WO2019186800A1 - Hermetic compressor and refrigeration cycle device - Google Patents

Hermetic compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2019186800A1
WO2019186800A1 PCT/JP2018/012883 JP2018012883W WO2019186800A1 WO 2019186800 A1 WO2019186800 A1 WO 2019186800A1 JP 2018012883 W JP2018012883 W JP 2018012883W WO 2019186800 A1 WO2019186800 A1 WO 2019186800A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge port
valve body
compression chamber
hermetic compressor
discharge
Prior art date
Application number
PCT/JP2018/012883
Other languages
French (fr)
Japanese (ja)
Inventor
貴也 木本
将吾 諸江
英人 中尾
関屋 慎
角田 昌之
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/012883 priority Critical patent/WO2019186800A1/en
Priority to JP2018541369A priority patent/JP6556372B1/en
Publication of WO2019186800A1 publication Critical patent/WO2019186800A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members

Definitions

  • the present invention relates to a hermetic compressor and a refrigeration cycle apparatus.
  • the present invention relates to a reed valve that opens and closes a compression chamber.
  • a reed valve is provided at the discharge port of the hermetic compressor.
  • the valve body opens, and when the refrigerant in the compression chamber is discharged, the discharge port is closed by the spring force of the reed valve.
  • the discharge port since the discharge port has a certain thickness, the high-pressure refrigerant stays in the volume of the discharge port, that is, the so-called dead volume.
  • the efficiency of the compressor was reduced by the re-expansion of the accumulated refrigerant in the compression chamber.
  • there is a compressor in which the tip of the reed valve is a tapered protrusion, and the discharge port is formed in a tapered shape to reduce the dead volume see, for example, Patent Document 1). .
  • the tapered shape of the valve body may narrow the flow path of the discharge port and increase the discharge pressure loss. Therefore, if the taper angle is increased in order to reduce the discharge pressure loss, it is necessary to reduce the thickness of the discharge port.
  • the valve body opens and closes in the direction of the thin wall, the discharge port easily deforms to the compression chamber side due to the slamming of the valve body, the pressure difference, and the like, and there is a possibility that the piston in the compression chamber may be burned.
  • a protrusion is provided at the tip of the reed valve, there is a problem that stress concentration occurs at the bent portion and the reed valve is easily damaged.
  • an object of the present invention is to provide a hermetic compressor and a refrigeration cycle apparatus capable of reducing dead volume and improving efficiency without having a tapered discharge port. To do.
  • a hermetic compressor includes a hermetic container serving as an outer shell, a compression mechanism that is installed in the hermetic container and compresses the sucked fluid in the compression chamber, and the fluid compressed by the compression mechanism is the compression chamber.
  • a discharge port that is a passage for discharging from the inside of the closed container to the inside of the sealed container and a valve body that opens and closes the discharge port, and the valve body is operated by the pressure difference between the internal pressure of the compression chamber and the pressure in the sealed container.
  • the discharge mechanism is arranged at a position where the valve body moves in a direction intersecting the central axis of the discharge port, and when the valve body closes the discharge port, the opening surface on the compression chamber side of the discharge port is closed. It is what is done.
  • the refrigeration cycle apparatus has a refrigerant circuit in which a hermetic compressor, a condenser, a decompression device, and an evaporator are connected by piping to circulate the refrigerant.
  • the valve body since the valve body opens and closes the discharge port at the opening on the compression chamber side, the dead volume can be reduced, the re-expansion of the fluid is suppressed, and the efficiency of the compressor is increased. Can be improved.
  • FIG. 1 It is a figure explaining the structure of the hermetic compressor which concerns on Embodiment 1 of this invention. It is a figure explaining the structure of the discharge mechanism 40 in the bearing 14 which concerns on Embodiment 1 of this invention. It is a figure which shows the mode of the discharge mechanism 40 seen from the angle different from FIG. It is a figure which shows operation
  • FIG. It is a figure explaining the structure of the discharge mechanism 40 in the rotary compressor 100 which concerns on Embodiment 2 of this invention. It is a figure explaining the structure of the discharge mechanism 40 of the rotary compressor 100 which concerns on Embodiment 3 of this invention. It is a figure showing the structural example of the refrigerating-cycle apparatus which concerns on Embodiment 4 of this
  • the longitudinal direction (vertical direction in the figure) of the sealed container 1 is defined as the axial direction, and the direction passing through the central axis of the sealed container 1 and perpendicular to the central axis is described as the radial direction.
  • FIG. 1 is a diagram illustrating the configuration of a hermetic compressor according to Embodiment 1 of the present invention.
  • the rotary compressor 100 will be described as an example of a hermetic compressor.
  • the present invention can also be applied to a hermetic compressor having a discharge valve, such as a scroll compressor or a reciprocating compressor.
  • the description will be made assuming that the fluid compressed by the rotary compressor 100 is a refrigerant used in a refrigeration cycle apparatus or the like.
  • the rotary compressor 100 includes a compression mechanism unit 10, a rotor 21, and a stator 22, and an electric motor unit 20 that drives the compression mechanism unit 10 via a main shaft 11 inside the hermetic container 1 serving as an outer shell. It has.
  • the compression mechanism unit 10 includes an eccentric shaft unit 12 that rotates together with the main shaft 11, a cylinder 13, a bearing 14, and a partition plate 15.
  • the compression chamber 30 is a space formed by attaching the bearing 14 and the partition plate 15 to the axial end of the cylindrical cylinder 13.
  • a piston 16 and a vane (not shown) that are slidably fitted to the eccentric shaft portion 12 are disposed in the compression chamber 30.
  • a radial vane groove (not shown) is formed in the cylinder 13. The vane groove slidably holds the vane.
  • the back side of the vane is open to the space of the sealed container 1.
  • the cylinder 13 is formed with a radial suction port 50.
  • the cylinder 13 guides the refrigerant sucked from the suction muffler 60 to the compression chamber 30.
  • the refrigerant compressed in the compression chamber 30 is discharged from the compression chamber 30 into the sealed container 1 via the discharge mechanism 40.
  • FIG. 2 is a view for explaining the configuration of the discharge mechanism 40 in the bearing 14 according to Embodiment 1 of the present invention.
  • FIG. 3 is a view showing a state of the discharge mechanism 40 viewed from an angle different from that in FIG.
  • the valve body 41, the guide hole 42, and the bearing 14 in FIG. 3 are shown in a cross-sectional view taken along the AA plane shown in FIG.
  • the bearing 14 includes a discharge mechanism 40.
  • the discharge mechanism 40 operates with a pressure difference between the internal pressure of the compression chamber 30 and the internal pressure of the sealed container 1.
  • the discharge mechanism 40 prevents the fluid from being discharged from the compression chamber 30 into the sealed container 1 when the internal pressure of the compression chamber 30 is low, and discharges the fluid when the internal pressure of the compression chamber 30 becomes high.
  • the threshold value of the internal pressure of the compression chamber 30 to be discharged may be an absolute value, but may be determined depending on the relative level as will be described later.
  • the discharge mechanism 40 in the first embodiment includes a valve body 41, a guide hole 42, a spring material 43, a communication hole 44, and a discharge port 45.
  • the discharge port 45 is provided in the flange portion of the bearing 14 so that the compression chamber 30 and the sealed container 1 communicate with each other.
  • the discharge port 45 is a passage through which the refrigerant passes.
  • An opening of the discharge port 45 on the compression chamber 30 side is provided on the end surface of the compression chamber 30.
  • a central axis 45a is formed at the discharge port 45 so as to follow the direction in which the refrigerant flows.
  • the guide hole 42 is a through hole in which a flat wall having an angle ⁇ of 45 ° or less is formed in the flange portion of the bearing 14 between the opening surface of the discharge port 45 (end surface of the compression chamber 30).
  • One of the guide holes 42 opens into the discharge port 45 and communicates with the discharge port 45.
  • the valve body 41 is installed in the guide hole 42, and can reciprocate along the guide hole 42 slidably in a direction intersecting the central axis 45 a of the discharge port 45. That is, the guide hole 42 is a guide for moving in a direction in which the valve body 41 intersects.
  • FIG. 2 The spring material 43, which is an elastic body, is installed on the opposite surface of the valve body 41 on the discharge port 45 side.
  • the spring material 43 gives a spring force (elastic force) in a direction in which the valve body 41 closes the discharge port 45.
  • the communication hole 44 is provided so as to communicate the space in which the spring material 43 is stored and the inside of the sealed container 1.
  • designated in the shape of the communicating hole 44 For example, it is good also as a structure etc. which open
  • the vane is pressed against the piston 16 by the high-pressure refrigerant discharged into the hermetic container 1, and slides in the vane groove in the radial direction in conjunction with the movement of the piston 16. Plays a role in partitioning high-pressure space.
  • the discharge mechanism 40 opens and closes the discharge port 45 according to the pressure difference between the discharge pressure in the sealed container 1 and the internal pressure in the compression chamber 30, and discharges the compressed refrigerant.
  • the discharge pressure in the sealed container 1 varies depending on the operating conditions of the refrigeration cycle. For this reason, the opening and closing operation of the discharge mechanism 40 is performed at a relative level such that the valve body 41 is opened when the pressure exceeds the predetermined pressure with respect to the discharge pressure in the sealed container 1.
  • FIG. 4 is a view showing the operation of the discharge mechanism 40 according to Embodiment 1 of the present invention.
  • the operation of the discharge mechanism 40 will be described with reference to FIG.
  • the valve body 41 applies a load in the direction of closing the discharge port 45 by the spring force of the spring material 43 and the pressure in the sealed container 1. receive.
  • the valve body 41 is installed at an angle of 45 ° or less from the end face with which the compression chamber 30 contacts. For this reason, as shown in FIG. 4A, the end surface on the discharge port 45 side of the valve body 41 closes the discharge port 45 without unevenness from the end surface of the compression chamber 30 and receives the internal pressure of the compression chamber 30. Become.
  • the refrigerant is compressed in the compression chamber 30, and the end face on the discharge port 45 side of the valve body 41 receives the internal pressure.
  • the valve body 41 moved moves toward the spring member 43 along the guide hole 42 opened from the side surface of the discharge port 45 and starts to open the discharge port 45. 4C, the end surface of the valve body 41 on the discharge port 45 side receives the fluid force of the discharged refrigerant and opens the valve body 41 greatly.
  • the valve body 41 moves to the discharge port 45 side by the spring force of the spring material 43 and starts closing the discharge port 45.
  • the end of the guide hole 42 on the side of the compression chamber 30 is positioned so as to coincide with the end surface of the compression chamber 30 and the inner wall of the cylinder 13, thereby increasing the flow path area of the refrigerant and reducing the discharge pressure loss.
  • the position of the end of the guide hole 42 on the compression chamber 30 side may be a position that is outside the inner wall of the cylinder 13, and in that case, a part of the valve body 41 is in contact with the cylinder 13 and close to it. It may be in contact with an elastic body installed on the cylinder 13 or the like.
  • the end of the guide hole 42 on the side of the compression chamber 30 is positioned slightly closer to the inside of the sealed container 1 than the end surface of the compression chamber 30.
  • the opening on the compression chamber 30 side of the guide hole 42 may be an opening connected to the inside of the sealed container 1 by shortening the length of the discharge port 45 or the like.
  • the discharge path is configured in the order of the compression chamber 30, the valve body 41, and the discharge port 45.
  • the dead volume can be reduced by closing the discharge port 45 with the valve body 41 immediately after the compression chamber 30. For this reason, the efficiency fall of the rotary compressor 100 by re-expansion of a refrigerant
  • coolant can be suppressed.
  • the valve body 41 when the valve body 41 closes the discharge port 45, the end surface on the discharge port 45 side of the valve body 41 is not uneven with respect to the end surface on the compression chamber 30 side of the discharge port 45. Installed. For this reason, the end surface of the compression chamber 30 and the end surface of the valve body 41 on the discharge port 45 side coincide with each other on the same plane.
  • valve body 41 closes the opening surface of the discharge port 45 on the compression chamber 30 side from the inside of the discharge port 45.
  • the dead volume can be minimized, and the valve body 41 can be prevented from projecting into the compression chamber 30 and colliding with the piston 16.
  • “match” means that the surface of the valve body 41 is a slight distance from the end of the discharge port 45 to ensure clearance, for example, the end surface of the valve body 41 on the discharge port 45 side and the end surface of the compression chamber 30. This distance includes a case where the distance is about 1/10 of the entire length of the discharge port 45.
  • a recess, a groove, or the like may be formed on the discharge port 45 side of the valve body 41.
  • FIG. 5 is a diagram showing the ratio of the opening of the discharge port 45 and the ratio of the fluid force acting on the valve element 41 with respect to the installation angle of the valve element 41 according to Embodiment 1 of the present invention.
  • the installation angle of the valve body 41 is the same as the angle ⁇ at which the guide hole 42 is provided.
  • the ratio of the opening of the discharge port 45 to the amount of movement of the valve body 41 decreases. This indicates that when the installation angle of the valve body 41 is increased, the opening width of the discharge port 45 is decreased and the discharge pressure loss is increased.
  • the fluid force acting on the valve body 41 tends to increase as the installation angle increases.
  • the space in which the guide hole 42 and the spring material 43 are installed may be formed by processing the hollow side surface of the bearing 14 into a hollow shape.
  • the guide hole 42 may be formed by providing a groove on the upper surface of the collar portion and covering the groove with a member having a flat surface that acts as the guide hole 42.
  • the communication hole 44 communicates with the space of the spring material 43 and the inside of the sealed container 1 and is immersed in an oil reservoir stored in the bottom of the sealed container 1, the refrigerating machine oil is introduced into the guide hole 42. It is possible to refuel actively. For this reason, the frictional force between the guide hole 42 and the valve body 41 can be reduced. Moreover, the sealing performance of the clearance gap between the guide hole 42 and the valve body 41 improves. For this reason, the refrigerant leakage between the compression chamber 30 and the discharge port 45 can be reduced, and the compressor efficiency can be improved.
  • the material of the valve body 41 is preferably, for example, a lightweight material with excellent wear resistance and impact resistance, such as a resin material. For this reason, the frictional force at the time of opening and closing can be reduced, the delay in opening and closing of the valve body 41 can be suppressed, and the overcompression loss and the suction overheat loss can be reduced. Furthermore, the impact load with the end portion of the guide hole 42 when the valve body 41 is closed can also be reduced. For this reason, the reliability of the rotary compressor 100 can be improved.
  • valve body 41 since the valve body 41 opens and closes the discharge port 45 on the opening surface on the compression chamber 30 side, the dead volume can be reduced. it can. For this reason, the re-expansion loss of a refrigerant
  • coolant can be reduced and compressor efficiency can be improved.
  • the valve body 41 moves from the side surface direction of the discharge port 45 and opens and closes, so that the valve body 41 does not hinder the flow of the refrigerant passing through the discharge port 45. Furthermore, by sliding the valve body 41 through the guide hole 42 of 45 ° or less, the direction in which the refrigerant passing through the discharge port 45 flows and the moving direction of the valve body 41 can be shifted.
  • the flow path area can be secured, the discharge pressure loss can be reduced, and the fluid force when the compressed refrigerant is discharged from the compression chamber 30 can be applied in the opening direction of the valve body 41. . For this reason, it becomes easy to open the valve body 41, and an overcompression loss can be reduced.
  • FIG. FIG. 6 is a diagram illustrating the configuration of the discharge mechanism 40 in the rotary compressor 100 according to Embodiment 2 of the present invention.
  • the configuration of the devices other than the discharge mechanism 40 is the same as that described in the first embodiment.
  • the discharge mechanism 40 of the second embodiment has a guide groove 46.
  • the guide groove 46 is a groove extending in the radial direction parallel to the end face in contact with the compression chamber 30 and communicating with the discharge port 45.
  • the guide groove 46 is installed so that the valve body 41 reciprocates in the guide groove 46 slidably.
  • the end surface of the valve body 41 on the discharge port 45 side has an inclined portion 47 that is an inclined surface extending from the discharge port 45 to the compression chamber 30 side.
  • the inclined portion 47 is in line contact with the end portion of the guide groove 46.
  • a spring material 43 is installed at the end of the valve body 41 opposite to the discharge port 45 side. A spring force acts in a direction in which the valve body 41 closes the discharge port 45.
  • the space where the spring material 43 is installed and the sealed container 1 communicate with each other through the communication hole 44.
  • the refrigerant compressed in the compression chamber 30 enters the gap between the inclined portion 47 of the valve body 41 and the end of the guide groove 46, and applies a radial load to the valve body 41. And the valve body 41 is opened. Then, when the compressed refrigerant begins to flow out to the discharge port 45, the fluid force of the refrigerant discharged to the inclined portion 47 is generated, and the valve body 41 is further opened. When the discharge is completed, the valve element 41 is closed by the spring material 43 and pressed against the end of the guide groove 46.
  • the ratio of the opening area of the discharge port 45 to the movement amount of the valve body 41 is larger than that of the rotary compressor 100 of the first embodiment. For this reason, the discharge pressure loss can be further reduced.
  • the guide groove 46 is formed on the end face of the bearing 14, so that the guide groove 46 can be easily processed.
  • the angle of the inclined portion 47 is increased, the fluid force of the discharged refrigerant is received, so that the valve body 41 is easily opened. And overcompression of a refrigerant can be prevented.
  • a gap between the inclined portion 47 and the end portion of the guide groove 46 becomes a dead volume. For this reason, it is necessary to consider the angle of the inclined part 47 as a design item of a compressor.
  • FIG. 7 is a diagram illustrating the configuration of the discharge mechanism 40 of the rotary compressor 100 according to Embodiment 3 of the present invention.
  • the configuration of the devices other than the discharge mechanism 40 is the same as that described in the first and second embodiments.
  • the rotary compressor 100 of the third embodiment is obtained by changing the shape of the valve body 41 in the discharge mechanism 40 of the second embodiment.
  • the valve body 41 has an arc portion 48.
  • the arc portion 48 has a curved end surface on the discharge port 45 side of the valve body 41 and has an arc shape in the direction of the central axis 45a as shown in FIG.
  • the top of the arc in the arc portion 48 is formed so as to coincide with the central portion of the axial thickness of the valve body 41.
  • the refrigerant compressed in the compression chamber 30 enters the gap between the arc portion 48 of the valve body 41 and the guide groove 46 and generates a radial load on the valve body 41. Then, the valve body 41 is opened. When the compressed refrigerant begins to flow out to the discharge port 45, a fluid force of the refrigerant is generated on the side of the arc portion 48 on the compression chamber 30, and the valve body 41 is further opened. When the discharge is completed, the valve element 41 is closed by the spring material 43 and pressed against the end of the guide groove 46.
  • the end on the discharge port 45 side receives a collision load.
  • the end on the discharge port 45 side is the arc portion 48
  • the arc shape is a curved surface as the collision surface
  • the top of the arc is the valve element 41. I tried to be in the center. Therefore, the direction of the load in the valve body 41 can be matched with the moving direction of the valve body 41, and the valve body 41 can be prevented from being inclined due to the collision load. For this reason, since the attitude
  • FIG. 8 is a diagram illustrating a configuration example of a refrigeration cycle apparatus according to Embodiment 4 of the present invention.
  • FIG. 8 shows an air conditioner as the refrigeration cycle apparatus.
  • the air conditioner of FIG. 8 constitutes a refrigerant circuit in which an outdoor unit (outdoor unit) 101 and an indoor unit (indoor unit) 200 are connected by a gas refrigerant pipe 300 and a liquid refrigerant pipe 400 to circulate the refrigerant.
  • the outdoor unit 101 includes the rotary compressor 100, the four-way valve 102, the outdoor heat exchanger 103, the expansion valve 104, and the outdoor blower 105 described in the first to third embodiments.
  • the indoor unit 200 includes an indoor heat exchanger 201.
  • the rotary compressor 100 compresses and discharges the sucked refrigerant.
  • the operation frequency of the rotary compressor 100 may be arbitrarily changed by, for example, an inverter circuit.
  • the four-way valve 102 is a valve that switches the refrigerant flow between the cooling operation and the heating operation.
  • the outdoor heat exchanger 103 performs heat exchange between the refrigerant and air (outdoor air). For example, it functions as an evaporator during heating operation, evaporating and evaporating the refrigerant. Moreover, it functions as a condenser during the cooling operation, and condenses and liquefies the refrigerant.
  • the outdoor blower 105 also sends outdoor air to the outdoor heat exchanger 103 to promote heat exchange between the outdoor air and the refrigerant.
  • An expansion valve 104 such as a throttling device (flow rate control means) serving as a decompression device is for decompressing and expanding the refrigerant.
  • a throttling device flow rate control means
  • the indoor heat exchanger 201 performs heat exchange between air to be air-conditioned and a refrigerant, for example. During heating operation, it functions as a condenser and condenses and liquefies the refrigerant. Moreover, it functions as an evaporator during cooling operation, evaporating and evaporating the refrigerant.
  • the indoor blower 202 sends air to be air-conditioned to the indoor heat exchanger 201 and promotes heat exchange between the air and the refrigerant.
  • the entire apparatus can be operated efficiently. It can be carried out.
  • the rotary compressor 100 is described as compressing the refrigerant, but the present invention is not limited to this. It can be set as the compressor which compresses other fluids, such as air.
  • the refrigeration cycle apparatus taking the air conditioner as an example has been described, but it can also be used for a refrigeration apparatus, a hot water supply apparatus, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This hermetic compressor is provided with: a hermetic container serving as an outer shell; a compression mechanism installed within the hermetic container and compressing, within a compression chamber, a sucked-in fluid; a discharge opening which is a passage through which the fluid compressed by the compression mechanism is discharged from the compression chamber into the hermetic container; and a discharge mechanism having a valve body which opens and closes the discharge opening, the valve body being operated by the pressure difference between inner pressure in the compression chamber and pressure in the hermetic container. The discharge mechanism is disposed at a position where the valve body closes the compression chamber-side open face of the discharge opening when the valve body moves in a direction intersecting the center axis of the discharge opening and closes the discharge opening.

Description

密閉型圧縮機および冷凍サイクル装置Hermetic compressor and refrigeration cycle apparatus
 この発明は、密閉型圧縮機および冷凍サイクル装置に関するものである。特に、圧縮室の開閉を行うリード弁に係るものである。 The present invention relates to a hermetic compressor and a refrigeration cycle apparatus. In particular, the present invention relates to a reed valve that opens and closes a compression chamber.
 従来、密閉型圧縮機の吐出口にはリード弁が設けられている。圧縮室内が所定の圧力に到達すると、弁体が開き、圧縮室内の冷媒が吐出されると、リード弁のバネ力によって吐出口を閉じる。ここで、吐出口は一定の肉厚を有するため、吐出口の容積、いわゆる死容積に、高圧の冷媒が滞留する。滞留した冷媒が圧縮室で再膨張することで、圧縮機の効率が低下するという課題があった。これに対し、リード弁の先端をテーパ形状の突起部とし、併せて、吐出口をテーパ形状に形成することで、死容積を縮小させるようにした圧縮機がある(たとえば、特許文献1参照)。 Conventionally, a reed valve is provided at the discharge port of the hermetic compressor. When the compression chamber reaches a predetermined pressure, the valve body opens, and when the refrigerant in the compression chamber is discharged, the discharge port is closed by the spring force of the reed valve. Here, since the discharge port has a certain thickness, the high-pressure refrigerant stays in the volume of the discharge port, that is, the so-called dead volume. There was a problem that the efficiency of the compressor was reduced by the re-expansion of the accumulated refrigerant in the compression chamber. On the other hand, there is a compressor in which the tip of the reed valve is a tapered protrusion, and the discharge port is formed in a tapered shape to reduce the dead volume (see, for example, Patent Document 1). .
特開2005-188421号公報Japanese Patent Laid-Open No. 2005-188421
 吐出口をテーパ形状にして死容積を縮小する圧縮機の場合、弁体のテーパ形状が吐出口の流路を狭め、吐出圧力損失を増大させるおそれがある。そこで、吐出圧力損失を低減させるためにテーパ角度を大きくすると、吐出口の肉厚を薄くする必要がある。このとき、薄肉の方向に弁体が開閉するため、弁体の叩きつけ、圧力差などによって、吐出口が圧縮室側に変形しやすく、圧縮室内のピストンと焼きつくおそれがあった。また、リード弁の先端に突起部を設けた圧縮機の場合、曲げ部で応力集中が生じ、リード弁が破損しやすいという課題もあった。 In the case of a compressor in which the discharge port is tapered to reduce the dead volume, the tapered shape of the valve body may narrow the flow path of the discharge port and increase the discharge pressure loss. Therefore, if the taper angle is increased in order to reduce the discharge pressure loss, it is necessary to reduce the thickness of the discharge port. At this time, since the valve body opens and closes in the direction of the thin wall, the discharge port easily deforms to the compression chamber side due to the slamming of the valve body, the pressure difference, and the like, and there is a possibility that the piston in the compression chamber may be burned. Further, in the case of a compressor in which a protrusion is provided at the tip of the reed valve, there is a problem that stress concentration occurs at the bent portion and the reed valve is easily damaged.
 この発明は、上記のような課題を解決するため、吐出口をテーパ形状にしなくても、死容積を減らし、効率向上をはかることができる密閉型圧縮機および冷凍サイクル装置を得ることを目的とする。 In order to solve the above-described problems, an object of the present invention is to provide a hermetic compressor and a refrigeration cycle apparatus capable of reducing dead volume and improving efficiency without having a tapered discharge port. To do.
 この発明に係る密閉型圧縮機は、外殻となる密閉容器と、密閉容器内に設置され、吸入した流体を圧縮室で圧縮する圧縮機構部と、圧縮機構部で圧縮された流体が圧縮室から密閉容器内に吐出される際の通路である吐出口と、吐出口を開閉する弁体を有し、圧縮室の内圧と密閉容器内の圧力との圧力差によって、弁体が動作する吐出機構とを備え、吐出機構は、弁体が吐出口の中心軸と交差する方向に移動し、かつ、弁体が吐出口を閉じるときに吐出口の圧縮室側の開口面を閉じる位置に配置されるものである。 A hermetic compressor according to the present invention includes a hermetic container serving as an outer shell, a compression mechanism that is installed in the hermetic container and compresses the sucked fluid in the compression chamber, and the fluid compressed by the compression mechanism is the compression chamber. A discharge port that is a passage for discharging from the inside of the closed container to the inside of the sealed container and a valve body that opens and closes the discharge port, and the valve body is operated by the pressure difference between the internal pressure of the compression chamber and the pressure in the sealed container. The discharge mechanism is arranged at a position where the valve body moves in a direction intersecting the central axis of the discharge port, and when the valve body closes the discharge port, the opening surface on the compression chamber side of the discharge port is closed. It is what is done.
 また、この発明に係る冷凍サイクル装置は、密閉型圧縮機、凝縮器、減圧装置および蒸発器が配管接続され、冷媒の循環が行われる冷媒回路を有するものである。 Also, the refrigeration cycle apparatus according to the present invention has a refrigerant circuit in which a hermetic compressor, a condenser, a decompression device, and an evaporator are connected by piping to circulate the refrigerant.
 この発明によれば、弁体が、圧縮室側の開口部において、吐出口の開閉を行うようにしたので、死容積を縮小することができ、流体の再膨張を抑え、圧縮機の効率を向上させることができる。 According to the present invention, since the valve body opens and closes the discharge port at the opening on the compression chamber side, the dead volume can be reduced, the re-expansion of the fluid is suppressed, and the efficiency of the compressor is increased. Can be improved.
この発明の実施の形態1に係る密閉型圧縮機の構成を説明する図である。It is a figure explaining the structure of the hermetic compressor which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る軸受14における吐出機構40の構成を説明する図である。It is a figure explaining the structure of the discharge mechanism 40 in the bearing 14 which concerns on Embodiment 1 of this invention. 図2とは別の角度から見た吐出機構40の様子を示す図である。It is a figure which shows the mode of the discharge mechanism 40 seen from the angle different from FIG. この発明の実施の形態1に係る吐出機構40の動作を示す図である。It is a figure which shows operation | movement of the discharge mechanism 40 which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る弁体41の設置角度に対する吐出口45の開口の割合および弁体41に作用する流体力の割合を示す図である。It is a figure which shows the ratio of the opening of the discharge port 45 with respect to the installation angle of the valve body 41 concerning Embodiment 1 of this invention, and the ratio of the fluid force which acts on the valve body 41. FIG. この発明の実施の形態2に係るロータリ圧縮機100における吐出機構40の構成を説明する図である。It is a figure explaining the structure of the discharge mechanism 40 in the rotary compressor 100 which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係るロータリ圧縮機100の吐出機構40の構成を説明する図である。It is a figure explaining the structure of the discharge mechanism 40 of the rotary compressor 100 which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る冷凍サイクル装置の構成例を表す図である。It is a figure showing the structural example of the refrigerating-cycle apparatus which concerns on Embodiment 4 of this invention.
 以下、発明の実施の形態に係る圧縮機および冷凍サイクル装置について、図面などを参照しながら説明する。以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、圧力および温度の高低については、特に絶対的な値との関係で高低が定まっているものではなく、装置などにおける状態、動作などにおいて相対的に定まるものとする。そして、以下の説明では、密閉容器1の長手方向(図における上下方向)を、軸方向とし、密閉容器1の中心軸を通りかつ中心軸に垂直な方向を、径方向として説明する。 Hereinafter, a compressor and a refrigeration cycle apparatus according to an embodiment of the invention will be described with reference to the drawings. In the following drawings, the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below. In the drawings, the size relationship of each component may be different from the actual one. And the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification. In particular, the combination of the components is not limited to the combination in each embodiment, and the components described in the other embodiments can be applied to another embodiment. Further, the pressure and temperature levels are not particularly determined in relation to absolute values, but are relatively determined in the state and operation of the apparatus. In the following description, the longitudinal direction (vertical direction in the figure) of the sealed container 1 is defined as the axial direction, and the direction passing through the central axis of the sealed container 1 and perpendicular to the central axis is described as the radial direction.
実施の形態1.
 図1は、この発明の実施の形態1に係る密閉型圧縮機の構成を説明する図である。ここでは、ロータリ圧縮機100を密閉型圧縮機の一例として説明する。ただし、たとえば、スクロール圧縮機、レシプロ圧縮機など、吐出弁を有する密閉型圧縮機にも適用可能である。また、ここでは、ロータリ圧縮機100が圧縮する流体が、冷凍サイクル装置などにおいて用いる冷媒であるものとして説明する。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating the configuration of a hermetic compressor according to Embodiment 1 of the present invention. Here, the rotary compressor 100 will be described as an example of a hermetic compressor. However, the present invention can also be applied to a hermetic compressor having a discharge valve, such as a scroll compressor or a reciprocating compressor. Here, the description will be made assuming that the fluid compressed by the rotary compressor 100 is a refrigerant used in a refrigeration cycle apparatus or the like.
 ロータリ圧縮機100は、外殻となる密閉容器1の内部に、圧縮機構部10と、回転子21および固定子22で構成され、主軸11を介して圧縮機構部10を駆動する電動機部20とを備えている。圧縮機構部10は、主軸11とともに回転する偏心軸部12、シリンダ13、軸受14および仕切り板15を有している。圧縮室30は、円筒形状のシリンダ13の軸方向端部に軸受14と仕切り板15とを取り付けて形成される空間である。圧縮室30内には、偏心軸部12に摺動自在に嵌合したピストン16とベーン(図示せず)が配置される。シリンダ13には、径方向のベーン溝(図示せず)が形成される。ベーン溝は、ベーンを摺動自在に保持する。ベーンの背面側は、密閉容器1の空間に開放されている。また、シリンダ13には、径方向の吸入口50が形成される。シリンダ13は、吸入マフラ60から吸入された冷媒を、圧縮室30に導く。圧縮室30において圧縮された冷媒は、吐出機構40を介して、圧縮室30から密閉容器1内に吐出される。 The rotary compressor 100 includes a compression mechanism unit 10, a rotor 21, and a stator 22, and an electric motor unit 20 that drives the compression mechanism unit 10 via a main shaft 11 inside the hermetic container 1 serving as an outer shell. It has. The compression mechanism unit 10 includes an eccentric shaft unit 12 that rotates together with the main shaft 11, a cylinder 13, a bearing 14, and a partition plate 15. The compression chamber 30 is a space formed by attaching the bearing 14 and the partition plate 15 to the axial end of the cylindrical cylinder 13. A piston 16 and a vane (not shown) that are slidably fitted to the eccentric shaft portion 12 are disposed in the compression chamber 30. A radial vane groove (not shown) is formed in the cylinder 13. The vane groove slidably holds the vane. The back side of the vane is open to the space of the sealed container 1. The cylinder 13 is formed with a radial suction port 50. The cylinder 13 guides the refrigerant sucked from the suction muffler 60 to the compression chamber 30. The refrigerant compressed in the compression chamber 30 is discharged from the compression chamber 30 into the sealed container 1 via the discharge mechanism 40.
 図2は、この発明の実施の形態1に係る軸受14における吐出機構40の構成を説明する図である。また、図3は、図2とは別の角度から見た吐出機構40の様子を示す図である。図3の弁体41、ガイド穴42および軸受14は、図2に示すA-A面で切ったときの断面における図で示している。軸受14が、吐出機構40を備えている。圧縮室30は、ピストン16の動作によって内圧が増減する。吐出機構40は、圧縮室30内圧と密閉容器1内の内圧との圧力差で動作する。吐出機構40は、圧縮室30内圧が低いときは圧縮室30から密閉容器1内への流体の吐出を防ぎ、圧縮室30内圧が高くなったときに流体を吐出させる。なお、吐出動作させる圧縮室30内圧の閾値は、絶対的な値であってよいが、後述するように相対的な高低によって決まるようにするとよい。 FIG. 2 is a view for explaining the configuration of the discharge mechanism 40 in the bearing 14 according to Embodiment 1 of the present invention. FIG. 3 is a view showing a state of the discharge mechanism 40 viewed from an angle different from that in FIG. The valve body 41, the guide hole 42, and the bearing 14 in FIG. 3 are shown in a cross-sectional view taken along the AA plane shown in FIG. The bearing 14 includes a discharge mechanism 40. In the compression chamber 30, the internal pressure increases and decreases by the operation of the piston 16. The discharge mechanism 40 operates with a pressure difference between the internal pressure of the compression chamber 30 and the internal pressure of the sealed container 1. The discharge mechanism 40 prevents the fluid from being discharged from the compression chamber 30 into the sealed container 1 when the internal pressure of the compression chamber 30 is low, and discharges the fluid when the internal pressure of the compression chamber 30 becomes high. Note that the threshold value of the internal pressure of the compression chamber 30 to be discharged may be an absolute value, but may be determined depending on the relative level as will be described later.
 実施の形態1における吐出機構40は、弁体41、ガイド穴42、バネ材43、連通穴44および吐出口45を有している。吐出口45は、軸受14の鍔部に、圧縮室30と密閉容器1とが連通するように設けられている。圧縮室30から密閉容器1の内部に冷媒が吐出される際に、吐出口45は冷媒が通過する通路である。吐出口45の圧縮室30側の開口部は、圧縮室30の端面に設けられている。また、吐出口45において、冷媒の流れる方向に沿うように中心軸45aが形成されている。ガイド穴42は、軸受14の鍔部に、吐出口45の開口面(圧縮室30端面)との間で、45°以下の角度αの平面の壁が形成される貫通穴である。ガイド穴42の一方は吐出口45に開口しており、吐出口45と連通している。弁体41は、ガイド穴42内に設置され、ガイド穴42に沿って、吐出口45の中心軸45aと交差する方向に摺動自在に往復運動することができる。つまり、ガイド穴42は、弁体41が交差する方向に移動するためのガイドである。また、弁体41の吐出口45側の端面は、弁体41が吐出口45を閉じたときに、図3の点線で示した部分のように、対向する吐出口45の側面と線接触し、かつ、図2のように、圧縮室30の端面に対して凹凸がなくなるように形成されている。弾性体であるバネ材43は、弁体41の吐出口45側の反対面に設置される。バネ材43は、弁体41が吐出口45を閉口する方向にバネ力(弾性力)を与える。連通穴44は、バネ材43が収納された空間と密閉容器1内とを連通するように設けられる。なお、連通穴44の形状に指定はなく、たとえば、バネ材43が収納する空間を密閉容器1内側に広く解放した構造などとしてもよい。 The discharge mechanism 40 in the first embodiment includes a valve body 41, a guide hole 42, a spring material 43, a communication hole 44, and a discharge port 45. The discharge port 45 is provided in the flange portion of the bearing 14 so that the compression chamber 30 and the sealed container 1 communicate with each other. When the refrigerant is discharged from the compression chamber 30 into the sealed container 1, the discharge port 45 is a passage through which the refrigerant passes. An opening of the discharge port 45 on the compression chamber 30 side is provided on the end surface of the compression chamber 30. In addition, a central axis 45a is formed at the discharge port 45 so as to follow the direction in which the refrigerant flows. The guide hole 42 is a through hole in which a flat wall having an angle α of 45 ° or less is formed in the flange portion of the bearing 14 between the opening surface of the discharge port 45 (end surface of the compression chamber 30). One of the guide holes 42 opens into the discharge port 45 and communicates with the discharge port 45. The valve body 41 is installed in the guide hole 42, and can reciprocate along the guide hole 42 slidably in a direction intersecting the central axis 45 a of the discharge port 45. That is, the guide hole 42 is a guide for moving in a direction in which the valve body 41 intersects. Further, when the valve body 41 closes the discharge port 45, the end surface on the discharge port 45 side of the valve body 41 is in line contact with the side surface of the opposite discharge port 45 as shown by the dotted line in FIG. And as shown in FIG. 2, it forms so that an unevenness | corrugation may be eliminated with respect to the end surface of the compression chamber 30. FIG. The spring material 43, which is an elastic body, is installed on the opposite surface of the valve body 41 on the discharge port 45 side. The spring material 43 gives a spring force (elastic force) in a direction in which the valve body 41 closes the discharge port 45. The communication hole 44 is provided so as to communicate the space in which the spring material 43 is stored and the inside of the sealed container 1. In addition, there is no designation | designated in the shape of the communicating hole 44, For example, it is good also as a structure etc. which open | released the space which the spring material 43 accommodates widely in the airtight container 1 inside.
 次に、上記のように構成されたロータリ圧縮機100の動作について説明する。電動機部20が駆動することによって、主軸11に回転力が伝達される。主軸11に伝達された回転力は、主軸11に取り付けられた偏心軸部12に伝達し、偏心軸部12とともにピストン16が、圧縮室30内で回転する。 ピストン16が圧縮室30内で回転すると、吸入口50から低圧の冷媒が圧縮室30内に供給される。さらに、ピストン16が回転することによって、圧縮室30の容積が縮小し冷媒が圧縮される。圧縮された冷媒は、軸受14に形成された吐出機構40から密閉容器1内に吐出される。ベーンは密閉容器1内に放出された高圧の冷媒によって、ピストン16に押し付けられており、ピストン16の動きと連動して、ベーン溝内を径方向に摺動し、圧縮室30の低圧空間と高圧空間とを仕切る役割を果たす。このとき、吐出機構40は、密閉容器1内の吐出圧と圧縮室30の内圧の圧力差によって、吐出口45を開閉し、圧縮した冷媒を吐出する。密閉容器1内の吐出圧は、冷凍サイクルの運転条件によって変わる。このため、吐出機構40は、密閉容器1内の吐出圧に対して所定圧力以上になると弁体41が開となるなど、相対的な高低で開閉動作が行われる。 Next, the operation of the rotary compressor 100 configured as described above will be described. When the motor unit 20 is driven, a rotational force is transmitted to the main shaft 11. The rotational force transmitted to the main shaft 11 is transmitted to the eccentric shaft portion 12 attached to the main shaft 11, and the piston 16 rotates in the compression chamber 30 together with the eccentric shaft portion 12. When the piston 16 rotates in the compression chamber 30, a low-pressure refrigerant is supplied into the compression chamber 30 from the suction port 50. Furthermore, when the piston 16 rotates, the volume of the compression chamber 30 is reduced and the refrigerant is compressed. The compressed refrigerant is discharged from the discharge mechanism 40 formed in the bearing 14 into the sealed container 1. The vane is pressed against the piston 16 by the high-pressure refrigerant discharged into the hermetic container 1, and slides in the vane groove in the radial direction in conjunction with the movement of the piston 16. Plays a role in partitioning high-pressure space. At this time, the discharge mechanism 40 opens and closes the discharge port 45 according to the pressure difference between the discharge pressure in the sealed container 1 and the internal pressure in the compression chamber 30, and discharges the compressed refrigerant. The discharge pressure in the sealed container 1 varies depending on the operating conditions of the refrigeration cycle. For this reason, the opening and closing operation of the discharge mechanism 40 is performed at a relative level such that the valve body 41 is opened when the pressure exceeds the predetermined pressure with respect to the discharge pressure in the sealed container 1.
 図4は、この発明の実施の形態1に係る吐出機構40の動作を示す図である。図4に沿って、吐出機構40の動作について説明する。まず、圧縮室30の内圧が密閉容器1内の圧力よりも小さいときは、弁体41は、バネ材43のバネ力と密閉容器1内の圧力とにより、吐出口45を閉じる方向に荷重を受ける。実施の形態1のロータリ圧縮機100においては、圧縮室30の接する端面から45°以下の角度で弁体41を設置している。このため、図4(a)に示すように、弁体41の吐出口45側の端面は、圧縮室30の端面から凹凸なく吐出口45を閉塞するとともに、圧縮室30の内圧を受けることになる。 FIG. 4 is a view showing the operation of the discharge mechanism 40 according to Embodiment 1 of the present invention. The operation of the discharge mechanism 40 will be described with reference to FIG. First, when the internal pressure in the compression chamber 30 is smaller than the pressure in the sealed container 1, the valve body 41 applies a load in the direction of closing the discharge port 45 by the spring force of the spring material 43 and the pressure in the sealed container 1. receive. In the rotary compressor 100 according to the first embodiment, the valve body 41 is installed at an angle of 45 ° or less from the end face with which the compression chamber 30 contacts. For this reason, as shown in FIG. 4A, the end surface on the discharge port 45 side of the valve body 41 closes the discharge port 45 without unevenness from the end surface of the compression chamber 30 and receives the internal pressure of the compression chamber 30. Become.
 次に、圧縮室30内で冷媒が圧縮され、弁体41の吐出口45側端面が内圧を受ける。この内圧による荷重が、密閉容器1内の圧力およびバネ材43のバネ力の合力よりも大きくなると、図4(b)に示すように、吐出口45の内部に突出して吐出口45を塞いでいた弁体41は、吐出口45の側面から開口するガイド穴42に沿って、バネ材43側へ移動し、吐出口45を開口し始める。そして、図4(c)に示すように、弁体41の吐出口45側の端面は、吐出される冷媒の流体力を受けて、弁体41を大きく開口する。冷媒の吐出が完了すると、弁体41は、バネ材43のバネ力によって、吐出口45側へ移動し、吐出口45を閉口し始める。そして、圧縮室30の内圧が密閉容器1内の圧力よりも小さくなり、図4(a)に示すように、密閉容器1内と圧縮室30内の圧力差によって、吐出口45側の先端がガイド穴42の端部に押し付けられ、吐出口45は完全に閉口する。 Next, the refrigerant is compressed in the compression chamber 30, and the end face on the discharge port 45 side of the valve body 41 receives the internal pressure. When the load due to the internal pressure becomes larger than the resultant pressure of the pressure in the hermetic container 1 and the spring force of the spring member 43, as shown in FIG. The valve body 41 moved moves toward the spring member 43 along the guide hole 42 opened from the side surface of the discharge port 45 and starts to open the discharge port 45. 4C, the end surface of the valve body 41 on the discharge port 45 side receives the fluid force of the discharged refrigerant and opens the valve body 41 greatly. When the discharge of the refrigerant is completed, the valve body 41 moves to the discharge port 45 side by the spring force of the spring material 43 and starts closing the discharge port 45. And the internal pressure of the compression chamber 30 becomes smaller than the pressure in the airtight container 1, and as shown to Fig.4 (a), the front-end | tip by the side of the discharge outlet 45 side by the pressure difference in the airtight container 1 and the compression chamber 30 is shown. Pressed against the end of the guide hole 42, the discharge port 45 is completely closed.
 なお、図4において、ガイド穴42の圧縮室30側の端を圧縮室30の端面とシリンダ13の内壁とに一致する位置させたので、冷媒の流路面積が大きくなり、吐出圧力損失を低減できるが、必ずしも一致する必要はない。たとえば、ガイド穴42の圧縮室30側の端の位置が、シリンダ13の内壁よりも外側となる位置であってもよく、その場合に弁体41の一部がシリンダ13に接する、近接する、シリンダ13の上に設置した弾性体などに接する、などとしてもよい。また、弁体41とピストン16とのクリアランスを確保するなどのために、ガイド穴42の圧縮室30側の端を圧縮室30の端面よりもわずかに密閉容器1内部側となる位置にしてもよい。また、吐出口45の長さを短くするなどして、ガイド穴42の圧縮室30側の開口部を密閉容器1内部側とつながる開口部としてもよい。また、吐出口45が大きく開口した際に、弁体41の先端が吐出口45の側面の開口の内部に入ってしまわずに、吐出口45の内部に少し突出して弁体41が部分的に吐出口45を覆った状態となっていてもよい。 In FIG. 4, the end of the guide hole 42 on the side of the compression chamber 30 is positioned so as to coincide with the end surface of the compression chamber 30 and the inner wall of the cylinder 13, thereby increasing the flow path area of the refrigerant and reducing the discharge pressure loss. Yes, but not necessarily. For example, the position of the end of the guide hole 42 on the compression chamber 30 side may be a position that is outside the inner wall of the cylinder 13, and in that case, a part of the valve body 41 is in contact with the cylinder 13 and close to it. It may be in contact with an elastic body installed on the cylinder 13 or the like. Further, in order to ensure the clearance between the valve body 41 and the piston 16, the end of the guide hole 42 on the side of the compression chamber 30 is positioned slightly closer to the inside of the sealed container 1 than the end surface of the compression chamber 30. Good. Alternatively, the opening on the compression chamber 30 side of the guide hole 42 may be an opening connected to the inside of the sealed container 1 by shortening the length of the discharge port 45 or the like. Further, when the discharge port 45 is greatly opened, the tip of the valve body 41 does not enter the inside of the opening on the side surface of the discharge port 45, and slightly protrudes into the discharge port 45 so that the valve body 41 is partially The discharge port 45 may be covered.
 実施の形態1のロータリ圧縮機100では、吐出経路が圧縮室30、弁体41、吐出口45の順となるように構成されている。そして、圧縮室30の直後で、弁体41により吐出口45を閉塞することで、死容積を縮小することができる。このため、冷媒の再膨張によるロータリ圧縮機100の効率低下を抑えることができる。ここで、弁体41は、弁体41が吐出口45を閉じたときに、弁体41の吐出口45側の端面が、吐出口45の圧縮室30側の端面に対して凹凸を生じないように設置される。このため、圧縮室30の端面と弁体41の吐出口45側の端面とが、同一の平面で一致する。つまり、弁体41は、吐出口45の圧縮室30側の開口面を吐出口45の内側から閉じる。これにより、死容積を最小にすることができ、かつ、弁体41が圧縮室30の内部に突出して、ピストン16と衝突することを防止することができる。ここで、「一致」とは、クリアランス確保などのために弁体41の面が吐出口45の端とわずかな距離、たとえば、弁体41の吐出口45側の端面と圧縮室30の端面との距離が、吐出口45の全長の10分の1程度の距離だけ離れている場合も含むものとする。また、圧縮室30からの圧力を受ける面積を増やすために、弁体41において、弁体41の吐出口45側に、窪み、溝などが形成されていてもよい。 In the rotary compressor 100 of the first embodiment, the discharge path is configured in the order of the compression chamber 30, the valve body 41, and the discharge port 45. The dead volume can be reduced by closing the discharge port 45 with the valve body 41 immediately after the compression chamber 30. For this reason, the efficiency fall of the rotary compressor 100 by re-expansion of a refrigerant | coolant can be suppressed. Here, in the valve body 41, when the valve body 41 closes the discharge port 45, the end surface on the discharge port 45 side of the valve body 41 is not uneven with respect to the end surface on the compression chamber 30 side of the discharge port 45. Installed. For this reason, the end surface of the compression chamber 30 and the end surface of the valve body 41 on the discharge port 45 side coincide with each other on the same plane. That is, the valve body 41 closes the opening surface of the discharge port 45 on the compression chamber 30 side from the inside of the discharge port 45. As a result, the dead volume can be minimized, and the valve body 41 can be prevented from projecting into the compression chamber 30 and colliding with the piston 16. Here, “match” means that the surface of the valve body 41 is a slight distance from the end of the discharge port 45 to ensure clearance, for example, the end surface of the valve body 41 on the discharge port 45 side and the end surface of the compression chamber 30. This distance includes a case where the distance is about 1/10 of the entire length of the discharge port 45. Moreover, in order to increase the area which receives the pressure from the compression chamber 30, in the valve body 41, a recess, a groove, or the like may be formed on the discharge port 45 side of the valve body 41.
 図5は、この発明の実施の形態1に係る弁体41の設置角度に対する吐出口45の開口の割合および弁体41に作用する流体力の割合を示す図である。図5より、弁体41の設置角度は、ガイド穴42が設けられた角度αと同じである。弁体41の設置角度が大きくなるほど、弁体41の移動量に対する吐出口45の開口の割合は小さくなる。これは、弁体41の設置角度が大きくなると、吐出口45の開口幅が小さくなり、吐出圧力損失が大きくなることを示している。一方で、設置角度が大きいほど、弁体41に作用する流体力は大きくなる傾向にある。このため、弁体41が開きやすくなり、過圧縮損失が低減される。双方の損失は、設置角度においてトレードオフの関係にあるが、流体力については、弁体41の先端形状によって調整することが可能である。このため、設置角度を45°以下とすることで、吐出圧力損失を低減しながら、死容積を縮小することができる。 FIG. 5 is a diagram showing the ratio of the opening of the discharge port 45 and the ratio of the fluid force acting on the valve element 41 with respect to the installation angle of the valve element 41 according to Embodiment 1 of the present invention. From FIG. 5, the installation angle of the valve body 41 is the same as the angle α at which the guide hole 42 is provided. As the installation angle of the valve body 41 increases, the ratio of the opening of the discharge port 45 to the amount of movement of the valve body 41 decreases. This indicates that when the installation angle of the valve body 41 is increased, the opening width of the discharge port 45 is decreased and the discharge pressure loss is increased. On the other hand, the fluid force acting on the valve body 41 tends to increase as the installation angle increases. For this reason, it becomes easy to open the valve body 41, and an overcompression loss is reduced. Both losses are in a trade-off relationship in the installation angle, but the fluid force can be adjusted by the tip shape of the valve body 41. For this reason, by setting the installation angle to 45 ° or less, it is possible to reduce the dead volume while reducing the discharge pressure loss.
 ここで、ガイド穴42およびバネ材43が設置される空間は、軸受14の鍔部側面から中空状に加工し、形成してもよい。また、ガイド穴42は、鍔部上面に溝を設け、ガイド穴42として作用する平面を持つ部材で溝を覆うことで形成してもよい。 Here, the space in which the guide hole 42 and the spring material 43 are installed may be formed by processing the hollow side surface of the bearing 14 into a hollow shape. Alternatively, the guide hole 42 may be formed by providing a groove on the upper surface of the collar portion and covering the groove with a member having a flat surface that acts as the guide hole 42.
 また、連通穴44が、バネ材43の空間と密閉容器1内と連通しており、かつ、密閉容器1の底部に貯油された油溜りに浸漬させれば、ガイド穴42に、冷凍機油を積極的に給油することができる。このため、ガイド穴42と弁体41との間の摩擦力を低減することができる。また、ガイド穴42と弁体41との間の隙間のシール性能が向上する。このため、圧縮室30と吐出口45との間の冷媒漏れを低減して、圧縮機効率を向上させることができる。 Further, if the communication hole 44 communicates with the space of the spring material 43 and the inside of the sealed container 1 and is immersed in an oil reservoir stored in the bottom of the sealed container 1, the refrigerating machine oil is introduced into the guide hole 42. It is possible to refuel actively. For this reason, the frictional force between the guide hole 42 and the valve body 41 can be reduced. Moreover, the sealing performance of the clearance gap between the guide hole 42 and the valve body 41 improves. For this reason, the refrigerant leakage between the compression chamber 30 and the discharge port 45 can be reduced, and the compressor efficiency can be improved.
 そして、弁体41の材質は、好適には、たとえば、樹脂材などの軽量かつ耐摩耗性、耐衝撃に優れたものを用いる。このため、開閉時の摩擦力を低減することができ、弁体41の開き遅れおよび閉じ遅れを抑え、過圧縮損失および吸入過熱損失を低減することができる。さらに、弁体41が閉口するときのガイド穴42端部との衝撃荷重も低減することができる。このため、ロータリ圧縮機100の信頼性を向上することができる。 The material of the valve body 41 is preferably, for example, a lightweight material with excellent wear resistance and impact resistance, such as a resin material. For this reason, the frictional force at the time of opening and closing can be reduced, the delay in opening and closing of the valve body 41 can be suppressed, and the overcompression loss and the suction overheat loss can be reduced. Furthermore, the impact load with the end portion of the guide hole 42 when the valve body 41 is closed can also be reduced. For this reason, the reliability of the rotary compressor 100 can be improved.
 以上のように、実施の形態1のロータリ圧縮機100によれば、弁体41が、圧縮室30側の開口面において、吐出口45を開閉するようにしたので、死容積を縮小させることができる。このため、冷媒の再膨張損失を低減することができ、圧縮機効率を向上させることができる。また、弁体41が、吐出口45の側面方向から移動して開閉することで、弁体41が、吐出口45を通過する冷媒の流れを妨げない。さらに、弁体41を、45°以下のガイド穴42でスライドさせることで、吐出口45を通過する冷媒の流れる方向と弁体41の移動方向とをずらすことができる。これにより、流路面積を確保することができ、吐出圧力損失を低減できるとともに、圧縮された冷媒が圧縮室30から吐出されるときの流体力を弁体41の開口方向に作用させることができる。このため、弁体41が開きやすくなり、過圧縮損失を低減することができる。 As described above, according to the rotary compressor 100 of the first embodiment, since the valve body 41 opens and closes the discharge port 45 on the opening surface on the compression chamber 30 side, the dead volume can be reduced. it can. For this reason, the re-expansion loss of a refrigerant | coolant can be reduced and compressor efficiency can be improved. Further, the valve body 41 moves from the side surface direction of the discharge port 45 and opens and closes, so that the valve body 41 does not hinder the flow of the refrigerant passing through the discharge port 45. Furthermore, by sliding the valve body 41 through the guide hole 42 of 45 ° or less, the direction in which the refrigerant passing through the discharge port 45 flows and the moving direction of the valve body 41 can be shifted. Thereby, the flow path area can be secured, the discharge pressure loss can be reduced, and the fluid force when the compressed refrigerant is discharged from the compression chamber 30 can be applied in the opening direction of the valve body 41. . For this reason, it becomes easy to open the valve body 41, and an overcompression loss can be reduced.
実施の形態2.
 図6は、この発明の実施の形態2に係るロータリ圧縮機100における吐出機構40の構成を説明する図である。実施の形態2のロータリ圧縮機100において、吐出機構40以外の機器などの構成は、実施の形態1で説明したものと同様である。
Embodiment 2. FIG.
FIG. 6 is a diagram illustrating the configuration of the discharge mechanism 40 in the rotary compressor 100 according to Embodiment 2 of the present invention. In the rotary compressor 100 of the second embodiment, the configuration of the devices other than the discharge mechanism 40 is the same as that described in the first embodiment.
 図6において、実施の形態2の吐出機構40は、ガイド溝46を有している。ガイド溝46は、圧縮室30に接する端面に平行で、吐出口45に連通する径方向に延びる溝である。ガイド溝46は、弁体41をガイド溝46に摺動自在に往復運動するように設置する。また、弁体41の吐出口45側の端面は、吐出口45から圧縮室30側へ広がる傾斜面となっている傾斜部47を有している。傾斜部47は、ガイド溝46の端部と線接触する。また、弁体41の吐出口45側とは反対側の端部に、バネ材43が設置される。弁体41が吐出口45を閉口する方向にバネ力が作用する。そして、バネ材43が設置される空間と密閉容器1とは、連通穴44で連通している。 In FIG. 6, the discharge mechanism 40 of the second embodiment has a guide groove 46. The guide groove 46 is a groove extending in the radial direction parallel to the end face in contact with the compression chamber 30 and communicating with the discharge port 45. The guide groove 46 is installed so that the valve body 41 reciprocates in the guide groove 46 slidably. Further, the end surface of the valve body 41 on the discharge port 45 side has an inclined portion 47 that is an inclined surface extending from the discharge port 45 to the compression chamber 30 side. The inclined portion 47 is in line contact with the end portion of the guide groove 46. Further, a spring material 43 is installed at the end of the valve body 41 opposite to the discharge port 45 side. A spring force acts in a direction in which the valve body 41 closes the discharge port 45. The space where the spring material 43 is installed and the sealed container 1 communicate with each other through the communication hole 44.
 このように構成された吐出機構40においては、圧縮室30で圧縮された冷媒が、弁体41の傾斜部47とガイド溝46端部との隙間に入り、弁体41に径方向の荷重を発生させて、弁体41を開く。そして、圧縮された冷媒が、吐出口45に流出し始めると、傾斜部47に吐出する冷媒の流体力が生じ、さらに弁体41を開く。吐出が完了すると、バネ材43によって、弁体41は閉口し、ガイド溝46の端部に押し付けられる。 In the discharge mechanism 40 configured as described above, the refrigerant compressed in the compression chamber 30 enters the gap between the inclined portion 47 of the valve body 41 and the end of the guide groove 46, and applies a radial load to the valve body 41. And the valve body 41 is opened. Then, when the compressed refrigerant begins to flow out to the discharge port 45, the fluid force of the refrigerant discharged to the inclined portion 47 is generated, and the valve body 41 is further opened. When the discharge is completed, the valve element 41 is closed by the spring material 43 and pressed against the end of the guide groove 46.
 実施の形態2のロータリ圧縮機100によれば、弁体41の移動量に対する吐出口45の開口面積の割合が、実施の形態1のロータリ圧縮機100よりも大きくなる。このため、さらに、吐出圧力損失を低減することができる。また、実施の形態1のロータリ圧縮機100では、軸受14の端面にガイド溝46を形成するようにしたので、ガイド溝46の加工がしやすくなる。ここで、傾斜部47の角度を大きくすれば、吐出された冷媒の流体力を受けるので、弁体41が開きやすくなる。そして、冷媒の過圧縮を防ぐことができる。ただし、傾斜部47を設けた場合、傾斜部47とガイド溝46端部との隙間が死容積となる。このため、傾斜部47の角度などを、圧縮機の設計項目として考慮する必要がある。 According to the rotary compressor 100 of the second embodiment, the ratio of the opening area of the discharge port 45 to the movement amount of the valve body 41 is larger than that of the rotary compressor 100 of the first embodiment. For this reason, the discharge pressure loss can be further reduced. Further, in the rotary compressor 100 of the first embodiment, the guide groove 46 is formed on the end face of the bearing 14, so that the guide groove 46 can be easily processed. Here, if the angle of the inclined portion 47 is increased, the fluid force of the discharged refrigerant is received, so that the valve body 41 is easily opened. And overcompression of a refrigerant can be prevented. However, when the inclined portion 47 is provided, a gap between the inclined portion 47 and the end portion of the guide groove 46 becomes a dead volume. For this reason, it is necessary to consider the angle of the inclined part 47 as a design item of a compressor.
実施の形態3.
 図7は、この発明の実施の形態3に係るロータリ圧縮機100の吐出機構40の構成を説明する図である。実施の形態3のロータリ圧縮機100において、吐出機構40以外の機器などの構成は、実施の形態1および実施の形態2で説明したものと同様である。
Embodiment 3 FIG.
FIG. 7 is a diagram illustrating the configuration of the discharge mechanism 40 of the rotary compressor 100 according to Embodiment 3 of the present invention. In the rotary compressor 100 of the third embodiment, the configuration of the devices other than the discharge mechanism 40 is the same as that described in the first and second embodiments.
 実施の形態3のロータリ圧縮機100は、実施の形態2の吐出機構40における弁体41の形状を変更したものである。図7に示すように、弁体41は、円弧部48を有する。円弧部48は、弁体41の吐出口45側の端面が曲面であり、図7に示すように、中心軸45a方向については、円弧形状となっている。円弧部48における円弧の頂点が、弁体41の軸方向の厚みの中央部分と一致するように形成されている。 The rotary compressor 100 of the third embodiment is obtained by changing the shape of the valve body 41 in the discharge mechanism 40 of the second embodiment. As shown in FIG. 7, the valve body 41 has an arc portion 48. The arc portion 48 has a curved end surface on the discharge port 45 side of the valve body 41 and has an arc shape in the direction of the central axis 45a as shown in FIG. The top of the arc in the arc portion 48 is formed so as to coincide with the central portion of the axial thickness of the valve body 41.
 このように構成された吐出機構40においては、圧縮室30で圧縮された冷媒は、弁体41の円弧部48とガイド溝46との隙間に入り、弁体41に径方向の荷重を発生させ、弁体41を開く。圧縮された冷媒が吐出口45に流出し始めると、円弧部48の圧縮室30側に冷媒の流体力が生じ、さらに弁体41を開く。吐出が完了すると、バネ材43によって弁体41は閉口し、ガイド溝46の端部に押付けられる。 In the discharge mechanism 40 configured as described above, the refrigerant compressed in the compression chamber 30 enters the gap between the arc portion 48 of the valve body 41 and the guide groove 46 and generates a radial load on the valve body 41. Then, the valve body 41 is opened. When the compressed refrigerant begins to flow out to the discharge port 45, a fluid force of the refrigerant is generated on the side of the arc portion 48 on the compression chamber 30, and the valve body 41 is further opened. When the discharge is completed, the valve element 41 is closed by the spring material 43 and pressed against the end of the guide groove 46.
 実施の形態3のロータリ圧縮機100によれば、弁体41が吐出口45を開口する際、吐出口45側の端部は衝突荷重を受ける。このため、実施の形態3のロータリ圧縮機100によれば、吐出口45側の端部を円弧部48とし、衝突面を曲面とする円弧形状をなし、かつ、円弧の頂点が弁体41の中央となるようにした。したがって、弁体41における荷重の方向を弁体41の移動方向と一致させ、弁体41が衝突荷重によって傾いてしまうことを防ぐことができる。このため、弁体41の姿勢を安定させ、弁体41の焼き付きを防ぐことができるので、ロータリ圧縮機100の信頼性が向上する。 According to the rotary compressor 100 of the third embodiment, when the valve body 41 opens the discharge port 45, the end on the discharge port 45 side receives a collision load. For this reason, according to the rotary compressor 100 of the third embodiment, the end on the discharge port 45 side is the arc portion 48, the arc shape is a curved surface as the collision surface, and the top of the arc is the valve element 41. I tried to be in the center. Therefore, the direction of the load in the valve body 41 can be matched with the moving direction of the valve body 41, and the valve body 41 can be prevented from being inclined due to the collision load. For this reason, since the attitude | position of the valve body 41 can be stabilized and the burning of the valve body 41 can be prevented, the reliability of the rotary compressor 100 improves.
実施の形態4.
 図8は、この発明の実施の形態4に係る冷凍サイクル装置の構成例を表す図である。ここで、図8では冷凍サイクル装置として空気調和装置を示している。図8の空気調和装置は、室外機(室外ユニット)101と室内機(室内ユニット)200とをガス冷媒配管300、液冷媒配管400により配管接続し、冷媒を循環させる冷媒回路を構成する。室外機101は、実施の形態1~実施の形態3において説明したロータリ圧縮機100、四方弁102、室外熱交換器103、膨張弁104および室外送風機105を有している。また、室内機200は、室内熱交換器201を有している。
Embodiment 4 FIG.
FIG. 8 is a diagram illustrating a configuration example of a refrigeration cycle apparatus according to Embodiment 4 of the present invention. Here, FIG. 8 shows an air conditioner as the refrigeration cycle apparatus. The air conditioner of FIG. 8 constitutes a refrigerant circuit in which an outdoor unit (outdoor unit) 101 and an indoor unit (indoor unit) 200 are connected by a gas refrigerant pipe 300 and a liquid refrigerant pipe 400 to circulate the refrigerant. The outdoor unit 101 includes the rotary compressor 100, the four-way valve 102, the outdoor heat exchanger 103, the expansion valve 104, and the outdoor blower 105 described in the first to third embodiments. The indoor unit 200 includes an indoor heat exchanger 201.
 ロータリ圧縮機100は、吸入した冷媒を圧縮して吐出する。ここで、特に限定するものではないが、ロータリ圧縮機100を、たとえば、インバータ回路などにより、運転周波数を任意に変化できるようにしてもよい。四方弁102は、冷房運転時と暖房運転時とによって冷媒の流れを切り換える弁である。 The rotary compressor 100 compresses and discharges the sucked refrigerant. Here, although not particularly limited, the operation frequency of the rotary compressor 100 may be arbitrarily changed by, for example, an inverter circuit. The four-way valve 102 is a valve that switches the refrigerant flow between the cooling operation and the heating operation.
 室外熱交換器103は、冷媒と空気(室外の空気)との熱交換を行う。たとえば、暖房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。また、冷房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。また、室外送風機105は、室外熱交換器103に室外の空気を送り込み、室外の空気と冷媒との熱交換を促す。 The outdoor heat exchanger 103 performs heat exchange between the refrigerant and air (outdoor air). For example, it functions as an evaporator during heating operation, evaporating and evaporating the refrigerant. Moreover, it functions as a condenser during the cooling operation, and condenses and liquefies the refrigerant. The outdoor blower 105 also sends outdoor air to the outdoor heat exchanger 103 to promote heat exchange between the outdoor air and the refrigerant.
 減圧装置となる絞り装置(流量制御手段)などの膨張弁104は冷媒を減圧して膨張させるものである。たとえば電子式膨張弁などで構成した場合には、制御手段(図示せず)などの指示に基づいて開度調整を行う。室内熱交換器201は、たとえば空調対象となる空気と冷媒との熱交換を行う。暖房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。また、冷房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。室内送風機202は、空調対象となる空気を室内熱交換器201に送り込み、その空気と冷媒との熱交換を促す。 An expansion valve 104 such as a throttling device (flow rate control means) serving as a decompression device is for decompressing and expanding the refrigerant. For example, in the case of an electronic expansion valve or the like, the opening degree is adjusted based on an instruction from a control means (not shown). The indoor heat exchanger 201 performs heat exchange between air to be air-conditioned and a refrigerant, for example. During heating operation, it functions as a condenser and condenses and liquefies the refrigerant. Moreover, it functions as an evaporator during cooling operation, evaporating and evaporating the refrigerant. The indoor blower 202 sends air to be air-conditioned to the indoor heat exchanger 201 and promotes heat exchange between the air and the refrigerant.
 以上のように、実施の形態4の冷凍サイクル装置によれば、実施の形態1~実施の形態3で説明したロータリ圧縮機100を機器として有しているので、装置全体として効率のよい運転を行うことができる。 As described above, according to the refrigeration cycle apparatus of the fourth embodiment, since the rotary compressor 100 described in the first to third embodiments is included as a device, the entire apparatus can be operated efficiently. It can be carried out.
 上述した実施の形態1~実施の形態4においては、ロータリ圧縮機100が冷媒を圧縮するものとして説明したが、これに限定するものではない。空気など、他の流体を圧縮する圧縮機とすることができる。 In Embodiments 1 to 4 described above, the rotary compressor 100 is described as compressing the refrigerant, but the present invention is not limited to this. It can be set as the compressor which compresses other fluids, such as air.
 上述の実施の形態4では空気調和装置を例にした冷凍サイクル装置について説明したが、たとえば、冷凍装置、給湯装置などにも用いることができる。 In the above-described fourth embodiment, the refrigeration cycle apparatus taking the air conditioner as an example has been described, but it can also be used for a refrigeration apparatus, a hot water supply apparatus, and the like.
 1 密閉容器、10 圧縮機構部、11 主軸、12 偏心軸部、13 シリンダ、14 軸受、15 仕切り板、16 ピストン、20 電動機部、21 回転子、22 固定子、30 圧縮室、40 吐出機構、41 弁体、42 ガイド穴、43 バネ材、44 連通穴、45 吐出口、45a 中心軸、46 ガイド溝、47 傾斜部、48 円弧部、50 吸入口、60 吸入マフラ、100 ロータリ圧縮機、101 室外機、102 四方弁、103 室外熱交換器、104 膨張弁、105 室外送風機、200 室内機、201 室内熱交換器、202 室内送風機、300 ガス冷媒配管、400 液冷媒配管。 DESCRIPTION OF SYMBOLS 1 Airtight container, 10 Compression mechanism part, 11 Main shaft, 12 Eccentric shaft part, 13 Cylinder, 14 Bearing, 15 Partition plate, 16 Piston, 20 Electric motor part, 21 Rotor, 22 Stator, 30 Compression chamber, 40 Discharge mechanism, 41 valve body, 42 guide hole, 43 spring material, 44 communication hole, 45 discharge port, 45a central axis, 46 guide groove, 47 inclined portion, 48 arc portion, 50 suction port, 60 suction muffler, 100 rotary compressor, 101 Outdoor unit, 102 four-way valve, 103 outdoor heat exchanger, 104 expansion valve, 105 outdoor fan, 200 indoor unit, 201 indoor heat exchanger, 202 indoor fan, 300 gas refrigerant pipe, 400 liquid refrigerant pipe.

