WO2019185215A1 - Vorrichtung zum bereitstellen eines ammoniak-aufweisenden abgasnachbehandlungsmittels, abgasnachbehandlungseinrichtung und verfahren - Google Patents

Vorrichtung zum bereitstellen eines ammoniak-aufweisenden abgasnachbehandlungsmittels, abgasnachbehandlungseinrichtung und verfahren Download PDF

Info

Publication number
WO2019185215A1
WO2019185215A1 PCT/EP2019/051947 EP2019051947W WO2019185215A1 WO 2019185215 A1 WO2019185215 A1 WO 2019185215A1 EP 2019051947 W EP2019051947 W EP 2019051947W WO 2019185215 A1 WO2019185215 A1 WO 2019185215A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
exhaust
flow
catalyst
mixing
Prior art date
Application number
PCT/EP2019/051947
Other languages
English (en)
French (fr)
Inventor
Franz-Josef Trompeter
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2019185215A1 publication Critical patent/WO2019185215A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2490/00Structure, disposition or shape of gas-chambers
    • F01N2490/16Chambers with particular shapes, e.g. spherical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • F01N2610/102Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance after addition to exhaust gases, e.g. by a passively or actively heated surface in the exhaust conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • F01N2610/105Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/0602Electrical exhaust heater signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a device for providing an ammonia-containing exhaust aftertreatment agent for an exhaust gas flow of a
  • a catalytic converter in particular SCR catalytic converter
  • the device has a chamber, which at least a portion of the exhaust gas flow is supplied, and an injection valve for injecting a precursor solution of the exhaust aftertreatment agent into the chamber and a controllable heater for heating the precursor solution, with a mixing device for mixing the exhaust aftertreatment agent with the exhaust gas of the internal combustion engine upstream of the catalyst.
  • the invention relates to an exhaust gas aftertreatment device for the aftertreatment of exhaust gas of an internal combustion engine, in particular of a motor vehicle, with a catalyst, which of the exhaust gas of
  • the invention relates to a method for operating the aforementioned device or the aforementioned
  • Temperatures in a catalyst, in particular SCR catalyst to increase significantly faster than today to reach the operating temperature early, or to make the exhaust aftertreatment system such that it already offers a higher performance, even at lower operating temperatures.
  • Exhaust aftertreatment agent is converted to the exhaust aftertreatment agent.
  • precursor solution an aqueous urea solution, from which ammonia is provided by means of hydrolysis.
  • reactors are proposed that accomplish the hydrolysis independently and also geometrically separate from the exhaust stream. For example, it is known to branch off an exhaust gas flow part and feed it to a reactor, into which the precursor solution is injected, with which
  • Waste gas stream is mixed and heated by means of a heater, so that an ammonia stream is formed, which is supplied to the catalyst upstream.
  • the chamber forms, together with the injection valve, the heater and the exhaust gas partial flow inlet such a reactor for producing the
  • Catalyst is necessary, and also additional space for the reactor is needed.
  • the device according to the invention with the features of claim 1 has the advantage that the reactor for the provision of the exhaust aftertreatment agent in an advantageous manner is integrated space-saving manner and beyond An energy-saving exhaust aftertreatment Miidentifying wassen allows.
  • the device according to the invention provides that the chamber is a prechamber for the catalyst through which the entire exhaust gas flow can flow, and that the mixing device and the heating device are integrated into the prechamber. Because the pre-chamber forms the chamber of the reactor, it is completely traversed by the exhaust gas flow of the internal combustion engine.
  • the chamber is also associated with the injector so that the precursor solution can be injected into the prechamber.
  • the mixing device is arranged upstream of the catalyst to mix the exhaust aftertreatment agent supplied from the reactor and supplied to the exhaust gas flow with the exhaust gas coming from the internal combustion engine, and usually in the reactor an additional mixing device for mixing the
  • Precursor solution with the exhaust gas partial stream is necessary, now only the mixing device upstream of the catalyst is necessary, whereby costs and number of components for the exhaust aftertreatment system can be reduced.
  • the mixing of the precursor solution and the exhaust gas takes place in the pre-chamber by utilizing the entire exhaust gas flow, which is supplied from the internal combustion engine to the catalyst. If the internal combustion engine has two or more exhaust aftertreatment strands, then the total exhaust gas flow is to be understood as meaning the exhaust gas flow which is supplied to one of these strands as a whole by the internal combustion engine. It is important that of the exhaust gas flow no
  • the heating device By integrating the heating device into the pre-chamber, the heating of the precursor solution and / or of the exhaust gas stream to a hydrolysis temperature is possible at any time and in particular in a short time. As a result, for example, in a warm-up phase of the internal combustion engine in a short time the hydrolysis can be ensured by the heater is driven.
  • the heating device is preferably deactivated because further heating is not necessary to carry out the desired hydrolysis function. This will be the energy for the Reduced operation of the reactor and achieved a total of a highly efficient process for aftertreatment of the exhaust gas.
  • the heating device is designed as an electrically operable heater. This is the result
  • Has flow guide which puts the exhaust gas flow in a swirling motion.
  • the swirl movement is a particularly homogeneous
  • the injection valve is designed and / or arranged to inject the precursor solution at least substantially radially to the flow direction through a jacket wall of the prechamber into the prechamber.
  • the pre-chamber is cylindrical, so through the radial
  • the precursor solution becomes toward a secant of the cylindrical one
  • the heating device is preferably arranged between the injection valve and the air-guiding element of the mixing device, so that in particular the precursor solution still before mixing with the exhaust gas flow through the Mixing device is heated so far, so that a safe hydrolysis and the ammonia supply are guaranteed.
  • the mixing device a
  • Has exhaust flow splitting device in particular to obtain different sized partial flows of the exhaust gas at different distances to the injection valve and / or the heater. In this way, mixing of the exhaust gas aftertreatment agent and / or the precursor solution with the exhaust gas substreams can be achieved in a targeted manner. This is the mixing of the
  • Exhaust gas aftertreatment agent can be optimized.
  • the exhaust gas flow divider preferably has one
  • Dividing disk with a plurality of openings or windows formed therein for the partial flows of the exhaust gas wherein the dividing disk is aligned upstream of the air guide element at least substantially perpendicular to the flow direction of the exhaust gas stream.
