WO2019186965A1 - Data processing method and data processing program in imaging mass analysis - Google Patents

Data processing method and data processing program in imaging mass analysis Download PDF

Info

Publication number
WO2019186965A1
WO2019186965A1 PCT/JP2018/013453 JP2018013453W WO2019186965A1 WO 2019186965 A1 WO2019186965 A1 WO 2019186965A1 JP 2018013453 W JP2018013453 W JP 2018013453W WO 2019186965 A1 WO2019186965 A1 WO 2019186965A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
imaging
mass spectrometry
images
data processing
Prior art date
Application number
PCT/JP2018/013453
Other languages
French (fr)
Japanese (ja)
Inventor
有里子 中木村
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2020508761A priority Critical patent/JP6927415B2/en
Priority to PCT/JP2018/013453 priority patent/WO2019186965A1/en
Publication of WO2019186965A1 publication Critical patent/WO2019186965A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode

Definitions

  • the present invention relates to a method for processing data obtained by an imaging mass spectrometer capable of acquiring mass spectrum data for each of a large number of measurement points in a measurement region on a sample, and a method for performing the method on a computer.
  • the present invention relates to a data processing program for implementation.
  • mass spectrometry imaging In mass spectrometry imaging, the spatial distribution of a substance having a specific mass is obtained by performing mass analysis on each of a plurality of measurement points (micro-regions) in a two-dimensional measurement region on a sample such as a biological tissue section. It is a method to investigate, and its application to drug discovery, biomarker search, investigation of the cause of various diseases and diseases is being promoted.
  • a mass spectrometer for performing mass spectrometry imaging is generally called an imaging mass spectrometer (see Non-Patent Documents 1 and 2, etc.).
  • an imaging mass spectrometer obtains mass spectrum data (including MS n spectrum data where n is 2 or more) over a predetermined mass-to-charge ratio (m / z) range for each of a large number of measurement points on a sample. Then, when the user designates the m / z value of the ion derived from the compound to be observed, the ion intensity value at each measurement point at the designated m / z value is extracted, and the ion intensity value is extracted according to the gray scale or color scale.
  • a two-dimensional image (mass spectrometry imaging image, hereinafter referred to as “MS imaging image”) visualized and associated with the position of the measurement point is created and displayed on the screen of the display unit.
  • the imaging mass spectrometer uses a matrix-assisted laser desorption / ionization (MALDI) method to ionize components (compounds) in a sample.
  • MALDI matrix-assisted laser desorption / ionization
  • a matrix for MALDI is applied or sprayed on the surface of a sample such as a biological tissue section.
  • Various compounds are known as matrices, but the components to be ionized differ depending on the type of matrix.
  • Imaging mass spectrometry may be performed by applying different types of matrices to a plurality of section samples.
  • the above example is an example in which imaging mass spectrometry is performed for each of a plurality of samples collected from one biological tissue, specifically, for example, an organ such as a mouse or a human liver.
  • imaging mass spectrometry is performed on each sample cut from the same living tissue of a different individual.
  • the distribution of specific components can be compared, the relationship between the distributions of different components can be investigated, In order to grasp the three-dimensional distribution of components, it is necessary to superimpose a plurality of MS imaging images.
  • MS imaging image shows the intensity distribution of ions derived from components having a certain mass, that is, the distribution of abundance, and does not necessarily indicate the contour or boundary of a certain part or tissue structure. Since it is not limited, it has been difficult to accurately align MS imaging images.
  • a stained image obtained by staining the sample with, for example, HE (hematoxylin / eosin) staining is acquired, and the stained image and a specific MS imaging image are superimposed. Even in such a case, there is a problem similar to the case where the MS imaging images are superimposed.
  • the present invention has been made in view of the above problems, and the object of the present invention is to superimpose a plurality of MS imaging images obtained from different samples, or to superimpose stained images and the MS imaging images.
  • the data processing method which has been made to solve the above-mentioned problems, is an imaging mass spectrometry that processes mass spectrometry data respectively obtained at a plurality of measurement points in a measurement region on a sample.
  • Data processing method that performs processing to superimpose a plurality of mass spectrometry imaging images created based on mass spectrometry data obtained for a plurality of samples having the same or similar parts to be observed.
  • a method a) an image selection step for allowing the user to select a plurality of mass spectrometry imaging images to be subjected to superposition processing; b) an optical microscopic image acquisition step for acquiring optical microscopic images for a plurality of samples respectively corresponding to the selected plurality of mass spectrometry imaging images; c) an image alignment step for aligning the images so that the same or similar parts coincide with each other while deforming one or a plurality of images among the plurality of obtained optical microscopic images; d) an image deformation information acquisition step for acquiring image deformation information for one or more images at the time of image alignment; e) an image deformation step of performing deformation processing of at least one image by applying the image deformation information acquired in the image deformation information acquisition step to a plurality of mass spectrometry imaging images that are targets of the superposition processing; f) an image superposition processing step for performing superposition processing of the plurality of mass spectrometry imaging images at least one of which has been deformed in the image deformation step;
  • a data processing program for performing a process of superimposing a plurality of mass spectrometry imaging images created based on mass spectrometry data respectively obtained for a plurality of samples comprising: a) an image selection function unit that allows a user to select a plurality of mass spectrometry imaging images to be subjected to superposition processing; b) an optical microscopic image acquisition function unit for acquiring optical microscopic images for a plurality of samples respectively corresponding to the selected plurality of mass spectrometry imaging images; c) an image alignment function unit that aligns images so that the same or similar parts match while deforming one or a plurality of images among a plurality of acquired optical microscopic images; d) an image deformation information acquisition function unit for acquiring image deformation information about one or more images at the time of
  • an imaging mass spectrometer (imaging mass microscope) disclosed in Non-Patent Document 1
  • an imaging mass spectrometer and an optical microscope are integrated, and sample morphology observation and mass spectrometry are performed by a single device. Yes.
  • an apparatus it is possible to acquire an optical microscopic image and a mass spectrometry imaging image in which the positions of the same parts on the sample are aligned.
  • the imaging mass spectrometer and the optical microscope are not integrated, they are usually prepared separately from the imaging mass spectrometer to determine the measurement range of the object to be subjected to imaging mass analysis on the sample.
  • An optical microscope image on the sample is taken with an optical microscope. In this case, the position of the same part on the sample should be aligned in the optical microscopic image and the mass spectrometry imaging image corresponding to the measurement range.
  • the specific region or tissue structure on the sample appears relatively clearly in the optical microscopic image. Therefore, in the data processing method realized by the data processing program according to the first aspect of the present invention, when a plurality of mass spectrometry imaging images to be superimposed are selected by the user in the image selection step, In the optical microscopic image acquisition step, optical microscopic images of a plurality of samples respectively corresponding to the selected plurality of mass spectrometry imaging images are acquired.
  • the same or mutually similar parts (tissue structure, etc.) between the optical microscopic images of the plurality of samples from which the plurality of mass spectrometry imaging images to be subjected to the overlay process are obtained.
  • image deformation information acquisition step image deformation information for one or a plurality of images is acquired in the image deformation information acquisition step.
  • deformation includes both linear deformation and non-linear deformation such as movement, rotation, enlargement / reduction, and the like of an image.
  • the deformation information obtained for the optical microscopic image is obtained by a plurality of masses. It can be used as it is for alignment between analytical imaging images. Therefore, in the deformation information image deformation step, the deformation information is applied to a plurality of mass spectrometry imaging images to be superimposed to deform at least one of the images. As a result, regardless of the pattern of the original mass spectrometry imaging image, the positions of the plurality of mass spectrometry imaging images to be superimposed are substantially aligned. In the image superimposition processing step, a plurality of mass spectrometry imaging images in such a state are superimposed, thereby creating a superimposed image that can compare, for example, distributions of predetermined components.
  • the data processing method which has been made to solve the above problems, is an imaging mass spectrometry for processing mass spectrometry data respectively obtained at a plurality of measurement points in a measurement region on a sample.
  • a data processing method in which a mass spectrometric imaging image created based on mass spectrometric data obtained for one of a plurality of samples whose parts to be observed are the same or similar to each other;
  • Image alignment is performed between the acquired optical microscopic image and the reference image of the same sample so that one or a plurality of images are deformed and the same or similar parts are matched.
  • An image alignment step d) an image deformation information acquisition step for acquiring image deformation information for one or more images at the time of image alignment; e) an image deformation step of applying the acquired image deformation information to the mass spectrometry imaging image that is the object of the superimposition process to perform an image deformation process; f) an image superposition processing step for performing superposition processing of the mass spectrometry imaging image deformed in the image deformation step and the reference image; It is characterized by having.
  • the data processing program according to the second aspect of the present invention which has been made to solve the above-mentioned problems, processes on the computer the mass spectrometry data respectively obtained at a plurality of measurement points in the measurement region on the sample.
  • a data processing program for obtaining a mass spectrometry imaging image based on mass spectrometry data obtained for one of a plurality of samples and a measurement or observation technique other than mass spectrometry for the other one A data processing program for performing a process of superimposing a reference image on a computer, a) an image selection function unit that allows the user to select one mass spectrometry imaging image that is the target of the overlay process; b) an optical microscopic image acquisition function unit for acquiring an optical microscopic image corresponding to the selected mass spectrometry imaging image; c) Image alignment is performed between the acquired optical microscopic image and the reference image of the same sample so that one or a plurality of images are deformed and the same or similar parts are matched.
  • An image alignment function d) an image deformation information acquisition function unit for acquiring image deformation information about one or more images at the time of image alignment; e) an image deformation function unit that applies image deformation information acquired by the image deformation information acquisition function unit to a mass spectrometry imaging image that is an object of the superposition process, and performs image deformation processing; f) an image superimposition processing function unit that performs superposition processing of the mass spectrometry imaging image deformed by the image deformation function unit and the reference image; It is characterized by operating.
  • the reference image can be obtained by various methods as long as the shape such as the contour or pattern of the site such as the tissue structure on the sample can be observed to some extent clearly.
  • image deformation information is obtained from an optical microscopic image of one sample and a reference image of another sample. If the mass spectrometry imaging image corresponding to the optical microscopic image is deformed by using, the mass spectrometry imaging image and the reference image can be aligned.
  • a general optical microscopic image can be obtained together with the imaging mass spectrometer. . Therefore, images are aligned using the optical microscopic image obtained at the time of Raman microscopic imaging measurement or infrared microscopic imaging measurement and the optical microscopic image obtained at the time of mass spectrometry imaging.
  • the deformation information can be used for alignment between the mass spectrometry imaging image and the Raman microscopic imaging image or the infrared microscopic imaging image.
  • the data processing method is a data processing method in imaging mass spectrometry that processes mass spectrometry data respectively obtained at a plurality of measurement points in a measurement region on a sample, and is an observation target.
  • a mass spectrometry imaging image created based on mass spectrometry data obtained for one of a plurality of samples having the same or similar site, and an imaging measurement other than imaging mass spectrometry for the other Other than mass spectrometry imaging images and imaging mass spectrometry, which is performed by superimposing the second imaging image obtained by the technique, or created based on the mass spectrometry data obtained for the same observation target part of one sample
  • Data for processing to superimpose the second imaging image obtained by the imaging measurement method of A management method a) an image selection step that allows the user to select one mass spectrometry imaging image and a second imaging image that are to be superposed; b) an optical microscopic image acquisition step of acquiring optical microscopic images respectively corresponding to the selected mass spectrometry imaging image and
  • the data processing program is a data processing program for processing, on a computer, mass spectrometry data respectively obtained at a plurality of measurement points in a measurement region on a sample.
  • Mass spectrometric imaging image created based on mass spectrometric data obtained for one of multiple samples of the same or similar target site, and imaging other than imaging mass spectrometric analysis for the other A mass spectrometric imaging image and an imaging mass spectrometric process that are performed by superimposing the second imaging image obtained by the measurement technique or that are created based on the mass spectrometric data obtained for the same observation target part of one sample
  • the computer a) an image selection function unit that allows a user to select one mass spectrometry imaging image and a second imaging image that are to be superposed; b) an optical microscopic image acquisition function unit for acquiring optical microscopic images respectively corresponding to the selected mass spectrometry imaging image and the second imaging image
  • the second imaging image is an imaging image obtained by a technique other than mass spectrometry, such as a Raman microscopic imaging image or an infrared microscopic imaging image.
  • a technique other than mass spectrometry such as a Raman microscopic imaging image or an infrared microscopic imaging image.
  • an image obtained by accurately superimposing a mass spectrometry imaging image, a Raman microscopic imaging image, an infrared microscopic imaging image, and the like can be created. Can be provided to the user.
  • the plurality of samples from which a plurality of mass spectrometry imaging images to be superimposed can be obtained from different individuals. If the parts to be observed are not the same or similar to each other, it is meaningless to perform the overlay process substantially.
  • the plurality of samples may be slice samples continuously cut out from one living tissue of one individual.
  • a plurality of mass spectrometry imaging images respectively obtained from different samples, a superposition of a stained image and the like and a mass spectrometry imaging image Or, when superimposing a mass spectrometry imaging image with a Raman microscopic imaging image, an infrared microscopic imaging image, or the like, the same part or tissue structure on different samples or one sample is as much as possible in the same position or shape.
  • highly accurate positioning can be performed easily, that is, while omitting complicated manual work by the user. Thereby, the images can be efficiently superimposed, and the burden on the user for such work is reduced.
  • FIG. 6 is a flowchart for creating a characteristic superimposed image in the imaging mass spectrometer of the present embodiment.
  • the conceptual diagram for demonstrating the superimposition image creation process shown in FIG. The conceptual diagram of the measurement area
  • FIG. 1 is a schematic configuration diagram of an embodiment of an imaging mass spectrometer for carrying out a data processing method according to the present invention.
  • the imaging mass spectrometer of the present embodiment includes an imaging mass spectrometer 1, an optical microscope observation unit 2, a data processing unit 3, an operation unit 4, and a display unit 5.
  • the operation unit 4 and the display unit 5 are user interfaces.
  • the imaging mass spectrometer 1 includes, for example, a matrix-assisted laser desorption ionization ion trap time-of-flight mass spectrometer (MALDI-IT-TOFMS), and a two-dimensional measurement region on a sample 6 such as a biological tissue section.
  • the mass spectrum data of each of a large number of measurement points (small regions) can be acquired.
  • This mass spectrum data also includes MS n spectrum data in which n is 2 or more.
  • the optical microscope observation unit 2 acquires an optical microscope image in a range including at least a measurement region on the sample 6.
  • the data processing unit 3 receives the mass spectrum data at each measurement point collected by the imaging mass spectrometry unit 1 and the optical microscopic image data obtained by imaging by the optical microscopic observation unit 2, and performs a predetermined process.
  • Optical image data storage unit 30, MS imaging data storage unit 31, optical image creation unit 32, MS imaging image creation unit 33, image alignment processing unit 34, image deformation information storage unit 35, MS imaging image adjustment unit 36, image superposition Functional blocks such as an alignment processing unit 37 and an image display processing unit 38 are provided.
  • the substance of the data processing unit 3 is a personal computer (or a higher-performance workstation).
  • dedicated software that is, a computer program
  • the imaging mass spectrometer 1 and the optical microscope observation section 2 are integrated, that is, a sample set at a predetermined position of the apparatus.
  • 6 is an apparatus that moves between the measurement position by the imaging mass spectrometry unit 1 and the imaging position by the optical microscope observation unit 2 automatically or in response to a manual operation.
  • the imaging mass spectrometer 1 and the optical microscope observation unit 2 may not be integrated.
  • FIG. 5 different types of matrixes are applied to a plurality of slice samples continuously cut out from one living tissue, and each is subjected to imaging mass spectrometry.
  • MS imaging images are superimposed.
  • the size and shape of the biological tissue appearing in each sample are substantially the same.
  • the user sets a sample 6 placed on a dedicated plate and not coated with a matrix at a predetermined position of the apparatus, and performs a predetermined operation with the operation unit 4. Then, the optical microscope observation unit 2 takes an optical microscope image on the sample 6 and displays the image on the screen of the display unit 5. The user confirms this image, determines a measurement region to be subjected to imaging mass spectrometry on the sample 6, and designates the measurement region by setting a frame surrounding the measurement region on the screen by the operation unit 4, for example. Thereby, for example, as shown in FIG. 4, a measurement region 60 is set on a sample 6 derived from a living body such as a mouse liver slice. At this time, the optical microscopic image data obtained by photographing the sample 6 is stored in the optical image data storage unit 30 together with information for specifying the position of the measurement region 60.
  • the imaging mass spectrometer 1 performs mass analysis (or MS n analysis) on each of a large number of measurement points 61 within the range of the measurement region 60 set as described above. Acquire mass spectral data over the m / z range. As a result, a set of mass spectrum data corresponding to the number of measurement points 61 in the measurement region 60 (hereinafter referred to as “MS imaging data”) is obtained, and this data is transferred from the imaging mass analyzer 1 to the data processor 3. The data is input and stored in the MS imaging data storage unit 31.
  • optical microscopic image data and MS imaging data for one sample 6 are stored in association with the optical image data storage unit 30 and the MS imaging data storage unit 31. Then, as described above, measurement is similarly performed on the plurality of samples 6 cut out from one living tissue, and optical microscopic image data and MS imaging data are collected.
  • optical microscopic observation may be performed after applying the matrix on the sample 6, but in general, when the matrix is applied, the color or pattern of the tissue on the sample 6 becomes difficult to see. Therefore, generally, a clear optical microscopic image on the sample 6 is acquired prior to the matrix coating, and the measurement region 60 is determined using the image.
  • FIG. 2 is a flowchart showing the procedure of the data processing
  • FIG. 3 is a conceptual diagram for explaining the data processing.
  • the user designates a plurality of MS imaging images to be subjected to the overlay process by the operation unit 4 (step S1).
  • one MS imaging image can be designated by information (for example, serial numbers assigned to a plurality of samples) and m / values that specify the sample.
  • information for example, serial numbers assigned to a plurality of samples
  • m / values that specify the sample.
  • the optical image creating unit 32 is an optical microscopic image in the measurement region corresponding to each of the designated MS imaging images, that is, an optical microscopic image in the almost same measurement region of the sample A and the sample B.
  • the optical microscopic image data constituting the image is read out from the optical image data storage unit 30 (step S2).
  • the optical image creation unit 32 may create an optical microscopic image from the read optical microscopic image data and display it on the screen of the display unit 5.
  • the image alignment processing unit 34 executes alignment processing according to a predetermined algorithm so that the position, size, and shape of the same part are aligned between the two optical microscopic images.
  • a predetermined algorithm for example, an image registration technique widely used in the medical field can be used.
  • Image registration technology can be broadly divided into linear registration that performs alignment by translation, rotation, and enlargement / reduction, and two-dimensional lattice points on the image, and the lattice points can be moved freely.
  • Nonlinear registration for example, FFD (Free Form Deformation) method, etc.
  • the method of alignment processing is not limited to this.
  • image deformation information for translating, rotating, enlarging / reducing, non-linear deformation, etc. of an image when one image is used as a reference and the other image is matched with the reference image is provided. can get. Therefore, the image deformation information is stored in the image deformation information storage unit 35 as image deformation information for alignment between the sample A and the sample B (step S3).
  • the MS imaging image creation unit 33 reads out MS imaging data constituting the plurality of MS imaging images specified in Step S1 from the MS imaging data storage unit 31 (Step S4).
  • the MS imaging image adjustment unit 36 reads image deformation information for alignment between the sample A and the sample B from the image deformation information storage unit 35, and uses the image deformation information to read the plurality of MS imaging images. Image processing for deforming one of these is performed (step S5). That is, here, regardless of the pattern of the MS imaging image, the image is appropriately moved, rotated, enlarged / reduced, or nonlinearly deformed based on the given image deformation information.
  • step S3 If the accuracy of the alignment performed in step S3 is high and the positional deviation between the optical microscopic image and the MS imaging image is negligible in each sample, the same parts of the MS imaging images after image deformation are located at substantially the same position. , Become size and shape. That is, alignment of a plurality of MS imaging images is realized with high accuracy by image deformation.
  • the imaging mass spectrometer of the present embodiment performs high-precision alignment between the MS imaging image of the sample A at an arbitrary m / z value and the MS imaging image of the sample B at an arbitrary m / z value.
  • a superimposed image can be created.
  • the above embodiment is an overlay of two MS imaging images, but the same may be applied to an overlay of three or more MS imaging images. That is, image deformation information of another optical microscopic image based on one optical microscopic image may be obtained, and a plurality of MS imaging images may be processed using the image deformation information.
  • MS imaging derived from a continuous section sample cut from one living tissue is not an image, but MS imaging derived from a sample cut from the same living tissue of another individual (for example, another mouse). The same process can be applied when images are superimposed.
  • imaging mass spectrometry is performed on each of a large number of section samples continuously cut out from the living tissue, and as shown in FIG. 7, the three-dimensional MS imaging image at a specific m / z value is obtained.
  • a three-dimensional distribution image of a specific compound can be created.
  • the image deformation information is obtained by aligning the optical microscopic images in order to superimpose the MS imaging images, but obtained by a technique other than the MS imaging image and mass spectrometry.
  • a similar method can be used when superimposing other images.
  • FIG. 6 is a conceptual diagram for explaining processing in the case of superimposing one stained image and one MS imaging image.
  • a stained image is observed in such a manner that a specific tissue, a specific substance, or the like is stained and can be distinguished from others. However, the shape of other parts can be observed sufficiently clearly.
  • an apparatus capable of imaging measurement such as a Raman microscopic imaging apparatus or an infrared microscopic imaging apparatus, can acquire an optical microscopic image of a site on a sample to be imaged, similar to an imaging mass spectrometer. Therefore, processing according to the conceptual diagram shown in FIG. 8 obtained by modifying FIG. 3 may be performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

