply and demand facility 126. . Examples of the length of the unit period include one day, one week, and one month.
 要求処理部624が、農業施設122からの許諾要求に対して、送電を許可することを決定した場合、精算部632は、当該許諾要求を送信した農業施設122が電力網12に供給した電力量を、エネルギ管理施設124が水素を製造するために利用した電力量と読み替えるための処理を実行してよい。一実施形態において、要求処理部624は、エネルギ管理施設124の水素製造設備550の電力網12からの受電量から、当該許可に係る農業施設122のトリジェネレーションシステム250から電力網12への送電量を減算する。他の実施形態において、要求処理部624は、当該許可に係る農業施設122のトリジェネレーションシステム250から電力網12への送電量を、エネルギ管理施設124の水素製造設備550から電力網への送電量に加算する。 When the request processing unit 624 determines to permit power transmission in response to the permission request from the agricultural facility 122, the settlement unit 632 determines the amount of power supplied to the power grid 12 by the agricultural facility 122 that transmitted the permission request. The energy management facility 124 may execute a process for replacing the amount of power used to produce hydrogen. In one embodiment, the request processing unit 624 subtracts the amount of power transmitted from the trigeneration system 250 of the agricultural facility 122 according to the permission from the amount of power received from the power network 12 of the hydrogen production facility 550 of the energy management facility 124. To do. In another embodiment, the request processing unit 624 adds the transmission amount from the trigeneration system 250 of the agricultural facility 122 according to the permission to the power grid 12 to the transmission amount from the hydrogen production facility 550 of the energy management facility 124 to the power grid. To do.
 図7は、精算部632における情報処理の一例を概略的に示す。図7において、精算部632は、農業施設122が電力網12に売電した電力量を、エネルギ管理施設124が電力網12から買電した電力量から差し引く。これにより、農業施設122が電力網12に供給した電力量を、エネルギ管理施設124が水素を製造するために利用した電力量を読み替えることができる。 FIG. 7 schematically shows an example of information processing in the settlement unit 632. In FIG. 7, the settlement unit 632 subtracts the amount of power sold by the agricultural facility 122 to the power network 12 from the amount of power purchased by the energy management facility 124 from the power network 12. As a result, the amount of power supplied from the agricultural facility 122 to the power grid 12 can be read as the amount of power used by the energy management facility 124 to produce hydrogen.
 図8は、配車管理部134の内部構成の一例を概略的に示す。本実施形態において、配車管理部134は、例えば、車両管理部822と、用途変更部824と、配車要求取得部832と、配車部834とを備える。 FIG. 8 schematically shows an example of the internal configuration of the dispatch management unit 134. In the present embodiment, the vehicle allocation management unit 134 includes, for example, a vehicle management unit 822, an application change unit 824, a vehicle allocation request acquisition unit 832, and a vehicle allocation unit 834.
 車両管理部822は、移動体管理部の一例であってよい。配車要求取得部832は、第2要求取得部の一例であってよい。配車部834は、第2決定部の一例であってよい。 The vehicle management unit 822 may be an example of a moving body management unit. The vehicle allocation request acquisition unit 832 may be an example of a second request acquisition unit. The vehicle allocation unit 834 may be an example of a second determination unit.
 本実施形態において、車両管理部822は、燃料電池車22及び電気自動車24の少なくとも一方を管理する。具体的には、車両管理部822は、1以上の燃料電池車22及び1以上の電気自動車24の少なくとも1つの状態を示す情報を管理する。燃料電池車22の状態を示す情報は、燃料電池車22の水素残量を示す情報を含んでよい。電気自動車24の状態を示す情報は、電気自動車24の電池残量を示す情報を含んでよい。 In this embodiment, the vehicle management unit 822 manages at least one of the fuel cell vehicle 22 and the electric vehicle 24. Specifically, the vehicle management unit 822 manages information indicating at least one state of one or more fuel cell vehicles 22 and one or more electric vehicles 24. The information indicating the state of the fuel cell vehicle 22 may include information indicating the remaining amount of hydrogen in the fuel cell vehicle 22. The information indicating the state of the electric vehicle 24 may include information indicating the remaining battery level of the electric vehicle 24.
