WO2019187130A1 - Electrode group, battery, and battery pack - Google Patents

Electrode group, battery, and battery pack Download PDF

Info

Publication number
WO2019187130A1
WO2019187130A1 PCT/JP2018/013922 JP2018013922W WO2019187130A1 WO 2019187130 A1 WO2019187130 A1 WO 2019187130A1 JP 2018013922 W JP2018013922 W JP 2018013922W WO 2019187130 A1 WO2019187130 A1 WO 2019187130A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
positive electrode
current collector
electrode current
Prior art date
Application number
PCT/JP2018/013922
Other languages
French (fr)
Japanese (ja)
Inventor
圭吾 保科
政典 田中
大典 高塚
康宏 原田
高見 則雄
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2020508895A priority Critical patent/JP6952876B2/en
Priority to PCT/JP2018/013922 priority patent/WO2019187130A1/en
Publication of WO2019187130A1 publication Critical patent/WO2019187130A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Embodiments of the present invention relate to an electrode group, a battery, and a battery pack.
  • One of the means for increasing the energy density of a battery such as a non-aqueous electrolyte battery is to design the battery so that the battery voltage is increased.
  • the niobium titanium composite oxide and the tetragonal titanium-containing composite oxide have a low reaction potential for lithium insertion / extraction among titanium oxides, and can increase the battery voltage when used as a negative electrode.
  • the electrolyte is easily reductively decomposed, and the self-discharge reaction is likely to proceed along with the reductive decomposition reaction.
  • Self-discharge can also occur due to an internal short circuit in the battery. For this reason, it is desirable to secure resistance to internal short circuit and suppress self-discharge of the battery.
  • JP 2014-167890 A Japanese Unexamined Patent Publication No. 2017-91677
  • An object of the present invention is to provide an electrode group capable of realizing a battery in which self-discharge is suppressed, a battery in which self-discharge is suppressed, and a battery pack including the battery.
  • an electrode group including a laminate including a positive electrode, a negative electrode, and an electrically insulating member.
  • the positive electrode was supported on the positive electrode current collector, a positive electrode current collector tab provided at an end parallel to one side of the positive electrode current collector, and at least excluding the positive electrode current collector tab.
  • a positive electrode active material-containing layer includes a first end and a second end parallel to the one side of the positive electrode current collector.
  • the negative electrode includes a strip-shaped negative electrode current collector, a negative electrode current collector tab provided at an end parallel to one side of the negative electrode current collector, and a titanium supported on the negative electrode current collector excluding at least the negative electrode current collector tab
  • a negative electrode active material-containing layer containing a containing oxide.
  • the negative electrode active material-containing layer includes a third end portion and a fourth end portion that are parallel to the one side of the negative electrode current collector.
  • the electrically insulating member is interposed between the positive electrode active material-containing layer and the negative electrode active material-containing layer.
  • the laminate is wound.
  • a positive electrode current collecting tab protrudes in a first direction parallel to the winding axis.
  • the fourth end is located closer to the positive electrode current collector tab than the first end.
  • the negative electrode current collector tab protrudes in the second direction opposite to the first direction.
  • the third end is located closer to the negative electrode current collector tab than the second end.
  • the second shift width between the second end portion and the third end portion is wider than the first shift width between the first end portion and the fourth end portion.
  • a battery including the electrode group according to the above embodiment is provided.
  • a battery pack including the battery according to the above embodiment is provided.
  • FIG. 1 is a perspective view schematically showing an example electrode group according to the embodiment.
  • FIG. 2 is a perspective view schematically showing a state in which the electrode group is partially developed.
  • FIG. 3 is a plan view schematically showing an example of an electrode group according to the embodiment.
  • FIG. 4 is a schematic cross-sectional view of an example flat battery according to the embodiment.
  • FIG. 5 is an enlarged cross-sectional view of a portion A in FIG.
  • FIG. 6 is a schematic exploded perspective view of an example battery pack according to the embodiment.
  • FIG. 7 is a block diagram showing an electric circuit of the battery pack of FIG.
  • the internal short circuit generated in the nonaqueous electrolyte battery is roughly classified into a short circuit due to lithium metal dendrite deposition, a short circuit due to a failure of an insulating member such as a separator, and a short circuit due to mixing of minute metal pieces.
  • internal short-circuiting due to lithium metal deposition which is said to be difficult to suppress, is a material that can occlude and release lithium in the negative electrode active material at a potential (a noble potential) significantly higher than the lithium deposition potential, for example, about 1
  • a noble potential significantly higher than the lithium deposition potential
  • the electrode group according to the first embodiment includes a laminate including a positive electrode, a negative electrode, and an electrical insulating member.
  • the positive electrode was supported on the positive electrode current collector, a positive electrode current collector tab provided at an end parallel to one side of the positive electrode current collector, and at least excluding the positive electrode current collector tab.
  • a positive electrode active material-containing layer includes a first end and a second end parallel to the one side of the positive electrode current collector.
  • the negative electrode includes a strip-shaped negative electrode current collector, a negative electrode current collector tab provided at an end parallel to one side of the negative electrode current collector, and a titanium supported on the negative electrode current collector excluding at least the negative electrode current collector tab
  • a negative electrode active material-containing layer containing a containing oxide The negative electrode active material-containing layer includes a third end portion and a fourth end portion that are parallel to the one side of the negative electrode current collector.
  • the electrically insulating member is interposed between the positive electrode active material-containing layer and the negative electrode active material-containing layer.
  • the laminate is wound.
  • the laminate may have a structure wound in a cylindrical shape. Or a laminated body may have the structure wound by the flat shape.
  • a positive electrode current collecting tab protrudes in a first direction parallel to the winding axis.
  • the fourth end is located closer to the positive electrode current collector tab than the first end.
  • the negative electrode current collector tab protrudes in the second direction opposite to the first direction.
  • the third end is located closer to the negative electrode current collector tab than the second end.
  • the second shift width between the second end portion and the third end portion is wider than the first shift width between the first end portion and the fourth end portion.
  • FIG. 1 is a perspective view schematically showing an example of an electrode group according to the embodiment.
  • FIG. 2 is a perspective view schematically showing a state in which the electrode group is partially developed.
  • FIG. 3 is a plan view schematically showing an example of an electrode group according to the embodiment.
  • 1 to 3 includes a positive electrode 4, a negative electrode 5, and an electrical insulating member 6.
  • a laminate including a positive electrode 4, a negative electrode 5, and an electrically insulating member 6 disposed between the positive electrode 4 and the negative electrode 5 is wound into a flat shape. Has a structure.
  • the positive electrode 4 includes a positive electrode current collector 4a, a positive electrode active material-containing layer 4b, and a positive electrode current collector tab 4c.
  • the positive electrode current collector 4a has a strip shape.
  • the positive electrode active material-containing layer 4b is supported on the positive electrode current collector 4a.
  • the positive electrode current collecting tab 4c is provided at an end portion parallel to one side of the positive electrode current collector 4a, for example, the long side of the belt-like shape.
  • the positive electrode active material-containing layer 4 b includes a first end 41 and a second end 42.
  • the first end portion 41 and the second end portion 42 are arranged in parallel to the one side of the positive electrode current collector 4a (one side parallel to the end portion where the positive electrode current collector tab 4c is provided).
  • the positive electrode current collector tab 4c may be a part of the positive electrode current collector 4a.
  • the positive electrode active material-containing layer 4b is not supported on at least the positive electrode current collector tab 4c of the positive electrode current collector 4a, and the positive electrode current collector tab 4c protrudes from the first end 41 of the positive electrode active material-containing layer 4b. ing.
  • the negative electrode 5 includes a negative electrode current collector 5a and a negative electrode active material-containing layer 5b.
  • the negative electrode current collector 5a has a strip shape.
  • the negative electrode active material-containing layer 5b is supported on the negative electrode current collector 5a.
  • the negative electrode current collector tab 5c is provided at an end parallel to one side of the negative electrode current collector 5a, for example, the long side of the strip shape.
  • the negative electrode active material-containing layer 5 b includes a third end portion 53 and a fourth end portion 54.
  • the third end portion 53 and the fourth end portion 54 are in a position parallel to the one side of the negative electrode current collector 5a (one side parallel to the end portion where the negative electrode current collecting tab 5c is provided).
  • the negative electrode current collector tab 5c may be a part of the negative electrode current collector 5a.
  • the negative electrode active material-containing layer 5b is not supported on at least the negative electrode current collector tab 5c of the negative electrode current collector 5a, and the negative electrode current collector tab 5c protrudes from the third end 53 of the negative electrode active material-containing layer 5b. ing.
  • the positive electrode active material-containing layer 4b of the positive electrode 4 and the negative electrode active material-containing layer 5b of the negative electrode 5 are opposed to each other with the electrical insulating member 6 interposed therebetween (FIG. 2).
  • the positive electrode current collecting tab 4 c protrudes from the negative electrode active material-containing layer 5 b and the electrical insulating member 6.
  • the negative electrode current collecting tab 5 c protrudes from the positive electrode 4 and the electrical insulating member 6 in a second direction that is opposite to the first direction.
  • the positive electrode current collection tab 4c wound by the flat spiral shape is located in the 1st end surface orthogonal to a winding axis
  • the negative electrode current collection tab 5c wound by the flat spiral shape is located in the 2nd end surface orthogonal to a winding axis
  • the positive electrode current collection tab 4c is located on the opposite side of the wound laminate from the negative electrode current collection tab 5c.
  • the electrical insulating member 6 is omitted.
  • the width W P of the positive electrode active material-containing layer 4b is smaller than the width W N of the negative electrode active material-containing layer 5b.
  • Width W P of the positive electrode active material-containing layer 4b is the width of the positive electrode active material-containing layer 4b in a direction perpendicular to the first end 41 and second end 42. In other words, the width W P of the positive electrode active material-containing layer 4b corresponds to the width between the first end 41 and second end 42.
  • the width W N of the negative electrode active material-containing layer 5 b is the width of the negative electrode active material-containing layer 5 b in the direction orthogonal to the third end portion 53 and the fourth end portion 54.
  • the width W N of the negative electrode active material-containing layer 5 b corresponds to the width between the third end portion 53 and the fourth end portion 54.
  • the width W P and the width W N of the active material-containing layer of each of the positive and negative electrodes are also widths in a direction parallel to the winding axis of the wound laminate.
  • Width W P of the positive electrode active material-containing layer 4b is smaller than the width W N of the negative electrode active material-containing layer 5b, the first end 41 and second end part of the anode active material-containing layer 5b positive electrode active material-containing layer 4b It protrudes outward in the width direction from the portion 42.
  • the fourth end portion 54 of the negative electrode active material-containing layer 5b protrudes outside the first end portion 41 of the positive electrode active material-containing layer 4b. That is, the fourth end portion 54 is located at a position shifted from the first end portion 41 toward the positive electrode current collecting tab 4c.
  • the 3rd end part 53 of the negative electrode active material content layer 5b protrudes outside the 2nd end part 42 of the positive electrode active material content layer 4b.
  • the third end portion 53 is located at a position shifted from the second end portion 42 toward the negative electrode current collecting tab 5c.
  • the negative electrode active material-containing layer 5b is in both directions (first direction and second direction) parallel to the winding axis of the electrode group 3 on the side where the positive electrode current collecting tab 4c is located and on the side where the negative electrode current collecting tab 5c is located. And protrudes from the positive electrode active material-containing layer 4b.
  • the first shift width A (the protruding width of the fourth end portion 54) between the first end portion 41 of the positive electrode active material-containing layer 4b and the fourth end portion 54 of the negative electrode active material-containing layer 5b is a positive electrode current collecting tab. This corresponds to the distance at which the negative electrode active material-containing layer 5b protrudes on the 4c side.
  • the second shift width B (the protruding width of the third end portion 53) between the second end portion 42 of the positive electrode active material-containing layer 4b and the third end portion 53 of the negative electrode active material-containing layer 5b is the negative electrode. This corresponds to the distance at which the negative electrode active material-containing layer 5b protrudes on the current collecting tab 5c side.
  • the second shift width B is wider than the first shift width A.
  • the end portions (third end portion 53 and fourth end portion 54) of the negative electrode active material-containing layer 5b are used. Metal deposition, for example, formation of lithium dendrite is likely to occur.
  • the third end portion 53 and the fourth end portion 54 of the negative electrode active material-containing layer 5b protrude outside the first end portion 41 and the second end portion 42 of the positive electrode active material-containing layer 4b. Short circuit between the negative electrodes can be suppressed.
  • the cathode active and fourth end portions 54 Part of the substance-containing layer 4b overlaps with the electrically insulating member 6 interposed therebetween. In that case, an electrical short circuit may occur between the positive and negative electrodes due to metal deposition at the fourth end 54. Moreover, since the part which does not oppose the negative electrode active material content layer 5b among the positive electrode active material content layers 4b increases, there also exists an aspect that an energy density falls.
  • the first deviation width A is not too large. Since the fourth end portion 54 of the negative electrode active material-containing layer 5b protrudes outside the first end portion 41 of the positive electrode active material-containing layer 4b, it is between the fourth end portion 54 and the edge of the positive electrode current collecting tab 4c. The distance is shorter than the width of the positive electrode current collecting tab 4c. As the first deviation width A becomes wider, the distance between the fourth end portion 54 and the edge of the positive electrode current collecting tab 4c becomes shorter. Then, for example, when the positive electrode current collecting tab 4c is deformed by a force applied from the outside of the battery such as a physical impact, an electrical short circuit is likely to occur between the fourth end 54 and the positive electrode current collecting tab 4c.
  • the first deviation width A it is preferable to reduce the first deviation width A.
  • the area where the positive electrode active material-containing layer 4b and the negative electrode active material-containing layer 5b face each other can be increased. Therefore, the energy density can be increased as the first deviation width A is smaller.
  • the fourth end portion 54 of the negative electrode active material-containing layer 5b it is desirable that the fourth end portion 54 does not overlap the positive electrode active material-containing layer 4b. Therefore, the first deviation width A exceeds zero.
  • the ratio of the first deviation width A to the width W N of the negative electrode active material-containing layer may be 0.008 or more and 0.02 or less. That is, the first deviation width A and the width W N can satisfy the relationship of 0.008 ⁇ A / W N ⁇ 0.02.
  • the ratio of the second displacement width B to the width W N of the negative electrode active material-containing layer may be 0.01 or more and 0.022 or less. That is, the second shift width B and the width W N can satisfy the relationship of 0.01 ⁇ B / W N ⁇ 0.022.
  • the difference AB between the first deviation width A and the second deviation width B is 1 mm or more and 3 mm or less.
  • the positive electrode lead 17 and the negative electrode lead 18 can be connected to the electrode group 3, or the insulating sheet 10 can be provided on the electrode group 3.
  • the positive electrode lead 17 is electrically connected to the positive electrode current collecting tab 4c.
  • the negative electrode lead 18 is electrically connected to the negative electrode current collecting tab 5c.
  • the insulating sheet 10 covers a portion of the outermost periphery of the electrode group 3 excluding the positive electrode current collecting tab 4c and the negative electrode current collecting tab 5c.
  • the positive electrode includes a strip-shaped positive electrode current collector. Therefore, the positive electrode can have a strip shape.
  • the positive electrode current collector is preferably an aluminum foil or an aluminum alloy foil containing one or more elements selected from Mg, Ti, Zn, Ni, Cr, Mn, Fe, Cu and Si.
  • the thickness of the aluminum foil or aluminum alloy foil is preferably 5 ⁇ m or more and 20 ⁇ m or less, and more preferably 15 ⁇ m or less.
  • the purity of the aluminum foil is preferably 99% by mass or more.
  • the content of transition metals such as iron, copper, nickel, and chromium contained in the aluminum foil or aluminum alloy foil is preferably 1% by mass or less.
  • the positive electrode further includes a positive electrode active material-containing layer supported on the positive electrode current collector.
  • the positive electrode current collector can carry a positive electrode active material-containing layer on both sides thereof, or can carry a positive electrode active material-containing layer on one side.
  • the positive electrode active material-containing layer includes a first end and a second end.
  • the positive electrode also includes a positive electrode current collecting tab provided at an end parallel to one side of the positive electrode current collector.
  • the positive electrode current collector tab may be a portion of the positive electrode current collector that does not carry the positive electrode active material-containing layer on the surface.
  • the positive electrode current collecting tab protrudes from the first end of the positive electrode active material-containing layer.
  • the positive electrode active material-containing layer can include, for example, a positive electrode active material, a conductive agent, and a binder.
  • the positive electrode active material for example, an oxide or a sulfide can be used.
  • the positive electrode may contain one kind of compound alone as a positive electrode active material, or may contain two or more kinds of compounds in combination.
  • oxides and sulfides include compounds that can insert and desorb Li or Li ions.
  • manganese dioxide MnO 2
  • iron oxide copper oxide
  • nickel oxide lithium manganese composite oxide
  • Lithium nickel composite oxide for example, Li x NiO 2 ; 0 ⁇ x ⁇ 1)
  • lithium cobalt composite oxide for example, Li x CoO 2 ; 0 ⁇ x ⁇ 1
  • lithium nickel cobalt composite oxide for example, Li x Ni 1-y Co y O 2; 0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1
  • lithium-manganese-cobalt composite oxide e.g., Li x Mn y Co 1-y O 2; 0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1)
  • a lithium manganese nickel composite oxide having a spinel structure for example, Li x Mn 2 -y Ni y O 4 ; 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1
  • examples of compounds more preferable as the positive electrode active material include lithium manganese composite oxide having a spinel structure (for example, Li x Mn 2 O 4 ; 0 ⁇ x ⁇ 1), lithium nickel composite oxide (for example, Li x).
  • lithium cobalt composite oxide for example, Li x CoO 2 ; 0 ⁇ x ⁇ 1), lithium nickel cobalt composite oxide (for example, Li x Ni 1-y Co y O 2 ; 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), lithium manganese nickel composite oxide having a spinel structure (for example, Li x Mn 2-y Ni y O 4 ; 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 2), lithium manganese cobalt composite oxides (e.g., Li x Mn y Co 1-y O 2; 0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1), lithium iron phosphate (e.g.
  • Li x FePO 4; 0 ⁇ x ⁇ 1), and lithium Nickel cobalt manganese composite Oxide (Li x Ni 1-yz Co y Mn z O 2; 0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ z ⁇ 1, y + z ⁇ 1) are included.
  • the positive electrode potential can be increased.
  • lithium iron phosphate Li x VPO 4 F (0 ⁇ x ⁇ 1)
  • lithium manganese composite oxide lithium nickel composite oxide
  • lithium nickel cobalt composite oxide lithium nickel cobalt composite oxide
  • a positive electrode active material containing a mixture of the above. Since these compounds have low reactivity with room temperature molten salts, the cycle life can be improved. Details of the room temperature molten salt will be described later.
  • the primary particle size of the positive electrode active material is preferably 100 nm or more and 1 ⁇ m or less.
  • a positive electrode active material having a primary particle size of 100 nm or more is easy to handle in industrial production.
  • a positive electrode active material having a primary particle size of 1 ⁇ m or less can smoothly diffuse lithium ions in a solid.
  • the specific surface area of the positive electrode active material is preferably 0.1 m 2 / g or more and 10 m 2 / g or less.
  • the positive electrode active material having a specific surface area of 0.1 m 2 / g or more can sufficiently ensure the storage / release sites of Li ions.
  • the positive electrode active material having a specific surface area of 10 m 2 / g or less is easy to handle in industrial production and can ensure good charge / discharge cycle performance.
  • the binder is blended to fill the gap between the dispersed positive electrode active materials and to bind the positive electrode active material and the positive electrode current collector.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, polyacrylic acid compound, imide compound, carboxymethyl cellulose (CMC). , And salts of CMC.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • salts of CMC One of these may be used as a binder, or a combination of two or more may be used as a binder.
  • the conductive agent is blended in order to improve the current collecting performance and suppress the contact resistance between the positive electrode active material and the positive electrode current collector.
  • the conductive agent include vapor grown carbon fibers (Vapor Grown Carbon Fiber; VGCF), carbon black such as acetylene black, and carbonaceous materials such as graphite.
  • VGCF vapor grown carbon fibers
  • carbon black such as acetylene black
  • carbonaceous materials such as graphite.
  • One of these may be used as a conductive agent, or a combination of two or more may be used as a conductive agent. Further, the conductive agent can be omitted.
  • the positive electrode active material and the binder are preferably blended at a ratio of 80% by mass to 98% by mass and 2% by mass to 20% by mass, respectively.
  • Sufficient electrode strength can be obtained by setting the amount of the binder to 2% by mass or more.
  • the binder can function as an insulator. Therefore, when the amount of the binder is 20% by mass or less, the amount of the insulator included in the electrode is reduced, so that the internal resistance can be reduced.
  • the positive electrode active material, the binder, and the conductive agent are 77% by mass or more and 95% by mass or less, 2% by mass or more and 20% by mass or less, and 3% by mass or more and 15% by mass or less, respectively. It is preferable to mix
  • the ratio of the electrically conductive agent which contacts an electrolyte can be made low by making the quantity of an electrically conductive agent into 15 mass% or less. When this ratio is low, decomposition of the electrolyte can be reduced under high temperature storage.
  • the positive electrode can be produced, for example, by the following method. First, a positive electrode active material, a conductive agent, and a binder are suspended in a solvent to prepare a slurry. This slurry is applied to one side or both sides of the positive electrode current collector. Next, the applied slurry is dried to obtain a laminated structure of the positive electrode active material-containing layer and the positive electrode current collector. Thereafter, the laminated structure is pressed. In this way, a positive electrode is produced.
  • the positive electrode may be produced by the following method. First, a positive electrode active material, a conductive agent, and a binder are mixed to obtain a mixture. The mixture is then formed into pellets. Subsequently, a positive electrode can be obtained by arranging these pellets on a positive electrode current collector.
  • the width of the positive electrode active material-containing layer can be controlled by appropriately adjusting the width of the slurry applied to the positive electrode current collector or the range of the pellets arranged on the positive electrode current collector. If necessary, the produced positive electrode is cut to adjust the dimensions.
  • the negative electrode includes a strip-shaped negative electrode current collector. Therefore, the negative electrode can have a strip shape.
  • the negative electrode current collector a material that is electrochemically stable at a potential at which lithium (Li) is inserted into and desorbed from a titanium-containing oxide as a negative electrode active material is used.
  • the negative electrode current collector is preferably made of, for example, copper, nickel, stainless steel, or aluminum, or an aluminum alloy containing one or more elements selected from Mg, Ti, Zn, Mn, Fe, Cu, and Si. .
  • the thickness of the negative electrode current collector is preferably 5 ⁇ m or more and 20 ⁇ m or less. The current collector having such a thickness can balance the strength and weight reduction of the electrode.
  • the negative electrode further includes a negative electrode active material-containing layer supported on the negative electrode current collector.
  • the negative electrode current collector can carry a negative electrode active material-containing layer on both sides thereof, or can carry a negative electrode active material-containing layer on one side.
  • the negative electrode active material-containing layer includes a third end and a fourth end.
  • the negative electrode also includes a negative electrode current collector tab provided at an end parallel to one side of the negative electrode current collector.
  • the negative electrode current collector tab may be a portion of the negative electrode current collector that does not carry the negative electrode active material-containing layer on the surface.
  • the negative electrode current collector tab protrudes from the third end of the negative electrode active material-containing layer.
  • the negative electrode active material-containing layer contains a titanium-containing oxide.
  • the titanium-containing oxide can be contained in the negative electrode active material-containing layer as a negative electrode active material.
  • the negative electrode active material-containing layer can further include, for example, a conductive agent and a binder.
  • the titanium-containing oxide contained in the active material-containing layer can include, for example, monoclinic niobium titanium composite oxide and orthorhombic titanium-containing composite oxide.
  • the titanium-containing oxide may be one type of compound or a mixture of two or more types of compounds.
  • Examples of the monoclinic niobium titanium composite oxide include compounds represented by Li x Ti 1-y M1 y Nb 2 -z M2 z O 7 + ⁇ .
  • M1 is at least one selected from the group consisting of Zr, Si, and Sn.
  • M2 is at least one selected from the group consisting of V, Ta, and Bi.
  • the subscripts in the composition formula are 0 ⁇ x ⁇ 5, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 2, and ⁇ 0.3 ⁇ ⁇ ⁇ 0.3.
  • a specific example of the monoclinic niobium titanium complex oxide is Li x Nb 2 TiO 7 (0 ⁇ x ⁇ 5).
  • M3 is at least one selected from Mg, Fe, Ni, Co, W, Ta, and Mo.
  • the subscripts in the composition formula are 0 ⁇ x ⁇ 5, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 2, and ⁇ 0.3 ⁇ ⁇ ⁇ 0.3.
  • Examples of the tetragonal titanium-containing composite oxide include a compound represented by Li 2 + a M (I) 2 -b Ti 6 -c M (II) d O 14 + ⁇ .
  • M (I) is at least one selected from the group consisting of Sr, Ba, Ca, Mg, Na, Cs, Rb and K.
  • M (II) is at least one selected from the group consisting of Zr, Sn, V, Nb, Ta, Mo, W, Y, Fe, Co, Cr, Mn, Ni, and Al.
  • composition formula 0 ⁇ a ⁇ 6, 0 ⁇ b ⁇ 2, 0 ⁇ c ⁇ 6, 0 ⁇ d ⁇ 6, and ⁇ 0.5 ⁇ ⁇ ⁇ 0.5.
  • tetragonal titanium-containing composite oxide include Li 2 + a Na 2 Ti 6 O 14 (0 ⁇ a ⁇ 6).
  • the monoclinic niobium titanium composite oxide and the tetragonal titanium-containing composite oxide have a low lithium insertion / extraction potential (potential at which lithium is inserted and desorbed). Therefore, a battery having a high energy density can be obtained by using these titanium-containing oxides.
  • the lithium occlusion / release potential is low, lithium dendrite is likely to precipitate.
  • the electrode group according to the embodiment is less likely to cause a short circuit due to precipitation.
  • Examples of the other titanium-containing oxide include spinel type lithium titanate such as a compound represented by Li 4 + w Ti 5 O 12 (0 ⁇ w ⁇ 3). Since spinel type lithium titanate has a high lithium storage / release potential (noble), it is difficult to obtain a high energy density. In addition, since metal precipitation is unlikely to occur due to a high potential, making the width of the negative electrode active material-containing layer larger than the width of the positive electrode active material-containing layer is opposite to the positive electrode active material-containing layer in the negative electrode active material-containing layer. The part which is not needed is increased unnecessarily, and the energy density is reduced. Therefore, it is desirable to select the titanium-containing oxide from monoclinic niobium titanium composite oxide and tetragonal titanium-containing composite oxide.
  • the titanium-containing oxide can be included in the active material-containing layer in the form of primary particles or secondary particles, for example.
  • secondary particles refer to particles formed by aggregating a plurality of primary particles.
  • the titanium-containing oxide particles that can be included in the active material-containing layer can include a phase including a carbon material formed on at least a part of the surface of the particles. By including such a phase, good conductivity can be obtained.
  • composite particles in which a phase containing a carbon material is formed on the particle surface of a niobium titanium composite oxide as a titanium-containing oxide can be suitably used.
  • the crystallinity of the carbon material can be determined.
  • the G band observed near 1580 cm ⁇ 1 is a peak derived from the graphite structure
  • the D band observed near 1330 cm ⁇ 1 is a peak derived from the defect structure of carbon. is there.
  • G band and D band is due to various factors, from 1580 cm -1 and 1330 cm -1, it is possible that each shifted about ⁇ 50 cm -1.
  • Carbon material ratio I G / I D between the peak intensity I D of G peak intensity of the bands I G and D bands in the Raman chart is 0.8 to 1.2, it has a good crystallinity of graphite Means. Such a carbon material can have excellent conductivity.
  • That the ratio I G / ID is greater than 1.2 means, for example, that the amorphization of carbon is insufficient.
  • impurities contained in the carbon source may be included. Since such impurities cause side reactions with the electrolyte, the battery input / output performance and life performance are adversely affected.
  • the carbon source may react with the Nb element.
  • the reaction between the carbon source and the Nb element proceeds, the amorphous carbon component whose carbon-carbon bond is more unstable than the graphite structure is preferentially oxidized, so that the amount of amorphous carbon decreases and the ratio I G / ID may be greater than 1.2.
  • the ratio I G / ID being smaller than 0.8 means that the carbon component derived from the graphite structure is small.
  • the phase containing the carbon material can exist in various forms.
  • the phase containing the carbon material may cover the entire titanium-containing oxide particle, or may be supported on a part of the surface of the titanium-containing oxide particle.
  • the conductivity of the entire active material particle (a composite particle including a titanium-containing oxide particle and a phase containing a carbon material) is uniformly complemented, and the surface reaction between the active material particle and the electrolyte is suppressed. From these two viewpoints, it is preferable that the entire surface of the titanium-containing oxide particles is coated with a phase containing a carbon material.
  • the existence state of the phase containing the carbon material can be confirmed by, for example, transmission electron microscope (TEM) observation and mapping by energy dispersive X-ray spectroscopy (EDX) analysis.
  • TEM transmission electron microscope
  • EDX energy dispersive X-ray spectroscopy
  • the conductive agent is blended in order to improve the current collecting performance and suppress the contact resistance between the active material and the current collector.
  • the conductive agent include vapor grown carbon fibers (Vapor Grown Carbon Fiber; VGCF), carbon black such as acetylene black, and carbonaceous materials such as graphite.
  • VGCF vapor grown carbon fibers
  • carbon black such as acetylene black
  • carbonaceous materials such as graphite.
  • One of these may be used as a conductive agent, or a combination of two or more may be used as a conductive agent.
  • a carbon coat or an electronically conductive inorganic material coat may be applied to the surface of the active material particles.
  • the binder is blended to fill a gap between the dispersed negative electrode active materials and to bind the negative electrode active material and the negative electrode current collector.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine rubber, styrene butadiene rubber, polyacrylic acid compound, imide compound, carboxymethyl cellulose (carboxyl). methyl cellulose (CMC), and salts of CMC.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • fluorine rubber fluorine rubber
  • styrene butadiene rubber polyacrylic acid compound
  • imide compound imide compound
  • methyl cellulose (CMC) methyl cellulose
  • salts of CMC One of these may be used as a binder, or a combination of two or more may be used as a binder.
  • the negative electrode active material titanium-containing oxide, etc.
  • the conductive agent and the binder in the negative electrode active material-containing layer are 68% by mass to 96% by mass, 2% by mass to 30% by mass and 2% by mass, respectively. It is preferable to mix
  • the amount of the conductive agent By setting the amount of the conductive agent to 2% by mass or more, the current collecting performance of the negative electrode active material-containing layer can be improved. Further, by setting the amount of the binder to 2% by mass or more, the binding property between the negative electrode active material-containing layer and the current collector becomes sufficient, and excellent cycle performance can be expected.
  • the conductive agent and the binder are each preferably 30% by mass or less in order to increase the capacity.
  • the negative electrode can be produced by a method similar to that of the positive electrode, for example, using a titanium-containing oxide as the negative electrode active material instead of the positive electrode active material and using the negative electrode current collector instead of the positive electrode current collector.
  • the electrically insulating member includes a material having an electrically insulating property.
  • the electrically insulating member is, for example, a separator.
  • the electrically insulating member can be an insulating layer containing a material having electrical insulation.
  • the electrically insulating member may be a single member or two or more members. For example, a separator can be used alone, an insulating layer can be used alone, or a separator and an insulating layer can be used in combination.
  • the separator is formed of, for example, a porous film containing polyethylene (PE), polypropylene (PP), cellulose, or polyvinylidene fluoride (PVdF), or a synthetic resin nonwoven fabric. From the viewpoint of safety, it is preferable to use a porous film formed from polyethylene or polypropylene. This is because these porous films can be melted at a constant temperature to interrupt the current.
  • PE polyethylene
  • PP polypropylene
  • PVdF polyvinylidene fluoride
  • the insulating layer can include a non-Li conductive inorganic material or a solid electrolyte particle exhibiting Li conductivity as a material having electrical insulation.
  • Examples of the inorganic material that does not exhibit conductivity with respect to Li (lithium) include one or more oxides selected from the group consisting of Ba, Al, Zr, Ta, and Si. Specific examples include metal oxides such as aluminum oxide (Al 2 O 3 ), barium oxide (BaO), zirconium oxide (ZrO 2 ), tantalum pentoxide (Ta 2 O 5 ), and barium sulfate (BaSO 4 ). One or more compounds selected from the group consisting of sulfate and silicon oxide (SiO 2 ) can be used.
  • One or more compounds selected from the group consisting of (B 2 O 3 ) can be used.
  • the above-mentioned metal oxide can show the outstanding stability with respect to the nonaqueous electrolyte which a nonaqueous electrolyte battery contains.
  • Examples of the solid electrolyte exhibiting conductivity with respect to Li include LLZ-based materials such as a compound represented by Li 7 La 3 Zr 2 O 12 , and Li 1 + x Al x M 2-x (PO 4 ) 3 (M 1 or more selected from the group consisting of Ti, Zr, and Ge; materials of a family of compounds represented by 0 ⁇ x ⁇ 0.6) can be used.
  • LLZ-based materials such as a compound represented by Li 7 La 3 Zr 2 O 12 , and Li 1 + x Al x M 2-x (PO 4 ) 3 (M 1 or more selected from the group consisting of Ti, Zr, and Ge; materials of a family of compounds represented by 0 ⁇ x ⁇ 0.6) can be used.
  • the solid electrolyte one type of compound may be used, or two or more types of compounds may be used in combination.
  • a non-Li conductive inorganic material and a solid electrolyte can also be used together.
  • the insulating layer may contain a binder.
  • the binder that can be included in the insulating layer include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), and mixtures thereof. Can be mentioned.
  • the content of the binder in the insulating layer is desirably in the range of 0.01% by mass to 20% by mass.
  • the thickness of the insulating layer can be 1 ⁇ m or more and 30 ⁇ m or less.
  • the insulating layer may be a layer formed on at least one of the positive electrode and the negative electrode, for example, including a material having electrical insulation.
  • An electrode in which an insulating layer as an electrical insulating member is formed on the active material-containing layer can be manufactured by the first manufacturing method or the second manufacturing method described below.
  • an insulating layer is formed on a manufactured electrode.
  • An electrode positive electrode or negative electrode
  • a slurry containing a material having electrical insulation is prepared.
  • the adjusted slurry is applied on the active material-containing layer of the electrode.
  • the coating width of the slurry is wider than the width of the active material-containing layer, and a part of the slurry is directly applied to a portion of the current collector that does not carry the active material-containing layer (for example, the electrode current collector tab). It may be applied.