  • the openings are formed differently large, in order to achieve different sized partial flows of the exhaust gas.
  • the size of the openings increases with increasing distance to the heater.
  • the partition disk is formed by the air guide element, and in particular represents a section of the air guide element. This ensures a particularly simple and space-saving integration into the prechamber.
  • the exhaust aftertreatment system with the features of claim 9 is characterized by the inventive design of the device. This results in the already mentioned advantages. Further advantages and preferred features and combinations of features emerge in particular from the previously described and from the claims.
  • the method according to the invention with the features of claim 10 is characterized in that the heating device is operated as a function of a temperature of the exhaust gas flow. This is a saving in particular electrical energy in the operation of the motor vehicle
  • the heater is activated when the temperature of the exhaust stream is below a predetermined limit.
  • the heating device is preferably deactivated when the temperature of the exhaust gas flow exceeds a predefinable second limit value.
  • the first limit value and the second limit value are different, so that a hysteresis loop for driving the heating device is realized. This ensures that at sufficiently high exhaust gas temperatures that ensure a safe hydrolysis and ammonia supply, the heater is disabled so as not to unnecessarily consume electrical energy. Only if the temperature of the exhaust stream is too low to perform the hydrolysis, the heater is activated.
  • the heater is also dependent on a
  • the catalyst has a still low operating temperature, which is a safe
  • FIG. 1 shows a simplified exhaust aftertreatment system in a simplified representation
  • Figure 2 shows an advantageous device of the exhaust aftertreatment system in a perspective view
  • FIG. 1 shows a simplified illustration
  • the internal combustion engine 2 in the present case is an internal combustion engine operated with diesel fuel.
  • An exhaust gas outlet of the internal combustion engine is connected to an exhaust line 3 of the
  • the exhaust gas line 3 has a diesel oxidation catalyst 4, a device 5 for providing an ammonia-containing exhaust gas aftertreatment agent, and an SCR catalytic converter 6 with a diesel particle filter 7, which are successively flowed through by the exhaust gas flow of the internal combustion engine 2.
  • Diesel particulate filters 7 are manufactured in particular in a known manner, so that their exact structure and shape at this point will not be discussed in more detail.
  • the mixing device 8 is designed in particular as a static mixing device.
  • FIG. 2 shows a perspective, simplified illustration of the mixing device 8.
  • the mixing device 8 is arranged in a chamber 10 upstream of the SCR catalytic converter, which has a cylindrical housing 11.
  • the air guide elements 9 are arranged and an electrically operable heater 12.
  • an opening is also formed, through which an injection valve 13, a medium in the chamber 10th can inject.
  • the heating device 12 is connected downstream of the injection valve 13, so that the injected medium first through the
  • Heating device 2 or is passed close to it to be warmed up with activated heater 12 before it is transported by the air guide elements 9 and / or the exhaust gas flow thereof.
  • the injection valve 13 is connected to a conveyor 14, which is connected on the suction side with a tank 15, which is a precursor solution, in particular an aqueous urea solution, a
  • the injection valve 13 is designed to inject the precursor solution metered into the mixing device 8.
  • the precursor solution of the exhaust gas aftertreatment agent injected from the injection valve 13 into the exhaust gas flow reacts with the exhaust gas flow through the heat of the exhaust gas flow and through the heat supplied by the electric heater 12 such that hydrolysis takes place and ammonia is formed, which then reacts with the exhaust flow in the mixing device 8 mixed.
  • the injection valve 13, the heater 12 and the mixing device 8 together form a device 16 for producing an ammonia-containing
  • the chamber 10 forms an antechamber of the SCR catalytic converter 6, so that the exhaust gas flow leaving the chamber 10 is fed directly to the SCR catalytic converter 6.
  • the device 16, which in this respect represents a reactor for the production of ammonia, is realized in a particularly space-saving manner due to its advantageous integration into the mixing device 8 which is also present in conventional exhaust aftertreatment systems. Because it also the entire exhaust gas stream of the internal combustion engine 2 is supplied, the reactor or the device 16 receives a high proportion of heat through the exhaust stream, which is also available for the hydrolysis of the precursor solution.
  • the heater 12 is therefore preferably driven or energized only when needed.
  • the heating device 12 is energized when the temperature of the exhaust gas stream and / or the SCR catalyst 6 is below a predetermined first limit value.
  • the first limit value is selected as a function of the temperature required for the hydrolysis, so that if the heat of the exhaust gas stream already present in the system is not sufficient to carry out the hydrolysis, then Heating device 12 is controlled. Exceeds the temperature of the
  • the first limit value and the second limit value are selected to be equal or different, the second limit value preferably being greater than the first limit value, resulting in a hysteresis function which avoids premature switching of the electrical heating mode.
  • FIG. 3 shows a simplified axial plan view of the generator
  • the mixing device 8 has
  • a dividing disk 17 which is aligned substantially perpendicular to the axial extension of the housing 11 or parallel to the normal flow direction of the exhaust gas flow and presently also a part of one of the air guide elements 9.
  • the dividing disk 17 extends annularly in the twisting direction of the twist of the exhaust gas flow generated by the air guiding elements 9.
  • the injection valve 13 is arranged on the jacket wall 11 such that the spray penetrates into the housing during injection in the course of a secant, advantageously in the direction of the swirl of the exhaust gas flow.
  • Downstream of the heater 12 a plurality of openings 18 are formed in the downstream partition plate 17, through which the exhaust gas flow can flow through the partition plate 17.
  • the size of the openings, ie the opening cross section of the openings 18, increases with increasing distance to the heating device 12.
  • the exhaust gas stream is divided into a plurality of partial exhaust streams to an advantageous
  • the dividing disk 17 begins upstream or axially in front of the heating device 12 and the injection point of the injection valve 13, so that the precursor solution and the exhaust gas stream are gradually mixed with each other. Due to the different opening cross-sections, a particularly advantageous mixing takes place. In addition, it can be achieved that the mixing lower part of the exhaust gas mass flow and / or the precursor solution flows via the heating device 12.