 燃料電池車22又は電気自動車24の状態の他のとしては、車両の位置、車両の用途、車両の種別、車両の利用状況などが例示される。車両の用途としては、レンタカーサービスの利用者に貸し出されるという用途、電力供給機器として利用されるという用途、水素運搬機器として利用されるという用途などが例示される。車両の種別としては、燃料電池車、電気自動車、可搬式の水素貯蔵容器を運搬するエンジン車、可搬式の蓄電装置を運搬するエンジン車などが例示される。 As other states of the fuel cell vehicle 22 or the electric vehicle 24, the position of the vehicle, the use of the vehicle, the type of the vehicle, the use status of the vehicle, etc. are exemplified. Examples of the use of the vehicle include a use that is lent to a user of a rental car service, a use that is used as a power supply device, a use that is used as a hydrogen transport device, and the like. Examples of types of vehicles include fuel cell vehicles, electric vehicles, engine vehicles that carry portable hydrogen storage containers, and engine vehicles that carry portable power storage devices.
 車両の利用状況としては、車両のステータス、車両のステータスが次に利用可能になる予定時刻、当該予定時刻における車両の位置などが例示される。ステータスとしては、利用可能、利用中、整備中などの状態が例示される。 Examples of the usage status of the vehicle include the status of the vehicle, the scheduled time when the status of the vehicle is next available, and the position of the vehicle at the scheduled time. Examples of the status include states such as being available, being used, and being maintained.
 用途変更部824は、1以上の燃料電池車22及び1以上の電気自動車24の少なくとも1つについて、当該車両の用途を変更する。用途変更部824は、コミュニティにおける電力需給の状況及び水素需給の状況の少なくとも一方に基づいて、車両の用途を変更してよい。例えば、用途変更部824は、コミュニティにおける電力需給の状況及び水素需給の状況の少なくとも一方に基づいて、各用途に割り当てる車両の台数を決定する。用途変更部824は、上記の決定結果に基づいて、各車両の用途を変更してよい。 The usage changing unit 824 changes the usage of the vehicle for at least one of the one or more fuel cell vehicles 22 and the one or more electric vehicles 24. The usage changing unit 824 may change the usage of the vehicle based on at least one of the power supply / demand situation and the hydrogen supply / demand situation in the community. For example, the usage changing unit 824 determines the number of vehicles to be allocated to each usage based on at least one of the power supply / demand situation and the hydrogen supply / demand situation in the community. The usage changing unit 824 may change the usage of each vehicle based on the determination result.
 例えば、用途変更部824は、観光シーズンには、他の時期と比較して、レンタカーサービスの利用者に貸し出されるという用途に割り当てられる車両の台数を増加させる。一方、農作業の収穫シーズンには、他の時期と比較して、水素運搬機器として利用されるという用途に割り当てられる車両の台数を増加させる。 For example, the usage changing unit 824 increases the number of vehicles allocated to the usage of being rented to the user of the rental car service in the tourist season as compared with other periods. On the other hand, in the harvest season of farm work, the number of vehicles allocated for use as a hydrogen carrying device is increased compared to other periods.
 本実施形態において、配車要求取得部832は、エネルギ管理システム100の各施設からの配車要求を取得する。例えば、配車要求取得部832は、農業施設122からの配車要求を取得する。配車要求は、第2要求の一例であってよい。 In this embodiment, the vehicle allocation request acquisition unit 832 acquires a vehicle allocation request from each facility of the energy management system 100. For example, the dispatch request acquisition unit 832 acquires a dispatch request from the agricultural facility 122. The dispatch request may be an example of a second request.
 本実施形態において、配車部834は、配車管理部134が管理する車両の利用を管理する。例えば、配車要求取得部832が農業施設122からの配車要求を取得した場合、配車部834は、配車管理部134が管理する1以上の車両のうち、農業施設122に移動させる車両を決定する。配車部834は、(i)農業施設122又は農業施設122のトリジェネレーションシステム250における電力需給及び水素需給の状況、並びに、(ii)配車管理部134が管理する1以上の車両のそれぞれの状態に基づいて、農業施設122に移動させる車両を決定する。 In this embodiment, the vehicle allocation unit 834 manages the use of the vehicle managed by the vehicle allocation management unit 134. For example, when the vehicle allocation request acquisition unit 832 acquires a vehicle allocation request from the agricultural facility 122, the vehicle allocation unit 834 determines a vehicle to be moved to the agricultural facility 122 among one or more vehicles managed by the vehicle allocation management unit 134. The dispatching unit 834 is in the state of (i) the state of power supply and demand and hydrogen supply and demand in the agricultural facility 122 or the trigeneration system 250 of the farming facility 122, and (ii) the state of one or more vehicles managed by the dispatching management unit 134. Based on this, the vehicle to be moved to the agricultural facility 122 is determined.