When a user designates a plurality of MS imaging images originated from samples having different objects to overlap, an image position matching processing unit (34) reads, from an optical image data storage unit (30), optical microscopic image data on a plurality of samples that correspond to the designated images and executes position matching by means of a known image registration technology to obtain image modification information. Since the shape of a sample can be distinctly observed in the optical microscopic image, the position matching can be performed with higher accuracy. An MS imaging image adjustment unit (36) uses the obtained image modification information and modifies a plurality of MS imaging images. The image overlap processing unit (37) causes the modified images to overlap. Even when the shape of a part on the sample cannot be observed in the MS imaging image, an overlap in which the locations, the magnitudes, and the shapes of the same part are matched can be performed. By using this, an accurate overlap of MS imaging images derived from a plurality of slice samples that are consecutively cut from one piece of bio tissue is possible.

Description

イメージング質量分析におけるデータ処理方法及びデータ処理プログラムData processing method and data processing program in imaging mass spectrometry
 本発明は、試料上の測定領域内の多数の測定点それぞれについてマススペクトルデータを取得することが可能であるイメージング質量分析装置で得られたデータを処理する方法、及び、コンピュータ上でその方法を実施するためのデータ処理プログラムに関する。 The present invention relates to a method for processing data obtained by an imaging mass spectrometer capable of acquiring mass spectrum data for each of a large number of measurement points in a measurement region on a sample, and a method for performing the method on a computer. The present invention relates to a data processing program for implementation.
 質量分析イメージング法は、生体組織切片などの試料上の2次元的な測定領域内の複数の測定点(微小領域)に対しそれぞれ質量分析を行うことにより、特定の質量を有する物質の空間分布を調べる手法であり、創薬やバイオマーカ探索、各種疾病・疾患の原因究明などへの応用が進められている。質量分析イメージングを実施するための質量分析装置は一般にイメージング質量分析装置と呼ばれている(非特許文献1、2等参照)。 In mass spectrometry imaging, the spatial distribution of a substance having a specific mass is obtained by performing mass analysis on each of a plurality of measurement points (micro-regions) in a two-dimensional measurement region on a sample such as a biological tissue section. It is a method to investigate, and its application to drug discovery, biomarker search, investigation of the cause of various diseases and diseases is being promoted. A mass spectrometer for performing mass spectrometry imaging is generally called an imaging mass spectrometer (see Non-Patent Documents 1 and 2, etc.).
 イメージング質量分析装置では一般に、試料上の多数の測定点それぞれについて所定の質量電荷比(m/z)範囲に亘るマススペクトルデータ(nが2以上であるMSnスペクトルデータを含む)が得られる。そして、観察したい化合物由来のイオンのm/z値をユーザが指定すると、その指定されたm/z値における各測定点のイオン強度値が抽出され、そのイオン強度値をグレイスケールやカラースケールに従って可視化して測定点の位置に対応付けた2次元画像(質量分析イメージング画像、以下「MSイメージング画像」という)が作成され表示部の画面上に表示される。 In general, an imaging mass spectrometer obtains mass spectrum data (including MS n spectrum data where n is 2 or more) over a predetermined mass-to-charge ratio (m / z) range for each of a large number of measurement points on a sample. Then, when the user designates the m / z value of the ion derived from the compound to be observed, the ion intensity value at each measurement point at the designated m / z value is extracted, and the ion intensity value is extracted according to the gray scale or color scale. A two-dimensional image (mass spectrometry imaging image, hereinafter referred to as “MS imaging image”) visualized and associated with the position of the measurement point is created and displayed on the screen of the display unit.
 近年、こうしたイメージング質量分析装置を利用し、生体組織から切り出された試料における特定の化合物の2次元的な分布を観察することで、薬物動態解析、代謝パスウェイ解析、分子相関性の解析など行う研究が盛んに行われている。 In recent years, research using these imaging mass spectrometers has been conducted to observe two-dimensional distributions of specific compounds in specimens cut out from biological tissues, thereby conducting pharmacokinetic analysis, metabolic pathway analysis, molecular correlation analysis, etc. Has been actively conducted.
 上記イメージング質量分析装置では一般に、試料中の成分(化合物)をイオン化するためにマトリクス支援レーザ脱離イオン化(MALDI)法が用いられている。その場合、分析に先立って、生体組織切片などの試料の表面にMALDI用のマトリクスが塗布又は噴霧される。マトリクスとしては様々な化合物が知られているが、マトリクスの種類によってイオン化される成分は異なる。そのため、観察したい成分が複数種類あってそれらをイオン化するためのマトリクスの種類が相違する場合には、一つの生体組織から組織構造が同じであるとみなせる程度のごく薄い切片試料を複数切り出し、その複数の切片試料にそれぞれ異なる種類のマトリクスを塗布してイメージング質量分析を行うことがある。また、特定の成分の3次元的な分布を把握したいような場合には、一つの生体組織からごく薄い連続した切片試料を多数切り出し、その連続的な切片試料をそれぞれイメージング質量分析するという作業が行われる。 In general, the imaging mass spectrometer uses a matrix-assisted laser desorption / ionization (MALDI) method to ionize components (compounds) in a sample. In that case, prior to the analysis, a matrix for MALDI is applied or sprayed on the surface of a sample such as a biological tissue section. Various compounds are known as matrices, but the components to be ionized differ depending on the type of matrix. Therefore, if there are multiple types of components to be observed and the types of matrices for ionizing them are different, a plurality of very thin slice samples that can be regarded as having the same tissue structure are cut out from one biological tissue, Imaging mass spectrometry may be performed by applying different types of matrices to a plurality of section samples. In addition, when it is desired to grasp the three-dimensional distribution of a specific component, it is necessary to cut out a large number of very thin continuous section samples from one living tissue and to perform imaging mass spectrometry for each of the continuous section samples. Done.
 また、上記の例は一つの生体組織、具体的には例えばマウスやヒトの肝臓等の器官から採取された複数の試料についてそれぞれイメージング質量分析が行われる場合の例であるが、例えば、正常な個体と異常な(例えば癌などに罹患した)個体とを比較するような場合には、異なる個体の同じ生体組織からそれぞれ切り出された試料をそれぞれイメージング質量分析することが行われる。 In addition, the above example is an example in which imaging mass spectrometry is performed for each of a plurality of samples collected from one biological tissue, specifically, for example, an organ such as a mouse or a human liver. When comparing an individual with an abnormal individual (eg, suffering from cancer), imaging mass spectrometry is performed on each sample cut from the same living tissue of a different individual.
 上述したように複数の試料についてそれぞれイメージング質量分析を実行することで得られたMSイメージング画像に基づいて、特定の成分の分布を比較したり異なる成分の分布の関係を調べたり、或いは、特定の成分の3次元的な分布を把握したりするためには、複数のMSイメージング画像を重ね合わせる処理が必要になる。 As described above, based on MS imaging images obtained by performing imaging mass spectrometry for each of a plurality of samples, the distribution of specific components can be compared, the relationship between the distributions of different components can be investigated, In order to grasp the three-dimensional distribution of components, it is necessary to superimpose a plurality of MS imaging images.
 複数の試料が異なる個体から得られたものであればもちろんのこと、複数の試料が一つの個体から得られた場合であっても、作成されたMSイメージング画像において、観察したい部位の位置、大きさ、形状などが合っていない或いは揃っていないことが多い。そのため、異なる試料に由来するMSイメージング画像を正確に重ね合わせる際には、同じ部位の位置、大きさ、形状などができるだけ揃うように画像を変形する必要がある。 Of course, if multiple samples are obtained from different individuals, even if multiple samples are obtained from one individual, the position and size of the region to be observed in the created MS imaging image Often, the shapes do not match or are not aligned. Therefore, when accurately overlaying MS imaging images derived from different samples, it is necessary to deform the images so that the positions, sizes, shapes, and the like of the same part are aligned as much as possible.
 通常、こうした処理は、ユーザ(オペレータ等)が重ね合わせたい複数のMSイメージング画像を表示画面上で確認しながら、移動、回転、拡大・縮小、非線形変形などによる画像の位置合わせを手作業で行うことで実施されている。しかしながら、こうした作業はたいへんに手間が掛かり効率が低い。また、そもそも、MSイメージング画像は或る質量を有する成分由来のイオンの強度分布、つまりは存在量の分布を示すものであり、必ずしも或る部位や組織構造の輪郭や境界を示しているとは限らないため、MSイメージング画像同士で正確な位置合わせを行うのは困難であった。 Normally, such processing is performed by manually aligning images by movement, rotation, enlargement / reduction, nonlinear deformation, etc. while confirming on the display screen a plurality of MS imaging images that a user (operator, etc.) wants to overlay. It has been implemented. However, these operations are very time consuming and low in efficiency. In the first place, the MS imaging image shows the intensity distribution of ions derived from components having a certain mass, that is, the distribution of abundance, and does not necessarily indicate the contour or boundary of a certain part or tissue structure. Since it is not limited, it has been difficult to accurately align MS imaging images.
 また、生体組織の観察や解析においては、試料に対し例えばHE(ヘマトキシリン・エオジン)染色などの染色処理を行った染色画像を取得し、こうした染色画像と特定のMSイメージング画像との重ね合わせが行われる場合もあるが、その場合でもMSイメージング画像同士を重ね合わせる場合と同様の問題がある。 In the observation and analysis of biological tissue, a stained image obtained by staining the sample with, for example, HE (hematoxylin / eosin) staining is acquired, and the stained image and a specific MS imaging image are superimposed. Even in such a case, there is a problem similar to the case where the MS imaging images are superimposed.
 本発明は上記課題に鑑みて成されたものであり、その目的とするところは、異なる試料からそれぞれ得られた複数のMSイメージング画像の重ね合わせや、染色画像等とMSイメージング画像との重ね合わせを行う際に、試料上の同じ部位や組織構造などができるだけ同じ位置や形状になるように精度の高い位置合わせを簡便に行うことができる、イメージング質量分析におけるデータ処理方法及びデータ処理プログラムを提供することにある。 The present invention has been made in view of the above problems, and the object of the present invention is to superimpose a plurality of MS imaging images obtained from different samples, or to superimpose stained images and the MS imaging images. Provides a data processing method and data processing program for imaging mass spectrometry that can easily perform high-precision alignment so that the same part and tissue structure on the sample are as much as possible in the same position and shape There is to do.
 上記課題を解決するために成された本発明に係る第1の態様のデータ処理方法は、試料上の測定領域内の複数の測定点においてそれぞれ得られた質量分析データを処理するイメージング質量分析におけるデータ処理方法であり、観察対象である部位が同じ又は互いに類似している複数の試料についてそれぞれ得られた質量分析データに基づいて作成される複数の質量分析イメージング画像を重ね合わせる処理を行うデータ処理方法であって、
 a)重ね合わせ処理の対象である複数の質量分析イメージング画像をユーザに選択させる画像選択ステップと、
 b)選択された複数の質量分析イメージング画像にそれぞれ対応する複数の試料についての光学顕微画像を取得する光学顕微画像取得ステップと、
 c)取得された複数の光学顕微画像の間で、一方又は複数の画像を変形しつつ前記同じ又は互いに類似している部位が一致するように画像の位置合わせを行う画像位置合わせステップと、
 d)画像の位置合わせの際の一方又は複数の画像についての画像変形情報を取得する画像変形情報取得ステップと、
 e)前記画像変形情報取得ステップで取得された前記画像変形情報を前記重ね合わせ処理の対象である複数の質量分析イメージング画像に適用して少なくとも一つの画像の変形処理を行う画像変形ステップと、
 f)前記画像変形ステップにおいて少なくとも一つが変形された前記複数の質量分析イメージング画像の重ね合わせ処理を行う画像重ね合わせ処理ステップと、
 を有することを特徴としている。
The data processing method according to the first aspect of the present invention, which has been made to solve the above-mentioned problems, is an imaging mass spectrometry that processes mass spectrometry data respectively obtained at a plurality of measurement points in a measurement region on a sample. Data processing method that performs processing to superimpose a plurality of mass spectrometry imaging images created based on mass spectrometry data obtained for a plurality of samples having the same or similar parts to be observed. A method,
a) an image selection step for allowing the user to select a plurality of mass spectrometry imaging images to be subjected to superposition processing;
b) an optical microscopic image acquisition step for acquiring optical microscopic images for a plurality of samples respectively corresponding to the selected plurality of mass spectrometry imaging images;
c) an image alignment step for aligning the images so that the same or similar parts coincide with each other while deforming one or a plurality of images among the plurality of obtained optical microscopic images;
d) an image deformation information acquisition step for acquiring image deformation information for one or more images at the time of image alignment;
e) an image deformation step of performing deformation processing of at least one image by applying the image deformation information acquired in the image deformation information acquisition step to a plurality of mass spectrometry imaging images that are targets of the superposition processing;
