WO2019185002A1 - 激光加工工件的方法及其在刀具制造中的应用 - Google Patents

激光加工工件的方法及其在刀具制造中的应用 Download PDF

Info

Publication number
WO2019185002A1
WO2019185002A1 PCT/CN2019/080274 CN2019080274W WO2019185002A1 WO 2019185002 A1 WO2019185002 A1 WO 2019185002A1 CN 2019080274 W CN2019080274 W CN 2019080274W WO 2019185002 A1 WO2019185002 A1 WO 2019185002A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
workpiece
cut
processing
manufacturing
Prior art date
Application number
PCT/CN2019/080274
Other languages
English (en)
French (fr)
Inventor
孙思叡
Original Assignee
上海名古屋精密工具股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海名古屋精密工具股份有限公司 filed Critical 上海名古屋精密工具股份有限公司
Priority to US16/767,414 priority Critical patent/US11712755B2/en
Priority to CN201980004372.2A priority patent/CN111278598A/zh
Priority to JP2020529194A priority patent/JP6980320B2/ja
Priority to EP19777929.1A priority patent/EP3685956B1/en
Publication of WO2019185002A1 publication Critical patent/WO2019185002A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/002Drill-bits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/20Tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics

Definitions

  • the invention relates to a workpiece processing method, in particular to a method for processing a material by using a laser to form a desired shape, such as a curved surface, a groove body and a hole, and the like, and the application of the method in tool manufacturing, for example: PCD Cutting materials such as CBN, cemented carbide, ceramics, and cermets are obtained to obtain various functional parts required.
  • PCD Cutting materials such as CBN, cemented carbide, ceramics, and cermets are obtained to obtain various functional parts required.
  • PCD Polycrystalline diamond
  • CBN cubic boron nitride
  • Cubic boron nitride (CBN or PCBN) is a synthetic material that is second only to diamond in hardness and has good high temperature stability (high temperatures are produced when hardened ferrous metals and superalloys are processed). CBN tools of different designs are used for continuous or interrupted cutting of hardened ferrous metals, as well as for the machining of weld metals and composite metals.
  • the PCD tool is made by welding PCD material to the body.
  • a PCD material is produced by sintering a diamond particle together with a base material under high temperature and high pressure using a metal-based binder.
  • the PCD tip can be cut by electrical discharge machining or laser and welded to a cemented carbide or steel substrate and then sharpened to form a PCD tool that processes high-speed non-ferrous metals (eg aluminum) and highly abrasive synthetic materials at high speed. It is especially effective when used with plastics.
  • PCD tools are widely used in milling non-ferrous metals, composites, plastics and super alloys that are extremely difficult to machine.
  • electrolytic erosion which is ground by electrolytic erosion between the copper wheel and the tool slot. This method is not only time-consuming to process, but also impossible to control the surface roughness, making it difficult to meet the processing requirements.
  • An object of the present invention is to provide a laser processing method for a workpiece, which is processed by using a laser according to a functional part required to be formed, thereby improving processing efficiency.
  • Another object of the present invention is to provide a laser processing method for use in tool manufacturing, to realize laser processing of a hard material, to accelerate the formation of various functional parts required for cutting a tool, and to improve the processing efficiency of the tool.
  • Still another object of the present invention is to provide a method of manufacturing a tool for realizing rapid processing of various functional parts required for cutting on a PCD or CBN material, thereby improving the processing efficiency of the tool.
  • the invention provides a laser processing method for a workpiece, the steps of which include:
  • the workpiece is cut along the respective boundaries by using a laser so that each material block is cut off and gradually separated from the workpiece until the structure is formed.
  • the maximum size of the material block depends on the machinable depth of the laser on the workpiece, that is, the farthest distance that the laser can process the workpiece along the direction of the laser light path.
  • the machinable depth of the laser is less than the thickness of the workpiece at the laser processing.
  • the workpiece should be understood as a material for manufacturing a finished product, such as: but not limited to PCD, CBN, cemented carbide, ceramics and cermet, etc., the form is as follows: but not limited to spherical, columnar, cone Shapes, plates, blocks and other shapes.
  • the method of the present invention is suitable for tool processing, and is particularly useful for processing functional parts required for cutting using a hard material.
  • the invention provides a method for manufacturing a tool, the steps of which are as follows:
  • the laser cuts the workpiece along each boundary, so that each material block is cut off and gradually separated from the workpiece to form a functional part required for cutting.
  • the tool of the present invention has the functional parts required for cutting, including but not limited to the chip flute, the spiral groove, the rake face and the flank face.
  • the machinable depth of the laser is less than the thickness of the workpiece at the functional portion of the laser processing.
  • a specific embodiment of the method of the present invention for processing a spiral groove comprising:
  • the laser cuts the workpiece along each boundary, so that each material block is cut off and gradually detached from the workpiece to form a spiral groove.
  • the machinable depth of the laser is less than the thickness of the workpiece at the laser-machined spiral groove.
  • three-axis and three-axis multi-axis linkage processing equipment are used, and laser cutting manufacturing functional parts are manufactured under computer control.
  • Another manufacturing method of the tool provided by the invention adopts a five-axis linkage processing device, and the steps are as follows:
  • the workpiece is cut by using a laser, so that each material block is cut off, and the workpiece is successively separated from the workpiece to form a functional part required for cutting.
  • the machinable depth of the laser is less than the thickness of the workpiece at the laser processing function.
  • Another embodiment of the method of the present invention uses a five-axis linkage processing apparatus to perform laser cutting and spiral groove manufacturing under computer control, including:
  • the workpiece is cut by using a laser, so that each material block is cut off, and the workpiece is successively separated from the workpiece to form a spiral groove.
  • the machinable depth of the laser is less than the thickness of the workpiece at the laser-machined spiral groove.
  • the material to be excised includes, but is not limited to, PCD, CBN, cemented carbide, ceramic or cermet.
  • the laser used is a pulsed laser and a continuous laser.
  • the tool processing method provided by the present invention does not need to remove the material to be cut by pulverization in the process of manufacturing the tank, but uses the characteristics of the laser to divide the material to be cut into The small piece is removed in a way that greatly reduces the processing time.
  • the time required for processing cannot be shortened because the material is subjected to 100% pulverization processing by electric erosion or grinding.
  • the machining method of electro-erosion and grinding generates a large amount of waste liquid.
  • the tool processing method provided by the present invention adopts a laser processing method which is divided into small pieces, and only generates a small amount of solid waste, which is convenient for recycling and is more environmentally friendly.
  • the tool processing method provided by the present invention is due to the material removal rate compared to the method in which another laser sweeps the machined surface point by point and removes (hot melt/vaporize/etch) all the processed portions layer by layer.
  • the use of the laser applied to the laser engraving and milling machine can also achieve the same processing efficiency, and it is not easy to cause thermal damage and mechanical damage to the machined surface, and the roughness comparable to that of the surface processed by the grinding method can be obtained, and the roughness is greatly reduced. Processing time increases processing efficiency.
  • Figure 1 is a schematic view showing an embodiment of the method according to the present invention for decomposing a material body to be cut into a plurality of material blocks according to a structure to be processed on a workpiece;
  • FIG. 2 is a schematic view showing another embodiment of the method according to the present invention for decomposing a material body to be cut obtained according to a structure to be processed on a workpiece into a plurality of material blocks;
  • Figure 3 is a schematic view of an embodiment of the material block shown in Figure 2 separated from the workpiece by laser cutting;
  • FIG. 4 is a schematic view showing another embodiment of the method according to the present invention for decomposing a material body to be cut obtained according to a structure to be processed on a workpiece into a plurality of material blocks, and separating the material block from the workpiece by laser cutting;
  • Figure 5 is a schematic view of Figure 4 after processing the workpiece by the method of the present invention.
  • FIG. 6 is a schematic view showing an embodiment of a workpiece to be processed and a tank body thereof according to the present invention
  • Figure 7 is a schematic view of another angle of Figure 6;
  • Figure 8 is a schematic view showing an embodiment of laser cutting the workpiece shown in Figure 6;
  • Figure 9 is a schematic view of another embodiment of laser cutting the workpiece shown in Figure 6;
  • Figure 10 is a schematic view showing the cutting of the workpiece by the laser, and the material removed on the workpiece is detached from the workpiece body in a block form;
  • Figure 11 is a schematic view showing the material removed from the workpiece in a block form during the process of cutting the workpiece into a groove by the laser;
  • Figure 12 is a schematic view showing another embodiment of the method of the present invention after the spiral groove processing of the workpiece.
  • lasers have been widely used in the field of machining, including laser cutting, laser engraving and laser drilling.
  • Laser cutting and punching are mainly used for steel plates and steel pipes, and the laser is completely cut through the workpiece to be processed.
  • Laser engraving is mainly used for metal surface texture engraving. Since the laser is a non-penetrating processing method, it can only be realized by laser layer-by-layer etching, gasification or hot-melting of the surface of the material to be processed, so the metal removal efficiency is better. Low, large depth machining is not possible. Therefore, the present embodiment provides a non-penetrating and efficient laser processing method.
  • FIG. 1 is a schematic view showing an embodiment of the method according to the present invention for decomposing a material body to be cut into a plurality of material blocks according to a structure to be processed on a workpiece; and FIG. 2 is a structure according to the present invention.
  • the obtained body to be cut is decomposed into a schematic diagram of another embodiment of several pieces of material. As shown in FIG. 1 and FIG.
  • the method of the present embodiment first determines the shape of the structure to be processed on the workpiece 100, and the intersection boundary with the workpiece, and obtains the material body 120 to be cut, which is to be
  • the cut material body 120 is decomposed into a plurality of material blocks 121, and thereby a plan for laser cutting processing is generated, that is, when the laser light path is directed to the workpiece for cutting, the material to be cut off on the workpiece and the material to be retained are required.