Abstract

Die Erfindung betrifft eine Vorrichtung (16) zum Bereitstellen eines Ammoniakaufweisenden Abgasnachbehandlungsmittels für einen Abgasstrom einer Brennkraftmaschine (2) stromaufwärts eines Katalysators (6), wobei die Vorrichtung (16) eine Kammer (10) aufweist, welcher zumindest ein Anteil des Abgasstroms zuführbar ist, und ein Einspritzventil (13) zum Einspritzen einer Vorläuferlösung des Abgasnachbehandlungsmittels in die Kammer (10) sowie eine Heizeinrichtung (12) zum Erwärmen der Vorläuferlösung, mit einer Mischvorrichtung (8) zum Vermischen des Abgasnachbehandlungsmittels mit dem Abgas der Brennkraftmaschine (2) stromaufwärts des Katalysators. Es ist vorgesehen, dass die Kammer (10) eine von dem gesamten Abgasstrom durchströmbare Vorkammer für den Katalysator (6) ist, und dass die Mischvorrichtung (8) und die Heizeinrichtung (12) in die Vorkammer integriert sind.

Description

Beschreibung
Titel
VORRICHTUNG ZUM BEREITSTELLEN EINES AMMON IAK-AUFWEISEN DEN ABGASNACHBEHANDLUNGSMITTELS, ABGASNACHBEHANDLUNGSEINRICHTUNG
UND VERFAHREN
Die Erfindung betrifft eine Vorrichtung zum Bereitstellen eines Ammoniak- aufweisenden Abgasnachbehandlungsmittels für einen Abgasstrom einer
Brennkraftmaschine stromaufwärts eines Katalysators, insbesondere SCR- Katalysator, wobei die Vorrichtung eine Kammer aufweist, welcher zumindest ein Anteil des Abgasstroms zuführbar ist, und ein Einspritzventil zum Einspritzen einer Vorläuferlösung des Abgasnachbehandlungsmittels in die Kammer sowie eine ansteuerbare Heizeinrichtung zum Erwärmen der Vorläuferlösung, mit einer Mischvorrichtung zum Vermischen des Abgasnachbehandlungsmittels mit dem Abgas der Brennkraftmaschine stromaufwärts des Katalysators.
Weiterhin betrifft die Erfindung eine Abgasnachbehandlungseinrichtung zur Nachbehandlung von Abgas einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs, mit einem Katalysator, welcher von dem Abgas der
Brennkraftmaschine durchströmbar ist, und mit einer dem Katalysator
vorgeschalteten Vorrichtung, wie sie vorstehend beschrieben wurde.
Ferner betrifft die Erfindung ein Verfahren zum Betreiben der vorstehend genannten Vorrichtung oder des vorstehend genannten
Abgasnachbehandlungssystems.
Stand der Technik
Zum Erfüllen zukünftiger Emissionsgrenzwerte für Kraftfahrzeuge mit
Brennkraftmaschine, sowohl bei Nutzfahrzeugen als auch bei Personenkraftwagen, müssen gegenüber heutigem Stand die chemischen NOx- Umsätze weiter verbessert werden. Hierzu ist es bekannt, entweder die
Temperaturen in einem Katalysator, insbesondere SCR-Katalysator, deutlich schneller als heute zu erhöhen, um die Arbeitstemperatur frühzeitig zu erreichen, oder das Abgasnachbehandlungssystem derart zu gestalten, dass es auch bei niedrigeren Betriebstemperaturen bereits eine höhere Leistung bietet.
Um dies zu erreichen, müssen die Katalysatoren schon bei niedrigeren
Temperaturen eine erhöhte Aktivität aufweisen. Dies wird teilweise bereits durch aktuelle Katalysatortechnologien erreicht. Ein limitierender Faktor der Leistung ist derzeit die Hydrolyse, durch welche eine Vorläuferlösung des
Abgasnachbehandlungsmittels zu dem Abgasnachbehandlungsmittel gewandelt wird. Insbesondere ist es dabei bekannt, als Vorläuferlösung eine wässrige Harnstofflösung zu verwenden, aus welcher mittels Hydrolyse Ammoniak bereitgestellt wird. Weil niedrige Temperaturen die Konversion des Harnstoffs zu Ammoniak limitieren, werden Reaktoren vorgeschlagen, die die Hydrolyse unabhängig und auch geometrisch getrennt vom Abgasstrom bewerkstelligen. So ist es beispielsweise bekannt, einen Abgasstromteil abzuzweigen und einem Reaktor zuzuführen, in welchen die Vorläuferlösung eingespritzt, mit dem
Abgasstrom vermischt und mittels einer Heizeinrichtung aufgeheizt wird, sodass ein Ammoniakstrom entsteht, der dem Katalysator stromaufwärts zugeführt wird. Die Kammer bildet zusammen mit dem Einspritzventil, der Heizeinrichtung und dem Abgasteilstromzulauf einen solchen Reaktor zum Herstellen des
Abgasnachbehandlungsmittels. Ein derartiger Reaktor wird beispielsweise von der Baumot Group unter dem Namen„NOx NH3-Generator“angeboten.
Nachteilig bei der vorgeschlagenen Lösung ist es, dass eine aufwendige Bypass- Führung für das Abgas zu dem Reaktor und von dem Reaktor zu dem
Katalysator notwendig ist, und außerdem zusätzlicher Bauraum für den Reaktor benötigt wird.
Offenbarung der Erfindung
Die erfindungsgemäße Vorrichtung mit den Merkmalen des Anspruchs 1 hat den Vorteil, dass der Reaktor zur Bereitstellung des Abgasnachbehandlungsmittels in vorteilhafter Art und Weise bauraumsparend integriert ist und darüber hinaus eine energiesparende Abgasnachbehandlungsmitelbereitstellung ermöglicht. Die erfindungsgemäße Vorrichtung sieht vor, dass die Kammer eine von dem gesamten Abgasstrom durchströmbare Vorkammer für den Katalysator ist, und dass die Mischvorrichtung und die Heizvorrichtung in die Vorkammer integriert sind. Weil die Vorkammer die Kammer des Reaktors bildet, wird sie vollständig von dem Abgasstrom der Brennkraftmaschine durchströmt. Der Kammer ist außerdem das Einspritzventil zugeordnet, sodass die Vorläuferlösung in die Vorkammer einspritzbar ist. Während bisher die Mischvorrichtung stromaufwärts des Katalysators angeordnet ist, um das von dem Reaktor bereitgestellte und dem Abgasstrom zugeführte Abgasnachbehandlungsmitel mit dem von der Brennkraftmaschine kommenden Abgas zu vermengen, und üblicherweise in dem Reaktor eine zusätzliche Mischvorrichtung zum Vermengen der