f) an image superposition processing step for performing superposition processing of the plurality of mass spectrometry imaging images at least one of which has been deformed in the image deformation step;
It is characterized by having.
 また上記課題を解決するために成された本発明に係る第1の態様のデータ処理プログラムは、試料上の測定領域内の複数の測定点においてそれぞれ得られた質量分析データをコンピュータ上で処理するためのデータ処理プログラムであり、複数の試料についてそれぞれ得られた質量分析データに基づいて作成される複数の質量分析イメージング画像を重ね合わせる処理を行うデータ処理プログラムであって、コンピュータを、
 a)重ね合わせ処理の対象である複数の質量分析イメージング画像をユーザに選択させる画像選択機能部と、
 b)選択された複数の質量分析イメージング画像にそれぞれ対応する複数の試料についての光学顕微画像を取得する光学顕微画像取得機能部と、
 c)取得された複数の光学顕微画像の間で、一方又は複数の画像を変形しつつ前記同じ又は互いに類似している部位が一致するように画像の位置合わせを行う画像位置合わせ機能部と、
 d)画像の位置合わせの際の一方又は複数の画像についての画像変形情報を取得する画像変形情報取得機能部と、
 e)取得された前記画像変形情報を前記重ね合わせ処理の対象である複数の質量分析イメージング画像に適用して少なくとも一つの画像の変形処理を行う画像変形機能部と、
 f)前記画像変形機能部により少なくとも一つが変形された前記複数の質量分析イメージング画像の重ね合わせ処理を行う画像重ね合わせ処理機能部と、
 して動作させることを特徴としている。
The data processing program according to the first aspect of the present invention, which has been made to solve the above-mentioned problems, processes on the computer mass analysis data respectively obtained at a plurality of measurement points in a measurement region on a sample. A data processing program for performing a process of superimposing a plurality of mass spectrometry imaging images created based on mass spectrometry data respectively obtained for a plurality of samples, comprising:
a) an image selection function unit that allows a user to select a plurality of mass spectrometry imaging images to be subjected to superposition processing;
b) an optical microscopic image acquisition function unit for acquiring optical microscopic images for a plurality of samples respectively corresponding to the selected plurality of mass spectrometry imaging images;
c) an image alignment function unit that aligns images so that the same or similar parts match while deforming one or a plurality of images among a plurality of acquired optical microscopic images;
d) an image deformation information acquisition function unit for acquiring image deformation information about one or more images at the time of image alignment;
e) an image deformation function unit that applies at least one image deformation process by applying the acquired image deformation information to a plurality of mass spectrometry imaging images to be subjected to the superposition process;
f) an image superposition processing function unit that performs superposition processing of the plurality of mass spectrometry imaging images, at least one of which is deformed by the image deformation function unit;
It is characterized by operating.
 例えば非特許文献1に開示されているイメージング質量分析装置(イメージング質量顕微鏡)では、イメージング質量分析部と光学顕微鏡とが一体化されており、試料の形態観察と質量分析とが一台の装置で行える。こうした装置が使用された場合、一つの試料について該試料上の同じ部位の位置が揃っている光学顕微画像と質量分析イメージング画像とを取得することができる。また、イメージング質量分析部と光学顕微鏡とが一体化されていない場合であっても、通常、試料上でイメージング質量分析を行う対象の測定範囲を決めるためにイメージング質量分析装置とは別に用意された光学顕微鏡で試料上の光学顕微画像が撮影される。この場合、その測定範囲に対応する光学顕微画像と質量分析イメージング画像とにおいて試料上の同じ部位の位置は揃っている筈である。 For example, in an imaging mass spectrometer (imaging mass microscope) disclosed in Non-Patent Document 1, an imaging mass spectrometer and an optical microscope are integrated, and sample morphology observation and mass spectrometry are performed by a single device. Yes. When such an apparatus is used, it is possible to acquire an optical microscopic image and a mass spectrometry imaging image in which the positions of the same parts on the sample are aligned. In addition, even when the imaging mass spectrometer and the optical microscope are not integrated, they are usually prepared separately from the imaging mass spectrometer to determine the measurement range of the object to be subjected to imaging mass analysis on the sample. An optical microscope image on the sample is taken with an optical microscope. In this case, the position of the same part on the sample should be aligned in the optical microscopic image and the mass spectrometry imaging image corresponding to the measurement range.
 質量分析イメージング画像上では試料上の特定の部位や組織構造の形態が全く識別できない場合であっても、光学顕微画像においてはそうした試料上の特定の部位や組織構造の形態が比較的明瞭に現れる。そこで、本発明に係る第1の態様のデータ処理プログラムにより実現されるデータ処理方法では、画像選択ステップにおいて、ユーザにより重ね合わせ処理の対象である複数の質量分析イメージング画像が選択されると、次の光学顕微画像取得ステップにおいて、選択された複数の質量分析イメージング画像にそれぞれ対応する複数の試料についての光学顕微画像が取得される。そして画像位置合わせステップでは、重ね合わせ処理の対象である複数の質量分析イメージング画像がそれぞれ得られた複数の試料についての光学顕微画像の間で、同じ又は互いに類似している部位(組織構造など)が一致するように画像の位置合わせを試み、画像変形情報取得ステップで、その位置合わせの際の一方又は複数の画像についての画像変形情報が取得される。 Even if a specific region or tissue structure on the sample cannot be identified on the mass spectrometry imaging image, the specific region or tissue structure on the sample appears relatively clearly in the optical microscopic image. . Therefore, in the data processing method realized by the data processing program according to the first aspect of the present invention, when a plurality of mass spectrometry imaging images to be superimposed are selected by the user in the image selection step, In the optical microscopic image acquisition step, optical microscopic images of a plurality of samples respectively corresponding to the selected plurality of mass spectrometry imaging images are acquired. In the image alignment step, the same or mutually similar parts (tissue structure, etc.) between the optical microscopic images of the plurality of samples from which the plurality of mass spectrometry imaging images to be subjected to the overlay process are obtained. In the image deformation information acquisition step, image deformation information for one or a plurality of images is acquired in the image deformation information acquisition step.
 一般的には複数の光学顕微画像の間での位置合わせを行う際には、いずれか一つの画像を基準とし、その基準となる画像に位置が合うようにそれ以外の画像を変形させればよい。こうした画像の位置合わせには例えば医療分野で利用されている画像レジストレーション技術を利用することができる。なお、ここでいう「変形」は、画像の移動、回転、拡大・縮小などの線形変形と非線形変形との両方を含む。 In general, when performing alignment between a plurality of optical microscopic images, if any one of the images is used as a reference and other images are deformed so that the position matches the reference image. Good. For image alignment, for example, an image registration technique used in the medical field can be used. Here, “deformation” includes both linear deformation and non-linear deformation such as movement, rotation, enlargement / reduction, and the like of an image.
 上述したように、一つの試料についての光学顕微画像と質量分析イメージング画像とで試料上の同じ部位の位置が合っていれば、光学顕微画像に対して得られた上記変形情報は、複数の質量分析イメージング画像同士の位置合わせにそのまま利用することができる。そこで、変形情報画像変形ステップでは、上記変形情報を重ね合わせ対象である複数の質量分析イメージング画像に適用して該画像の少なくとも一つを変形させる。これにより、元の質量分析イメージング画像のパターンに関係なく、重ね合わせ対象の複数の質量分析イメージング画像の位置がほぼ合った状態となる。そして、画像重ね合わせ処理ステップでは、そうして位置が合った状態の複数の質量分析イメージング画像を重ね合わせることで、例えば所定の成分の分布を比較可能な重ね合わせ画像を作成する。 As described above, if the position of the same part on the sample is matched between the optical microscopic image and the mass spectrometry imaging image of one sample, the deformation information obtained for the optical microscopic image is obtained by a plurality of masses. It can be used as it is for alignment between analytical imaging images. Therefore, in the deformation information image deformation step, the deformation information is applied to a plurality of mass spectrometry imaging images to be superimposed to deform at least one of the images. As a result, regardless of the pattern of the original mass spectrometry imaging image, the positions of the plurality of mass spectrometry imaging images to be superimposed are substantially aligned. In the image superimposition processing step, a plurality of mass spectrometry imaging images in such a state are superimposed, thereby creating a superimposed image that can compare, for example, distributions of predetermined components.
 また上記課題を解決するために成された本発明に係る第2の態様のデータ処理方法は、試料上の測定領域内の複数の測定点においてそれぞれ得られた質量分析データを処理するイメージング質量分析におけるデータ処理方法であり、観察対象である部位が同じ又は互いに類似している複数の試料のうちの一つについて得られた質量分析データに基づいて作成される質量分析イメージング画像と、他の一つについて質量分析以外の測定又は観察手法で得られた参照画像とを重ね合わせる処理を行うデータ処理方法であって、
 a)重ね合わせ処理の対象である一つの質量分析イメージング画像をユーザに選択させる画像選択ステップと、
 b)選択された質量分析イメージング画像に対応する光学顕微画像を取得する光学顕微画像取得ステップと、
 c)取得された光学顕微画像と同じ試料についての前記参照画像との間で、一方又は複数の画像を変形しつつ前記同じ又は互いに類似している部位が一致するように画像の位置合わせを行う画像位置合わせステップと、
 d)画像の位置合わせの際の一方又は複数の画像についての画像変形情報を取得する画像変形情報取得ステップと、
 e)取得された前記画像変形情報を前記重ね合わせ処理の対象である質量分析イメージング画像に適用して画像の変形処理を行う画像変形ステップと、
 f)前記画像変形ステップにおいて変形された前記質量分析イメージング画像と前記参照画像との重ね合わせ処理を行う画像重ね合わせ処理ステップと、
 を有することを特徴としている。
The data processing method according to the second aspect of the present invention, which has been made to solve the above problems, is an imaging mass spectrometry for processing mass spectrometry data respectively obtained at a plurality of measurement points in a measurement region on a sample. A data processing method in which a mass spectrometric imaging image created based on mass spectrometric data obtained for one of a plurality of samples whose parts to be observed are the same or similar to each other; A data processing method for performing a process of superimposing a reference image obtained by a measurement or observation technique other than mass spectrometry on one,
a) an image selection step that allows the user to select one mass spectrometry imaging image that is the subject of the overlay process;
b) an optical microscopic image acquisition step for acquiring an optical microscopic image corresponding to the selected mass spectrometry imaging image;
c) Image alignment is performed between the acquired optical microscopic image and the reference image of the same sample so that one or a plurality of images are deformed and the same or similar parts are matched. An image alignment step;
d) an image deformation information acquisition step for acquiring image deformation information for one or more images at the time of image alignment;
e) an image deformation step of applying the acquired image deformation information to the mass spectrometry imaging image that is the object of the superimposition process to perform an image deformation process;
f) an image superposition processing step for performing superposition processing of the mass spectrometry imaging image deformed in the image deformation step and the reference image;
It is characterized by having.
 また上記課題を解決するために成された本発明に係る第2の態様のデータ処理プログラムは、試料上の測定領域内の複数の測定点においてそれぞれ得られた質量分析データをコンピュータ上で処理するためのデータ処理プログラムであり、複数の試料のうちの一つについて得られた質量分析データに基づいて作成される質量分析イメージング画像と、他の一つについて質量分析以外の測定又は観察手法で得られた参照画像とを重ね合わせる処理を行うデータ処理プログラムであって、コンピュータを、
 a)重ね合わせ処理の対象である一つの質量分析イメージング画像をユーザに選択させる画像選択機能部と、
 b)選択された質量分析イメージング画像に対応する光学顕微画像を取得する光学顕微画像取得機能部と、
 c)取得された光学顕微画像と同じ試料についての前記参照画像との間で、一方又は複数の画像を変形しつつ前記同じ又は互いに類似している部位が一致するように画像の位置合わせを行う画像位置合わせ機能部と、
 d)画像の位置合わせの際の一方又は複数の画像についての画像変形情報を取得する画像変形情報取得機能部と、
 e)前記画像変形情報取得機能部により取得された前記画像変形情報を前記重ね合わせ処理の対象である質量分析イメージング画像に適用して画像の変形処理を行う画像変形機能部と、
 f)前記画像変形機能部により変形された前記質量分析イメージング画像と前記参照画像との重ね合わせ処理を行う画像重ね合わせ処理機能部と、
 して動作させることを特徴としている。
The data processing program according to the second aspect of the present invention, which has been made to solve the above-mentioned problems, processes on the computer the mass spectrometry data respectively obtained at a plurality of measurement points in the measurement region on the sample. A data processing program for obtaining a mass spectrometry imaging image based on mass spectrometry data obtained for one of a plurality of samples and a measurement or observation technique other than mass spectrometry for the other one A data processing program for performing a process of superimposing a reference image on a computer,
a) an image selection function unit that allows the user to select one mass spectrometry imaging image that is the target of the overlay process;
b) an optical microscopic image acquisition function unit for acquiring an optical microscopic image corresponding to the selected mass spectrometry imaging image;
c) Image alignment is performed between the acquired optical microscopic image and the reference image of the same sample so that one or a plurality of images are deformed and the same or similar parts are matched. An image alignment function,