  • Laser processing is performed at the boundary between the two, and the material to be cut is peeled off one by one by dividing the two, and the laser action is consistent with the boundary line decomposed into a plurality of material blocks 121 so that after the action of the laser A plurality of material blocks 121 are successively separated from the workpiece (see Fig. 3).
  • FIG. 4 is a schematic view of another embodiment of the method according to the present invention for decomposing a material body to be cut obtained according to a structure to be processed on a workpiece into a plurality of material blocks, which are separated from the workpiece by laser cutting.
  • the laser performs a first direction cutting and a second direction cutting on the workpiece along the intersection of the material to be cut and the workpiece 100.
  • a plurality of tapered masses 121 are successively separated from the workpiece, whereby the form formed after processing is as shown in FIG. 5, forming a curved cutting boundary.
  • the machinable depth of the laser is less than the thickness of the workpiece where the laser is located, that is, the laser does not perform a through-cutting of the workpiece.
  • An example of a through-cut is such that a laser light path is incident on one side of the workpiece, along which the other side exits, leaving a through hole in the workpiece.
  • the optical path is incident on one side of the workpiece, and it is impossible to eject from the other side of the workpiece along the optical path.
  • the maximum size of the material block 121 depends on the machinable depth of the laser to the workpiece. That is, the farthest point that the laser can process the workpiece along the direction of the laser beam path.
  • the length of the cutting boundary should be less than or equal to the machinable depth of the laser to the workpiece.
  • the cutting boundaries have different lengths for different lasers and laser beams. The length of the cutting boundary is also determined by the specific requirements of the process.
  • the method of the present embodiment is carried out using one or more of a pulsed laser and a continuous laser.
  • the morphology of the structure to be processed is gradually formed.
  • the material body 120 to be cut and its decomposed material blocks 121 are digitized to form data information, and the existing three-axis and three-axis CNC machine tools are used in the computer. Under the control of the laser focus point, laser light path, and the workpiece is automated.
  • FIG. 6 is a schematic view showing an embodiment of a workpiece to be processed and a groove thereof according to the present invention
  • FIG. 7 is a schematic view of another angle of FIG. 6.
  • the parameters of the tool spiral groove such as: but not limited to: rake angle, core thickness, blade width ratio, groove bottom arc, helix angle and blade inclination angle
  • a spiral groove form is formed on the machined workpiece 100, and a transfer boundary 111 between the groove body and the outer edge of the workpiece.
  • This embodiment uses a pulsed laser or a continuous laser generated by a solid laser.
  • Suitable solid-state lasers include Q-switched lasers, mode-locked lasers, single-mode and frequency-stabilized lasers, and tunable lasers.
  • the focus point of the laser 300 is adjusted so that the laser cuts the workpiece to be processed.
  • the laser cuts the spiral groove along the radial and axial cutting of the workpiece along the intersection of the groove and the outer edge of the workpiece, so that the material to be cut off from the workpiece is in a block form from the workpiece body. Detach, see Figures 8 and 9.
  • Fig. 10 is a schematic view showing the cutting of the workpiece by the laser, and the material removed on the workpiece is detached from the workpiece body in a block form.
  • the cut material 200 produced by laser cutting of the workpiece is successively detached from the workpiece body in a block form.
  • the cut material 200 is continuously generated while forming the trough 110.
  • FIG. 12 is a schematic view showing a form of spiral groove processing of a workpiece according to the method of the present invention. Referring to FIG. 10 and FIG. 11, as shown in FIG. 12, after the laser is cut according to the shape of the groove body, a complete groove body is visible on the workpiece. .
  • the method of this embodiment is to perform 100% pulverization removal of the material by electro-erosion or grinding. Even if the material removal rate is constant, the processing time cannot be shortened because 100% material removal is required.
  • This embodiment does not use a laser to simply replace the conventional means to perform material cutting, but uses the characteristics of the laser to divide the material into small pieces to achieve a significant reduction in processing time.
  • this embodiment uses a laser to perform cutting, and only a small amount of solid waste is generated, which is easy to recycle, and the environmental protection is superior.
  • the processing area is reduced, and the processing efficiency is improved.
  • Another high-energy laser processing method sweeps the surface of the workpiece to be processed point by point, and gasifies all the processed parts layer by layer. Although there is no solid debris, the gas generated during processing pollutes the environment. And when processing consumes energy.
  • the method of the present embodiment not only helps to reduce the generation cost, but also uses the use of a smaller power laser (for example, a laser applied to a laser engraving and milling machine), which is less likely to cause thermal damage and mechanical damage to the processed surface. Obtaining a surface roughness comparable to that of grinding, and greatly reducing processing time and processing efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种激光加工工件(100)的方法,包括获得拟被切除的物料体(120),将拟被切除的物料体分解为若干个物料块(121),生成激光切割加工计划;依据激光切割加工计划,激光沿着拟被切除的物料体与工件各处的交接边界(111),对工件实施第一方向切割和第二方向切割,使得工件上被切除的物料(200)以块状的形式从工件本体陆续脱离,形成构造体。该方法在实施激光加工中无需以逐点熔融/气化的方式完全去除被切除的物料,而是将被切除物料分割成块状的方式去除,即对工件上需要被切除的物料与需要保留的物料的边界处进行激光加工,通过对两者进行分割的方式逐块剥离被切除的物料,从而大幅缩短加工时间。还涉及一种刀具的加工方法和一种刀具。

