WO2019186838A1 - Solid-state imaging element, solid-state imaging device, solid-state imaging system, and method for driving solid-state imaging element - Google Patents

Solid-state imaging element, solid-state imaging device, solid-state imaging system, and method for driving solid-state imaging element Download PDF

Info

Publication number
WO2019186838A1
WO2019186838A1 PCT/JP2018/013007 JP2018013007W WO2019186838A1 WO 2019186838 A1 WO2019186838 A1 WO 2019186838A1 JP 2018013007 W JP2018013007 W JP 2018013007W WO 2019186838 A1 WO2019186838 A1 WO 2019186838A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
unit
charge storage
solid
state imaging
Prior art date
Application number
PCT/JP2018/013007
Other languages
French (fr)
Japanese (ja)
Inventor
悠吾 能勢
基範 石井
信三 香山
春日 繁孝
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to PCT/JP2018/013007 priority Critical patent/WO2019186838A1/en
Priority to JP2020508670A priority patent/JP7033739B2/en
Publication of WO2019186838A1 publication Critical patent/WO2019186838A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging

Definitions

  • the technology disclosed here relates to solid-state imaging technology.
  • a solid-state imaging device capable of performing photon counting in addition to imaging of a subject has been developed.
  • photon counting for example, it is possible to perform a distance measurement method of TOF (Time Of Flight) method.
  • TOF Time Of Flight
  • Patent Document 1 discloses a solid-state imaging device in which a plurality of pixels having a first pixel group including an infrared transmission filter are two-dimensionally arranged. Each pixel of the first pixel group includes a light receiving circuit, a counter circuit, a comparison circuit, and a memory circuit.
  • the light receiving circuit has a light receiving element that performs photoelectric conversion for converting received light into an electric signal, sets a photoelectric time for photoelectric conversion in the light receiving element by an exposure signal, and detects incident light that reaches a pixel within the photoelectric time. A light reception signal corresponding to the presence or absence is output.
  • the counter circuit counts the number of arrivals of incident light as a count value based on the light reception signal input from the light reception circuit.
  • the comparison circuit sets a value corresponding to the count value as a threshold value, and turns on the comparison signal when the count value is larger than the threshold value.
  • the storage circuit receives the comparison signal and a time signal that changes with time, and stores the time signal as a distance signal when the comparison signal is in an ON state.
  • an amplification transistor is connected to the memory circuit, and a selection transistor is connected to the amplification transistor. Further, a luminance image amplification transistor is connected to the light receiving circuit, and a luminance image selection transistor is connected to the luminance image amplification transistor.
  • the solid-state imaging device obtains a distance image by obtaining a distance signal based on the received light signal via the counter circuit, the comparison circuit, and the storage circuit, and passes through the luminance image amplification transistor and the luminance image selection transistor. A luminance image of the object is obtained by obtaining a light reception signal.
  • the technology disclosed herein relates to a solid-state imaging device, and the solid-state imaging device is configured to be switchable between an exposure state and a light-shielding state, and a light-receiving unit that generates charges according to light received in the exposure state;
  • a charge storage unit for storing charge
  • a first charge transfer unit for transferring the charge from the light receiving unit to the charge storage unit
  • an output unit for outputting a signal corresponding to the charge stored in the charge storage unit
  • a charge storage capacitor that stores the charge
  • a second charge transfer unit that transfers the charge bidirectionally between the charge storage unit and one end of the charge storage capacitor.
  • the technology disclosed herein relates to a method for driving a solid-state imaging device, and the solid-state imaging device is configured to be switchable between an exposure state and a light-shielding state, and generates a charge corresponding to light received in the exposure state.
  • a light receiving unit a charge storage unit for storing the charge; a first charge transfer unit for transferring the charge from the light receiving unit to the charge storage unit; and a signal corresponding to the charge stored in the charge storage unit.
  • a charge storage capacitor that stores the charge, and a second charge transfer unit that transfers the charge bidirectionally between the charge storage unit and one end of the charge storage capacitor.
  • the charge generated by the light receiving unit is transferred to the charge storage unit by the first charge transfer unit, and the charge stored in the charge storage unit is transferred to the second charge transfer unit.
  • a first step of driving the solid-state imaging device so that a transfer operation transferred to the charge storage capacitor by a unit is performed a predetermined number of times, and after the first step,
  • a second step of driving the solid-state imaging device so that charges are transferred to the charge storage unit by the second charge transfer unit and a signal corresponding to the charge stored in the charge storage unit is output by the output unit; And.
  • the charge stored in the charge storage capacitor is transferred to the charge storage unit by the second charge transfer unit, and a signal corresponding to the charge stored in the charge storage unit is output from the output unit.
  • a signal corresponding to the charge stored in the charge storage capacitor can be output.
  • FIG. 1 illustrates a configuration of a solid-state imaging system 10 according to the embodiment.
  • the solid-state imaging system 10 is configured to perform imaging of an object scene and distance measurement using photon counting.
  • the solid-state imaging device 20, the light source 30, and the control unit 40 are provided.
  • the solid-state imaging device 20 includes a pixel region 21 and a drive processing unit 22.
  • the pixel region 21 includes P ⁇ Q (P and Q are integers of 2 or more) solid-state imaging devices 100 and Q vertical signal lines 110.
  • the P ⁇ Q solid-state imaging devices 100 are arranged in a matrix of P rows and Q columns.
  • the Q vertical signal lines 110 correspond to the Q solid-state image sensor rows of the P ⁇ Q solid-state image sensors 100, respectively.
  • FIG. 2 illustrates the configuration of the solid-state imaging device 100.
  • the solid-state imaging device 100 includes a light receiving unit 200, a charge storage unit 300, a first charge transfer unit 400, an output unit 500, a charge storage capacitor 600, a second charge transfer unit 700, and a first reset unit 800.
  • the second reset unit 900 is provided.
  • the light receiving unit 200 is configured to be switchable between an exposure state and a light shielding state.
  • the light receiving unit 200 is configured to generate a charge corresponding to the light received in the exposure state. Note that the light receiving unit 200 does not generate charges in a light-shielded state.
  • the light receiving unit 200 is switched between an exposure state and a light shielding state in response to the exposure signal EXP.
  • the light receiving unit 200 includes a photoelectric conversion element 201.
  • the light receiving unit 200 is configured to expose the photoelectric conversion element 201 in the exposure state and shield the photoelectric conversion element 201 in the light shielding state.
  • the light receiving unit 200 is provided with an exposure mechanism (not shown) that exposes and shields the photoelectric conversion element.
  • the photoelectric conversion element 201 is composed of an avalanche photodiode.
  • the present invention is not limited to this, and the photoelectric conversion element 201 may be configured by other types of photodiodes.
  • the charge storage unit 300 is configured to store charges.
  • the charge storage unit 300 includes a floating diffusion unit 301.
  • the first charge transfer unit 400 is configured to transfer charges from the light receiving unit 200 to the charge storage unit 300.
  • the first charge transfer unit 400 transfers charges from the light receiving unit 200 to the charge storage unit 300 in response to the transfer control signal TRN.
  • the first charge transfer unit 400 includes a transfer transistor 401.
  • the transfer transistor 401 is connected between the photoelectric conversion element 201 of the light receiving unit 200 and the floating diffusion unit 301 of the charge storage unit 300.
  • the gate of the transfer transistor 401 is connected to the transfer control node 402 to which the transfer control signal TRN is applied.
  • the transfer transistor 401 is switched between an on state and an off state in response to the transfer control signal TRN.
  • the output unit 500 is configured to output a signal corresponding to the charge accumulated in the charge accumulation unit 300.
  • the output unit 500 outputs a signal corresponding to the charge accumulated in the charge accumulation unit 300 in response to the selection control signal SEL.
  • the output unit 500 includes an amplification transistor 501 and a selection transistor 502.
  • the amplification transistor 501 and the selection transistor 502 are connected in series between the power supply node 503 to which the power supply voltage VDD is applied and the vertical signal line 110.
  • the gate of the amplification transistor 501 is connected to the floating diffusion unit 301 of the charge storage unit 300.
  • the gate of the selection transistor 502 is connected to a selection control node 504 to which a selection control signal SEL is applied.
  • the selection transistor 502 is switched between an on state and an off state in response to the selection control signal SEL.
  • the charge storage capacitor 600 is configured to store charges.
  • the second charge transfer unit 700 is configured to transfer charges bidirectionally between the charge storage unit 300 and one end of the charge storage capacitor 600.
  • the second charge transfer unit 700 transfers charges from the charge storage unit 300 to one end of the charge storage capacitor 600 (or from one end of the charge storage capacitor 600 to the charge storage unit 300) in response to the switching control signal SWT.
  • the second charge transfer unit 700 includes a switching transistor 701, a rectifying element 702, and a potential control node 703.
  • the switching transistor 701 and the rectifying element 702 are connected in series between the floating diffusion portion 301 of the charge storage unit 300 and one end of the charge storage capacitor 600.
  • the gate of the switching transistor 701 is connected to a switching control node 704 to which a switching control signal SWT is applied.
  • the switching transistor 701 is switched between an on state and an off state in response to the switching control signal SWT.
  • the potential control node 703 is connected to the other end of the charge storage capacitor 600.
  • the potential of one end of the charge storage capacitor 600 (hereinafter referred to as “memory potential VCNT”) when transferring charge from the charge storage capacitor 600 to the charge storage unit 300 is the potential of the charge storage unit 300 (this In the example, the potential control signal EIV is applied so as to be higher than the potential of the floating diffusion portion 301 (hereinafter referred to as “intermediate potential VFD”).
  • the rectifying element 702 is constituted by a rectifying transistor 710.
  • the rectifying transistor 710 is diode-connected. Specifically, the gate of the rectifying transistor 710 is connected to the drain or source of the rectifying transistor 710.
  • a rectifying element 702 and a switching transistor 701 are sequentially arranged from the floating diffusion portion 301 of the charge storage portion 300 toward one end of the charge storage capacitor 600.
  • the arrangement of the switching transistor 701 and the rectifying element 702 may be reversed. That is, the switching transistor 701 and the rectifying element 702 may be sequentially arranged from the floating diffusion part 301 of the charge storage part 300 toward one end of the charge storage capacitor 600.
  • the first reset unit 800 is configured to reset the intermediate potential VFD (the potential of the charge storage unit 300, in this example, the potential of the floating diffusion unit 301). In this example, the first reset unit 800 resets the intermediate potential VFD in response to the first reset control signal RS1. Specifically, in this example, the first reset unit 800 includes a first reset transistor 801.
  • the first reset transistor 801 is connected between the first reset voltage node 802 to which the first reset voltage VRS1 for resetting the intermediate potential VFD is applied and the floating diffusion unit 301 of the charge storage unit 300.
  • the gate of the first reset transistor 801 is connected to the first reset control node 803 to which the first reset control signal RS1 is applied.
  • the first reset transistor 801 is switched between an on state and an off state in response to the first reset control signal RS1.
  • the second reset unit 900 is configured to reset the storage potential VCNT (the potential at one end of the charge storage capacitor 600).
  • the second reset unit 900 resets the storage potential VCNT in response to the second reset control signal RS2.
  • the second reset unit 900 includes a second reset transistor 901.
  • the second reset transistor 901 is connected between the second reset voltage node 902 to which the second reset voltage VRS2 for resetting the storage potential VCNT is applied and one end of the charge storage capacitor 600.
  • the gate of the second reset transistor 901 is connected to the second reset control node 903 to which the second reset control signal RS2 is applied.
  • the second reset transistor 901 is switched between an on state and an off state in response to the second reset control signal RS2.
  • the drive processing unit 22 is configured to drive P ⁇ Q solid-state imaging devices 100.
  • the drive processing unit 22 uses the exposure signal EXP, the transfer control signal TRN, the selection control signal SEL, the switching control signal SWT, the first reset control signal RS1, and the second reset control signal RS2 as P ⁇ Q solids.
  • P ⁇ Q solid-state image pickup devices 100 are driven.
  • the drive processing unit 22 is configured to perform a photon counting operation and an imaging operation in response to control by the control unit 40.
  • the drive processing unit 22 transfers the charge generated by the light receiving unit 200 to the charge storage unit 300 by the first charge transfer unit 400 and the charge stored in the charge storage unit 300 to the second charge transfer unit. After the transfer operation transferred to the charge storage capacitor 600 by 700 is performed a predetermined number of times, the charge stored in the charge storage capacitor 600 is transferred to the charge storage unit 300 by the second charge transfer unit 700 and charged.
  • the solid-state imaging device 100 is driven so that the output unit 500 outputs a signal corresponding to the charge accumulated in the accumulation unit 300.
  • the drive processing unit 22 outputs a signal corresponding to the charge stored in the charge storage unit 300 by transferring the charge generated by the light receiving unit 200 to the charge storage unit 300 by the first charge transfer unit 400.
  • the solid-state imaging device 100 is driven so as to be output by 500.
  • the drive processing unit 22 includes a pixel drive circuit 25, a vertical shift register 26, a correlated double sampling circuit 27, a horizontal shift register 28, and an output circuit 29.
  • the pixel driving circuit 25 sends the exposure signal EXP, the transfer control signal TRN, the switching control signal SWT, the first reset control signal RS1, and the second reset control signal RS2 to P ⁇ Q solids.
  • the image pickup device 100 is configured to be supplied to each.
  • the vertical shift register 26 is configured to supply a selection control signal SEL to each of the P ⁇ Q solid-state imaging devices 100 in response to control by the control unit 40.
  • the vertical shift register 26 sequentially selects P solid-state image sensor rows of the P ⁇ Q solid-state image sensors 100.
  • the vertical shift register 26 is supplied to Q solid-state image sensors 100 included in a selected solid-state image sensor row among the P solid-state image sensor rows of the P ⁇ Q solid-state image sensors 100.
  • the signal level of the selection control signal SEL is changed from the low level to the high level.
  • a signal corresponding to the charge stored in the charge storage unit 300 is output by the output unit 500 to the vertical signal line 110 (the vertical signal line 110 corresponding to the solid-state imaging device 100). Is output. That is, when one of the P solid-state image sensor rows of the P ⁇ Q solid-state image sensor 100 is selected by the vertical shift register 26, the Q solid-state image sensors 100 included in the solid-state image sensor row. Q signals are respectively output from the output unit 500 to the Q vertical signal lines 110.
  • two vertical shift registers 26 are provided. Then, the selection of the solid-state imaging element row by one of the two vertical shift registers 26 and the selection of the solid-state imaging element row by the other vertical shift register 26 are alternately performed.
  • the correlated double sampling circuit 27 is configured to perform correlated double sampling processing on each of the Q signals respectively output to the Q vertical signal lines 110. Specifically, the correlated double sampling circuit 27 samples a signal level in a later-described signal period and a signal level in a later-described reset period among signals output to the vertical signal line 110, and a difference between these signal levels. Output a signal according to. In this way, by performing the correlated double sampling process, the offset component is removed from the Q signals.
  • two correlated double sampling circuits 27 are provided. Then, Q signals respectively output to the Q vertical signal lines 110 from the solid-state imaging element row selected by one vertical shift register 26 out of the two vertical shift registers 26 are one correlated double sampling circuit 27. Q signals respectively output to the Q vertical signal lines 110 from the solid-state imaging element row selected by the other vertical shift register 26 are supplied to the other correlated double sampling circuit 27.
  • the horizontal shift register 28 is configured to sequentially transfer the Q signals processed in the correlated double sampling circuit 27.
  • two horizontal shift registers 28 are provided, and Q signals processed in one correlated double sampling circuit 27 out of two correlated double sampling circuits 27 are transmitted by one horizontal shift register 28.
  • the Q signals sequentially transferred and processed in the other correlated double sampling circuit 27 are sequentially transferred by the other horizontal shift register 28.
  • the output circuit 29 is configured to amplify the signal transferred by the horizontal shift register 28 with a predetermined amplification gain and output the amplified signal.
  • two output circuits 29 are provided, and a signal is transferred from one horizontal shift register 28 to one output circuit 29 of the two horizontal shift registers 28, and the other horizontal shift register 28 to the other horizontal shift register 28. A signal is transferred to the output circuit 29.
  • the light source 30 is configured to irradiate the signal light L1.
  • the light source 30 emits signal light L1 (pulse light) having a predetermined pulse width A.
  • the light source 30 is configured to irradiate light to the entire part where three-dimensional information (distance information) is to be acquired by diffusing light as necessary.
  • the light source 30 is comprised by LED, for example.
  • the control unit 40 is configured to control the operation of the solid-state imaging device 20 and the operation of the light source 30.
  • the control unit 40 includes an arithmetic processing unit such as a CPU and a storage unit such as a memory that stores a program or information for operating the arithmetic processing unit.
  • control unit 40 includes a drive control unit 41 and an information output unit 42. That is, the drive control unit 41 and the information output unit 42 constitute a part of the function of the control unit 40.
  • the drive control unit 41 is configured to control the operation of the drive processing unit 22 of the solid-state imaging device 20 and the operation of the light source 30.
  • the drive control unit 41 is configured to perform distance detection control and imaging control.
  • the drive control unit 41 controls the operation of the drive processing unit 22 so that the photon counting operation is performed by the drive processing unit 22 in each of a plurality of distance detection periods respectively corresponding to a plurality of distance sections. . Further, in the distance detection control, the drive control unit 41, in the transfer operation of the photon counting operation in each of the plurality of distance detection periods, delay time corresponding to the distance detection period from the time when the signal light L1 is emitted from the light source 30. After the TD has elapsed, the light receiving unit 200 enters an exposure state, and the charge generated by the light receiving unit 200 is transferred to the charge storage unit 300 by the first charge transfer unit 400, and the charge stored in the charge storage unit 300 is transferred to the second charge. The operation of the drive processing unit 22 and the operation of the light source 30 are controlled so as to be transferred to the charge storage capacitor 600 by the transfer unit 700.
  • the drive control unit 41 controls the drive processing unit 22 such that the drive processing unit 22 performs an imaging operation.
  • the information output unit 42 outputs information (distance information) related to the distance to the object based on the signal output from the output unit 500 in the photon counting operation of the pixel drive circuit 25 in each of the plurality of distance detection periods. It is configured. In this example, the information output unit 42 outputs three-dimensional information (distance image) composed of P ⁇ Q distance values each indicating a value corresponding to the distance to the object.
  • photon counting is used as a distance measuring method of TOF (Time Of Flight) method.
  • the distance measurement method of the TOF method is a method in which light is emitted from the time when light is irradiated toward an object from a light source (in this example, the light source 30) provided in the vicinity of the distance measuring device (in this example, the solid-state imaging device 20). It is a distance measuring method for measuring the time from the time when the object is reflected by the object and returning to the distance measuring device, and for determining the distance from the distance measuring device to the object based on the time.
  • a light source in this example, the light source 30
  • the distance measuring device in this example, the solid-state imaging device 20
  • N distances R for example, distances that can be measured by the solid-state imaging system 10
  • the distance section of the first field is set to a section from zero to R / N
  • the second distance section is set to a section from R / N to 2R / N
  • the third The th distance section is set to a section from 2R / N to 3R / N
  • the N th distance section is set to a section from R (N ⁇ 1) / N to R.
  • the light reception in the exposure state is set. It becomes possible for the part 200 to receive the reflected light L2.
  • the delay time TD in each of the N distance sections is set as follows.