d) an image deformation information acquisition function unit for acquiring image deformation information about one or more images at the time of image alignment;
e) an image deformation function unit that applies image deformation information acquired by the image deformation information acquisition function unit to a mass spectrometry imaging image that is an object of the superposition process, and performs image deformation processing;
f) an image superimposition processing function unit that performs superposition processing of the mass spectrometry imaging image deformed by the image deformation function unit and the reference image;
It is characterized by operating.
 上記第2の態様のデータ処理方法及びデータ処理プログラムにおいて、参照画像は試料上の組織構造などの部位の輪郭や模様といった形態が或る程度明瞭に観察できる画像であれば、様々な手法で得られたものを利用することができる。典型的には、染色画像であるが、場合によっては、ラマン分光測定や様々な波長(テラヘルツ域、遠近赤外域、可視域、紫外域、X線域など)の電磁波の放出強度の測定や吸収測定などにより得られるイメージング画像、さらには、PET(Positron Emission Tomography)測定、MRI(Magnetic Resonance Imaging)測定、ESR(Electron Spin Resonance)測定、CT(Computed Tomography)測定などの各種の測定や観察により得られる画像を参照画像として用いることができる。 In the data processing method and data processing program of the second aspect, the reference image can be obtained by various methods as long as the shape such as the contour or pattern of the site such as the tissue structure on the sample can be observed to some extent clearly. Can be used. Typically, this is a stained image, but in some cases, Raman spectroscopy measurement or measurement and absorption of electromagnetic wave emission intensity of various wavelengths (terahertz, far-infrared, visible, ultraviolet, X-ray, etc.) Obtained by various measurements and observations such as PET (Positron Emission Tomography) measurement, MRI (Magnetic Resonance Imaging) measurement, ESR (Electron Spin Resonance) measurement, CT (Computed Tomography) measurement, etc. Can be used as a reference image.
 こうした参照画像は光学顕微画像と同様に画像変形情報を求めるために利用することができるから、一つの試料の光学顕微画像と他の試料の参照画像とから画像変形情報を求め、この画像変形情報を用いて光学顕微画像に対応する質量分析イメージング画像を変形すれば、該質量分析イメージング画像と参照画像とを位置合わせすることができる。 Since such a reference image can be used to obtain image deformation information in the same manner as an optical microscopic image, image deformation information is obtained from an optical microscopic image of one sample and a reference image of another sample. If the mass spectrometry imaging image corresponding to the optical microscopic image is deformed by using, the mass spectrometry imaging image and the reference image can be aligned.
 また、ラマン顕微イメージング装置や赤外顕微イメージング装置では、イメージング質量分析装置と同様に、試料に対するラマン顕微イメージング画像或いは赤外顕微イメージング画像のほかに一般的な光学顕微画像も併せて得ることができる。そこで、ラマン顕微イメージング測定時或いは赤外顕微イメージング測定時に得られた光学顕微画像と質量分析イメージング時に得られた光学顕微画像とを利用して画像の位置合わせを行い、その際に得られた画像変形情報を、質量分析イメージング画像とラマン顕微イメージング画像或いは赤外顕微イメージング画像との位置合わせに用いるようにすることができる。 In addition, in the Raman microscopic imaging apparatus and the infrared microscopic imaging apparatus, in addition to the Raman microscopic imaging image or the infrared microscopic imaging image on the sample, a general optical microscopic image can be obtained together with the imaging mass spectrometer. . Therefore, images are aligned using the optical microscopic image obtained at the time of Raman microscopic imaging measurement or infrared microscopic imaging measurement and the optical microscopic image obtained at the time of mass spectrometry imaging. The deformation information can be used for alignment between the mass spectrometry imaging image and the Raman microscopic imaging image or the infrared microscopic imaging image.
 即ち、本発明に係る第3の態様のデータ処理方法は、試料上の測定領域内の複数の測定点においてそれぞれ得られた質量分析データを処理するイメージング質量分析におけるデータ処理方法であり、観察対象である部位が同じ又は互いに類似している複数の試料のうちの一つについて得られた質量分析データに基づいて作成される質量分析イメージング画像と、他の一つについてイメージング質量分析以外のイメージング測定手法で得られた第2のイメージング画像とを重ね合わせる処理を行う、又は、一つの試料の同じ観察対象部位について得られた質量分析データに基づいて作成される質量分析イメージング画像とイメージング質量分析以外のイメージング測定手法で得られた第2のイメージング画像とを重ね合わせる処理を行うデータ処理方法であって、
 a)重ね合わせ処理の対象である一つの質量分析イメージング画像と第2のイメージング画像とをユーザに選択させる画像選択ステップと、
 b)選択された質量分析イメージング画像と第2のイメージング画像とにそれぞれ対応する光学顕微画像を取得する光学顕微画像取得ステップと、
 c)取得された二つの光学顕微画像の間で、試料上の同じ又は類似している部位が一致するように画像の位置合わせを行う画像位置合わせステップと、
 d)位置合わせの際の一方又は複数の画像についての画像変形情報を取得する画像変形情報取得ステップと、
 e)前記画像変形情報を前記重ね合わせ処理の対象である質量分析イメージング画像及び第2のイメージング画像に適用して少なくとも一つの画像の変形処理を行う画像変形ステップと、
 f)前記画像変形ステップにおいて少なくとも一つが変形された質量分析イメージング画像と第2のイメージング画像との重ね合わせ処理を行う画像重ね合わせ処理ステップと、
 を有することを特徴としている。
That is, the data processing method according to the third aspect of the present invention is a data processing method in imaging mass spectrometry that processes mass spectrometry data respectively obtained at a plurality of measurement points in a measurement region on a sample, and is an observation target. A mass spectrometry imaging image created based on mass spectrometry data obtained for one of a plurality of samples having the same or similar site, and an imaging measurement other than imaging mass spectrometry for the other Other than mass spectrometry imaging images and imaging mass spectrometry, which is performed by superimposing the second imaging image obtained by the technique, or created based on the mass spectrometry data obtained for the same observation target part of one sample Data for processing to superimpose the second imaging image obtained by the imaging measurement method of A management method,
a) an image selection step that allows the user to select one mass spectrometry imaging image and a second imaging image that are to be superposed;
b) an optical microscopic image acquisition step of acquiring optical microscopic images respectively corresponding to the selected mass spectrometry imaging image and the second imaging image;
c) an image alignment step for aligning images so that the same or similar parts on the sample match between the two acquired optical microscopic images;
d) an image deformation information acquisition step for acquiring image deformation information for one or more images at the time of alignment;
e) an image deformation step of applying at least one image deformation process by applying the image deformation information to the mass spectrometry imaging image and the second imaging image to be subjected to the superposition process;
f) an image superimposition processing step for performing superimposition processing of the mass spectrometry imaging image and the second imaging image, at least one of which is deformed in the image deformation step;
It is characterized by having.
 また、本発明に係る第3の態様のデータ処理プログラムは、試料上の測定領域内の複数の測定点においてそれぞれ得られた質量分析データをコンピュータ上で処理するためのデータ処理プログラムであり、観察対象である部位が同じ又は互いに類似している複数の試料のうちの一つについて得られた質量分析データに基づいて作成される質量分析イメージング画像と、他の一つについてイメージング質量分析以外のイメージング測定手法で得られた第2のイメージング画像とを重ね合わせる処理を行う、又は、一つの試料の同じ観察対象部位について得られた質量分析データに基づいて作成される質量分析イメージング画像とイメージング質量分析以外のイメージング測定手法で得られた第2のイメージング画像とを重ね合わせる処理を行うデータ処理プログラムであって、コンピュータを、
 a)重ね合わせ処理の対象である一つの質量分析イメージング画像と第2のイメージング画像とをユーザに選択させる画像選択機能部と、
 b)選択された質量分析イメージング画像と第2のイメージング画像とにそれぞれ対応する光学顕微画像を取得する光学顕微画像取得機能部と、
 c)取得された二つの光学顕微画像の間で、試料上の同じ又は類似している部位が一致するように画像の位置合わせを行う画像位置合わせ機能部と、
 d)位置合わせの際の一方又は複数の画像についての画像変形情報を取得する画像変形情報取得機能部と、
 e)前記画像変形情報を前記重ね合わせ処理の対象である質量分析イメージング画像及び第2のイメージング画像に適用して少なくとも一つの画像の変形処理を行う画像変形機能部と、
 f)前記画像変形機能部により変形された質量分析イメージング画像と第2のイメージング画像との重ね合わせ処理を行う画像重ね合わせ処理機能部と、
 して動作させることを特徴としている。
The data processing program according to the third aspect of the present invention is a data processing program for processing, on a computer, mass spectrometry data respectively obtained at a plurality of measurement points in a measurement region on a sample. Mass spectrometric imaging image created based on mass spectrometric data obtained for one of multiple samples of the same or similar target site, and imaging other than imaging mass spectrometric analysis for the other A mass spectrometric imaging image and an imaging mass spectrometric process that are performed by superimposing the second imaging image obtained by the measurement technique or that are created based on the mass spectrometric data obtained for the same observation target part of one sample To superimpose a second imaging image obtained by an imaging measurement technique other than A chromatography data processing program, the computer,
a) an image selection function unit that allows a user to select one mass spectrometry imaging image and a second imaging image that are to be superposed;
b) an optical microscopic image acquisition function unit for acquiring optical microscopic images respectively corresponding to the selected mass spectrometry imaging image and the second imaging image;
c) an image alignment function unit that aligns images so that the same or similar parts on the sample match between the two acquired optical microscopic images;
d) an image deformation information acquisition function unit for acquiring image deformation information about one or more images at the time of alignment;
e) an image deformation function unit that applies at least one image deformation process by applying the image deformation information to the mass spectrometry imaging image and the second imaging image that are targets of the superposition process;
f) an image superposition processing function unit that performs superposition processing of the mass spectrometry imaging image deformed by the image deformation function unit and the second imaging image;
It is characterized by operating.
 ここで、第2のイメージング画像とは例えばラマン顕微イメージング画像、赤外顕微イメージング画像などの質量分析以外の手法で得られたイメージング画像である。
 この第3の態様によれば、質量分析イメージング画像とラマン顕微イメージング画像や赤外顕微イメージング画像などとを正確に重ね合わせた画像を作成することができるので、試料に関するより正確で多様な情報をユーザに提供することができる。
Here, the second imaging image is an imaging image obtained by a technique other than mass spectrometry, such as a Raman microscopic imaging image or an infrared microscopic imaging image.
According to the third aspect, an image obtained by accurately superimposing a mass spectrometry imaging image, a Raman microscopic imaging image, an infrared microscopic imaging image, and the like can be created. Can be provided to the user.
 なお、本発明に係る第1乃至第3の態様のデータ処理方法において、重ね合わせ対象の複数の質量分析イメージング画像が得られる複数の試料は、互いに別の個体から採取されたものでも構わないが、観察対象の部位が同じである又は互いに類似しているものでないと実質的に重ね合わせ処理を行う意味がない。
 こうした点において本発明に係る第1乃至第3の態様のデータ処理方法において、複数の試料は、一つの個体の一つの生体組織から連続的に切り出された切片試料であるものとするとよい。
In the data processing methods according to the first to third aspects of the present invention, the plurality of samples from which a plurality of mass spectrometry imaging images to be superimposed can be obtained from different individuals. If the parts to be observed are not the same or similar to each other, it is meaningless to perform the overlay process substantially.
In this respect, in the data processing methods according to the first to third aspects of the present invention, the plurality of samples may be slice samples continuously cut out from one living tissue of one individual.
 本発明に係るイメージング質量分析におけるデータ処理方法及びデータ処理プログラムによれば、異なる試料からそれぞれ得られた複数の質量分析イメージング画像の重ね合わせや、染色画像等と質量分析イメージング画像との重ね合わせ、或いは、質量分析イメージング画像とラマン顕微イメージング画像や赤外顕微イメージング画像などとの重ね合わせを行う際に、異なる試料上又は一つの試料上の同じ部位や組織構造などができるだけ同じ位置や形状になるように精度の高い位置合わせを簡便に、つまりはユーザによる煩雑な手作業を省きながら行うことができる。それによって、効率良く画像の重ね合わせが行え、そうした作業のためのユーザの負担も軽減される。 According to the data processing method and data processing program in imaging mass spectrometry according to the present invention, a plurality of mass spectrometry imaging images respectively obtained from different samples, a superposition of a stained image and the like and a mass spectrometry imaging image, Or, when superimposing a mass spectrometry imaging image with a Raman microscopic imaging image, an infrared microscopic imaging image, or the like, the same part or tissue structure on different samples or one sample is as much as possible in the same position or shape. As described above, highly accurate positioning can be performed easily, that is, while omitting complicated manual work by the user. Thereby, the images can be efficiently superimposed, and the burden on the user for such work is reduced.