Description

激光加工工件的方法及其在刀具制造中的应用 技术领域
本发明涉及一种工件加工方法,尤其涉及一种使用激光对材料进行加工,形成所需的形态,如:曲面、槽体和孔等,以及该方法在刀具制造中的应用,比如:对PCD、CBN、硬质合金、陶瓷、金属陶瓷等材质实施切削,获得所需的各个功能部位。
背景技术
聚晶金刚石(PCD)刀具和立方氮化硼(CBN)刀具为难加工材料的切削难题提供了解决方案。
立方氮化硼(CBN或PCBN)是一种人工合成材料,其硬度仅次于金刚石,具有良好的高温稳定性(在加工淬硬黑色金属和超级合金材料时,会产生很高的温度)。不同设计的CBN刀具被用于对淬硬黑色金属进行连续或断续切削,以及切削加工焊接金属和复合金属。
PCD刀具是将PCD材料焊接于刀体上制成。一般情况下,将PCD材料于基体材料一起在高温高压下利用金属基粘结剂对金刚石颗粒进行烧结而生产出来的。PCD刀尖可通过放电加工或激光进行切割,并焊接到硬质合金或钢基体上,然后通过刃磨形成PCD刀具,这种刀具在高速加工有色金属(如:铝)以及高磨蚀性合成材料和塑料时特别有效。PCD刀具被广泛应用于铣削有色金属、复合材料、塑料以及极其难加工的超级合金。
由于PCD和CBN的特性,一般难以通过常见的磨削方法实施加工,尤其是无法制造完整的螺旋刃刀具,而是使用多件贴片拼接成一条不连续的螺旋刃。
为此,一种目前采用的解决方案是电蚀,通过铜轮和刀具槽间的电蚀来进行磨削。这种方法不仅加工费时,而且无法对面粗度进行控制,致使表面光洁度难以满足加工要求。
在电蚀方案的基础上,又有了新的发展。先用大电流蚀刻,再用逐级减小的小电流多次蚀刻,以提高表面光洁度。但加工效率大幅下降,且电蚀的表面光洁度始终无法与磨削加工实现的光洁度一致。
于是,行业中产生了第三种技术方案,采用PCD或CBN专用的砂轮进行开槽磨削,这样可以满足光洁度的要求。特别的,在这种磨削砂轮上还可以采用特殊的供电技术,再结合磨削和电蚀的工艺特点,在PCD或CBN材质上对实施切削所需的功能部位实现更快地加工。
发明内容
本发明的一个目的在于提供一种工件的激光加工方法,根据所需形成的功能部位要求,使用激光进行加工,提高加工效率。
本发明的另一个目的在于提供一种激光加工方法在刀具制造中的应用,实现对硬质材料进行激光加工,加快刀具实施切削所需的各个功能部位的成形,提高刀具的加工效率。
本发明的再一个目的在于提供一种刀具的制造方法,在PCD或CBN材质上实现实施切削所需的各个功能部位的快速加工,提高刀具的加工效率。
本发明提供一种工件的激光加工方法,其步骤包括:
确定在工件上拟加工的构造体的形态,以及拟加工的构造体与工件各处的交接边界,获得拟被切除的物料体;
将拟被切除的物料体分割为若干个物料块,根据各个物料块的边界及拟加工的构造体的边界生成激光切割加工计划;
依据激光切割加工计划,运用激光沿各个边界对所述的工件实施切割,使得各个物料块被切下,而从所述的工件上陆续脱离,直至形成构造体。
物料块的最大规格取决于激光对工件的可加工深度,即沿着激光光路的方向,激光对工件进行加工所能达到的最远处。
激光的可加工深度小于受激光加工处工件的厚度。
本发明提供的方法,工件应当理解为制造成品的一种材料,其材质如:但不限于PCD、CBN、硬质合金、陶瓷和金属陶瓷等,其形态如:但不限于球状、柱状、锥状、板状、块状等各类形状。
本发明的方法适用于刀具加工,尤其是应用于使用硬质材料实施切削所需的功能部位进行加工。
本发明提供的一种刀具的制造方法,其步骤如下:
设定刀具实施切削所需的各个功能部位的参数(如:但不限于:前角、后角、芯厚、刃宽比、槽底圆弧、螺旋角和刃倾角等),并产生实施切削所需的功能部位,及其与工件各处的交接边界,获得拟被切除的物料体;
将拟被切除的物料体分解为若干个物料块,根据各个物料块的边界及拟加工的构造体的边界生成激光切割加工计划;
依据激光切割加工计划,激光沿各个边界对工件实施切割,使得各个物料块被切下,而从工件上陆续脱离,形成实施切削所需的功能部位。
本发明刀具,其实施切削所需的功能部位包括:但不限于排屑槽、螺旋槽、前刀面和后刀面等。激光的可加工深度小于受激光加工的功能部位处工件的厚度。
一种本发明方法的具体实施方式,用于加工螺旋槽,包括:
设定刀具螺旋槽的参数(如:但不限于:前角、后角、芯厚、刃宽比、槽底圆弧、螺旋角和刃倾角等),并产生螺旋槽形态,以及螺旋槽与工件各处的交接边界,获得拟 被切除的物料体;
将拟被切除的物料体分割为若干个物料块,根据各个物料块的边界及拟加工的构造体的边界生成激光切割加工计划;