 一実施形態において、農業施設122のトリジェネレーションシステム250における水素供給の過剰具合が第2条件を満足する場合、配車部834は、水素残量が第3条件を満足する車両を、農業施設122に移動させる車両として決定する。第2条件は、水素供給の過剰具合が予め定められた程度を超えているという条件であってよい。第3条件は、水素残量が予め定められた値よりも小さいという条件であってよい。第3条件は、水素残量が、農業施設122に到達するのに十分な量であり、且つ、予め定められた値よりも小さいという条件であってよい。 In one embodiment, when the excess hydrogen supply in the trigeneration system 250 of the agricultural facility 122 satisfies the second condition, the dispatch unit 834 sends a vehicle whose remaining hydrogen amount satisfies the third condition to the agricultural facility 122. It is determined as a vehicle to be moved. The second condition may be a condition that an excessive degree of hydrogen supply exceeds a predetermined level. The third condition may be a condition that the remaining amount of hydrogen is smaller than a predetermined value. The third condition may be a condition that the remaining amount of hydrogen is a sufficient amount to reach the agricultural facility 122 and is smaller than a predetermined value.
 これにより、農業施設122の水素貯蔵設備264に貯蔵された水素を十分に受け取ることのできる車両が、農業施設122に派遣される。その結果、農業施設122における水素の過剰具合が緩和される。 Thus, a vehicle that can sufficiently receive the hydrogen stored in the hydrogen storage facility 264 of the agricultural facility 122 is dispatched to the agricultural facility 122. As a result, the excess of hydrogen in the agricultural facility 122 is alleviated.
 他の実施形態において、農業施設122のトリジェネレーションシステム250における水素供給の過剰具合が第2条件を満足する場合、配車部834は、電池残量が第4条件を満足する車両を、農業施設122に移動させる車両として決定する。第2条件は、水素供給の過剰具合が予め定められた程度を超えているという条件であってよい。第4条件は、電池残量が予め定められた値よりも小さいという条件であってよい。第4条件は、電池残量が、農業施設122に到達するのに十分な量であり、且つ、予め定められた値よりも小さいという条件であってよい。 In another embodiment, when the excess hydrogen supply in the trigeneration system 250 of the agricultural facility 122 satisfies the second condition, the vehicle allocation unit 834 determines that the vehicle remaining in the battery satisfies the fourth condition as the agricultural facility 122. The vehicle to be moved to is determined. The second condition may be a condition that an excessive degree of hydrogen supply exceeds a predetermined level. The fourth condition may be a condition that the remaining battery level is smaller than a predetermined value. The fourth condition may be a condition that the remaining battery level is sufficient to reach the agricultural facility 122 and is smaller than a predetermined value.
 これにより、農業施設122の燃料電池262が発電した電力を十分に受け取ることのできる車両が、農業施設122に派遣される。その結果、農業施設122における水素の過剰具合が緩和される。 Thereby, a vehicle that can sufficiently receive the electric power generated by the fuel cell 262 of the agricultural facility 122 is dispatched to the agricultural facility 122. As a result, the excess of hydrogen in the agricultural facility 122 is alleviated.
 図9は、データテーブル900の一例を概略的に示す。データテーブル900は、車両管理部822により管理されるデータベースのデータ構造の一例であってよい。 FIG. 9 schematically shows an example of the data table 900. The data table 900 may be an example of a data structure of a database managed by the vehicle management unit 822.