  • the laminated structure after drying (the electrode on which the insulating layer before pressing is formed) is roll-pressed to obtain an electrode on which the insulating layer is formed.
  • the active material-containing layer and the insulating layer of the electrode are formed by simultaneous coating.
  • a slurry containing an active material and a binder hereinafter referred to as slurry I
  • a slurry containing an electrically insulating material hereinafter referred to as slurry II
  • the slurry II is applied so as to protrude from the application region of the slurry I. Since the slurry II is repeatedly applied to the slurry I before the slurry I dries, the slurry II easily follows the surface shape of the slurry I. Then, after the slurry is dried, the laminated structure after the drying (the current collector on which the active material-containing layer and the insulating layer before pressing are formed) is roll-pressed to form an electrode on which the insulating layer is formed. Get.
  • Electrode coil (rolled electrode group) is taken out from the exterior member in the glove box. At this time, it can be determined that the electrode connected to the negative electrode terminal of the battery is the negative electrode, and the electrode connected to the positive electrode terminal is the positive electrode.
  • the electrode coil can be connected to the electrode terminal via an electrode lead. Carefully remove the electrode coil from the electrode lead. For example, it is possible to remove the connection with the electrode lead using scissors, pliers, a cutter or the like while pressing the electrode coil so that the positions of the positive electrode, the electrically insulating member, and the negative electrode do not move within the electrode coil.
  • the electrode group isolated in this way was used as a measurement sample, and the width (W P , W N ) of the active material-containing layer in the positive and negative electrodes and the end portions (first to fourth end portions) of the active material-containing layer were measured.
  • the gap width (A, B) is measured.
  • the electrode group taken out by the procedure described above is disassembled and the negative electrode is taken out.
  • This negative electrode is washed with a suitable solvent.
  • a suitable solvent for example, ethyl methyl carbonate may be used. If the cleaning is insufficient, an impurity phase such as lithium carbonate or lithium fluoride may be mixed under the influence of lithium ions remaining in the negative electrode. In that case, it is preferable to use an airtight container in which the measurement atmosphere can be performed in an inert gas.
  • the section of the member taken out as described above is cut out by Ar ion milling.
  • the cut section is observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the crystal structure of the compound contained in each particle selected by SEM can be specified by X-ray diffraction (XRD) measurement.
  • an X-ray diffraction pattern belonging to the tetragonal type such as the space group Cmca or Fmmm, can be confirmed by X-ray diffraction measurement.
  • XRD measurement for the negative electrode can be performed by cutting the electrode to be measured to the same extent as the area of the holder of the wide-angle X-ray diffractometer and directly attaching it to a glass holder for measurement. If necessary, the insulating layer is previously removed from the active material-containing layer. At this time, an XRD spectrum is measured in advance according to the type of the metal foil of the electrode current collector, and the position where the peak derived from the current collector appears is known. In addition, the presence or absence of a peak of a mixture such as a conductive agent or a binder is also grasped in advance. When the peak of the current collector and the peak of the active material overlap, it is desirable to measure by peeling the active material-containing layer from the current collector.
  • the active material-containing layer may be physically peeled off, it is easily peeled off when ultrasonic waves are applied in a solvent. By measuring the active material-containing layer collected in this manner, wide-angle X-ray diffraction measurement of the active material can be performed.
  • composition of the entire active material-containing layer can be measured, for example, by the following procedure.
  • the electrode collected by the procedure described above is washed.
  • the composition of the particles contained in the active material-containing layer is specified by the method described above.
  • the active material-containing layer can be peeled from the current collector substrate by placing an electrode in ethyl methyl carbonate placed in a glass beaker and vibrating in an ultrasonic cleaner. Next, vacuum drying is performed to dry the separated active material-containing layer.
  • a powder containing an active material to be measured, a conductive agent, a binder, and the like is obtained. By dissolving this powder with an acid, a liquid sample containing an active material can be produced.
  • hydrochloric acid, nitric acid, sulfuric acid, hydrogen fluoride and the like can be used as the acid.
  • ICP inductively coupled plasma
  • the particles contained in the active material-containing layer are contained in the particles by combining the results of the identification of the composition by SEM and EDX, the identification of the crystal structure by XRD, and the ICP emission spectroscopic analysis.
  • the composition and crystal structure of the compound can be specified.
  • a micro-Raman measurement apparatus As a technique for quantitatively evaluating the crystallinity of the carbon component contained in the phase that can be formed on the titanium-containing oxide particles, a micro-Raman measurement apparatus can be used.
  • the micro Raman apparatus for example, Thermo Fisher Scientific ALMEGA can be used.
  • the measurement conditions can be, for example, a wavelength of the measurement light source of 532 nm, a slit size of 25 ⁇ m, a laser intensity of 10%, an exposure time of 5 s, and an integration count of 10 times.
  • Raman spectroscopy can be performed, for example, according to the procedure described below.
  • the battery When evaluating the material incorporated in the battery, the battery is brought into a state where lithium ions are completely desorbed. For example, when a titanium-containing oxide is used as the negative electrode active material, the battery is completely discharged. However, a small amount of lithium ions may remain even in a discharged state.
  • the battery is disassembled in a glove box filled with argon, and the electrode is washed with an appropriate solvent. At this time, for example, ethyl methyl carbonate may be used.
  • the active material-containing layer is peeled off from the cleaned electrode, and a sample is collected.
  • Raman spectroscopy measurement is performed under the conditions described above.
  • the presence or absence of Raman activity and the peak position of other components contained in the current collector and the mixture such as the conductive agent and the binder are known. In the case of overlapping, it is necessary to separate peaks relating to components other than the active material.
  • an active material for example, composite particles of active material particles and a phase containing a carbon material
  • a conductive agent for example, a conductive agent in the active material-containing layer
  • the carbon material contained in the active material and the conductive agent are incorporated. It can be difficult to distinguish between different carbon materials.
  • a method for distinguishing between the two for example, a method of dissolving and removing the binder with a solvent and then performing centrifugation to extract an active material having a high specific gravity can be considered. According to such a method, since the active material and the conductive agent can be separated, the carbon material contained in the active material can be subjected to measurement while being contained in the active material. it can.
  • mapping is performed from the spectral component derived from the active material by mapping by microscopic Raman spectroscopy to separate the conductive agent component from the active material component, and then only the Raman spectrum corresponding to the active material component is extracted. It is also possible to take an evaluation method.
  • the electrode group according to the first embodiment includes a laminate including a positive electrode, a negative electrode, and an electrically insulating member.
  • the positive electrode was supported on the positive electrode current collector, a positive electrode current collector tab provided at an end parallel to one side of the positive electrode current collector, and at least excluding the positive electrode current collector tab.
  • the positive electrode active material-containing layer includes a first end and a second end parallel to the one side of the positive electrode current collector.
  • the negative electrode includes a strip-shaped negative electrode current collector, a negative electrode current collector tab provided at an end parallel to one side of the negative electrode current collector, and a titanium supported on the negative electrode current collector excluding at least the negative electrode current collector tab
  • a negative electrode active material-containing layer containing a containing oxide.
  • the negative electrode active material-containing layer includes a third end portion and a fourth end portion that are parallel to the one side of the negative electrode current collector.
  • the electrically insulating member is interposed between the positive electrode active material-containing layer and the negative electrode active material-containing layer.
  • the laminate is wound.
  • a positive electrode current collecting tab protrudes in a first direction parallel to the winding axis.
  • the fourth end portion is located closer to the positive electrode current collecting tab side than the first end portion.
  • the negative electrode current collector tab protrudes in the second direction opposite to the first direction.
  • the third end portion is located closer to the negative electrode current collecting tab side than the second end portion.
  • the second shift width between the second end portion and the third end portion is wider than the first shift width between the first end portion and the fourth end portion.
  • the electrode group can realize a battery in which self-discharge is suppressed.
  • the battery according to the second embodiment includes the electrode group according to the first embodiment.
  • the battery according to the embodiment may further include an electrolyte.
  • the electrolyte can be held on the electrode group.
  • the battery according to the embodiment can further include an exterior member that accommodates the electrode group and the electrolyte.
  • the battery according to the embodiment may further include a negative electrode terminal electrically connected to the negative electrode and a positive electrode terminal electrically connected to the positive electrode.
  • the battery according to the embodiment may be, for example, a lithium ion secondary battery.
  • the battery includes, for example, a nonaqueous electrolyte battery including a nonaqueous electrolyte as an electrolyte.
  • electrolyte for example, a liquid non-aqueous electrolyte or a gel non-aqueous electrolyte can be used.
  • the liquid non-aqueous electrolyte is prepared by dissolving an electrolyte salt as a solute in an organic solvent.
  • concentration of the electrolyte salt is preferably 0.5 mol / L or more and 2.5 mol / L or less.
  • electrolyte salts examples include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), trifluoromethane Lithium salts such as lithium sulfonate (LiCF 3 SO 3 ) and lithium bistrifluoromethylsulfonylimide (LiN (CF 3 SO 2 ) 2 ) and mixtures thereof are included.
  • the electrolyte salt is preferably one that is difficult to oxidize even at a high potential, and LiPF 6 is most preferred.
  • organic solvents include: cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), vinylene carbonate (VC); diethyl carbonate (DEC), dimethyl carbonate (Dimethyl carbonate; DMC), chain carbonates such as methyl ethyl carbonate (MEC); tetrahydrofuran (tetrahydrofuran; THF); 2-methyltetrahydrofuran (2-MeTHF); dioxolane (DOX) Cyclic ethers such as: dimethoxy ethane (DME), chain ethers such as diethoxy ethane (DEE); ⁇ -butyrolactone (GBL), acetonitrile ( acetonitrile; AN) and sulfolane (SL). These organic solvents can be used alone or as a mixed solvent.
  • cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), vinylene carbonate (VC); diethyl carbonate (D
  • the gel-like nonaqueous electrolyte is prepared by combining a liquid nonaqueous electrolyte and a polymer material.
  • the polymer material include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO), or a mixture thereof.
  • non-aqueous electrolyte in addition to the liquid non-aqueous electrolyte and the gel-like non-aqueous electrolyte, a room temperature molten salt (ionic melt) containing lithium ions, a polymer solid electrolyte, an inorganic solid electrolyte, and the like are used. Also good.
  • the room temperature molten salt refers to a compound that can exist as a liquid at room temperature (15 ° C. or more and 25 ° C. or less) among organic salts formed by a combination of an organic cation and an anion.
  • Room temperature molten salt includes room temperature molten salt that exists as a liquid alone, room temperature molten salt that becomes liquid when mixed with electrolyte salt, room temperature molten salt that becomes liquid when dissolved in organic solvent, or a mixture thereof It is.
  • the melting point of the room temperature molten salt used for the secondary battery is 25 ° C. or less.
  • the organic cation generally has a quaternary ammonium skeleton.
  • the polymer solid electrolyte is prepared by dissolving an electrolyte salt in a polymer material and solidifying it.
  • the inorganic solid electrolyte is a solid material having Li ion conductivity.
  • a solid electrolyte having Li ion conductivity that can be included in the insulating layer can be used.
  • Exterior material for example, a container made of a laminate film or a metal container can be used.
  • the thickness of the laminate film is, for example, 0.5 mm or less, and preferably 0.2 mm or less.
  • the laminate film a multilayer film including a plurality of resin layers and a metal layer interposed between these resin layers is used.
  • the resin layer includes, for example, a polymer material such as polypropylene (PP), polyethylene (PE), nylon, and polyethylene terephthalate (PET). It is preferable that a metal layer consists of aluminum foil or aluminum alloy foil for weight reduction.
  • the laminate film can be formed into the shape of the exterior member by sealing by heat sealing.
  • the wall thickness of the metal container is, for example, 1 mm or less, more preferably 0.5 mm or less, and still more preferably 0.2 mm or less.
  • the metal container is made of, for example, aluminum or an aluminum alloy.
  • the aluminum alloy preferably contains elements such as magnesium, zinc, and silicon.
  • transition metals such as iron, copper, nickel, and chromium, it is preferable that the content is 100 mass ppm or less.
  • the shape of the exterior member is not particularly limited.
  • the shape of the exterior member may be, for example, a flat type (thin type), a square type, a cylindrical type, a coin type, or a button type.
  • the exterior member can be appropriately selected according to the battery size and the application of the battery.
  • the negative electrode terminal can be formed from a material that is electrochemically stable at the Li occlusion / release potential of the above-described titanium-containing oxide (negative electrode active material) and has conductivity.
  • the negative electrode terminal material includes copper, nickel, stainless steel, or aluminum, or at least one element selected from the group consisting of Mg, Ti, Zn, Mn, Fe, Cu, and Si.
  • An aluminum alloy is mentioned.
  • aluminum or an aluminum alloy is preferably used.
  • the negative electrode terminal is preferably made of the same material as the negative electrode current collector.
  • the positive electrode terminal can be formed of a material that is electrically stable and has conductivity in a potential range (vs. Li / Li +) of 3 V to 4.5 V with respect to the oxidation-reduction potential of lithium.
  • Examples of the material of the positive electrode terminal include aluminum or an aluminum alloy containing at least one element selected from the group consisting of Mg, Ti, Zn, Mn, Fe, Cu, and Si.
  • the positive electrode terminal is preferably formed of the same material as the positive electrode current collector in order to reduce contact resistance with the positive electrode current collector.
  • FIG. 4 is a schematic cross-sectional view of an example flat battery according to the embodiment.
  • FIG. 5 is an enlarged cross-sectional view of a portion A in FIG.
  • the battery 1 shown in FIGS. 4 and 5 includes a flat wound electrode group 3 shown in FIG.
  • the flat wound electrode group 3 is housed in a bag-shaped exterior member 2 made of a laminate film including a metal layer and two resin films sandwiching the metal layer.
  • the flat wound electrode group 3 is formed by spirally winding a laminate in which the negative electrode 5, the electrical insulating member 6, the positive electrode 4, and the electrical insulating member 6 are laminated in this order from the outside. It is formed by press molding.
  • the outermost portion of the negative electrode 5 forms a negative electrode active material-containing layer 5 b containing a negative electrode active material on one surface on the inner surface side of the negative electrode current collector 5 a.
  • the negative electrode active material containing layer 5b is formed on both surfaces of the negative electrode current collector 5a.
  • positive electrode active material-containing layers 4b are formed on both surfaces of the positive electrode current collector 4a.
  • the negative electrode terminal 8 is connected to the negative electrode current collector 5 a in the outermost layer portion of the negative electrode 5, and the positive electrode terminal 7 is the positive electrode of the positive electrode 4 positioned inside. It is connected to the current collector 4a.
  • the negative terminal 8 and the positive terminal 7 are extended to the outside from the opening of the bag-shaped exterior member 2.
  • the 4 and 5 further includes an electrolyte (not shown).
  • the electrolyte is accommodated in the exterior member 2 in a state in which the electrode group 3 is impregnated.
  • the battery according to the second embodiment includes the electrode group according to the first embodiment. Therefore, self-discharge is suppressed in the battery.
  • a battery pack is provided.
  • This battery pack includes the battery according to the second embodiment.
  • the battery pack according to the embodiment may include a plurality of batteries.
  • the plurality of batteries can be electrically connected in series or electrically connected in parallel.
  • a plurality of batteries can be connected in a combination of series and parallel.
  • the battery pack can include five batteries according to the second embodiment. These batteries can be connected in series. Moreover, the battery connected in series can comprise an assembled battery. That is, the battery pack according to the embodiment can include an assembled battery.
  • the battery pack according to the embodiment can include a plurality of assembled batteries.
  • the plurality of assembled batteries can be connected in series, parallel, or a combination of series and parallel.
  • the battery pack according to the embodiment will be described in detail with reference to FIGS.
  • the flat battery shown in FIGS. 1 and 2 can be used as the unit cell.
  • FIG. 6 is an exploded perspective view schematically showing an example of the battery pack according to the embodiment.
  • FIG. 7 is a block diagram showing an example of an electric circuit of the battery pack 20 shown in FIG.
  • a plurality of unit cells 21 composed of the flat batteries shown in FIGS. 1 and 2 are laminated so that the negative electrode terminal 8 and the positive electrode terminal 7 extending to the outside are aligned in the same direction.
  • the assembled battery 23 is configured by fastening. These unit cells 21 are electrically connected to each other in series as shown in FIG.
  • the printed wiring board 24 is arranged to face the side surface of the unit cell 21 from which the negative electrode terminal 8 and the positive electrode terminal 7 extend.
  • a thermistor 25 On the printed wiring board 24, as shown in FIG. 7, a thermistor 25, a protection circuit 26, and a terminal 27 for energizing external devices are mounted.
  • An insulating plate (not shown) is attached to the surface of the protection circuit board 24 facing the assembled battery 23 in order to avoid unnecessary connection with the wiring of the assembled battery 23.
  • the positive electrode side lead 28 is connected to the positive electrode terminal 7 located in the lowermost layer of the assembled battery 23, and the tip thereof is inserted into the positive electrode side connector 29 of the printed wiring board 24 and electrically connected thereto.
  • the negative electrode side lead 30 is connected to the negative electrode terminal 8 located in the uppermost layer of the assembled battery 23, and the tip thereof is inserted into and electrically connected to the negative electrode side connector 31 of the printed wiring board 24.
  • These connectors 29 and 31 are connected to the protection circuit 26 through wiring 32 and wiring 33 formed on the printed wiring board 24.
  • the thermistor 25 detects the temperature of the unit cell 21, and the detection signal is transmitted to the protection circuit 26.
  • the protection circuit 26 can cut off the plus side wiring 34a and the minus side wiring 34b between the protection circuit 26 and the energization terminal 27 to the external device under a predetermined condition.
  • the predetermined condition is, for example, when the temperature detected by the thermistor 25 is equal to or higher than a predetermined temperature.
  • the predetermined condition is when the overcharge, overdischarge, overcurrent, etc. of the cell 21 are detected. This detection of overcharge or the like is performed for each individual cell 21 or the entire assembled battery 23.
  • the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected.
  • a lithium electrode used as a reference electrode is inserted into each unit cell 21.
  • a wiring 35 for voltage detection is connected to each single cell 21, and a detection signal is transmitted to the protection circuit 26 through these wirings 35.
  • Protective sheets 36 made of rubber or resin are respectively disposed on the three side surfaces of the assembled battery 23 excluding the side surfaces from which the positive electrode terminal 7 and the negative electrode terminal 8 protrude.
  • the assembled battery 23 is stored in a storage container 37 together with each protective sheet 36 and the printed wiring board 24. That is, the protective sheet 36 is disposed on each of the inner side surface in the long side direction and the inner side surface in the short side direction of the storage container 37, and the printed wiring board 24 is disposed on the inner side surface on the opposite side in the short side direction.
  • the assembled battery 23 is located in a space surrounded by the protective sheet 36 and the printed wiring board 24.
  • the lid 38 is attached to the upper surface of the storage container 37.
  • a heat shrink tape may be used for fixing the assembled battery 23.
  • protective sheets are arranged on both side surfaces of the assembled battery, the heat shrinkable tape is circulated, and then the heat shrinkable tape is heat shrunk to bind the assembled battery.
  • 6 and 7 show the configuration in which the unit cells 21 are connected in series, but in order to increase the battery capacity, they may be connected in parallel.
  • the assembled battery packs can be connected in series and / or in parallel.
  • the battery pack according to the third embodiment includes the battery according to the second embodiment. Therefore, self-discharge is suppressed in the battery pack.
  • Example 1 [Manufacture of negative electrode]
  • a negative electrode active material TiNb 2 O 7 in the form of secondary particles attached with carbon was prepared.
  • the average particle size of the secondary particles including the carbon phase was 15 ⁇ m.
  • the prepared negative electrode active material, acetylene black, and polyvinylidene fluoride (PVdF) were mixed in a mass ratio of 80:10:10 in N-methylpyrrolidone (NMP) to obtain a slurry.
  • NMP N-methylpyrrolidone
  • This slurry was applied to both sides of the Al foil with a basis weight of 60 g / m 2 and dried. On one side of the width direction of the Al foil, a portion where no slurry was applied was left on either side.
  • the laminated structure after drying was pressed and further vacuum dried.
  • the active material-containing layer (the slurry coating after drying and pressing) was cut so that the width was 180 mm to obtain a negative electrode.
  • the side opposite to the portion where the slurry was not applied was cut.
  • coat a slurry was used as a negative electrode current collection tab.
  • LiNi 0.33 Co 0.33 Mn 0.33 O 2 particles were prepared as a positive electrode active material, carbon black as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder. These were mixed at a mass ratio of 90: 5: 5 to obtain a mixture. Next, the obtained mixture was dispersed in an N-methylpyrrolidone (NMP) solvent to prepare a positive electrode slurry. This slurry was applied to both sides of an aluminum foil having a thickness of 15 ⁇ m with a basis weight of 80 g / m 2 and dried. On one side of the width direction of the Al foil, a portion where no slurry was applied was left on either side.
  • NMP N-methylpyrrolidone
  • the laminated structure after drying was roll-pressed. Thereafter, the active material containing layer (slurry coating film after drying and pressing) was cut to have a width of 175 mm to obtain a positive electrode.
  • the side opposite to the portion where the slurry was not applied was cut.
  • coat a slurry was used as a positive electrode current collection tab.
  • a cellulose fiber nonwoven fabric having a thickness of 15 ⁇ m and a porosity of 70% was prepared as a separator (electrically insulating member). Two separators and the negative electrode and positive electrode produced as described above were laminated in the order of negative electrode, separator, positive electrode, and separator to obtain a laminate. When laminating, the negative electrode current collecting tab and the positive electrode current collecting tab were disposed on the opposite side of the laminated body (each of a pair of sides facing each other in the width direction). At this time, the width of the active material-containing layer is found to be 5 mm longer for the negative electrode than for the positive electrode.
  • the protruding width of the negative electrode active material-containing layer on the positive electrode current collecting tab side was 1.5 mm, and the protruding width of the negative electrode active material-containing layer on the negative electrode current collecting tab side was 3.5 mm.
  • the electrode assembly was manufactured by winding the laminate into a flat spiral shape.
  • PC Propylene carbonate
  • DEC diethyl carbonate
  • the electrode group was inserted into a bag-shaped exterior member made of a laminate film.
  • the liquid nonaqueous electrolyte was injected into the electrode group in the exterior member.
  • a nonaqueous electrolyte secondary battery having a thickness of 17 mm, a width of 88 mm, and a height of 240 mm was obtained.
  • Example 2 A negative electrode and a positive electrode were produced in the same procedure as in Example 1.
  • a mixture of Al 2 O 3 particles having an average particle diameter of 1 ⁇ m and PVdF mixed at a mass ratio of 100: 4 was dispersed in NMP to prepare an alumina-containing slurry (slurry II).
  • This slurry was prepared so as to be 100 Pa ⁇ s at a viscosity shear rate of 1.0 (1 / s) and 2 Pa ⁇ s at a viscosity shear rate of 1000 (1 / s).
  • the alumina-containing slurry was applied on the active material-containing layers on both sides of the negative electrode so as to have an amount of 5 g / m 2 . Moreover, it apply
  • the negative electrode and the positive electrode on which the insulating layer was formed were alternately laminated to obtain a laminate.
  • the negative electrode current collecting tab and the positive electrode current collecting tab were disposed on the opposite side of the laminated body (each of a pair of sides opposed in the width direction).
  • the protruding width of the negative electrode active material-containing layer on the positive electrode current collector tab side was 1.5 mm
  • the protruding width of the negative electrode active material-containing layer on the negative electrode current collector tab side was 3.5 mm.
  • An electrode group was manufactured by winding the laminate.
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the obtained electrode group was used.
  • Example 3 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that BaSO 4 particles having an average particle diameter of 1 ⁇ m were used instead of Al 2 O 3 for forming the insulating layer.
  • Example 4 A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 2 except that Li 7 La 2 Ta 3 O 12 particles having an average particle diameter of 1 ⁇ m were used instead of Al 2 O 3 for forming the insulating layer.
  • Example 5 A non-aqueous electrolyte was formed in the same manner as in Example 2 except that Li 1.4 Al 0.4 Zr 1.6 (PO 4 ) 3 particles having an average particle diameter of 1 ⁇ m were used instead of Al 2 O 3 for forming the insulating layer. A secondary battery was produced.
  • Example 6 The width of the negative electrode active material-containing layer was changed to 90 mm, and the width of the positive electrode active material-containing layer was changed to 87.5 mm.
  • the protruding width of the negative electrode active material-containing layer on the positive electrode current collecting tab side was changed to 1 mm, and the protruding width of the negative electrode active material-containing layer on the negative electrode current collecting tab side was changed to 1.5 mm.
  • the electrode group was inserted into a rectangular can made of an aluminum alloy (Al purity 99%) having a wall thickness of 0.25 mm, having a thickness of 21 mm, a width of 115 mm, and a height of 105 mm, instead of the laminated film bag-shaped exterior member. Except for these changes, a non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 2.
  • Example 7 The width of the negative electrode active material-containing layer was changed to 180 mm, and the width of the positive electrode active material-containing layer was changed to 176.5 mm.
  • the protruding width of the negative electrode active material-containing layer on the positive electrode current collecting tab side was changed to 1.5 mm, and the protruding width of the negative electrode active material-containing layer on the negative electrode current collecting tab side was changed to 2 mm. Except for these changes, a non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 2.
  • Example 8 A slurry (slurry I) similar to the slurry used for producing the negative electrode in Example 1 was prepared. A slurry (slurry II) similar to the alumina-containing slurry used to form the insulating layer in Example 2 was prepared. A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 7, except that a negative electrode having an insulating layer formed thereon was produced according to the second production method described above.
  • Example 9 The width of the negative electrode active material-containing layer was changed to 185 mm, and the width of the positive electrode active material-containing layer was changed to 179 mm.
  • the protrusion width of the negative electrode active material-containing layer on the positive electrode current collector tab side was changed to 2 mm, and the protrusion width of the negative electrode active material-containing layer on the negative electrode current collector tab side was changed to 4 mm. Except for these changes, a non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 2.
  • Example 10 The width of the negative electrode active material-containing layer was changed to 118 mm, and the width of the positive electrode active material-containing layer was changed to 113.5 mm.
  • the protruding width of the negative electrode active material-containing layer on the positive electrode current collecting tab side was changed to 2 mm, and the protruding width of the negative electrode active material-containing layer on the negative electrode current collecting tab side was changed to 2.5 mm. Except for these changes, a non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 2.
  • Example 11 The width of the negative electrode active material-containing layer was changed to 180 mm, and the width of the positive electrode active material-containing layer was changed to 172.6 mm.
  • the protruding width of the negative electrode active material-containing layer on the positive electrode current collecting tab side was changed to 3.5 mm, and the protruding width of the negative electrode active material-containing layer on the negative electrode current collecting tab side was changed to 3.9 mm. Except for these changes, a non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 2.
  • Example 12 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that TiNb 2 O 7 (no carbon phase) having a primary particle shape of 1 ⁇ m in average particle size was used as the negative electrode active material.
  • Example 13 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that TiNb 2 O 7 (no carbon phase) having a primary particle shape of 1 ⁇ m in average particle size was used as the negative electrode active material.
  • Example 14 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that TiNb 2 O 7 (no carbon phase) having a primary particle shape of 0.8 ⁇ m in average particle size was used as the negative electrode active material.
  • Example 15 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 2, except that TiNb 2 O 7 (no carbon phase) in the form of secondary particles having an average particle size of 12 ⁇ m was used as the negative electrode active material.
  • Example 16 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 6 except that TiNb 2 O 7 (no carbon phase) having a primary particle shape of 1 ⁇ m in average particle size was used as the negative electrode active material.
  • Example 17 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 7, except that TiNb 2 O 7 (no carbon phase) having a primary particle shape of 1 ⁇ m in average particle size was used as the negative electrode active material.
  • Example 18 When manufacturing the electrode group, the protrusion width of the negative electrode active material-containing layer on the positive electrode current collector tab side was changed to 0.5 mm, and the protrusion of the negative electrode active material-containing layer on the negative electrode current collector tab side was changed to 4.5 mm, A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 2.
  • Example 19 As a negative electrode active material, Li 2 Na 1.6 Ti 5.6 Nb 0.4 O 14 in the form of secondary particles attached with carbon was prepared. The average particle size of the secondary particles including the carbon phase was 15 ⁇ m.
  • the prepared negative electrode active material, acetylene black, and polyvinylidene fluoride (PVdF) were mixed in a mass ratio of 80:10:10 in N-methylpyrrolidone (NMP) to obtain a slurry. This slurry was applied to both sides of the Al foil with a basis weight of 100 g / m 2 and dried. On one side of the width direction of the Al foil, a portion where no slurry was applied was left on either side.
  • the laminated structure after drying was pressed and further vacuum dried.
  • the active material-containing layer (the slurry coating after drying and pressing) was cut so that the width was 180 mm to obtain a negative electrode.
  • the side opposite to the portion where the slurry was not applied was cut.
  • coat a slurry was used as a negative electrode current collection tab.
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used.
  • Example 20 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 18 except that Li 2 Na 1.6 Ti 5.6 Nb 0.4 O 14 (no carbon phase) having an average particle diameter of 1 ⁇ m as the negative electrode active material was used. .
  • Li 4 Ti 5 O 12 having a primary particle shape with an average particle diameter of 1 ⁇ m was prepared as a negative electrode active material.
  • the prepared negative electrode active material, acetylene black, and polyvinylidene fluoride (PVdF) were mixed at a mass ratio of 80:10:10 in N-methylpyrrolidone to obtain a slurry.
  • This slurry was applied to both sides of the Al foil with a basis weight of 75 g / m 2 and dried. On one side of the width direction of the Al foil, a portion where no slurry was applied was left on either side. The laminated structure after drying was pressed and further vacuum dried.
  • the active material-containing layer (the slurry coating after drying and pressing) was cut so that the width was 180 mm to obtain a negative electrode.
  • the side opposite to the portion where the slurry was not applied was cut.
  • coat a slurry was used as a negative electrode current collection tab.
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used.
  • the remaining capacity was measured as follows. After the battery surface temperature reached 25 ° C. ⁇ 3 ° C. in a constant temperature bath at 25 ° C., constant current discharge was performed at 1 ° C. current. At this time, the discharge termination condition was the time when the battery voltage reached 1.8V. The discharged capacity was measured to determine the remaining capacity.
  • Table 1 summarizes the design of each electrode group and the battery evaluation results. Specifically, as the design of the electrode group, the composition of the compound used for the negative electrode active material, the width of the negative electrode active material-containing layer (width W N ), the protruding width of the negative electrode active material-containing layer on the positive electrode current collector tab side (first Deviation width A), the protruding width of the negative electrode active material-containing layer on the negative electrode current collecting tab side (second deviation width B), the ratio of the protruding width on the positive electrode current collecting tab side and the width of the negative electrode active material containing layer (A / W) N ), and the ratio (B / W N ) between the protrusion width on the negative electrode current collector tab side and the width of the negative electrode active material-containing layer. Moreover, the remaining capacity maintenance rate in the high-temperature storage test demonstrated previously as an evaluation result is shown.
  • Example 1-20 Nb 2 TiO 7 or Li 2 Na 1.6 Ti 5.6 Nb 0.4 O 14 having a relatively low lithium insertion / release potential (base) was used as the negative electrode active material. Therefore, the conditions of the high-temperature storage test using the batteries of these examples were conditions where lithium was likely to precipitate. Nevertheless, since self-discharge was suppressed, it can be determined that no electrical short circuit occurred.
  • Example 21 Li 4 Ti 5 O 12 having a relatively high lithium absorption / release potential (noble) was used as the negative electrode active material. Therefore, the battery of Example 20 was in a condition in which lithium deposition hardly occurred even under the conditions of the high-temperature storage test. That is, it is presumed that since there was no deposition of lithium, an electrical short circuit did not occur and there was little self-discharge.
  • the protrusion width (first deviation width B) of the negative electrode active material-containing layer on the negative electrode current collector tab side was larger than the protrusion width (deviation width A) of the negative electrode active material-containing layer on the positive electrode current collection tab side.
  • the protruding width of the negative electrode active material-containing layer is not wider on the negative electrode current collecting tab side than on the positive electrode current collecting tab side (the second deviation width B is not wider than the first deviation width A),
  • the electrode group design was not appropriate. As a result, it is speculated that self-discharge could not be suppressed as a result of a short circuit in each comparative example.
  • the electrode group according to at least one embodiment and example described above includes a laminate including a positive electrode, a negative electrode, and an electrically insulating member.
  • the positive electrode was supported on the positive electrode current collector, a positive electrode current collector tab provided at an end parallel to one side of the positive electrode current collector, and at least excluding the positive electrode current collector tab.
  • the positive electrode active material-containing layer includes a first end and a second end parallel to the one side of the positive electrode current collector.
  • the negative electrode includes a strip-shaped negative electrode current collector, a negative electrode current collector tab provided at an end parallel to one side of the negative electrode current collector, and a titanium supported on the negative electrode current collector excluding at least the negative electrode current collector tab
  • a negative electrode active material-containing layer containing a containing oxide The negative electrode active material-containing layer includes a third end portion and a fourth end portion that are parallel to the one side of the negative electrode current collector.
  • the electrically insulating member is interposed between the positive electrode active material-containing layer and the negative electrode active material-containing layer.
  • the laminate is wound.
  • a positive electrode current collecting tab protrudes in a first direction parallel to the winding axis. The fourth end portion is located closer to the positive electrode current collecting tab than the first end portion.
  • the negative electrode current collector tab protrudes in the second direction opposite to the first direction.
  • the third end is located closer to the negative electrode current collecting tab than the second end.
  • the second displacement width between the second end portion and the third end portion is wider than the first displacement width between the first end portion and the fourth end portion.