  • the light receiving unit 200 when the light receiving unit 200 is changed from the light shielding state to the exposure state at the time when the delay time TD corresponding to the Kth distance section has elapsed from the time when the signal light L1 is emitted from the light source 30, the light reception in the exposure state is performed. If the unit 200 can receive the reflected light L2, it can be said that the object exists in the Kth distance section. Further, when the light receiving unit 200 in the exposure state receives the reflected light L2, the light receiving unit 200 generates a charge corresponding to the reflected light L2. Then, the charge generated by the light receiving unit 200 is transferred to the charge storage capacitor 600 via the first charge transfer unit 400 and the second charge transfer unit 700 and stored therein, thereby being stored in the charge storage capacitor 600. It is possible to determine whether or not an object exists in the Kth distance section based on the amount of electric charge.
  • distance detection control (steps ST102 to ST111) is performed in each of the N distance detection periods corresponding to the N distance intervals shown in FIG.
  • the drive processing unit 22 performs a photon counting operation in N distance detection periods respectively corresponding to N distance sections.
  • the light source 30 emits M (M is an integer of 1 or more) signal light L1 in each of the N distance detection periods. That is, the signal light L1 is irradiated M times in each of the N distance detection periods.
  • Step ST101> the drive control unit 41 selects the first distance section from among the N distance sections as a target for distance detection control. Thereby, the first distance detection period corresponding to the first distance section is started.
  • the distance section selected as the target of distance detection control is referred to as “Kth distance section (K is an integer not less than 1 and not more than N)”.
  • Step ST102> When a distance detection period corresponding to the Kth distance section (hereinafter referred to as “Kth distance detection period”) is started, the drive processing unit 22 receives light in response to control by the drive control unit 41. P ⁇ Q solid-state imaging devices 100 are reset so that the potential of the unit 200 (in this example, the potential of the photoelectric conversion element 201, hereinafter referred to as “input potential VPD”), the intermediate potential VFD, and the storage potential VCNT are reset. Drive.
  • the pixel drive circuit 25 of the drive processing unit 22 sets the signal levels of the transfer control signal TRN, the first reset control signal RS1, the switching control signal SWT, and the second reset control signal RS2 to a low level.
  • the transfer transistor 401, the switching transistor 701, the first reset transistor 801, and the second reset transistor 901 are turned on, the intermediate potential VFD is reset by the first reset voltage VRS1, and the storage potential VCNT from the second reset voltage VRS2. Is reset.
  • the transfer transistor 401 since the transfer transistor 401 is in the on state, the input potential VPD is reset together with the reset of the intermediate potential VFD.
  • the pixel drive circuit 25 receives the transfer control signal TRN and the first reset control signal RS1.
  • the signal levels of the switching control signal SWT and the second reset control signal RS2 are changed from the high level to the low level.
  • the transfer transistor 401, the switching transistor 701, the first reset transistor 801, and the second reset transistor 901 are turned off.
  • the drive control unit 41 selects the first signal light L1 among the M signal lights L1 to be irradiated in the Kth distance detection period as an irradiation process target.
  • the signal light L1 selected as the target of the irradiation process is referred to as “Jth signal light (J is an integer not less than 1 and not more than M)”.
  • the light source 30 emits the J-th signal light L ⁇ b> 1 in response to control by the drive control unit 41.
  • the pulse width of the signal light L1 is set to the pulse width A.
  • the light source 30 has an irradiation time corresponding to the pulse width A from the time when irradiation of the J-th signal light L1 (first signal light L1 at time t2) is started. Then, the irradiation with the J-th signal light L1 ends.
  • the drive processing unit 22 receives the Jth signal light L1 from the light source 30 and starts the Kth distance detection period (that is, the Kth distance).
  • the delay time TD corresponding to (section) elapses, P ⁇ Q solid-state imaging devices 100 are driven so that the light receiving unit 200 is in an exposure state for a predetermined exposure time.
  • the exposure time corresponding to the J-th signal light L1 is set to a time corresponding to the pulse width (pulse width A in this example) of the J-th signal light L1.
  • the delay time TD corresponding to the Kth distance detection period is set as the following equation.
  • the pixel drive circuit 25 of the drive processing unit 22 is delayed from the time when the J-th signal light L1 (first signal light L1 at time t3) is emitted from the light source 30.
  • the time TD elapses, the signal level of the exposure signal EXP is changed from the low level to the high level.
  • the light receiving unit 200 is in an exposure state, charges corresponding to the light received by the light receiving unit 200 are generated, and the input potential VPD changes according to the amount of the generated charges.
  • the first reflected light L2 corresponding to the first signal light L1 reaches the light receiving unit 200 at time t3.
  • the first signal light L1 irradiated at time t1 is reflected by the object (the object existing in the Kth distance section) and reaches the light receiving unit 200 as the first reflected light L2. Yes.
  • the exposure time time corresponding to the pulse width A
  • the pixel driving circuit 25 changes the signal level of the exposure signal EXP from the high level to the low level. To level.
  • the light-receiving part 200 will be in a light-shielding state.
  • Step ST106> in response to the control by the drive control unit 41, the drive processing unit 22 transfers the charge generated by the light receiving unit 200 to the charge storage unit 300 by the first charge transfer unit 400, and then the charge storage unit 300.
  • the P ⁇ Q solid-state imaging devices 100 are driven so that the charge accumulated in the second charge transfer unit 700 is transferred to the charge storage capacitor 600.
  • the pixel drive circuit 25 of the drive processing unit 22 changes the signal level of the transfer control signal TRN from the low level to the high level.
  • the transfer transistor 401 is turned on, charges are transferred from the light receiving unit 200 to the charge storage unit 300 via the transfer transistor 401 in the on state, and the intermediate potential VFD changes according to the amount of the transferred charges. To do.
  • the pixel driving circuit 25 changes the signal level of the transfer control signal TRN from the high level to the low level. To level. As a result, the transfer transistor 401 is turned off.
  • the pixel drive circuit 25 of the drive processing unit 22 changes the signal level of the switching control signal SWT from the low level to the high level.
  • the switching transistor 701 is turned on, and charge is transferred from the charge storage unit 300 to the charge storage capacitor 600 via the switching transistor 701 in the on state, and the storage potential VCNT is changed according to the amount of the transferred charge. Change.
  • the amount of charge transferred from the charge storage unit 300 to the charge storage capacitor 600 is an amount corresponding to the capacitance ratio between the charge storage unit 300 and the charge storage capacitor 600.
  • the pixel drive circuit 25 changes the signal level of the switching control signal SWT from the high level to the low level. To. As a result, the switching transistor 701 is turned off.
  • Step ST107> the drive control unit 41 determines whether or not all of the M signal lights L1 to be irradiated in the Kth distance detection period have been selected as an irradiation process target (that is, M times of signal light L1 irradiation are performed). Whether or not it is completed). If all of the M signal lights L1 to be irradiated in the Kth distance detection period have not been selected as targets for irradiation processing, the process proceeds to step ST108, and if not, the process proceeds to step ST110.
  • Step ST108> When all of the M signal lights L1 to be irradiated in the Kth distance detection period are not selected as the target of the irradiation process, the drive control unit 41 performs M irradiation to be performed in the Kth distance detection period.
  • the signal light next to the J-th signal light L1 (J + 1-th signal light L1) is selected as the next irradiation process target.
  • Step ST109> in response to control by the drive control unit 41, the drive processing unit 22 drives the P ⁇ Q solid-state imaging elements 100 so that the input potential VPD and the intermediate potential VFD are reset. Then, the process proceeds to step ST104.
  • the pixel drive circuit 25 of the drive processing unit 22 changes the signal levels of the transfer control signal TRN and the first reset control signal RS1 from low level to high level. As a result, the transfer transistor 401 and the first reset transistor 801 are turned on, and the intermediate potential VFD is reset by the first reset voltage VRS1. In addition, since the transfer transistor 401 is in the on state, the input potential VPD is reset together with the reset of the intermediate potential VFD. Then, when the reset of the input potential VPD and the intermediate potential VFD is completed (for example, a predetermined reset time has elapsed), the pixel drive circuit 25 increases the signal levels of the transfer control signal TRN and the first reset control signal RS1. From level to low level. As a result, the transfer transistor 401 and the first reset transistor 801 are turned on.
  • the storage potential VCNT changes according to the number (number of times) of the reflected light L2 received by the light receiving unit 200 in the exposed state. That is, as the number of reflected lights L2 received by the light receiving unit 200 in the exposure state increases, the amount of charge transferred to the charge storage capacitor 600 increases, and as a result, the storage potential VCNT decreases.
  • Step ST110> On the other hand, when all of the M signal lights L1 to be irradiated in the Kth distance detection period in step ST107 are selected as targets for irradiation processing (that is, irradiation of M times of signal light L1 is completed). ), In response to the control by the drive control unit 41, the drive processing unit 22 resets the intermediate potential VFD, and then the charge stored in the charge storage capacitor 600 is transferred to the charge storage unit 300 by the second charge transfer unit 700. P ⁇ Q solid-state imaging devices 100 are driven so as to be transferred to.
  • the pixel drive circuit 25 of the drive processing unit 22 changes the signal level of the first reset control signal RS1 from low level to high level.
  • the first reset transistor 801 is turned on, and the intermediate potential VFD is reset by the first reset voltage VRS1.
  • the pixel drive circuit 25 changes the signal level of the first reset control signal RS1 from the high level to the low level.
  • the first reset transistor 801 is turned off.
  • the pixel drive circuit 25 of the drive processing unit 22 changes the signal level of the potential control signal EIV from the low level to the high level.
  • the high level of the potential control signal EIV is set to a potential higher than the intermediate potential VFD after reset.
  • the storage potential VCNT becomes higher than the intermediate potential VFD.
  • the pixel drive circuit 25 of the drive processing unit 22 changes the signal level of the switching control signal SWT from the low level to the high level.
  • the switching transistor 701 is turned on, and charge is transferred from one end of the charge storage capacitor 600 to the charge storage unit 300 via the switching transistor 701 in the on state, and an intermediate potential is set according to the amount of the transferred charge.
  • VFD changes.
  • the amount of charge transferred from the charge storage capacitor 600 to the charge storage unit 300 is an amount corresponding to the capacitance ratio between the charge storage unit 300 and the charge storage capacitor 600.
  • the pixel drive circuit 25 receives the potential control signal EIV and the switching control signal SWT. Change the level from high to low.
  • the drive processing unit 22 outputs P ⁇ Q solids so that a signal corresponding to the charge accumulated in the charge accumulation unit 300 is output by the output unit 500.
  • the image sensor 100 is driven every P solid-state image sensor rows.
  • a signal corresponding to the charge stored in each charge storage unit 300 of the P ⁇ Q solid-state imaging devices 100 is controlled via the correlated double sampling circuit 27, the horizontal shift register 28, and the output circuit 29.
  • the count value is a value corresponding to the amount of charge accumulated in the charge storage capacitor 600.
  • the count value is a value corresponding to the number of reflected lights L2 received by the light receiving unit 200 in the exposure state.
  • the count value increases as the amount of charge stored in the charge storage capacitor 600 increases (the number of reflected light L2 received by the light receiving unit 200 in the exposure state increases).
  • the vertical shift register 26 of the drive processing unit 22 changes the signal level of the selection control signal SEL from the low level to the high level.
  • the selection transistor 502 is turned on, and a signal corresponding to the charge accumulated in the charge accumulation unit 300 is output from the amplification transistor 501 to the vertical signal line 110 via the selection transistor 502 in the on state.
  • the pixel drive circuit 25 of the drive processing unit 22 changes the signal level of the first reset control signal RS1 from low level to high level.
  • the first reset transistor 801 is turned on, and the intermediate potential VFD is reset by the first reset voltage VRS1.
  • the signal level of the signal output from the amplification transistor 501 to the vertical signal line 110 via the on-state selection transistor 502 becomes a signal level corresponding to the reset intermediate potential VFD.
  • the pixel drive circuit 25 of the drive processing unit 22 changes the signal level of the first reset control signal RS1 from the high level to the low level. To. As a result, the first reset transistor 801 is turned off. Further, when the output of the signal from the output unit 500 to the vertical signal line 110 is completed (for example, when a predetermined output time elapses), the vertical shift register 26 changes the signal level of the selection control signal SEL from the high level to the low level. To level. As a result, the selection transistor 502 is turned off.
  • the period from time t14 to time t15 is a signal period
  • the period from time t15 to the time when the signal level of the selection control signal SEL changes from a high level to a low level is a reset period.
  • the correlated double sampling circuit 27 samples the signal level in the signal period and the signal level in the reset period among the signals output from the output unit 500 to the vertical signal line 110.
  • the signal processed by the correlated double sampling circuit 27 is supplied to the information output unit 42 of the control unit 40 via the horizontal shift register 28 and the output circuit 29.
  • Step ST112 the drive control unit 41 determines whether or not all of the N distance sections have been selected as distance detection control targets (that is, whether or not N distance detection processes respectively corresponding to the N distance sections have been completed). )). If all of the N distance sections have not been selected as targets for distance detection control, the process proceeds to step ST113, and if all of the N distance sections have been selected as targets for distance detection control, processing is performed. Exit.
  • Step ST113> the drive control unit 41 selects the next distance section (K + 1th distance section) after the Kth distance section among the N distance sections as the next distance detection control target. Next, the process proceeds to step ST102.
  • the information output unit 42 outputs N count images (P ⁇ Q each indicating a count value) corresponding to the N distance sections. (Information consisting of the signal value). And the information output part 42 produces
  • the information output unit 42 performs a comparison process on each of the N count images.
  • the information output unit 42 sets the K-th count value for each of the P ⁇ Q signal values (count values) constituting the K-th count image. It is determined whether or not the threshold value is equal to or greater than a threshold value determined for the Kth distance section corresponding to the image.
  • the threshold value determined for each of the N distance intervals is set to, for example, a signal value (count value) acquired when an object exists in the distance interval.
  • the information output part 42 produces
  • the information output unit 42 in the X-th row (X is an integer not less than 1 and not more than P) in the Y-th column among the P ⁇ Q signal values (count values) constituting the K-th count image.
  • the signal value (Y is an integer greater than or equal to 1 and less than or equal to Q) is greater than or equal to a threshold value determined for the Kth count image
  • the Xth of the P ⁇ Q distance values constituting the distance image In the row the distance value in the Yth row is set to a value corresponding to the Kth distance section.
  • the information output unit 42 may be configured to adjust a threshold value determined for each of the N distance intervals according to the background light.
  • imaging control Next, imaging control by the drive control unit 41 will be described with reference to FIG.
  • the drive processing unit 22 performs an imaging operation in response to control by the drive control unit 41.
  • Step ST201 First, in response to control by the drive control unit 41, the drive processing unit 22 drives the P ⁇ Q solid-state imaging elements 100 so that the input potential VPD and the intermediate potential VFD are reset.
  • the drive processing unit 22 drives the P ⁇ Q solid-state imaging devices 100 so that the light receiving unit 200 is in an exposure state for a predetermined exposure time. .
  • the light receiving unit 200 is in an exposure state, charges corresponding to the light received by the light receiving unit 200 are generated, and the input potential VPD changes according to the amount of the generated charges.
  • the drive processing unit 22 responds to the control by the drive control unit 41 so that the charge generated by the light receiving unit 200 is transferred to the charge storage unit 300 by the first charge transfer unit 400.
  • the solid-state imaging device 100 is driven.
  • charges are transferred from the light receiving unit 200 to the charge storage unit 300 via the first charge transfer unit 400, and the intermediate potential VFD changes according to the amount of transferred charges.
  • the drive processing unit 22 outputs P ⁇ Q solids so that a signal corresponding to the charge accumulated in the charge accumulation unit 300 is output by the output unit 500.
  • the image sensor 100 is driven every P solid-state image sensor rows.
  • a signal corresponding to the charge stored in each charge storage unit 300 of the P ⁇ Q solid-state imaging devices 100 is controlled via the correlated double sampling circuit 27, the horizontal shift register 28, and the output circuit 29.
  • the control unit 40 is supplied with information (luminance image) composed of P ⁇ Q signal values each indicating a value corresponding to the luminance.
  • the charge stored in the charge storage capacitor 600 is transferred to the charge storage unit 300 by the second charge transfer unit 700, and a signal corresponding to the charge stored in the charge storage unit 300 is output by the output unit 500.
  • a signal corresponding to the charge accumulated in the charge storage capacitor 600 can be output. This eliminates the need to separately provide a configuration (a configuration different from the output unit 500) for outputting a signal corresponding to the charge stored in the charge storage capacitor 600, thereby reducing the circuit scale of the solid-state imaging device 100. be able to.
  • the light receiving area of the light receiving unit 200 is expanded accordingly. can do. Thereby, since the sensitivity of the light receiving unit 200 can be improved, the distance that can be measured by the solid-state imaging system 10 can be increased.
  • the transistor forming process for forming a transistor for example, the switching transistor 701 or the like included in the solid-state imaging device 100 by configuring the rectifying element 702 of the second charge transfer unit 700 with a diode-connected rectifying transistor 710.
  • a rectifying element 702 can be formed. Thereby, formation of the rectifying element 702 can be facilitated.
  • the light receiving unit 200 may include a plurality of photoelectric conversion elements 201.
  • the plurality of photoelectric conversion elements 201 are configured to generate charges corresponding to the light received by each of the plurality of photoelectric conversion elements 201.
  • the light-receiving part 200 may be comprised so that the some photoelectric conversion element 201 may be exposed in an exposure state.
  • the first charge transfer unit 400 may include a plurality of transfer transistors 401.
  • the plurality of transfer transistors 401 are connected between the plurality of photoelectric conversion elements 201 and the floating diffusion unit 301 of the charge storage unit 300, respectively.
  • the gates of the plurality of transfer transistors 401 are connected to a transfer control node 402 to which a transfer control signal TRN is applied.
  • the light receiving area of the light receiving unit 200 can be expanded. Thereby, the sensitivity of the light receiving unit 200 can be improved.
  • step ST111 the case where there is a reset period after the signal period in the signal output from the output unit 500 to the vertical signal line 110 in step ST111 is described as an example, but the signal is output from the output unit 500 to the vertical signal line 110. There may be a signal period after the reset period in the signal.
  • the drive processing unit 22 resets the intermediate potential VFD (the potential of the charge storage unit 300) and outputs a signal (reset level signal) corresponding to the charge stored in the charge storage unit 300.
  • the signal level of the signal output from the output unit 500 by transferring the charge stored in the charge storage capacitor 600 by the second charge transfer unit 700 to the charge storage unit 300.
  • the solid-state imaging device 100 may be driven so that changes.
  • the N distance sections may be set to the same section length, or may be set to different section lengths.
  • the technology disclosed herein is useful for a solid-state imaging device, a solid-state imaging device, a solid-state imaging system, and a driving method of the solid-state imaging device.
  • Solid-state imaging system 10 Solid-state imaging system 20 Solid-state imaging device 21 Pixel area 22 Drive processing part 25 Pixel drive circuit 26 Vertical shift register 27 Correlated double sampling circuit 28 Horizontal shift register 29 Output circuit 30 Light source 40 Control part 41 Drive control part 42 Information output part 100 Solid-state imaging device 200 Light receiving unit 201 Photoelectric conversion element 300 Charge storage unit 301 Floating diffusion unit 400 First charge transfer unit 401 Transfer transistor 500 Output unit 501 Amplification transistor 502 Selection transistor 600 Charge storage capacitor 700 Second charge transfer unit 701 Switching transistor 702 Rectifier element 710 Rectifier transistor 800 First reset unit 801 First reset transistor 900 2 reset unit 901 second reset transistor