 本実施形態において、データテーブル900は、(i)車両の識別情報912と、(ii)車両の現在位置を示す情報914、車両の用途を示す情報916、車両の種別を示す情報918、水素の残量を示す情報920、車両のステータスを示す情報922及び車両のステータスが次に利用可能になる予定時刻を示す情報924の少なくとも1つとを対応付けて格納する。 In this embodiment, the data table 900 includes (i) vehicle identification information 912, (ii) information 914 indicating the current position of the vehicle, information 916 indicating the use of the vehicle, information 918 indicating the type of the vehicle, hydrogen At least one of information 920 indicating the remaining amount, information 922 indicating the status of the vehicle, and information 924 indicating the scheduled time when the status of the vehicle becomes available next is stored in association with each other.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。また、技術的に矛盾しない範囲において、特定の実施形態について説明した事項を、他の実施形態に適用することができる。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. In addition, the matters described in the specific embodiment can be applied to other embodiments within a technically consistent range. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
 12 電力網、14 通信ネットワーク、22 燃料電池車、24 電気自動車、32 通信端末、100 エネルギ管理システム、122 農業施設、124 エネルギ管理施設、126 需給家施設、130 管理サーバ、132 エネルギ管理部、134 配車管理部、210 圃場、212 温度センサ、214 二酸化炭素センサ、220 電力負荷、230 配分電設備、240 コントローラ、250 トリジェネレーションシステム、260 改質器、262 燃料電池、263 配管、264 水素貯蔵設備、265 配管、266 自動弁、272 流量制御部、274 配管、282 蓄熱機器、284 熱交換器、286 自動弁、322 空調管理部、324 電力需給管理部、326 水素需給管理部、330 システム制御部、332 電力供給制御部、334 水素供給制御部、336 二酸化炭素供給制御部、338 熱供給制御部、342 配車要求部、410 配管、412 自動弁、414 流量調整弁、420 配管、422 リリーフ弁、520 発電設備、522 燃料電池、524 太陽光発電装置、530 蓄電設備、540 配分電設備、550 水素製造設備、552 水素貯蔵設備、560 制御装置、612 電力需給管理部、614 水素需給管理部、622 要求取得部、624 要求処理部、632 精算部、822 車両管理部、824 用途変更部、832 配車要求取得部、834 配車部、900 データテーブル、912 識別情報、914 情報、916 情報、918 情報、920 情報、922 情報、924 情報 12 power network, 14 communication network, 22 fuel cell vehicle, 24 electric vehicle, 32 communication terminal, 100 energy management system, 122 farming facility, 124 energy management facility, 126 consumer facility, 130 management server, 132 energy management unit, 134 dispatch Management unit, 210 field, 212 temperature sensor, 214 carbon dioxide sensor, 220 power load, 230 distribution power facility, 240 controller, 250 trigeneration system, 260 reformer, 262 fuel cell, 263 piping, 264 hydrogen storage facility, 265 Piping, 266 Automatic valve, 272 Flow control unit, 274 Piping, 282 Heat storage device, 284 Heat exchanger, 286 Automatic valve, 322 Air conditioning management unit, 324 Electricity supply / demand management unit, 326 Hydrogen supply / demand management unit, 33 System control unit, 332, power supply control unit, 334, hydrogen supply control unit, 336, carbon dioxide supply control unit, 338, heat supply control unit, 342, vehicle dispatch request unit, 410 pipe, 412 automatic valve, 414 flow control valve, 420 pipe, 422 Relief valve, 520 power generation facility, 522 fuel cell, 524 solar power generation device, 530 power storage facility, 540 distribution power facility, 550 hydrogen production facility, 552 hydrogen storage facility, 560 control device, 612 power supply / demand management department, 614 hydrogen supply / demand management Part, 622 request acquisition part, 624 request processing part, 632 settlement part, 822 vehicle management part, 824 use change part, 832 dispatch request acquisition part, 834 dispatch part, 900 data table, 912 identification information, 914 information, 916 information, 918 information, 920 information, 22 information, 924 information

Claims (15)

  1.  電力を利用して水素及び炭素を含む原料ガスを分解し、水素及び二酸化炭素を発生させる改質部と、
     水素を貯蔵する水素貯蔵部と、
     前記改質部が発生させた水素及び前記水素貯蔵部に貯蔵された水素の少なくとも一方を利用して電力を発生させる発電部と、
     前記改質部が発生させた水素を前記発電部に移送する第1配管と、
     前記改質部が発生させた水素を前記水素貯蔵部に移送する第2配管と、
     前記第1配管及び前記第2配管の少なくとも一方における水素の移送を制限する移送制限部と、
     を備える、エネルギ発生装置。
    A reforming section that decomposes a raw material gas containing hydrogen and carbon using electric power to generate hydrogen and carbon dioxide;
    A hydrogen storage unit for storing hydrogen;
    A power generation unit that generates electric power using at least one of hydrogen generated by the reforming unit and hydrogen stored in the hydrogen storage unit;
    A first pipe for transferring the hydrogen generated by the reforming unit to the power generation unit;
    A second pipe for transferring the hydrogen generated by the reforming unit to the hydrogen storage unit;
    A transfer restriction unit for restricting transfer of hydrogen in at least one of the first pipe and the second pipe;
    An energy generator.