Abstract

One embodiment according to the present invention provides an electrode group comprising a laminate including a positive electrode, a negative electrode, and an electrical insulating member. The positive electrode is provided with: a belt-like positive electrode current collector; a positive electrode current collector tab disposed at one edge thereof; and a positive electrode active material-containing layer which is supported on the positive electrode current collector. The positive electrode active material-containing layer includes a first end part and a second end part that are oriented parallel to one of the edges of the positive electrode current collector. The negative electrode is provided with a belt-like negative electrode current collector, a negative electrode current collector tab disposed on one edge thereof, and a negative electrode active material-containing layer which is supported on the negative electrode current collector and which comprises a titanium-containing oxide. The negative electrode active material-containing layer includes a third end part and a fourth end part that are oriented parallel to one of the edges of the negative electrode current collector. The electrical insulating member is interposed between the positive electrode active material-containing layer and the negative electrode active material-containing layer. The laminate is rolled. The positive electrode current collector tab protrudes in a first direction parallel to the rolling axis. The fourth end part is positioned close to the side of the positive electrode current collector tab as compared with the first end part. The negative electrode current collector tab protrudes in a second direction that is opposite to the first direction. The third end part is positioned closer to the side of the negative electrode current collector tab as compared with the second end part. A first deviation width between the first end part and the fourth end part is wider than a second deviation width between the second end part and the third end part.