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

According to the present invention, a light receiving unit (200) is configured to be switchable to a light exposing state and a light shielding state, and generates charges according to light received in the light exposing state. A charge storage unit (300) stores charges. A first charge transmitting unit (400) transmits charges from the light receiving unit (200) to the charge storage unit (300). An output unit (500) outputs signals according to charges stored in the charge storage unit (300). A charge storage capacitor (600) stores charges. A second charge transmitting unit (700) transmits charges between the charge storage unit (300) and one end of the charge storage capacitor (600).

Description

固体撮像素子、固体撮像装置、固体撮像システム、固体撮像素子の駆動方法Solid-state imaging device, solid-state imaging device, solid-state imaging system, and driving method of solid-state imaging device
 ここに開示する技術は、固体撮像技術に関する。 The technology disclosed here relates to solid-state imaging technology.
 従来、被写体の撮像に加えてフォトンカウンティングを行うことが可能な固体撮像素子が開発されている。このようなフォトンカウンティングを利用して、例えば、TOF(Time Of Flight)方式の距離測定方法を行うことが可能である。 Conventionally, a solid-state imaging device capable of performing photon counting in addition to imaging of a subject has been developed. By using such photon counting, for example, it is possible to perform a distance measurement method of TOF (Time Of Flight) method.
 特許文献1には、赤外線透過フィルタを備える第1の画素群を有する複数の画素が二次元状に配列された固体撮像装置が開示されている。この第1の画素群の各画素は、受光回路とカウンタ回路と比較回路と記憶回路とを備えている。受光回路は、受光した光を電気信号に変換する光電変換を行う受光素子を有し、受光素子において光電変換を行う光電時間を露光信号により設定し、光電時間内に画素に到達した入射光の有無に応じた受光信号を出力する。カウンタ回路は、受光回路から入力された受光信号に基づいて、入射光の到達回数をカウント値として計数する。比較回路は、カウント値に応じた値を閾値として設定し、閾値に対してカウント値が大きい場合に比較信号をオン状態とする。記憶回路は、比較信号と時間に対して変化する時間信号とが入力され、比較信号がオン状態のとき時間信号を距離信号として記憶する。 Patent Document 1 discloses a solid-state imaging device in which a plurality of pixels having a first pixel group including an infrared transmission filter are two-dimensionally arranged. Each pixel of the first pixel group includes a light receiving circuit, a counter circuit, a comparison circuit, and a memory circuit. The light receiving circuit has a light receiving element that performs photoelectric conversion for converting received light into an electric signal, sets a photoelectric time for photoelectric conversion in the light receiving element by an exposure signal, and detects incident light that reaches a pixel within the photoelectric time. A light reception signal corresponding to the presence or absence is output. The counter circuit counts the number of arrivals of incident light as a count value based on the light reception signal input from the light reception circuit. The comparison circuit sets a value corresponding to the count value as a threshold value, and turns on the comparison signal when the count value is larger than the threshold value. The storage circuit receives the comparison signal and a time signal that changes with time, and stores the time signal as a distance signal when the comparison signal is in an ON state.
 また、特許文献1の図10Aに示すように、記憶回路には、増幅トランジスタが接続され、その増幅トランジスタには、選択トランジスタが接続されている。さらに、受光回路には、輝度画像用増幅トランジスタが接続され、輝度画像用増幅トランジスタには、輝度画像用選択トランジスタが接続されている。そして、固体撮像装置は、カウンタ回路と比較回路と記憶回路とを介して受光信号に基づく距離信号を得ることにより距離画像を取得し、輝度画像用増幅トランジスタと輝度画像用選択トランジスタとを介して受光信号を得ることにより対象物の輝度画像を取得するように構成されている。 Further, as shown in FIG. 10A of Patent Document 1, an amplification transistor is connected to the memory circuit, and a selection transistor is connected to the amplification transistor. Further, a luminance image amplification transistor is connected to the light receiving circuit, and a luminance image selection transistor is connected to the luminance image amplification transistor. The solid-state imaging device obtains a distance image by obtaining a distance signal based on the received light signal via the counter circuit, the comparison circuit, and the storage circuit, and passes through the luminance image amplification transistor and the luminance image selection transistor. A luminance image of the object is obtained by obtaining a light reception signal.
国際公開第2017/098725号パンフレットInternational Publication No. 2017/098725 Pamphlet
 しかしながら、特許文献1の固体撮像素子では、増幅トランジスタと選択トランジスタとで構成された出力部が2つ設けられているので、固体撮像素子の回路規模を低減することが困難である。 However, in the solid-state imaging device disclosed in Patent Document 1, since two output units each including an amplification transistor and a selection transistor are provided, it is difficult to reduce the circuit scale of the solid-state imaging device.
 ここに開示する技術は、固体撮像素子に関し、この固体撮像素子は、露光状態と遮光状態とに切り換え可能に構成され、該露光状態において受光した光に応じた電荷を生成する受光部と、前記電荷を蓄積する電荷蓄積部と、前記受光部から前記電荷蓄積部へ前記電荷を転送する第1電荷転送部と、前記電荷蓄積部に蓄積された電荷に応じた信号を出力する出力部と、前記電荷を蓄積する電荷蓄積キャパシタと、前記電荷蓄積部と前記電荷蓄積キャパシタの一端との間において前記電荷を双方向に転送する第2電荷転送部とを備えている。 The technology disclosed herein relates to a solid-state imaging device, and the solid-state imaging device is configured to be switchable between an exposure state and a light-shielding state, and a light-receiving unit that generates charges according to light received in the exposure state; A charge storage unit for storing charge, a first charge transfer unit for transferring the charge from the light receiving unit to the charge storage unit, an output unit for outputting a signal corresponding to the charge stored in the charge storage unit, A charge storage capacitor that stores the charge; and a second charge transfer unit that transfers the charge bidirectionally between the charge storage unit and one end of the charge storage capacitor.
 また、ここに開示する技術は、固体撮像素子の駆動方法に関し、この固体撮像素子は、露光状態と遮光状態とに切り換え可能に構成され、該露光状態において受光した光に応じた電荷を生成する受光部と、前記電荷を蓄積する電荷蓄積部と、前記受光部から前記電荷蓄積部へ前記電荷を転送する第1電荷転送部と、前記電荷蓄積部に蓄積された電荷に応じた信号を出力する出力部と、前記電荷を蓄積する電荷蓄積キャパシタと、前記電荷蓄積部と前記電荷蓄積キャパシタの一端との間において前記電荷を双方向に転送する第2電荷転送部とを備えている。そして、この固体撮像素子の駆動方法は、前記受光部により生成された電荷が前記第1電荷転送部により前記電荷蓄積部に転送されて該電荷蓄積部に蓄積された電荷が前記第2電荷転送部により前記電荷蓄積キャパシタに転送される転送動作が予め定められた回数だけ行われるように前記固体撮像素子を駆動させる第1工程と、前記第1工程の後に、前記電荷蓄積キャパシタに蓄積された電荷が前記第2電荷転送部により前記電荷蓄積部に転送されて該電荷蓄積部に蓄積された電荷に応じた信号が前記出力部により出力されるように前記固体撮像素子を駆動させる第2工程とを備えている。 The technology disclosed herein relates to a method for driving a solid-state imaging device, and the solid-state imaging device is configured to be switchable between an exposure state and a light-shielding state, and generates a charge corresponding to light received in the exposure state. A light receiving unit; a charge storage unit for storing the charge; a first charge transfer unit for transferring the charge from the light receiving unit to the charge storage unit; and a signal corresponding to the charge stored in the charge storage unit. A charge storage capacitor that stores the charge, and a second charge transfer unit that transfers the charge bidirectionally between the charge storage unit and one end of the charge storage capacitor. In this solid-state imaging device driving method, the charge generated by the light receiving unit is transferred to the charge storage unit by the first charge transfer unit, and the charge stored in the charge storage unit is transferred to the second charge transfer unit. A first step of driving the solid-state imaging device so that a transfer operation transferred to the charge storage capacitor by a unit is performed a predetermined number of times, and after the first step, A second step of driving the solid-state imaging device so that charges are transferred to the charge storage unit by the second charge transfer unit and a signal corresponding to the charge stored in the charge storage unit is output by the output unit; And.
 ここに開示する技術によれば、電荷蓄積キャパシタに蓄積された電荷を第2電荷転送部により電荷蓄積部に転送して電荷蓄積部に蓄積された電荷に応じた信号を出力部により出力することにより、電荷蓄積キャパシタに蓄積された電荷に応じた信号を出力することができる。これにより、電荷蓄積キャパシタに蓄積された電荷に応じた信号を出力するための構成(出力部とは異なる構成)を別途設けなくてもよくなるので、固体撮像素子の回路規模を低減することができる。 According to the technology disclosed herein, the charge stored in the charge storage capacitor is transferred to the charge storage unit by the second charge transfer unit, and a signal corresponding to the charge stored in the charge storage unit is output from the output unit. Thus, a signal corresponding to the charge stored in the charge storage capacitor can be output. As a result, it is not necessary to separately provide a configuration (a configuration different from the output unit) for outputting a signal corresponding to the charge stored in the charge storage capacitor, so that the circuit scale of the solid-state imaging device can be reduced. .
固体撮像システムの構成を例示するブロック図である。It is a block diagram which illustrates the composition of a solid imaging system. 固体撮像素子の構成を例示する回路図である。It is a circuit diagram which illustrates the composition of a solid-state image sensor. 距離測定の原理について説明するための概念図である。It is a conceptual diagram for demonstrating the principle of distance measurement. 距離検出制御を例示するフローチャートである。It is a flowchart which illustrates distance detection control. 距離検出制御を例示するタイミングチャートである。It is a timing chart which illustrates distance detection control. 撮像制御を例示するフローチャートである。It is a flowchart which illustrates imaging control. 固体撮像素子の変形例の構成を例示する回路図である。It is a circuit diagram which illustrates the composition of the modification of a solid-state image sensing device.
 以下、実施の形態を図面を参照して詳しく説明する。なお、図中同一または相当部分には同一の符号を付しその説明は繰り返さない。 Hereinafter, embodiments will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (固体撮像システム)
 図1は、実施形態による固体撮像システム10の構成を例示している。この固体撮像システム10は、被写界の撮像とフォトンカウンティングを利用した距離測定とを行うように構成されている。具体的には、固体撮像装置20と、光源30と、制御部40とを備えている。固体撮像装置20は、画素領域21と、駆動処理部22とを備えている。
(Solid-state imaging system)
FIG. 1 illustrates a configuration of a solid-state imaging system 10 according to the embodiment. The solid-state imaging system 10 is configured to perform imaging of an object scene and distance measurement using photon counting. Specifically, the solid-state imaging device 20, the light source 30, and the control unit 40 are provided. The solid-state imaging device 20 includes a pixel region 21 and a drive processing unit 22.
  〔画素領域〕
 画素領域21は、P×Q個(P,Qは2以上の整数)の固体撮像素子100と、Q本の垂直信号線110とを有している。P×Q個の固体撮像素子100は、P行Q列のマトリクス状に配列されている。Q本の垂直信号線110は、P×Q個の固体撮像素子100のQ個の固体撮像素子列にそれぞれ対応している。
[Pixel area]
The pixel region 21 includes P × Q (P and Q are integers of 2 or more) solid-state imaging devices 100 and Q vertical signal lines 110. The P × Q solid-state imaging devices 100 are arranged in a matrix of P rows and Q columns. The Q vertical signal lines 110 correspond to the Q solid-state image sensor rows of the P × Q solid-state image sensors 100, respectively.
  〔固体撮像素子〕
 図2は、固体撮像素子100の構成を例示している。固体撮像素子100は、受光部200と、電荷蓄積部300と、第1電荷転送部400と、出力部500と、電荷蓄積キャパシタ600と、第2電荷転送部700と、第1リセット部800と、第2リセット部900とを備えている。
[Solid-state image sensor]
FIG. 2 illustrates the configuration of the solid-state imaging device 100. The solid-state imaging device 100 includes a light receiving unit 200, a charge storage unit 300, a first charge transfer unit 400, an output unit 500, a charge storage capacitor 600, a second charge transfer unit 700, and a first reset unit 800. The second reset unit 900 is provided.
   〈受光部〉
 受光部200は、露光状態と遮光状態とに切り換え可能に構成されている。そして、受光部200は、露光状態において受光した光に応じた電荷を生成するように構成されている。なお、受光部200は、遮光状態では電荷を生成しない。この例では、受光部200は、露光信号EXPに応答して露光状態と遮光状態とに切り換えられる。
<Light receiving section>
The light receiving unit 200 is configured to be switchable between an exposure state and a light shielding state. The light receiving unit 200 is configured to generate a charge corresponding to the light received in the exposure state. Note that the light receiving unit 200 does not generate charges in a light-shielded state. In this example, the light receiving unit 200 is switched between an exposure state and a light shielding state in response to the exposure signal EXP.
 具体的には、この例では受光部200は、光電変換要素201を有している。そして、受光部200は、露光状態において光電変換要素201を露光させ、遮光状態において光電変換要素201を遮光させるように構成されている。例えば、受光部200には、光電変換要素を露光および遮光させる露光機構(図示を省略)が設けられている。 Specifically, in this example, the light receiving unit 200 includes a photoelectric conversion element 201. The light receiving unit 200 is configured to expose the photoelectric conversion element 201 in the exposure state and shield the photoelectric conversion element 201 in the light shielding state. For example, the light receiving unit 200 is provided with an exposure mechanism (not shown) that exposes and shields the photoelectric conversion element.
 この例では、光電変換要素201は、アバランシェフォトフォトダイオードによって構成されている。なお、これに限らず、光電変換要素201は、その他の種類のフォトダイオードによって構成されていてもよい。 In this example, the photoelectric conversion element 201 is composed of an avalanche photodiode. However, the present invention is not limited to this, and the photoelectric conversion element 201 may be configured by other types of photodiodes.
   〈電荷蓄積部〉
 電荷蓄積部300は、電荷を蓄積するように構成されている。この例では、電荷蓄積部300は、フローティングディフュージョン部301を有している。
<Charge storage unit>
The charge storage unit 300 is configured to store charges. In this example, the charge storage unit 300 includes a floating diffusion unit 301.
   〈第1電荷転送部〉
 第1電荷転送部400は、受光部200から電荷蓄積部300へ電荷を転送するように構成されている。この例では、第1電荷転送部400は、転送制御信号TRNに応答して受光部200から電荷蓄積部300へ電荷を転送する。具体的には、この例では、第1電荷転送部400は、転送トランジスタ401を有している。
<First charge transfer unit>
The first charge transfer unit 400 is configured to transfer charges from the light receiving unit 200 to the charge storage unit 300. In this example, the first charge transfer unit 400 transfers charges from the light receiving unit 200 to the charge storage unit 300 in response to the transfer control signal TRN. Specifically, in this example, the first charge transfer unit 400 includes a transfer transistor 401.
 転送トランジスタ401は、受光部200の光電変換要素201と電荷蓄積部300のフローティングディフュージョン部301との間に接続されている。転送トランジスタ401のゲートは、転送制御信号TRNが印加される転送制御ノード402に接続されている。そして、転送トランジスタ401は、転送制御信号TRNに応答してオン状態とオフ状態とに切り換えられる。 The transfer transistor 401 is connected between the photoelectric conversion element 201 of the light receiving unit 200 and the floating diffusion unit 301 of the charge storage unit 300. The gate of the transfer transistor 401 is connected to the transfer control node 402 to which the transfer control signal TRN is applied. The transfer transistor 401 is switched between an on state and an off state in response to the transfer control signal TRN.
   〈出力部〉
 出力部500は、電荷蓄積部300に蓄積された電荷に応じた信号を出力するように構成されている。この例では、出力部500は、選択制御信号SELに応答して電荷蓄積部300に蓄積された電荷に応じた信号を出力する。具体的には、この例では、出力部500は、増幅トランジスタ501と、選択トランジスタ502とを有している。
<Output section>
The output unit 500 is configured to output a signal corresponding to the charge accumulated in the charge accumulation unit 300. In this example, the output unit 500 outputs a signal corresponding to the charge accumulated in the charge accumulation unit 300 in response to the selection control signal SEL. Specifically, in this example, the output unit 500 includes an amplification transistor 501 and a selection transistor 502.
 増幅トランジスタ501および選択トランジスタ502は、電源電圧VDDが印加される電源ノード503と垂直信号線110との間に直列に接続されている。増幅トランジスタ501のゲートは、電荷蓄積部300のフローティングディフュージョン部301に接続されている。選択トランジスタ502のゲートは、選択制御信号SELが印加される選択制御ノード504に接続されている。そして、選択トランジスタ502は、選択制御信号SELに応答してオン状態とオフ状態とに切り換えられる。 The amplification transistor 501 and the selection transistor 502 are connected in series between the power supply node 503 to which the power supply voltage VDD is applied and the vertical signal line 110. The gate of the amplification transistor 501 is connected to the floating diffusion unit 301 of the charge storage unit 300. The gate of the selection transistor 502 is connected to a selection control node 504 to which a selection control signal SEL is applied. The selection transistor 502 is switched between an on state and an off state in response to the selection control signal SEL.
   〈電荷蓄積キャパシタ〉
 電荷蓄積キャパシタ600は、電荷を蓄積するように構成されている。
<Charge storage capacitor>
The charge storage capacitor 600 is configured to store charges.
   〈第2電荷転送部〉
 第2電荷転送部700は、電荷蓄積部300と電荷蓄積キャパシタ600の一端との間において電荷を双方向に転送するように構成されている。この例では、第2電荷転送部700は、スイッチング制御信号SWTに応答して電荷蓄積部300から電荷蓄積キャパシタ600の一端へ(または電荷蓄積キャパシタ600の一端から電荷蓄積部300へ)電荷を転送する。具体的には、この例では、第2電荷転送部700は、スイッチングトランジスタ701と、整流要素702と、電位制御ノード703とを有している。
<Second charge transfer unit>
The second charge transfer unit 700 is configured to transfer charges bidirectionally between the charge storage unit 300 and one end of the charge storage capacitor 600. In this example, the second charge transfer unit 700 transfers charges from the charge storage unit 300 to one end of the charge storage capacitor 600 (or from one end of the charge storage capacitor 600 to the charge storage unit 300) in response to the switching control signal SWT. To do. Specifically, in this example, the second charge transfer unit 700 includes a switching transistor 701, a rectifying element 702, and a potential control node 703.
 スイッチングトランジスタ701および整流要素702は、電荷蓄積部300のフローティングディフュージョン部301と電荷蓄積キャパシタ600の一端との間に直列に接続されている。スイッチングトランジスタ701のゲートは、スイッチング制御信号SWTが印加されるスイッチング制御ノード704に接続されている。そして、スイッチングトランジスタ701は、スイッチング制御信号SWTに応答してオン状態とオフ状態とに切り換えられる。 The switching transistor 701 and the rectifying element 702 are connected in series between the floating diffusion portion 301 of the charge storage unit 300 and one end of the charge storage capacitor 600. The gate of the switching transistor 701 is connected to a switching control node 704 to which a switching control signal SWT is applied. The switching transistor 701 is switched between an on state and an off state in response to the switching control signal SWT.
 電位制御ノード703は、電荷蓄積キャパシタ600の他端に接続されている。電位制御ノード703には、電荷蓄積キャパシタ600から電荷蓄積部300へ電荷を転送する場合に電荷蓄積キャパシタ600の一端の電位(以下「記憶電位VCNT」と記載)が電荷蓄積部300の電位(この例ではフローティングディフュージョン部301の電位、以下「中間電位VFD」と記載)よりも高くなるよう電位制御信号EIVが印加される。 The potential control node 703 is connected to the other end of the charge storage capacitor 600. In the potential control node 703, the potential of one end of the charge storage capacitor 600 (hereinafter referred to as “memory potential VCNT”) when transferring charge from the charge storage capacitor 600 to the charge storage unit 300 is the potential of the charge storage unit 300 (this In the example, the potential control signal EIV is applied so as to be higher than the potential of the floating diffusion portion 301 (hereinafter referred to as “intermediate potential VFD”).
 この例では、整流要素702は、整流トランジスタ710によって構成されている。整流トランジスタ710は、ダイオード接続されている。具体的には、整流トランジスタ710のゲートは、整流トランジスタ710のドレインまたはソースに接続されている。 In this example, the rectifying element 702 is constituted by a rectifying transistor 710. The rectifying transistor 710 is diode-connected. Specifically, the gate of the rectifying transistor 710 is connected to the drain or source of the rectifying transistor 710.
 また、この例では、電荷蓄積部300のフローティングディフュージョン部301から電荷蓄積キャパシタ600の一端へ向けて整流要素702とスイッチングトランジスタ701とが順に配置されている。なお、スイッチングトランジスタ701と整流要素702との並びは、この逆であってもよい。すなわち、電荷蓄積部300のフローティングディフュージョン部301から電荷蓄積キャパシタ600の一端へ向けてスイッチングトランジスタ701と整流要素702とが順に配置されていてもよい。 In this example, a rectifying element 702 and a switching transistor 701 are sequentially arranged from the floating diffusion portion 301 of the charge storage portion 300 toward one end of the charge storage capacitor 600. Note that the arrangement of the switching transistor 701 and the rectifying element 702 may be reversed. That is, the switching transistor 701 and the rectifying element 702 may be sequentially arranged from the floating diffusion part 301 of the charge storage part 300 toward one end of the charge storage capacitor 600.
   〈第1リセット部〉
 第1リセット部800は、中間電位VFD(電荷蓄積部300の電位、この例ではフローティングディフュージョン部301の電位)をリセットするように構成されている。この例では、第1リセット部800は、第1リセット制御信号RS1に応答して中間電位VFDをリセットする。具体的には、この例では、第1リセット部800は、第1リセットトランジスタ801を有している。
<First reset section>