依据激光切割加工计划,激光沿着各个边界对工件实施切割,使得各个物料块被切下,而从工件上陆续脱离,形成螺旋槽。
激光的可加工深度小于受激光加工螺旋槽处工件的厚度。
为了提高本发明方法的自动化水平,采用三轴及三轴以上多轴联动加工设备,在计算机控制下实施激光切割制造功能部位的制造。
本发明提供的另一种刀具的制造方法,采用五轴联动加工设备,其步骤如下:
设定刀具实施切削所需的功能部位的参数(如:但不限于:前角、后角、芯厚、刃宽比、槽底圆弧、螺旋角和刃倾角等),并产生刀具实施切削所需的功能部位与工件各处的交接边界,获得拟被切除的物料体及其数据信息;
将拟被切除的物料体分解为若干个物料块,根据各个物料块的边界及拟加工的构造体的边界生成数字化的激光切割加工计划;
依据数据化的激光切割加工计划,在计算机控制下,运用激光对所述的工件实施切割,使得各个物料块被切下,而从所述的工件上陆续脱离,形成实施切削所需的功能部位。激光的可加工深度小于受激光加工功能部位处工件的厚度。
另一种本发明方法的具体实施方式,采用五轴联动加工设备,在计算机控制下实施激光切割和螺旋槽的制造,包括:
设定刀具螺旋槽的参数(如:但不限于:前角、芯厚、刃宽比、槽底圆弧、螺旋角和刃倾角等),并产生螺旋槽与工件各处的交接边界,获得拟被切除的物料体及其数据信息;
将拟被切除的物料体分解为若干个物料块,根据各个物料块的边界及拟加工的构造体的边界生成数据化的激光切割加工计划;
依据数据化的激光切割加工计划,在计算机控制下,运用激光对所述的工件实施切割,使得各个物料块被切下,而从所述的工件上陆续脱离,形成螺旋槽。激光的可加工深度小于受激光加工螺旋槽处工件的厚度。
本发明提供的方法,被切除的物料包括:但不限于PCD、CBN、硬质合金、陶瓷或金属陶瓷等。
本发明的方法,所用激光为脉冲激光和连续激光。
本发明技术方案实现的有益效果:
相比于电蚀或磨削的加工方法,本发明提供的刀具加工方法,在槽体制作过程中无需以粉碎的方式去除被切除的物料,而是采用激光的特性,将被切除物料分割成小块的方式去除,从而大幅缩短加工时间。在材料去除率不变的情况下,由于电蚀或磨削对物料实施了100%粉碎加工,加工所需的时间无法缩短。
电蚀和磨削的加工方法会产生大量废液,本发明提供的刀具加工方法,采用分割成小块的激光加工方式,仅产生少量的固体废物,便于回收利用,也更具环保性。
与另一种激光逐点扫掠过被加工表面,逐层逐点去除(热熔/气化/刻蚀)所有被加工部分的方法相比,本发明提供的刀具加工方法,由于材料去除率低(仅气化了激光加工轨迹处的物料),减少了加工表面积,提高了加工效率,不需要采用高耗能大功率激光器,不仅利于降低生成成本,而且通过使用较小功率激光器(如:应用于激光雕铣机的激光器)的使用,也能实现相同的加工效率,对加工表面也不易产生热损伤和机械损伤,可以获得与磨削方式加工的表面相当的粗糙度,而且还大大减少加工时间,提高了加工效率。
附图说明
图1为本发明方法依据工件上拟加工的构造体而获得的拟被切除的物料体分解为若干个物料块一实施例的示意图;
图2为本发明方法依据工件上拟加工的构造体而获得的拟被切除的物料体分解为若干个物料块另一实施例的示意图;
图3为图2所示的物料块经激光切割从工件上分离的一实施例的示意图;
图4为本发明方法依据工件上拟加工的构造体而获得的拟被切除的物料体分解为若干个物料块,物料块经激光切割从工件上分离的另一实施例的示意图;
图5为图4经本发明方法对工件进行加工后一形态的示意图;
图6为本发明待加工工件及其槽体形态一实施例的示意图;
图7为图6另一角度的示意图;
图8为激光对图6所示工件进行切割的一实施例的示意图;
图9为激光对图6所示工件进行切割的另一实施例的示意图;
图10为激光对工件进行切割,工件上被切除的物料以块状的形式从工件本体脱离的示意图;
图11为激光对工件进行切割形成槽体过程中,工件上被切除的物料以块状的形式从工件本体脱离的示意图;
图12为本发明方法对工件进行螺旋槽加工后另一形态的示意图。
具体实施方式
以下结合附图详细描述本实用新型的技术方案。本实用新型实施例仅用以说明本实用新型的技术方案而非限制,尽管参照较佳实施例对本实用新型进行了详细说明,本领域的普通技术人员应当理解,可以对实用新型的技术方案进行修改或者等同替换,而不脱离本实用新型技术方案的精神和范围,其均应涵盖在本实用新型的权利要求范围中。
目前普遍知悉的,激光已经在机械加工领域有了广泛应用,包括激光切割、激光雕刻和激光打孔。激光切割和打孔主要用于钢板及钢管,激光对被加工工件实施完全贯通切断,属于贯穿式加工。激光雕刻主要用于金属表面纹理雕刻,由于激光对材料是非贯穿式的加工方式,只能通过激光逐层逐点刻蚀、气化或热熔被加工材料的表面实现,因而其金属去除效率较低,无法进行大深度加工。因此本实施提供了一种非贯穿式的高效的激光加工方式。