Description

電極群、電池、及び電池パックElectrode group, battery, and battery pack
 本発明の実施形態は、電極群、電池、及び電池パックに関する。 Embodiments of the present invention relate to an electrode group, a battery, and a battery pack.
 非水電解質電池などの電池のエネルギー密度を高くする手段の一つとして、電池電圧が高くなるよう電池を設計することが挙げられる。ニオブチタン複合酸化物および直方晶型チタン含有複合酸化物は、チタン酸化物の中でもリチウムの挿入・脱離の反応電位が低く、負極に用いた場合に電池電圧を高くできる。その反面、低い反応電位に起因して、電解質が還元分解されやすく、還元分解反応に伴って自己放電反応が進行しやすい。対策として、活物質に無機物などを表面コートすることや、活物質表面へ被膜を形成するような物質を電解質に含ませることで活物質表面を被覆することにより、自己放電反応を抑制することが行われている。 One of the means for increasing the energy density of a battery such as a non-aqueous electrolyte battery is to design the battery so that the battery voltage is increased. The niobium titanium composite oxide and the tetragonal titanium-containing composite oxide have a low reaction potential for lithium insertion / extraction among titanium oxides, and can increase the battery voltage when used as a negative electrode. On the other hand, due to the low reaction potential, the electrolyte is easily reductively decomposed, and the self-discharge reaction is likely to proceed along with the reductive decomposition reaction. As countermeasures, it is possible to suppress the self-discharge reaction by coating the surface of the active material by coating the surface of the active material with an inorganic substance or by including a material that forms a film on the surface of the active material in the electrolyte. Has been done.
 自己放電は、電池における内部短絡によっても生じ得る。そのため、内部短絡への耐性を確保し、電池の自己放電を抑制することが望ましい。 Self-discharge can also occur due to an internal short circuit in the battery. For this reason, it is desirable to secure resistance to internal short circuit and suppress self-discharge of the battery.
特開2014-167890号公報JP 2014-167890 A 特開2017- 91677号公報Japanese Unexamined Patent Publication No. 2017-91677
 自己放電が抑制されている電池を実現できる電極群、自己放電が抑制されている電池、及びこの電池を具備する電池パックを提供することを目的とする。 An object of the present invention is to provide an electrode group capable of realizing a battery in which self-discharge is suppressed, a battery in which self-discharge is suppressed, and a battery pack including the battery.
 実施形態によれば、正極と負極と電気的絶縁部材とを含む積層体を具備する電極群が提供される。正極は、帯状の正極集電体と、正極集電体の一辺に平行な端部に設けられた正極集電タブと、正極集電体の上に少なくとも正極集電タブを除いて担持された正極活物質含有層とを具備する。正極活物質含有層は正極集電体の上記一辺に平行な第1端部と第2端部とを含む。負極は、帯状の負極集電体と、負極集電体の一辺に平行な端部に設けられた負極集電タブと、負極集電体の上に少なくとも負極集電タブを除いて担持されチタン含有酸化物を含む負極活物質含有層とを具備する。負極活物質含有層は負極集電体の上記一辺に平行な第3端部と第4端部とを含む。電気的絶縁部材は、正極活物質含有層と負極活物質含有層との間に介在する。積層体は、捲回されている。捲回軸に平行な第1方向に正極集電タブが突出する。第1端部よりも第4端部が正極集電タブ側に位置する。第1方向と反対向きの第2方向に負極集電タブが突出する。第2端部よりも第3端部が負極集電タブ側に位置する。第1端部と第4端部との間の第1ずれ幅より、第2端部と第3端部との間の第2ずれ幅が広い。 According to the embodiment, an electrode group including a laminate including a positive electrode, a negative electrode, and an electrically insulating member is provided. The positive electrode was supported on the positive electrode current collector, a positive electrode current collector tab provided at an end parallel to one side of the positive electrode current collector, and at least excluding the positive electrode current collector tab. A positive electrode active material-containing layer. The positive electrode active material-containing layer includes a first end and a second end parallel to the one side of the positive electrode current collector. The negative electrode includes a strip-shaped negative electrode current collector, a negative electrode current collector tab provided at an end parallel to one side of the negative electrode current collector, and a titanium supported on the negative electrode current collector excluding at least the negative electrode current collector tab A negative electrode active material-containing layer containing a containing oxide. The negative electrode active material-containing layer includes a third end portion and a fourth end portion that are parallel to the one side of the negative electrode current collector. The electrically insulating member is interposed between the positive electrode active material-containing layer and the negative electrode active material-containing layer. The laminate is wound. A positive electrode current collecting tab protrudes in a first direction parallel to the winding axis. The fourth end is located closer to the positive electrode current collector tab than the first end. The negative electrode current collector tab protrudes in the second direction opposite to the first direction. The third end is located closer to the negative electrode current collector tab than the second end. The second shift width between the second end portion and the third end portion is wider than the first shift width between the first end portion and the fourth end portion.
 他の実施形態によれば、上記実施形態に係る電極群を具備する電池が提供される。 According to another embodiment, a battery including the electrode group according to the above embodiment is provided.
 更に他の実施例によれば、上記実施形態に係る電池を具備する電池パックが提供される。 According to still another example, a battery pack including the battery according to the above embodiment is provided.
図1は、実施形態に係る一例の電極群を概略的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example electrode group according to the embodiment. 図2は、電極群を部分的に展開した状態を概略的に示す斜視図である。FIG. 2 is a perspective view schematically showing a state in which the electrode group is partially developed. 図3は、実施形態に係る一例の電極群を概略的に示す平面図である。FIG. 3 is a plan view schematically showing an example of an electrode group according to the embodiment. 図4は、実施形態に係る一例の扁平型電池の概略断面図である。FIG. 4 is a schematic cross-sectional view of an example flat battery according to the embodiment. 図5は、図4のA部の拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a portion A in FIG. 図6は、実施形態に係る一例の電池パックの概略分解斜視図である。FIG. 6 is a schematic exploded perspective view of an example battery pack according to the embodiment. 図7は、図6の電池パックの電気回路を示すブロック図である。FIG. 7 is a block diagram showing an electric circuit of the battery pack of FIG.
実施形態Embodiment
 非水電解質電池で発生する内部短絡には、大別してリチウム金属のデンドライト析出による短絡、セパレータ等の絶縁部材の不良による短絡、微小金属片の混入による短絡などが挙げられる。中でも抑制困難と言われるリチウム金属の析出による内部短絡は、負極活物質に、リチウム析出電位よりも大幅に高い電位(貴である電位)でリチウムを吸蔵及び放出することができる材料、たとえば約1.5V(vs. Li/Li+)でリチウムを吸蔵及び放出することができるチタン酸リチウムなどを用いると、リチウム金属のデンドライト析出をほぼ完全に抑制することができる。 The internal short circuit generated in the nonaqueous electrolyte battery is roughly classified into a short circuit due to lithium metal dendrite deposition, a short circuit due to a failure of an insulating member such as a separator, and a short circuit due to mixing of minute metal pieces. In particular, internal short-circuiting due to lithium metal deposition, which is said to be difficult to suppress, is a material that can occlude and release lithium in the negative electrode active material at a potential (a noble potential) significantly higher than the lithium deposition potential, for example, about 1 When lithium titanate that can occlude and release lithium at 0.5 V (vs. Li / Li + ) or the like is used, dendritic precipitation of lithium metal can be suppressed almost completely.
 しかしながら、このように貴な電位をもつ負極活物質を用いた場合、正極電位との差分として取り出せる電池電圧が低くなり、電池のエネルギー密度が低下してしまうという問題がある。 However, when the negative electrode active material having such a noble potential is used, there is a problem that the battery voltage that can be taken out as a difference from the positive electrode potential is lowered and the energy density of the battery is lowered.
 以下に、実施の形態について図面を参照しながら説明する。なお、実施の形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施の形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術とを参酌して、適宜設計変更することができる。 Hereinafter, embodiments will be described with reference to the drawings. In addition, the same code | symbol shall be attached | subjected to a common structure through embodiment, and the overlapping description is abbreviate | omitted. Each figure is a schematic diagram for promoting explanation and understanding of the embodiment, and its shape, dimensions, ratio, etc. are different from the actual device, but these are the following explanations and known techniques. The design can be changed as appropriate.
 (第1の実施形態)
 第1の実施形態に係る電極群は、正極と負極と電気的絶縁部材とを含む積層体を具備する。 
 正極は、帯状の正極集電体と、正極集電体の一辺に平行な端部に設けられた正極集電タブと、正極集電体の上に少なくとも正極集電タブを除いて担持された正極活物質含有層とを具備する。正極活物質含有層は正極集電体の上記一辺に平行な第1端部と第2端部とを含む。 
 負極は、帯状の負極集電体と、負極集電体の一辺に平行な端部に設けられた負極集電タブと、負極集電体の上に少なくとも負極集電タブを除いて担持されチタン含有酸化物を含む負極活物質含有層とを具備する。負極活物質含有層は負極集電体の上記一辺に平行な第3端部と第4端部とを含む。 
 電気的絶縁部材は、正極活物質含有層と負極活物質含有層との間に介在する。 
 積層体は、捲回されている。積層体は、円筒形状に捲回された構造を有し得る。或いは積層体は、扁平形状に捲回された構造を有し得る。 
 捲回軸に平行な第1方向に正極集電タブが突出する。第1端部よりも第4端部が正極集電タブ側に位置する。第1方向と反対向きの第2方向に負極集電タブが突出する。第2端部よりも第3端部が負極集電タブ側に位置する。
 第1端部と第4端部との間の第1ずれ幅より、第2端部と第3端部との間の第2ずれ幅が広い。
(First embodiment)
The electrode group according to the first embodiment includes a laminate including a positive electrode, a negative electrode, and an electrical insulating member.
The positive electrode was supported on the positive electrode current collector, a positive electrode current collector tab provided at an end parallel to one side of the positive electrode current collector, and at least excluding the positive electrode current collector tab. A positive electrode active material-containing layer. The positive electrode active material-containing layer includes a first end and a second end parallel to the one side of the positive electrode current collector.
The negative electrode includes a strip-shaped negative electrode current collector, a negative electrode current collector tab provided at an end parallel to one side of the negative electrode current collector, and a titanium supported on the negative electrode current collector excluding at least the negative electrode current collector tab A negative electrode active material-containing layer containing a containing oxide. The negative electrode active material-containing layer includes a third end portion and a fourth end portion that are parallel to the one side of the negative electrode current collector.
The electrically insulating member is interposed between the positive electrode active material-containing layer and the negative electrode active material-containing layer.
The laminate is wound. The laminate may have a structure wound in a cylindrical shape. Or a laminated body may have the structure wound by the flat shape.
A positive electrode current collecting tab protrudes in a first direction parallel to the winding axis. The fourth end is located closer to the positive electrode current collector tab than the first end. The negative electrode current collector tab protrudes in the second direction opposite to the first direction. The third end is located closer to the negative electrode current collector tab than the second end.
The second shift width between the second end portion and the third end portion is wider than the first shift width between the first end portion and the fourth end portion.
 図1-図3を参照して、実施形態に係る電極群を説明する。 The electrode group according to the embodiment will be described with reference to FIGS.
 図1は、実施形態に係る一例の電極群を概略的に示す斜視図である。図2は、電極群を部分的に展開した状態を概略的に示す斜視図である。図3は、実施形態に係る一例の電極群を概略的に示す平面図である。 FIG. 1 is a perspective view schematically showing an example of an electrode group according to the embodiment. FIG. 2 is a perspective view schematically showing a state in which the electrode group is partially developed. FIG. 3 is a plan view schematically showing an example of an electrode group according to the embodiment.
 図1-図3に示す電極群3は、正極4と、負極5と、電気的絶縁部材6とを含む。電極群3は、図2に示すように、正極4と、負極5と、正極4と負極5の間に配置されている電気的絶縁部材6とを含む積層体が、扁平形状に捲回された構造を有する。 1 to 3 includes a positive electrode 4, a negative electrode 5, and an electrical insulating member 6. As shown in FIG. 2, in the electrode group 3, a laminate including a positive electrode 4, a negative electrode 5, and an electrically insulating member 6 disposed between the positive electrode 4 and the negative electrode 5 is wound into a flat shape. Has a structure.
 正極4は、図3に示すとおり、正極集電体4aと正極活物質含有層4bと正極集電タブ4cとを含む。正極集電体4aは、帯状の形状を有している。正極活物質含有層4bは、正極集電体4aの上に担持されている。正極集電タブ4cは、正極集電体4aの一辺、例えば、帯状形状の長辺に平行な端部に設けられている。 As shown in FIG. 3, the positive electrode 4 includes a positive electrode current collector 4a, a positive electrode active material-containing layer 4b, and a positive electrode current collector tab 4c. The positive electrode current collector 4a has a strip shape. The positive electrode active material-containing layer 4b is supported on the positive electrode current collector 4a. The positive electrode current collecting tab 4c is provided at an end portion parallel to one side of the positive electrode current collector 4a, for example, the long side of the belt-like shape.
 正極活物質含有層4bは、第1端部41と第2端部42とを含む。第1端部41及び第2端部42は、正極集電体4aの上記一辺(正極集電タブ4cが設けられている端部に平行な一辺)に対し平行に配置されている。 The positive electrode active material-containing layer 4 b includes a first end 41 and a second end 42. The first end portion 41 and the second end portion 42 are arranged in parallel to the one side of the positive electrode current collector 4a (one side parallel to the end portion where the positive electrode current collector tab 4c is provided).
 正極集電タブ4cは、正極集電体4aの一部であり得る。正極集電体4aのうち、少なくとも正極集電タブ4cの部分には正極活物質含有層4bが担持されてなく、正極集電タブ4cは正極活物質含有層4bの第1端部41から突出している。 The positive electrode current collector tab 4c may be a part of the positive electrode current collector 4a. The positive electrode active material-containing layer 4b is not supported on at least the positive electrode current collector tab 4c of the positive electrode current collector 4a, and the positive electrode current collector tab 4c protrudes from the first end 41 of the positive electrode active material-containing layer 4b. ing.
 一方、負極5は、負極集電体5aと負極活物質含有層5bとを含む。負極集電体5aは、帯状の形状を有している。負極活物質含有層5bは、負極集電体5aの上に担持されている。負極集電タブ5cは、負極集電体5aの一辺、例えば、帯状形状の長辺に平行な端部に設けられている。 On the other hand, the negative electrode 5 includes a negative electrode current collector 5a and a negative electrode active material-containing layer 5b. The negative electrode current collector 5a has a strip shape. The negative electrode active material-containing layer 5b is supported on the negative electrode current collector 5a. The negative electrode current collector tab 5c is provided at an end parallel to one side of the negative electrode current collector 5a, for example, the long side of the strip shape.
 負極活物質含有層5bは、第3端部53と第4端部54とを含む。第3端部53及び第4端部54は、負極集電体5aの上記一辺に(負極集電タブ5cが設けられている端部に平行な一辺)対し平行な位置にある。 The negative electrode active material-containing layer 5 b includes a third end portion 53 and a fourth end portion 54. The third end portion 53 and the fourth end portion 54 are in a position parallel to the one side of the negative electrode current collector 5a (one side parallel to the end portion where the negative electrode current collecting tab 5c is provided).
 負極集電タブ5cは、負極集電体5aの一部であり得る。負極集電体5aのうち、少なくとも負極集電タブ5cの部分には負極活物質含有層5bが担持されてなく、負極集電タブ5cは負極活物質含有層5bの第3端部53から突出している。 The negative electrode current collector tab 5c may be a part of the negative electrode current collector 5a. The negative electrode active material-containing layer 5b is not supported on at least the negative electrode current collector tab 5c of the negative electrode current collector 5a, and the negative electrode current collector tab 5c protrudes from the third end 53 of the negative electrode active material-containing layer 5b. ing.
 電極群3では、正極4の正極活物質含有層4bと負極5の負極活物質含有層5bが電気的絶縁部材6を介して対向している(図2)。積層体の捲回軸に平行な第1方向に、正極集電タブ4cが負極活物質含有層5b及び電気的絶縁部材6よりも突出している。また、第1方向に対し反対方向である第2方向に、負極集電タブ5cが正極4及び電気的絶縁部材6よりも突出している。よって、電極群3において、捲回軸と直交する第一端面に、扁平の渦巻き状に捲回された正極集電タブ4cが位置する。また、捲回軸と直交する第二端面に、扁平の渦巻き状に捲回された負極集電タブ5cが位置する。このように、正極集電タブ4cは、負極集電タブ5cとは、捲回されている積層体の反対側に位置する。 In the electrode group 3, the positive electrode active material-containing layer 4b of the positive electrode 4 and the negative electrode active material-containing layer 5b of the negative electrode 5 are opposed to each other with the electrical insulating member 6 interposed therebetween (FIG. 2). In the first direction parallel to the winding axis of the multilayer body, the positive electrode current collecting tab 4 c protrudes from the negative electrode active material-containing layer 5 b and the electrical insulating member 6. Further, the negative electrode current collecting tab 5 c protrudes from the positive electrode 4 and the electrical insulating member 6 in a second direction that is opposite to the first direction. Therefore, in the electrode group 3, the positive electrode current collection tab 4c wound by the flat spiral shape is located in the 1st end surface orthogonal to a winding axis | shaft. Moreover, the negative electrode current collection tab 5c wound by the flat spiral shape is located in the 2nd end surface orthogonal to a winding axis | shaft. Thus, the positive electrode current collection tab 4c is located on the opposite side of the wound laminate from the negative electrode current collection tab 5c.
 図3では、電気的絶縁部材6を省略している。図3に示すとおり、正極活物質含有層4bの幅Wは、負極活物質含有層5bの幅Wより小さい。正極活物質含有層4bの幅Wは、第1端部41及び第2端部42に直交する方向における正極活物質含有層4bの幅である。つまり、正極活物質含有層4bの幅Wは、第1端部41と第2端部42との間の幅に対応する。同様に、負極活物質含有層5bの幅Wは第3端部53及び第4端部54に直交する方向における負極活物質含有層5bの幅である。つまり、負極活物質含有層5bの幅Wは、第3端部53と第4端部54との間の幅に対応する。正負極それぞれの活物質含有層の幅W及び幅Wは、捲回された積層体の捲回軸に平行な方向における幅でもある。 In FIG. 3, the electrical insulating member 6 is omitted. As shown in FIG. 3, the width W P of the positive electrode active material-containing layer 4b is smaller than the width W N of the negative electrode active material-containing layer 5b. Width W P of the positive electrode active material-containing layer 4b is the width of the positive electrode active material-containing layer 4b in a direction perpendicular to the first end 41 and second end 42. In other words, the width W P of the positive electrode active material-containing layer 4b corresponds to the width between the first end 41 and second end 42. Similarly, the width W N of the negative electrode active material-containing layer 5 b is the width of the negative electrode active material-containing layer 5 b in the direction orthogonal to the third end portion 53 and the fourth end portion 54. That is, the width W N of the negative electrode active material-containing layer 5 b corresponds to the width between the third end portion 53 and the fourth end portion 54. The width W P and the width W N of the active material-containing layer of each of the positive and negative electrodes are also widths in a direction parallel to the winding axis of the wound laminate.
 正極活物質含有層4bの幅Wが負極活物質含有層5bの幅Wより狭く、負極活物質含有層5bの一部が正極活物質含有層4bの第1端部41及び第2端部42よりも幅方向に外側へはみ出している。詳細には、正極活物質含有層4bの第1端部41よりも外側に負極活物質含有層5bの第4端部54がはみ出している。つまり第4端部54の方が、第1端部41よりも正極集電タブ4c側へずれた位置にある。そして、正極活物質含有層4bの第2端部42よりも外側に負極活物質含有層5bの第3端部53がはみ出している。つまり第3端部53の方が、第2端部42よりも負極集電タブ5c側へずれた位置にある。言い換えると負極活物質含有層5bは、電極群3における正極集電タブ4cが位置する側および負極集電タブ5cが位置する側の捲回軸に平行な両方向(第1方向および第2方向)にて、正極活物質含有層4bから突出している。 Width W P of the positive electrode active material-containing layer 4b is smaller than the width W N of the negative electrode active material-containing layer 5b, the first end 41 and second end part of the anode active material-containing layer 5b positive electrode active material-containing layer 4b It protrudes outward in the width direction from the portion 42. Specifically, the fourth end portion 54 of the negative electrode active material-containing layer 5b protrudes outside the first end portion 41 of the positive electrode active material-containing layer 4b. That is, the fourth end portion 54 is located at a position shifted from the first end portion 41 toward the positive electrode current collecting tab 4c. And the 3rd end part 53 of the negative electrode active material content layer 5b protrudes outside the 2nd end part 42 of the positive electrode active material content layer 4b. That is, the third end portion 53 is located at a position shifted from the second end portion 42 toward the negative electrode current collecting tab 5c. In other words, the negative electrode active material-containing layer 5b is in both directions (first direction and second direction) parallel to the winding axis of the electrode group 3 on the side where the positive electrode current collecting tab 4c is located and on the side where the negative electrode current collecting tab 5c is located. And protrudes from the positive electrode active material-containing layer 4b.
 正極活物質含有層4bの第1端部41と負極活物質含有層5bの第4端部54との間の第1ずれ幅A(第4端部54のはみ出し幅)は、正極集電タブ4c側で負極活物質含有層5bが突出する距離に対応する。一方で、正極活物質含有層4bの第2端部42と負極活物質含有層5bの第3端部53との間の第2ずれ幅B(第3端部53のはみ出し幅)は、負極集電タブ5c側で負極活物質含有層5bが突出する距離に対応する。第1ずれ幅Aよりも、第2ずれ幅Bの方が広い。 The first shift width A (the protruding width of the fourth end portion 54) between the first end portion 41 of the positive electrode active material-containing layer 4b and the fourth end portion 54 of the negative electrode active material-containing layer 5b is a positive electrode current collecting tab. This corresponds to the distance at which the negative electrode active material-containing layer 5b protrudes on the 4c side. On the other hand, the second shift width B (the protruding width of the third end portion 53) between the second end portion 42 of the positive electrode active material-containing layer 4b and the third end portion 53 of the negative electrode active material-containing layer 5b is the negative electrode. This corresponds to the distance at which the negative electrode active material-containing layer 5b protrudes on the current collecting tab 5c side. The second shift width B is wider than the first shift width A.
 高い電池エネルギー密度を得る目的でリチウムの吸蔵放出の電位が低い(卑である)負極活物質を用いると、負極活物質含有層5bの端部(第3端部53及び第4端部54)にて金属析出、例えば、リチウムデンドライトの形成が起こりやすい。負極活物質含有層5bの第3端部53及び第4端部54が正極活物質含有層4bの第1端部41及び第2端部42の外側にはみ出していることで、金属析出による正負極間の短絡を抑制できる。 If a negative electrode active material having a low (occluded) lithium occlusion / release potential is used for the purpose of obtaining a high battery energy density, the end portions (third end portion 53 and fourth end portion 54) of the negative electrode active material-containing layer 5b are used. Metal deposition, for example, formation of lithium dendrite is likely to occur. The third end portion 53 and the fourth end portion 54 of the negative electrode active material-containing layer 5b protrude outside the first end portion 41 and the second end portion 42 of the positive electrode active material-containing layer 4b. Short circuit between the negative electrodes can be suppressed.
 正極活物質含有層4bの幅Wを大幅に広くし第1端部41が負極活物質含有層5bの第4端部54より外側へ突出させた場合は、第4端部54と正極活物質含有層4bの一部が電気的絶縁部材6を介して重なり合うことになる。その場合、第4端部54での金属析出に起因して、正負極間で電気的短絡が生じ得る。また、正極活物質含有層4bのうち負極活物質含有層5bと対向していない部分が増えるため、エネルギー密度が下がるという側面もある。 If the first end portion 41 and substantially increasing the width W P of the positive electrode active material-containing layer 4b is made to project outward from the fourth end portion 54 of the negative electrode active material-containing layer 5b, the cathode active and fourth end portions 54 Part of the substance-containing layer 4b overlaps with the electrically insulating member 6 interposed therebetween. In that case, an electrical short circuit may occur between the positive and negative electrodes due to metal deposition at the fourth end 54. Moreover, since the part which does not oppose the negative electrode active material content layer 5b among the positive electrode active material content layers 4b increases, there also exists an aspect that an energy density falls.
 第2ずれ幅Bが大きい方が、正極活物質含有層4bの第2端部42と負極活物質含有層5bの第3端部53との間の距離を長くすることができる。第2端部42と第3端部53とがより離れていることで、電極群の製造時に第2端部42と第3端部53とが互いに接触する危険性が下がる。また、第2ずれ幅Bを大きくすることで、第2端部42と負極集電タブ5cとの間の距離を長くすることができる。正極活物質含有層4bの第2端部42と負極集電タブ5cとの間に距離を空けることで、例えば、物理的な衝撃など電池の外部から加わった力によって負極集電タブ5cが変形した際、第2端部42と負極集電タブ5cとの接触が起こりにくい。従って、負極集電タブ5c側での電気的短絡が抑えられる。 The larger the second displacement width B, the longer the distance between the second end portion 42 of the positive electrode active material-containing layer 4b and the third end portion 53 of the negative electrode active material-containing layer 5b. Since the second end portion 42 and the third end portion 53 are further away from each other, the risk of the second end portion 42 and the third end portion 53 coming into contact with each other during the manufacture of the electrode group is reduced. Further, by increasing the second displacement width B, the distance between the second end portion 42 and the negative electrode current collecting tab 5c can be increased. By separating a distance between the second end portion 42 of the positive electrode active material-containing layer 4b and the negative electrode current collector tab 5c, the negative electrode current collector tab 5c is deformed by a force applied from the outside of the battery such as a physical impact, for example. When it does, contact with the 2nd end part 42 and negative electrode current collection tab 5c does not occur easily. Therefore, an electrical short circuit on the negative electrode current collecting tab 5c side can be suppressed.
 一方で、第1ずれ幅Aは、大きすぎない方が望ましい。負極活物質含有層5bの第4端部54が正極活物質含有層4bの第1端部41より外側に突出しているため、第4端部54と正極集電タブ4cの縁との間の距離が、正極集電タブ4cの幅よりも短い。第1ずれ幅Aが広くなるにつれ、第4端部54と正極集電タブ4cの縁との間の距離が短くなる。そうすると、例えば、物理的な衝撃など電池の外部から加わった力によって正極集電タブ4cが変形した際、第4端部54と正極集電タブ4cとの間で電気的短絡が生じ易くなる。 On the other hand, it is desirable that the first deviation width A is not too large. Since the fourth end portion 54 of the negative electrode active material-containing layer 5b protrudes outside the first end portion 41 of the positive electrode active material-containing layer 4b, it is between the fourth end portion 54 and the edge of the positive electrode current collecting tab 4c. The distance is shorter than the width of the positive electrode current collecting tab 4c. As the first deviation width A becomes wider, the distance between the fourth end portion 54 and the edge of the positive electrode current collecting tab 4c becomes shorter. Then, for example, when the positive electrode current collecting tab 4c is deformed by a force applied from the outside of the battery such as a physical impact, an electrical short circuit is likely to occur between the fourth end 54 and the positive electrode current collecting tab 4c.
 また、電池のエネルギー密度を確保する観点から、第1ずれ幅Aを小さくすることが好ましい。第1ずれ幅Aを小さく抑えることで、正極活物質含有層4bと負極活物質含有層5bとが対向する面積を大きくすることができる。従って、第1ずれ幅Aが小さい方がエネルギー密度を高くできる。 Also, from the viewpoint of securing the energy density of the battery, it is preferable to reduce the first deviation width A. By suppressing the first deviation width A to be small, the area where the positive electrode active material-containing layer 4b and the negative electrode active material-containing layer 5b face each other can be increased. Therefore, the energy density can be increased as the first deviation width A is smaller.
 ただし、負極活物質含有層5bの第4端部54での金属析出による短絡を抑制するには、第4端部54が正極活物質含有層4bと重なり合っていないことが望ましい。そのため、第1ずれ幅Aはゼロを上回る。 However, in order to suppress a short circuit due to metal deposition at the fourth end portion 54 of the negative electrode active material-containing layer 5b, it is desirable that the fourth end portion 54 does not overlap the positive electrode active material-containing layer 4b. Therefore, the first deviation width A exceeds zero.
 第1ずれ幅Aは、負極活物質含有層の幅Wに対する割合が0.008以上0.02以下であり得る。つまり、第1ずれ幅Aと幅Wは、0.008≦A/W≦0.02の関係を満たし得る。一方で、第2ずれ幅Bは、負極活物質含有層の幅Wに対する割合が0.01以上0.022以下であり得る。つまり、第2ずれ幅Bと幅Wは、0.01≦B/W≦0.022の関係を満たし得る。 The ratio of the first deviation width A to the width W N of the negative electrode active material-containing layer may be 0.008 or more and 0.02 or less. That is, the first deviation width A and the width W N can satisfy the relationship of 0.008 ≦ A / W N ≦ 0.02. On the other hand, the ratio of the second displacement width B to the width W N of the negative electrode active material-containing layer may be 0.01 or more and 0.022 or less. That is, the second shift width B and the width W N can satisfy the relationship of 0.01 ≦ B / W N ≦ 0.022.
 また、第1ずれ幅Aと第2ずれ幅Bとの差A-Bが1mm以上3mm以下であることが好ましい。 Further, it is preferable that the difference AB between the first deviation width A and the second deviation width B is 1 mm or more and 3 mm or less.
 図1に示すように、電極群3を電池に実装する際、正極リード17及び負極リード18を電極群3に接続したり、絶縁シート10を電極群3に設けたりすることができる。正極リード17は、正極集電タブ4cに電気的に接続される。負極リード18は、負極集電タブ5cに電気的に接続される。絶縁シート10は、例えば、電極群3の最外周のうち、正極集電タブ4c及び負極集電タブ5cを除いた部分を被覆する。 As shown in FIG. 1, when the electrode group 3 is mounted on a battery, the positive electrode lead 17 and the negative electrode lead 18 can be connected to the electrode group 3, or the insulating sheet 10 can be provided on the electrode group 3. The positive electrode lead 17 is electrically connected to the positive electrode current collecting tab 4c. The negative electrode lead 18 is electrically connected to the negative electrode current collecting tab 5c. For example, the insulating sheet 10 covers a portion of the outermost periphery of the electrode group 3 excluding the positive electrode current collecting tab 4c and the negative electrode current collecting tab 5c.
 次に、実施形態に係る電極群を、より詳細に説明する。 Next, the electrode group according to the embodiment will be described in more detail.
 [正極]
 正極は、帯状の正極集電体を具備する。そのため、正極は、帯状形状を有することができる。
[Positive electrode]
The positive electrode includes a strip-shaped positive electrode current collector. Therefore, the positive electrode can have a strip shape.
 正極集電体は、アルミニウム箔、又は、Mg、Ti、Zn、Ni、Cr、Mn、Fe、Cu及びSiから選択される一以上の元素を含むアルミニウム合金箔であることが好ましい。 The positive electrode current collector is preferably an aluminum foil or an aluminum alloy foil containing one or more elements selected from Mg, Ti, Zn, Ni, Cr, Mn, Fe, Cu and Si.
 アルミニウム箔又はアルミニウム合金箔の厚さは、5μm以上20μm以下であることが好ましく、15μm以下であることがより好ましい。アルミニウム箔の純度は99質量%以上であることが好ましい。アルミニウム箔又はアルミニウム合金箔に含まれる鉄、銅、ニッケル、及びクロムなどの遷移金属の含有量は、1質量%以下であることが好ましい。 The thickness of the aluminum foil or aluminum alloy foil is preferably 5 μm or more and 20 μm or less, and more preferably 15 μm or less. The purity of the aluminum foil is preferably 99% by mass or more. The content of transition metals such as iron, copper, nickel, and chromium contained in the aluminum foil or aluminum alloy foil is preferably 1% by mass or less.
 正極は、正極集電体上に担持された正極活物質含有層を更に具備する。正極集電体は、その両面に正極活物質含有層を担持することができるし、或いは片面に正極活物質含有層を担持することができる。正極活物質含有層は第1端部および第2端部を含む。 The positive electrode further includes a positive electrode active material-containing layer supported on the positive electrode current collector. The positive electrode current collector can carry a positive electrode active material-containing layer on both sides thereof, or can carry a positive electrode active material-containing layer on one side. The positive electrode active material-containing layer includes a first end and a second end.
 また正極は、正極集電体の一辺に平行な端部に設けられた正極集電タブを具備する。この正極集電タブは、正極集電体のうちの、表面に正極活物質含有層を担持していない部分であり得る。正極集電タブは、正極活物質含有層の第1端部から突出する。 The positive electrode also includes a positive electrode current collecting tab provided at an end parallel to one side of the positive electrode current collector. The positive electrode current collector tab may be a portion of the positive electrode current collector that does not carry the positive electrode active material-containing layer on the surface. The positive electrode current collecting tab protrudes from the first end of the positive electrode active material-containing layer.
 正極活物質含有層は、例えば、正極活物質と、導電剤と、結着剤とを含むことができる。 The positive electrode active material-containing layer can include, for example, a positive electrode active material, a conductive agent, and a binder.
 正極活物質としては、例えば、酸化物又は硫化物を用いることができる。正極は、正極活物質として、1種類の化合物を単独で含んでいてもよく、或いは2種類以上の化合物を組み合わせて含んでいてもよい。酸化物及び硫化物の例には、Li又はLiイオンを挿入及び脱離させることができる化合物を挙げることができる。 As the positive electrode active material, for example, an oxide or a sulfide can be used. The positive electrode may contain one kind of compound alone as a positive electrode active material, or may contain two or more kinds of compounds in combination. Examples of oxides and sulfides include compounds that can insert and desorb Li or Li ions.
 このような化合物としては、例えば、二酸化マンガン(MnO2)、酸化鉄、酸化銅、酸化ニッケル、リチウムマンガン複合酸化物(例えばLixMn24又はLixMnO2;0<x≦1)、リチウムニッケル複合酸化物(例えばLixNiO2;0<x≦1)、リチウムコバルト複合酸化物(例えばLixCoO2;0<x≦1)、リチウムニッケルコバルト複合酸化物(例えばLixNi1-yCoy2;0<x≦1、0<y<1)、リチウムマンガンコバルト複合酸化物(例えばLixMnyCo1-y2;0<x≦1、0<y<1)、スピネル構造を有するリチウムマンガンニッケル複合酸化物(例えばLixMn2-yNiy4;0<x≦1、0<y<2)、オリビン構造を有するリチウムリン酸化物(例えばLixFePO4;0<x≦1、LixFe1-yMnyPO4;0<x≦1、0<y<1、LixCoPO4;0<x≦1)、硫酸鉄(Fe2(SO4)3)、バナジウム酸化物(例えばV25)、及び、リチウムニッケルコバルトマンガン複合酸化物(LixNi1-y-zCoyMnz2;0<x≦1、0<y<1、0<z<1、y+z<1)が含まれる。 As such a compound, for example, manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, lithium manganese composite oxide (for example, Li x Mn 2 O 4 or Li x MnO 2 ; 0 <x ≦ 1) Lithium nickel composite oxide (for example, Li x NiO 2 ; 0 <x ≦ 1), lithium cobalt composite oxide (for example, Li x CoO 2 ; 0 <x ≦ 1), lithium nickel cobalt composite oxide (for example, Li x Ni 1-y Co y O 2; 0 <x ≦ 1,0 <y <1), lithium-manganese-cobalt composite oxide (e.g., Li x Mn y Co 1-y O 2; 0 <x ≦ 1,0 <y < 1) a lithium manganese nickel composite oxide having a spinel structure (for example, Li x Mn 2 -y Ni y O 4 ; 0 <x ≦ 1, 0 <y <2), a lithium phosphorous oxide having an olivine structure (for example, Li x FePO 4; 0 x ≦ 1, Li x Fe 1 -y Mn y PO 4; 0 <x ≦ 1,0 <y <1, Li x CoPO 4; 0 <x ≦ 1), ferrous sulfate (Fe 2 (SO 4) 3 ) , Vanadium oxide (for example, V 2 O 5 ), and lithium nickel cobalt manganese composite oxide (Li x Ni 1-yz Co y Mn z O 2 ; 0 <x ≦ 1, 0 <y <1, 0 <z <1, y + z <1).