The first reset unit 800 is configured to reset the intermediate potential VFD (the potential of the charge storage unit 300, in this example, the potential of the floating diffusion unit 301). In this example, the first reset unit 800 resets the intermediate potential VFD in response to the first reset control signal RS1. Specifically, in this example, the first reset unit 800 includes a first reset transistor 801.
 第1リセットトランジスタ801は、中間電位VFDをリセットするための第1リセット電圧VRS1が印加される第1リセット電圧ノード802と電荷蓄積部300のフローティングディフュージョン部301との間に接続されている。第1リセットトランジスタ801のゲートは、第1リセット制御信号RS1が印加される第1リセット制御ノード803に接続されている。そして、第1リセットトランジスタ801は、第1リセット制御信号RS1に応答してオン状態とオフ状態とに切り換えられる。 The first reset transistor 801 is connected between the first reset voltage node 802 to which the first reset voltage VRS1 for resetting the intermediate potential VFD is applied and the floating diffusion unit 301 of the charge storage unit 300. The gate of the first reset transistor 801 is connected to the first reset control node 803 to which the first reset control signal RS1 is applied. The first reset transistor 801 is switched between an on state and an off state in response to the first reset control signal RS1.
   〈第2リセット部〉
 第2リセット部900は、記憶電位VCNT(電荷蓄積キャパシタ600の一端の電位)をリセットするように構成されている。この例では、第2リセット部900は、第2リセット制御信号RS2に応答して記憶電位VCNTをリセットする。具体的には、この例では、第2リセット部900は、第2リセットトランジスタ901を有している。
<Second reset section>
The second reset unit 900 is configured to reset the storage potential VCNT (the potential at one end of the charge storage capacitor 600). In this example, the second reset unit 900 resets the storage potential VCNT in response to the second reset control signal RS2. Specifically, in this example, the second reset unit 900 includes a second reset transistor 901.
 第2リセットトランジスタ901は、記憶電位VCNTをリセットするための第2リセット電圧VRS2が印加される第2リセット電圧ノード902と電荷蓄積キャパシタ600の一端との間に接続されている。第2リセットトランジスタ901のゲートは、第2リセット制御信号RS2が印加される第2リセット制御ノード903に接続されている。そして、第2リセットトランジスタ901は、第2リセット制御信号RS2に応答してオン状態とオフ状態とに切り換えられる。 The second reset transistor 901 is connected between the second reset voltage node 902 to which the second reset voltage VRS2 for resetting the storage potential VCNT is applied and one end of the charge storage capacitor 600. The gate of the second reset transistor 901 is connected to the second reset control node 903 to which the second reset control signal RS2 is applied. The second reset transistor 901 is switched between an on state and an off state in response to the second reset control signal RS2.
  〔駆動処理部〕
 図1に戻って、駆動処理部22は、P×Q個の固体撮像素子100を駆動させるように構成されている。この例では、駆動処理部22は、露光信号EXPと転送制御信号TRNと選択制御信号SELとスイッチング制御信号SWTと第1リセット制御信号RS1と第2リセット制御信号RS2とをP×Q個の固体撮像素子100の各々に供給することでP×Q個の固体撮像素子100を駆動させる。
(Drive processing section)
Returning to FIG. 1, the drive processing unit 22 is configured to drive P × Q solid-state imaging devices 100. In this example, the drive processing unit 22 uses the exposure signal EXP, the transfer control signal TRN, the selection control signal SEL, the switching control signal SWT, the first reset control signal RS1, and the second reset control signal RS2 as P × Q solids. By supplying each of the image pickup devices 100, P × Q solid-state image pickup devices 100 are driven.
 また、この例では、駆動処理部22は、制御部40による制御に応答してフォトンカウンティング動作と撮像動作とを行うように構成されている。 In this example, the drive processing unit 22 is configured to perform a photon counting operation and an imaging operation in response to control by the control unit 40.
 フォトンカウンティング動作では、駆動処理部22は、受光部200により生成された電荷が第1電荷転送部400により電荷蓄積部300に転送されて電荷蓄積部300に蓄積された電荷が第2電荷転送部700により電荷蓄積キャパシタ600に転送される転送動作が予め定められた回数だけ行われた後に、電荷蓄積キャパシタ600に蓄積された電荷が第2電荷転送部700により電荷蓄積部300に転送されて電荷蓄積部300に蓄積された電荷に応じた信号が出力部500により出力されるように、固体撮像素子100を駆動させる。 In the photon counting operation, the drive processing unit 22 transfers the charge generated by the light receiving unit 200 to the charge storage unit 300 by the first charge transfer unit 400 and the charge stored in the charge storage unit 300 to the second charge transfer unit. After the transfer operation transferred to the charge storage capacitor 600 by 700 is performed a predetermined number of times, the charge stored in the charge storage capacitor 600 is transferred to the charge storage unit 300 by the second charge transfer unit 700 and charged. The solid-state imaging device 100 is driven so that the output unit 500 outputs a signal corresponding to the charge accumulated in the accumulation unit 300.
 撮像動作では、駆動処理部22は、受光部200により生成された電荷が第1電荷転送部400により電荷蓄積部300に転送されて電荷蓄積部300に蓄積された電荷に応じた信号が出力部500により出力されるように、固体撮像素子100を駆動させる。 In the imaging operation, the drive processing unit 22 outputs a signal corresponding to the charge stored in the charge storage unit 300 by transferring the charge generated by the light receiving unit 200 to the charge storage unit 300 by the first charge transfer unit 400. The solid-state imaging device 100 is driven so as to be output by 500.
 具体的には、この例では、駆動処理部22は、画素駆動回路25と、垂直シフトレジスタ26と、相関二重サンプリング回路27と、水平シフトレジスタ28と、出力回路29とを備えている。 Specifically, in this example, the drive processing unit 22 includes a pixel drive circuit 25, a vertical shift register 26, a correlated double sampling circuit 27, a horizontal shift register 28, and an output circuit 29.
   〈画素駆動回路〉
 画素駆動回路25は、制御部40による制御に応答して露光信号EXPと転送制御信号TRNとスイッチング制御信号SWTと第1リセット制御信号RS1と第2リセット制御信号RS2とをP×Q個の固体撮像素子100の各々に供給するように構成されている。
<Pixel drive circuit>
In response to the control by the control unit 40, the pixel driving circuit 25 sends the exposure signal EXP, the transfer control signal TRN, the switching control signal SWT, the first reset control signal RS1, and the second reset control signal RS2 to P × Q solids. The image pickup device 100 is configured to be supplied to each.
   〈垂直シフトレジスタ〉
 垂直シフトレジスタ26は、制御部40による制御に応答して選択制御信号SELをP×Q個の固体撮像素子100の各々に供給するように構成されている。そして、垂直シフトレジスタ26は、P×Q個の固体撮像素子100のP個の固体撮像素子行を順次選択する。この例では、垂直シフトレジスタ26は、P×Q個の固体撮像素子100のP個の固体撮像素子行のうち選択された固体撮像素子行に含まれるQ個の固体撮像素子100に供給される選択制御信号SELの信号レベルをローレベルからハイレベルにする。
<Vertical shift register>
The vertical shift register 26 is configured to supply a selection control signal SEL to each of the P × Q solid-state imaging devices 100 in response to control by the control unit 40. The vertical shift register 26 sequentially selects P solid-state image sensor rows of the P × Q solid-state image sensors 100. In this example, the vertical shift register 26 is supplied to Q solid-state image sensors 100 included in a selected solid-state image sensor row among the P solid-state image sensor rows of the P × Q solid-state image sensors 100. The signal level of the selection control signal SEL is changed from the low level to the high level.
 垂直シフトレジスタ26により選択された固体撮像素子100では、電荷蓄積部300に蓄積された電荷に応じた信号が出力部500により垂直信号線110(その固体撮像素子100に対応する垂直信号線110)に出力される。すなわち、垂直シフトレジスタ26によってP×Q個の固体撮像素子100のP個の固体撮像素子行のいずれか1つが選択されることにより、その固体撮像素子行に含まれるQ個の固体撮像素子100の出力部500からQ本の垂直信号線110にQ個の信号がそれぞれ出力される。 In the solid-state imaging device 100 selected by the vertical shift register 26, a signal corresponding to the charge stored in the charge storage unit 300 is output by the output unit 500 to the vertical signal line 110 (the vertical signal line 110 corresponding to the solid-state imaging device 100). Is output. That is, when one of the P solid-state image sensor rows of the P × Q solid-state image sensor 100 is selected by the vertical shift register 26, the Q solid-state image sensors 100 included in the solid-state image sensor row. Q signals are respectively output from the output unit 500 to the Q vertical signal lines 110.
 この例では、2つの垂直シフトレジスタ26が設けられている。そして、2つの垂直シフトレジスタ26のうち一方の垂直シフトレジスタ26による固体撮像素子行の選択と他方の垂直シフトレジスタ26による固体撮像素子行の選択とが交互に行われる。 In this example, two vertical shift registers 26 are provided. Then, the selection of the solid-state imaging element row by one of the two vertical shift registers 26 and the selection of the solid-state imaging element row by the other vertical shift register 26 are alternately performed.
   〈相関二重サンプリング回路〉
 相関二重サンプリング回路27は、Q本の垂直信号線110にそれぞれ出力されたQ個の信号の各々に対して相関二重サンプリング処理を行うように構成されている。具体的には、相関二重サンプリング回路27は、垂直信号線110に出力された信号のうち後述する信号期間における信号レベルと後述するリセット期間における信号レベルとをサンプリングし、これらの信号レベルの差に応じた信号を出力する。このように、相関二重サンプリング処理が行われることにより、Q個の信号からオフセット成分が除去される。
<Correlated double sampling circuit>
The correlated double sampling circuit 27 is configured to perform correlated double sampling processing on each of the Q signals respectively output to the Q vertical signal lines 110. Specifically, the correlated double sampling circuit 27 samples a signal level in a later-described signal period and a signal level in a later-described reset period among signals output to the vertical signal line 110, and a difference between these signal levels. Output a signal according to. In this way, by performing the correlated double sampling process, the offset component is removed from the Q signals.
 この例では、2つの相関二重サンプリング回路27が設けられている。そして、2つの垂直シフトレジスタ26のうち一方の垂直シフトレジスタ26により選択された固体撮像素子行からQ本の垂直信号線110にそれぞれ出力されたQ個の信号が一方の相関二重サンプリング回路27に供給され、他方の垂直シフトレジスタ26により選択された固体撮像素子行からQ本の垂直信号線110にそれぞれ出力されたQ個の信号が他方の相関二重サンプリング回路27に供給される。 In this example, two correlated double sampling circuits 27 are provided. Then, Q signals respectively output to the Q vertical signal lines 110 from the solid-state imaging element row selected by one vertical shift register 26 out of the two vertical shift registers 26 are one correlated double sampling circuit 27. Q signals respectively output to the Q vertical signal lines 110 from the solid-state imaging element row selected by the other vertical shift register 26 are supplied to the other correlated double sampling circuit 27.
   〈水平シフトレジスタ〉
 水平シフトレジスタ28は、相関二重サンプリング回路27において処理されたQ個の信号を順次転送するように構成されている。この例では、2つの水平シフトレジスタ28が設けられており、2つの相関二重サンプリング回路27のうち一方の相関二重サンプリング回路27において処理されたQ個の信号が一方の水平シフトレジスタ28により順次転送され、他方の相関二重サンプリング回路27において処理されたQ個の信号が他方の水平シフトレジスタ28により順次転送される。
<Horizontal shift register>
The horizontal shift register 28 is configured to sequentially transfer the Q signals processed in the correlated double sampling circuit 27. In this example, two horizontal shift registers 28 are provided, and Q signals processed in one correlated double sampling circuit 27 out of two correlated double sampling circuits 27 are transmitted by one horizontal shift register 28. The Q signals sequentially transferred and processed in the other correlated double sampling circuit 27 are sequentially transferred by the other horizontal shift register 28.
   〈出力回路〉
 出力回路29は、水平シフトレジスタ28により転送された信号を予め定められた増幅利得で増幅して出力するように構成されている。この例では、2つの出力回路29が設けられており、2つの水平シフトレジスタ28のうち一方の水平シフトレジスタ28から一方の出力回路29に信号が転送され、他方の水平シフトレジスタ28から他方の出力回路29に信号が転送される。
<Output circuit>
The output circuit 29 is configured to amplify the signal transferred by the horizontal shift register 28 with a predetermined amplification gain and output the amplified signal. In this example, two output circuits 29 are provided, and a signal is transferred from one horizontal shift register 28 to one output circuit 29 of the two horizontal shift registers 28, and the other horizontal shift register 28 to the other horizontal shift register 28. A signal is transferred to the output circuit 29.
  〔光源〕
 光源30は、信号光L1を照射するように構成されている。この例では、光源30は、予め定められたパルス幅Aを有する信号光L1(パルス光)を照射する。例えば、光源30は、必要に応じて光を拡散させることにより三次元情報(距離情報)を取得したい箇所全体に光を照射するように構成されている。なお、光源30は、例えば、LEDによって構成されている。
〔light source〕
The light source 30 is configured to irradiate the signal light L1. In this example, the light source 30 emits signal light L1 (pulse light) having a predetermined pulse width A. For example, the light source 30 is configured to irradiate light to the entire part where three-dimensional information (distance information) is to be acquired by diffusing light as necessary. In addition, the light source 30 is comprised by LED, for example.
  〔制御部〕
 制御部40は、固体撮像装置20の動作および光源30の動作を制御するように構成されている。例えば、制御部40は、CPUなどの演算処理部と、演算処理部を動作させるためのプログラムや情報などを記憶するメモリなどの記憶部とによって構成されている。
(Control part)
The control unit 40 is configured to control the operation of the solid-state imaging device 20 and the operation of the light source 30. For example, the control unit 40 includes an arithmetic processing unit such as a CPU and a storage unit such as a memory that stores a program or information for operating the arithmetic processing unit.
 この例では、制御部40は、駆動制御部41と、情報出力部42とを有している。すなわち、駆動制御部41と情報出力部42は、制御部40の一部の機能を構成している。 In this example, the control unit 40 includes a drive control unit 41 and an information output unit 42. That is, the drive control unit 41 and the information output unit 42 constitute a part of the function of the control unit 40.
   〈駆動制御部〉
 駆動制御部41は、固体撮像装置20の駆動処理部22の動作および光源30の動作を制御するように構成されている。また、この例では、駆動制御部41は、距離検出制御と撮像制御とを行うように構成されている。
<Drive control unit>
The drive control unit 41 is configured to control the operation of the drive processing unit 22 of the solid-state imaging device 20 and the operation of the light source 30. In this example, the drive control unit 41 is configured to perform distance detection control and imaging control.
 距離検出制御では、駆動制御部41は、複数の距離区間にそれぞれ対応する複数の距離検出期間の各々において駆動処理部22によりフォトンカウンティング動作が行われるように、駆動処理部22の動作を制御する。また、距離検出制御では、駆動制御部41は、複数の距離検出期間の各々におけるフォトンカウンティング動作の転送動作において、光源30から信号光L1が照射された時点からその距離検出期間に対応する遅延時間TDが経過した後に受光部200が露光状態となり、受光部200により生成された電荷が第1電荷転送部400により電荷蓄積部300に転送され、電荷蓄積部300に蓄積された電荷が第2電荷転送部700により電荷蓄積キャパシタ600に転送されるように、駆動処理部22の動作および光源30の動作を制御する。 In the distance detection control, the drive control unit 41 controls the operation of the drive processing unit 22 so that the photon counting operation is performed by the drive processing unit 22 in each of a plurality of distance detection periods respectively corresponding to a plurality of distance sections. . Further, in the distance detection control, the drive control unit 41, in the transfer operation of the photon counting operation in each of the plurality of distance detection periods, delay time corresponding to the distance detection period from the time when the signal light L1 is emitted from the light source 30. After the TD has elapsed, the light receiving unit 200 enters an exposure state, and the charge generated by the light receiving unit 200 is transferred to the charge storage unit 300 by the first charge transfer unit 400, and the charge stored in the charge storage unit 300 is transferred to the second charge. The operation of the drive processing unit 22 and the operation of the light source 30 are controlled so as to be transferred to the charge storage capacitor 600 by the transfer unit 700.
 撮像制御では、駆動制御部41は、駆動処理部22により撮像動作が行われるように、駆動処理部22を制御する。 In the imaging control, the drive control unit 41 controls the drive processing unit 22 such that the drive processing unit 22 performs an imaging operation.
   〈情報出力部〉
 情報出力部42は、複数の距離検出期間の各々における画素駆動回路25のフォトンカウンティング動作において出力部500により出力された信号に基づいて対象物までの距離に関する情報(距離情報)を出力するように構成されている。この例では、情報出力部42は、それぞれが対象物までの距離に応じた値を示すP×Q個の距離値により構成された三次元情報(距離画像)を出力する。
<Information output section>
The information output unit 42 outputs information (distance information) related to the distance to the object based on the signal output from the output unit 500 in the photon counting operation of the pixel drive circuit 25 in each of the plurality of distance detection periods. It is configured. In this example, the information output unit 42 outputs three-dimensional information (distance image) composed of P × Q distance values each indicating a value corresponding to the distance to the object.
  〔フォトンカウンティングを利用した距離測定〕
 次に、図3を参照して、フォトンカウンティングを利用した距離測定の原理について説明する。この例では、TOF(Time Of Flight)方式の距離測定方法に、フォトンカウンティングが利用されている。
[Distance measurement using photon counting]
Next, the principle of distance measurement using photon counting will be described with reference to FIG. In this example, photon counting is used as a distance measuring method of TOF (Time Of Flight) method.
 まず、TOF方式の距離測定方法について説明する。TOF方式の距離測定方法とは、距離測定装置(この例では固体撮像装置20)の付近に設けられた光源(この例では光源30)から対象物へ向けて光を照射した時点からその光が対象物で反射して距離測定装置に帰還する時点までの時間を測定し、その時間に基づいて距離測定装置から対象物までの距離を求める距離測定方法のことである。 First, the TOF method of distance measurement will be described. The distance measurement method of the TOF method is a method in which light is emitted from the time when light is irradiated toward an object from a light source (in this example, the light source 30) provided in the vicinity of the distance measuring device (in this example, the solid-state imaging device 20). It is a distance measuring method for measuring the time from the time when the object is reflected by the object and returning to the distance measuring device, and for determining the distance from the distance measuring device to the object based on the time.
 図3に示すように、この固体撮像システム10では、距離測定範囲である固体撮像装置20から任意の地点までの距離R(例えば固体撮像システム10により測定することが可能な距離)がN個の距離区間に分割されている。具体的には、第1場目の距離区間は、ゼロからR/Nまでの区間に設定され、第2番目の距離区間は、R/Nから2R/Nまでの区間に設定され、第3番目の距離区間は、2R/Nから3R/Nまでの区間に設定され、第N番目の距離区間は、R(N-1)/NからRまでの区間に設定されている。ここで、N個の距離区間のうち第K番目(Kは1以上でN以下の整数)の距離区間に対象物が存在している場合、光源30から信号光L1が照射された時刻から反射光L2が固体撮像装置20に到達する時刻までの時間Tは、光速を“V”とすると、次の式のようになる。 As shown in FIG. 3, in this solid-state imaging system 10, there are N distances R (for example, distances that can be measured by the solid-state imaging system 10) from the solid-state imaging device 20, which is a distance measurement range, to an arbitrary point. Divided into distance sections. Specifically, the distance section of the first field is set to a section from zero to R / N, the second distance section is set to a section from R / N to 2R / N, and the third The th distance section is set to a section from 2R / N to 3R / N, and the N th distance section is set to a section from R (N−1) / N to R. Here, when an object is present in the Kth (K is an integer greater than or equal to 1 and less than or equal to N) distance section among the N distance sections, reflection is performed from the time when the signal light L1 is emitted from the light source 30. The time T until the time when the light L2 reaches the solid-state imaging device 20 is expressed by the following equation, where the speed of light is “V”.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 すなわち、光源30から信号光L1が照射された時刻から受光部200を遮光状態から露光状態にする時刻までの時間(遅延時間TD)を上式の時間Tに設定することにより、露光状態の受光部200に反射光L2を受光させることが可能となる。 That is, by setting the time T (delay time TD) from the time when the signal light L1 is emitted from the light source 30 to the time when the light receiving unit 200 is brought into the exposure state from the light shielding state, the light reception in the exposure state is set. It becomes possible for the part 200 to receive the reflected light L2.
 このような原理に基づいて、この固体撮像システム10では、N個の距離区間の各々における遅延時間TDは、次の式のように設定されている。 Based on such a principle, in the solid-state imaging system 10, the delay time TD in each of the N distance sections is set as follows.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 すなわち、光源30から信号光L1が照射された時刻から第K番目の距離区間に対応する遅延時間TDが経過した時刻において受光部200を遮光状態から露光状態にした場合に、その露光状態の受光部200が反射光L2を受光することができれば、対象物が第K番目の距離区間に存在しているといえる。また、露光状態の受光部200が反射光L2を受光することにより、受光部200において反射光L2に応じた電荷が生成される。そして、その受光部200により生成された電荷を第1電荷転送部400と第2電荷転送部700とを経由して電荷蓄積キャパシタ600に転送して蓄積することにより、電荷蓄積キャパシタ600に蓄積された電荷の量に基づいて第K番目の距離区間に対象物が存在しているか否かを判定することが可能となる。 That is, when the light receiving unit 200 is changed from the light shielding state to the exposure state at the time when the delay time TD corresponding to the Kth distance section has elapsed from the time when the signal light L1 is emitted from the light source 30, the light reception in the exposure state is performed. If the unit 200 can receive the reflected light L2, it can be said that the object exists in the Kth distance section. Further, when the light receiving unit 200 in the exposure state receives the reflected light L2, the light receiving unit 200 generates a charge corresponding to the reflected light L2. Then, the charge generated by the light receiving unit 200 is transferred to the charge storage capacitor 600 via the first charge transfer unit 400 and the second charge transfer unit 700 and stored therein, thereby being stored in the charge storage capacitor 600. It is possible to determine whether or not an object exists in the Kth distance section based on the amount of electric charge.
  〔駆動制御部の動作:距離検出制御〕
 次に、図4および図5を参照して、駆動制御部41による距離検出制御について説明する。この例では、図3に示したN個の距離区間にそれぞれ対応するN個の距離検出期間の各々において距離検出制御(ステップST102~ST111)が行われる。また、距離検出制御では、駆動処理部22は、N個の距離区間にそれぞれ対応するN個の距離検出期間においてフォトンカウンティング動作を行う。また、光源30は、N個の距離検出期間の各々においてM個(Mは1以上の整数)の信号光L1を照射する。すなわち、N個の距離検出期間の各々において信号光L1がM回照射される。なお、図5は、N個の距離検出期間のうち第K番目の距離検出期間において光源30が2つの信号光L1を照射する場合(M=2の場合)を例示している。
[Operation of drive controller: Distance detection control]
Next, distance detection control by the drive control unit 41 will be described with reference to FIGS. 4 and 5. In this example, distance detection control (steps ST102 to ST111) is performed in each of the N distance detection periods corresponding to the N distance intervals shown in FIG. In the distance detection control, the drive processing unit 22 performs a photon counting operation in N distance detection periods respectively corresponding to N distance sections. The light source 30 emits M (M is an integer of 1 or more) signal light L1 in each of the N distance detection periods. That is, the signal light L1 is irradiated M times in each of the N distance detection periods. FIG. 5 illustrates a case where the light source 30 emits two signal lights L1 in the Kth distance detection period among the N distance detection periods (when M = 2).
   〈ステップST101〉
 まず、駆動制御部41は、N個の距離区間の中から第1番目の距離区間を距離検出制御の対象として選択する。これにより、第1番目の距離区間に対応する第1番目の距離検出期間が開始される。なお、以下では、距離検出制御の対象として選択されている距離区間を「第K番目(Kは1以上でN以下の整数)の距離区間」と記載する。
<Step ST101>
First, the drive control unit 41 selects the first distance section from among the N distance sections as a target for distance detection control. Thereby, the first distance detection period corresponding to the first distance section is started. Hereinafter, the distance section selected as the target of distance detection control is referred to as “Kth distance section (K is an integer not less than 1 and not more than N)”.
   〈ステップST102〉
 第K番目の距離区間に対応する距離検出期間(以下「第K番目の距離検出期間」と記載)が開始されると、駆動処理部22は、駆動制御部41による制御に応答して、受光部200の電位(この例では光電変換要素201の電位、以下「入力電位VPD」と記載)と中間電位VFDと記憶電位VCNTとがリセットされるように、P×Q個の固体撮像素子100を駆動させる。
<Step ST102>
When a distance detection period corresponding to the Kth distance section (hereinafter referred to as “Kth distance detection period”) is started, the drive processing unit 22 receives light in response to control by the drive control unit 41. P × Q solid-state imaging devices 100 are reset so that the potential of the unit 200 (in this example, the potential of the photoelectric conversion element 201, hereinafter referred to as “input potential VPD”), the intermediate potential VFD, and the storage potential VCNT are reset. Drive.
 図5の時刻t1に示すように、駆動処理部22の画素駆動回路25は、転送制御信号TRNと第1リセット制御信号RS1とスイッチング制御信号SWTと第2リセット制御信号RS2の信号レベルをローレベルからハイレベルにする。これにより、転送トランジスタ401とスイッチングトランジスタ701と第1リセットトランジスタ801と第2リセットトランジスタ901とがオン状態となり、第1リセット電圧VRS1により中間電位VFDがリセットされ、第2リセット電圧VRS2より記憶電位VCNTがリセットされる。また、転送トランジスタ401がオン状態となっているので、中間電位VFDのリセットとともに、入力電位VPDがリセットされる。そして、画素駆動回路25は、入力電位VPDと中間電位VFDと記憶電位VCNTのリセットが完了する(例えば予め定められたリセット時間が経過する)と、転送制御信号TRNと第1リセット制御信号RS1とスイッチング制御信号SWTと第2リセット制御信号RS2の信号レベルをハイレベルからローレベルにする。これにより、転送トランジスタ401とスイッチングトランジスタ701と第1リセットトランジスタ801と第2リセットトランジスタ901とがオフ状態となる。 As shown at time t1 in FIG. 5, the pixel drive circuit 25 of the drive processing unit 22 sets the signal levels of the transfer control signal TRN, the first reset control signal RS1, the switching control signal SWT, and the second reset control signal RS2 to a low level. To high level. As a result, the transfer transistor 401, the switching transistor 701, the first reset transistor 801, and the second reset transistor 901 are turned on, the intermediate potential VFD is reset by the first reset voltage VRS1, and the storage potential VCNT from the second reset voltage VRS2. Is reset. In addition, since the transfer transistor 401 is in the on state, the input potential VPD is reset together with the reset of the intermediate potential VFD. Then, when the reset of the input potential VPD, the intermediate potential VFD, and the storage potential VCNT is completed (for example, a predetermined reset time elapses), the pixel drive circuit 25 receives the transfer control signal TRN and the first reset control signal RS1. The signal levels of the switching control signal SWT and the second reset control signal RS2 are changed from the high level to the low level. As a result, the transfer transistor 401, the switching transistor 701, the first reset transistor 801, and the second reset transistor 901 are turned off.
   〈ステップST103〉
 次に、駆動制御部41は、第K番目の距離検出期間において照射すべきM個の信号光L1のうち第1番目の信号光L1を照射処理の対象として選択する。なお、以下では、照射処理の対象として選択されている信号光L1を「第J番目(Jは1以上でM以下の整数)の信号光」と記載する。
<Step ST103>
Next, the drive control unit 41 selects the first signal light L1 among the M signal lights L1 to be irradiated in the Kth distance detection period as an irradiation process target. Hereinafter, the signal light L1 selected as the target of the irradiation process is referred to as “Jth signal light (J is an integer not less than 1 and not more than M)”.
   〈ステップST104〉
 次に、光源30は、駆動制御部41による制御に応答して第J番目の信号光L1を照射する。この例では、信号光L1のパルス幅は、パルス幅Aに設定されている。
<Step ST104>
Next, the light source 30 emits the J-th signal light L <b> 1 in response to control by the drive control unit 41. In this example, the pulse width of the signal light L1 is set to the pulse width A.
 図5の時刻t2に示すように、光源30は、第J番目の信号光L1(時刻t2では第1番目の信号光L1)の照射を開始した時刻からパルス幅Aに対応する照射時間が経過すると、第J番目の信号光L1の照射を終了する。 As shown at time t2 in FIG. 5, the light source 30 has an irradiation time corresponding to the pulse width A from the time when irradiation of the J-th signal light L1 (first signal light L1 at time t2) is started. Then, the irradiation with the J-th signal light L1 ends.
   〈ステップST105〉
 次に、駆動処理部22は、駆動制御部41による制御に応答して、光源30から第J番目の信号光L1が照射された時刻から第K番目の距離検出期間(すなわち第K番目の距離区間)に対応する遅延時間TDが経過すると、受光部200が予め定められた露光時間だけ露光状態となるように、P×Q個の固体撮像素子100を駆動させる。なお、この例では、第J番目の信号光L1に対応する露光時間は、第J番目の信号光L1のパルス幅(この例ではパルス幅A)に対応する時間に設定されている。また、第K番目の距離検出期間に対応する遅延時間TDは、次の式のように設定されている。
<Step ST105>
Next, in response to the control by the drive control unit 41, the drive processing unit 22 receives the Jth signal light L1 from the light source 30 and starts the Kth distance detection period (that is, the Kth distance). When the delay time TD corresponding to (section) elapses, P × Q solid-state imaging devices 100 are driven so that the light receiving unit 200 is in an exposure state for a predetermined exposure time. In this example, the exposure time corresponding to the J-th signal light L1 is set to a time corresponding to the pulse width (pulse width A in this example) of the J-th signal light L1. Also, the delay time TD corresponding to the Kth distance detection period is set as the following equation.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 図5の時刻t3に示すように、駆動処理部22の画素駆動回路25は、光源30から第J番目の信号光L1(時刻t3では第1番目の信号光L1)が照射された時刻から遅延時間TDが経過すると、露光信号EXPの信号レベルをローレベルからハイレベルにする。これにより、受光部200が露光状態となり、受光部200が受光した光に応じた電荷が生成され、その生成された電荷の量に応じて入力電位VPDが変化する。図5の例では、時刻t3において第1番目の信号光L1に対応する第1番目の反射光L2が受光部200に到達している。すなわち、時刻t1において照射された第1番目の信号光L1が対象物(第K番目の距離区間に存在する対象物)で反射して第1番目の反射光L2として受光部200に到達している。そして、画素駆動回路25は、露光信号EXPの信号レベルをローレベルからハイレベルにした時点から露光時間(パルス幅Aに対応する時間)が経過すると、露光信号EXPの信号レベルをハイレベルからローレベルにする。これにより、受光部200が遮光状態となる。 As shown at time t3 in FIG. 5, the pixel drive circuit 25 of the drive processing unit 22 is delayed from the time when the J-th signal light L1 (first signal light L1 at time t3) is emitted from the light source 30. When the time TD elapses, the signal level of the exposure signal EXP is changed from the low level to the high level. As a result, the light receiving unit 200 is in an exposure state, charges corresponding to the light received by the light receiving unit 200 are generated, and the input potential VPD changes according to the amount of the generated charges. In the example of FIG. 5, the first reflected light L2 corresponding to the first signal light L1 reaches the light receiving unit 200 at time t3. That is, the first signal light L1 irradiated at time t1 is reflected by the object (the object existing in the Kth distance section) and reaches the light receiving unit 200 as the first reflected light L2. Yes. Then, when the exposure time (time corresponding to the pulse width A) elapses from the time when the signal level of the exposure signal EXP is changed from the low level to the high level, the pixel driving circuit 25 changes the signal level of the exposure signal EXP from the high level to the low level. To level. Thereby, the light-receiving part 200 will be in a light-shielding state.
   〈ステップST106〉
 次に、駆動処理部22は、駆動制御部41による制御に応答して、受光部200により生成された電荷が第1電荷転送部400により電荷蓄積部300に転送された後に、電荷蓄積部300に蓄積された電荷が第2電荷転送部700により電荷蓄積キャパシタ600に転送されるように、P×Q個の固体撮像素子100を駆動させる。
<Step ST106>
Next, in response to the control by the drive control unit 41, the drive processing unit 22 transfers the charge generated by the light receiving unit 200 to the charge storage unit 300 by the first charge transfer unit 400, and then the charge storage unit 300. The P × Q solid-state imaging devices 100 are driven so that the charge accumulated in the second charge transfer unit 700 is transferred to the charge storage capacitor 600.
 図5の時刻t4に示すように、駆動処理部22の画素駆動回路25は、転送制御信号TRNの信号レベルをローレベルからハイレベルにする。これにより、転送トランジスタ401がオン状態となり、受光部200からオン状態の転送トランジスタ401を経由して電荷蓄積部300に電荷が転送され、その転送された電荷の量に応じて中間電位VFDが変化する。そして、画素駆動回路25は、受光部200から電荷蓄積部300への電荷の転送が完了する(例えば予め定められた転送時間が経過する)と、転送制御信号TRNの信号レベルをハイレベルからローレベルにする。これにより、転送トランジスタ401がオフ状態となる。 As shown at time t4 in FIG. 5, the pixel drive circuit 25 of the drive processing unit 22 changes the signal level of the transfer control signal TRN from the low level to the high level. As a result, the transfer transistor 401 is turned on, charges are transferred from the light receiving unit 200 to the charge storage unit 300 via the transfer transistor 401 in the on state, and the intermediate potential VFD changes according to the amount of the transferred charges. To do. Then, when the transfer of charges from the light receiving unit 200 to the charge storage unit 300 is completed (for example, a predetermined transfer time elapses), the pixel driving circuit 25 changes the signal level of the transfer control signal TRN from the high level to the low level. To level. As a result, the transfer transistor 401 is turned off.
 次に、図5の時刻t5に示すように、駆動処理部22の画素駆動回路25は、スイッチング制御信号SWTの信号レベルをローレベルからハイレベルにする。これにより、スイッチングトランジスタ701がオン状態となり、電荷蓄積部300からオン状態のスイッチングトランジスタ701を経由して電荷蓄積キャパシタ600に電荷が転送され、その転送された電荷の量に応じて記憶電位VCNTが変化する。なお、電荷蓄積部300から電荷蓄積キャパシタ600へ転送される電荷の量は、電荷蓄積部300と電荷蓄積キャパシタ600との静電容量の比に応じた量となっている。そして、画素駆動回路25は、電荷蓄積部300から電荷蓄積キャパシタ600への転送が完了する(例えば予め定められた転送時間が経過する)と、スイッチング制御信号SWTの信号レベルをハイレベルからローレベルにする。これにより、スイッチングトランジスタ701がオフ状態となる。 Next, as shown at time t5 in FIG. 5, the pixel drive circuit 25 of the drive processing unit 22 changes the signal level of the switching control signal SWT from the low level to the high level. As a result, the switching transistor 701 is turned on, and charge is transferred from the charge storage unit 300 to the charge storage capacitor 600 via the switching transistor 701 in the on state, and the storage potential VCNT is changed according to the amount of the transferred charge. Change. The amount of charge transferred from the charge storage unit 300 to the charge storage capacitor 600 is an amount corresponding to the capacitance ratio between the charge storage unit 300 and the charge storage capacitor 600. Then, when the transfer from the charge storage unit 300 to the charge storage capacitor 600 is completed (for example, a predetermined transfer time elapses), the pixel drive circuit 25 changes the signal level of the switching control signal SWT from the high level to the low level. To. As a result, the switching transistor 701 is turned off.
   〈ステップST107〉
 次に、駆動制御部41は、第K番目の距離検出期間において照射すべきM個の信号光L1の全部が照射処理の対象として選択されたか否か(すなわちM回の信号光L1の照射が完了したか否か)を判定する。第K番目の距離検出期間において照射すべきM個の信号光L1の全部が照射処理の対象として選択されていない場合には、ステップST108へ進み、そうでない場合には、ステップST110へ進む。
<Step ST107>
Next, the drive control unit 41 determines whether or not all of the M signal lights L1 to be irradiated in the Kth distance detection period have been selected as an irradiation process target (that is, M times of signal light L1 irradiation are performed). Whether or not it is completed). If all of the M signal lights L1 to be irradiated in the Kth distance detection period have not been selected as targets for irradiation processing, the process proceeds to step ST108, and if not, the process proceeds to step ST110.
   〈ステップST108〉
 第K番目の距離検出期間において照射すべきM個の信号光L1の全部が照射処理の対象として選択されていない場合、駆動制御部41は、第K番目の距離検出期間において照射すべきM個の信号光L1のうち第J番目の信号光L1の次の信号光(第J+1番目の信号光L1)を次の照射処理の対象として選択する。
<Step ST108>
When all of the M signal lights L1 to be irradiated in the Kth distance detection period are not selected as the target of the irradiation process, the drive control unit 41 performs M irradiation to be performed in the Kth distance detection period. The signal light next to the J-th signal light L1 (J + 1-th signal light L1) is selected as the next irradiation process target.
   〈ステップST109〉
 次に、駆動処理部22は、駆動制御部41による制御に応答して、入力電位VPDと中間電位VFDがリセットされるように、P×Q個の固体撮像素子100を駆動させる。そして、ステップST104へ進む。
<Step ST109>
Next, in response to control by the drive control unit 41, the drive processing unit 22 drives the P × Q solid-state imaging elements 100 so that the input potential VPD and the intermediate potential VFD are reset. Then, the process proceeds to step ST104.
 図5の時刻t6に示すように、駆動処理部22の画素駆動回路25は、転送制御信号TRNと第1リセット制御信号RS1の信号レベルをローレベルからハイレベルにする。これにより、転送トランジスタ401と第1リセットトランジスタ801とがオン状態となり、第1リセット電圧VRS1により中間電位VFDがリセットされる。また、転送トランジスタ401がオン状態となっているので、中間電位VFDのリセットとともに、入力電位VPDがリセットされる。そして、画素駆動回路25は、入力電位VPDと中間電位VFDのリセットが完了する(例えば予め定められたリセット時間が経過する)と、転送制御信号TRNと第1リセット制御信号RS1の信号レベルをハイレベルからローレベルにする。これにより、転送トランジスタ401と第1リセットトランジスタ801とがオン状態となる。 As shown at time t6 in FIG. 5, the pixel drive circuit 25 of the drive processing unit 22 changes the signal levels of the transfer control signal TRN and the first reset control signal RS1 from low level to high level. As a result, the transfer transistor 401 and the first reset transistor 801 are turned on, and the intermediate potential VFD is reset by the first reset voltage VRS1. In addition, since the transfer transistor 401 is in the on state, the input potential VPD is reset together with the reset of the intermediate potential VFD. Then, when the reset of the input potential VPD and the intermediate potential VFD is completed (for example, a predetermined reset time has elapsed), the pixel drive circuit 25 increases the signal levels of the transfer control signal TRN and the first reset control signal RS1. From level to low level. As a result, the transfer transistor 401 and the first reset transistor 801 are turned on.
 次に、図5の時刻t7~t10に示すように、図5の時刻t2~t5と同様の処理(ステップST104~ST106)が行われる。なお、記憶電位VCNTは、露光状態の受光部200が受光した反射光L2の数(回数)に応じて変化する。すなわち、露光状態の受光部200が受光した反射光L2の数が多くなるに連れて、電荷蓄積キャパシタ600に転送される電荷の量が多くなり、その結果、記憶電位VCNTが低下していく。 Next, as shown at times t7 to t10 in FIG. 5, the same processing (steps ST104 to ST106) as at times t2 to t5 in FIG. 5 is performed. The storage potential VCNT changes according to the number (number of times) of the reflected light L2 received by the light receiving unit 200 in the exposed state. That is, as the number of reflected lights L2 received by the light receiving unit 200 in the exposure state increases, the amount of charge transferred to the charge storage capacitor 600 increases, and as a result, the storage potential VCNT decreases.
   〈ステップST110〉
 一方、ステップST107において第K番目の距離検出期間において照射すべきM個の信号光L1の全部が照射処理の対象として選択されている場合(すなわちM回の信号光L1の照射が完了している場合)、駆動処理部22は、駆動制御部41による制御に応答して、中間電位VFDがリセットされた後に、電荷蓄積キャパシタ600に蓄積された電荷が第2電荷転送部700により電荷蓄積部300に転送されるように、P×Q個の固体撮像素子100を駆動させる。
<Step ST110>
On the other hand, when all of the M signal lights L1 to be irradiated in the Kth distance detection period in step ST107 are selected as targets for irradiation processing (that is, irradiation of M times of signal light L1 is completed). ), In response to the control by the drive control unit 41, the drive processing unit 22 resets the intermediate potential VFD, and then the charge stored in the charge storage capacitor 600 is transferred to the charge storage unit 300 by the second charge transfer unit 700. P × Q solid-state imaging devices 100 are driven so as to be transferred to.
 図5の時刻t11に示すように、駆動処理部22の画素駆動回路25は、第1リセット制御信号RS1の信号レベルをローレベルからハイレベルにする。これにより、第1リセットトランジスタ801がオン状態となり、第1リセット電圧VRS1により中間電位VFDがリセットされる。そして、画素駆動回路25は、中間電位VFDのリセットが完了する(例えば予め定められたリセット時間が経過する)と、第1リセット制御信号RS1の信号レベルをハイレベルからローレベルにする。これにより、第1リセットトランジスタ801がオフ状態となる。 As shown at time t11 in FIG. 5, the pixel drive circuit 25 of the drive processing unit 22 changes the signal level of the first reset control signal RS1 from low level to high level. As a result, the first reset transistor 801 is turned on, and the intermediate potential VFD is reset by the first reset voltage VRS1. Then, when the reset of the intermediate potential VFD is completed (for example, a predetermined reset time elapses), the pixel drive circuit 25 changes the signal level of the first reset control signal RS1 from the high level to the low level. As a result, the first reset transistor 801 is turned off.
 次に、図5の時刻t12に示すように、駆動処理部22の画素駆動回路25は、電位制御信号EIVの信号レベルをローレベルからハイレベルにする。なお、電位制御信号EIVのハイレベルは、リセット後の中間電位VFDよりも高い電位に設定されている。これにより、記憶電位VCNTが中間電位VFDよりも高くなる。 Next, as shown at time t12 in FIG. 5, the pixel drive circuit 25 of the drive processing unit 22 changes the signal level of the potential control signal EIV from the low level to the high level. Note that the high level of the potential control signal EIV is set to a potential higher than the intermediate potential VFD after reset. As a result, the storage potential VCNT becomes higher than the intermediate potential VFD.
 次に、図5の時刻t13に示すように、駆動処理部22の画素駆動回路25は、スイッチング制御信号SWTの信号レベルをローレベルからハイレベルにする。これにより、スイッチングトランジスタ701がオン状態となり、電荷蓄積キャパシタ600の一端からオン状態のスイッチングトランジスタ701を経由して電荷蓄積部300へ電荷が転送され、その転送された電荷の量に応じて中間電位VFDが変化する。なお、電荷蓄積キャパシタ600から電荷蓄積部300へ転送される電荷の量は、電荷蓄積部300と電荷蓄積キャパシタ600との静電容量の比に応じた量となっている。そして、画素駆動回路25は、電荷蓄積キャパシタ600から電荷蓄積部300への電荷の転送が完了する(例えば予め定められた転送時間が経過する)と、電位制御信号EIVとスイッチング制御信号SWTの信号レベルをハイレベルからローレベルにする。 Next, as shown at time t13 in FIG. 5, the pixel drive circuit 25 of the drive processing unit 22 changes the signal level of the switching control signal SWT from the low level to the high level. As a result, the switching transistor 701 is turned on, and charge is transferred from one end of the charge storage capacitor 600 to the charge storage unit 300 via the switching transistor 701 in the on state, and an intermediate potential is set according to the amount of the transferred charge. VFD changes. The amount of charge transferred from the charge storage capacitor 600 to the charge storage unit 300 is an amount corresponding to the capacitance ratio between the charge storage unit 300 and the charge storage capacitor 600. Then, when the transfer of charges from the charge storage capacitor 600 to the charge storage unit 300 is completed (for example, a predetermined transfer time elapses), the pixel drive circuit 25 receives the potential control signal EIV and the switching control signal SWT. Change the level from high to low.
   〈ステップST111〉
 次に、駆動処理部22は、駆動制御部41による制御に応答して、電荷蓄積部300に蓄積された電荷に応じた信号が出力部500により出力されるように、P×Q個の固体撮像素子100をP個の固体撮像素子行毎に駆動させる。これにより、P×Q個の固体撮像素子100の各々の電荷蓄積部300に蓄積された電荷に応じた信号が相関二重サンプリング回路27と水平シフトレジスタ28と出力回路29とを経由して制御部40の情報出力部42に供給される。すなわち、情報出力部42には、それぞれがカウント値を示すP×Q個の信号値からなる情報(カウント画像)が供給される。なお、カウント値は、電荷蓄積キャパシタ600に蓄積された電荷の量に応じた値であり、この例では、露光状態の受光部200が受光した反射光L2の数に応じた値となっている。また、この例では、電荷蓄積キャパシタ600に蓄積された電荷の量が多くなる(露光状態の受光部200が受光した反射光L2の数が多くなる)に連れてカウント値が大きくなる。
<Step ST111>
Next, in response to the control by the drive control unit 41, the drive processing unit 22 outputs P × Q solids so that a signal corresponding to the charge accumulated in the charge accumulation unit 300 is output by the output unit 500. The image sensor 100 is driven every P solid-state image sensor rows. As a result, a signal corresponding to the charge stored in each charge storage unit 300 of the P × Q solid-state imaging devices 100 is controlled via the correlated double sampling circuit 27, the horizontal shift register 28, and the output circuit 29. Is supplied to the information output unit 42 of the unit 40. That is, the information output unit 42 is supplied with information (count image) composed of P × Q signal values each indicating a count value. The count value is a value corresponding to the amount of charge accumulated in the charge storage capacitor 600. In this example, the count value is a value corresponding to the number of reflected lights L2 received by the light receiving unit 200 in the exposure state. . In this example, the count value increases as the amount of charge stored in the charge storage capacitor 600 increases (the number of reflected light L2 received by the light receiving unit 200 in the exposure state increases).
 図5の時刻t14に示すように、駆動処理部22の垂直シフトレジスタ26は、選択制御信号SELの信号レベルをローレベルからハイレベルにする。これにより、選択トランジスタ502がオン状態となり、電荷蓄積部300に蓄積された電荷に応じた信号が増幅トランジスタ501からオン状態の選択トランジスタ502を経由して垂直信号線110に出力される。 As shown at time t14 in FIG. 5, the vertical shift register 26 of the drive processing unit 22 changes the signal level of the selection control signal SEL from the low level to the high level. As a result, the selection transistor 502 is turned on, and a signal corresponding to the charge accumulated in the charge accumulation unit 300 is output from the amplification transistor 501 to the vertical signal line 110 via the selection transistor 502 in the on state.
 次に、図5の時刻t15に示すように、駆動処理部22の画素駆動回路25は、第1リセット制御信号RS1の信号レベルをローレベルからハイレベルにする。これにより、第1リセットトランジスタ801がオン状態となり、第1リセット電圧VRS1により中間電位VFDがリセットされる。その結果、増幅トランジスタ501からオン状態の選択トランジスタ502を経由して垂直信号線110に出力される信号の信号レベルは、リセット後の中間電位VFDに対応する信号レベルとなる。 Next, as shown at time t15 in FIG. 5, the pixel drive circuit 25 of the drive processing unit 22 changes the signal level of the first reset control signal RS1 from low level to high level. As a result, the first reset transistor 801 is turned on, and the intermediate potential VFD is reset by the first reset voltage VRS1. As a result, the signal level of the signal output from the amplification transistor 501 to the vertical signal line 110 via the on-state selection transistor 502 becomes a signal level corresponding to the reset intermediate potential VFD.
 そして、駆動処理部22の画素駆動回路25は、中間電位VFDのリセットが完了する(例えば予め定められたリセット時間が経過する)と、第1リセット制御信号RS1の信号レベルをハイレベルからローレベルにする。これにより、第1リセットトランジスタ801がオフ状態となる。また、垂直シフトレジスタ26は、出力部500から垂直信号線110への信号の出力が完了する(例えば予め定められた出力時間が経過する)と、選択制御信号SELの信号レベルをハイレベルからローレベルにする。これにより、選択トランジスタ502がオフ状態となる。 Then, when the reset of the intermediate potential VFD is completed (for example, a predetermined reset time elapses), the pixel drive circuit 25 of the drive processing unit 22 changes the signal level of the first reset control signal RS1 from the high level to the low level. To. As a result, the first reset transistor 801 is turned off. Further, when the output of the signal from the output unit 500 to the vertical signal line 110 is completed (for example, when a predetermined output time elapses), the vertical shift register 26 changes the signal level of the selection control signal SEL from the high level to the low level. To level. As a result, the selection transistor 502 is turned off.
 なお、図5の例では、時刻t14から時刻t15までの期間が信号期間となり、時刻t15から選択制御信号SELの信号レベルがハイレベルからローレベルになる時刻までの期間がリセット期間となる。そして、相関二重サンプリング回路27は、出力部500から垂直信号線110に出力された信号のうち信号期間における信号レベルとリセット期間における信号レベルとをサンプリングする。相関二重サンプリング回路27により処理された信号は、水平シフトレジスタ28と出力回路29とを経由して制御部40の情報出力部42に供給される。 In the example of FIG. 5, the period from time t14 to time t15 is a signal period, and the period from time t15 to the time when the signal level of the selection control signal SEL changes from a high level to a low level is a reset period. The correlated double sampling circuit 27 samples the signal level in the signal period and the signal level in the reset period among the signals output from the output unit 500 to the vertical signal line 110. The signal processed by the correlated double sampling circuit 27 is supplied to the information output unit 42 of the control unit 40 via the horizontal shift register 28 and the output circuit 29.
   〈ステップST112〉
 次に、駆動制御部41は、N個の距離区間の全部が距離検出制御の対象として選択されたか否か(すなわちN個の距離区間にそれぞれ対応するN個の距離検出処理が完了したか否か)を判定する。N個の距離区間の全部が距離検出制御の対象として選択されていない場合には、ステップST113へ進み、N個の距離区間の全部が距離検出制御の対象として選択されている場合には、処理を終了する。
<Step ST112>
Next, the drive control unit 41 determines whether or not all of the N distance sections have been selected as distance detection control targets (that is, whether or not N distance detection processes respectively corresponding to the N distance sections have been completed). )). If all of the N distance sections have not been selected as targets for distance detection control, the process proceeds to step ST113, and if all of the N distance sections have been selected as targets for distance detection control, processing is performed. Exit.
   〈ステップST113〉
 次に、駆動制御部41は、N個の距離区間のうち第K番目の距離区間の次の距離区間(第K+1番目の距離区間)を次の距離検出制御の対象として選択する。次に、ステップST102へ進む。
<Step ST113>
Next, the drive control unit 41 selects the next distance section (K + 1th distance section) after the Kth distance section among the N distance sections as the next distance detection control target. Next, the process proceeds to step ST102.
  〔情報出力部の動作:距離情報の出力〕
 次に、情報出力部42による動作について説明する。N個の距離区間にそれぞれ対応するN回の距離検出処理が完了すると、情報出力部42は、N個の距離区間にそれぞれ対応するN個のカウント画像(それぞれがカウント値を示すP×Q個の信号値からなる情報)を取得する。そして、情報出力部42は、これらのN個のカウント画像に基づいて距離画像(それぞれが対象物までの距離に応じた値を示すP×Q個の距離値により構成された三次元情報)を生成し、その距離画像を出力する。
[Operation of information output unit: Output of distance information]
Next, the operation by the information output unit 42 will be described. When N distance detection processes corresponding to the N distance sections are completed, the information output unit 42 outputs N count images (P × Q each indicating a count value) corresponding to the N distance sections. (Information consisting of the signal value). And the information output part 42 produces | generates a distance image (three-dimensional information comprised by the PxQ distance value each showing the value according to the distance to a target object) based on these N count images. Generate and output the distance image.
 例えば、情報出力部42は、N個のカウント画像の各々に対して比較処理を行う。第K番目のカウント画像に対する比較処理では、情報出力部42は、第K番目のカウント画像を構成するP×Q個の信号値(カウント値)の各々について、その信号値が第K番目のカウント画像に対応する第K番目の距離区間に対して定められた閾値以上であるか否かを判定する。N個の距離区間の各々に対して定められた閾値は、例えば、その距離区間に対象物が存在しているときに取得される信号値(カウント値)に設定されている。 For example, the information output unit 42 performs a comparison process on each of the N count images. In the comparison process for the K-th count image, the information output unit 42 sets the K-th count value for each of the P × Q signal values (count values) constituting the K-th count image. It is determined whether or not the threshold value is equal to or greater than a threshold value determined for the Kth distance section corresponding to the image. The threshold value determined for each of the N distance intervals is set to, for example, a signal value (count value) acquired when an object exists in the distance interval.
 そして、情報出力部42は、N個のカウント画像の各々に対する比較処理の結果に基づいて距離画像を生成する。例えば、情報出力部42は、第K番目のカウント画像を構成するP×Q個の信号値(カウント値)のうち第X行目(Xは1以上でP以下の整数)で第Y列目(Yは1以上でQ以下の整数)の信号値が第K番目のカウント画像に対して定められた閾値以上である場合に、距離画像を構成するP×Q個の距離値のうち第X行目で第Y行目の距離値を第K番目の距離区間に対応する値に設定する。 And the information output part 42 produces | generates a distance image based on the result of the comparison process with respect to each of N count images. For example, the information output unit 42 in the X-th row (X is an integer not less than 1 and not more than P) in the Y-th column among the P × Q signal values (count values) constituting the K-th count image. When the signal value (Y is an integer greater than or equal to 1 and less than or equal to Q) is greater than or equal to a threshold value determined for the Kth count image, the Xth of the P × Q distance values constituting the distance image In the row, the distance value in the Yth row is set to a value corresponding to the Kth distance section.
 なお、情報出力部42は、背景光に応じてN個の距離区間の各々に対して定められた閾値を調節するように構成されていてもよい。 Note that the information output unit 42 may be configured to adjust a threshold value determined for each of the N distance intervals according to the background light.
  〔駆動制御部の動作:撮像制御〕
 次に、図6を参照して、駆動制御部41による撮像制御について説明する。撮像制御では、駆動処理部22は、駆動制御部41による制御に応答して撮像動作を行う。
[Operation of drive control unit: imaging control]
Next, imaging control by the drive control unit 41 will be described with reference to FIG. In the imaging control, the drive processing unit 22 performs an imaging operation in response to control by the drive control unit 41.
   〈ステップST201〉
 まず、駆動処理部22は、駆動制御部41による制御に応答して、入力電位VPDと中間電位VFDとがリセットされるように、P×Q個の固体撮像素子100を駆動させる。
<Step ST201>
First, in response to control by the drive control unit 41, the drive processing unit 22 drives the P × Q solid-state imaging elements 100 so that the input potential VPD and the intermediate potential VFD are reset.
   〈ステップST202〉
 次に、駆動処理部22は、駆動制御部41による制御に応答して、受光部200が予め定められた露光時間だけ露光状態となるように、P×Q個の固体撮像素子100を駆動させる。これにより、受光部200が露光状態となり、受光部200が受光した光に応じた電荷が生成され、その生成された電荷の量に応じて入力電位VPDが変化する。
<Step ST202>
Next, in response to the control by the drive control unit 41, the drive processing unit 22 drives the P × Q solid-state imaging devices 100 so that the light receiving unit 200 is in an exposure state for a predetermined exposure time. . As a result, the light receiving unit 200 is in an exposure state, charges corresponding to the light received by the light receiving unit 200 are generated, and the input potential VPD changes according to the amount of the generated charges.
   〈ステップST203〉
 次に、駆動処理部22は、駆動制御部41による制御に応答して、受光部200により生成された電荷が第1電荷転送部400により電荷蓄積部300に転送されるように、P×Q個の固体撮像素子100を駆動させる。これにより、受光部200から第1電荷転送部400を経由して電荷蓄積部300に電荷が転送され、その転送された電荷の量に応じて中間電位VFDが変化する。
<Step ST203>
Next, the drive processing unit 22 responds to the control by the drive control unit 41 so that the charge generated by the light receiving unit 200 is transferred to the charge storage unit 300 by the first charge transfer unit 400. The solid-state imaging device 100 is driven. Thus, charges are transferred from the light receiving unit 200 to the charge storage unit 300 via the first charge transfer unit 400, and the intermediate potential VFD changes according to the amount of transferred charges.
   〈ステップST204〉
 次に、駆動処理部22は、駆動制御部41による制御に応答して、電荷蓄積部300に蓄積された電荷に応じた信号が出力部500により出力されるように、P×Q個の固体撮像素子100をP個の固体撮像素子行毎に駆動させる。これにより、P×Q個の固体撮像素子100の各々の電荷蓄積部300に蓄積された電荷に応じた信号が相関二重サンプリング回路27と水平シフトレジスタ28と出力回路29とを経由して制御部40に供給される。すなわち、制御部40には、それぞれが輝度に応じた値を示すP×Q個の信号値からなる情報(輝度画像)が供給される。
<Step ST204>
Next, in response to the control by the drive control unit 41, the drive processing unit 22 outputs P × Q solids so that a signal corresponding to the charge accumulated in the charge accumulation unit 300 is output by the output unit 500. The image sensor 100 is driven every P solid-state image sensor rows. As a result, a signal corresponding to the charge stored in each charge storage unit 300 of the P × Q solid-state imaging devices 100 is controlled via the correlated double sampling circuit 27, the horizontal shift register 28, and the output circuit 29. Supplied to the unit 40. That is, the control unit 40 is supplied with information (luminance image) composed of P × Q signal values each indicating a value corresponding to the luminance.
  〔実施形態による効果〕
 以上のように、電荷蓄積キャパシタ600に蓄積された電荷を第2電荷転送部700により電荷蓄積部300に転送して電荷蓄積部300に蓄積された電荷に応じた信号を出力部500により出力することにより、電荷蓄積キャパシタ600に蓄積された電荷に応じた信号を出力することができる。これにより、電荷蓄積キャパシタ600に蓄積された電荷に応じた信号を出力するための構成(出力部500とは異なる構成)を別途設けなくてもよくなるので、固体撮像素子100の回路規模を低減することができる。
[Effects of the embodiment]
As described above, the charge stored in the charge storage capacitor 600 is transferred to the charge storage unit 300 by the second charge transfer unit 700, and a signal corresponding to the charge stored in the charge storage unit 300 is output by the output unit 500. Thus, a signal corresponding to the charge accumulated in the charge storage capacitor 600 can be output. This eliminates the need to separately provide a configuration (a configuration different from the output unit 500) for outputting a signal corresponding to the charge stored in the charge storage capacitor 600, thereby reducing the circuit scale of the solid-state imaging device 100. be able to.
 また、電荷蓄積キャパシタ600に蓄積された電荷に応じた信号を出力するための構成(出力部500とは異なる構成)を別途設けなくてもよいので、その分、受光部200の受光面積を拡大することができる。これにより、受光部200の感度を向上させることができるので、固体撮像システム10により測定することが可能な距離を長くすることができる。 Further, it is not necessary to separately provide a configuration (a configuration different from the output unit 500) for outputting a signal corresponding to the charge stored in the charge storage capacitor 600, and accordingly, the light receiving area of the light receiving unit 200 is expanded accordingly. can do. Thereby, since the sensitivity of the light receiving unit 200 can be improved, the distance that can be measured by the solid-state imaging system 10 can be increased.
 また、第2電荷転送部700の整流要素702をダイオード接続された整流トランジスタ710で構成することにより、固体撮像素子100に含まれるトランジスタ(例えばスイッチングトランジスタ701など)を形成するためのトランジスタ形成工程において整流要素702を形成することができる。これにより、整流要素702の形成を容易にすることができる。 In the transistor forming process for forming a transistor (for example, the switching transistor 701 or the like) included in the solid-state imaging device 100 by configuring the rectifying element 702 of the second charge transfer unit 700 with a diode-connected rectifying transistor 710. A rectifying element 702 can be formed. Thereby, formation of the rectifying element 702 can be facilitated.
 (固体撮像素子の変形例)
 図6に示すように、固体撮像素子100において、受光部200は、複数の光電変換要素201を有していてもよい。複数の光電変換要素201は、それぞれが受光した光に応じた電荷を生成するように構成されている。そして、受光部200は、露光状態において複数の光電変換要素201を露光させるように構成されていてもよい。また、第1電荷転送部400は、複数の転送トランジスタ401を有していてもよい。複数の転送トランジスタ401は、複数の光電変換要素201と電荷蓄積部300のフローティングディフュージョン部301との間にそれぞれ接続されている。複数の転送トランジスタ401の各々のゲートには、転送制御信号TRNが印加される転送制御ノード402に接続されている。
(Modification of solid-state image sensor)
As shown in FIG. 6, in the solid-state imaging device 100, the light receiving unit 200 may include a plurality of photoelectric conversion elements 201. The plurality of photoelectric conversion elements 201 are configured to generate charges corresponding to the light received by each of the plurality of photoelectric conversion elements 201. And the light-receiving part 200 may be comprised so that the some photoelectric conversion element 201 may be exposed in an exposure state. The first charge transfer unit 400 may include a plurality of transfer transistors 401. The plurality of transfer transistors 401 are connected between the plurality of photoelectric conversion elements 201 and the floating diffusion unit 301 of the charge storage unit 300, respectively. The gates of the plurality of transfer transistors 401 are connected to a transfer control node 402 to which a transfer control signal TRN is applied.
 以上のように、複数の光電変換要素201を受光部200に設けることにより、受光部200の受光面積を拡大することができる。これにより、受光部200の感度を向上させることができる。 As described above, by providing a plurality of photoelectric conversion elements 201 in the light receiving unit 200, the light receiving area of the light receiving unit 200 can be expanded. Thereby, the sensitivity of the light receiving unit 200 can be improved.
 (その他の実施形態)
 以上の説明では、ステップST111において出力部500から垂直信号線110に出力される信号において信号期間の後にリセット期間がある場合を例に挙げたが、出力部500から垂直信号線110に出力される信号においてリセット期間の後に信号期間があってもよい。具体的には、駆動処理部22は、ステップST111において、中間電位VFD(電荷蓄積部300の電位)がリセットされて電荷蓄積部300に蓄積された電荷に応じた信号(リセットレベルの信号)が出力部500により垂直信号線110に出力された後に、第2電荷転送部700により電荷蓄積キャパシタ600に蓄積された電荷が電荷蓄積部300に転送されて出力部500により出力される信号の信号レベルが変化するように、固体撮像素子100を駆動させてもよい。
(Other embodiments)
In the above description, the case where there is a reset period after the signal period in the signal output from the output unit 500 to the vertical signal line 110 in step ST111 is described as an example, but the signal is output from the output unit 500 to the vertical signal line 110. There may be a signal period after the reset period in the signal. Specifically, in step ST <b> 111, the drive processing unit 22 resets the intermediate potential VFD (the potential of the charge storage unit 300) and outputs a signal (reset level signal) corresponding to the charge stored in the charge storage unit 300. After being output to the vertical signal line 110 by the output unit 500, the signal level of the signal output from the output unit 500 by transferring the charge stored in the charge storage capacitor 600 by the second charge transfer unit 700 to the charge storage unit 300. The solid-state imaging device 100 may be driven so that changes.
 また、以上の説明において、N個の距離区間は、それぞれ同一の区間長さに設定されていてもよいし、それぞれ異なる区間長さに設定されていてもよい。 In the above description, the N distance sections may be set to the same section length, or may be set to different section lengths.
 また、以上の実施形態を適宜組み合わせて実施してもよい。以上の実施形態は、本質的に好ましい例示であって、この発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Further, the above embodiments may be combined as appropriate. The above embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
 以上説明したように、ここに開示する技術は、固体撮像素子、固体撮像装置、固体撮像システム、固体撮像素子の駆動方法に有用である。 As described above, the technology disclosed herein is useful for a solid-state imaging device, a solid-state imaging device, a solid-state imaging system, and a driving method of the solid-state imaging device.
10     固体撮像システム
20     固体撮像装置
21     画素領域
22     駆動処理部
25     画素駆動回路
26     垂直シフトレジスタ
27     相関二重サンプリング回路
28     水平シフトレジスタ
29     出力回路
30     光源
40     制御部
41     駆動制御部
42     情報出力部
100    固体撮像素子
200    受光部
201    光電変換要素
300    電荷蓄積部
301    フローティングディフュージョン部
400    第1電荷転送部
401    転送トランジスタ
500    出力部
501    増幅トランジスタ
502    選択トランジスタ
600    電荷蓄積キャパシタ
700    第2電荷転送部
701    スイッチングトランジスタ
702    整流要素
710    整流トランジスタ
800    第1リセット部
801    第1リセットトランジスタ
900    第2リセット部
901    第2リセットトランジスタ
DESCRIPTION OF SYMBOLS 10 Solid-state imaging system 20 Solid-state imaging device 21 Pixel area 22 Drive processing part 25 Pixel drive circuit 26 Vertical shift register 27 Correlated double sampling circuit 28 Horizontal shift register 29 Output circuit 30 Light source 40 Control part 41 Drive control part 42 Information output part 100 Solid-state imaging device 200 Light receiving unit 201 Photoelectric conversion element 300 Charge storage unit 301 Floating diffusion unit 400 First charge transfer unit 401 Transfer transistor 500 Output unit 501 Amplification transistor 502 Selection transistor 600 Charge storage capacitor 700 Second charge transfer unit 701 Switching transistor 702 Rectifier element 710 Rectifier transistor 800 First reset unit 801 First reset transistor 900 2 reset unit 901 second reset transistor