本発明に係るイメージング質量分析におけるデータ処理方法を実施するためのイメージング質量分析装置の一実施例の概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of one Example of the imaging mass spectrometer for enforcing the data processing method in the imaging mass spectrometry which concerns on this invention. 本実施例のイメージング質量分析装置における特徴的な重ね合わせ画像作成のためのフローチャート。6 is a flowchart for creating a characteristic superimposed image in the imaging mass spectrometer of the present embodiment. 図2に示した重ね合わせ画像作成処理を説明するための概念図。The conceptual diagram for demonstrating the superimposition image creation process shown in FIG. 本実施例のイメージング質量分析装置における試料上の測定領域の概念図。The conceptual diagram of the measurement area | region on the sample in the imaging mass spectrometer of a present Example. 生体組織から連続的に切り出される切片試料の概念図。The conceptual diagram of the section | slice sample cut out continuously from a biological tissue. 本実施例のイメージング質量分析装置を用いて染色画像とMSイメージング画像とを重ね合わせる場合の処理を説明するための概念図。The conceptual diagram for demonstrating the process in the case of superimposing a dyeing | staining image and MS imaging image using the imaging mass spectrometer of a present Example. 特定の化合物の3次元分布画像を作成する際の概念図。The conceptual diagram at the time of creating the three-dimensional distribution image of a specific compound. 本実施例のイメージング質量分析装置を用いてラマン顕微イメージング画像とMSイメージング画像とを重ね合わせる場合の処理を説明するための概念図。The conceptual diagram for demonstrating the process in the case of superimposing a Raman microscopic imaging image and MS imaging image using the imaging mass spectrometer of a present Example.
 以下、本発明に係るイメージング質量分析におけるデータ処理方法の一実施例について、添付図面を参照して説明する。 Hereinafter, an embodiment of a data processing method in imaging mass spectrometry according to the present invention will be described with reference to the accompanying drawings.
 図1は本発明に係るデータ処理方法を実施するためのイメージング質量分析装置の一実施例の概略構成図である。
 本実施例のイメージング質量分析装置は、イメージング質量分析部1と、光学顕微観察部2と、データ処理部3と、操作部4と、表示部5と、を備える。操作部4及び表示部5はユーザインターフェイスである。
FIG. 1 is a schematic configuration diagram of an embodiment of an imaging mass spectrometer for carrying out a data processing method according to the present invention.
The imaging mass spectrometer of the present embodiment includes an imaging mass spectrometer 1, an optical microscope observation unit 2, a data processing unit 3, an operation unit 4, and a display unit 5. The operation unit 4 and the display unit 5 are user interfaces.
 図示しないものの、イメージング質量分析部1は例えばマトリクス支援レーザ脱離イオン化イオントラップ飛行時間型質量分析装置(MALDI-IT-TOFMS)を含み、生体組織切片などの試料6上の2次元的な測定領域内の多数の測定点(微小領域)それぞれのマススペクトルデータを取得可能なものである。このマススペクトルデータは、nが2以上のMSnスペクトルデータも含む。一方、光学顕微観察部2は試料6上の少なくとも測定領域を含む範囲の光学顕微画像を取得するものである。 Although not shown, the imaging mass spectrometer 1 includes, for example, a matrix-assisted laser desorption ionization ion trap time-of-flight mass spectrometer (MALDI-IT-TOFMS), and a two-dimensional measurement region on a sample 6 such as a biological tissue section. The mass spectrum data of each of a large number of measurement points (small regions) can be acquired. This mass spectrum data also includes MS n spectrum data in which n is 2 or more. On the other hand, the optical microscope observation unit 2 acquires an optical microscope image in a range including at least a measurement region on the sample 6.
 データ処理部3は、イメージング質量分析部1で収集された各測定点におけるマススペクトルデータ及び光学顕微観察部2による撮像によって得られた光学顕微画像データを受けて所定の処理を行うものであり、光学画像データ格納部30、MSイメージングデータ格納部31、光学画像作成部32、MSイメージング画像作成部33、画像位置合わせ処理部34、画像変形情報記憶部35、MSイメージング画像調整部36、画像重ね合わせ処理部37、画像表示処理部38など、の機能ブロックを備える。 The data processing unit 3 receives the mass spectrum data at each measurement point collected by the imaging mass spectrometry unit 1 and the optical microscopic image data obtained by imaging by the optical microscopic observation unit 2, and performs a predetermined process. Optical image data storage unit 30, MS imaging data storage unit 31, optical image creation unit 32, MS imaging image creation unit 33, image alignment processing unit 34, image deformation information storage unit 35, MS imaging image adjustment unit 36, image superposition Functional blocks such as an alignment processing unit 37 and an image display processing unit 38 are provided.
 一般に、データ処理部3の実体はパーソナルコンピュータ(又はより高性能なワークステーション)であり、該コンピュータにインストールされた専用のソフトウェア(つまりはコンピュータプログラム)を該コンピュータ上で動作させることにより、上記各ブロックの機能が達成される。 In general, the substance of the data processing unit 3 is a personal computer (or a higher-performance workstation). By operating dedicated software (that is, a computer program) installed in the computer on the computer, The function of the block is achieved.
 なお、この例では、非特許文献1に開示されている装置のように、イメージング質量分析部1と光学顕微観察部2とが一体化されている、つまりは装置の所定位置にセットされた試料6が自動的に又は手動操作に応じてイメージング質量分析部1による測定位置と光学顕微観察部2による撮像位置との間で移動するような装置であるものとするが、後述するように、必ずしもイメージング質量分析部1と光学顕微観察部2とが一体化されている構成でなくてもよい。 In this example, as in the apparatus disclosed in Non-Patent Document 1, the imaging mass spectrometer 1 and the optical microscope observation section 2 are integrated, that is, a sample set at a predetermined position of the apparatus. 6 is an apparatus that moves between the measurement position by the imaging mass spectrometry unit 1 and the imaging position by the optical microscope observation unit 2 automatically or in response to a manual operation. The imaging mass spectrometer 1 and the optical microscope observation unit 2 may not be integrated.
 一例として、図5に示すように、一つの生体組織から連続的に切り出された複数の切片試料に、それぞれ異なる種類のマトリクスを塗布してそれぞれイメージング質量分析を行い、それによって得られた複数のMSイメージング画像を重ね合わせる場合を考える。こうした複数の切片試料では、各試料に現れる生体組織の大きさや形状はほぼ同じであるとみなすことができる。 As an example, as shown in FIG. 5, different types of matrixes are applied to a plurality of slice samples continuously cut out from one living tissue, and each is subjected to imaging mass spectrometry. Consider the case where MS imaging images are superimposed. In such a plurality of slice samples, it can be considered that the size and shape of the biological tissue appearing in each sample are substantially the same.
 まず、本実施例のイメージング質量分析装置において、一つの試料6についてMSイメージングデータと光学顕微画像データとを取得する際の動作を説明する。 First, the operation when acquiring MS imaging data and optical microscopic image data for one sample 6 in the imaging mass spectrometer of the present embodiment will be described.
 ユーザは、専用のプレート上に載置された、その表面にマトリクスを塗布していない試料6を装置の所定位置にセットし、操作部4で所定の操作を行う。すると、光学顕微観察部2はその試料6上の光学顕微画像を撮影し、該画像を表示部5の画面上に表示する。ユーザはこの画像を確認して試料6上においてイメージング質量分析を行う対象の測定領域を決定し、例えば操作部4により画面上でその測定領域を囲む枠を設定することで測定領域を指示する。これにより、例えば図4に示すように、マウス肝臓切片などの生体由来の試料6上に測定領域60が設定される。このときに、試料6の撮影により得られた光学顕微画像データは測定領域60の位置を特定する情報と共に光学画像データ格納部30に格納される。 The user sets a sample 6 placed on a dedicated plate and not coated with a matrix at a predetermined position of the apparatus, and performs a predetermined operation with the operation unit 4. Then, the optical microscope observation unit 2 takes an optical microscope image on the sample 6 and displays the image on the screen of the display unit 5. The user confirms this image, determines a measurement region to be subjected to imaging mass spectrometry on the sample 6, and designates the measurement region by setting a frame surrounding the measurement region on the screen by the operation unit 4, for example. Thereby, for example, as shown in FIG. 4, a measurement region 60 is set on a sample 6 derived from a living body such as a mouse liver slice. At this time, the optical microscopic image data obtained by photographing the sample 6 is stored in the optical image data storage unit 30 together with information for specifying the position of the measurement region 60.
 ユーザは上記試料6を載せたプレートを一旦装置から取り出し、試料6の表面に適宜のマトリクスを塗布したあと該プレートを装置に戻す。そして、操作部4により質量分析の実行を指示する。すると、図4に示すように、イメージング質量分析部1は上述したように設定された測定領域60の範囲内の多数の測定点61についてそれぞれ質量分析(又はMSn分析)を実行し、所定のm/z範囲に亘るマススペクトルデータを取得する。その結果、測定領域60内の測定点61の数に相当するマススペクトルデータの集合(これを以下「MSイメージングデータ」という)が得られ、このデータがイメージング質量分析部1からデータ処理部3に入力されてMSイメージングデータ格納部31に格納される。 The user once removes the plate on which the sample 6 is placed from the apparatus, applies an appropriate matrix to the surface of the sample 6, and then returns the plate to the apparatus. Then, the operation unit 4 instructs execution of mass spectrometry. Then, as shown in FIG. 4, the imaging mass spectrometer 1 performs mass analysis (or MS n analysis) on each of a large number of measurement points 61 within the range of the measurement region 60 set as described above. Acquire mass spectral data over the m / z range. As a result, a set of mass spectrum data corresponding to the number of measurement points 61 in the measurement region 60 (hereinafter referred to as “MS imaging data”) is obtained, and this data is transferred from the imaging mass analyzer 1 to the data processor 3. The data is input and stored in the MS imaging data storage unit 31.
 こうして一つの試料6についての光学顕微画像データ及びMSイメージングデータは、光学画像データ格納部30及びMSイメージングデータ格納部31に関連付けて格納される。そして、上述したように一つの生体組織から切り出された複数の試料6について同様に測定を実施し、光学顕微画像データ及びMSイメージングデータを収集する。 Thus, the optical microscopic image data and MS imaging data for one sample 6 are stored in association with the optical image data storage unit 30 and the MS imaging data storage unit 31. Then, as described above, measurement is similarly performed on the plurality of samples 6 cut out from one living tissue, and optical microscopic image data and MS imaging data are collected.
 なお、試料6上にマトリクスを塗布したあとに光学顕微観察を行ってもよいが、一般には、マトリクスを塗布すると試料6上の組織の色や模様が見えにくくなる。そのため、マトリクス塗布に先立って試料6上の鮮明な光学顕微画像を取得し、その画像を用いて測定領域60を決めるのが一般的である。 It should be noted that optical microscopic observation may be performed after applying the matrix on the sample 6, but in general, when the matrix is applied, the color or pattern of the tissue on the sample 6 becomes difficult to see. Therefore, generally, a clear optical microscopic image on the sample 6 is acquired prior to the matrix coating, and the measurement region 60 is determined using the image.
 次に、上述したようにして複数の試料(連続切片試料)に対するMSイメージングデータ及び光学顕微画像データがMSイメージングデータ格納部31及び光学画像データ格納部30にそれぞれ格納されている状態で、データ処理部3において実行される特徴的なデータ処理について図2、図3を参照しつつ説明する。図2はこのデータ処理の手順を示すフローチャート、図3はこのデータ処理を説明するための概念図である。 Next, data processing is performed in a state where MS imaging data and optical microscopic image data for a plurality of samples (continuous section samples) are stored in the MS imaging data storage unit 31 and the optical image data storage unit 30 as described above. Characteristic data processing executed in the unit 3 will be described with reference to FIGS. FIG. 2 is a flowchart showing the procedure of the data processing, and FIG. 3 is a conceptual diagram for explaining the data processing.
 ユーザは操作部4により重ね合わせ処理を行いたい複数のMSイメージング画像を指定する(ステップS1)。具体的には、一つのMSイメージング画像は、試料を特定する情報(例えば複数の試料に付された連続番号)とm/値とにより指定可能である。三以上のMSイメージング画像の重ね合わせ処理の指定も可能であるが、説明を簡単にするために、ここでは二つのMSイメージング画像が指定される場合を説明する。いま一例として、図3に示すように、試料Aのm/z=M1におけるMSイメージング画像と試料Bのm/z=M1におけるMSイメージング画像とが重ね合わせの対象として指定されたものとする。 The user designates a plurality of MS imaging images to be subjected to the overlay process by the operation unit 4 (step S1). Specifically, one MS imaging image can be designated by information (for example, serial numbers assigned to a plurality of samples) and m / values that specify the sample. Although it is possible to designate the superimposition processing of three or more MS imaging images, for the sake of simplicity of explanation, a case where two MS imaging images are designated will be described here. As an example, as shown in FIG. 3, it is assumed that the MS imaging image of sample A at m / z = M1 and the MS imaging image of sample B at m / z = M1 are designated as objects to be superimposed.
 ステップS1における指定を受けて、光学画像作成部32は指定された複数のMSイメージング画像にそれぞれ対応する測定領域内の光学顕微画像、つまりは試料Aと試料Bのほぼ同じ測定領域内の光学顕微画像を構成する光学顕微画像データを光学画像データ格納部30から読み出す(ステップS2)。なお、このとき、光学画像作成部32は読み出された光学顕微画像データから光学顕微画像を作成して表示部5の画面上に表示するようにしてもよい。 In response to the designation in step S1, the optical image creating unit 32 is an optical microscopic image in the measurement region corresponding to each of the designated MS imaging images, that is, an optical microscopic image in the almost same measurement region of the sample A and the sample B. The optical microscopic image data constituting the image is read out from the optical image data storage unit 30 (step S2). At this time, the optical image creation unit 32 may create an optical microscopic image from the read optical microscopic image data and display it on the screen of the display unit 5.