Vorläuferlösung mit dem Abgasteilstrom notwendig ist, ist nunmehr nur noch die Mischvorrichtung stromaufwärts des Katalysators notwendig, wodurch Kosten und Bauteilanzahl für das Abgasnachbehandlungssystem reduziert werden. Die Vermischung der Vorläuferlösung und des Abgases erfolgt in der Vorkammer unter Ausnutzung des gesamten Abgasstroms, der von der Brennkraftmaschine dem Katalysator zugeführt wird. Weist die Brennkraftmaschine zwei oder mehr Abgasnachbehandlungsstränge auf, so ist unter dem gesamten Abgasstrom der Abgasstrom zu verstehen, der einem dieser Stränge von der Brennkraftmaschine insgesamt zugeführt wird. Wichtig ist, dass von dem Abgasstrom kein
Abgasteilstrom abgezweigt und separat einem externen Reaktor zugeführt wird. Hierdurch wird erreicht, dass die Wärmeenergie des gesamten Abgasstroms dazu nutzbar ist, die Hydrolyse durchzuführen, wodurch die Effizienz des Reaktors verbessert wird. Durch die Integration der Heizeinrichtung in die Vorkammer ist das Aufheizen der Vorläuferlösung und/oder des Abgasstroms auf eine Hydrolysetemperatur jederzeit und insbesondere in kurzer Zeit möglich. Dadurch kann beispielsweise in einer Warmlauf- Phase der Brennkraftmaschine in kurzer Zeit die Hydrolyse gewährleistet werden, indem die Heizeinrichtung angesteuert wird. Mit zunehmender Betriebsdauer, wenn der Abgasstrom eine ausreichend hohe Temperatur aufweist und beispielsweise auch der Katalysator eine ausreichende Betriebstemperatur erreicht hat, wird die Heizeinrichtung bevorzugt deaktiviert, weil ein weiteres Aufheizen nicht notwendig ist, um die gewünschte Hydrolysefunktion durchzuführen. Dadurch wird die Energie für den Betrieb des Reaktors reduziert und insgesamt ein hocheffizientes Verfahren zum Nachbehandeln des Abgases erreicht.
Gemäß einer bevorzugten Weiterbildung der Erfindung ist die Heizeinrichtung als elektrisch betreibbare Heizeinrichtung ausgebildet. Dadurch ist die
Heizeinrichtung bauraumsparend und kostengünstig in den Reaktor
beziehungsweise in die Kammer integrierbar und gewährleistet, dass in kurzer Zeit ausreichend Wärmeenergie in die Kammer gelangt, um die Hydrolyse durchzuführen.
Gemäß einer bevorzugten Ausführungsform der Erfindung weist die
Mischvorrichtung eine Helixmischvorrichtung auf, die zumindest ein
Strömungsleitelement aufweist, das den Abgasstrom in eine Drallbewegung versetzt. Durch die Drallbewegung erfolgt eine besonders homogene
Vermischung des Abgasstroms mit dem Abgasnachbehandlungsmittel und/oder mit der Vorläuferlösung. Dadurch wird der stromabwärtsliegende Katalysator in vorteilhafter Weise durch das mit Abgasnachbehandlungsmittel versehen Abgas beaufschlagt. Darüber hinaus wird bei gleicher axialer Rohrlänge der Mischweg zum Vermischen des Abgasnachbehandlungsmittels mit dem Abgasstrom erhöht.
Vorzugsweise ist das Einspritzventil dazu ausgebildet und/oder angeordnet, die Vorläuferlösung zumindest im Wesentlichen radial zur Strömungsrichtung durch eine Mantelwand der Vorkammer in die Vorkammer einzuspritzen. Vorzugsweise ist die Vorkammer zylinderförmig ausgebildet, sodass durch das radiale
Einspritzen ein Einspritzen insbesondere in die Drallrichtung des Abgasstroms erfolgt, wodurch eine vorteilhafte Vermischung gewährleistet ist. Insbesondere wird die Vorläuferlösung in Richtung einer Sekante des zylinderförmigen
Gehäuses beziehungsweise der zylinderförmigen Mantelwand der Vorkammer eingespritzt.
Weiterhin ist die Heizeinrichtung bevorzugt zwischen dem Einspritzventil und dem Luftleitelement der Mischvorrichtung angeordnet, sodass insbesondere die Vorläuferlösung noch vor dem Vermischen mit dem Abgasstrom durch die Mischeinrichtung derart weit aufgeheizt wird, sodass eine sichere Hydrolyse und die Ammoniak-Bereitstellung gewährleistet sind.
Weiterhin ist bevorzugt vorgesehen, dass die Mischvorrichtung eine
Abgasstromteilungseinrichtung aufweist, um insbesondere unterschiedlich große Teilströme des Abgases in unterschiedlicher Entfernung zu dem Einspritzventil und/oder der Heizeinrichtung zu erhalten. Damit kann gezielt eine Vermischung des Abgasnachbehandlungsmittels und/oder der Vorläuferlösung mit den Abgasteilströmen erreicht werden. Dadurch ist die Vermischung des
Abgasstroms mit der Vorläuferlösung und/oder mit dem
Abgasnachbehandlungsmittel optimierbar.
Weiterhin weist die Abgasstromteilungseinrichtung bevorzugt eine