图1为本发明方法依据工件上拟加工的构造体而获得的拟被切除的物料体分解为若干个物料块一实施例的示意图;图2为本发明方法依据工件上拟加工的构造体而获得的拟被切除的物料体分解为若干个物料块另一实施例的示意图。图1和图2所示,本实施例的方法,首先确定在工件100上拟加工的构造体的形态,及其与工件各处的交接边界,获得拟被切除的物料体120,将拟被切除的物料体120分解为若干个物料块121,并由此生成一个用于激光切割加工的计划,即激光的光路射向工件进行切割时,对工件上需要被切除的物料与需要保留的物料之间的边界处进行激光加工,通过对两者进行分割的方式逐块剥离被切除的物料,激光作用处与分解为若干个物料块121的边界线相一致,以使得在经过激光的作用过后,若干个物料块121从工件上陆续分离(参见图3)。
图4为本发明方法依据工件上拟加工的构造体而获得的拟被切除的物料体分解为若干个物料块,物料块经激光切割从工件上分离的另一实施例的示意图。激光沿着拟被切除的物料体与工件100各处的交接边界,对工件实施第一方向切割和第二方向切割。在激光的作用过后,若干个锥形物料块121从工件上陆续分离,由此加工后所形成的形态如图5所示,形成曲型切割边界。
激光的可加工深度小于激光所及处工件的厚度,即激光不对工件实施贯穿式的切割。一种贯穿式切割的例子如:激光光路在工件的一侧射入,沿着该光路又于另一侧射出,而在工件上留下一个通孔。本实施例的激光,其光路在工件的一侧射入,无法实现沿着该光路从工件另一侧射出。
运用激光实施切割,物料块121的最大规格取决于激光对工件的可加工深度。即沿着激光光路的方向,激光对工件进行加工所能达到的最远处。各个从工件上脱离的物料块121,其均包含一个切割边界,该切割边界的长度应当小于或等于激光对工件的可加工深度。对于不同的激光器以及激光束,该切割边界具有的长度不同。切割边界的长度也由加工的具体要求决定。实施本实施例的方法,其采用脉冲激光和连续激光之一种或几种。
随着物料块121从工件上陆续分离,拟加工的构造体的形态逐渐形成。在加工中,为了提高自动化水平,将拟被切除的物料体120及其分解后的若干个物料块121进行数字化,形成数据信息,借助现有的三轴及三轴以上的数控机床,在计算机的控制下同时对激光聚焦点、激光光路,以及工件实施自动化操作。
图6为本发明待加工工件及其槽体形态一实施例的示意图,图7为图6另一角度的示意图。如图6和图7所示,预先设定刀具螺旋槽的参数(如:但不限于:前角、 芯厚、刃宽比、槽底圆弧、螺旋角和刃倾角等),并在待加工工件100上产生螺旋槽形态,以及槽体与工件外缘各处的交接边界111。
本实施例使用固体激光器产生的脉冲激光或连续激光。适用的固体激光器包括:调Q激光器、锁模激光器、单模和稳频激光器和可调谐激光器等。
调节激光300的聚焦点以使得激光对被加工工件实施切割。依据螺旋槽的形态,激光沿着槽体与工件外缘各处的交接边界,对加工工件实施径向和轴向切割形成螺旋槽,使得工件上被切除的物料以块状的形式从工件本体脱离,参见图8和图9。
图10为激光对工件进行切割,工件上被切除的物料以块状的形式从工件本体脱离的示意图。如图10所示,工件经激光切割所产生的被切除物料200以块状的形式从工件本体陆续脱离。随着激光切割的进行,被切除物料200不断产生,同时形成槽体110。
图12为本发明方法对工件进行螺旋槽加工后一形态的示意图,结合图10和图11,如图12所示,待激光依据槽体形态完成切割后,在工件上可见一条完整的槽体。
本实施例的方法与电蚀或磨削相比,电蚀或磨削均是将材料进行100%粉碎去除。即使材料去除率不变,但由于需要100%去除材料,加工时间无法缩短。本实施例并非用激光简单替代传统手段实施材料切割,而是利用激光的特性,将材料分割成小块的方式实施去除,实现大幅缩短加工时间。另一方面,与电蚀和磨削产生大量废液不同,本实施例采用激光实施切割,仅有少量固体废物产生,便于回收,环保性更胜一筹。第三,本实施例由于物料的去除率低(仅去除激光加工轨迹处材料),减少了加工面积,提高了加工效率。另一种高耗能激光加工方法,以逐点扫掠过被加工工件的表面,逐层逐点气化所有被加工部分,虽然无任何固体残屑,但加工中产生的气体对环境产生污染,且加工耗能耗时。与之相比,本实施例的方法不仅利于降低生成成本,而且通过使用较小功率激光器(如:应用于激光雕铣机的激光器)的使用,对加工表面不易产生热损伤和机械损伤,可以获得与磨削的加工相当的表面粗糙度,还大大减少加工时间,提高了加工效率。