 画像位置合わせ処理部34は二つの光学顕微画像の間で同じ部位の位置や大きさ、形状が揃うように所定のアルゴリズムに従った位置合わせ処理を実行する。この位置合わせ処理には、例えば医療分野で広く利用されている画像レジストレーション技術を利用することができる。画像レジストレーション技術には、大別して、平行移動、回転、拡大・縮小により位置合わせを行う線形レジストレーションと、画像上に2次元的な格子点を配置し、その格子点を自由に移動させて位置合わせを行う非線形レジストレーション(例えばFFD(Free Form Deformation)法など)とがあるが、好ましくは、これらを組み合わせて用いるとよい。もちろん、位置合わせ処理の手法はこれに限るものではない。 The image alignment processing unit 34 executes alignment processing according to a predetermined algorithm so that the position, size, and shape of the same part are aligned between the two optical microscopic images. For this alignment process, for example, an image registration technique widely used in the medical field can be used. Image registration technology can be broadly divided into linear registration that performs alignment by translation, rotation, and enlargement / reduction, and two-dimensional lattice points on the image, and the lattice points can be moved freely. Nonlinear registration (for example, FFD (Free Form Deformation) method, etc.) for performing alignment is used, but it is preferable to use a combination of these. Of course, the method of alignment processing is not limited to this.
 いずれにしても、こうした位置合わせ処理においては、一方の画像を基準として他方の画像をその基準画像に合わせるときに画像を平行移動、回転、拡大・縮小、非線形変形等するための画像変形情報が得られる。そこで、この画像変形情報を試料Aと試料Bとの位置合わせのための画像変形情報として画像変形情報記憶部35に保存する(ステップS3)。 In any case, in such an alignment process, image deformation information for translating, rotating, enlarging / reducing, non-linear deformation, etc. of an image when one image is used as a reference and the other image is matched with the reference image is provided. can get. Therefore, the image deformation information is stored in the image deformation information storage unit 35 as image deformation information for alignment between the sample A and the sample B (step S3).
 次に、MSイメージング画像作成部33はステップS1で指定された複数のMSイメージング画像を構成するMSイメージングデータをMSイメージングデータ格納部31から読み出す(ステップS4)。そして、MSイメージング画像調整部36は、画像変形情報記憶部35から試料Aと試料Bとの位置合わせのための画像変形情報を読み出し、その画像変形情報を利用して、上記複数のMSイメージング画像の一方を変形させる画像処理を実施する(ステップS5)。即ち、ここでは、MSイメージング画像のパターンとは無関係に、与えられた画像変形情報に基づいて、該画像を適宜に移動、回転、拡大・縮小、或いは非線形変形させる。ステップS3で実施した位置合わせの精度が高く、各試料において光学顕微画像とMSイメージング画像とで位置のずれが無視できる程度であれば、画像変形後のMSイメージング画像同士は同じ部位がほぼ同じ位置、大きさ及び形状になる。即ち、画像変形によって複数のMSイメージング画像の位置合わせが高い精度で実現されることになる。 Next, the MS imaging image creation unit 33 reads out MS imaging data constituting the plurality of MS imaging images specified in Step S1 from the MS imaging data storage unit 31 (Step S4). Then, the MS imaging image adjustment unit 36 reads image deformation information for alignment between the sample A and the sample B from the image deformation information storage unit 35, and uses the image deformation information to read the plurality of MS imaging images. Image processing for deforming one of these is performed (step S5). That is, here, regardless of the pattern of the MS imaging image, the image is appropriately moved, rotated, enlarged / reduced, or nonlinearly deformed based on the given image deformation information. If the accuracy of the alignment performed in step S3 is high and the positional deviation between the optical microscopic image and the MS imaging image is negligible in each sample, the same parts of the MS imaging images after image deformation are located at substantially the same position. , Become size and shape. That is, alignment of a plurality of MS imaging images is realized with high accuracy by image deformation.
 画像重ね合わせ処理部37はステップS5において位置合わせのための画像変形が行われたMSイメージング画像同士を重ね合わせることで、試料Aのm/z=M1のイオン強度の2次元分布と試料Bのm/z=M1のイオン強度の2次元分布とが重なった画像を作成する(ステップS6)。それぞれのイオン強度の分布は互いに識別容易な異なる色で描出される。そして、画像表示処理部38は作成された重ね合わせ画像を表示部5の画面上に表示する(ステップS7)。 The image superimposing processing unit 37 superimposes the MS imaging images that have undergone image deformation for alignment in step S5, so that the two-dimensional distribution of the ion intensity of the sample A m / z = M1 and the sample B An image in which the two-dimensional distribution of the ion intensity of m / z = M1 overlaps is created (step S6). Each distribution of ionic strength is depicted in different colors that are easily distinguishable from each other. Then, the image display processing unit 38 displays the created superimposed image on the screen of the display unit 5 (step S7).
 このようにして本実施例のイメージング質量分析装置では、試料Aにおける任意のm/z値におけるMSイメージング画像と試料Bにおける任意のm/z値におけるMSイメージング画像とについて精度の高い位置合わせを行ったうえで重ね合わせ画像を作成することができる。 In this manner, the imaging mass spectrometer of the present embodiment performs high-precision alignment between the MS imaging image of the sample A at an arbitrary m / z value and the MS imaging image of the sample B at an arbitrary m / z value. In addition, a superimposed image can be created.
 上記実施例は二つのMSイメージング画像の重ね合わせであるが、3以上のMSイメージング画像の重ね合わせでも同様にすればよい。即ち、一つの光学顕微画像を基準とした他の光学顕微画像の画像変形情報をそれぞれ求め、その画像変形情報を利用して複数のMSイメージング画像をそれぞれ画像加工すればよい。 The above embodiment is an overlay of two MS imaging images, but the same may be applied to an overlay of three or more MS imaging images. That is, image deformation information of another optical microscopic image based on one optical microscopic image may be obtained, and a plurality of MS imaging images may be processed using the image deformation information.
 また、一つの生体組織から切り出された連続的な切片試料に由来するMSイメージングが画像同士ではなく、別の個体(例えば別のマウス)の同じ生体組織からそれぞれ切り出された試料に由来するMSイメージングが画像同士を重ね合わせる際にも同じ処理を適用することができる。 In addition, MS imaging derived from a continuous section sample cut from one living tissue is not an image, but MS imaging derived from a sample cut from the same living tissue of another individual (for example, another mouse). The same process can be applied when images are superimposed.
 また、図5に示したように生体組織から連続的に切り出した多数の切片試料についてそれぞれイメージング質量分析を実行し、図7に示すように、特定のm/z値におけるMSイメージング画像の立体的な重ね合わせを行うことで、特定の化合物の3次元分布画像を作成することができる。 Further, as shown in FIG. 5, imaging mass spectrometry is performed on each of a large number of section samples continuously cut out from the living tissue, and as shown in FIG. 7, the three-dimensional MS imaging image at a specific m / z value is obtained. By performing superimposing, a three-dimensional distribution image of a specific compound can be created.
 また上記実施例のイメージング質量分析装置では、MSイメージング画像同士を重ね合わせるために光学顕微画像同士の位置合わせにより画像変形情報を求めていたが、MSイメージング画像と質量分析以外の手法で得られた他の画像とを重ね合わせる際にも同様の手法を用いることができる。 In the imaging mass spectrometer of the above embodiment, the image deformation information is obtained by aligning the optical microscopic images in order to superimpose the MS imaging images, but obtained by a technique other than the MS imaging image and mass spectrometry. A similar method can be used when superimposing other images.
 具体的には、連続的な切片試料の一つについてHE染色などによる染色画像を取得し、他の一つについてイメージング質量分析を実施し、それにより作成される任意のm/z値におけるMSイメージング画像と染色画像とを重ね合わせたい場合がある。図6は一つの染色画像と一つのMSイメージング画像とを重ね合わせる場合の処理を説明するための概念図である。一般に、染色画像は特定の組織や特定の物質等が染色されて他と識別可能に観察されるが、それ以外の部位の形態も十分に明瞭に観察可能である。 Specifically, a stained image by HE staining or the like is acquired for one of the continuous section samples, and imaging mass spectrometry is performed for the other one, and MS imaging at an arbitrary m / z value created by the imaging mass spectrometry is performed. There are cases where it is desired to superimpose an image and a stained image. FIG. 6 is a conceptual diagram for explaining processing in the case of superimposing one stained image and one MS imaging image. In general, a stained image is observed in such a manner that a specific tissue, a specific substance, or the like is stained and can be distinguished from others. However, the shape of other parts can be observed sufficiently clearly.
 そこで、この場合には、重ね合わせたいm/z=M1であるMSイメージング画像が得られた試料Aの光学顕微画像と試料Bの染色画像との間で該染色画像を基準とした位置合わせを試みる。そして、その位置合わせに基づく画像変形情報を取得する。そして、この画像変形情報を用いて、試料Aについてのm/z=M1におけるMSイメージング画像を変形する。そして、画像変形が行われたあとのMSイメージング画像と染色画像とを重ね合わせた画像を作成する。 Therefore, in this case, the alignment based on the stained image is performed between the optical microscopic image of sample A and the stained image of sample B from which the MS imaging image with m / z = M1 to be superimposed is obtained. Try. Then, image deformation information based on the alignment is acquired. Then, using this image deformation information, the MS imaging image of sample A at m / z = M1 is deformed. Then, an image is created by superimposing the MS imaging image and the stained image after the image deformation.
 試料上の組織構造などの部位の輪郭や模様といった形態が或る程度明瞭に観察できる画像であれば、染色画像でなく、別の測定や観察により得られる画像とMSイメージング画像との重ね合わせの際にも同じ手法を用いることができる。 If it is an image that can be observed to some extent clearly, such as the outline and pattern of the tissue structure on the sample, it is not a stained image but an image obtained by another measurement or observation and an MS imaging image. In some cases, the same technique can be used.
 また一般に、ラマン顕微イメージング装置や赤外顕微イメージング装置などのイメージング測定が可能な装置では、イメージング質量分析装置と同様に、イメージング測定対象の試料上の部位についての光学顕微画像を取得可能である。そこで、図3を変形した図8に示す概念図に従った処理を行ってもよい。 In general, an apparatus capable of imaging measurement, such as a Raman microscopic imaging apparatus or an infrared microscopic imaging apparatus, can acquire an optical microscopic image of a site on a sample to be imaged, similar to an imaging mass spectrometer. Therefore, processing according to the conceptual diagram shown in FIG. 8 obtained by modifying FIG. 3 may be performed.
 即ち、例えば同じ試料の同じ部位について、ラマン顕微イメージング測定装置で得られた光学顕微画像とイメージング質量分析装置で得られた(又は質量分析イメージングを行うために別の光学顕微鏡で得られた)光学顕微画像との間で位置合わせを行い、その位置合わせに基づいて画像変形情報を取得する。そして、この画像変形情報を用いて、試料についてのMSイメージング画像又はラマン顕微イメージング画像の一方又は両方を変形する。そして、画像変形が行われたあとのMSイメージング画像とラマン顕微イメージング画像とを重ね合わせた画像を作成する。
 このようにして、異なる測定手法で得られたイメージング画像を精度良く位置合わせし、重ね合わせた画像を作成することができる。こうした手法はマルチモダリティに好適である。
That is, for example, for the same part of the same sample, an optical microscopic image obtained with a Raman microscopic imaging measuring device and an optical obtained with an imaging mass spectrometer (or obtained with another optical microscope for performing mass spectroscopic imaging) Position alignment is performed with the microscopic image, and image deformation information is acquired based on the position alignment. Then, using this image deformation information, one or both of the MS imaging image or the Raman microscopic imaging image of the sample is deformed. Then, an image is created by superimposing the MS imaging image and the Raman microscopic imaging image after the image deformation.
In this way, it is possible to accurately align imaging images obtained by different measurement techniques and create a superimposed image. Such a method is suitable for multi-modality.
 また、上記実施例はあくまでも本発明の一例であり、本発明の趣旨の範囲で適宜に変更、修正、追加を行っても本願特許請求の範囲に包含されることは当然である。 Further, the above-described embodiment is merely an example of the present invention, and it is obvious that any change, correction, or addition as appropriate within the scope of the present invention is included in the scope of the claims of the present application.
1…イメージング質量分析部
2…光学顕微観察部
3…データ処理部
30…光学画像データ格納部
31…MSイメージングデータ格納部
32…光学画像作成部
33…MSイメージング画像作成部
34…画像位置合わせ処理部
35…画像変形情報記憶部
36…MSイメージング画像調整部
37…画像重ね合わせ処理部
38…画像表示処理部
4…操作部
5…表示部
6…試料
DESCRIPTION OF SYMBOLS 1 ... Imaging mass spectrometry part 2 ... Optical microscope observation part 3 ... Data processing part 30 ... Optical image data storage part 31 ... MS imaging data storage part 32 ... Optical image creation part 33 ... MS imaging image creation part 34 ... Image alignment process Unit 35 ... Image deformation information storage unit 36 ... MS imaging image adjustment unit 37 ... Image superposition processing unit 38 ... Image display processing unit 4 ... Operation unit 5 ... Display unit 6 ... Sample