  2.  二酸化炭素の供給を要求する供給要求を取得する供給要求取得部と、
     前記エネルギ発生装置又は前記エネルギ発生装置と送受電できる電力網における電力の需給状況を示す電力需給情報を取得する電力需給取得部と、
     前記エネルギ発生装置における水素の需給状況を示す水素需給情報を取得する水素需給取得部と、
     (i)前記電力需給情報により示される電力の需給状況、及び、(ii)前記水素需給情報により示される水素の需給状況に基づいて、前記供給要求に応じるか否かを決定する応答決定部と、
     をさらに備える、請求項1に記載のエネルギ発生装置。
    A supply request acquisition unit that acquires a supply request for supplying carbon dioxide;
    A power supply and demand acquisition unit that acquires power supply and demand information indicating a power supply and demand situation in the energy generation device or a power network that can transmit and receive power with the energy generation device;
    A hydrogen supply and demand acquisition unit for acquiring hydrogen supply and demand information indicating a hydrogen supply and demand situation in the energy generation device;
    (I) a power supply / demand situation indicated by the power supply / demand information; and (ii) a response determination unit for determining whether to respond to the supply request based on the hydrogen supply / demand situation indicated by the hydrogen supply / demand information; ,
    The energy generation device according to claim 1, further comprising:
  3.  前記応答決定部は、(i)前記電力需給情報により示される電力の需給状況、(ii)前記水素需給情報により示される水素の需給状況、及び、(iii)前記供給要求に応じることにより前記改質部が発生させる水素の量に基づいて、前記供給要求に応じるか否かを決定する、
     請求項2に記載のエネルギ発生装置。
    The response determination unit is configured to respond to the supply request by (i) power supply / demand status indicated by the power supply / demand information, (ii) hydrogen supply / demand status indicated by the hydrogen supply / demand information, and (iii) the supply request. Based on the amount of hydrogen generated by the mass part, to determine whether to meet the supply request,
    The energy generation device according to claim 2.
  4.  前記応答決定部は、前記水素需給情報により示される水素供給の過剰具合が予め定められた水素過剰条件を満足し、且つ、前記電力需給情報により示される電力供給の過剰具合が予め定められた電力過剰条件を満足する場合に、前記供給要求に応じないことを決定する、
     請求項2又は請求項3に記載のエネルギ発生装置。
    The response determination unit is configured to satisfy a hydrogen excess condition in which a hydrogen supply excess condition indicated by the hydrogen supply and demand information satisfies a predetermined condition, and a power supply in which the power supply excess condition indicated by the power supply and demand information is determined in advance. Determining that the supply requirement is not met if the excess condition is satisfied;
    The energy generator of Claim 2 or Claim 3.
  5.  前記発電部を稼働させるか否かを決定する発電制御部をさらに備え、
     前記水素需給情報により示される水素供給の過剰具合が前記水素過剰条件を満足せず、且つ、前記電力需給情報により示される電力供給の過剰具合が前記電力過剰条件を満足する場合、
     前記応答決定部は、前記供給要求に応じることを決定し、
     前記発電制御部は、前記発電部を稼働させないことを決定する、
     請求項4に記載のエネルギ発生装置。
    A power generation control unit for determining whether to operate the power generation unit;
    When the hydrogen supply excess condition indicated by the hydrogen supply and demand information does not satisfy the hydrogen excess condition, and the power supply excess condition indicated by the power supply and demand information satisfies the power excess condition,
    The response determination unit determines to respond to the supply request;
    The power generation control unit determines not to operate the power generation unit;
    The energy generation device according to claim 4.