Claims (10)

  1.  露光状態と遮光状態とに切り換え可能に構成され、該露光状態において受光した光に応じた電荷を生成する受光部と、
     前記電荷を蓄積する電荷蓄積部と、
     前記受光部から前記電荷蓄積部へ前記電荷を転送する第1電荷転送部と、
     前記電荷蓄積部に蓄積された電荷に応じた信号を出力する出力部と、
     前記電荷を蓄積する電荷蓄積キャパシタと、
     前記電荷蓄積部と前記電荷蓄積キャパシタの一端との間において前記電荷を双方向に転送する第2電荷転送部とを備えている
    ことを特徴とする固体撮像素子。
    A light receiving portion configured to be switchable between an exposure state and a light shielding state, and generating a charge according to light received in the exposure state;
    A charge storage section for storing the charge;
    A first charge transfer unit that transfers the charge from the light receiving unit to the charge storage unit;
    An output unit that outputs a signal corresponding to the charge accumulated in the charge accumulation unit;
    A charge storage capacitor for storing the charge;
    A solid-state imaging device, comprising: a second charge transfer unit that transfers the charge bidirectionally between the charge storage unit and one end of the charge storage capacitor.
  2.  請求項1において、
     前記第2電荷転送部は、
      前記電荷蓄積部と前記電荷蓄積キャパシタの一端との間に直列に接続されたスイッチングトランジスタおよび整流要素と、
      前記電荷蓄積キャパシタの他端に接続される電位制御ノードとを有し、
     前記整流要素は、前記電荷蓄積キャパシタの一端から前記電荷蓄積部へ向かう方向が順方向となるように構成され、
     前記電位制御ノードには、前記電荷蓄積キャパシタから前記電荷蓄積部へ前記電荷を転送する場合に該電荷蓄積キャパシタの一端の電位が該電荷蓄積部の電位よりも高くなるよう電位制御信号が印加される
    ことを特徴とする固体撮像素子。
    In claim 1,
    The second charge transfer unit includes:
    A switching transistor and a rectifying element connected in series between the charge storage unit and one end of the charge storage capacitor;
    A potential control node connected to the other end of the charge storage capacitor;
    The rectifying element is configured such that a direction from one end of the charge storage capacitor toward the charge storage unit is a forward direction.
    A potential control signal is applied to the potential control node so that the potential of one end of the charge storage capacitor is higher than the potential of the charge storage unit when the charge is transferred from the charge storage capacitor to the charge storage unit. A solid-state imaging device.
  3.  請求項2において、
     前記整流要素は、ダイオード接続された整流トランジスタによって構成されている
    ことを特徴とする固体撮像素子。
    In claim 2,
    The solid-state imaging device, wherein the rectifying element is constituted by a diode-connected rectifying transistor.
  4.  請求項1~3のいずれか1項において、
     前記受光部は、受光した光に応じた電荷を生成する光電変換要素を有し、前記露光状態において該光電変換要素を露光させるように構成され、
     前記第1電荷転送部は、前記光電変換要素と前記電荷蓄積部との間に接続された転送トランジスタを有している
    ことを特徴とする固体撮像素子。
    In any one of claims 1 to 3,
    The light receiving unit includes a photoelectric conversion element that generates an electric charge according to received light, and is configured to expose the photoelectric conversion element in the exposure state.
    The first charge transfer unit includes a transfer transistor connected between the photoelectric conversion element and the charge storage unit.
  5.  請求項1~3のいずれか1項において、
     前記受光部は、それぞれが受光した光に応じた電荷を生成する複数の光電変換要素を有し、前記露光状態において該複数の光電変換要素を露光させるように構成され、
     前記第1電荷転送部は、前記複数の光電変換要素と前記電荷蓄積部との間にそれぞれ接続された複数の転送トランジスタを有している
    ことを特徴とする固体撮像素子。
    In any one of claims 1 to 3,
    The light receiving unit includes a plurality of photoelectric conversion elements that generate charges corresponding to light received by each, and is configured to expose the plurality of photoelectric conversion elements in the exposure state;
    The first charge transfer unit includes a plurality of transfer transistors respectively connected between the plurality of photoelectric conversion elements and the charge storage unit.
  6.  請求項1~5のいずれか1項に記載の固体撮像素子と、
     前記固体撮像素子を駆動する駆動処理部とを備え、
     前記駆動処理部は、前記受光部により生成された電荷が前記第1電荷転送部により前記電荷蓄積部に転送されて該電荷蓄積部に蓄積された電荷が前記第2電荷転送部により前記電荷蓄積キャパシタに転送される転送動作が予め定められた回数だけ行われた後に、該電荷蓄積キャパシタに蓄積された電荷が該第2電荷転送部により該電荷蓄積部に転送されて該電荷蓄積部に蓄積された電荷に応じた信号が前記出力部により出力されるように、前記固体撮像素子を駆動させるフォトンカウンティング動作を行う
    ことを特徴とする固体撮像装置。
    A solid-state imaging device according to any one of claims 1 to 5,
    A drive processing unit for driving the solid-state imaging device,
    The drive processing unit transfers the charge generated by the light receiving unit to the charge storage unit by the first charge transfer unit and stores the charge stored in the charge storage unit by the second charge transfer unit. After the transfer operation transferred to the capacitor is performed a predetermined number of times, the charge stored in the charge storage capacitor is transferred to the charge storage unit by the second charge transfer unit and stored in the charge storage unit A solid-state imaging device that performs a photon counting operation for driving the solid-state imaging device so that a signal corresponding to the generated charge is output by the output unit.
  7.  請求項6において、
     前記駆動処理部は、前記受光部により生成された電荷が前記第1電荷転送部により前記電荷蓄積部に転送されて該電荷蓄積部に蓄積された電荷に応じた信号が前記出力部により出力されるように、前記固体撮像素子を駆動させる撮像動作を行う
    ことを特徴とする固体撮像装置。
    In claim 6,
    In the drive processing unit, the charge generated by the light receiving unit is transferred to the charge storage unit by the first charge transfer unit, and a signal corresponding to the charge stored in the charge storage unit is output by the output unit. As described above, a solid-state imaging device that performs an imaging operation for driving the solid-state imaging device.
  8.  請求項6または7に記載の固体撮像装置と、
     信号光を照射する光源と、
     前記固体撮像装置の動作および前記光源の動作を制御する制御部とを備えている
    ことを特徴とする固体撮像システム。
    A solid-state imaging device according to claim 6 or 7,
    A light source that emits signal light;
    A solid-state imaging system comprising: a control unit that controls the operation of the solid-state imaging device and the operation of the light source.
  9.  請求項8において、
     前記制御部は、
      複数の距離区間にそれぞれ対応する複数の距離検出期間の各々において前記駆動処理部により前記フォトンカウンティング動作が行われ、該複数の距離検出期間の各々における該フォトンカウンティング動作の転送動作において、前記光源から前記信号光が照射された時点から該距離検出期間に対応する遅延時間が経過した後に前記受光部が露光状態となり、該受光部により生成された電荷が前記第1電荷転送部により前記電荷蓄積部に転送され、該電荷蓄積部に蓄積された電荷が前記第2電荷転送部により前記電荷蓄積キャパシタに転送されるように、前記駆動処理部の動作および前記光源の動作を制御する距離検出制御を行う駆動制御部と、
      前記複数の距離検出期間の各々における前記駆動処理部のフォトンカウンティング動作において前記出力部により出力された信号に基づいて対象物までの距離に関する情報を出力する情報出力部とを有している
    ことを特徴とする固体撮像システム。
    In claim 8,
    The controller is
    The drive processing unit performs the photon counting operation in each of a plurality of distance detection periods respectively corresponding to a plurality of distance sections. In the transfer operation of the photon counting operation in each of the plurality of distance detection periods, from the light source, The light receiving unit is exposed after a delay time corresponding to the distance detection period has elapsed from the time when the signal light is irradiated, and the charge generated by the light receiving unit is transferred to the charge storage unit by the first charge transfer unit. Distance detection control for controlling the operation of the drive processing unit and the operation of the light source so that the charge stored in the charge storage unit is transferred to the charge storage capacitor by the second charge transfer unit. A drive control unit to perform,
    An information output unit that outputs information on the distance to the object based on a signal output by the output unit in the photon counting operation of the drive processing unit in each of the plurality of distance detection periods. Solid-state imaging system featuring
  10.  露光状態と遮光状態とに切り換え可能に構成され、該露光状態において受光した光に応じた電荷を生成する受光部と、前記電荷を蓄積する電荷蓄積部と、前記受光部から前記電荷蓄積部へ前記電荷を転送する第1電荷転送部と、前記電荷蓄積部に蓄積された電荷に応じた信号を出力する出力部と、前記電荷を蓄積する電荷蓄積キャパシタと、前記電荷蓄積部と前記電荷蓄積キャパシタの一端との間において前記電荷を双方向に転送する第2電荷転送部とを備えた固体撮像素子の駆動方法であって、
     前記受光部により生成された電荷が前記第1電荷転送部により前記電荷蓄積部に転送されて該電荷蓄積部に蓄積された電荷が前記第2電荷転送部により前記電荷蓄積キャパシタに転送される転送動作が予め定められた回数だけ行われるように、前記固体撮像素子を駆動させる第1工程と、
     前記第1工程の後に、前記電荷蓄積キャパシタに蓄積された電荷が前記第2電荷転送部により前記電荷蓄積部に転送されて該電荷蓄積部に蓄積された電荷に応じた信号が前記出力部により出力されるように、前記固体撮像素子を駆動させる第2工程とを備えている
    ことを特徴とする固体撮像素子の駆動方法。
    The light receiving unit is configured to be switchable between an exposure state and a light shielding state, and generates a charge according to light received in the exposure state, a charge storage unit that stores the charge, and the light receiving unit to the charge storage unit. A first charge transfer unit configured to transfer the charge; an output unit configured to output a signal corresponding to the charge stored in the charge storage unit; a charge storage capacitor configured to store the charge; the charge storage unit; and the charge storage unit. A solid-state imaging device driving method comprising: a second charge transfer unit that transfers the charge bidirectionally to and from one end of a capacitor,
    The transfer generated by the light receiving unit is transferred to the charge storage unit by the first charge transfer unit, and the charge stored in the charge storage unit is transferred to the charge storage capacitor by the second charge transfer unit. A first step of driving the solid-state imaging device so that the operation is performed a predetermined number of times;
    After the first step, the charge stored in the charge storage capacitor is transferred to the charge storage unit by the second charge transfer unit, and a signal corresponding to the charge stored in the charge storage unit is output by the output unit. And a second step of driving the solid-state imaging device so as to output the solid-state imaging device.
PCT/JP2018/013007 2018-03-28 2018-03-28 Solid-state imaging element, solid-state imaging device, solid-state imaging system, and method for driving solid-state imaging element WO2019186838A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/013007 WO2019186838A1 (en) 2018-03-28 2018-03-28 Solid-state imaging element, solid-state imaging device, solid-state imaging system, and method for driving solid-state imaging element
JP2020508670A JP7033739B2 (en) 2018-03-28 2018-03-28 Solid-state image sensor, solid-state image sensor, solid-state image sensor, solid-state image sensor driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013007 WO2019186838A1 (en) 2018-03-28 2018-03-28 Solid-state imaging element, solid-state imaging device, solid-state imaging system, and method for driving solid-state imaging element