Claims (8)

  1.  試料上の測定領域内の複数の測定点においてそれぞれ得られた質量分析データを処理するイメージング質量分析におけるデータ処理方法であり、観察対象である部位が同じ又は互いに類似している複数の試料についてそれぞれ得られた質量分析データに基づいて作成される複数の質量分析イメージング画像を重ね合わせる処理を行うデータ処理方法であって、
     a)重ね合わせ処理の対象である複数の質量分析イメージング画像をユーザに選択させる画像選択ステップと、
     b)選択された複数の質量分析イメージング画像にそれぞれ対応する複数の試料についての光学顕微画像を取得する光学顕微画像取得ステップと、
     c)取得された複数の光学顕微画像の間で、一方又は複数の画像を変形しつつ前記同じ又は互いに類似している部位が一致するように画像の位置合わせを行う画像位置合わせステップと、
     d)画像の位置合わせの際の一方又は複数の画像についての画像変形情報を取得する画像変形情報取得ステップと、
     e)前記画像変形情報取得ステップで取得された前記画像変形情報を前記重ね合わせ処理の対象である複数の質量分析イメージング画像に適用して少なくとも一つの画像の変形処理を行う画像変形ステップと、
     f)前記画像変形ステップにおいて少なくとも一つが変形された前記複数の質量分析イメージング画像の重ね合わせ処理を行う画像重ね合わせ処理ステップと、
     を有することを特徴とするイメージング質量分析におけるデータ処理方法。
    A data processing method in imaging mass spectrometry that processes mass spectrometry data respectively obtained at a plurality of measurement points in a measurement region on a sample, and each of a plurality of samples whose parts to be observed are the same or similar to each other A data processing method for performing a process of superimposing a plurality of mass spectrometry imaging images created based on obtained mass spectrometry data,
    a) an image selection step for allowing the user to select a plurality of mass spectrometry imaging images to be subjected to superposition processing;
    b) an optical microscopic image acquisition step for acquiring optical microscopic images for a plurality of samples respectively corresponding to the selected plurality of mass spectrometry imaging images;
    c) an image alignment step for aligning the images so that the same or similar parts coincide with each other while deforming one or a plurality of images among the plurality of obtained optical microscopic images;
    d) an image deformation information acquisition step for acquiring image deformation information for one or more images at the time of image alignment;
    e) an image deformation step of performing deformation processing of at least one image by applying the image deformation information acquired in the image deformation information acquisition step to a plurality of mass spectrometry imaging images that are targets of the superposition processing;
    f) an image superposition processing step for performing superposition processing of the plurality of mass spectrometry imaging images at least one of which has been deformed in the image deformation step;
    A data processing method in imaging mass spectrometry, comprising:
  2.  請求項1に記載のイメージング質量分析におけるデータ処理方法であって、
     前記複数の試料は、一つの個体の一つの生体組織から連続的に切り出された切片試料であることを特徴とするイメージング質量分析におけるデータ処理方法。
    A data processing method in imaging mass spectrometry according to claim 1,
    The data processing method in imaging mass spectrometry, wherein the plurality of samples are section samples continuously cut from one living tissue of one individual.
  3.  試料上の測定領域内の複数の測定点においてそれぞれ得られた質量分析データをコンピュータ上で処理するためのデータ処理プログラムであり、複数の試料についてそれぞれ得られた質量分析データに基づいて作成される複数の質量分析イメージング画像を重ね合わせる処理を行うデータ処理プログラムであって、コンピュータを、
     a)重ね合わせ処理の対象である複数の質量分析イメージング画像をユーザに選択させる画像選択機能部と、
     b)選択された複数の質量分析イメージング画像にそれぞれ対応する複数の試料についての光学顕微画像を取得する光学顕微画像取得機能部と、
     c)取得された複数の光学顕微画像の間で、一方又は複数の画像を変形しつつ前記同じ又は互いに類似している部位が一致するように画像の位置合わせを行う画像位置合わせ機能部と、
     d)画像の位置合わせの際の一方又は複数の画像についての画像変形情報を取得する画像変形情報取得機能部と、
     e)取得された前記画像変形情報を前記重ね合わせ処理の対象である複数の質量分析イメージング画像に適用して少なくとも一つの画像の変形処理を行う画像変形機能部と、
     f)前記画像変形機能部により少なくとも一つが変形された前記複数の質量分析イメージング画像の重ね合わせ処理を行う画像重ね合わせ処理機能部と、
     して動作させることを特徴とするデータ処理プログラム。
    A data processing program for processing, on a computer, mass spectrometry data obtained at a plurality of measurement points in a measurement region on a sample, and created based on the mass spectrometry data obtained for each of a plurality of samples. A data processing program for performing a process of superimposing a plurality of mass spectrometry imaging images, comprising:
    a) an image selection function unit that allows a user to select a plurality of mass spectrometry imaging images to be subjected to superposition processing;
    b) an optical microscopic image acquisition function unit for acquiring optical microscopic images for a plurality of samples respectively corresponding to the selected plurality of mass spectrometry imaging images;
    c) an image alignment function unit that aligns images so that the same or similar parts match while deforming one or a plurality of images among a plurality of acquired optical microscopic images;
    d) an image deformation information acquisition function unit for acquiring image deformation information about one or more images at the time of image alignment;
    e) an image deformation function unit that applies at least one image deformation process by applying the acquired image deformation information to a plurality of mass spectrometry imaging images to be subjected to the superposition process;
    f) an image superposition processing function unit that performs superposition processing of the plurality of mass spectrometry imaging images, at least one of which is deformed by the image deformation function unit;
    A data processing program characterized by being operated.
  4.  試料上の測定領域内の複数の測定点においてそれぞれ得られた質量分析データを処理するイメージング質量分析におけるデータ処理方法であり、観察対象である部位が同じ又は互いに類似している複数の試料のうちの一つについて得られた質量分析データに基づいて作成される質量分析イメージング画像と、他の一つについて質量分析以外の測定又は観察手法で得られた参照画像とを重ね合わせる処理を行うデータ処理方法であって、
     a)重ね合わせ処理の対象である一つの質量分析イメージング画像をユーザに選択させる画像選択ステップと、
     b)選択された質量分析イメージング画像に対応する光学顕微画像を取得する光学顕微画像取得ステップと、
     c)取得された光学顕微画像と同じ試料についての前記参照画像との間で、一方又は複数の画像を変形しつつ前記同じ又は互いに類似している部位が一致するように画像の位置合わせを行う画像位置合わせステップと、
     d)画像の位置合わせの際の一方又は複数の画像についての画像変形情報を取得する画像変形情報取得ステップと、
     e)取得された前記画像変形情報を前記重ね合わせ処理の対象である質量分析イメージング画像に適用して画像の変形処理を行う画像変形ステップと、
     f)前記画像変形ステップにおいて変形された前記質量分析イメージング画像と前記参照画像との重ね合わせ処理を行う画像重ね合わせ処理ステップと、
     を有することを特徴とするイメージング質量分析におけるデータ処理方法。
    A data processing method in imaging mass spectrometry that processes mass spectrometry data respectively obtained at a plurality of measurement points in a measurement region on a sample, and among the plurality of samples whose parts to be observed are the same or similar to each other Data processing for processing to superimpose a mass spectrometry imaging image created based on mass spectrometry data obtained for one of the images and a reference image obtained by a measurement or observation technique other than mass spectrometry for the other A method,
    a) an image selection step that allows the user to select one mass spectrometry imaging image that is the subject of the overlay process;
    b) an optical microscopic image acquisition step for acquiring an optical microscopic image corresponding to the selected mass spectrometry imaging image;
    c) Image alignment is performed between the acquired optical microscopic image and the reference image of the same sample so that one or a plurality of images are deformed and the same or similar parts are matched. An image alignment step;
    d) an image deformation information acquisition step for acquiring image deformation information for one or more images at the time of image alignment;
    e) an image deformation step of applying the acquired image deformation information to the mass spectrometry imaging image that is the object of the superimposition process to perform an image deformation process;
    f) an image superposition processing step for performing superposition processing of the mass spectrometry imaging image deformed in the image deformation step and the reference image;
    A data processing method in imaging mass spectrometry, comprising:
  5.  請求項4に記載のイメージング質量分析におけるデータ処理方法であって、
     前記複数の試料は、一つの個体の一つの生体組織から連続的に切り出された切片試料であることを特徴とするイメージング質量分析におけるデータ処理方法。
    A data processing method in imaging mass spectrometry according to claim 4,
    The data processing method in imaging mass spectrometry, wherein the plurality of samples are section samples continuously cut from one living tissue of one individual.
  6.  試料上の測定領域内の複数の測定点においてそれぞれ得られた質量分析データをコンピュータ上で処理するためのデータ処理プログラムであり、複数の試料のうちの一つについて得られた質量分析データに基づいて作成される質量分析イメージング画像と、他の一つについて質量分析以外の測定又は観察手法で得られた参照画像とを重ね合わせる処理を行うデータ処理プログラムであって、コンピュータを、
     a)重ね合わせ処理の対象である一つの質量分析イメージング画像をユーザに選択させる画像選択機能部と、
     b)選択された質量分析イメージング画像に対応する光学顕微画像を取得する光学顕微画像取得機能部と、
     c)取得された光学顕微画像と同じ試料についての前記参照画像との間で、一方又は複数の画像を変形しつつ前記同じ又は互いに類似している部位が一致するように画像の位置合わせを行う画像位置合わせ機能部と、
     d)画像の位置合わせの際の一方又は複数の画像についての画像変形情報を取得する画像変形情報取得機能部と、
     e)前記画像変形情報取得機能部により取得された前記画像変形情報を前記重ね合わせ処理の対象である質量分析イメージング画像に適用して画像の変形処理を行う画像変形機能部と、
     f)前記画像変形機能部により変形された前記質量分析イメージング画像と前記参照画像との重ね合わせ処理を行う画像重ね合わせ処理機能部と、
     して動作させることを特徴とするデータ処理プログラム。
    A data processing program for processing, on a computer, mass spectrometry data obtained at a plurality of measurement points in a measurement region on a sample, based on mass spectrometry data obtained for one of a plurality of samples. A data processing program for performing a process of superimposing a mass spectrometry imaging image created on a reference image obtained by a measurement or observation technique other than mass spectrometry for another one,
    a) an image selection function unit that allows the user to select one mass spectrometry imaging image that is the target of the overlay process;
    b) an optical microscopic image acquisition function unit for acquiring an optical microscopic image corresponding to the selected mass spectrometry imaging image;
    c) Image alignment is performed between the acquired optical microscopic image and the reference image of the same sample so that one or a plurality of images are deformed and the same or similar parts are matched. An image alignment function,
    d) an image deformation information acquisition function unit for acquiring image deformation information about one or more images at the time of image alignment;
    e) an image deformation function unit that applies image deformation information acquired by the image deformation information acquisition function unit to a mass spectrometry imaging image that is an object of the superposition process, and performs image deformation processing;
    f) an image superimposition processing function unit that performs superposition processing of the mass spectrometry imaging image deformed by the image deformation function unit and the reference image;
    A data processing program characterized by being operated.
  7.  試料上の測定領域内の複数の測定点においてそれぞれ得られた質量分析データを処理するイメージング質量分析におけるデータ処理方法であり、観察対象である部位が同じ又は互いに類似している複数の試料のうちの一つについて得られた質量分析データに基づいて作成される質量分析イメージング画像と、他の一つについてイメージング質量分析以外のイメージング測定手法で得られた第2のイメージング画像とを重ね合わせる処理を行う、又は、一つの試料の同じ観察対象部位について得られた質量分析データに基づいて作成される質量分析イメージング画像とイメージング質量分析以外のイメージング測定手法で得られた第2のイメージング画像とを重ね合わせる処理を行うデータ処理方法であって、
     a)重ね合わせ処理の対象である一つの質量分析イメージング画像と第2のイメージング画像とをユーザに選択させる画像選択ステップと、
     b)選択された質量分析イメージング画像と第2のイメージング画像とにそれぞれ対応する光学顕微画像を取得する光学顕微画像取得ステップと、
     c)取得された二つの光学顕微画像の間で、試料上の同じ又は類似している部位が一致するように画像の位置合わせを行う画像位置合わせステップと、
     d)位置合わせの際の一方又は複数の画像についての画像変形情報を取得する画像変形情報取得ステップと、
     e)前記画像変形情報を前記重ね合わせ処理の対象である質量分析イメージング画像及び第2のイメージング画像に適用して少なくとも一つの画像の変形処理を行う画像変形ステップと、
     f)前記画像変形ステップにおいて少なくとも一つが変形された質量分析イメージング画像と第2のイメージング画像との重ね合わせ処理を行う画像重ね合わせ処理ステップと、
     を有することを特徴とするイメージング質量分析におけるデータ処理方法。
    A data processing method in imaging mass spectrometry that processes mass spectrometry data respectively obtained at a plurality of measurement points in a measurement region on a sample, and among the plurality of samples whose parts to be observed are the same or similar to each other A process of superimposing a mass spectrometry imaging image created based on the mass spectrometry data obtained for one of the images and a second imaging image obtained by an imaging measurement technique other than imaging mass spectrometry for the other A mass spectrometry imaging image that is performed or created based on mass spectrometry data obtained for the same observation target part of one sample is overlaid with a second imaging image obtained by an imaging measurement technique other than imaging mass spectrometry. A data processing method for performing a matching process,
    a) an image selection step that allows the user to select one mass spectrometry imaging image and a second imaging image that are to be superposed;
    b) an optical microscopic image acquisition step of acquiring optical microscopic images respectively corresponding to the selected mass spectrometry imaging image and the second imaging image;
    c) an image alignment step for aligning images so that the same or similar parts on the sample match between the two acquired optical microscopic images;
    d) an image deformation information acquisition step for acquiring image deformation information for one or more images at the time of alignment;
    e) an image deformation step of applying at least one image deformation process by applying the image deformation information to the mass spectrometry imaging image and the second imaging image to be subjected to the superposition process;
    f) an image superimposition processing step for performing superimposition processing of the mass spectrometry imaging image and the second imaging image, at least one of which is deformed in the image deformation step;
    A data processing method in imaging mass spectrometry, comprising:
  8.  試料上の測定領域内の複数の測定点においてそれぞれ得られた質量分析データをコンピュータ上で処理するためのデータ処理プログラムであり、観察対象である部位が同じ又は互いに類似している複数の試料のうちの一つについて得られた質量分析データに基づいて作成される質量分析イメージング画像と、他の一つについてイメージング質量分析以外のイメージング測定手法で得られた第2のイメージング画像とを重ね合わせる処理を行う、又は、一つの試料の同じ観察対象部位について得られた質量分析データに基づいて作成される質量分析イメージング画像とイメージング質量分析以外のイメージング測定手法で得られた第2のイメージング画像とを重ね合わせる処理を行うデータ処理プログラムであって、コンピュータを、
     a)重ね合わせ処理の対象である一つの質量分析イメージング画像と第2のイメージング画像とをユーザに選択させる画像選択機能部と、
     b)選択された質量分析イメージング画像と第2のイメージング画像とにそれぞれ対応する光学顕微画像を取得する光学顕微画像取得機能部と、
     c)取得された二つの光学顕微画像の間で、試料上の同じ又は類似している部位が一致するように画像の位置合わせを行う画像位置合わせ機能部と、
     d)位置合わせの際の一方又は複数の画像についての画像変形情報を取得する画像変形情報取得機能部と、
     e)前記画像変形情報を前記重ね合わせ処理の対象である質量分析イメージング画像及び第2のイメージング画像に適用して少なくとも一つの画像の変形処理を行う画像変形機能部と、
     f)前記画像変形機能部により変形された質量分析イメージング画像と第2のイメージング画像との重ね合わせ処理を行う画像重ね合わせ処理機能部と、
     して動作させることを特徴とするデータ処理プログラム。
    A data processing program for processing on a computer mass spectrometry data respectively obtained at a plurality of measurement points in a measurement region on a sample, and for a plurality of samples having the same or similar parts to be observed. A process of superimposing a mass spectrometry imaging image created based on mass spectrometry data obtained for one of them and a second imaging image obtained by an imaging measurement technique other than imaging mass spectrometry for the other one Or a mass spectrometry imaging image created based on mass spectrometry data obtained for the same observation target part of one sample and a second imaging image obtained by an imaging measurement technique other than imaging mass spectrometry. A data processing program for performing superimposition processing, wherein a computer is
    a) an image selection function unit that allows a user to select one mass spectrometry imaging image and a second imaging image that are to be superposed;
    b) an optical microscopic image acquisition function unit for acquiring optical microscopic images respectively corresponding to the selected mass spectrometry imaging image and the second imaging image;
    c) an image alignment function unit that aligns images so that the same or similar parts on the sample match between the two acquired optical microscopic images;
    d) an image deformation information acquisition function unit for acquiring image deformation information about one or more images at the time of alignment;
    e) an image deformation function unit that applies at least one image deformation process by applying the image deformation information to the mass spectrometry imaging image and the second imaging image that are targets of the superposition process;
    f) an image superposition processing function unit that performs superposition processing of the mass spectrometry imaging image deformed by the image deformation function unit and the second imaging image;
    A data processing program characterized by being operated.
PCT/JP2018/013453 2018-03-29 2018-03-29 Data processing method and data processing program in imaging mass analysis WO2019186965A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020508761A JP6927415B2 (en) 2018-03-29 2018-03-29 Data processing methods and data processing programs in imaging mass spectrometry
PCT/JP2018/013453 WO2019186965A1 (en) 2018-03-29 2018-03-29 Data processing method and data processing program in imaging mass analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013453 WO2019186965A1 (en) 2018-03-29 2018-03-29 Data processing method and data processing program in imaging mass analysis

Publications (1)

Publication Number Publication Date
WO2019186965A1 true WO2019186965A1 (en) 2019-10-03

Family

ID=68058625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013453 WO2019186965A1 (en) 2018-03-29 2018-03-29 Data processing method and data processing program in imaging mass analysis

Country Status (2)

Country Link
JP (1) JP6927415B2 (en)
WO (1) WO2019186965A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433205A (en) * 2020-03-23 2021-09-24 株式会社岛津制作所 Imaging quality analysis system and analysis method using imaging quality analysis
WO2022029218A1 (en) * 2020-08-05 2022-02-10 Katholieke Universiteit Leuven Method for data fusion
US11636598B2 (en) 2018-03-30 2023-04-25 Shimadzu Corporation Imaging data processing apparatus and imaging data processing program to perform image alignment by deforming images such that imaged observation target sites coincide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025275A (en) * 2007-07-24 2009-02-05 Shimadzu Corp Mass analyzer
WO2014076789A1 (en) * 2012-11-15 2014-05-22 株式会社島津製作所 Analysis region setting device
WO2014197893A1 (en) * 2013-06-07 2014-12-11 Vanderbilt University Pathology interface system for mass spectrometry
WO2015181893A1 (en) * 2014-05-27 2015-12-03 株式会社島津製作所 Analysis-data processing device
JP2016022062A (en) * 2014-07-17 2016-02-08 国立大学法人東北大学 Ophthalmological analysis device and ophthalmological photographing device
WO2016090471A1 (en) * 2014-12-08 2016-06-16 University Health Network System and method for enhanced mass spectrometry imaging
WO2017002226A1 (en) * 2015-07-01 2017-01-05 株式会社島津製作所 Data processing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025275A (en) * 2007-07-24 2009-02-05 Shimadzu Corp Mass analyzer
WO2014076789A1 (en) * 2012-11-15 2014-05-22 株式会社島津製作所 Analysis region setting device
WO2014197893A1 (en) * 2013-06-07 2014-12-11 Vanderbilt University Pathology interface system for mass spectrometry
WO2015181893A1 (en) * 2014-05-27 2015-12-03 株式会社島津製作所 Analysis-data processing device
JP2016022062A (en) * 2014-07-17 2016-02-08 国立大学法人東北大学 Ophthalmological analysis device and ophthalmological photographing device
WO2016090471A1 (en) * 2014-12-08 2016-06-16 University Health Network System and method for enhanced mass spectrometry imaging
WO2017002226A1 (en) * 2015-07-01 2017-01-05 株式会社島津製作所 Data processing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11636598B2 (en) 2018-03-30 2023-04-25 Shimadzu Corporation Imaging data processing apparatus and imaging data processing program to perform image alignment by deforming images such that imaged observation target sites coincide
CN113433205A (en) * 2020-03-23 2021-09-24 株式会社岛津制作所 Imaging quality analysis system and analysis method using imaging quality analysis
WO2022029218A1 (en) * 2020-08-05 2022-02-10 Katholieke Universiteit Leuven Method for data fusion

Also Published As

Publication number Publication date
JP6927415B2 (en) 2021-08-25
JPWO2019186965A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP6927416B2 (en) Imaging data processing equipment and imaging data processing program
US11776799B2 (en) Data processing device
WO2019186965A1 (en) Data processing method and data processing program in imaging mass analysis
JP5565810B2 (en) Mass spectrometry data processing method and apparatus
JP6908136B2 (en) Data analyzer
Borodinov et al. Toward nanoscale molecular mass spectrometry imaging via physically constrained machine learning on co-registered multimodal data
JP6743895B2 (en) Imaging mass spectrometry data processor
WO2019150575A1 (en) Imaging mass spectrometry data interpretation device
Cameron Mass spectrometry imaging: facts and perspectives from a non-mass spectrometrist point of view
JP6179600B2 (en) Mass spectrometry data analyzer
JP6477833B2 (en) Data processing device
WO2019150554A1 (en) Data processing device for imaging mass spectrometry
US11861826B2 (en) Imaging data processing device
WO2021075254A1 (en) Imaging mass spectrometer
JP7040537B2 (en) Imaging mass spectrometer
WO2021049011A1 (en) Analysis device
WO2022003890A1 (en) Imaging mass spectrometer and imaging mass spectrometry data processing method
US20240153086A1 (en) Imaging analysis device and imaging data analysis method
JPWO2019229898A1 (en) Imaging mass spectrometry data processing equipment
JPWO2019229899A1 (en) Imaging mass spectrometry data processing equipment
Mohammed Mass Spectral Imaging for Analysis of Pharmaceutical Ingredients
Douglass et al. Technologies and principles of mass spectral imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508761

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912760

Country of ref document: EP

Kind code of ref document: A1