  6.  前記水素需給情報により示される水素供給の過剰具合が前記水素過剰条件を満足し、且つ、前記電力需給情報により示される電力供給の過剰具合が前記電力過剰条件を満足する場合に、水素貯蔵容器又は蓄電池を搭載した移動体を派遣するサービスの提供者に対して、前記移動体の派遣を要求する派遣要求を送信する派遣要求送信部をさらに備える、
     請求項4又は請求項5に記載のエネルギ発生装置。
    A hydrogen storage container or a hydrogen storage container when the excess hydrogen supply condition indicated by the hydrogen supply / demand information satisfies the excess hydrogen condition and the excess power supply condition indicated by the power supply / demand information satisfies the excess power condition; A dispatch request transmitting unit that transmits a dispatch request for requesting dispatch of the mobile body to a service provider that dispatches a mobile body equipped with a storage battery;
    The energy generation device according to claim 4 or 5.
  7.  前記改質部が発生させた二酸化炭素の少なくとも一部を、植物又は農産物が栽培される圃場に移送するための配管の一部に配され、前記圃場に移送される二酸化炭素の流量を調整する流量制御部をさらに備える、
     請求項1から請求項6までの何れか一項に記載のエネルギ発生装置。
    At least part of the carbon dioxide generated by the reforming unit is arranged in a part of a pipe for transferring to a field where plants or agricultural products are grown, and the flow rate of carbon dioxide transferred to the field is adjusted. A flow control unit;
    The energy generating device according to any one of claims 1 to 6.
  8.  前記流量制御部は、前記改質部が発生させた二酸化炭素の少なくとも一部を大気中に放出するための配管を有する、
     請求項7に記載のエネルギ発生装置。
    The flow rate control unit has a pipe for releasing at least a part of carbon dioxide generated by the reforming unit into the atmosphere.
    The energy generating device according to claim 7.
  9.  前記改質部は、電力を利用して前記原料ガスを分解し、水素、二酸化炭素及び熱を発生させ、
     前記発電部は、前記改質部が発生させた水素及び前記水素貯蔵部に貯蔵された水素の少なくとも一方を利用して電力及び熱を発生させる、
     請求項1から請求項8までの何れか一項に記載のエネルギ発生装置。
    The reforming unit decomposes the raw material gas using electric power to generate hydrogen, carbon dioxide and heat,
    The power generation unit generates electric power and heat using at least one of hydrogen generated by the reforming unit and hydrogen stored in the hydrogen storage unit.
    The energy generation device according to any one of claims 1 to 8.
  10.  前記改質部及び前記発電部の少なくとも一方が発生させた熱を蓄積する蓄熱部をさらに備える、
     請求項9に記載のエネルギ発生装置。
    A heat storage unit for storing heat generated by at least one of the reforming unit and the power generation unit;
    The energy generation device according to claim 9.
  11.  エネルギ発生装置を制御するための制御方法であって、
     前記エネルギ発生装置は、
     電力を利用して水素及び炭素を含む原料ガスを分解し、水素及び二酸化炭素を発生させる改質部と、
     水素を貯蔵する水素貯蔵部と、
     前記改質部が発生させた水素及び前記水素貯蔵部に貯蔵された水素の少なくとも一方を利用して電力を発生させる発電部と、
     を備え、
     前記制御方法は、
     二酸化炭素の供給を要求する供給要求を取得する供給要求取得段階と、
     前記エネルギ発生装置又は前記エネルギ発生装置と送受電できる電力網における電力の需給状況を示す電力需給情報を取得する電力需給取得段階と、
     前記エネルギ発生装置における水素の需給状況を示す水素需給情報を取得する水素需給取得段階と、
     (i)前記電力需給情報により示される電力の需給状況、及び、(ii)前記水素需給情報により示される水素の需給状況に基づいて、前記供給要求に応じるか否かを決定する応答決定段階と、
     を有する、
     制御方法。
    A control method for controlling an energy generating device, comprising:
    The energy generating device includes:
    A reforming section that decomposes a raw material gas containing hydrogen and carbon using electric power to generate hydrogen and carbon dioxide;
    A hydrogen storage unit for storing hydrogen;
    A power generation unit that generates electric power using at least one of hydrogen generated by the reforming unit and hydrogen stored in the hydrogen storage unit;
    With
    The control method is:
    A supply request acquisition stage for acquiring a supply request for supplying carbon dioxide;
    A power supply / demand acquisition stage for acquiring power supply / demand information indicating a power supply / demand situation in the energy generator or a power network capable of transmitting and receiving power with the energy generator;
    A hydrogen supply and demand acquisition stage for acquiring hydrogen supply and demand information indicating a hydrogen supply and demand situation in the energy generator;
    (I) a power supply / demand situation indicated by the power supply / demand information, and (ii) a response determination stage for determining whether to respond to the supply request based on the hydrogen supply / demand situation indicated by the hydrogen supply / demand information; ,
    Having
    Control method.
  12.  前記応答決定段階は、前記水素需給情報により示される水素供給の過剰具合が予め定められた水素過剰条件を満足し、且つ、前記電力需給情報により示される電力供給の過剰具合が予め定められた電力過剰条件を満足する場合に、前記供給要求に応じないことを決定する段階を有する、
     請求項11に記載の制御方法。
    In the response determination step, the excess hydrogen supply condition indicated by the hydrogen supply and demand information satisfies a predetermined hydrogen excess condition, and the excess power supply condition indicated by the power supply and demand information is predetermined power. Determining that the supply requirement is not met if an excess condition is satisfied;
    The control method according to claim 11.
  13.  前記水素需給情報により示される水素供給の過剰具合が前記水素過剰条件を満足せず、且つ、前記電力需給情報により示される電力供給の過剰具合が前記電力過剰条件を満足する場合に、前記供給要求に応じることを決定し、前記発電部を稼働させないことを決定する段階をさらに有する、
     請求項12に記載の制御方法。
    The supply request when the excessive hydrogen supply condition indicated by the hydrogen supply and demand information does not satisfy the excessive hydrogen condition and the excessive power supply condition indicated by the electric power supply and demand information satisfies the excessive power condition. And further comprising the step of deciding not to operate the power generation unit,
    The control method according to claim 12.
  14.  前記水素需給情報により示される水素供給の過剰具合が前記水素過剰条件を満足し、且つ、前記電力需給情報により示される電力供給の過剰具合が前記電力過剰条件を満足する場合に、水素貯蔵容器又は蓄電池を搭載した移動体を派遣するサービスの提供者に対して、前記移動体の派遣を要求する派遣要求を送信する派遣要求送信段階をさらに有する、
     請求項13に記載の制御方法。
    A hydrogen storage container or a hydrogen storage container when the excess hydrogen supply condition indicated by the hydrogen supply / demand information satisfies the excess hydrogen condition and the excess power supply condition indicated by the power supply / demand information satisfies the excess power condition; A dispatch request sending step for sending a dispatch request for requesting dispatch of the mobile body to a service provider dispatching a mobile body equipped with a storage battery;
    The control method according to claim 13.
  15.  コンピュータに、請求項11から請求項14までの何れか一項に記載の制御方法を実行させるためのプログラム。 A program for causing a computer to execute the control method according to any one of claims 11 to 14.
PCT/JP2018/013983 2018-03-30 2018-03-30 Energy generation device, control method, and program WO2019187154A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/013983 WO2019187154A1 (en) 2018-03-30 2018-03-30 Energy generation device, control method, and program
JP2020508918A JP6941728B2 (en) 2018-03-30 2018-03-30 Energy generator, control method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013983 WO2019187154A1 (en) 2018-03-30 2018-03-30 Energy generation device, control method, and program

Publications (1)

Publication Number Publication Date
WO2019187154A1 true WO2019187154A1 (en) 2019-10-03

Family

ID=68058124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013983 WO2019187154A1 (en) 2018-03-30 2018-03-30 Energy generation device, control method, and program

Country Status (2)

Country Link
JP (1) JP6941728B2 (en)
WO (1) WO2019187154A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135783A (en) * 1991-07-04 1993-06-01 Shimizu Corp Energy feeding/utilizing facilities
JPH06333589A (en) * 1993-05-26 1994-12-02 Maeda Corp Method for utilizing exhaust gas of fuel cell
JP2002343392A (en) * 2001-05-16 2002-11-29 Sekisui Chem Co Ltd Fuel cell system
JP2005347181A (en) * 2004-06-04 2005-12-15 Idemitsu Kosan Co Ltd Fuel cell system and fuel cell system control method wherein hydrogen needed by fuel cell is promptly supplied without excess or insuficiency
JP2009179553A (en) * 2009-04-24 2009-08-13 Toshiba Corp Multiple fuel feeding system
JP2016036328A (en) * 2014-08-11 2016-03-22 カシオ計算機株式会社 Carbon dioxide supply system, carbon dioxide supply method and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135783A (en) * 1991-07-04 1993-06-01 Shimizu Corp Energy feeding/utilizing facilities
JPH06333589A (en) * 1993-05-26 1994-12-02 Maeda Corp Method for utilizing exhaust gas of fuel cell
JP2002343392A (en) * 2001-05-16 2002-11-29 Sekisui Chem Co Ltd Fuel cell system
JP2005347181A (en) * 2004-06-04 2005-12-15 Idemitsu Kosan Co Ltd Fuel cell system and fuel cell system control method wherein hydrogen needed by fuel cell is promptly supplied without excess or insuficiency
JP2009179553A (en) * 2009-04-24 2009-08-13 Toshiba Corp Multiple fuel feeding system
JP2016036328A (en) * 2014-08-11 2016-03-22 カシオ計算機株式会社 Carbon dioxide supply system, carbon dioxide supply method and program

Also Published As

Publication number Publication date
JP6941728B2 (en) 2021-09-29
JPWO2019187154A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
WO2019187153A1 (en) Energy management device, hydrogen utilization system, program, and energy management method
Kaur et al. Coordinated power control of electric vehicles for grid frequency support: MILP-based hierarchical control design
Mohd Aman et al. Internet of things energy system: Smart applications, technology advancement, and open issues
Yu et al. Balancing power demand through EV mobility in vehicle-to-grid mobile energy networks
WO2019182038A1 (en) Energy system, energy management server, method for manufacturing energy source, and program
Eaves et al. A cost comparison of fuel-cell and battery electric vehicles
US9690275B2 (en) System energy efficiency controller, energy efficiency gain device and smart energy service system used for energy utilization
EP2385606B1 (en) System for interchanging electric energy between a battery and an electric grid and respective method.
US9778719B2 (en) Ubiquitous energy network for achieving optimized utilization of energy and method for providing energy transaction and service
JP5411479B2 (en) Remote monitoring and control system
Galus Agent-based modeling and simulation of large scale electric mobility in power systems
US9594362B2 (en) Energy management system, energy management apparatus, and power management method
US20220383432A1 (en) Recommended action output system, recommended action output method, and recording medium
Strielkowski et al. 5G wireless networks in the future renewable energy systems
Ntombela et al. A Comprehensive Review of the Incorporation of Electric Vehicles and Renewable Energy Distributed Generation Regarding Smart Grids
WO2019187154A1 (en) Energy generation device, control method, and program
Al Junaibi et al. Technical feasibility assessment of electric vehicles: an Abu Dhabi example
CN105356579B (en) A kind of portable energy supply method and energy supply system
US11698397B2 (en) Power calculation apparatus and power calculation method
Marcon et al. A Real Model of a Micro-Grid to Improve Network Stability
AU2012203450A1 (en) Apparatus and methods for use in the sale and purchase of energy
WO2021241650A1 (en) Information processing device, information processing method, and program for same
Zhang et al. Coordinated dispatch of the wind-thermal power system by optimizing electric vehicle charging
JP6037598B2 (en) Management proposal system for energy conversion equipment
US20240113521A1 (en) Electric power interchange method, electric power interchange system, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912051

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508918

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18912051

Country of ref document: EP

Kind code of ref document: A1