Claims (17)

  1. 一种工件的激光加工方法,其特征在于步骤如下:
    确定在工件上拟加工的构造体的形态,以及拟加工的构造体与工件各处的交接边界,获得拟被切除的物料体;
    将所述的拟被切除的物料体分割为若干个物料块,根据各个物料块的边界及拟加工的构造体的边界生成激光切割加工计划;
    依据激光切割加工计划,运用激光沿各个所述的边界对所述的工件实施切割,使得各个物料块被切下,而从所述的工件上陆续脱离,直至形成构造体;
    所述的物料块的最大规格取决于激光对工件的可加工深度,即沿着激光光路的方向,激光对工件进行加工所能达到的最远处;
    所述激光的可加工深度小于受激光加工处工件的厚度。
  2. 根据权利要求1所述的工件的激光加工方法,其特征在于所述的工件为制造成品的一种材料,其材质选自于PCD、CBN、硬质合金、陶瓷和金属陶瓷之一种或几种。
  3. 根据权利要求1所述的工件的激光加工方法,其特征在于所述的工件为制造成品的一种材料,其形态包括球状、柱状、锥状、板状和块状之一种或几种。
  4. 根据权利要求1所述的工件的激光加工方法,其特征在于还包括获取物料块的数字化信息,生成数字化的激光切割加工计划,在计算机控制下实施。
  5. 根据权利要求1所述的工件的激光加工方法在刀具制造中的应用。
  6. 根据权利要求1所述的工件的激光加工方法在制造实施切削所需的各个功能部位中的应用。
  7. 根据权利要求1所述的工件的激光加工方法在制造实施切削所需的各个功能部位中的应用,所述的功能部位包括断屑槽、排屑槽、前刀面和后刀面之一种或几种。
  8. 一种刀具的制造方法,其特征在于步骤如下:
    设定刀具实施切削所需的各个功能部位的参数,并产生所述的实施切削所需的功能部位,及其与工件各处的交接边界,获得拟被切除的物料体;
    将所述的拟被切除的物料体分割为若干个物料块,根据各个物料块的边界及拟加工的构造体的边界生成激光切割加工计划;
    依据所述的激光切割加工计划,激光沿各个所述的边界对所述的工件实施切割,使得各个物料块被切下,而从工件上陆续脱离,形成实施切削所需的功能部位;
    所述激光的可加工深度小于受激光加工处工件的厚度。
  9. 根据权利要求8所述的刀具的制造方法,其特征在于所述的功能部位的参数包括前角、后角、芯厚、刃宽比、槽底圆弧、螺旋角和刃倾角之一种或几种。
  10. 根据权利要求8所述的刀具的制造方法,其特征在于所述的被切除的物料为PCD、CBN、硬质合金、陶瓷和金属陶瓷之一种或几种。
  11. 根据权利要求8所述的刀具的制造方法,其特征在于所述的激光为脉冲激光和连续激光之一种或几种。
  12. 根据权利要求8所述的刀具的制造方法,其特征在于采用三轴及三轴以上多轴联动加工设备,在计算机控制下实施制造。
  13. 一种刀具的制造方法,采用五轴联动加工设备,其特征在于步骤如下:
    设定刀具螺旋槽的参数,并产生螺旋槽与工件各处的交接边界,获得拟被切除的物料体及其数据信息;
    将拟被切除的物料体分割为若干个物料块,根据各个物料块的边界及拟加工的构造体的边界生成数字化的激光切割加工计划;
    依据所述数字化的激光切割加工计划,在计算机控制下,运用激光对所述的工件实施切割,使得各个物料块被切下,而从所述的工件上陆续脱离,并形成螺旋槽;
    所述激光的可加工深度小于受激光加工处工件的厚度。
  14. 根据权利要求13所述的刀具的制造方法,其特征在于所述螺旋槽的参数包括前角、后角、芯厚、刃宽比、槽底圆弧、螺旋角和刃倾角之一种或几种。
  15. 根据权利要求13所述的刀具的制造方法,其特征在于所述的被切除的物料为PCD、CBN、硬质合金、陶瓷和金属陶瓷之一种或几种。
  16. 根据权利要求13所述的刀具的制造方法,其特征在于所述的激光为脉冲激光和连续激光之一种或几种。
  17. 一种刀具,其特征在于采用权利要求1~16之一所述的方法制造。
PCT/CN2019/080274 2018-03-29 2019-03-28 激光加工工件的方法及其在刀具制造中的应用 WO2019185002A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/767,414 US11712755B2 (en) 2018-03-29 2019-03-28 Method for workpiece processing and cutter manufacturing using a laser
CN201980004372.2A CN111278598A (zh) 2018-03-29 2019-03-28 激光加工工件的方法及其在刀具制造中的应用
JP2020529194A JP6980320B2 (ja) 2018-03-29 2019-03-28 ワークのレーザ加工方法及び切削工具の製造方法
EP19777929.1A EP3685956B1 (en) 2018-03-29 2019-03-28 Method for processing workpiece with laser, and use thereof in cutter manufacturing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810274677.2A CN110315216B (zh) 2018-03-29 2018-03-29 激光加工工件的方法及其在刀具制造中的应用
CN201810274677.2 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019185002A1 true WO2019185002A1 (zh) 2019-10-03

Family

ID=68058560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080274 WO2019185002A1 (zh) 2018-03-29 2019-03-28 激光加工工件的方法及其在刀具制造中的应用

Country Status (5)