Publications (1)

Publication Number Publication Date
WO2019186838A1 true WO2019186838A1 (en) 2019-10-03

Family

ID=68058002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013007 WO2019186838A1 (en) 2018-03-28 2018-03-28 Solid-state imaging element, solid-state imaging device, solid-state imaging system, and method for driving solid-state imaging element

Country Status (2)

Country Link
JP (1) JP7033739B2 (en)
WO (1) WO2019186838A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085612A1 (en) * 2019-11-01 2021-05-06 ヌヴォトンテクノロジージャパン株式会社 Distance measurement device and distance measurement method
WO2022210070A1 (en) * 2021-03-29 2022-10-06 パナソニックIpマネジメント株式会社 Solid-state imaging element
WO2023080044A1 (en) * 2021-11-02 2023-05-11 パナソニックIpマネジメント株式会社 Imaging element and ranging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245522A (en) * 2005-02-04 2006-09-14 Tohoku Univ Optical sensor, solid-state imaging device, and operation method of solid-state imaging device
JP2006261594A (en) * 2005-03-18 2006-09-28 Canon Inc Solid-state imaging device and camera
US20110037969A1 (en) * 2009-08-14 2011-02-17 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Concept for optical distance measurement
JP2013033896A (en) * 2011-06-30 2013-02-14 Sony Corp Imaging element, drive method for imaging element, manufacturing method for imaging element, and electronic apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4440239B2 (en) 2006-08-18 2010-03-24 富士フイルム株式会社 Distance image creation method, distance image sensor, and photographing apparatus
KR20110051391A (en) * 2009-11-10 2011-05-18 삼성전자주식회사 Depth pixel apparatus and operating method for the reduction of the background light
JP2014021100A (en) 2012-07-24 2014-02-03 Toshiba Corp Three-dimensional information detection device, and three-dimensional information detection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245522A (en) * 2005-02-04 2006-09-14 Tohoku Univ Optical sensor, solid-state imaging device, and operation method of solid-state imaging device
JP2006261594A (en) * 2005-03-18 2006-09-28 Canon Inc Solid-state imaging device and camera
US20110037969A1 (en) * 2009-08-14 2011-02-17 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Concept for optical distance measurement
JP2013033896A (en) * 2011-06-30 2013-02-14 Sony Corp Imaging element, drive method for imaging element, manufacturing method for imaging element, and electronic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085612A1 (en) * 2019-11-01 2021-05-06 ヌヴォトンテクノロジージャパン株式会社 Distance measurement device and distance measurement method
WO2022210070A1 (en) * 2021-03-29 2022-10-06 パナソニックIpマネジメント株式会社 Solid-state imaging element
WO2023080044A1 (en) * 2021-11-02 2023-05-11 パナソニックIpマネジメント株式会社 Imaging element and ranging device

Also Published As

Publication number Publication date
JPWO2019186838A1 (en) 2020-12-17
JP7033739B2 (en) 2022-03-11

Similar Documents

Publication Publication Date Title
US10838066B2 (en) Solid-state imaging device, distance measurement device, and distance measurement method
US9807331B2 (en) Solid-state imaging device, driving method thereof, and imaging system accumulating charges generated by first and second photoelectric conversion units during first and second periods
US7733401B2 (en) Image capturing apparatus
US10070078B2 (en) Solid-state image sensor with pixels having in-pixel memories, motion information acquisition apparatus, and imaging apparatus
JP6934769B2 (en) Radiation imaging device and radiation imaging method
JP7117535B2 (en) Solid-state imaging device and imaging system
EP0785673A2 (en) Photoelectric converting apparatus
WO2019186838A1 (en) Solid-state imaging element, solid-state imaging device, solid-state imaging system, and method for driving solid-state imaging element
US7956915B2 (en) Solid-state imaging apparatus
US11243310B2 (en) Solid-state imaging device, solid-state imaging system, and method of driving the solid-state imaging device
US20210185199A1 (en) Random Access Sensor
US20180115731A1 (en) Global shutter high dynamic range pixel and global shutter high dynamic range image sensor
JP2019103121A (en) Imaging device, imaging apparatus, and imaging method
RU2299521C1 (en) Single-crystal adaptive video sensor
EP3145178B1 (en) Solid-state imaging device
CN113785219A (en) Imaging device with gated time-of-flight pixels for fast charge transfer
KR101760378B1 (en) Infrared image sensor for depth camera
JP6366325B2 (en) Imaging system
US20220006941A1 (en) Solid-state imaging device
WO2015115067A1 (en) Solid-state image sensor, motion information acquisition apparatus, and imaging apparatus
WO2021106521A1 (en) Optical detector, solid-state imaging device, and distance measuring device
RU174758U1 (en) Photosensitive Sensor Matrix
WO2020110763A1 (en) Radiological imaging device and method for controlling radiological imaging device
JP2015149672A (en) Photoelectric converter and photoelectric conversion system
WO2020110762A1 (en) Radiation image capturing device, and method for controlling radiation image capture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508670

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911771

Country of ref document: EP

Kind code of ref document: A1