 上記のうち、正極活物質としてより好ましい化合物の例には、スピネル構造を有するリチウムマンガン複合酸化物(例えばLixMn24;0<x≦1)、リチウムニッケル複合酸化物(例えばLixNiO2;0<x≦1)、リチウムコバルト複合酸化物(例えばLixCoO2;0<x≦1)、リチウムニッケルコバルト複合酸化物(例えばLixNi1-yCoy2;0<x≦1、0<y<1)、スピネル構造を有するリチウムマンガンニッケル複合酸化物(例えばLixMn2-yNiy4;0<x≦1、0<y<2)、リチウムマンガンコバルト複合酸化物(例えばLixMnyCo1-y2;0<x≦1、0<y<1)、リチウムリン酸鉄(例えばLixFePO4;0<x≦1)、及び、リチウムニッケルコバルトマンガン複合酸化物(LixNi1-y-zCoyMnz2;0<x≦1、0<y<1、0<z<1、y+z<1)が含まれる。これらの化合物を正極活物質に用いると、正極電位を高めることができる。 Among the above, examples of compounds more preferable as the positive electrode active material include lithium manganese composite oxide having a spinel structure (for example, Li x Mn 2 O 4 ; 0 <x ≦ 1), lithium nickel composite oxide (for example, Li x). NiO 2 ; 0 <x ≦ 1), lithium cobalt composite oxide (for example, Li x CoO 2 ; 0 <x ≦ 1), lithium nickel cobalt composite oxide (for example, Li x Ni 1-y Co y O 2 ; 0 < x ≦ 1, 0 <y <1), lithium manganese nickel composite oxide having a spinel structure (for example, Li x Mn 2-y Ni y O 4 ; 0 <x ≦ 1, 0 <y <2), lithium manganese cobalt composite oxides (e.g., Li x Mn y Co 1-y O 2; 0 <x ≦ 1,0 <y <1), lithium iron phosphate (e.g. Li x FePO 4; 0 <x ≦ 1), and lithium Nickel cobalt manganese composite Oxide (Li x Ni 1-yz Co y Mn z O 2; 0 <x ≦ 1,0 <y <1,0 <z <1, y + z <1) are included. When these compounds are used for the positive electrode active material, the positive electrode potential can be increased.
 電池の電解質として常温溶融塩を用いる場合、リチウムリン酸鉄、LixVPO4F(0≦x≦1)、リチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムニッケルコバルト複合酸化物、又はこれらの混合物を含む正極活物質を用いることが好ましい。これらの化合物は常温溶融塩との反応性が低いため、サイクル寿命を向上させることができる。常温溶融塩の詳細については、後述する。 When room temperature molten salt is used as the battery electrolyte, lithium iron phosphate, Li x VPO 4 F (0 ≦ x ≦ 1), lithium manganese composite oxide, lithium nickel composite oxide, lithium nickel cobalt composite oxide, or these It is preferable to use a positive electrode active material containing a mixture of the above. Since these compounds have low reactivity with room temperature molten salts, the cycle life can be improved. Details of the room temperature molten salt will be described later.
 正極活物質の一次粒径は、100nm以上1μm以下であることが好ましい。一次粒径が100nm以上の正極活物質は、工業生産上の取り扱いが容易である。一次粒径が1μm以下の正極活物質は、リチウムイオンの固体内拡散をスムーズに進行させることが可能である。 The primary particle size of the positive electrode active material is preferably 100 nm or more and 1 μm or less. A positive electrode active material having a primary particle size of 100 nm or more is easy to handle in industrial production. A positive electrode active material having a primary particle size of 1 μm or less can smoothly diffuse lithium ions in a solid.
 正極活物質の比表面積は、0.1m2/g以上10m2/g以下であることが好ましい。0.1m2/g以上の比表面積を有する正極活物質は、Liイオンの吸蔵・放出サイトを十分に確保できる。10m2/g以下の比表面積を有する正極活物質は、工業生産の上で取り扱い易く、かつ良好な充放電サイクル性能を確保できる。 The specific surface area of the positive electrode active material is preferably 0.1 m 2 / g or more and 10 m 2 / g or less. The positive electrode active material having a specific surface area of 0.1 m 2 / g or more can sufficiently ensure the storage / release sites of Li ions. The positive electrode active material having a specific surface area of 10 m 2 / g or less is easy to handle in industrial production and can ensure good charge / discharge cycle performance.
 結着剤は、分散された正極活物質の間隙を埋め、また、正極活物質と正極集電体とを結着させるために配合される。結着剤の例には、ポリテトラフルオロエチレン(polytetrafluoro ethylene;PTFE)、ポリフッ化ビニリデン(polyvinylidene fluoride;PVdF)、フッ素系ゴム、ポリアクリル酸化合物、イミド化合物、カルボキシルメチルセルロース(carboxyl methyl cellulose;CMC)、及びCMCの塩が含まれる。これらの1つを結着剤として用いてもよく、或いは、2つ以上を組み合わせて結着剤として用いてもよい。 The binder is blended to fill the gap between the dispersed positive electrode active materials and to bind the positive electrode active material and the positive electrode current collector. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, polyacrylic acid compound, imide compound, carboxymethyl cellulose (CMC). , And salts of CMC. One of these may be used as a binder, or a combination of two or more may be used as a binder.
 導電剤は、集電性能を高め、且つ、正極活物質と正極集電体との接触抵抗を抑えるために配合される。導電剤の例には、気相成長カーボン繊維(Vapor Grown Carbon Fiber;VGCF)、アセチレンブラックなどのカーボンブラック及び黒鉛のような炭素質物が含まれる。これらの1つを導電剤として用いてもよく、或いは、2つ以上を組み合わせて導電剤として用いてもよい。また、導電剤を省略することもできる。 The conductive agent is blended in order to improve the current collecting performance and suppress the contact resistance between the positive electrode active material and the positive electrode current collector. Examples of the conductive agent include vapor grown carbon fibers (Vapor Grown Carbon Fiber; VGCF), carbon black such as acetylene black, and carbonaceous materials such as graphite. One of these may be used as a conductive agent, or a combination of two or more may be used as a conductive agent. Further, the conductive agent can be omitted.
 正極活物質含有層において、正極活物質及び結着剤は、それぞれ、80質量%以上98質量%以下、及び2質量%以上20質量%以下の割合で配合することが好ましい。 In the positive electrode active material-containing layer, the positive electrode active material and the binder are preferably blended at a ratio of 80% by mass to 98% by mass and 2% by mass to 20% by mass, respectively.
 結着剤の量を2質量%以上にすることにより、十分な電極強度が得られる。また、結着剤は、絶縁体として機能し得る。そのため、結着剤の量を20質量%以下にすると、電極に含まれる絶縁体の量が減るため、内部抵抗を減少できる。 Sufficient electrode strength can be obtained by setting the amount of the binder to 2% by mass or more. In addition, the binder can function as an insulator. Therefore, when the amount of the binder is 20% by mass or less, the amount of the insulator included in the electrode is reduced, so that the internal resistance can be reduced.
 導電剤を加える場合には、正極活物質、結着剤及び導電剤は、それぞれ、77質量%以上95質量%以下、2質量%以上20質量%以下、及び3質量%以上15質量%以下の割合で配合することが好ましい。 When a conductive agent is added, the positive electrode active material, the binder, and the conductive agent are 77% by mass or more and 95% by mass or less, 2% by mass or more and 20% by mass or less, and 3% by mass or more and 15% by mass or less, respectively. It is preferable to mix | blend in a ratio.
 導電剤の量を3質量%以上にすることにより、上述した効果を発揮することができる。また、導電剤の量を15質量%以下にすることにより、電解質と接触する導電剤の割合を低くすることができる。この割合が低いと、高温保存下において、電解質の分解を低減することができる。 By making the amount of the conductive agent 3% by mass or more, the above-described effects can be exhibited. Moreover, the ratio of the electrically conductive agent which contacts an electrolyte can be made low by making the quantity of an electrically conductive agent into 15 mass% or less. When this ratio is low, decomposition of the electrolyte can be reduced under high temperature storage.
 正極は、例えば次の方法により作製することができる。まず、正極活物質、導電剤及び結着剤を溶媒に懸濁してスラリーを調製する。このスラリーを、正極集電体の片面又は両面に塗布する。次いで、塗布したスラリーを乾燥させて、正極活物質含有層と正極集電体との積層構造物を得る。その後、この積層構造物にプレスを施す。このようにして、正極を作製する。 The positive electrode can be produced, for example, by the following method. First, a positive electrode active material, a conductive agent, and a binder are suspended in a solvent to prepare a slurry. This slurry is applied to one side or both sides of the positive electrode current collector. Next, the applied slurry is dried to obtain a laminated structure of the positive electrode active material-containing layer and the positive electrode current collector. Thereafter, the laminated structure is pressed. In this way, a positive electrode is produced.
 或いは、正極は、次の方法により作製してもよい。まず、正極活物質、導電剤及び結着剤を混合して、混合物を得る。次いで、この混合物をペレット状に成形する。次いで、これらのペレットを正極集電体上に配置することにより、正極を得ることができる。 Alternatively, the positive electrode may be produced by the following method. First, a positive electrode active material, a conductive agent, and a binder are mixed to obtain a mixture. The mixture is then formed into pellets. Subsequently, a positive electrode can be obtained by arranging these pellets on a positive electrode current collector.
 正極集電体にスラリーを塗布する幅、又は正極集電体上に配置するペレットの範囲を適宜調整して、正極活物質含有層の幅を制御できる。必要に応じて、作製後の正極を裁断して寸法を調節する。 The width of the positive electrode active material-containing layer can be controlled by appropriately adjusting the width of the slurry applied to the positive electrode current collector or the range of the pellets arranged on the positive electrode current collector. If necessary, the produced positive electrode is cut to adjust the dimensions.
 [負極]
 負極は、帯状の負極集電体を具備する。そのため、負極は、帯状形状を有することができる。
[Negative electrode]
The negative electrode includes a strip-shaped negative electrode current collector. Therefore, the negative electrode can have a strip shape.
 負極集電体は、負極活物質としてのチタン含有酸化物にリチウム(Li)が挿入及び脱離される電位において電気化学的に安定である材料が用いられる。負極集電体は、例えば、銅、ニッケル、ステンレス又はアルミニウム、或いは、Mg、Ti、Zn、Mn、Fe、Cu、及びSiから選択される一以上の元素を含むアルミニウム合金から作られることが好ましい。負極集電体の厚さは、5μm以上20μm以下であることが好ましい。このような厚さを有する集電体は、電極の強度と軽量化のバランスをとることができる。 As the negative electrode current collector, a material that is electrochemically stable at a potential at which lithium (Li) is inserted into and desorbed from a titanium-containing oxide as a negative electrode active material is used. The negative electrode current collector is preferably made of, for example, copper, nickel, stainless steel, or aluminum, or an aluminum alloy containing one or more elements selected from Mg, Ti, Zn, Mn, Fe, Cu, and Si. . The thickness of the negative electrode current collector is preferably 5 μm or more and 20 μm or less. The current collector having such a thickness can balance the strength and weight reduction of the electrode.
 負極は、負極集電体上に担持された負極活物質含有層を更に具備する。負極集電体は、その両面に負極活物質含有層を担持することができるし、或いは片面に負極活物質含有層を担持することができる。負極活物質含有層は第3端部および第4端部を含む。 The negative electrode further includes a negative electrode active material-containing layer supported on the negative electrode current collector. The negative electrode current collector can carry a negative electrode active material-containing layer on both sides thereof, or can carry a negative electrode active material-containing layer on one side. The negative electrode active material-containing layer includes a third end and a fourth end.
 また負極は、負極集電体の一辺に平行な端部に設けられた負極集電タブを具備する。この負極集電タブは、負極集電体のうちの、表面に負極活物質含有層を担持していない部分であり得る。負極集電タブは、負極活物質含有層の第3端部から突出する。 The negative electrode also includes a negative electrode current collector tab provided at an end parallel to one side of the negative electrode current collector. The negative electrode current collector tab may be a portion of the negative electrode current collector that does not carry the negative electrode active material-containing layer on the surface. The negative electrode current collector tab protrudes from the third end of the negative electrode active material-containing layer.
 負極活物質含有層は、チタン含有酸化物を含む。チタン含有酸化物は、負極活物質として負極活物質含有層に含まれ得る。負極活物質含有層は、例えば、導電剤と、結着剤とを更に含むことができる。 The negative electrode active material-containing layer contains a titanium-containing oxide. The titanium-containing oxide can be contained in the negative electrode active material-containing layer as a negative electrode active material. The negative electrode active material-containing layer can further include, for example, a conductive agent and a binder.
 活物質含有層に含まれているチタン含有酸化物は、例えば、単斜晶型ニオブチタン複合酸化物および直方晶型(orthorhombic)チタン含有複合酸化物などを含むことができる。チタン含有酸化物は、1種類の化合物でもよく、或いは、2種類以上の化合物の混合物であってもよい。 The titanium-containing oxide contained in the active material-containing layer can include, for example, monoclinic niobium titanium composite oxide and orthorhombic titanium-containing composite oxide. The titanium-containing oxide may be one type of compound or a mixture of two or more types of compounds.
 上記単斜晶型ニオブチタン複合酸化物の例として、LixTi1-yM1yNb2-zM2z7+δで表される化合物が挙げられる。ここで、M1は、Zr,Si,及びSnからなる群より選択される少なくとも1つである。M2は、V,Ta,及びBiからなる群より選択される少なくとも1つである。組成式中のそれぞれの添字は、0≦x≦5、0≦y<1、0≦z<2、-0.3≦δ≦0.3である。単斜晶型ニオブチタン複合酸化物の具体例として、LixNb2TiO7(0≦x≦5)が挙げられる。 Examples of the monoclinic niobium titanium composite oxide include compounds represented by Li x Ti 1-y M1 y Nb 2 -z M2 z O 7 + δ . Here, M1 is at least one selected from the group consisting of Zr, Si, and Sn. M2 is at least one selected from the group consisting of V, Ta, and Bi. The subscripts in the composition formula are 0 ≦ x ≦ 5, 0 ≦ y <1, 0 ≦ z <2, and −0.3 ≦ δ ≦ 0.3. A specific example of the monoclinic niobium titanium complex oxide is Li x Nb 2 TiO 7 (0 ≦ x ≦ 5).
 単斜晶型ニオブチタン複合酸化物の他の例として、LixTi1-yM3y+zNb2-z7-δで表される化合物が挙げられる。ここで、M3は、Mg,Fe,Ni,Co,W,Ta,及びMoより選択される少なくとも1つである。組成式中のそれぞれの添字は、0≦x≦5、0≦y<1、0≦z<2、-0.3≦δ≦0.3である。 Another example of the monoclinic niobium titanium composite oxide is a compound represented by Li x Ti 1-y M3 y + z Nb 2 -z O 7-δ . Here, M3 is at least one selected from Mg, Fe, Ni, Co, W, Ta, and Mo. The subscripts in the composition formula are 0 ≦ x ≦ 5, 0 ≦ y <1, 0 ≦ z <2, and −0.3 ≦ δ ≦ 0.3.
 直方晶型チタン含有複合酸化物の例として、Li2+aM(I)2-bTi6-cM(II)d14+σで表される化合物が挙げられる。ここで、M(I)は、Sr,Ba,Ca,Mg,Na,Cs,Rb及びKからなる群より選択される少なくとも1つである。M(II)はZr,Sn,V,Nb,Ta,Mo,W,Y,Fe,Co,Cr,Mn,Ni,及びAlからなる群より選択される少なくとも1つである。組成式中のそれぞれの添字は、0≦a≦6、0≦b<2、0≦c<6、0≦d<6、-0.5≦σ≦0.5である。直方晶型チタン含有複合酸化物の具体例として、Li2+aNa2Ti614(0≦a≦6)が挙げられる。 Examples of the tetragonal titanium-containing composite oxide include a compound represented by Li 2 + a M (I) 2 -b Ti 6 -c M (II) d O 14 + σ . Here, M (I) is at least one selected from the group consisting of Sr, Ba, Ca, Mg, Na, Cs, Rb and K. M (II) is at least one selected from the group consisting of Zr, Sn, V, Nb, Ta, Mo, W, Y, Fe, Co, Cr, Mn, Ni, and Al. The subscripts in the composition formula are 0 ≦ a ≦ 6, 0 ≦ b <2, 0 ≦ c <6, 0 ≦ d <6, and −0.5 ≦ σ ≦ 0.5. Specific examples of the tetragonal titanium-containing composite oxide include Li 2 + a Na 2 Ti 6 O 14 (0 ≦ a ≦ 6).
 チタン含有酸化物の中でも単斜晶型ニオブチタン複合酸化物および直方晶型チタン含有複合酸化物は、リチウムの吸蔵・放出電位(リチウムが挿入および脱離される電位)が低い(卑である)。そのため、これらのチタン含有酸化物を用いることでエネルギー密度が高い電池を得ることができる。リチウムの吸蔵・放出電位が低いとリチウムデンドライトが析出しやすいが、先に説明したとおり実施形態に係る電極群では析出による短絡が生じにくい。 Among the titanium-containing oxides, the monoclinic niobium titanium composite oxide and the tetragonal titanium-containing composite oxide have a low lithium insertion / extraction potential (potential at which lithium is inserted and desorbed). Therefore, a battery having a high energy density can be obtained by using these titanium-containing oxides. When the lithium occlusion / release potential is low, lithium dendrite is likely to precipitate. However, as described above, the electrode group according to the embodiment is less likely to cause a short circuit due to precipitation.
 他のチタン含有酸化物として、例えば、Li4+wTi512(0≦w≦3)で表される化合物などのスピネル型チタン酸リチウムを挙げることができる。スピネル型チタン酸リチウムは、リチウム吸蔵・放出電位が高い(貴である)ため、高いエネルギー密度が得られにくい。また、電位が高いことによって金属析出が生じにくいため、負極活物質含有層の幅を正極活物質含有層の幅より大きくすることは負極活物質含有層のうち正極活物質含有層と対向していない部分を不要に増やしていることになり、エネルギー密度を低下させていることになる。従って、チタン含有酸化物を単斜晶型ニオブチタン複合酸化物および直方晶型チタン含有複合酸化物から選択することが望ましい。 Examples of the other titanium-containing oxide include spinel type lithium titanate such as a compound represented by Li 4 + w Ti 5 O 12 (0 ≦ w ≦ 3). Since spinel type lithium titanate has a high lithium storage / release potential (noble), it is difficult to obtain a high energy density. In addition, since metal precipitation is unlikely to occur due to a high potential, making the width of the negative electrode active material-containing layer larger than the width of the positive electrode active material-containing layer is opposite to the positive electrode active material-containing layer in the negative electrode active material-containing layer. The part which is not needed is increased unnecessarily, and the energy density is reduced. Therefore, it is desirable to select the titanium-containing oxide from monoclinic niobium titanium composite oxide and tetragonal titanium-containing composite oxide.
 チタン含有酸化物は、例えば、一次粒子の形態、又は二次粒子の形態で活物質含有層に含まれ得る。ここでいう二次粒子とは、複数の一次粒子が凝集して成る粒子を指す。 The titanium-containing oxide can be included in the active material-containing layer in the form of primary particles or secondary particles, for example. As used herein, secondary particles refer to particles formed by aggregating a plurality of primary particles.
 活物質含有層が含むことのできるチタン含有酸化物の粒子は、当該粒子の表面の少なくとも一部に形成された炭素材料を含む相を含み得る。このような相を含むことで、良好な導電性を得ることができる。例えば、チタン含有酸化物としてのニオブチタン複合酸化物の粒子表面に炭素材料を含む相を形成した複合粒子を好適に用いることができる。 The titanium-containing oxide particles that can be included in the active material-containing layer can include a phase including a carbon material formed on at least a part of the surface of the particles. By including such a phase, good conductivity can be obtained. For example, composite particles in which a phase containing a carbon material is formed on the particle surface of a niobium titanium composite oxide as a titanium-containing oxide can be suitably used.
 炭素材料を532nmの測定光源を用いたラマン分光によって分析すると、炭素材料の結晶性を判断することができる。炭素材料についてのラマンチャートにおける、1580cm-1付近に観測されるGバンドは、グラファイト構造に由来するピークであり、1330cm-1付近に観測されるDバンドは、炭素の欠陥構造に由来するピークである。Gバンド及びDバンドは、様々な要因により、1580cm-1及び1330cm-1から、それぞれ±50cm-1程ずれることがあり得る。 When the carbon material is analyzed by Raman spectroscopy using a measurement light source of 532 nm, the crystallinity of the carbon material can be determined. In the Raman chart of the carbon material, the G band observed near 1580 cm −1 is a peak derived from the graphite structure, and the D band observed near 1330 cm −1 is a peak derived from the defect structure of carbon. is there. G band and D band is due to various factors, from 1580 cm -1 and 1330 cm -1, it is possible that each shifted about ± 50 cm -1.
 ラマンチャートにおけるGバンドのピーク強度IGとDバンドのピーク強度IDとの比IG/IDが0.8以上1.2以下である炭素材料は、グラファイトの良好な結晶性を有することを意味する。このような炭素材料は優れた導電性を有することができる。 Carbon material ratio I G / I D between the peak intensity I D of G peak intensity of the bands I G and D bands in the Raman chart is 0.8 to 1.2, it has a good crystallinity of graphite Means. Such a carbon material can have excellent conductivity.
 比IG/IDが1.2よりも大きいということは、例えば、炭素の非晶質化が不十分であることを意味する。また、この場合、炭素源に含まれていた不純物が含まれていることがある。このような不純物は、電解質との副反応を進行させるため、電池の入出力性能および寿命性能に悪影響を与える。 That the ratio I G / ID is greater than 1.2 means, for example, that the amorphization of carbon is insufficient. In this case, impurities contained in the carbon source may be included. Since such impurities cause side reactions with the electrolyte, the battery input / output performance and life performance are adversely affected.
 その他、例えば、Nb2TiO7などのNb元素を含むチタン含有酸化物を用いると、炭素源がNb元素と反応する場合がある。炭素源とNb元素との反応が進行した場合、炭素間結合がグラファイト構造よりも不安定な非晶質炭素成分が優先的に酸化されることにより非晶質炭素量が減少して比IG/IDが1.2よりも大きくなることがある。 In addition, for example, when a titanium-containing oxide containing an Nb element such as Nb 2 TiO 7 is used, the carbon source may react with the Nb element. When the reaction between the carbon source and the Nb element proceeds, the amorphous carbon component whose carbon-carbon bond is more unstable than the graphite structure is preferentially oxidized, so that the amount of amorphous carbon decreases and the ratio I G / ID may be greater than 1.2.
 また、比IG/IDが0.8よりも小さいということは、グラファイト構造に由来する炭素成分が少ないことを意味する。 Further, the ratio I G / ID being smaller than 0.8 means that the carbon component derived from the graphite structure is small.
 従って、比IG/IDが0.8以上1.2以下である炭素材料を用いることは、より良好な電子導電性を得ることができるため好ましい。 Therefore, it is preferable to use a carbon material having a ratio I G / ID of 0.8 or more and 1.2 or less because better electronic conductivity can be obtained.
 炭素材料を含む相は、様々な形態で存在することができる。例えば、炭素材料を含む相は、チタン含有酸化物粒子全体を覆っても良いし、又はチタン含有酸化物粒子の表面の一部に担持されても良い。より好ましくは、活物質粒子(チタン含有酸化物粒子、及び炭素材料を含む相を含んだ複合粒子)全体の導電性を均質に補完すること、及び活物質粒子と電解質との表面反応を抑えることという2つの観点から、チタン含有酸化物粒子の表面全体が炭素材料を含む相で被覆されていることが好ましい。炭素材料を含む相の存在状態は、例えば透過型電子顕微鏡(Transmission Electron Microscope;TEM)観察及びエネルギー分散型X線分光(Energy Dispersive X-ray spectroscopy:EDX)分析によるマッピングにより確認することができる。 The phase containing the carbon material can exist in various forms. For example, the phase containing the carbon material may cover the entire titanium-containing oxide particle, or may be supported on a part of the surface of the titanium-containing oxide particle. More preferably, the conductivity of the entire active material particle (a composite particle including a titanium-containing oxide particle and a phase containing a carbon material) is uniformly complemented, and the surface reaction between the active material particle and the electrolyte is suppressed. From these two viewpoints, it is preferable that the entire surface of the titanium-containing oxide particles is coated with a phase containing a carbon material. The existence state of the phase containing the carbon material can be confirmed by, for example, transmission electron microscope (TEM) observation and mapping by energy dispersive X-ray spectroscopy (EDX) analysis.
 導電剤は、集電性能を高め、且つ、活物質と集電体との接触抵抗を抑えるために配合される。導電剤の例には、気相成長カーボン繊維(Vapor Grown Carbon Fiber;VGCF)、アセチレンブラックなどのカーボンブラック及び黒鉛のような炭素質物が含まれる。これらの1つを導電剤として用いてもよく、或いは、2つ以上を組み合わせて導電剤として用いてもよい。あるいは、導電剤を用いる代わりに、活物質粒子の表面に、炭素コートや電子導電性無機材料コートを施してもよい。 The conductive agent is blended in order to improve the current collecting performance and suppress the contact resistance between the active material and the current collector. Examples of the conductive agent include vapor grown carbon fibers (Vapor Grown Carbon Fiber; VGCF), carbon black such as acetylene black, and carbonaceous materials such as graphite. One of these may be used as a conductive agent, or a combination of two or more may be used as a conductive agent. Alternatively, instead of using a conductive agent, a carbon coat or an electronically conductive inorganic material coat may be applied to the surface of the active material particles.
 結着剤は、分散された負極活物質の間隙を埋め、また、負極活物質と負極集電体を結着させるために配合される。結着剤の例には、ポリテトラフルオロエチレン(polytetrafluoro ethylene;PTFE)、ポリフッ化ビニリデン(polyvinylidene fluoride;PVdF)、フッ素系ゴム、スチレンブタジェンゴム、ポリアクリル酸化合物、イミド化合物、カルボキシルメチルセルロース(carboxyl methyl cellulose;CMC)、及びCMCの塩が含まれる。これらの1つを結着剤として用いてもよく、或いは、2つ以上を組み合わせて結着剤として用いてもよい。 The binder is blended to fill a gap between the dispersed negative electrode active materials and to bind the negative electrode active material and the negative electrode current collector. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine rubber, styrene butadiene rubber, polyacrylic acid compound, imide compound, carboxymethyl cellulose (carboxyl). methyl cellulose (CMC), and salts of CMC. One of these may be used as a binder, or a combination of two or more may be used as a binder.
 負極活物質含有層中の負極活物質(チタン含有酸化物など)、導電剤及び結着剤を、それぞれ、68質量%以上96質量%以下、2質量%以上30質量%以下及び2質量%以上30質量%以下の割合で配合することが好ましい。導電剤の量を2質量%以上とすることにより、負極活物質含有層の集電性能を向上させることができる。また、結着剤の量を2質量%以上とすることにより、負極活物質含有層と集電体との結着性が十分となり、優れたサイクル性能を期待できる。一方、導電剤及び結着剤はそれぞれ30質量%以下にすることが高容量化を図る上で好ましい。 The negative electrode active material (titanium-containing oxide, etc.), the conductive agent and the binder in the negative electrode active material-containing layer are 68% by mass to 96% by mass, 2% by mass to 30% by mass and 2% by mass, respectively. It is preferable to mix | blend in the ratio of 30 mass% or less. By setting the amount of the conductive agent to 2% by mass or more, the current collecting performance of the negative electrode active material-containing layer can be improved. Further, by setting the amount of the binder to 2% by mass or more, the binding property between the negative electrode active material-containing layer and the current collector becomes sufficient, and excellent cycle performance can be expected. On the other hand, the conductive agent and the binder are each preferably 30% by mass or less in order to increase the capacity.
 負極は、例えば、正極活物質の代わりに負極活物質としてのチタン含有酸化物を用い、正極集電体の代わりに負極集電体を用いて、正極と同様の方法により作製することができる。 The negative electrode can be produced by a method similar to that of the positive electrode, for example, using a titanium-containing oxide as the negative electrode active material instead of the positive electrode active material and using the negative electrode current collector instead of the positive electrode current collector.
 [電気的絶縁部材]
 電気的絶縁部材は、電気的絶縁性を有する材料を含む。電気的絶縁部材は、例えば、セパレータである。また、電気的絶縁部材は、電気的絶縁性を有する材料を含んだ絶縁層であり得る。電気的絶縁部材は、1つの部材でもよく、或いは2つ以上の部材でもよい。例えば、セパレータを単独で用いたり、絶縁層を単独で用いたり、セパレータと絶縁層とを併用したりすることができる。
[Electrical insulation]
The electrically insulating member includes a material having an electrically insulating property. The electrically insulating member is, for example, a separator. Further, the electrically insulating member can be an insulating layer containing a material having electrical insulation. The electrically insulating member may be a single member or two or more members. For example, a separator can be used alone, an insulating layer can be used alone, or a separator and an insulating layer can be used in combination.
 セパレータは、例えば、ポリエチレン(polyethylene;PE)、ポリプロピレン(polypropylene;PP)、セルロース、若しくはポリフッ化ビニリデン(polyvinylidene fluoride;PVdF)を含む多孔質フィルム、又は合成樹脂製不織布から形成される。安全性の観点からは、ポリエチレン又はポリプロピレンから形成された多孔質フィルムを用いることが好ましい。これらの多孔質フィルムは、一定温度において溶融し、電流を遮断することが可能なためである。 The separator is formed of, for example, a porous film containing polyethylene (PE), polypropylene (PP), cellulose, or polyvinylidene fluoride (PVdF), or a synthetic resin nonwoven fabric. From the viewpoint of safety, it is preferable to use a porous film formed from polyethylene or polypropylene. This is because these porous films can be melted at a constant temperature to interrupt the current.
 また絶縁層は、電気的絶縁性を有する材料として非Li伝導性の無機材料、又はLi伝導性を示す固体電解質の粒子などを含むことができる。 Further, the insulating layer can include a non-Li conductive inorganic material or a solid electrolyte particle exhibiting Li conductivity as a material having electrical insulation.
 Li(リチウム)に対する伝導性を示さない無機材料として、例えば、Ba,Al,Zr,Ta,及びSiからなる群より選択される1以上の酸化物を挙げることができる。具体例として、酸化アルミニウム(Al)、酸化バリウム(BaO)、酸化ジルコニム(ZrO)、五酸化タンタル(Ta)などの金属酸化物、並びに硫酸バリウム(BaSO)などの硫酸塩、酸化ケイ素(SiO)からなる群より選択される1種以上の化合物を使用できる。他の例として、酸化チタン(TiO)、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ベリリウム(BeO)、酸化リチウム(LiO)、酸化ナトリウム(NaO)、酸化カリウム(KO)、酸化亜鉛(ZnO)、酸化アンチモン(Sb)、酸化ストロンチウム(SrO)酸化インジウム(In)などの金属酸化物、並びに酸化ヒ素(As)、酸化ホウ素(B)からなる群より選択される1以上の化合物を使用できる。中でも、上記した金属酸化物は、非水電解質電池が含む非水電解質に対して優れた安定性を示すことができる。 Examples of the inorganic material that does not exhibit conductivity with respect to Li (lithium) include one or more oxides selected from the group consisting of Ba, Al, Zr, Ta, and Si. Specific examples include metal oxides such as aluminum oxide (Al 2 O 3 ), barium oxide (BaO), zirconium oxide (ZrO 2 ), tantalum pentoxide (Ta 2 O 5 ), and barium sulfate (BaSO 4 ). One or more compounds selected from the group consisting of sulfate and silicon oxide (SiO 2 ) can be used. Other examples include titanium oxide (TiO 2 ), magnesium oxide (MgO), calcium oxide (CaO), beryllium oxide (BeO), lithium oxide (Li 2 O), sodium oxide (Na 2 O), potassium oxide (K 2 O), zinc oxide (ZnO), antimony oxide (Sb 2 O 5 ), metal oxides such as strontium oxide (SrO) indium oxide (In 2 O 3 ), arsenic oxide (As 4 O 6 ), boron oxide One or more compounds selected from the group consisting of (B 2 O 3 ) can be used. Especially, the above-mentioned metal oxide can show the outstanding stability with respect to the nonaqueous electrolyte which a nonaqueous electrolyte battery contains.
 Liに対する伝導性を示す固体電解質としては、例えば、Li7La3Zr2O12で表される化合物などのLLZ系材料、及びLi1+xAlxM2-x(PO4)3(MはTi, Zr,及びGeから成る群より選択される1以上;0≦x≦0.6)で表される化合物の系統の材料などを使用することができる。固体電解質として、1種の化合物を用いてもよく、或いは、2種以上の化合物を併せて用いてもよい。また、非Li伝導性の無機材料と固体電解質とを併せて使用することもできる。 Examples of the solid electrolyte exhibiting conductivity with respect to Li include LLZ-based materials such as a compound represented by Li 7 La 3 Zr 2 O 12 , and Li 1 + x Al x M 2-x (PO 4 ) 3 (M 1 or more selected from the group consisting of Ti, Zr, and Ge; materials of a family of compounds represented by 0 ≦ x ≦ 0.6) can be used. As the solid electrolyte, one type of compound may be used, or two or more types of compounds may be used in combination. A non-Li conductive inorganic material and a solid electrolyte can also be used together.
 絶縁層は、結着剤を含み得る。絶縁層が含むことのできる結着剤として、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジェンゴム(SBR)、カルボキシルメチルセルロース(CMC)又はこれらの混合物が挙げられる。絶縁層中の結着剤の含有量は0.01質量%以上20質量%以下の範囲にすることが望ましい。 The insulating layer may contain a binder. Examples of the binder that can be included in the insulating layer include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), and mixtures thereof. Can be mentioned. The content of the binder in the insulating layer is desirably in the range of 0.01% by mass to 20% by mass.
 絶縁層の厚さは1μm以上30μm以下にすることができる。 The thickness of the insulating layer can be 1 μm or more and 30 μm or less.
 絶縁層は、例えば、電気的絶縁性を有する材料を含み、正極および負極の少なくとも一方の電極の上に形成された層であり得る。以下に説明する第1の製造方法、又は第2の製造方法により活物質含有層上に電気的絶縁部材としての絶縁層が形成されている電極を製造することができる。 The insulating layer may be a layer formed on at least one of the positive electrode and the negative electrode, for example, including a material having electrical insulation. An electrode in which an insulating layer as an electrical insulating member is formed on the active material-containing layer can be manufactured by the first manufacturing method or the second manufacturing method described below.
 第1の製造方法では、作製済みの電極上に絶縁層を形成する。 
 先に説明した方法により電極(正極または負極)を作製する。電極を作製する際、プレスを省略してもよい。 
 別途、電気的絶縁性を有する材料を含むスラリーを調製する。調整したスラリーを、電極の活物質含有層の上に塗布する。この時、スラリーの塗工幅を活物質含有層の幅より広くして、集電体のうち活物質含有層を担持していない部分(例えば、電極集電タブ)にスラリーの一部が直接塗布されてもよい。スラリーを乾燥させた後、乾燥後の積層構造物(プレス前の絶縁層がその上に形成された電極)にロールプレスを施し、絶縁層が形成された電極を得る。
In the first manufacturing method, an insulating layer is formed on a manufactured electrode.
An electrode (positive electrode or negative electrode) is produced by the method described above. When producing an electrode, you may abbreviate | omit a press.
Separately, a slurry containing a material having electrical insulation is prepared. The adjusted slurry is applied on the active material-containing layer of the electrode. At this time, the coating width of the slurry is wider than the width of the active material-containing layer, and a part of the slurry is directly applied to a portion of the current collector that does not carry the active material-containing layer (for example, the electrode current collector tab). It may be applied. After drying the slurry, the laminated structure after drying (the electrode on which the insulating layer before pressing is formed) is roll-pressed to obtain an electrode on which the insulating layer is formed.
 第2の製造方法では、電極の活物質含有層と絶縁層とを、同時塗工により形成する。 
 集電体の表面及び裏面のうちの少なくとも一方に、活物質および結着剤を含むスラリー(以下、スラリーIとする)と、電気的絶縁性を有する材料を含むスラリー(以下、スラリーIIとする)を同時に塗工する。スラリーIを塗布するのとほぼ同時期に、スラリーIIをスラリーIの塗布領域からはみ出すように重ね塗りする。スラリーIが乾く前にスラリーIにスラリーIIが重ね塗りされるため、スラリーIの表面形状にスラリーIIが追従しやすくなる。その後、スラリーを乾燥させた後、乾燥後の積層構造物(プレス前の活物質含有層および絶縁層がその上に形成された集電体)にロールプレスを施し、絶縁層が形成された電極を得る。
In the second manufacturing method, the active material-containing layer and the insulating layer of the electrode are formed by simultaneous coating.
A slurry containing an active material and a binder (hereinafter referred to as slurry I) and a slurry containing an electrically insulating material (hereinafter referred to as slurry II) on at least one of the front and back surfaces of the current collector ) At the same time. Almost simultaneously with the application of the slurry I, the slurry II is applied so as to protrude from the application region of the slurry I. Since the slurry II is repeatedly applied to the slurry I before the slurry I dries, the slurry II easily follows the surface shape of the slurry I. Then, after the slurry is dried, the laminated structure after the drying (the current collector on which the active material-containing layer and the insulating layer before pressing are formed) is roll-pressed to form an electrode on which the insulating layer is formed. Get.
 <測定方法>
 電極群の測定方法について、以下に説明する。
<Measurement method>
A method for measuring the electrode group will be described below.
 測定対象の電極群が作製済みの電池に組み込まれている場合、以下の手順に沿って測定試料を準備する。 ∙ When the electrode group to be measured is built in a fabricated battery, prepare a measurement sample according to the following procedure.
 電池を25℃恒温槽内で、0.2 C相当の電流値[A]にて1.5 Vになるまで定電流放電する。その後、1.5 Vにて定電圧放電を1時間行う。 ∙ Discharge the battery at a constant current in a constant temperature bath at 25 ℃ until the current value reaches 0.2V at a current value [A] equivalent to 0.2 C. Then, constant voltage discharge is performed at 1.5V for 1 hour.
 定電圧放電後、電池をアルゴングローブボックスに入れ、電池を解体する。グローブボックス内で外装部材から電極コイル(捲回型電極群)を取り出す。このとき、電池の負極端子に接続されている電極が負極、正極端子に接続されている電極が正極と判断できる。電極コイルは電極リードを介して電極端子へ接続され得る。電極コイルを電極リードから丁寧に取り外す。例えば、電極コイル内で正極、電気的絶縁部材、負極の位置が動かないよう電極コイルを押さえながら、電極リードとの接続をはさみやペンチ、カッターなどを用いて取り外すことができる。 ¡After discharging at constant voltage, place the battery in an argon glove box and disassemble the battery. An electrode coil (rolled electrode group) is taken out from the exterior member in the glove box. At this time, it can be determined that the electrode connected to the negative electrode terminal of the battery is the negative electrode, and the electrode connected to the positive electrode terminal is the positive electrode. The electrode coil can be connected to the electrode terminal via an electrode lead. Carefully remove the electrode coil from the electrode lead. For example, it is possible to remove the connection with the electrode lead using scissors, pliers, a cutter or the like while pressing the electrode coil so that the positions of the positive electrode, the electrically insulating member, and the negative electrode do not move within the electrode coil.
 このようにして単離した電極群を測定試料とし、正負極における活物質含有層の幅(W,W)、活物質含有層の端部(第1端部~第4端部)の間のずれ幅(A,B)などを計測する。 The electrode group isolated in this way was used as a measurement sample, and the width (W P , W N ) of the active material-containing layer in the positive and negative electrodes and the end portions (first to fourth end portions) of the active material-containing layer were measured. The gap width (A, B) is measured.
 (負極活物質含有層中の組成の同定方法)
 負極活物質含有層にチタン含有酸化物が含まれているか否かは、例えば、以下にして確認することができる。
(Method for identifying composition in negative electrode active material-containing layer)
Whether or not the negative electrode active material-containing layer contains a titanium-containing oxide can be confirmed, for example, as follows.
 先ず、先に説明した手順により取出した電極群を分解し、負極を取り出す。この負極を適切な溶媒で洗浄する。たとえばエチルメチルカーボネートなどを用いると良い。洗浄が不十分であると、負極中に残留したリチウムイオンの影響で、炭酸リチウムやフッ化リチウムなどの不純物相が混入することがある。その場合は、測定雰囲気を不活性ガス中で行える気密容器を用いるとよい。 First, the electrode group taken out by the procedure described above is disassembled and the negative electrode is taken out. This negative electrode is washed with a suitable solvent. For example, ethyl methyl carbonate may be used. If the cleaning is insufficient, an impurity phase such as lithium carbonate or lithium fluoride may be mixed under the influence of lithium ions remaining in the negative electrode. In that case, it is preferable to use an airtight container in which the measurement atmosphere can be performed in an inert gas.
 以上のようにして取り出した部材の断面を、Arイオンミリングにより切り出す。切り出した断面を、走査型電子顕微鏡(Scanning Electron Microscope;SEM)にて観察する。試料のサンプリングについても大気に触れないようにし、アルゴンや窒素など不活性雰囲気で行う。 The section of the member taken out as described above is cut out by Ar ion milling. The cut section is observed with a scanning electron microscope (SEM). Sampling of the sample should be performed in an inert atmosphere such as argon or nitrogen while avoiding exposure to the air.
 3000倍のSEM観察像にて、幾つかの粒子を選定する。この際、選定した粒子の粒度分布ができるだけ広くなるように選定する。 Several particles are selected with a 3000 times SEM observation image. At this time, the particle size distribution of the selected particles is selected to be as wide as possible.
 次に、選定したそれぞれの粒子について、エネルギー分散型X線分光法(Energy Dispersive X-ray Spectroscopy;EDX)による元素分析を行う。これにより、選定したそれぞれの粒子に含まれる元素のうちLi以外の元素の種類及び量を特定することができる。 Next, elemental analysis is performed on each selected particle by energy dispersive X-ray spectroscopy (EDX). Thereby, the kind and quantity of elements other than Li among the elements contained in each selected particle | grain can be specified.
 SEMで選定したそれぞれの粒子に含まれている化合物の結晶構造は、X線回折(X-Ray Diffraction;XRD)測定により特定することができる。 The crystal structure of the compound contained in each particle selected by SEM can be specified by X-ray diffraction (XRD) measurement.
 測定は、CuKα線を線源として、2θ=10~90°の測定範囲で行う。この測定により、選定した粒子に含まれる化合物のX線回折パターンを得ることができる。 The measurement is performed in the measurement range of 2θ = 10 to 90 ° using CuKα ray as a radiation source. By this measurement, an X-ray diffraction pattern of the compound contained in the selected particle can be obtained.
 粉末X線回折測定の装置としては、Rigaku社製SmartLabを用いる。測定条件は以下の通りとする:Cuターゲット;45kV 200mA;ソーラスリット:入射及び受光共に5°;ステップ幅:0.02deg;スキャン速度:20deg/分;半導体検出器:D/teX Ultra 250;試料板ホルダ:平板ガラス試料板ホルダー(厚さ0.5mm);測定範囲:10°≦2θ≦90°の範囲。その他の装置を使用する場合は、上記と同等の測定結果が得られるように、粉末X線回折用標準Si粉末を用いた測定を行い、ピーク強度及びピークトップ位置が上記装置と一致する条件で行う。 As an apparatus for powder X-ray diffraction measurement, SmartLab manufactured by Rigaku is used. Measurement conditions are as follows: Cu target; 45 kV 200 mA; Solar slit: 5 ° for both incidence and reception; Step width: 0.02 deg; Scan rate: 20 deg / min; Semiconductor detector: D / teX Ultra 250; Plate holder: Flat glass sample plate holder (thickness 0.5 mm); Measurement range: 10 ° ≦ 2θ ≦ 90 °. When using other devices, perform measurements using standard Si powder for powder X-ray diffraction so that the same measurement results as above can be obtained, under conditions where the peak intensity and peak top position match those of the above devices. Do.
 測定対象の粒子に直方晶型チタン含有複合酸化物が含まれている場合、X線回折測定により、空間群CmcaやFmmmなど、直方晶型に帰属されるX線回折パターンが確認され得る。 When the particles to be measured contain a tetragonal titanium-containing composite oxide, an X-ray diffraction pattern belonging to the tetragonal type, such as the space group Cmca or Fmmm, can be confirmed by X-ray diffraction measurement.
 負極についてのXRD測定は、測定対象の電極を、広角X線回折装置のホルダーの面積と同程度切り出し、直接ガラスホルダーに貼り付けて測定することによって行うことができる。必要に応じて、活物質含有層から絶縁層を予め取り除いておく。このとき、電極集電体の金属箔の種類に応じてあらかじめXRDスペクトルを測定しておき、どの位置に集電体由来のピークが現れるかを把握しておく。また、導電剤や結着剤といった合剤のピークの有無もあらかじめ把握しておく。集電体のピークと活物質のピークが重なる場合、集電体から活物質含有層を剥離して測定することが望ましい。これは、ピーク強度を定量的に測定する際、重なったピークを分離するためである。もちろん、これらを事前に把握できているのであれば、この操作を省略することができる。活物質含有層を物理的に剥離しても良いが、溶媒中で超音波をかけると剥離しやすい。このようにして回収した活物質含有層を測定することで、活物質の広角X線回折測定を行うことができる。 XRD measurement for the negative electrode can be performed by cutting the electrode to be measured to the same extent as the area of the holder of the wide-angle X-ray diffractometer and directly attaching it to a glass holder for measurement. If necessary, the insulating layer is previously removed from the active material-containing layer. At this time, an XRD spectrum is measured in advance according to the type of the metal foil of the electrode current collector, and the position where the peak derived from the current collector appears is known. In addition, the presence or absence of a peak of a mixture such as a conductive agent or a binder is also grasped in advance. When the peak of the current collector and the peak of the active material overlap, it is desirable to measure by peeling the active material-containing layer from the current collector. This is for separating overlapping peaks when quantitatively measuring the peak intensity. Of course, if these can be grasped in advance, this operation can be omitted. Although the active material-containing layer may be physically peeled off, it is easily peeled off when ultrasonic waves are applied in a solvent. By measuring the active material-containing layer collected in this manner, wide-angle X-ray diffraction measurement of the active material can be performed.
 活物質含有層全体の組成は、例えば、以下の手順で測定することができる。 The composition of the entire active material-containing layer can be measured, for example, by the following procedure.
 まず、先に説明した手順により採取した電極を洗浄する。 
 洗浄した電極を用いて、先に説明した方法により、活物質含有層に含まれる粒子の組成を特定する。
First, the electrode collected by the procedure described above is washed.
Using the cleaned electrode, the composition of the particles contained in the active material-containing layer is specified by the method described above.
 一方、洗浄した電極の他の一部を適切な溶媒中に入れて超音波を照射する。例えば、ガラスビーカー中に入れたエチルメチルカーボネートに電極を入れ、超音波洗浄機中で振動させることで、集電体基板から活物質含有層を剥離することができる。次に、減圧乾燥を行い、剥離した活物質含有層を乾燥する。得られた活物質含有層を乳鉢などで粉砕することで、測定対象たる活物質、導電剤、結着剤などを含む粉末となる。この粉末を、酸で溶解することで、活物質を含む液体サンプルを作製できる。このとき、酸としては塩酸、硝酸、硫酸、フッ化水素などを使用できる。この液体サンプルを誘導結合プラズマ(Inductively Coupled Plasma:ICP)発光分光分析に供することで、活物質含有層に含まれていた活物質における元素の濃度を知ることができる。 On the other hand, another part of the cleaned electrode is placed in a suitable solvent and irradiated with ultrasonic waves. For example, the active material-containing layer can be peeled from the current collector substrate by placing an electrode in ethyl methyl carbonate placed in a glass beaker and vibrating in an ultrasonic cleaner. Next, vacuum drying is performed to dry the separated active material-containing layer. By pulverizing the obtained active material-containing layer with a mortar or the like, a powder containing an active material to be measured, a conductive agent, a binder, and the like is obtained. By dissolving this powder with an acid, a liquid sample containing an active material can be produced. At this time, hydrochloric acid, nitric acid, sulfuric acid, hydrogen fluoride and the like can be used as the acid. By subjecting this liquid sample to inductively coupled plasma (ICP) emission spectroscopic analysis, the concentration of elements in the active material contained in the active material-containing layer can be known.
 このとおり、活物質含有層に含まれている粒子について、SEM及びEDXによる組成の特定と、XRDによる結晶構造の特定と、ICP発光分光分析との結果を組み合わせることにより、粒子に含まれている化合物の組成及び結晶構造を特定することができる。 As described above, the particles contained in the active material-containing layer are contained in the particles by combining the results of the identification of the composition by SEM and EDX, the identification of the crystal structure by XRD, and the ICP emission spectroscopic analysis. The composition and crystal structure of the compound can be specified.
 (炭素材料を含む相の確認方法)
 チタン含有酸化物の粒子上に形成され得る相に含まれている炭素成分の結晶性を定量評価する手法としては、顕微ラマン測定装置を用いることができる。顕微ラマン装置としては、例えば、Thermo Fisher Scientific ALMEGAを用いることができる。測定条件は、例えば、測定光源の波長532nm、スリットサイズ25μm、レーザー強度10%、露光時間5s、積算回数10回とすることができる。
(Method for confirming phases containing carbon materials)
As a technique for quantitatively evaluating the crystallinity of the carbon component contained in the phase that can be formed on the titanium-containing oxide particles, a micro-Raman measurement apparatus can be used. As the micro Raman apparatus, for example, Thermo Fisher Scientific ALMEGA can be used. The measurement conditions can be, for example, a wavelength of the measurement light source of 532 nm, a slit size of 25 μm, a laser intensity of 10%, an exposure time of 5 s, and an integration count of 10 times.
 ラマン分光測定は、例えば、以下に説明する手順により行うことができる。 Raman spectroscopy can be performed, for example, according to the procedure described below.
 電池に組み込まれた材料を評価する場合、この電池をリチウムイオンが完全に脱離した状態にする。例えば、チタン含有酸化物が負極活物質として用いられている場合、電池を完全に放電状態にする。但し、放電状態でも残留したリチウムイオンが僅かに存在することがあり得る。 When evaluating the material incorporated in the battery, the battery is brought into a state where lithium ions are completely desorbed. For example, when a titanium-containing oxide is used as the negative electrode active material, the battery is completely discharged. However, a small amount of lithium ions may remain even in a discharged state.
 次に、アルゴンを充填したグローブボックス中で電池を分解し、電極を適切な溶媒で洗浄する。この際、例えばエチルメチルカーボネートなどを用いると良い。次に、洗浄した電極から活物質含有層を剥離し、試料を採取する。 Next, the battery is disassembled in a glove box filled with argon, and the electrode is washed with an appropriate solvent. At this time, for example, ethyl methyl carbonate may be used. Next, the active material-containing layer is peeled off from the cleaned electrode, and a sample is collected.
 採取した試料を用いて、例えば先に説明した条件により、ラマン分光測定を行う。 Using the collected sample, for example, Raman spectroscopy measurement is performed under the conditions described above.
 測定に際しては、集電体、並びに導電剤及び結着剤といった合剤に含まれる他の成分のラマン活性の有無及びそのピーク位置を把握しておく。重なっている場合は活物質材料以外の成分に関するピークを分離する必要がある。 In the measurement, the presence or absence of Raman activity and the peak position of other components contained in the current collector and the mixture such as the conductive agent and the binder are known. In the case of overlapping, it is necessary to separate peaks relating to components other than the active material.
 活物質含有層において活物質材料(例えば、活物質粒子と炭素材料を含む相との複合粒子)が導電剤と混合されている場合、活物質材料に含まれる炭素材料と、導電剤として組み込まれた炭素材料を区別することが困難であることがあり得る。このような場合、両者を区別する方法の1つとして、例えば溶剤によって結着剤を溶解、除去した後、遠心分離を行なって、比重の大きい活物質材料を取り出す方法が考えられる。このような方法によると、活物質材料と導電剤とを分離することができるので、活物質材料に含まれていた炭素材料は、活物質材料に含まれた状態のまま、測定に供することができる。 When an active material (for example, composite particles of active material particles and a phase containing a carbon material) is mixed with a conductive agent in the active material-containing layer, the carbon material contained in the active material and the conductive agent are incorporated. It can be difficult to distinguish between different carbon materials. In such a case, as one method for distinguishing between the two, for example, a method of dissolving and removing the binder with a solvent and then performing centrifugation to extract an active material having a high specific gravity can be considered. According to such a method, since the active material and the conductive agent can be separated, the carbon material contained in the active material can be subjected to measurement while being contained in the active material. it can.
 或いは、顕微ラマン分光によるマッピングによって活物質材料由来のスペクトル成分からマッピングを実施して導電剤成分と活物質材料成分との切り分けを行い、その後活物質材料成分に対応するラマンスペクトルのみを抽出して評価する手法をとることもできる。 Alternatively, mapping is performed from the spectral component derived from the active material by mapping by microscopic Raman spectroscopy to separate the conductive agent component from the active material component, and then only the Raman spectrum corresponding to the active material component is extracted. It is also possible to take an evaluation method.
 第1の実施形態に係る電極群は、正極と負極と電気的絶縁部材とを含む積層体を具備する。正極は、帯状の正極集電体と、正極集電体の一辺に平行な端部に設けられた正極集電タブと、正極集電体の上に少なくとも正極集電タブを除いて担持された正極活物質含有層とを具備する。正極活物質含有層は正極集電体の上記一辺に平行な第1端部と第2端部とを含む。負極は、帯状の負極集電体と、負極集電体の一辺に平行な端部に設けられた負極集電タブと、負極集電体の上に少なくとも負極集電タブを除いて担持されチタン含有酸化物を含む負極活物質含有層とを具備する。負極活物質含有層は負極集電体の上記一辺に平行な第3端部と第4端部とを含む。電気的絶縁部材は、正極活物質含有層と負極活物質含有層との間に介在している。積層体は、捲回されている。捲回軸に平行な第1方向に正極集電タブが突出する。第1端部よりも第4端部の方が正極集電タブ側に寄って位置している。第1方向と反対向きの第2方向に負極集電タブが突出する。第2端部よりも第3端部の方が負極集電タブ側に寄って位置している。第1端部と第4端部との間の第1ずれ幅と比較して、第2端部と第3端部との間の第2ずれ幅の方が広い。当該電極群は、自己放電が抑制された電池を実現できる。 The electrode group according to the first embodiment includes a laminate including a positive electrode, a negative electrode, and an electrically insulating member. The positive electrode was supported on the positive electrode current collector, a positive electrode current collector tab provided at an end parallel to one side of the positive electrode current collector, and at least excluding the positive electrode current collector tab. A positive electrode active material-containing layer. The positive electrode active material-containing layer includes a first end and a second end parallel to the one side of the positive electrode current collector. The negative electrode includes a strip-shaped negative electrode current collector, a negative electrode current collector tab provided at an end parallel to one side of the negative electrode current collector, and a titanium supported on the negative electrode current collector excluding at least the negative electrode current collector tab A negative electrode active material-containing layer containing a containing oxide. The negative electrode active material-containing layer includes a third end portion and a fourth end portion that are parallel to the one side of the negative electrode current collector. The electrically insulating member is interposed between the positive electrode active material-containing layer and the negative electrode active material-containing layer. The laminate is wound. A positive electrode current collecting tab protrudes in a first direction parallel to the winding axis. The fourth end portion is located closer to the positive electrode current collecting tab side than the first end portion. The negative electrode current collector tab protrudes in the second direction opposite to the first direction. The third end portion is located closer to the negative electrode current collecting tab side than the second end portion. The second shift width between the second end portion and the third end portion is wider than the first shift width between the first end portion and the fourth end portion. The electrode group can realize a battery in which self-discharge is suppressed.
 (第2の実施形態)
 第2の実施形態に係る電池は、第1の実施形態に係る電極群を具備している。
(Second Embodiment)
The battery according to the second embodiment includes the electrode group according to the first embodiment.
 実施形態に係る電池は、電解質を更に具備することができる。電解質は、電極群に保持され得る。 The battery according to the embodiment may further include an electrolyte. The electrolyte can be held on the electrode group.
 また、実施形態に係る電池は、電極群及び電解質を収容する外装部材を更に具備することができる。 In addition, the battery according to the embodiment can further include an exterior member that accommodates the electrode group and the electrolyte.
 さらに、実施形態に係る電池は、負極に電気的に接続された負極端子及び正極に電気的に接続された正極端子を更に具備することができる。 Furthermore, the battery according to the embodiment may further include a negative electrode terminal electrically connected to the negative electrode and a positive electrode terminal electrically connected to the positive electrode.
 実施形態に係る電池は、例えば、リチウムイオン二次電池であり得る。また、電池は、例えば、電解質として非水電解質を含んだ非水電解質電池を含む。 The battery according to the embodiment may be, for example, a lithium ion secondary battery. The battery includes, for example, a nonaqueous electrolyte battery including a nonaqueous electrolyte as an electrolyte.
 以下、電解質、外装部材、負極端子及び正極端子について詳細に説明する。 Hereinafter, the electrolyte, the exterior member, the negative electrode terminal, and the positive electrode terminal will be described in detail.
 [電解質]
 電解質としては、例えば液状非水電解質又はゲル状非水電解質を用いることができる。液状非水電解質は、溶質としての電解質塩を有機溶媒に溶解することにより調製される。電解質塩の濃度は、0.5 mol/L以上2.5 mol/L以下であることが好ましい。
[Electrolytes]
As the electrolyte, for example, a liquid non-aqueous electrolyte or a gel non-aqueous electrolyte can be used. The liquid non-aqueous electrolyte is prepared by dissolving an electrolyte salt as a solute in an organic solvent. The concentration of the electrolyte salt is preferably 0.5 mol / L or more and 2.5 mol / L or less.
 電解質塩の例には、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、及びビストリフルオロメチルスルホニルイミドリチウム(LiN(CF3SO2)2)のようなリチウム塩、及び、これらの混合物が含まれる。電解質塩は、高電位でも酸化し難いものであることが好ましく、LiPF6が最も好ましい。 Examples of electrolyte salts include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), trifluoromethane Lithium salts such as lithium sulfonate (LiCF 3 SO 3 ) and lithium bistrifluoromethylsulfonylimide (LiN (CF 3 SO 2 ) 2 ) and mixtures thereof are included. The electrolyte salt is preferably one that is difficult to oxidize even at a high potential, and LiPF 6 is most preferred.
 有機溶媒の例には、プロピレンカーボネート(propylene carbonate;PC)、エチレンカーボネート(ethylene carbonate;EC)、ビニレンカーボネート(vinylene carbonate;VC)のような環状カーボネート;ジエチルカーボネート(diethyl carbonate;DEC)、ジメチルカーボネート(dimethyl carbonate;DMC)、メチルエチルカーボネート(methyl ethyl carbonate;MEC)のような鎖状カーボネート;テトラヒドロフラン(tetrahydrofuran;THF)、2メチルテトラヒドロフラン(2-methyl tetrahydrofuran;2MeTHF)、ジオキソラン(dioxolane;DOX)のような環状エーテル;ジメトキシエタン(dimethoxy ethane;DME)、ジエトキシエタン(diethoxy ethane;DEE)のような鎖状エーテル;γ-ブチロラクトン(γ-butyrolactone;GBL)、アセトニトリル(acetonitrile;AN)、及びスルホラン(sulfolane;SL)が含まれる。これらの有機溶媒は、単独で、又は混合溶媒として用いることができる。 Examples of organic solvents include: cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), vinylene carbonate (VC); diethyl carbonate (DEC), dimethyl carbonate (Dimethyl carbonate; DMC), chain carbonates such as methyl ethyl carbonate (MEC); tetrahydrofuran (tetrahydrofuran; THF); 2-methyltetrahydrofuran (2-MeTHF); dioxolane (DOX) Cyclic ethers such as: dimethoxy ethane (DME), chain ethers such as diethoxy ethane (DEE); γ-butyrolactone (GBL), acetonitrile ( acetonitrile; AN) and sulfolane (SL). These organic solvents can be used alone or as a mixed solvent.
 ゲル状非水電解質は、液状非水電解質と高分子材料とを複合化することにより調製される。高分子材料の例には、ポリフッ化ビニリデン(polyvinylidene fluoride;PVdF)、ポリアクリロニトリル(polyacrylonitrile;PAN)、ポリエチレンオキサイド(polyethylene oxide;PEO)、又はこれらの混合物が含まれる。 The gel-like nonaqueous electrolyte is prepared by combining a liquid nonaqueous electrolyte and a polymer material. Examples of the polymer material include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO), or a mixture thereof.
 或いは、非水電解質としては、液状非水電解質及びゲル状非水電解質の他に、リチウムイオンを含有した常温溶融塩(イオン性融体)、高分子固体電解質、及び無機固体電解質等を用いてもよい。 Alternatively, as the non-aqueous electrolyte, in addition to the liquid non-aqueous electrolyte and the gel-like non-aqueous electrolyte, a room temperature molten salt (ionic melt) containing lithium ions, a polymer solid electrolyte, an inorganic solid electrolyte, and the like are used. Also good.
 常温溶融塩(イオン性融体)は、有機物カチオンとアニオンとの組合せからなる有機塩の内、常温(15℃以上25℃以下)で液体として存在し得る化合物を指す。常温溶融塩には、単体で液体として存在する常温溶融塩、電解質塩と混合させることで液体となる常温溶融塩、有機溶媒に溶解させることで液体となる常温溶融塩、又はこれらの混合物が含まれる。一般に、二次電池に用いられる常温溶融塩の融点は、25℃以下である。また、有機物カチオンは、一般に4級アンモニウム骨格を有する。 The room temperature molten salt (ionic melt) refers to a compound that can exist as a liquid at room temperature (15 ° C. or more and 25 ° C. or less) among organic salts formed by a combination of an organic cation and an anion. Room temperature molten salt includes room temperature molten salt that exists as a liquid alone, room temperature molten salt that becomes liquid when mixed with electrolyte salt, room temperature molten salt that becomes liquid when dissolved in organic solvent, or a mixture thereof It is. Generally, the melting point of the room temperature molten salt used for the secondary battery is 25 ° C. or less. The organic cation generally has a quaternary ammonium skeleton.
 高分子固体電解質は、電解質塩を高分子材料に溶解し、固体化することによって調製される。 The polymer solid electrolyte is prepared by dissolving an electrolyte salt in a polymer material and solidifying it.
 無機固体電解質は、Liイオン伝導性を有する固体物質である。無機固体電解質として、例えば、絶縁層に含むことのできるLiイオン伝導性を有する固体電解質を用いることができる。 The inorganic solid electrolyte is a solid material having Li ion conductivity. As the inorganic solid electrolyte, for example, a solid electrolyte having Li ion conductivity that can be included in the insulating layer can be used.
 [外装部材]
 外装部材としては、例えば、ラミネートフィルムからなる容器、又は金属製容器を用いることができる。
[Exterior material]
As the exterior member, for example, a container made of a laminate film or a metal container can be used.
 ラミネートフィルムの厚さは、例えば、0.5mm以下であり、好ましくは、0.2mm以下である。 The thickness of the laminate film is, for example, 0.5 mm or less, and preferably 0.2 mm or less.
 ラミネートフィルムとしては、複数の樹脂層とこれらの樹脂層間に介在した金属層とを含む多層フィルムが用いられる。樹脂層は、例えば、ポリプロピレン(polypropylene;PP)、ポリエチレン(polyethylene;PE)、ナイロン、及びポリエチレンテレフタレート(polyethylene terephthalate;PET)等の高分子材料を含んでいる。金属層は、軽量化のためにアルミニウム箔又はアルミニウム合金箔からなることが好ましい。ラミネートフィルムは、熱融着によりシールを行うことにより、外装部材の形状に成形され得る。 As the laminate film, a multilayer film including a plurality of resin layers and a metal layer interposed between these resin layers is used. The resin layer includes, for example, a polymer material such as polypropylene (PP), polyethylene (PE), nylon, and polyethylene terephthalate (PET). It is preferable that a metal layer consists of aluminum foil or aluminum alloy foil for weight reduction. The laminate film can be formed into the shape of the exterior member by sealing by heat sealing.
 金属製容器の壁の厚さは、例えば、1mm以下であり、より好ましくは0.5mm以下であり、更に好ましくは、0.2mm以下である。 The wall thickness of the metal container is, for example, 1 mm or less, more preferably 0.5 mm or less, and still more preferably 0.2 mm or less.
 金属製容器は、例えば、アルミニウム又はアルミニウム合金等から作られる。アルミニウム合金は、マグネシウム、亜鉛、及びケイ素等の元素を含むことが好ましい。アルミニウム合金は、鉄、銅、ニッケル、及びクロム等の遷移金属を含む場合、その含有量は100質量ppm以下であることが好ましい。 The metal container is made of, for example, aluminum or an aluminum alloy. The aluminum alloy preferably contains elements such as magnesium, zinc, and silicon. When an aluminum alloy contains transition metals, such as iron, copper, nickel, and chromium, it is preferable that the content is 100 mass ppm or less.
 外装部材の形状は、特に限定されない。外装部材の形状は、例えば、扁平型(薄型)、角型、円筒型、コイン型、又はボタン型等であってもよい。外装部材は、電池寸法や電池の用途に応じて適宜選択することができる。 The shape of the exterior member is not particularly limited. The shape of the exterior member may be, for example, a flat type (thin type), a square type, a cylindrical type, a coin type, or a button type. The exterior member can be appropriately selected according to the battery size and the application of the battery.
 [負極端子]
負極端子は、上述のチタン含有酸化物(負極活物質)のLi吸蔵放出電位において電気化学的に安定であり、かつ導電性を有する 材料から形成することができる。具体的には、負極端子の材料としては、銅、ニッケル、ステンレス若しくはアルミニウム、又は、Mg,Ti,Zn,Mn,Fe,Cu,及びSiからなる群より選択される少なくとも1種の元素を含むアルミニウム合金が挙げられる。負極端子の材料としては、アルミニウム又はアルミニウム合金を用いることが好ましい。負極端子は、負極集電体との接触抵抗を低減するために、負極集電体と同様の材料からなることが好ましい。
[Negative terminal]
The negative electrode terminal can be formed from a material that is electrochemically stable at the Li occlusion / release potential of the above-described titanium-containing oxide (negative electrode active material) and has conductivity. Specifically, the negative electrode terminal material includes copper, nickel, stainless steel, or aluminum, or at least one element selected from the group consisting of Mg, Ti, Zn, Mn, Fe, Cu, and Si. An aluminum alloy is mentioned. As a material for the negative electrode terminal, aluminum or an aluminum alloy is preferably used. In order to reduce the contact resistance with the negative electrode current collector, the negative electrode terminal is preferably made of the same material as the negative electrode current collector.
 [正極端子]
 正極端子は、リチウムの酸化還元電位に対し3V以上4.5V以下 の電位範囲(vs.Li/Li+)において電気的に安定であり、且つ導電性を有する材料から形成することができる。正極端子の材料としては、アルミニウム、或いは、Mg、Ti、Zn、Mn、Fe、Cu及びSiからなる群より選択される少なくとも1種の元素を含むアルミニウム合金が挙げられる。正極端子は、正極集電体との接触抵抗を低減するために、正極集電体と同様の材料から形成されることが好ましい。
[Positive terminal]
The positive electrode terminal can be formed of a material that is electrically stable and has conductivity in a potential range (vs. Li / Li +) of 3 V to 4.5 V with respect to the oxidation-reduction potential of lithium. Examples of the material of the positive electrode terminal include aluminum or an aluminum alloy containing at least one element selected from the group consisting of Mg, Ti, Zn, Mn, Fe, Cu, and Si. The positive electrode terminal is preferably formed of the same material as the positive electrode current collector in order to reduce contact resistance with the positive electrode current collector.
 次に、実施形態に係る電池について、図面を参照しながらより具体的に説明する。 Next, the battery according to the embodiment will be described more specifically with reference to the drawings.
 図4は、実施形態に係る一例の扁平型電池の概略断面図である。図5は、図4のA部の拡大断面図である。 FIG. 4 is a schematic cross-sectional view of an example flat battery according to the embodiment. FIG. 5 is an enlarged cross-sectional view of a portion A in FIG.
 図4及び図5に示す電池1は、図4に示す扁平状の捲回型電極群3を具備している。扁平状の捲回型電極群3は、金属層と、これを挟む2枚の樹脂フィルムとを含んだラミネートフィルムからなる袋状外装部材2内に収納されている。 The battery 1 shown in FIGS. 4 and 5 includes a flat wound electrode group 3 shown in FIG. The flat wound electrode group 3 is housed in a bag-shaped exterior member 2 made of a laminate film including a metal layer and two resin films sandwiching the metal layer.
 扁平状の捲回型電極群3は、図6に示すように、外側から負極5、電気的絶縁部材6、正極4、電気的絶縁部材6の順で積層した積層体を渦巻状に捲回し、プレス成型することにより形成されている。負極5のうち最も外側に位置する部分は、図5に示すように負極集電体5aの内面側の片面上に負極活物質を含む負極活物質含有層5bを形成している。負極5のその他の部分では、負極集電体5aの両面上に負極活物質含有層5bが形成されている。正極4については、正極集電体4aの両面に正極活物質含有層4bが形成されている。 As shown in FIG. 6, the flat wound electrode group 3 is formed by spirally winding a laminate in which the negative electrode 5, the electrical insulating member 6, the positive electrode 4, and the electrical insulating member 6 are laminated in this order from the outside. It is formed by press molding. As shown in FIG. 5, the outermost portion of the negative electrode 5 forms a negative electrode active material-containing layer 5 b containing a negative electrode active material on one surface on the inner surface side of the negative electrode current collector 5 a. In the other part of the negative electrode 5, the negative electrode active material containing layer 5b is formed on both surfaces of the negative electrode current collector 5a. For the positive electrode 4, positive electrode active material-containing layers 4b are formed on both surfaces of the positive electrode current collector 4a.
 捲回型の電極群3の外周端近傍において、負極端子8が、負極5の最外層の部分の負極集電体5aに接続されており、正極端子7が、内側に位置する正極4の正極集電体4aに接続されている。これらの負極端子8および正極端子7は、袋状外装部材2の開口部から外部に延出されている。 In the vicinity of the outer peripheral end of the wound electrode group 3, the negative electrode terminal 8 is connected to the negative electrode current collector 5 a in the outermost layer portion of the negative electrode 5, and the positive electrode terminal 7 is the positive electrode of the positive electrode 4 positioned inside. It is connected to the current collector 4a. The negative terminal 8 and the positive terminal 7 are extended to the outside from the opening of the bag-shaped exterior member 2.
 図4及び図5に示す電池1は、図示しない電解質を更に具備する。電解質は、電極群3に含浸された状態で、外装部材2内に収容されている。 4 and 5 further includes an electrolyte (not shown). The electrolyte is accommodated in the exterior member 2 in a state in which the electrode group 3 is impregnated.
 第2の実施形態に係る電池は、第1の実施形態に係る電極群を含む。そのため、電池では、自己放電が抑制されている。 The battery according to the second embodiment includes the electrode group according to the first embodiment. Therefore, self-discharge is suppressed in the battery.
 [第3の実施形態]
 第3の実施形態によると、電池パックが提供される。この電池パックは、第2の実施形態に係る電池を具備する。
[Third Embodiment]
According to the third embodiment, a battery pack is provided. This battery pack includes the battery according to the second embodiment.
 実施形態に係る電池パックは、複数の電池を備えることもできる。複数の電池は、電気的に直列に接続することもできるし、又は電気的に並列に接続することもできる。或いは、複数の電池を、直列及び並列の組み合わせで接続することもできる。 The battery pack according to the embodiment may include a plurality of batteries. The plurality of batteries can be electrically connected in series or electrically connected in parallel. Alternatively, a plurality of batteries can be connected in a combination of series and parallel.
 例えば、電池パックは、第2の実施形態に係る電池を5つ具備することもできる。これらの電池は、直列に接続されることができる。また、直列に接続された電池は、組電池を構成することができる。すなわち、実施形態に係る電池パックは、組電池を具備することもできる。 For example, the battery pack can include five batteries according to the second embodiment. These batteries can be connected in series. Moreover, the battery connected in series can comprise an assembled battery. That is, the battery pack according to the embodiment can include an assembled battery.
 実施形態に係る電池パックは、複数の組電池を具備することができる。複数の組電池は、直列、並列、又は直列及び並列の組み合わせで接続することができる。 The battery pack according to the embodiment can include a plurality of assembled batteries. The plurality of assembled batteries can be connected in series, parallel, or a combination of series and parallel.
 実施形態に係る電池パックを図6及び図7を参照して詳細に説明する。単電池には、図1及び図2に示す扁平型電池を使用することができる。 The battery pack according to the embodiment will be described in detail with reference to FIGS. The flat battery shown in FIGS. 1 and 2 can be used as the unit cell.
 図6は、実施形態に係る電池パックの一例を概略的に示す分解斜視図である。図7は、図6に示す電池パック20の電気回路の一例を示すブロック図である。 FIG. 6 is an exploded perspective view schematically showing an example of the battery pack according to the embodiment. FIG. 7 is a block diagram showing an example of an electric circuit of the battery pack 20 shown in FIG.
 前述した図1及び図2に示す扁平型電池から構成される複数の単電池21は、外部に延出した負極端子8及び正極端子7が同じ向きに揃えられるように積層され、粘着テープ22で締結することにより組電池23を構成している。これらの単電池21は、図7に示すように互いに電気的に直列に接続されている。 A plurality of unit cells 21 composed of the flat batteries shown in FIGS. 1 and 2 are laminated so that the negative electrode terminal 8 and the positive electrode terminal 7 extending to the outside are aligned in the same direction. The assembled battery 23 is configured by fastening. These unit cells 21 are electrically connected to each other in series as shown in FIG.
 プリント配線基板24は、負極端子8及び正極端子7が延出する単電池21側面と対向して配置されている。プリント配線基板24には、図7に示すようにサーミスタ25、保護回路26及び外部機器への通電用端子27が搭載されている。なお、組電池23と対向する保護回路基板24の面には組電池23の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。 The printed wiring board 24 is arranged to face the side surface of the unit cell 21 from which the negative electrode terminal 8 and the positive electrode terminal 7 extend. On the printed wiring board 24, as shown in FIG. 7, a thermistor 25, a protection circuit 26, and a terminal 27 for energizing external devices are mounted. An insulating plate (not shown) is attached to the surface of the protection circuit board 24 facing the assembled battery 23 in order to avoid unnecessary connection with the wiring of the assembled battery 23.
 正極側リード28は、組電池23の最下層に位置する正極端子7に接続され、その先端はプリント配線基板24の正極側コネクタ29に挿入されて電気的に接続されている。負極側リード30は、組電池23の最上層に位置する負極端子8に接続され、その先端はプリント配線基板24の負極側コネクタ31に挿入されて電気的に接続されている。これらのコネクタ29及び31は、プリント配線基板24に形成された配線32及び配線33を通して保護回路26に接続されている。 The positive electrode side lead 28 is connected to the positive electrode terminal 7 located in the lowermost layer of the assembled battery 23, and the tip thereof is inserted into the positive electrode side connector 29 of the printed wiring board 24 and electrically connected thereto. The negative electrode side lead 30 is connected to the negative electrode terminal 8 located in the uppermost layer of the assembled battery 23, and the tip thereof is inserted into and electrically connected to the negative electrode side connector 31 of the printed wiring board 24. These connectors 29 and 31 are connected to the protection circuit 26 through wiring 32 and wiring 33 formed on the printed wiring board 24.
 サーミスタ25は、単電池21の温度を検出し、その検出信号は保護回路26に送信される。保護回路26は、所定の条件で保護回路26と外部機器への通電用端子27との間のプラス側配線34a及びマイナス側配線34bを遮断できる。所定の条件とは、例えばサーミスタ25の検出温度が所定温度以上になったときである。また、所定の条件とは単電池21の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池21若しくは組電池23全体について行われる。個々の単電池21を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池21中に参照極として用いるリチウム電極が挿入される。図6及び図7の場合、単電池21それぞれに電圧検出のための配線35を接続し、これら配線35を通して検出信号が保護回路26に送信される。 The thermistor 25 detects the temperature of the unit cell 21, and the detection signal is transmitted to the protection circuit 26. The protection circuit 26 can cut off the plus side wiring 34a and the minus side wiring 34b between the protection circuit 26 and the energization terminal 27 to the external device under a predetermined condition. The predetermined condition is, for example, when the temperature detected by the thermistor 25 is equal to or higher than a predetermined temperature. The predetermined condition is when the overcharge, overdischarge, overcurrent, etc. of the cell 21 are detected. This detection of overcharge or the like is performed for each individual cell 21 or the entire assembled battery 23. When detecting each single cell 21, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected. In the latter case, a lithium electrode used as a reference electrode is inserted into each unit cell 21. In the case of FIG. 6 and FIG. 7, a wiring 35 for voltage detection is connected to each single cell 21, and a detection signal is transmitted to the protection circuit 26 through these wirings 35.
 正極端子7及び負極端子8が突出する側面を除く組電池23の三側面には、ゴムもしくは樹脂からなる保護シート36がそれぞれ配置されている。 Protective sheets 36 made of rubber or resin are respectively disposed on the three side surfaces of the assembled battery 23 excluding the side surfaces from which the positive electrode terminal 7 and the negative electrode terminal 8 protrude.
 組電池23は、各保護シート36およびプリント配線基板24と共に収納容器37内に収納される。すなわち、収納容器37の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート36が配置され、短辺方向の反対側の内側面にプリント配線基板24が配置される。組電池23は、保護シート36およびプリント配線基板24で囲まれた空間内に位置する。蓋38は、収納容器37の上面に取り付けられている。 The assembled battery 23 is stored in a storage container 37 together with each protective sheet 36 and the printed wiring board 24. That is, the protective sheet 36 is disposed on each of the inner side surface in the long side direction and the inner side surface in the short side direction of the storage container 37, and the printed wiring board 24 is disposed on the inner side surface on the opposite side in the short side direction. The assembled battery 23 is located in a space surrounded by the protective sheet 36 and the printed wiring board 24. The lid 38 is attached to the upper surface of the storage container 37.
 なお、組電池23の固定には粘着テープ22に代えて、熱収縮テープを用いてもよい。この場合、組電池の両側面に保護シートを配置し、熱収縮テープを周回させた後、熱収縮テープを熱収縮させて組電池を結束させる。 In addition, instead of the adhesive tape 22, a heat shrink tape may be used for fixing the assembled battery 23. In this case, protective sheets are arranged on both side surfaces of the assembled battery, the heat shrinkable tape is circulated, and then the heat shrinkable tape is heat shrunk to bind the assembled battery.
 図6及び図7では単電池21を直列接続した形態を示したが、電池容量を増大させるためには並列に接続してもよい。組み上がった電池パックを直列及び/又は並列に接続することもできる。 6 and 7 show the configuration in which the unit cells 21 are connected in series, but in order to increase the battery capacity, they may be connected in parallel. The assembled battery packs can be connected in series and / or in parallel.
 第3の実施形態に係る電池パックは、第2の実施形態に係る電池を含む。そのため、電池パックでは、自己放電が抑制されている。 The battery pack according to the third embodiment includes the battery according to the second embodiment. Therefore, self-discharge is suppressed in the battery pack.
 [実施例]
 以下、実施例を説明する。
[Example]
Examples will be described below.
 <電池の作製>
 (実施例1)
 [負極の製造]
 負極活物質として炭素付着された二次粒子形状のTiNb2O7を用意した。炭素の相を含めた二次粒子の平均粒径は15μmだった。用意した負極活物質と、アセチレンブラックと、ポリフッ化ビニリデン(PVdF)とを、80:10:10の質量比で、N-メチルピロリドン(NMP)中で混合し、スラリーを得た。このスラリーをAl箔の両面に60g/m2の目付にて塗布し、乾燥させた。Al箔の幅方向の一辺に、何れの面にもスラリーを塗布しなかった部分を残した。乾燥後の積層構造物をプレスし、更に真空乾燥を行った。次いで、活物質含有層(乾燥およびプレス後のスラリー塗膜)の幅が180mmとなるように裁断し、負極を得た。裁断する際、スラリーを塗布しなかった部分とは反対側の辺を裁断した。なお、スラリーを塗布しなかった部分を負極集電タブとして用いた。
<Production of battery>
Example 1
[Manufacture of negative electrode]
As a negative electrode active material, TiNb 2 O 7 in the form of secondary particles attached with carbon was prepared. The average particle size of the secondary particles including the carbon phase was 15 μm. The prepared negative electrode active material, acetylene black, and polyvinylidene fluoride (PVdF) were mixed in a mass ratio of 80:10:10 in N-methylpyrrolidone (NMP) to obtain a slurry. This slurry was applied to both sides of the Al foil with a basis weight of 60 g / m 2 and dried. On one side of the width direction of the Al foil, a portion where no slurry was applied was left on either side. The laminated structure after drying was pressed and further vacuum dried. Next, the active material-containing layer (the slurry coating after drying and pressing) was cut so that the width was 180 mm to obtain a negative electrode. When cutting, the side opposite to the portion where the slurry was not applied was cut. In addition, the part which did not apply | coat a slurry was used as a negative electrode current collection tab.
 [正極の製造]
 正極活物質としてLiNi0.33Co0.33Mn0.33粒子、導電剤としてカーボンブラック、バインダーとしてポリフッ化ビニリデン(PVdF)を用意した。これらを、90:5:5の質量比で混合して混合物を得た。次に、得られた混合物をN-メチルピロリドン(NMP)溶媒中に分散して正極スラリーを調製した。このスラリーを厚さ15μmのアルミニウム箔の両面に80g/m2の目付にて塗布し、乾燥を行った。Al箔の幅方向の一辺に、何れの面にもスラリーを塗布しなかった部分を残した。乾燥後の積層構造物にロールプレスを施した。その後、活物質含有層(乾燥およびプレス後のスラリー塗膜)の幅が175mmのサイズになるよう裁断して、正極を得た。裁断する際、スラリーを塗布しなかった部分とは反対側の辺を裁断した。なお、スラリーを塗布しなかった部分を正極集電タブとして用いた。
[Production of positive electrode]
LiNi 0.33 Co 0.33 Mn 0.33 O 2 particles were prepared as a positive electrode active material, carbon black as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder. These were mixed at a mass ratio of 90: 5: 5 to obtain a mixture. Next, the obtained mixture was dispersed in an N-methylpyrrolidone (NMP) solvent to prepare a positive electrode slurry. This slurry was applied to both sides of an aluminum foil having a thickness of 15 μm with a basis weight of 80 g / m 2 and dried. On one side of the width direction of the Al foil, a portion where no slurry was applied was left on either side. The laminated structure after drying was roll-pressed. Thereafter, the active material containing layer (slurry coating film after drying and pressing) was cut to have a width of 175 mm to obtain a positive electrode. When cutting, the side opposite to the portion where the slurry was not applied was cut. In addition, the part which did not apply | coat a slurry was used as a positive electrode current collection tab.
 [電極群の製造]
 セパレータ(電気的絶縁部材)として、厚さが15μmで、空隙率が70%のセルロース繊維不織布を用意した。このセパレータを2枚と、上記の通り製造した負極と正極とを、負極、セパレータ、正極、セパレータの順となるよう積層させて、積層体を得た。積層させる際、負極集電タブと正極集電タブとが積層体の反対側(幅方向に対向する一対の辺のそれぞれ)に位置する配置とした。このとき、活物質含有層の幅は負極の方が正極よりも5 mm長いことがわかる。正極集電タブ側の負極活物質含有層のはみ出し幅は1.5 mmとし、負極集電タブ側への負極活物質含有層のはみ出し幅は3.5 mmとした。
 積層体を扁平の渦巻状に捲回することにより、電極群を製造した。
[Manufacture of electrode group]
A cellulose fiber nonwoven fabric having a thickness of 15 μm and a porosity of 70% was prepared as a separator (electrically insulating member). Two separators and the negative electrode and positive electrode produced as described above were laminated in the order of negative electrode, separator, positive electrode, and separator to obtain a laminate. When laminating, the negative electrode current collecting tab and the positive electrode current collecting tab were disposed on the opposite side of the laminated body (each of a pair of sides facing each other in the width direction). At this time, the width of the active material-containing layer is found to be 5 mm longer for the negative electrode than for the positive electrode. The protruding width of the negative electrode active material-containing layer on the positive electrode current collecting tab side was 1.5 mm, and the protruding width of the negative electrode active material-containing layer on the negative electrode current collecting tab side was 3.5 mm.
The electrode assembly was manufactured by winding the laminate into a flat spiral shape.
 [電解質の調製]
 プロピレンカーボネート(PC)とジエチルカーボネート(DEC)を体積比PC:DECが1:2となるように混合した。この混合溶媒に、LiPFを1M溶解させ、液状非水電解質を得た。
[Preparation of electrolyte]
Propylene carbonate (PC) and diethyl carbonate (DEC) were mixed so that the volume ratio PC: DEC was 1: 2. In this mixed solvent, 1M of LiPF 6 was dissolved to obtain a liquid non-aqueous electrolyte.
 [電池の作製]
 電極群をラミネートフィルムからなる袋状外装部材に挿入した。 
 液状非水電解質を、外装部材内の電極群に注液した。外装部材を封止することにより、厚さ17mm、幅88mm、高さ240mmの非水電解質二次電池を得た。
[Production of battery]
The electrode group was inserted into a bag-shaped exterior member made of a laminate film.
The liquid nonaqueous electrolyte was injected into the electrode group in the exterior member. By sealing the exterior member, a nonaqueous electrolyte secondary battery having a thickness of 17 mm, a width of 88 mm, and a height of 240 mm was obtained.
 (実施例2)
 実施例1と同様の手順で負極および正極を製造した。 
 平均粒径が1μmのAl粒子とPVdFとを、100:4の質量比で混合した混合物をNMPに分散させてアルミナ含有スラリー(スラリーII)を調製した。このスラリーは、粘度せん断速度1.0(1/s)で100Pa・s、粘度せん断速度1000(1/s)で2Pa・sとなるように調製した。
(Example 2)
A negative electrode and a positive electrode were produced in the same procedure as in Example 1.
A mixture of Al 2 O 3 particles having an average particle diameter of 1 μm and PVdF mixed at a mass ratio of 100: 4 was dispersed in NMP to prepare an alumina-containing slurry (slurry II). This slurry was prepared so as to be 100 Pa · s at a viscosity shear rate of 1.0 (1 / s) and 2 Pa · s at a viscosity shear rate of 1000 (1 / s).
 アルミナ含有スラリーを、負極の両面の活物質含有層上に5g/m2の量となるように塗布した。また、アルミナ含有スラリーの塗工幅が180mmとなるように塗布した。アルミナ含有スラリーを乾燥させて、負極上に絶縁層を形成した。 The alumina-containing slurry was applied on the active material-containing layers on both sides of the negative electrode so as to have an amount of 5 g / m 2 . Moreover, it apply | coated so that the coating width of an alumina containing slurry might be set to 180 mm. The alumina-containing slurry was dried to form an insulating layer on the negative electrode.
 絶縁層が形成された負極と正極とを交互に積層させて、積層体を得た。積層させる際、負極集電タブと正極集電タブとが積層体の反対側(幅方向に対向する一対の辺のそれぞれ)に位置する配置とした。実施例1と同様に、正極集電タブ側の負極活物質含有層のはみ出し幅は1.5 mmとし、負極集電タブ側への負極活物質含有層のはみ出し幅は3.5 mmとした。積層体を捲回することにより、電極群を製造した。 The negative electrode and the positive electrode on which the insulating layer was formed were alternately laminated to obtain a laminate. When laminating, the negative electrode current collecting tab and the positive electrode current collecting tab were disposed on the opposite side of the laminated body (each of a pair of sides opposed in the width direction). As in Example 1, the protruding width of the negative electrode active material-containing layer on the positive electrode current collector tab side was 1.5 mm, and the protruding width of the negative electrode active material-containing layer on the negative electrode current collector tab side was 3.5 mm. An electrode group was manufactured by winding the laminate.
 得られた電極群を用いたことを除き、実施例1と同様に非水電解質二次電池を作製した。 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the obtained electrode group was used.
 (実施例3)
 絶縁層の形成にAl2O3の代わりに平均粒径が1μmのBaSO4粒子を用いた以外、実施例2と同様に非水電解質二次電池を作製した。
Example 3
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that BaSO 4 particles having an average particle diameter of 1 μm were used instead of Al 2 O 3 for forming the insulating layer.
 (実施例4)
 絶縁層の形成にAl2O3の代わりに平均粒径が1μmのLiLaTa12粒子を用いた以外、実施例2と同様に非水電解質二次電池を作製した。
Example 4
A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 2 except that Li 7 La 2 Ta 3 O 12 particles having an average particle diameter of 1 μm were used instead of Al 2 O 3 for forming the insulating layer.
 (実施例5)
 絶縁層の形成にAl2O3の代わりに平均粒径が1μmのLi1.4Al0.4Zr1.6(PO粒子を用いた以外、実施例2と同様に非水電解質二次電池を作製した。
(Example 5)
A non-aqueous electrolyte was formed in the same manner as in Example 2 except that Li 1.4 Al 0.4 Zr 1.6 (PO 4 ) 3 particles having an average particle diameter of 1 μm were used instead of Al 2 O 3 for forming the insulating layer. A secondary battery was produced.
 (実施例6)
 負極活物質含有層の幅を90 mmに変更し、正極活物質含有層の幅を87.5 mmに変更した。正極集電タブ側への負極活物質含有層のはみ出し幅を1 mmに変更し、負極集電タブ側への負極活物質含有層のはみ出し幅を1.5 mmに変更した。電極群をラミネートフィルム製の袋状外装部材の代わりに壁厚0.25mmのアルミニウム合金(Al純度99%)からなり厚さ21mm、幅115mm、高さ105mmの角形缶に挿入した。 
 これらの変更以外は、実施例2と同様に非水電解質二次電池を作製した。
(Example 6)
The width of the negative electrode active material-containing layer was changed to 90 mm, and the width of the positive electrode active material-containing layer was changed to 87.5 mm. The protruding width of the negative electrode active material-containing layer on the positive electrode current collecting tab side was changed to 1 mm, and the protruding width of the negative electrode active material-containing layer on the negative electrode current collecting tab side was changed to 1.5 mm. The electrode group was inserted into a rectangular can made of an aluminum alloy (Al purity 99%) having a wall thickness of 0.25 mm, having a thickness of 21 mm, a width of 115 mm, and a height of 105 mm, instead of the laminated film bag-shaped exterior member.
Except for these changes, a non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 2.
 (実施例7)
 負極活物質含有層の幅を180 mmに変更し、正極活物質含有層の幅を176.5 mmに変更した。正極集電タブ側への負極活物質含有層のはみ出し幅を1.5 mmに変更し、負極集電タブ側への負極活物質含有層のはみ出し幅を2 mmに変更した。 
 これらの変更以外は、実施例2と同様に非水電解質二次電池を作製した。
(Example 7)
The width of the negative electrode active material-containing layer was changed to 180 mm, and the width of the positive electrode active material-containing layer was changed to 176.5 mm. The protruding width of the negative electrode active material-containing layer on the positive electrode current collecting tab side was changed to 1.5 mm, and the protruding width of the negative electrode active material-containing layer on the negative electrode current collecting tab side was changed to 2 mm.
Except for these changes, a non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 2.
 (実施例8)
 実施例1にて負極の製造に用いたスラリーと同様のスラリー(スラリーI)を用意した。 
 実施例2にて絶縁層の形成に用いたアルミナ含有スラリーと同様のスラリー(スラリーII)を用意した。 
 先に説明した第2の製造方法に沿って絶縁層が形成された負極を作製したことを除き、実施例7と同様に非水電解質二次電池を作製した。
(Example 8)
A slurry (slurry I) similar to the slurry used for producing the negative electrode in Example 1 was prepared.
A slurry (slurry II) similar to the alumina-containing slurry used to form the insulating layer in Example 2 was prepared.
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 7, except that a negative electrode having an insulating layer formed thereon was produced according to the second production method described above.
 (実施例9)
 負極活物質含有層の幅を185 mmに変更し、正極活物質含有層の幅を179 mmに変更した。正極集電タブ側への負極活物質含有層のはみ出し幅を2 mmに変更し、負極集電タブ側への負極活物質含有層のはみ出し幅を4 mmに変更した。 
 これらの変更以外は、実施例2と同様に非水電解質二次電池を作製した。
Example 9
The width of the negative electrode active material-containing layer was changed to 185 mm, and the width of the positive electrode active material-containing layer was changed to 179 mm. The protrusion width of the negative electrode active material-containing layer on the positive electrode current collector tab side was changed to 2 mm, and the protrusion width of the negative electrode active material-containing layer on the negative electrode current collector tab side was changed to 4 mm.
Except for these changes, a non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 2.
 (実施例10)
 負極活物質含有層の幅を118 mmに変更し、正極活物質含有層の幅を113.5 mmに変更した。正極集電タブ側への負極活物質含有層のはみ出し幅を2 mmに変更し、負極集電タブ側への負極活物質含有層のはみ出し幅を2.5 mmに変更した。 
 これらの変更以外は、実施例2と同様に非水電解質二次電池を作製した。
(Example 10)
The width of the negative electrode active material-containing layer was changed to 118 mm, and the width of the positive electrode active material-containing layer was changed to 113.5 mm. The protruding width of the negative electrode active material-containing layer on the positive electrode current collecting tab side was changed to 2 mm, and the protruding width of the negative electrode active material-containing layer on the negative electrode current collecting tab side was changed to 2.5 mm.
Except for these changes, a non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 2.
 (実施例11)
 負極活物質含有層の幅を180 mmに変更し、正極活物質含有層の幅を172.6 mmに変更した。正極集電タブ側への負極活物質含有層のはみ出し幅を3.5 mmに変更し、負極集電タブ側への負極活物質含有層のはみ出し幅を3.9 mmに変更した。 
 これらの変更以外は、実施例2と同様に非水電解質二次電池を作製した。
(Example 11)
The width of the negative electrode active material-containing layer was changed to 180 mm, and the width of the positive electrode active material-containing layer was changed to 172.6 mm. The protruding width of the negative electrode active material-containing layer on the positive electrode current collecting tab side was changed to 3.5 mm, and the protruding width of the negative electrode active material-containing layer on the negative electrode current collecting tab side was changed to 3.9 mm.
Except for these changes, a non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 2.
 (実施例12)
 負極活物質として平均粒径が1μmの一次粒子形状のTiNb2O7(炭素相なし)を用いた以外、実施例1と同様に非水電解質二次電池を作製した。
Example 12
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that TiNb 2 O 7 (no carbon phase) having a primary particle shape of 1 μm in average particle size was used as the negative electrode active material.
 (実施例13)
 負極活物質として平均粒径が1μmの一次粒子形状のTiNb2O7(炭素相なし)を用いた以外、実施例2と同様に非水電解質二次電池を作製した。
(Example 13)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that TiNb 2 O 7 (no carbon phase) having a primary particle shape of 1 μm in average particle size was used as the negative electrode active material.
 (実施例14)
 負極活物質として平均粒径が0.8μmの一次粒子形状のTiNb2O7(炭素相なし)を用いた以外、実施例2と同様に非水電解質二次電池を作製した。
(Example 14)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that TiNb 2 O 7 (no carbon phase) having a primary particle shape of 0.8 μm in average particle size was used as the negative electrode active material.
 (実施例15)
 負極活物質として平均粒径が12μmの二次粒子形状のTiNb2O7(炭素相なし)を用いた以外、実施例2と同様に非水電解質二次電池を作製した。
(Example 15)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 2, except that TiNb 2 O 7 (no carbon phase) in the form of secondary particles having an average particle size of 12 μm was used as the negative electrode active material.
 (実施例16)
 負極活物質として平均粒径が1μmの一次粒子形状のTiNb2O7(炭素相なし)を用いた以外、実施例6と同様に非水電解質二次電池を作製した。
(Example 16)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 6 except that TiNb 2 O 7 (no carbon phase) having a primary particle shape of 1 μm in average particle size was used as the negative electrode active material.
 (実施例17)
 負極活物質として平均粒径が1μmの一次粒子形状のTiNb2O7(炭素相なし)を用いた以外、実施例7と同様に非水電解質二次電池を作製した。
(Example 17)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 7, except that TiNb 2 O 7 (no carbon phase) having a primary particle shape of 1 μm in average particle size was used as the negative electrode active material.
 (実施例18)
 電極群を製造する際、正極集電タブ側の負極活物質含有層のはみ出し幅を0.5 mmに変更し、負極集電タブ側への負極活物質含有層のはみ出しを4.5 mmに変更した以外、実施例2と同様に非水電解質二次電池を作製した。
(Example 18)
When manufacturing the electrode group, the protrusion width of the negative electrode active material-containing layer on the positive electrode current collector tab side was changed to 0.5 mm, and the protrusion of the negative electrode active material-containing layer on the negative electrode current collector tab side was changed to 4.5 mm, A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 2.
 (実施例19)
 負極活物質として炭素付着された二次粒子形状のLi2Na1.6Ti5.6Nb0.4O14を用意した。炭素の相を含めた二次粒子の平均粒径は15μmだった。用意した負極活物質と、アセチレンブラックと、ポリフッ化ビニリデン(PVdF)とを、80:10:10の質量比で、N-メチルピロリドン(NMP)中で混合し、スラリーを得た。このスラリーをAl箔の両面に100g/m2の目付にて塗布し、乾燥させた。Al箔の幅方向の一辺に、何れの面にもスラリーを塗布しなかった部分を残した。乾燥後の積層構造物をプレスし、更に真空乾燥を行った。次いで、活物質含有層(乾燥およびプレス後のスラリー塗膜)の幅が180mmとなるように裁断し、負極を得た。裁断する際、スラリーを塗布しなかった部分とは反対側の辺を裁断した。なお、スラリーを塗布しなかった部分を負極集電タブとして用いた。 
 この負極を用いたことを除き、実施例1と同様に非水電解質二次電池を作製した。
(Example 19)
As a negative electrode active material, Li 2 Na 1.6 Ti 5.6 Nb 0.4 O 14 in the form of secondary particles attached with carbon was prepared. The average particle size of the secondary particles including the carbon phase was 15 μm. The prepared negative electrode active material, acetylene black, and polyvinylidene fluoride (PVdF) were mixed in a mass ratio of 80:10:10 in N-methylpyrrolidone (NMP) to obtain a slurry. This slurry was applied to both sides of the Al foil with a basis weight of 100 g / m 2 and dried. On one side of the width direction of the Al foil, a portion where no slurry was applied was left on either side. The laminated structure after drying was pressed and further vacuum dried. Next, the active material-containing layer (the slurry coating after drying and pressing) was cut so that the width was 180 mm to obtain a negative electrode. When cutting, the side opposite to the portion where the slurry was not applied was cut. In addition, the part which did not apply | coat a slurry was used as a negative electrode current collection tab.
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used.
 (実施例20)
 負極活物質として、平均粒径が1μmの一次粒子形状のLi2Na1.6Ti5.6Nb0.4O14(炭素相なし)を用いた以外、実施例18と同様に非水電解質二次電池を作製した。
(Example 20)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 18 except that Li 2 Na 1.6 Ti 5.6 Nb 0.4 O 14 (no carbon phase) having an average particle diameter of 1 μm as the negative electrode active material was used. .
 (実施例21)
 負極活物質として平均粒径が1μmの一次粒子形状のLi4Ti5O12を用意した。用意した負極活物質と、アセチレンブラックと、ポリフッ化ビニリデン(PVdF)とを、80:10:10の質量比で、N-メチルピロリドン中で混合し、スラリーを得た。このスラリーをAl箔の両面に75g/m2の目付にて塗布し、乾燥させた。Al箔の幅方向の一辺に、何れの面にもスラリーを塗布しなかった部分を残した。乾燥後の積層構造物をプレスし、更に真空乾燥を行った。次いで、活物質含有層(乾燥およびプレス後のスラリー塗膜)の幅が180mmとなるように裁断し、負極を得た。裁断する際、スラリーを塗布しなかった部分とは反対側の辺を裁断した。なお、スラリーを塗布しなかった部分を負極集電タブとして用いた。 
 この負極を用いたことを除き、実施例1と同様に非水電解質二次電池を作製した。
(Example 21)
Li 4 Ti 5 O 12 having a primary particle shape with an average particle diameter of 1 μm was prepared as a negative electrode active material. The prepared negative electrode active material, acetylene black, and polyvinylidene fluoride (PVdF) were mixed at a mass ratio of 80:10:10 in N-methylpyrrolidone to obtain a slurry. This slurry was applied to both sides of the Al foil with a basis weight of 75 g / m 2 and dried. On one side of the width direction of the Al foil, a portion where no slurry was applied was left on either side. The laminated structure after drying was pressed and further vacuum dried. Next, the active material-containing layer (the slurry coating after drying and pressing) was cut so that the width was 180 mm to obtain a negative electrode. When cutting, the side opposite to the portion where the slurry was not applied was cut. In addition, the part which did not apply | coat a slurry was used as a negative electrode current collection tab.
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used.
 (比較例1)
 電極群を製造する際、正極集電タブ側の負極活物質含有層のはみ出し幅を2.5 mmに変更し、負極集電タブ側への負極活物質含有層のはみ出しを2.5 mmに変更した以外、実施例1と同様に非水電解質二次電池を作製した。
(Comparative Example 1)
When manufacturing the electrode group, the protrusion width of the negative electrode active material-containing layer on the positive electrode current collector tab side was changed to 2.5 mm, and the protrusion of the negative electrode active material-containing layer on the negative electrode current collector tab side was changed to 2.5 mm, A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1.
 (比較例2)
 電極群を製造する際、正極集電タブ側の負極活物質含有層のはみ出し幅を2.5 mmに変更し、負極集電タブ側への負極活物質含有層のはみ出しを2.5 mmに変更した以外、実施例2と同様に非水電解質二次電池を作製した。
(Comparative Example 2)
When manufacturing the electrode group, the protrusion width of the negative electrode active material-containing layer on the positive electrode current collector tab side was changed to 2.5 mm, and the protrusion of the negative electrode active material-containing layer on the negative electrode current collector tab side was changed to 2.5 mm, A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 2.
 (比較例3)
 電極群を製造する際、正極集電タブ側の負極活物質含有層のはみ出し幅を4 mmに変更し、負極集電タブ側への負極活物質含有層のはみ出しを1 mmに変更した以外、実施例2と同様に非水電解質二次電池を作製した。
(Comparative Example 3)
When manufacturing the electrode group, the protrusion width of the negative electrode active material-containing layer on the positive electrode current collector tab side was changed to 4 mm, and the protrusion of the negative electrode active material-containing layer to the negative electrode current collector tab side was changed to 1 mm, A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 2.
 <電池の評価>
 各実施例および各比較例にて作製した各々の電池に対し、以下の高温貯蔵試験を実施した。
<Battery evaluation>
The following high-temperature storage test was implemented with respect to each battery produced in each Example and each Comparative Example.
 各々の電池について、SOC100%からの放電容量を測定した。各々の電池を再度SOC100%に充電した後、60℃恒温槽内にて貯蔵した。貯蔵期間4週間後に残存容量を測定した。 The discharge capacity from SOC 100% was measured for each battery. Each battery was again charged to 100% SOC and then stored in a constant temperature bath at 60 ° C. The remaining volume was measured after 4 weeks of storage.
 残存容量は、次の通り測定した。25℃恒温槽内にて、電池表面温度が25℃±3℃となった後、1 C電流にて定電流放電を行った。このとき、放電終止条件を電池電圧が1.8 Vに到達した時点とした。放電した容量を測定し、残存容量を求めた。 The remaining capacity was measured as follows. After the battery surface temperature reached 25 ° C. ± 3 ° C. in a constant temperature bath at 25 ° C., constant current discharge was performed at 1 ° C. current. At this time, the discharge termination condition was the time when the battery voltage reached 1.8V. The discharged capacity was measured to determine the remaining capacity.
 4週間貯蔵した後に測定した残存容量をC4とし、貯蔵試験前のSOC100%からの放電容量をC0とし、C0に対するC4の割合を算出して残存容量維持率を求めた(残存容量維持率 =C4/C0 × 100%)。 The remaining capacity measured after storage for 4 weeks was defined as C4, the discharge capacity from 100% SOC before the storage test was defined as C0, and the ratio of C4 to C0 was calculated to determine the remaining capacity retention ratio (residual capacity retention ratio = C4 / C0 × 100%).
 表1に、各々の電極群の設計および電池の評価結果をまとめる。詳細には、電極群の設計として、負極活物質に用いた化合物の組成、負極活物質含有層の幅(幅W)、正極集電タブ側の負極活物質含有層のはみ出し幅(第1ずれ幅A)、負極集電タブ側の負極活物質含有層のはみ出し幅(第2ずれ幅B)、正極集電タブ側のはみ出し幅と負極活物質含有層の幅との比(A/W)、負極集電タブ側のはみ出し幅と負極活物質含有層の幅との比(B/W)を示す。また、評価結果として先に説明した高温貯蔵試験における残存容量維持率を示す。 Table 1 summarizes the design of each electrode group and the battery evaluation results. Specifically, as the design of the electrode group, the composition of the compound used for the negative electrode active material, the width of the negative electrode active material-containing layer (width W N ), the protruding width of the negative electrode active material-containing layer on the positive electrode current collector tab side (first Deviation width A), the protruding width of the negative electrode active material-containing layer on the negative electrode current collecting tab side (second deviation width B), the ratio of the protruding width on the positive electrode current collecting tab side and the width of the negative electrode active material containing layer (A / W) N ), and the ratio (B / W N ) between the protrusion width on the negative electrode current collector tab side and the width of the negative electrode active material-containing layer. Moreover, the remaining capacity maintenance rate in the high-temperature storage test demonstrated previously as an evaluation result is shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、各実施例で作製した電池に対する貯蔵試験における残存容量維持率は、各比較例で作製した電池での残存容量維持率より高かった。この結果が示すとおり、各実施例では自己放電を抑制することができた。 As shown in Table 1, the remaining capacity retention rate in the storage test for the batteries produced in each example was higher than the remaining capacity maintenance rate in the batteries produced in each comparative example. As this result shows, self-discharge was able to be suppressed in each Example.
 実施例1-20では、リチウムの吸蔵・放出電位が比較的低い(卑である)Nb2TiO7又はLi2Na1.6Ti5.6Nb0.4O14を負極活物質として用いていた。そのため、これらの実施例の電池を用いた高温貯蔵試験の条件は、リチウムが析出しやすい条件であった。それにも関わらず自己放電が抑制できていたことから、電気的短絡が生じなかったと判断できる。 In Example 1-20, Nb 2 TiO 7 or Li 2 Na 1.6 Ti 5.6 Nb 0.4 O 14 having a relatively low lithium insertion / release potential (base) was used as the negative electrode active material. Therefore, the conditions of the high-temperature storage test using the batteries of these examples were conditions where lithium was likely to precipitate. Nevertheless, since self-discharge was suppressed, it can be determined that no electrical short circuit occurred.
 実施例21では、リチウムの吸蔵・放出電位が比較的高い(貴である)Li4Ti5O12を負極活物質として用いていた。そのため実施例20の電池は、高温貯蔵試験の条件下でもリチウム析出が起こりにくい条件にあった。つまり、リチウムの析出がなかったため電気的短絡が生じず、自己放電が少なかったと推察される。 In Example 21, Li 4 Ti 5 O 12 having a relatively high lithium absorption / release potential (noble) was used as the negative electrode active material. Therefore, the battery of Example 20 was in a condition in which lithium deposition hardly occurred even under the conditions of the high-temperature storage test. That is, it is presumed that since there was no deposition of lithium, an electrical short circuit did not occur and there was little self-discharge.
 比較例1及び2では、正極集電タブ側と負極集電タブ側とで負極活物質含有層のはみ出し幅が同じだった(第1ずれ幅A=第2ずれ幅B)。 
 比較例3では、正極集電タブ側での負極活物質含有層のはみ出し幅(ずれ幅A)よりも、負極集電タブ側での負極活物質含有層のはみ出し幅(第1ずれ幅B)が狭かった。 
 このとおり、各比較例では負極活物質含有層のはみ出し幅が正極集電タブ側よりも負極集電タブ側で広くはなく(第1ずれ幅Aよりも第2ずれ幅Bが広くなく)、電極群の設計が適切でなかった。それに起因して、各比較例では短絡が生じた結果、自己放電を抑制できなかったと推察される。
In Comparative Examples 1 and 2, the protruding width of the negative electrode active material-containing layer was the same on the positive electrode current collecting tab side and the negative electrode current collecting tab side (first deviation width A = second deviation width B).
In Comparative Example 3, the protrusion width (first deviation width B) of the negative electrode active material-containing layer on the negative electrode current collector tab side was larger than the protrusion width (deviation width A) of the negative electrode active material-containing layer on the positive electrode current collection tab side. Was narrow.
As described above, in each comparative example, the protruding width of the negative electrode active material-containing layer is not wider on the negative electrode current collecting tab side than on the positive electrode current collecting tab side (the second deviation width B is not wider than the first deviation width A), The electrode group design was not appropriate. As a result, it is speculated that self-discharge could not be suppressed as a result of a short circuit in each comparative example.
 以上に説明した少なくとも一つの実施形態および実施例に係る電極群は、正極と負極と電気的絶縁部材とを含む積層体を具備する。正極は、帯状の正極集電体と、正極集電体の一辺に平行な端部に設けられた正極集電タブと、正極集電体の上に少なくとも正極集電タブを除いて担持された正極活物質含有層とを具備する。正極活物質含有層は正極集電体の上記一辺に平行な第1端部と第2端部とを含む。負極は、帯状の負極集電体と、負極集電体の一辺に平行な端部に設けられた負極集電タブと、負極集電体の上に少なくとも負極集電タブを除いて担持されチタン含有酸化物を含む負極活物質含有層とを具備する。負極活物質含有層は負極集電体の上記一辺に平行な第3端部と第4端部とを含む。電気的絶縁部材は、正極活物質含有層と負極活物質含有層との間に介在している。積層体は、捲回されている。捲回軸に平行な第1方向に正極集電タブが突出する。第1端部よりも第4端部が正極集電タブ側に位置している。第1方向と反対向きの第2方向に負極集電タブが突出する。第2端部よりも第3端部が負極集電タブ側に位置している。第1端部と第4端部との間の第1ずれ幅よりも、第2端部と第3端部との間の第2ずれ幅が広い。当該電極群は、自己放電が抑制された電池、及びこの電池を具備する電池パックを実現できる。 The electrode group according to at least one embodiment and example described above includes a laminate including a positive electrode, a negative electrode, and an electrically insulating member. The positive electrode was supported on the positive electrode current collector, a positive electrode current collector tab provided at an end parallel to one side of the positive electrode current collector, and at least excluding the positive electrode current collector tab. A positive electrode active material-containing layer. The positive electrode active material-containing layer includes a first end and a second end parallel to the one side of the positive electrode current collector. The negative electrode includes a strip-shaped negative electrode current collector, a negative electrode current collector tab provided at an end parallel to one side of the negative electrode current collector, and a titanium supported on the negative electrode current collector excluding at least the negative electrode current collector tab A negative electrode active material-containing layer containing a containing oxide. The negative electrode active material-containing layer includes a third end portion and a fourth end portion that are parallel to the one side of the negative electrode current collector. The electrically insulating member is interposed between the positive electrode active material-containing layer and the negative electrode active material-containing layer. The laminate is wound. A positive electrode current collecting tab protrudes in a first direction parallel to the winding axis. The fourth end portion is located closer to the positive electrode current collecting tab than the first end portion. The negative electrode current collector tab protrudes in the second direction opposite to the first direction. The third end is located closer to the negative electrode current collecting tab than the second end. The second displacement width between the second end portion and the third end portion is wider than the first displacement width between the first end portion and the fourth end portion. The electrode group can realize a battery in which self-discharge is suppressed and a battery pack including the battery.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

Claims (6)

  1.   帯状の正極集電体と、前記正極集電体の一辺に平行な端部に設けられた正極集電タブと、前記正極集電体の上に少なくとも前記正極集電タブを除いて担持された正極活物質含有層とを具備し、前記正極活物質含有層は前記正極集電体の前記一辺に平行な第1端部と第2端部とを含む正極と
      帯状の負極集電体と、前記負極集電体の一辺に平行な端部に設けられた負極集電タブと、前記負極集電体の上に少なくとも前記負極集電タブを除いて担持されチタン含有酸化物を含む負極活物質含有層とを具備し、前記負極活物質含有層は前記負極集電体の前記一辺に平行な第3端部と第4端部とを含む負極と、
      前記正極活物質含有層と前記負極活物質含有層との間に介在した電気的絶縁部材と
    を含んだ積層体を具備し、
     前記積層体が捲回されており、捲回軸に平行な第1方向に前記正極集電タブが突出し、且つ前記第1端部よりも前記第4端部が前記正極集電タブ側に位置し、前記第1方向と反対向きの第2方向に前記負極集電タブが突出し、且つ前記第2端部よりも前記第3端部が前記負極集電タブ側に位置し、
     前記第1端部と前記第4端部との間の第1ずれ幅より、前記第2端部と前記第3端部との間の第2ずれ幅が広い電極群。
    A belt-shaped positive electrode current collector, a positive electrode current collector tab provided at an end parallel to one side of the positive electrode current collector, and supported on the positive electrode current collector except at least the positive electrode current collector tab A positive electrode active material-containing layer, wherein the positive electrode active material-containing layer includes a positive electrode including a first end and a second end parallel to the one side of the positive electrode current collector, a strip-shaped negative electrode current collector, A negative electrode current collector tab provided at an end parallel to one side of the negative electrode current collector, and a negative electrode active material comprising a titanium-containing oxide supported on the negative electrode current collector excluding at least the negative electrode current collector tab A negative electrode including a third end and a fourth end parallel to the one side of the negative electrode current collector;
    Comprising a laminate including an electrically insulating member interposed between the positive electrode active material-containing layer and the negative electrode active material-containing layer;
    The laminate is wound, the positive current collecting tab protrudes in a first direction parallel to the winding axis, and the fourth end portion is located closer to the positive current collecting tab than the first end portion. The negative current collector tab protrudes in a second direction opposite to the first direction, and the third end portion is located closer to the negative electrode current collector tab than the second end portion,
    The electrode group in which the second shift width between the second end portion and the third end portion is wider than the first shift width between the first end portion and the fourth end portion.
  2.  0.008≦A/W≦0.02の関係を満たし、0.01≦B/W≦0.022の関係を満たす、請求項1に記載の電極群:
    ここで、Aは前記第1ずれ幅、Bは前記第2ずれ幅、Wは前記負極活物質含有層の前記捲回軸に平行な幅を示す。
    The electrode group according to claim 1, satisfying a relationship of 0.008 ≦ A / W N ≦ 0.02 and satisfying a relationship of 0.01 ≦ B / W N ≦ 0.022.
    Here, A represents the first displacement width, B represents the second displacement width, and W N represents a width parallel to the winding axis of the negative electrode active material-containing layer.
  3.  前記第1ずれ幅と前記第2ずれ幅との差A-Bが1mm以上3mm以下である、請求項1又は2に記載の電極群。 The electrode group according to claim 1 or 2, wherein a difference AB between the first shift width and the second shift width is 1 mm or more and 3 mm or less.
  4.  前記電気的絶縁部材は、Ba,Al,Zr,Ta,及びSiからなる群より選択される1以上の酸化物を含む、請求項1乃至3の何れか1項に記載の電極群。 The electrode group according to any one of claims 1 to 3, wherein the electrically insulating member includes one or more oxides selected from the group consisting of Ba, Al, Zr, Ta, and Si.
  5.  請求項1乃至4の何れか1項に記載の電極群を具備する電池。 A battery comprising the electrode group according to any one of claims 1 to 4.
  6.  請求項5に記載の電池を具備する電池パック。 A battery pack comprising the battery according to claim 5.
PCT/JP2018/013922 2018-03-30 2018-03-30 Electrode group, battery, and battery pack WO2019187130A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020508895A JP6952876B2 (en) 2018-03-30 2018-03-30 Electrode group, battery, and battery pack
PCT/JP2018/013922 WO2019187130A1 (en) 2018-03-30 2018-03-30 Electrode group, battery, and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013922 WO2019187130A1 (en) 2018-03-30 2018-03-30 Electrode group, battery, and battery pack

Publications (1)

Publication Number Publication Date
WO2019187130A1 true WO2019187130A1 (en) 2019-10-03

Family

ID=68059776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013922 WO2019187130A1 (en) 2018-03-30 2018-03-30 Electrode group, battery, and battery pack

Country Status (2)

Country Link
JP (1) JP6952876B2 (en)
WO (1) WO2019187130A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952034A (en) * 2021-03-03 2021-06-11 珠海冠宇动力电池有限公司 Lithium ion battery cell and lithium ion battery adopting same
WO2022264419A1 (en) 2021-06-18 2022-12-22 株式会社 東芝 Electrode group, battery, and battery pack

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266593A (en) * 2007-03-23 2008-11-06 Sumitomo Chemical Co Ltd Porous film
JP2014075335A (en) * 2012-09-13 2014-04-24 Gs Yuasa Corp Electrode body, method of manufacturing electrode body and storage element having electrode body
JP2016058264A (en) * 2014-09-10 2016-04-21 株式会社東芝 Electrode group and nonaqueous electrolyte battery
JP2017224496A (en) * 2016-06-15 2017-12-21 株式会社東芝 Nonaqueous electrolyte battery, battery module and vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266593A (en) * 2007-03-23 2008-11-06 Sumitomo Chemical Co Ltd Porous film
JP2014075335A (en) * 2012-09-13 2014-04-24 Gs Yuasa Corp Electrode body, method of manufacturing electrode body and storage element having electrode body
JP2016058264A (en) * 2014-09-10 2016-04-21 株式会社東芝 Electrode group and nonaqueous electrolyte battery
JP2017224496A (en) * 2016-06-15 2017-12-21 株式会社東芝 Nonaqueous electrolyte battery, battery module and vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952034A (en) * 2021-03-03 2021-06-11 珠海冠宇动力电池有限公司 Lithium ion battery cell and lithium ion battery adopting same
WO2022264419A1 (en) 2021-06-18 2022-12-22 株式会社 東芝 Electrode group, battery, and battery pack

Also Published As

Publication number Publication date
JPWO2019187130A1 (en) 2021-01-07
JP6952876B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
JP5793442B2 (en) Battery active material, non-aqueous electrolyte battery and battery pack
KR101646888B1 (en) Active material for battery, nonaqueous electrolyte battery and battery pack
KR101789005B1 (en) Active material for battery, nonaqueous electrolyte battery and battery pack
JP6096817B2 (en) Nonaqueous electrolyte secondary battery and battery pack
JP6668478B2 (en) Non-aqueous electrolyte battery and battery pack
JP6383144B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery, battery pack, and vehicle
KR101649023B1 (en) Active material for battery, nonaqueous electrolyte battery and battery pack
JP2017059390A (en) Electrode, nonaqueous electrolyte battery and battery pack
JP6571284B2 (en) Electrode, non-aqueous electrolyte battery and battery pack
CN111164819B (en) Nonaqueous electrolyte battery and battery pack
JP6965434B2 (en) Electrode complexes, batteries, and battery packs
WO2018020669A1 (en) Nonaqueous electrolyte battery, and battery pack
JP6952876B2 (en) Electrode group, battery, and battery pack
JP6325678B2 (en) Nonaqueous electrolyte secondary battery and battery pack provided with the same
WO2020194439A1 (en) Electrode group, battery, and battery pack
WO2019187131A1 (en) Electrode group, battery, and battery pack
WO2018020670A1 (en) Nonaqueous electrolyte battery, and battery pack
WO2019187128A1 (en) Battery and battery pack
WO2019187132A1 (en) Electrode complex, battery, and battery pack
JP6132945B2 (en) Battery pack and automobile
WO2023079639A1 (en) Electrode, battery, and battery pack
WO2023233692A1 (en) Electrode, secondary battery, and battery pack
JP2015046400A (en) Active material for battery, nonaqueous electrolyte battery, and battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508895

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18911664

Country of ref document: EP

Kind code of ref document: A1