Country Link
US (1) US11712755B2 (zh)
EP (1) EP3685956B1 (zh)
JP (1) JP6980320B2 (zh)
CN (2) CN110315216B (zh)
WO (1) WO2019185002A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110315216B (zh) * 2018-03-29 2021-07-30 上海名古屋精密工具股份有限公司 激光加工工件的方法及其在刀具制造中的应用
CN114985902A (zh) * 2022-07-05 2022-09-02 深圳市力博刀具技术有限公司 一种激光联动加工整体pcd刀具的装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239581A (ja) * 1996-03-08 1997-09-16 Olympus Optical Co Ltd 内視鏡湾曲管節輪の加工装置の機構
CN101767252A (zh) * 2010-01-06 2010-07-07 北京希波尔科技发展有限公司 一种激光工具刃磨方法及工具刃磨机
CN104999176A (zh) * 2014-08-15 2015-10-28 上海精韧激光科技有限公司 刃口的加工方法
CN105269282A (zh) * 2014-06-03 2016-01-27 山特维克知识产权股份有限公司 制造切削刀具的方法以及切削刀具
WO2016200820A1 (en) * 2015-06-08 2016-12-15 Boston Scientific Scimed, Inc. Method of manufacturing a tubular component
US20170182566A1 (en) * 2015-12-28 2017-06-29 Diamond Innovations, Inc. Polycrystalline diamond drill bit having a laser cut chip breaker
CN107735204A (zh) * 2015-06-15 2018-02-23 特摩劳吉克公司 用于对板材进行机械切割的方法和系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0700984D0 (en) * 2007-01-18 2007-02-28 Element Six Ltd Polycrystalline diamond elements having convex surfaces
US9463531B2 (en) * 2009-10-23 2016-10-11 Kennametal Inc. Three-dimensional surface shaping of rotary cutting tool edges with lasers
JP2012006135A (ja) * 2010-06-28 2012-01-12 Mitsubishi Materials Corp エンドミルおよびその製造方法
DE102011116974A1 (de) * 2011-10-26 2013-05-02 Vollmer Werke Maschinenfabrik Gmbh Vorrichtung und Verfahren zum Herstellen einer Führungsfase an einem Werkstück, insbesondere an einem schneidenden Werkzeug
CN203664781U (zh) * 2013-10-29 2014-06-25 常州市海力工具有限公司 工件外圆加工的刀具
DE102013114659B4 (de) * 2013-12-20 2017-03-16 Phitea GmbH Vorrichtung zum schneidenden und/oder spanenden Bearbeiten eines Objektes
DE102014109613A1 (de) * 2014-07-09 2014-09-04 Ewag Ag Verfahren zur Herstellung einer Werkstückfläche an einem stabförmigen Werkstück
CN106271096B (zh) * 2015-06-09 2019-09-20 大族激光科技产业集团股份有限公司 一种pcb板的加工方法
CN105458831A (zh) * 2015-12-14 2016-04-06 广东长盈精密技术有限公司 刀具加工工件的方法
CN107738077B (zh) * 2017-11-14 2019-12-13 富耐克超硬材料股份有限公司 整体pcbn圆形杆状切削刀具及其制备方法
US10835990B2 (en) * 2018-01-26 2020-11-17 Kennametal Inc. Cutting tools comprising ultrahard materials and methods of making the same
CN110315216B (zh) * 2018-03-29 2021-07-30 上海名古屋精密工具股份有限公司 激光加工工件的方法及其在刀具制造中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239581A (ja) * 1996-03-08 1997-09-16 Olympus Optical Co Ltd 内視鏡湾曲管節輪の加工装置の機構
CN101767252A (zh) * 2010-01-06 2010-07-07 北京希波尔科技发展有限公司 一种激光工具刃磨方法及工具刃磨机
CN105269282A (zh) * 2014-06-03 2016-01-27 山特维克知识产权股份有限公司 制造切削刀具的方法以及切削刀具
CN104999176A (zh) * 2014-08-15 2015-10-28 上海精韧激光科技有限公司 刃口的加工方法
WO2016200820A1 (en) * 2015-06-08 2016-12-15 Boston Scientific Scimed, Inc. Method of manufacturing a tubular component
CN107735204A (zh) * 2015-06-15 2018-02-23 特摩劳吉克公司 用于对板材进行机械切割的方法和系统
US20170182566A1 (en) * 2015-12-28 2017-06-29 Diamond Innovations, Inc. Polycrystalline diamond drill bit having a laser cut chip breaker

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3685956A4

Also Published As

Publication number Publication date
JP2021505394A (ja) 2021-02-18
JP6980320B2 (ja) 2021-12-15
CN110315216B (zh) 2021-07-30
CN110315216A (zh) 2019-10-11
EP3685956A1 (en) 2020-07-29
US20200384576A1 (en) 2020-12-10
CN111278598A (zh) 2020-06-12
EP3685956A4 (en) 2021-07-07
EP3685956C0 (en) 2023-11-29
EP3685956B1 (en) 2023-11-29
US11712755B2 (en) 2023-08-01

Similar Documents

Publication Publication Date Title
Hasan et al. A review of modern advancements in micro drilling techniques
CN107127459B (zh) 一种金刚石刀具的激光精确加工方法
Zhu et al. A review of hybrid manufacturing processes–state of the art and future perspectives
CN109676258B (zh) 一种基于激光与精密刃磨的cvd金刚石微铣刀制备方法
Li et al. Electrical discharge-assisted milling for machining titanium alloy
CN104999176B (zh) 刃口的加工方法
CN105312835A (zh) 基于钛合金整体锻造件的深腔加工方法
Nagimova et al. A review on laser machining of hard to cut materials
Pacella et al. Surface engineering of ultra-hard polycrystalline structures using a nanosecond Yb fibre laser: Effect of process parameters on microstructure, hardness and surface finish
WO2019185002A1 (zh) 激光加工工件的方法及其在刀具制造中的应用
CN110091054B (zh) 基于激光离散化、高效铣磨及激光铣削的复合加工方法
CN107671495A (zh) 高体积分数SiCp/Al复合材料结构件高效精密加工方法
CN105269284A (zh) 一种内凹形复杂轮廓pcd刀具的超精密高效制备工艺方法
CN104416207A (zh) 球头立铣刀
Hao et al. Fabrication of large aspect ratio PCD micro-milling tool with pulsed lasers and grinding
Sharma et al. Developments in tandem micro-machining processes to mitigate the machining issues at micron level: a systematic review, challenges and future opportunities
CN109877551B (zh) Pcd台阶倒角刀加工工艺
CN115533464A (zh) 一种激光双重改性辅助微细切削加工工艺
Zhao et al. Fabrication of CaSiO3 LTCC high aspect ratio microstructure by laser chemical assisted micro-milling
CN206622639U (zh) 用于制造刀具的坯料及其刀具
Du et al. Research advances on primary machining technologies of zirconia ceramics
CN209830374U (zh) 一种具有w型钻尖刃口的聚晶金刚石钻头
Li et al. Machining of medical device components
RU2596545C2 (ru) Способ изготовления дисковых фрез
KNS Multi Response Optimization of Cutting and Tool Geometry Parameters in Hard Turning of Aisi 52100 Steel-Topsis Approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019777929

Country of ref document: EP

Effective date: 20200422

ENP Entry into the national phase

Ref document number: 2020529194

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE