WO2019185889A1 - Nouvelle utilisation de l'acide carnosique - Google Patents

Nouvelle utilisation de l'acide carnosique Download PDF

Info

Publication number
WO2019185889A1
WO2019185889A1 PCT/EP2019/058053 EP2019058053W WO2019185889A1 WO 2019185889 A1 WO2019185889 A1 WO 2019185889A1 EP 2019058053 W EP2019058053 W EP 2019058053W WO 2019185889 A1 WO2019185889 A1 WO 2019185889A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
feed
acid
meal
fish
Prior art date
Application number
PCT/EP2019/058053
Other languages
English (en)
Inventor
Laure CLASADONTE
Weerasinghe INDRASENA
Thomas Netscher
Chistof WERHLI
Original Assignee
Dsm Ip Assets B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dsm Ip Assets B.V. filed Critical Dsm Ip Assets B.V.
Publication of WO2019185889A1 publication Critical patent/WO2019185889A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/111Aromatic compounds

Definitions

  • Carnosic acid is an especially efficient antioxidant in feed comprising protein(s) and/or unsaturated fatty acid (derivative)s and in feed ingredients comprising protein(s) and/or unsaturated fatty acid (derivative)s.
  • “Derivatives” are e.g. the monoglycerides, diglycerides and triglycerides as well as C1 -6-alkyl esters such as the methyl and ethyl esters.
  • Unmodified fish meal can spontaneously combust from heat generated by oxidation of the polyunsaturated fatty acids in the fish meal.
  • factory ships have sunk because of such fires.
  • Strict rules regarding the safe transport of fish meal have been put in place by authorities and the International Maritime Organization (IMO).
  • IMO International Maritime Organization
  • fishmeal must be stabilized with antioxidants to prevent spontaneous combustion during overseas transport and storage.
  • BHT must be added in higher quantities to achieve the same efficacy as ethoxyquin. Furthermore, BHT is currently under safety evaluation by ECHA and its re-registration as feed additive is pending in Europe.
  • Carnosic acid is a component of rosemary extract which is already known and used as antioxidant. It has been surprisingly found that carnosic acid as pure substance, i.e. with a purity of at least 90%, preferably with a purity of at least 95%, more preferably with a purity of at least 97%, most preferably with a purity of at least 99%, is also a very efficient antioxidant, preferably in feed and feed ingredients, especially in combination with at least one ester of ascorbic acid.
  • esters of ascorbic acid are the esters of ascorbic acid with linear C12-20 alkanols, preferably the esters of ascorbic acid with linear C14-18 alkanols, more preferably ascorbyl palmitate.
  • the weight ratio of carnosic acid to the ester of ascorbic acid with linear C12-20 alkanols is in the range of from 1 :4 to 20:1 , preferably in the range of 1 :2 to 10: 1 , more preferably in the range of 1 : 1 to 5:1 , most preferably in the range of 2: 1 to 4:1 .
  • Non-limiting examples of feed are pet food, feed for aquatic animals, feed for terrestrial animals such as poultry and pigs, and feed for insects.
  • Non-limiting examples of feed ingredients are poultry meal, fish meal, insect meal and PUFA-containing oil.
  • PUFA(s) means polyunsaturated fatty acid(s) such as docosahexaenoic acid (“DHA”) and/or eicosapentaenoic acid (“EPA”) and/or docosapentaenoic acid (“DPA”) and/or oleic acid and/or stearidonic acid and/or linoleic acid and/or alpha-linolenic acid (“ALA”) and/or gamma-linolenic acid and/or arachidonic acid (“ARA”) and/or the esters of all of them, whereby the term“esters” encompasses monoglycerides, diglycerides and triglycerides as well as Ci- 6 - alkyl esters such as especially the methyl esters and the ethyl esters, whereby the triglycerides are often dominant.
  • DHA docosahexaenoic acid
  • EPA eicosapentaenoic acid
  • DHA, EPA, ALA and stearidonic acid are omega-3 fatty acids, whereas linoleic acid, gamma-linolenic acid and ARA are omega-6 fatty acids.
  • DPA encompasses two isomers, the omega-3 fatty acid clupanodonic acid (7Z,10Z,13Z,16Z,19Z-docosapentaenoic acid) and the omega-6 fatty acid osbond acid (4Z,7Z,10Z,13Z,16Z-docosapentaenoic acid).
  • the polyunsaturated fatty acid is preferably DHA and/or EPA and/or DPA and/or any ester thereof, more preferably the polyunsaturated fatty acid (PUFA) is preferably DHA and/or EPA and/or any ester thereof.
  • - marine oil such as preferably fish oil, - microbial biomass containing polyunsaturated fatty acids and/or their esters (“microbial oil”), preferably containing high amounts of docosahexaenoic acid (“DHA”) and/or eicosapentaenoic acid (“EPA”) and/or docosapentaenoic acid (“DPA”) and/or their esters, and
  • DHA docosahexaenoic acid
  • EPA eicosapentaenoic acid
  • DPA docosapentaenoic acid
  • DHA docosahexaenoic acid
  • EPA eicosapentaenoic acid
  • DPA docosapentaenoic acid
  • PUFA-containing plant oil such as e.g. canola seed oil, linseed/flaxseed oil, hempseed oil, pumpkin seed oil, evening primrose oil, borage seed oil, blackcurrent seed oil, sallow thorn/sea buckthorn oil, chia seed oil, argan oil and walnut oil.
  • carnosic acid preferably in combination with esters of ascorbic acid, as antioxidant in feed ingredients, such as especially poultry meal, fish meal, insect meal and PUFA-containing oil, and
  • feed such as especially feed for aquatic animals, feed for terrestrial animals such as poultry, pigs and pets, and feed for insects, comprising carnosic acid, preferably in combination with esters of ascorbic acid, and
  • the present invention is directed to feed ingredients such as especially poultry meal, fish meal, insect meal and PUFA enriched oil, comprising carnosic acid, preferably in combination with esters of ascorbic acid.
  • the present invention is directed to feed for aquatic animals comprising carnosic acid, preferably in combination with esters of ascorbic acid, with the preferences as given above.
  • the present invention is also directed to feed for insects and terrestrial animals, e.g. pigs, poultry and pets, comprising carnosic acid, preferably in combination with esters of ascorbic acid, with the preferences as given above.
  • Aquatic animals in the context of the present invention encompass farmed Crustacea such as shrimp and carnivorous species of farmed fish such as salmons, rainbow trout, brown trout (Salmo trutta) and gilthead seabream.
  • the feed for aquatic animals comprising carnosic acid, preferably in combination with esters of ascorbic acid, is especially fed to the aquatic animals as cited above.
  • Feed ingredients are broadly classified into cereal grains, protein meals, fats and oils, minerals, feed additives, and miscellaneous raw materials, such as roots and tubers.
  • Carnosic acid can be used in combination with one or more other antioxidants as described below.
  • the feed ingredients of the present invention additionally comprise a mixture of 2-tert-butyl-4-methoxyphenol and 3-tert-butyl-4-methoxyphenol, which is known under the name“BHA” (butylated hydroxyanisole).
  • the feed ingredients of the present invention additionally comprise ascorbyl palmitate.
  • the feed ingredients of the present invention additionally comprise BHA and ascorbyl palmitate.
  • esters of ascorbic acid such as the esters of ascorbic acid with linear C 12-20 alkanols, preferably the esters of ascorbic acid with linear C 14-18 alkanols, may also be used, so that further embodiments of the present invention are directed to feed ingredients that additionally comprise esters of ascorbic acid with linear C 12-20 alkanols, preferably esters of ascorbic acid with linear C 14-18 alkanols, more preferably ascorbyl palmitate, whereby optionally BHA may also be present.
  • the feed ingredients may also comprise additionally alpha-tocopherol and/or gamma-tocopherol, whereby either an ester of ascorbic acid with a linear C 12 - 20 alkanol with the preferences as given above or BHA or both may additionally be present.
  • PUFAs polyunsaturated fatty acids
  • DHA docosahexaenoic acid
  • EPA eicosapentaenoic acid
  • DPA docosapentaenoic acid
  • PUFA- containing plant oil such as e.g. canola seed oil, linseed/flaxseed oil, hempseed oil, pumpkin seed oil, evening primrose oil, borage seed oil, blackcurrent seed oil, sallow thorn/sea buckthorn oil, chia seed oil, argan oil and walnut oil.
  • DHA does not only encompass the acid but also derivatives thereof such as monoglycerides, diglycerides and triglycerides as well as Ci- 6 -alkyl esters such as the methyl and ethyl esters.
  • EPA monoglycerides
  • DPA dihydroxyacetyl acetate
  • biomass such as especially fungal oil
  • feed ingredients may not only be used as alternative of fish oil and algal oil, but also in addition.
  • suitable marine oils include, but are not limited to, Atlantic fish oil, Pacific fish oil, or Mediterranean fish oil, or any mixture or combination thereof.
  • a suitable fish oil can be, but is not limited to, pollack oil, bonito oil, pilchard oil, tilapia oil, tuna oil, sea bass oil, halibut oil, spearfish oil, barracuda oil, cod oil, menhaden oil, sardine oil, anchovy oil, capelin oil, herring oil, mackerel oil, salmonid oil, tuna oil, and shark oil, including any mixture or combination thereof.
  • marine oils suitable for use herein include, but are not limited to, squid oil, cuttle fish oil, octopus oil, krill oil, seal oil, whale oil, and the like, including any mixture or combination thereof.
  • an amount of carnosic acid ranging from 10 to 500 ppm, preferably ranging from 30 to 300 ppm, more preferably ranging from 100 to 250 ppm, based on the total amount of the marine oil, is usually sufficient.
  • the other PUFA-containing oils such as microbial oil, algal oil, fungal oil and PUFA-containing plant oil.
  • a commercially available example of marine oil is the fish oil “MEG-3” (Bleached 30S TG Fish oil) from DSM Nutritional Products, LLC (US) whose specification and composition is shown in Tables I and II below:
  • the peroxide value is defined as the amount of peroxide oxygen per 1 kilogram of oil. Traditionally this is expressed in units of milliequivalents or meq/kg. Winterization is part of the processing of fish oil, and it is performed to remove solid fat in the oil. The“cold test” is performed to check if any solid fat is present and precipitated in the oil when cooled to 0°C within a specific period of time. In this fish oil (Product Code: FG30TG), any such precipitation is checked for 3 hours at 0°C. Table
  • Algal oil is an oil containing high amounts of DHA and/or EPA and/or DPA and/or their esters extracted from algae as microbial source/biomass.
  • An example of algal oil is the commercially available“Algal oil containing EPA+DPA” from DSM Nutritional Products, LLC (US) whose composition is shown in the Table III below:
  • a further example of a crude oil containing high amounts of DHA and/or EPA extracted from microbial sources as e.g., algae, is the oil extracted from Algae Schizochytrium Biomass, whose specification is given in the following
  • Microbial biomass containing polyunsaturated fatty acids especially docosahexaenoic acid and/or eicosapentaenoic acid and/or docosapentaenoic acid (“DPA”) and/or their esters
  • the biomass preferably comprises cells which produce PUFAs hetero- trophically.
  • the cells are preferably selected from algae, fungi, particularly yeasts, bacteria, or protists.
  • the cells are more preferably microbial algae or fungi.
  • Suitable cells of oil-producing yeasts are, in particular, strains of Yarrowia, Candida, Rhodotorula, Rhodosporidium, Cryptococcus, Trichosporon and Lipomyces.
  • Oil produced by a microorganism or obtained from a microbial cell is referred to as“microbial oil”.
  • Oil produced by algae and/or fungi is referred to as an algal and/or a fungal oil, respectively.
  • microorganism refers to organisms such as algae, bacteria, fungi, protist, yeast, and combinations thereof, e.g., unicellular organisms.
  • a microorganism includes but is not limited to, golden algae (e.g., microorganisms of the kingdom Stramenopiles); green algae; diatoms; dinoflagellates (e.g., microorganisms of the order Dinophyceae including members of the genus Crypthecodinium such as, for example,
  • Thraustochytriales yeast ( Ascomycetes or Basidiomycetes); and fungi of the genera Mucor, Mortierella, including but not limited to Mortierella alpina and Mortierella sect, schmuckeri, and Pythium, including but not limited to Pythium insidiosum.
  • microorganisms of the kingdom Stramenopiles may in particular be selected from the following groups of microorganisms:
  • Pelagococcus Ollicola, Aureococcus, Parmales, Diatoms, Xanthophytes, Phaeophytes (brown algae), Eustigmatophytes, Rophidophytes, Synurids, Axodines (including Rhizochromulinales, Pedinellales, Dictyochales), Chrysomeri dales, Sarcinochrysidales, Hydrurales, Hibberdiales, and
  • the microorganisms are from the genus Mortierella, genus Crypthecodinium, genus Thraustochytrium, and mixtures thereof. In a further embodiment, the microorganisms are from Crypthecodinium Cohnii. In a further embodiment, the microorganisms are from Mortierella alpina. In a still further embodiment, the microorganisms are from
  • the microorganisms are selected from Crypthecodinium Cohnii, Mortierella alpina,
  • the microorganisms include, but are not limited to, microorganisms belonging to the genus Mortierella, genus Conidiobolus, genus Pythium, genus Phytophthora, genus Penicillium, genus Cladosporium, genus Mucor, genus Fusarium, genus Aspergillus, genus Rhodotorula, genus Entomophthora, genus Echinosporangium, and genus Saprolegnia.
  • the microorganisms are from microalgae of the order Thraustochytriales, which includes, but is not limited to, the genera Thraustochytrium (species include arudimentale, aureum, benthicola, globosum, kinnei, motivum, multirudimentale, pachydermum, proliferum, roseum, striatum); the genera Schizochytrium (species include aggregatum, limnaceum, mangrovei, minutum, octosporum); the genera Ulkenia (species include amoeboidea, kerguelensis, minuta, profunda, radiate, sailens, sarkariana, schizochytrops, visurgensis, yorkensis); the genera Aurantiacochytrium; the genera Oblongichytrium; the genera Sicyoidochytium; the genera Parientichytrium; the genera Botryochytrium; and combinations thereof.
  • the microorganisms are from the order Thraustochytriales. In yet another embodiment, the microorganisms are from Thraustochytrium.
  • the microorganisms are from Schizochytrium sp.
  • the oil can comprise a marine oil. Examples of suitable marine oils are the ones as given above.
  • the biomass according to the invention preferably comprises cells, and preferably consists essentially of such cells, of the taxon
  • Labyrinthulomycetes Labyrinthulea , net slime fungi, slime nets), in particular, those from the family of Thraustochytriaceae .
  • the family of the Thraustochytriaceae includes the genera Althomia, Aplanochytrium, Aurantiochytrium, Botryochytrium, Elnia, Japonochytrium, Oblongichytrium, Parietichytrium, Schizochytrium, Sicyoidochytrium, Thraustochytrium, and Ulkenia.
  • the biomass particularly preferably comprises cells from the genera Aurantiochytrium, Oblongichytrium, Schizochytrium, or Thraustochytrium, more preferably from the genus Schizochytrium.
  • the polyunsaturated fatty acid is preferably DHA and/or EPA and/or their esters as defined above.
  • the cells present in the biomass are preferably distinguished by the fact that they contain at least 20 weight-%, preferably at least 30 weight-%, in particular at least 35 weight-%, of PUFAs, in each case based on cell dry matter.
  • cells in particular a Schizochytrium strain, is employed which produces a significant amount of EPA and DHA, simultaneously, wherein DHA is preferably produced in an amount of at least 20 weight-%, preferably in an amount of at least 30 weight-%, in particular in an amount of 30 to 50 weight-%, and EPA is produced in an amount of at least 5 weight-%, preferably in an amount of at least 10 weight-%, in particular in an amount of 10 to 20 weight-% (in relation to the total amount of lipid as contained in the cells, respectively).
  • Preferred species of microorganisms of the genus Schizochytrium, which produce EPA and DHA simultaneously in significant amounts, as mentioned before, are deposited under ATCC Accession No. PTA-10208, PTA-10209, PTA-10210, or PTA-10211 , PTA-10212, PTA-10213, PTA-10214, PTA-10215.
  • DHA and EPA producing Schizochytrium strains can be obtained by consecutive mutagenesis followed by suitable selection of mutant strains which demonstrate superior EPA and DHA production and a specific EPA:DHA ratio.
  • Any chemical or nonchemical (e.g. ultraviolet (UV) radiation) agent capable of inducing genetic change to the yeast cell can be used as the mutagen.
  • UV radiation ultraviolet
  • These agents can be used alone or in combination with one another, and the chemical agents can be used neat or with a solvent.
  • Methods for producing the biomass in particular, a biomass which comprises cells containing lipids, in particular PUFAs, particularly of the order
  • Thraustochytriales are described in detail in the prior art (see e.g. WO 91 / 07498, WO 94/08467, WO 97/37032, WO 97/36996, WO 01 /54510).
  • the production takes place by cells being cultured in a fermenter in the presence of a carbon source and a nitrogen source, along with a number of additional substances like minerals that allow growth of the
  • biomass densities of more than 100 grams per litre and production rates of more than 0.5 gram of lipid per litre per hour may be attained.
  • the process is preferably carried out in what is known as a fed-batch process, i.e. the carbon and nitrogen sources are fed in incrementally during the
  • production may be induced by various measures, for example by limiting the nitrogen source, the carbon source or the oxygen content or combinations of these.
  • the cells are grown until they reach a biomass density of at least 80 or 100 g/l, more preferably at least 120 or 140 g/l, in particular at least 160 or 180 g/l (calculated as dry-matter content).
  • a biomass density of at least 80 or 100 g/l, more preferably at least 120 or 140 g/l, in particular at least 160 or 180 g/l (calculated as dry-matter content).
  • the cells are fermented in a medium with low salinity, in particular, so as to avoid corrosion.
  • This can be achieved by using chlorine- free sodium salts as the sodium source instead of sodium chloride, such as, for example, sodium sulphate, sodium carbonate, sodium hydrogen carbonate or soda ash.
  • chloride is used in the fermentation in amounts of less than 3 g/l, in particular, less than 500 mg/ 1, especially preferably less than 100 mg/l.
  • PUFA-containing plant oils Plant oils with relatively high amounts of PUFAs, especially with high amounts of DHA and/or EPA such as e.g. , canola seed oil
  • the plant cells may, in particular, be selected from cells of the families Brassicaceae, Elaeagnaceae and Fabaceae.
  • Brassicaceae may be selected from the genus Brassica, in particular, from oilseed rape, turnip rape and Indian mustard; the cells of the family
  • Elaeagnaceae may be selected from the genus Elaeagnus, in particular, from the species Oleae europaea ; the cells of the family Fabaceae may be selected from the genus Glycine, in particular, from the species Glycine max.
  • PUFA-containing plant oils containing high amounts of other PUFAs than EPA and/or DHA and/or DPA and/or their esters are linseed/flaxseed oil, hempseed oil, pumpkin seed oil, evening primrose oil, borage seed oil, blackcurrent seed oil, sallow thorn/sea buckthorn oil, chia seed oil, argan oil and walnut oil.
  • Poultry meal is a high-protein commodity used as a feed ingredient. It is made from grinding clean, rendered parts of poultry carcasses and can contain bones, offal, undeveloped eggs, and some feathers. Poultry meal quality and composition can change from one batch to another.
  • Chicken meal like poultry meal, is made of "dry, ground, rendered clean parts of the chicken carcass" according to AAFCO and may contain the same ingredients as poultry meal. Chicken meal can vary in quality from batch to batch. Chicken meal costs less than chicken muscle meat and lacks the digestibility of chicken muscle meat.
  • Poultry meal contains preferably not less than 50 weight-% of crude protein, not less than 5 weight-% of crude fat, not more than 5 weight-% of crude fiber, not more than 40 weight-% of ash and not more than 15 weight-% of water, each based on the total weight of the poultry meal, whereby the total amount of all ingredients sums up to 100 weight-%.
  • poultry meal contains from 50 to 85 weight-% of crude protein, and from 5 to 20 weight-% of crude fat, and from 1 to 5 weight-% of crude fiber, and from 5 to 40 weight-% of ash, and from 5 to 15 weight-% of water, each based on the total weight of the poultry meal, whereby the total amount of all ingredients sums up to 100 weight-%.
  • an amount of carnosic acid ranging from 10 to 1000 ppm, preferably ranging from 30 to 700 ppm, more preferably ranging from 100 to 500 ppm, based on the total amount of the poultry meal, is usually sufficient.
  • Fish meal contains preferably not less than 50 weight-% of crude protein, and not more than 20 weight-% of crude fat, and not more than 10 weight-% of crude fibers, and not more than 25 weight-% of ash, and not more than 15 weight-% of water, each based on the total weight of the fish meal, whereby the total amount of all ingredients sums up to 100 weight-%.
  • More preferably fish meal contains from 50 to 90 weight-% of crude protein and from 5 to 20 weight-% of crude fat, and from 1 to 10 weight-% of crude fibers, and from 5 to 25 weight-% of ash, and from 5 to 15 weight-% of water, each based on the total weight of the fish meal, whereby the total amount of all ingredients sums up to 100 weight-%.
  • carnosic acid For stabilizing fish meal an amount of carnosic acid ranging from 10 to 2000 ppm, preferably ranging from 100 to 1500 ppm, more preferably ranging from 300 to 1000 ppm, based on the total amount of the fish meal, is usually sufficient.
  • Fish meal is a commercial product made from fish that is used primarily as a protein supplement in compound feed, especially for feeding farmed fish, Crustacea, pigs and poultry, and companion animals such as cats and dogs.
  • a portion of the fish meal is made from the bones and offal left over from processing fish used for human consumption, while the larger percentage is manufactured from wild-caught, small marine fish. It is powder or cake obtained by drying the fish or fish trimmings, often after cooking, and then grinding it. If the fish used is a fatty fish it is first pressed to extract most of the fish oil.
  • fish meal The uses and need of fish meal are increasing due to the rising demand for fish, because fish has the best feed conversion rate of all farmed animals, can be produced well in developing countries and has a small size, i.e. can be slaughtered for preparing a meal, so that there is no need to store the fish. Furthermore, there are no religious constraints concerning the consumption of fish, fish is a source of high quality protein and it is easy to digest.
  • Fish meal is made by cooking, pressing, drying, and grinding of fish or fish waste to which no other matter has been added. It is a solid product from which most of the water is removed and some or all of the oil is removed. About four or five tons of fish are needed to manufacture one ton of dry fish meal.
  • a commercial cooker is a long, steam -jacketed cylinder through which the fish are moved by a screw conveyor. This is a critical stage in preparing the fishmeal, as incomplete cooking means the liquid from the fish cannot be pressed out satisfactorily and overcooking makes the material too soft for pressing. No drying occurs in the cooking stage.
  • Pressing A perforated tube with increasing pressure is used for this process. This stage involves removing some of the oil and water from the material and the solid is known as press cake. The water content in pressing is reduced from 70% to about 50% and oil is reduced to 4%. Drying: If the fish meal is under-dried, moulds or bacteria may grow. If it is over-dried, scorching may occur and this reduces the nutritional value of the meal.
  • the two main types of dryers are:
  • Indirect A cylinder containing steam-heated discs is used, which also tumbles the meal.
  • the fish meal has to be transported long distances by ship or other vehicles to the various locations, where it is used.
  • Unmodified fish meal can spontaneously combust from heat generated by oxidation of the polyunsaturated fatty acids in the fish meal. Therefore, it has to be stabilized by antioxidants. Especially advantageous for this purpose is carnosic acid.
  • Insect meal has a high content of protein and is therefore, a valuable source of protein.
  • insects of special interest in the context of the present invention encompass black soldier flies (Hermetia species, commonly called BSF), mealworms (Tenebrio molitor), lesser mealworms (Alphitobius diaperinus), house cricket (Acheta domesticus, grasshoppers (Locusta migratoria), buffaloworms (Alphitobius diaperinus), cockroaches and domestic flies, whereby black soldier flies (Hermetia species, commonly called BSF), mealworms (Tenebrio molitor) and lesser mealworms (Alphitobius diaperinus) are more preferred.
  • an amount of carnosic acid ranging from 10 to 1000 ppm, preferably ranging from 30 to 700 ppm, more preferably ranging from 100 to 500 ppm, based on the total amount of the insect meal, is usually sufficient.
  • Carnosic acid is not only suitable for stabilizing feed ingredients such as poultry meal, fish meal, insect meal and PUFA-containing oil, but also an effective antioxidant for feed.
  • Feed means any substance or product, including additives, whether processed, partially processed or unprocessed, intended to be used for oral feeding to animals.
  • Feed in the context of the present invention is feed for aquatic animals and for terrestrial animals, as well as feed for insects.
  • an amount of carnosic acid ranging from 10 to 500 ppm, preferably ranging from 30 to 300 ppm, more preferably ranging from 100 to 250 ppm, based on the total amount of the feed, is usually sufficient.
  • Carnosic acid can be used in combination with one or more other antioxidants as described below.
  • the feed of the present invention additionally comprises a mixture of 2-tert-butyl-4-methoxyphenol and 3-tert- butyl-4-methoxyphenol, which is known under the name“BHA” (butylated hydroxyanisole).
  • BHA butylated hydroxyanisole
  • the feed of the present invention additionally comprises ascorbyl palmitate.
  • the feed of the present invention additionally comprises BHA and ascorbyl palmitate.
  • esters of ascorbic acid such as the esters of ascorbic acid with linear C12-20 alkanols, preferably the esters of ascorbic acid with linear Ci 4- 18 alkanols, may also be used, so that further embodiments of the present invention are directed to feed that additionally comprises esters of ascorbic acid with linear C12-20 alkanols, preferably esters of ascorbic acid with linear C14-18 alkanols, more preferably ascorbyl palmitate, whereby optionally BHA may also be present.
  • the feed may also comprise additionally alpha-tocopherol and/or gamma- tocopherol, whereby either an ester of ascorbic acid with a linear C12-20 alkanol with the preferences as given above or BHA or both may additionally be present.
  • the feed for poultry differs from region to region.
  • Tables V and VI typical examples for diets in Europe and Latin America are given. These diets include cereals such as wheat, rye, maize/corn, minerals such as NaCl, vegetable oils such as soya oil, amino acids and proteins.
  • Pet foods are formulated to meet nutrient specifications using combinations of multiple ingredients to meet the targeted nutrient specification.
  • Poultry meal e.g. is an ingredient that is commonly found in Dog and Cat foods.
  • the nutrient specifications for a complete and balanced dog or cat food will meet or exceed the guidelines provided by AAFCO (American Association of Feed Control Officials).
  • the ingredient composition of pet-food can include any legal feed ingredient so number of combinations are not quite infinite but close.
  • an amount of carnosic acid ranging from 10 to 500 ppm, preferably ranging from 30 to 300 ppm, more preferably ranging from 100 to 250 ppm, based on the total amount of the pet food, is usually sufficient.
  • a typical example of feed for fish comprises the following ingredients, whereby all amounts are given in weight-%, based on the total weight of the feed for fish:
  • - binders mainly starch, in an amount ranging from 9 to 12 weight-%;
  • micro-ingredients such as vitamins, choline, minerals, mono calcium phosphate (“MCP”) and/or amino acids in an amount ranging from 3 to 6 weight-%;
  • marine oil in an amount ranging from 5 to 10 weight-%, preferably marine oil in said amount comprising carnosic acid;
  • carnosic acid ranging from 10 to 1000 ppm, preferably ranging from 30 to 700 ppm, more preferably ranging from 100 to 500 ppm, based on the total amount of the feed for fish, is usually sufficient.
  • Example 1 Antioxidant activities in pet food, poultry meal and fish meal
  • Carnosic acid was tested in pet food, poultry meal and/or fish meal and the corresponding antioxidant efficacy values (“EV”) were determined subsequently.
  • Oxidative stability was assessed using an Oxipres (Mikrolab Aarhus A/S, Hojbjerg, Denmark).
  • the ML OXIPRES® is designed to monitor the oxidation of heterogeneous products. Consumption of oxygen results in a pressure drop which is measured by means of pressure transducers. The samples are heated to accelerate the process and shorten the analysis time (Mikrolab Aarhus 2012).
  • Sample weights were 50 g. They were loaded into the Oxipres vessels and placed inside the stainless-steel pressure vessel and sealed. The pressure vessels were purged with pure oxygen and filled to an initial oxygen pressure of 5 bar and maintained at 70° C during measurement (D. Ying, L. Edin, L. Cheng, L. Sanguansri, M. A. Augustin, LWT - Food Science and
  • the oxygen pressure was recorded as function of time. After sample load and temperature rise the pressure in the device is increasing within 10 hours up to the starting pressure. Thereafter it is decreasing. Consequently, the starting pressure is considered as being the pressure after 10 hours. The analysis ends after 130 hours at 70°C.
  • the oxygen consumption‘0 2 ’ of the tested sample is calculated as follows:
  • EV Efficacy Value
  • Carnosic acid was mixed into matrix 1 and 3 (pet food, fish meal) in an equimolar ratio compared to BHT. Batches of 200 g feed were produced in order to handle a minimum of 30 mg of antioxidant. First, a 1% pre-dilution of the antioxidant with the feed material was made. Then this pre-dilution was added to the final batch, mixed, sieved (1 .25 mm sieve) and mixed using a turbula mixer. Thereafter 55 g of the final batch were packed into polyethylene bags, and stored at 4°C until start of the Oxipres assay. Spare sample were stored at 4°C.
  • Example 2 Antioxidant activities of carnosic acid in fish oil and algal oil
  • Carnosic acid was tested in fish oil and algal oil.
  • the blank oil i.e. oil without any antioxidant, and oil containing“MNT” have been used as benchmark. Any compound better in antioxidant activity than the blank oil indicates that it has antioxidant activity.
  • the comparison with MNT gives an indication about the amount of the antioxidant effect, relative to the activity of MNT.
  • MNT are mixed natural tocopherols commercially available as e.g., “Tocomix 70 IP” from AOM (wholesome Aires, Argentina).
  • Tocomix 70 IP comprises d-alpha-tocopherol, d-beta-tocopherol, d-gamma-tocopherol and d-delta-tocopherol, whereby the total amount of tocopherols is at least 70.0 weight-% and the amount of non-alpha tocopherols is at least 56.0 weight-%.
  • Carnosic acid and MNT were evaluated primarily for their oxidative stability by the Oil Stability Index (OSI) measurements. Two different levels of these antioxidants (0.5 and 2 mg/g) were used in 5 g of natural fish oil (Product code: FG30TG) and used in the Oxidative Stability Instrument at 80°C with the air flow rate of 40 psi.
  • OSI Oil Stability Index
  • VY00010309 were also determined. Crude algal oil contained about 1 .6 mg/g of mixed natural tocopherols (MNT) prior to use in these experiments whereas fish oil did not contain any antioxidants.
  • MNT mixed natural tocopherols
  • Carnosic acid was used at different times in the Oxidative Stability
  • Oil Stability Index for carnosic acid at 500 and 2000 ppm levels in fish oil and algal oil, respectively, in comparison with the same amounts of MNT, is shown in Tables 6 and 7.
  • Carnosic acid provides a remarkable protection factor in fish oil which can be further improved by combining with AP. It also indicates that carnosic acid may be used in much smaller amounts than used in these experiments to improve the oxidative stability of PUFA-containing oils such as marine oil and algal oil.
  • Table 1 1 shows the possible improvements of the Oil Stability Index of MNT using 2 common synergistic compounds, ascorbyl palmitate and carnosic acid.
  • carnosic acid was only used at a level of 2 mg/g. Compared to the same level of MNT, carnosic acid showed higher PVs than those of MNT (Table 12). There was no considerable variation in p-AV and CD (Tables 13-14) during the storage.
  • Tables 12, 13 and 14 show the PV (eeroxide value), p-AV (2-anisidine value) and CD (conjugated dienoic acid in %) of the fish oil samples stabilized with carnosic acid.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Fodder In General (AREA)

Abstract

La présente invention concerne l'utilisation d'acide carnosique, de préférence en association avec des esters d'acide ascorbique, en tant qu'antioxydant, en particulier dans des aliments pour insectes, pour animaux aquatiques et terrestres et dans des ingrédients alimentaires tels que de la farine de poisson, de la farine d'insectes et de la farine de volaille, ainsi que des huiles contenant des AGPI telles que de l'huile marine, de l'huile microbienne, de l'huile fongique, de l'huile algale et de l'huile végétale contenant des AGPI. La présente invention concerne en outre des ingrédients d'alimentation et des aliments pour insectes, pour animaux aquatiques et terrestres comprenant de l'acide carnosique, de préférence en association avec des esters d'acide ascorbique.
PCT/EP2019/058053 2018-03-29 2019-03-29 Nouvelle utilisation de l'acide carnosique WO2019185889A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18165163 2018-03-29
EP18165163.9 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019185889A1 true WO2019185889A1 (fr) 2019-10-03

Family

ID=61906627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/058053 WO2019185889A1 (fr) 2018-03-29 2019-03-29 Nouvelle utilisation de l'acide carnosique

Country Status (1)

Country Link
WO (1) WO2019185889A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021260087A1 (fr) 2020-06-24 2021-12-30 Fermentalg Procédé de culture de microorganismes pour l'accumulation de lipides

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991007498A1 (fr) 1989-11-17 1991-05-30 Phycotech, Inc. Procede de production heterotrophique de produits microbiens a concentration elevee en acides gras omega-3 fortement insatures
WO1994008467A1 (fr) 1992-10-16 1994-04-28 Omegatech, Inc. Procede de production heterotrophe de produits microbiens a l'aide de concentrations elevees d'acides gras omega-3 fortement insatures
WO1997036996A2 (fr) 1996-03-28 1997-10-09 Gist-Brocades B.V. Procede pour la preparation d'une biomasse microbienne granulaire et isolation de composes interessants a partir de cette derniere
WO1997037032A2 (fr) 1996-03-28 1997-10-09 Gist-Brocades B.V. Preparation d'acide gras polyinsature microbien a partir d'huile contenant une biomasse pasteurisee
WO2001054510A1 (fr) 2000-01-28 2001-08-02 Omegatech, Inc. Production amelioree de lipides contenant des acides gras polyenes au moyen de cultures a grande densite de microbes eucaryotes dans des fermenteurs
EP1673423A1 (fr) * 2003-10-21 2006-06-28 DSM IP Assets B.V. Stabilisation concentres d'ester d'acides gras polyinsatures
EP1726632A1 (fr) * 2004-03-19 2006-11-29 Mitsubishi Chemical Corporation Inhibiteur de degradation
US20090117246A1 (en) * 2005-07-18 2009-05-07 Antonietta Gledhill Method for Rejuvenating Aged Food Oils
WO2017085099A1 (fr) * 2015-11-16 2017-05-26 Specialites Pet Food Combinaison d'antioxydants naturels

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991007498A1 (fr) 1989-11-17 1991-05-30 Phycotech, Inc. Procede de production heterotrophique de produits microbiens a concentration elevee en acides gras omega-3 fortement insatures
WO1994008467A1 (fr) 1992-10-16 1994-04-28 Omegatech, Inc. Procede de production heterotrophe de produits microbiens a l'aide de concentrations elevees d'acides gras omega-3 fortement insatures
WO1997036996A2 (fr) 1996-03-28 1997-10-09 Gist-Brocades B.V. Procede pour la preparation d'une biomasse microbienne granulaire et isolation de composes interessants a partir de cette derniere
WO1997037032A2 (fr) 1996-03-28 1997-10-09 Gist-Brocades B.V. Preparation d'acide gras polyinsature microbien a partir d'huile contenant une biomasse pasteurisee
WO2001054510A1 (fr) 2000-01-28 2001-08-02 Omegatech, Inc. Production amelioree de lipides contenant des acides gras polyenes au moyen de cultures a grande densite de microbes eucaryotes dans des fermenteurs
US7732170B2 (en) 2000-01-28 2010-06-08 Martek Biosciences Corporation Enhanced production of lipids containing polyenoic fatty acid by very hugh density cultures of eukaryotic microbes in fermentors
EP1673423A1 (fr) * 2003-10-21 2006-06-28 DSM IP Assets B.V. Stabilisation concentres d'ester d'acides gras polyinsatures
EP1726632A1 (fr) * 2004-03-19 2006-11-29 Mitsubishi Chemical Corporation Inhibiteur de degradation
US20090117246A1 (en) * 2005-07-18 2009-05-07 Antonietta Gledhill Method for Rejuvenating Aged Food Oils
WO2017085099A1 (fr) * 2015-11-16 2017-05-26 Specialites Pet Food Combinaison d'antioxydants naturels

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. YING; L. EDIN; L. CHENG; L. SANGUANSRI; M. A. AUGUSTIN, LWT - FOOD SCIENCE AND TECHNOLOGY, vol. 62, 2015, pages 1105 - 1111
STEFANO COSTA ET AL: "Carnosic acid from rosemary extracts: a potential chemoprotective agent against aflatoxin B1. An in vitro study", JOURNAL OF APPLIED TOXICOLOGY, WILEY HEYDEN LTD, GB, vol. 27, no. 2, 1 March 2007 (2007-03-01), pages 152 - 159, XP002660894, ISSN: 0260-437X, [retrieved on 20061219], DOI: 10.1002/JAT.1186 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021260087A1 (fr) 2020-06-24 2021-12-30 Fermentalg Procédé de culture de microorganismes pour l'accumulation de lipides
FR3111912A1 (fr) 2020-06-24 2021-12-31 Fermentalg Procédé de culture de microorganismes pour l’accumulation de lipides

Similar Documents

Publication Publication Date Title
WO2019185888A1 (fr) Nouvelle utilisation de tocophérols
EP3772973A1 (fr) Utilisation de chromanols jumelés en tant qu'antioxydants
WO2019185942A1 (fr) Utilisation de tocotriénols en tant qu'antioxydants
US11447459B2 (en) Use of substituted chroman-6-ols with extended lipophilic side chains
US20210030022A1 (en) Novel use of substituted chroman-6-ols
JP7207760B2 (ja) ペットフードに用いるサプリメント素材
EP3774757A1 (fr) Chroman-6-ols à chaîne latérale lipophile étendue en position 2, leur fabrication et leur utilisation
EP3818136A1 (fr) Nouvelle utilisation des 2h-chromènes substitués et de leurs dérivés
DK179843B1 (en) Method for raising animals
CA2969304C (fr) Aliment complementaire destine a etre utilise dans des aliments aquacoles
WO2017035403A1 (fr) Compositions d'huile raffinée et procédés de fabrication associés
Eryalçın et al. Effects of long-term feeding with dried microalgae added microdiets on growth and fatty acid composition of gilthead sea bream (Sparus aurata L., 1758)
WO2019185889A1 (fr) Nouvelle utilisation de l'acide carnosique
WO2019185939A1 (fr) Utilisation de bichromanols en tant qu'antioxydants dans l'huile
RU2021109954A (ru) Корм для животных для улучшения характеристик роста

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19712810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19712810

Country of ref document: EP

Kind code of ref document: A1