Teilungsscheibe mit mehreren darin ausgebildeten Öffnungen oder Fenstern für die Teilströme des Abgases auf, wobei die Teilungsscheibe stromaufwärts des Luftleitelements zumindest im Wesentlichen senkrecht zur Strömungsrichtung des Abgasstroms ausgerichtet ist. Dadurch ist eine direkte Aufteilung des Abgasstroms in Abgasteilströme in einfacher Art und Weise gewährleistet. Insbesondere sind zumindest einige der Öffnungen unterschiedlich groß ausgebildet, um unterschiedlich große Teilströme des Abgases zu erreichen. Vorzugsweise nimmt die Größe der Öffnungen mit zunehmendem Abstand zur Heizeinrichtung zu.
Besonders bevorzugt ist die Teilungsscheibe von dem Luftleitelement mitgebildet, und stellt insbesondere einen Abschnitt des Luftleitelements dar. Hierdurch ist eine besonders einfache und bauraumsparende Integrierung in die Vorkammer gewährleistet.
Das Abgasnachbehandlungssystem mit den Merkmalen des Anspruchs 9 zeichnet sich durch die erfindungsgemäße Ausbildung der Vorrichtung aus. Es ergeben sich hierdurch die bereits genannten Vorteile. Weitere Vorteile und bevorzugte Merkmale und Merkmalskombinationen ergeben sich insbesondere aus dem zuvor Beschriebenen sowie aus den Ansprüchen. Das erfindungsgemäße Verfahren mit den Merkmalen des Anspruchs 10 zeichnet sich dadurch aus, dass die Heizeinrichtung in Abhängigkeit von einer Temperatur des Abgasstroms betrieben wird. Hierdurch ist eine Einsparung insbesondere elektrischer Energie im Betrieb des Kraftfahrzeugs
beziehungsweise der Brennkraftmaschine möglich.
Vorzugsweise wird die Heizeinrichtung aktiviert, wenn die Temperatur des Abgasstroms unter einem vorgebbaren Grenzwert liegt. Weiterhin wird die Heizeinrichtung bevorzugt deaktiviert, wenn die Temperatur des Abgasstroms einen vorgebbaren zweiten Grenzwert überschreitet. Besonders bevorzugt sind der erste Grenzwert und der zweite Grenzwert unterschiedlich, sodass eine Hystereseschleife für das Ansteuern der Heizeinrichtung realisiert ist. Hierdurch wird erreicht, dass bei ausreichend hohen Abgastemperaturen, die eine sichere Hydrolyse und Ammoniak-Bereitstellung gewährleisten, die Heizeinrichtung deaktiviert wird, um nicht unnötig elektrische Energie zu verbrauchen. Nur dann, wenn die Temperatur des Abgasstroms zu niedrig ist, um die Hydrolyse durchzuführen, wird die Heizeinrichtung aktiviert.
Optional wird die Heizeinrichtung außerdem in Abhängigkeit von einer
Temperatur des Katalysators betrieben. Weist der Katalysator beispielsweise eine noch niedrige Betriebstemperatur auf, die eine sichere
Abgasnachbehandlung nicht gewährleistet, wird durch das Ansteuern der Heizeinrichtung und insbesondere mit Einspritzen des flüssigen
Abgasnachbehandlungsmittels, insbesondere Harnstoff- Wasser- Lösung, die Abgasstromtemperatur erhöht und damit ein schnelleres Aufheizen des
Katalysators gewährleistet.
Weitere Vorteile und bevorzugte Merkmale und Merkmalskombinationen ergeben sich insbesondere aus dem zuvor Beschriebenen sowie aus den Ansprüchen. Im Folgenden soll die Erfindung anhand der Zeichnung näher erläutert werden.
Dazu zeigen
Figur 1 ein vorteilhaftes Abgasnachbehandlungssystem in einer vereinfachten Darstellung, Figur 2 eine vorteilhafte Vorrichtung des Abgasnachbehandlungssystems in einer perspektivischen Darstellung, und
Figur 3 die Vorrichtung in einer vereinfachten Draufsicht.
Figur 1 zeigt in einer vereinfachten Darstellung ein
Abgasnachbehandlungssystem 1 für eine Brennkraftmaschine 2 eines hier nicht näher dargestellten Kraftfahrzeugs. Bei der Brennkraftmaschine 2 handelt es sich vorliegend um eine mit Dieselkraftstoff betriebene Brennkraftmaschine. Ein Abgasauslass der Brennkraftmaschine ist mit einer Abgasstrang 3 des
Abgasnachbehandlungssystems 1 verbunden. Der Abgasstrang 3 weist einen Dieseloxidationskatalysator 4, eine Vorrichtung 5 zum Bereitstellen eines Ammoniak-haltigen Abgasnachbehandlungsmittels, und einen SCR-Katalysator 6 mit einem Dieselpartikelfilter 7 auf, die nacheinander vom Abgasstrom der Brennkraftmaschine 2 durchströmt werden.
Der Dieseloxidationskatalysator 4 sowie der SCR-Katalysator 6 und der
Dieselpartikelfilter 7 sind insbesondere auf bekannte Art und Weise hergestellt, sodass auf deren genauere Struktur und Gestalt an dieser Stelle nicht näher eingegangen werden soll.
Die Vorrichtung 5, die vorliegend zwischen dem Dieseloxidationskatalysator 4 und dem SCR-Katalysator 6 angeordnet ist, weist eine Mischvorrichtung 8 auf, die insbesondere als Helixmischvorrichtung ausgebildet ist, und ein oder mehrere Luftleitelemente 9 aufweist, die insbesondere spiralförmig ausgebildet sind, um den von der Brennkraftmaschine 2 kommenden Abgasstrom in eine
Drallbewegung zu versetzen. Die Mischvorrichtung 8 ist dabei insbesondere als statische Mischvorrichtung ausgebildet.
Figur 2 zeigt eine perspektivische, vereinfachte Darstellung der Mischvorrichtung 8. Die Mischvorrichtung 8 ist in einer dem SCR-Katalysator vorgeschalteten Kammer 10 angeordnet, die ein zylinderförmiges Gehäuse 11 aufweist. In der Kammer 10 sind die Luftleitelemente 9 angeordnet sowie eine elektrisch betreibbare Heizeinrichtung 12. In der Mantelwand 11 ist außerdem eine Öffnung ausgebildet, durch welche ein Einspritzventil 13 ein Medium in die Kammer 10 einspritzen kann. Dabei ist die Heizeinrichtung 12 dem Einspritzventil 13 nachgeschaltet, sodass das eingespritzte Medium zunächst durch die