Claims (9)

  1.  外殻となる密閉容器と、
     前記密閉容器内に設置され、吸入した流体を圧縮室で圧縮する圧縮機構部と、
     前記圧縮機構部で圧縮された前記流体が前記圧縮室から前記密閉容器内に吐出される際の通路である吐出口と、
     前記吐出口を開閉する弁体を有し、前記圧縮室の内圧と前記密閉容器内の圧力との圧力差によって、前記弁体が動作する吐出機構とを備え、
     前記吐出機構は、前記弁体が前記吐出口の中心軸と交差する方向に移動し、かつ、前記弁体が前記吐出口を閉じるときに前記吐出口の前記圧縮室側の開口面を閉じる位置に配置される密閉型圧縮機。
    A sealed container as an outer shell,
    A compression mechanism that is installed in the sealed container and compresses the sucked fluid in a compression chamber;
    A discharge port which is a passage when the fluid compressed by the compression mechanism is discharged from the compression chamber into the sealed container;
    A valve body that opens and closes the discharge port, and a discharge mechanism that operates the valve body by a pressure difference between an internal pressure of the compression chamber and a pressure in the sealed container,
    The discharge mechanism is a position in which the valve body moves in a direction intersecting the central axis of the discharge port, and the valve body closes the compression chamber side opening surface of the discharge port when the valve body closes the discharge port. Hermetic compressor placed in the.
  2.  前記弁体は、前記吐出口の側面側から前記吐出口を開閉する請求項1に記載の密閉型圧縮機。 The hermetic compressor according to claim 1, wherein the valve body opens and closes the discharge port from a side surface side of the discharge port.
  3.  前記吐出機構は、前記吐出口の中心軸と交差する方向にのびて、前記弁体の移動におけるガイドとなり、前記弁体の移動方向側の一方の端が、前記吐出口の側面の一部に開口するガイド穴またはガイド溝と、
     前記吐出口が閉じる方向に前記弁体に弾性力を与える弾性体とを備え、
     前記弁体には、前記吐出口が開く方向に前記圧縮室の内圧がかかるようにされ、
     前記圧縮室の内圧が前記密閉容器内の圧力よりも小さくなると、前記弁体の端が、これと対向する前記吐出口の側面に接して前記吐出口を閉じ、
     前記密閉容器内の圧力および前記弾性体のバネ力の合力よりも大きくなると、前記弁体の端が、これと対向する前記吐出口の側面から離れて前記吐出口を開く請求項1または請求項2に記載の密閉型圧縮機。
    The discharge mechanism extends in a direction intersecting the central axis of the discharge port and serves as a guide for the movement of the valve body, and one end on the movement direction side of the valve body is a part of the side surface of the discharge port. An open guide hole or guide groove,
    An elastic body for applying an elastic force to the valve body in a direction in which the discharge port is closed,
    The valve body is configured to apply an internal pressure of the compression chamber in a direction in which the discharge port opens.
    When the internal pressure of the compression chamber becomes smaller than the pressure in the sealed container, the end of the valve body is in contact with the side surface of the discharge port facing it, closing the discharge port,
    The end of the said valve body leaves | separates from the side surface of the said discharge port facing this, and opens the said discharge port if it becomes larger than the resultant force of the pressure in the said airtight container, and the spring force of the said elastic body. 2. The hermetic compressor according to 2.
  4.  前記ガイド穴は、前記吐出口の前記圧縮室側の開口面との間で、45°以下の角度をなす平面の壁を有して、前記吐出口と連通し、
     前記弾性体は、前記弁体の前記吐出口側とは反対側の端部において、前記弁体に弾性力を与え、
     前記弾性体が設置された空間と前記密閉容器内とが連通し、
     前記弁体は、前記ガイド穴の前記壁の方向に沿って移動し、前記吐出口を閉じたときに、前記吐出口側の端部と前記ガイド穴の端部とが線接触し、かつ、前記圧縮室の端面と凹凸なく一致するような面を有する請求項3に記載の密閉型圧縮機。
    The guide hole has a flat wall that forms an angle of 45 ° or less with the opening surface of the discharge port on the compression chamber side, and communicates with the discharge port.
    The elastic body gives an elastic force to the valve body at the end of the valve body opposite to the discharge port side,
    The space where the elastic body is installed communicates with the inside of the sealed container,
    The valve body moves along the direction of the wall of the guide hole, and when the discharge port is closed, the end on the discharge port side and the end of the guide hole are in line contact, and The hermetic compressor according to claim 3, wherein the hermetic compressor has a surface that matches the end surface of the compression chamber without unevenness.
  5.  前記ガイド溝は、前記圧縮室の端面と平行な壁を有して、前記吐出口と連通し、
     前記弾性体は、前記吐出口側とは反対側の前記弁体の端部に保持され、
     前記弾性体が設置された空間と前記密閉容器内とが連通し、
     前記弁体は、前記平行な壁に沿って前記ガイド溝内を移動し、前記吐出口を閉じたときに、前記吐出口側の端部と前記ガイド溝の端部とが線接触する請求項3に記載の密閉型圧縮機。
    The guide groove has a wall parallel to the end surface of the compression chamber, communicates with the discharge port,
    The elastic body is held at the end of the valve body on the side opposite to the discharge port side,
    The space where the elastic body is installed communicates with the inside of the sealed container,
    The valve body moves in the guide groove along the parallel wall, and when the discharge port is closed, the end on the discharge port side and the end of the guide groove are in line contact. 3. The hermetic compressor according to 3.
  6.  前記弁体の前記吐出口側の端部は、前記密閉容器側から前記圧縮室側へ広がる傾斜を有する請求項5に記載の密閉型圧縮機。 6. The hermetic compressor according to claim 5, wherein an end of the valve body on the discharge port side has an inclination extending from the sealed container side to the compression chamber side.
  7.  前記弁体の前記吐出口側の端部は、移動方向に円弧形状をなす曲面を有し、
     前記円弧形状の頂点が、前記吐出口の前記中心軸の方向における前記弁体の厚みの中央部分である請求項5に記載の密閉型圧縮機。
    The discharge port side end of the valve body has a curved surface having an arc shape in the moving direction,
    The hermetic compressor according to claim 5, wherein an apex of the arc shape is a central portion of a thickness of the valve body in a direction of the central axis of the discharge port.
  8.  ロータリ圧縮機で構成する請求項1~請求項7のいずれか一項に記載の密閉型圧縮機。 The hermetic compressor according to any one of claims 1 to 7, comprising a rotary compressor.
  9.  請求項1~請求項8のいずれか一項に記載の密閉型圧縮機、凝縮器、減圧装置および蒸発器が配管接続され、冷媒の循環が行われる冷媒回路を有する冷凍サイクル装置。 A refrigeration cycle apparatus having a refrigerant circuit in which the hermetic compressor, the condenser, the decompression device, and the evaporator according to any one of claims 1 to 8 are connected by piping and the refrigerant is circulated.
PCT/JP2018/012883 2018-03-28 2018-03-28 Hermetic compressor and refrigeration cycle device WO2019186800A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/012883 WO2019186800A1 (en) 2018-03-28 2018-03-28 Hermetic compressor and refrigeration cycle device
JP2018541369A JP6556372B1 (en) 2018-03-28 2018-03-28 Hermetic compressor and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012883 WO2019186800A1 (en) 2018-03-28 2018-03-28 Hermetic compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2019186800A1 true WO2019186800A1 (en) 2019-10-03

Family

ID=67539807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012883 WO2019186800A1 (en) 2018-03-28 2018-03-28 Hermetic compressor and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6556372B1 (en)
WO (1) WO2019186800A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102869U (en) * 1981-12-29 1983-07-13 カルソニックカンセイ株式会社 Valve for compressor
JP2003106468A (en) * 2001-08-31 2003-04-09 Lg Electronics Inc Delivery valve assembly for fluid machine
JP2017082656A (en) * 2015-10-27 2017-05-18 株式会社オティックス Vacuum pump oil discharging structure at cam housing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102869U (en) * 1981-12-29 1983-07-13 カルソニックカンセイ株式会社 Valve for compressor
JP2003106468A (en) * 2001-08-31 2003-04-09 Lg Electronics Inc Delivery valve assembly for fluid machine
JP2017082656A (en) * 2015-10-27 2017-05-18 株式会社オティックス Vacuum pump oil discharging structure at cam housing

Also Published As

Publication number Publication date
JPWO2019186800A1 (en) 2020-04-30
JP6556372B1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
US10309700B2 (en) High pressure compressor and refrigerating machine having a high pressure compressor
JP5040934B2 (en) Hermetic compressor
US11906060B2 (en) Rotary compressor with backflow suppresion mechanism for an introduction path
US11841020B2 (en) Variable volume ratio screw compressor
KR20210028396A (en) Rotary compressor and home appliance including the same
JP2001323881A (en) Compressor
JP6556372B1 (en) Hermetic compressor and refrigeration cycle apparatus
KR102547594B1 (en) Variable displacement swash plate type compressor
KR102547593B1 (en) Variable displacement swash plate type compressor
CN111075720B (en) Compressor and refrigeration cycle system with same
JP2013053579A (en) Rotary compressor
JP2013104368A (en) Rotary compressor
JP7466693B2 (en) Compressor and refrigeration cycle device
WO2022118383A1 (en) Compressor and refrigeration cycle device
JP7466692B2 (en) Compressor and refrigeration cycle device
US20190085845A1 (en) Oscillating piston-type compressor
US20240229795A1 (en) Compressor and freezer
KR101926045B1 (en) Single-stage rotary compressor and energy system using the same
JP2011163257A (en) Hermetic compressor
CN112412791B (en) Rotary compressor and refrigeration cycle device
WO2023053552A1 (en) Compressor and freezer
JPWO2010013375A1 (en) Rotary compressor
WO2018189827A1 (en) Enclosed compressor and refrigeration cycle device
WO2013179677A1 (en) Rotary compressor
KR20230072198A (en) Hermetic reciprocating compressor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018541369

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912708

Country of ref document: EP

Kind code of ref document: A1