Heizeinrichtung 2 oder an dieser nahe vorbei geführt wird, um bei aktivierter Heizeinrichtung 12 aufgewärmt zu werden, bevor es durch die Luftleitelemente 9 und/oder den Abgasstrom davon transportiert wird.
Das Einspritzventil 13 ist mit einer Fördereinrichtung 14 verbunden, die saugseitig mit einem Tank 15 verbunden ist, welcher eine Vorläuferlösung, insbesondere eine wässrige Harnstofflösung, eines
Abgasnachbehandlungsmittels bereitstellt. Das Einspritzventil 13 ist dazu ausgebildet, die Vorläuferlösung dosiert in die Mischvorrichtung 8 einzuspritzen.
Die von dem Einspritzventil 13 in den Abgasstrom eingespritzte Vorläuferlösung des Abgasnachbehandlungsmittels reagiert durch die Hitze des Abgasstroms sowie durch die von der elektrischen Heizeinrichtung 12 zugeführten Wärme mit dem Abgasstrom derart, dass eine Hydrolyse stattfindet und Ammoniak entsteht, der sich dann mit dem Abgasstrom in der Mischvorrichtung 8 vermischt. Damit bilden das Einspritzventil 13, die Heizvorrichtung 12 und die Mischvorrichtung 8 zusammen eine Vorrichtung 16 zur Herstellung eines Ammoniak-haltigen
Abgasnachbehandlungsmittels. Die Kammer 10 bildet dabei eine Vorkammer des SCR-Katalysators 6, sodass der die Kammer 10 verlassende Abgasstrom direkt dem SCR-Katalysator 6 zugeführt wird. Die Vorrichtung 16, die insoweit einen Reaktor zur Herstellung von Ammoniak darstellt, ist durch ihre vorteilhafte Integration in die auch bei herkömmlichen Abgasnachbehandlungssystemen vorhandene Mischvorrichtung 8 besonders bauraumsparend realisiert. Weil ihr außerdem der gesamte Abgasstrom der Brennkraftmaschine 2 zugeführt wird, erhält der Reaktor beziehungsweise die Vorrichtung 16 einen hohen Wärmeanteil durch den Abgasstrom, der ebenfalls zur Hydrolyse der Vorläuferlösung nutzbar ist. Die Heizvorrichtung 12 wird daher bevorzugt nur bei Bedarf angesteuert beziehungsweise bestromt. Insbesondere wird die Heizeinrichtung 12 dann bestromt, wenn die Temperatur des Abgasstroms und/oder des SCR- Katalysators 6 unterhalb eines vorgebbaren ersten Grenzwerts liegt. Der erste Grenzwert wird dabei in Abhängigkeit von der für die Hydrolyse notwendigen Temperatur gewählt, sodass dann, wenn die im System ohnehin vorhandene Wärme des Abgasstroms nicht dazu ausreicht, die Hydrolyse durchzuführen, die Heizeinrichtung 12 angesteuert wird. Überschreitet die Temperatur des
Abgasstroms und/oder des SCR-Katalysators 6 einen zweiten Grenzwert, so wird die Heizeinrichtung 12 deaktiviert und die Hydrolyse auf Basis der im
Abgasstrom vorhandenen Wärme weiter durchgeführt. Dadurch wird der
Verbrauch elektrischer Energie zum Generieren des Ammoniaks auf ein
Minimum reduziert, wodurch die Gesamtenergiebilanz des Kraftfahrzeugs optimiert wird. Der erste Grenzwert und der zweite Grenzwert werden gleich oder unterschiedlich gewählt, wobei der zweite Grenzwert bevorzugt größer ist als der erste Grenzwert, sodass eine Hysterese- Funktion entsteht, die ein vorzeitiges Umschalten des elektrischen Heizbetriebs vermeidet.
Figur 3 zeigt eine vereinfachte axiale Draufsicht auf den Generator
beziehungsweise die Vorrichtung 16. Die Mischvorrichtung 8 weist
vorteilhafterweise eine Teilungsscheibe 17 auf, die im Wesentlichen senkrecht zur Axialerstreckung des Gehäuses 11 beziehungsweise parallel zur normalen Strömungsrichtung des Abgasstroms ausgerichtet ist und vorliegend ebenfalls ein Teil eines der Luftleitelemente 9 ist. Die Teilungsscheibe 17 verläuft insbesondere ringförmig in Drallrichtung des durch die Luftleitelemente 9 erzeugten Dralls des Abgasstroms. Das Einspritzventil 13 ist derart an der Mantelwand 11 angeordnet, dass das Spray beim Einspritzen im Verlauf einer Sekante in das Gehäuse eindringt, vorteilhafterweise in Richtung des Dralls des Abgasstroms. Stromabwärts der Heizeinrichtung 12 sind in der stromabwärts liegenden Teilungsscheibe 17 mehrere Öffnungen 18 ausgebildet, durch welche der Abgasstrom die Teilungsscheibe 17 durchströmen kann. Die Größe der Öffnungen, also der Öffnungsquerschnitt der Öffnungen 18, nimmt mit zunehmendem Abstand zu der Heizeinrichtung 12 zu. Hierdurch wird der Abgasstrom in mehrere Abgasteilströme aufgeteilt, um eine vorteilhafte
Vermischung mit der eingespritzten Vorläuferlösung zu gewährleisten. Die Teilungsscheibe 17 beginnt stromaufwärts beziehungsweise axial vor der Heizeinrichtung 12 und der Einspritzstelle des Einspritzventils 13, sodass Vorläuferlösung und Abgasstrom nach und nach miteinander vermengt werden. Durch die unterschiedlichen Öffnungsquerschnitte erfolgt dabei eine besonders vorteilhafte Vermengung. Darüber hinaus ist dadurch erreichbar, dass der Mischunterteil des Abgasmassenstroms und/oder der Vorläuferlösung über die Heizeinrichtung 12 strömt.

Claims

Ansprüche
1. Vorrichtung (16) zum Bereitstellen eines Ammoniak-aufweisenden Abgasnachbehandlungsmittels für einen Abgasstrom einer Brennkraftmaschine (2) stromaufwärts eines Katalysators (6), wobei die Vorrichtung (16) eine Kammer (10) aufweist, welcher zumindest ein Anteil des Abgasstroms zuführbar ist, und ein Einspritzventil (13) zum Einspritzen einer Vorläuferlösung des Abgasnachbehandlungsmittels in die Kammer (10) sowie eine Heizeinrichtung (12) zum Erwärmen der Vorläuferlösung, mit einer Mischvorrichtung (8) zum Vermischen des Abgasnachbehandlungsmittels mit dem Abgas der
Brennkraftmaschine (2) stromaufwärts des Katalysators, dadurch
gekennzeichnet, dass die Kammer (10) eine von dem gesamten Abgasstrom durchströmbare Vorkammer für den Katalysator (6) ist, und dass die
Mischvorrichtung (8) und die Heizeinrichtung (12) in die Vorkammer integriert sind.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Heizeinrichtung (12) als elektrisch betreibbare Heizeinrichtung (12) ausgebildet ist.
3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mischvorrichtung (8) eine Helixmischvorrichtung ist, die zumindest ein Strömungsleitelement (9) aufweist, das den Abgasstrom in eine Drallbewegung stromaufwärts des Katalysators (6) versetzt.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Einspritzventil (13) dazu ausgebildet und/oder angeordnet ist, die Vorläuferlösung zumindest im Wesentlichen radial zur Strömungsrichtung durch eine Mantelwand (11) der Vorkammer in die
Vorkammer einzuspritzen.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Heizeinrichtung (12) zwischen dem Einspritzventil (13) und dem Luftleitelement (9) der Mischvorrichtung (8) angeordnet ist.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mischvorrichtung (8) eine
Abgasstromteilungseinrichtung aufweist, um insbesondere unterschiedlich große Teilströme des Abgases in unterschiedlicher Entfernung zu dem Einspritzventil (13) und/oder der Heizeinrichtung (12) zu erhalten.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abgasstromteilungseinrichtung eine Teilungsscheibe (17) mit mehreren darin ausgebildeten Öffnungen (18) für Teilströme des Abgasstroms aufweist, wobei die Teilungsscheibe (17) stromaufwärts des Luftleitelements (9) und zumindest im Wesentlichen senkrecht zur
Strömungsrichtung des Abgasstroms ausgerichtet ist.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Teilungsscheibe (17) von dem Luftleitelement (9) mitgebildet ist.
9. Abgasnachbehandlungssystem (1) zur Nachbehandlung vom Abgas einer Brennkraftmaschine (2) insbesondere eines Kraftfahrzeugs, mit einem Katalysator (6), der von dem Abgasstrom der Brennkraftmaschine (2) durchströmbar ist, und mit einer dem Katalysator (6) zugeordneten Vorrichtung zum Bereitstellen eines Abgasnachbehandlungsmittels für den Abgasstrom stromaufwärts des Katalysators (6), gekennzeichnet durch die Ausbildung der Vorrichtung (16) nach einem der Ansprüche 1 bis 8.
10. Verfahren zum Betreiben der Vorrichtung (16) nach einem der
Ansprüche 1 bis 8 oder des Abgasnachbehandlungssystems (1) nach Anspruch 9, dadurch gekennzeichnet, dass die Heizeinrichtung (12) in Abhängigkeit von einer Temperatur des Abgasstroms betrieben wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Heizeinrichtung (12) aktiviert wird, wenn die Temperatur des Abgasstroms einen ersten Grenzwert überschreitet, und/oder deaktiviert, wenn die Temperatur des Abgasstroms einen zweiten Grenzwert unterschreitet.
12. Verfahren nach einem der Ansprüche 10 und 11, dadurch
gekennzeichnet, dass die Heizeinrichtung (12) in Abhängigkeit von einer Temperatur des Katalysators (6) betrieben wird.
PCT/EP2019/051947 2018-03-28 2019-01-28 Vorrichtung zum bereitstellen eines ammoniak-aufweisenden abgasnachbehandlungsmittels, abgasnachbehandlungseinrichtung und verfahren WO2019185215A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018204703.0 2018-03-28
DE102018204703.0A DE102018204703A1 (de) 2018-03-28 2018-03-28 Vorrichtung zum Bereitstellen eines Ammoniak-aufweisenden Abgasnachbehandlungsmittels, Abgasnachbehandlungseinrichtung, Abgasnachbehandlungssystem und Verfahren

Publications (1)

Publication Number Publication Date
WO2019185215A1 true WO2019185215A1 (de) 2019-10-03

Family

ID=65243541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/051947 WO2019185215A1 (de) 2018-03-28 2019-01-28 Vorrichtung zum bereitstellen eines ammoniak-aufweisenden abgasnachbehandlungsmittels, abgasnachbehandlungseinrichtung und verfahren

Country Status (2)

Country Link
DE (1) DE102018204703A1 (de)
WO (1) WO2019185215A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008009564A1 (de) * 2008-02-16 2009-08-27 Pierburg Gmbh Abgasnachbehandlungssystem für eine Verbrennungskraftmaschine
DE102012111335A1 (de) * 2011-11-24 2013-05-29 Avl List Gmbh Brennkraftmaschine mit einem Abgassystem
EP2865861A1 (de) * 2013-10-22 2015-04-29 Eberspächer Exhaust Technology GmbH & Co. KG Kataylsatoranordnung mit Injektionsabschnitt
DE102014117687A1 (de) * 2013-12-03 2015-06-18 Faurecia Systemes D'echappement Vorrichtung zum Einspritzen eines Reduktionsmittels und entsprechender Abgasstrang
DE102016001785A1 (de) * 2015-02-26 2016-09-01 Ngk Spark Plug Co., Ltd. Amoniakerzeugungsvorrichtung und Ammoniakerzeugungssteuervorrichtung
EP3141719A1 (de) * 2015-09-09 2017-03-15 FPT Motorenforschung AG Verfahren zur verbesserung der verdampfung einer reinigungsflüssigkeit in einem dosiermodul einer scr-vorrichtung und dosierungsmodul nach diesem verfahren
DE102016110320A1 (de) * 2016-06-03 2017-12-07 Semcon Holding Gmbh & Co. Kg Wendelförmige Mischvorrichtung, insbesondere für ein Abgassystem eines Kraftfahrzeuges

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008009564A1 (de) * 2008-02-16 2009-08-27 Pierburg Gmbh Abgasnachbehandlungssystem für eine Verbrennungskraftmaschine
DE102012111335A1 (de) * 2011-11-24 2013-05-29 Avl List Gmbh Brennkraftmaschine mit einem Abgassystem
EP2865861A1 (de) * 2013-10-22 2015-04-29 Eberspächer Exhaust Technology GmbH & Co. KG Kataylsatoranordnung mit Injektionsabschnitt
DE102014117687A1 (de) * 2013-12-03 2015-06-18 Faurecia Systemes D'echappement Vorrichtung zum Einspritzen eines Reduktionsmittels und entsprechender Abgasstrang
DE102016001785A1 (de) * 2015-02-26 2016-09-01 Ngk Spark Plug Co., Ltd. Amoniakerzeugungsvorrichtung und Ammoniakerzeugungssteuervorrichtung
EP3141719A1 (de) * 2015-09-09 2017-03-15 FPT Motorenforschung AG Verfahren zur verbesserung der verdampfung einer reinigungsflüssigkeit in einem dosiermodul einer scr-vorrichtung und dosierungsmodul nach diesem verfahren
DE102016110320A1 (de) * 2016-06-03 2017-12-07 Semcon Holding Gmbh & Co. Kg Wendelförmige Mischvorrichtung, insbesondere für ein Abgassystem eines Kraftfahrzeuges

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAUMOT ET AL: "BAUMOT GROUP Design & Engineering Products & Solutions Testing & Validation", 31 May 2017 (2017-05-31), XP055569033, Retrieved from the Internet <URL:https://solutions.baumot.de/wp-content/uploads/sites/2/2017/05/20170522_BNOx_IR_FV.pdf> [retrieved on 20190314] *

Also Published As

Publication number Publication date
DE102018204703A1 (de) 2019-10-02

Similar Documents

Publication Publication Date Title
EP1054139B1 (de) Abgasreinigungsanlage mit Stickoxidreduktion unter Reduktionsmittelzugabe
EP2057360B1 (de) Verfahren und vorrichtung zur bereitstellung eines ein reduktionsmittel umfassenden gasstroms
DE102008009564B4 (de) Abgasnachbehandlungssystem für eine Verbrennungskraftmaschine
EP1953359B1 (de) Abgasanlage für eine Brennkraftmaschine
EP3406873B1 (de) Abgasnachbehandlungssystem für einen verbrennungsmotor
EP3660287B1 (de) Abgasnachbehandlungssystem sowie verfahren zur abgasnachbehandlung eines verbrennungsmotors
DE102014110592B4 (de) Nachbehandlungskomponente
EP3418518B1 (de) Abgasnachbehandlungssystem und verfahren zur abgasnachbehandlung eines verbrennungsmotors
WO2010034651A1 (de) Abgasreinigungssystem für dieselmotoren
DE102009053950A1 (de) Vorrichtung zur Nachbehandlung von Abgasen von Brennkraftmaschinen
DE102010021040A1 (de) Mischer und Abgasanlage
EP3196434B1 (de) Scr-abgasnachbehandlungsanordnung
EP3161285B1 (de) Vorrichtung zur erzeugung von ammoniak zur abgasnachbehandlung
DE102016004333A1 (de) Abgasnachbehandlungsvorrichtung mit Katalysator und Mischvorrichtung
DE102018126621A1 (de) Abgasnachbehandlungssystem sowie Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102020100529A1 (de) Verbrennungsmotor sowie Verfahren zum Aufheizen einer Abgasanlage eines solchen Verbrennungsmotors
DE102014223382A1 (de) Verfahren zum Betreiben einer Vorrichtung zur Nachbehandlung der Abgase einer Brennkraftmaschine und entsprechende Vorrichtung
WO2019185215A1 (de) Vorrichtung zum bereitstellen eines ammoniak-aufweisenden abgasnachbehandlungsmittels, abgasnachbehandlungseinrichtung und verfahren
DE102019212883A1 (de) Mischvorrichtung
DE102018132833A1 (de) Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors sowie Abgasnachbehandlungssystem
EP3050615A1 (de) Strömungseinheit, Abgasreinigungsanlage und Verfahren für eine Abgasreinigungsanlage
DE102012006365A1 (de) Abgasanlage für ein Fahrzeug
EP3388646B1 (de) Abgasnachbehandlungssystem für einen verbrennungsmotor sowie verbrennungsmotor
DE102018127643A1 (de) Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
EP3161286B1 (de) Vorrichtung zur erzeugung von ammoniak

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19702382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19702382

Country of ref document: EP

Kind code of ref document: A1