WO2019184669A1 - 像素处理方法及装置 - Google Patents

像素处理方法及装置 Download PDF

Info

Publication number
WO2019184669A1
WO2019184669A1 PCT/CN2019/077185 CN2019077185W WO2019184669A1 WO 2019184669 A1 WO2019184669 A1 WO 2019184669A1 CN 2019077185 W CN2019077185 W CN 2019077185W WO 2019184669 A1 WO2019184669 A1 WO 2019184669A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
pixels
initial
display panel
Prior art date
Application number
PCT/CN2019/077185
Other languages
English (en)
French (fr)
Inventor
牛泽宇
许景翔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019184669A1 publication Critical patent/WO2019184669A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4092Image resolution transcoding, e.g. by using client-server architectures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics

Definitions

  • the present application relates to the field of image processing, and in particular, to a pixel processing method and apparatus.
  • PPI Pixel Per Inch
  • the PPI symbolizes the resolution of the display panel. If you want to display high-resolution images, you need a high-resolution display panel.
  • the display panel size is fixed, the higher the resolution of the display panel, the more data lines and scan lines required for the display panel. The more the display panel is reduced in transmittance, the power consumption is increased, and the process difficulty and manufacturing cost are also greatly increased.
  • the embodiment of the present application provides a pixel processing method and apparatus, which can display a high resolution image on a low resolution display panel.
  • the embodiment of the present application provides a pixel processing method, including: acquiring an initial pixel matrix Y corresponding to any initial pixel in an original image, where any of the initial pixels includes three sub-pixels; determining any initial a filter coefficient matrix X corresponding to the pixel, wherein the filter coefficients in the filter coefficient matrix are in one-to-one correspondence with pixels in the initial pixel matrix; and the display panel is obtained based on the initial pixel matrix Y and the filter coefficient matrix X a luminance value of the target pixel corresponding to the initial pixel, where the target pixel includes at least two sub-pixels different in color; wherein the sub-pixels on the display panel are arranged in a cycle, and the same arrangement period is different inside.
  • the sub-pixels of the initial pixels in the original image corresponding to the sub-pixels respectively correspond to a one-dimensional filter coefficient matrix, and the sub-pixels of the initial pixels in the original image corresponding to the sub-pixels in the corresponding positions in different arrangement periods correspond to the same one-dimensional filter coefficients. matrix.
  • the system function of the digital filter is decomposed into a plurality of groups with different phases to form a plurality of branches, and filtering is realized on each branch to be a multi-phase filtering technique.
  • the sub-pixels are divided into different groups according to the category of the sub-pixels of the sub-pixel positions in one arrangement period and between different arrangement periods, and are each The sub-pixels of the initial pixels in the original image corresponding to the respective groups are configured to perform packet filtering to obtain the luminance values of the sub-pixels on the display panel, that is, the multi-phase used in the conventional image post-processing in the embodiment of the present application.
  • Filtering is applied to a pixel processing method for displaying a high-resolution image in a low-resolution display panel, and multi-phase filtering the pixels in the original image with high resolution to obtain a luminance value of a pixel on a lower resolution display panel
  • a high-resolution image can be displayed on a low-resolution display panel without increasing the resolution of the display panel.
  • the number of target pixels on the display panel is equal to the initial number of pixels in the original image, and the number of sub-pixels on the display panel is smaller than that in the original image. The number of subpixels.
  • the initial pixel matrix includes any of the initial pixels.
  • the initial pixel matrix Y is centered on the initial pixel.
  • the initial pixel is located at the center of the initial pixel matrix, and the calculation precision of the luminance value of the target pixel corresponding to the initial pixel is improved.
  • the determining a filter coefficient matrix X corresponding to any of the initial pixels includes: determining a one-dimensional filter coefficient matrix corresponding to each of the three sub-pixels included in any of the initial pixels; Obtaining, by the initial pixel matrix Y and the filter coefficient matrix X, a luminance value of a target pixel corresponding to the initial pixel on the display panel, including: a sub-pixel matrix corresponding to any sub-pixel of the initial pixel, and the A one-dimensional filter coefficient matrix corresponding to one sub-pixel acquires a luminance value of a sub-pixel of a target pixel corresponding to any sub-pixel of the initial pixel on the display panel.
  • the embodiment of the present application provides a specific solution.
  • the calculation is performed in units of sub-pixels, based on the sub-pixels in the initial pixel matrix and the sub-pixels of the initial pixels in the original image.
  • the one-dimensional filter coefficient matrix finally obtains the brightness value of the target pixel on the display panel, so that the high-resolution image is displayed on the low-resolution display panel.
  • the one-dimensional filter coefficient matrix corresponding to the first sub-pixel of the initial pixel includes M*N one-dimensional filter coefficients X m,n , and the M*N one-dimensional filter coefficients X m, n is in one-to-one correspondence with the first sub-pixel of the pixel in the initial pixel matrix; the sum of the M*N one-dimensional filter coefficients X m,n is N 1 , that is, If the first sub-pixel of the initial pixel is used to calculate a luminance value of a sub-pixel corresponding to the first sub-pixel among the S target pixels on the display panel, wherein the first sub-pixel and a one-dimensional one The filter coefficient is obtained as a sub-pixel corresponding to the first sub-pixel in a target pixel, and the first sub-pixel of the initial pixel corresponds to S one-dimensional filter coefficients, and the S one-dimensional filter coefficients respectively belong to S a one-dimensional filter coefficient matrix, the sum of the S one-dimensional filter coefficients is
  • the relationship between N 1 and N 2 is limited, that is, the filter coefficient matrix is performed based on the arrangement rule of the sub-pixels. Optimization, so that the target pixels obtained by the pixel processing can be normally displayed on the display panel of the SPR arrangement, avoiding the edge cross color and blurring problem brought by the traditional SPR algorithm, and can improve the sharpness of the image.
  • a brightness value of a sub-pixel corresponding to the first sub-pixel in the target pixel on the display panel The P m,n is used to indicate a luminance value of a first sub-pixel of any one of the initial pixel matrices Y, and the X m,n is used to indicate a one-dimensional filtering corresponding to the first sub-pixel coefficient.
  • the embodiment of the present application provides a specific calculation method of the sub-pixel brightness value of the target pixel, and finally obtains the brightness value of the target pixel on the display panel, so that the high-resolution image is displayed on the low-resolution display panel.
  • the embodiment of the present application is applicable to an RGBG-distributed display panel, and provides an optimized relationship of filter coefficients corresponding to sub-pixels of an initial pixel in an original image corresponding to each color sub-pixel on the RGBG display panel, so that the image is normally displayed on the RGBG display panel. On, and effectively solve the cross-color problem, improve the clarity of the image.
  • each pixel on the display panel includes a red sub-pixel, a blue sub-pixel, and a green sub-pixel; the pixel in the original image includes a red sub-pixel and a blue a color sub-pixel and a green sub-pixel; wherein two adjacent pixels on the display panel share at least one sub-pixel,
  • the embodiment of the present application is applicable to a display panel of an RGB delta arrangement, and provides an optimized relationship of filter coefficients corresponding to sub-pixels of an initial pixel in an original image corresponding to each color sub-pixel on an RGB delta display panel, so that the image is normally displayed in RGB.
  • the delta display panel effectively solves the cross-color problem and improves the sharpness of the image.
  • the embodiment of the present application provides a pixel processing apparatus, including: a first acquiring unit, configured to acquire an initial pixel matrix Y corresponding to any initial pixel in an original image, where the any initial pixel includes three sub-pixels.
  • a determining unit configured to determine a filter coefficient matrix X corresponding to any of the initial pixels, wherein the filter coefficients in the filter coefficient matrix are in one-to-one correspondence with pixels in the initial pixel matrix; Obtaining, according to the initial pixel matrix Y and the filter coefficient matrix X, a luminance value of a target pixel corresponding to the initial pixel on a display panel, where the target pixel includes at least two sub-pixels different in color; wherein The sub-pixels on the display panel are arranged periodically, and the sub-pixels of the initial pixels in the original image corresponding to the different sub-pixels in the same arrangement period respectively correspond to a one-dimensional filter coefficient matrix, and the corresponding positions in different arrangement periods The sub-pixels of the initial pixels in the original image corresponding to the pixels correspond to the same one-dimensional filter coefficient matrix.
  • the number of target pixels on the display panel is equal to the initial number of pixels in the original image, and the number of sub-pixels on the display panel is smaller than that in the original image. The number of subpixels.
  • the initial pixel matrix includes any of the initial pixels.
  • the initial pixel matrix Y is centered on the initial pixel.
  • the determining unit is configured to determine a one-dimensional filter coefficient matrix corresponding to each of the three sub-pixels included in any of the initial pixels; the second acquiring unit is configured to be based on the initial pixel The sub-pixel matrix corresponding to any sub-pixel and the one-dimensional filter coefficient matrix corresponding to any one of the sub-pixels acquire luminance values of sub-pixels of the target pixel corresponding to any sub-pixel of the initial pixel on the display panel.
  • the one-dimensional filter coefficient matrix corresponding to the first sub-pixel of the initial pixel includes M*N one-dimensional filter coefficients X m,n , and the M*N one-dimensional filter coefficients X m, n is in one-to-one correspondence with the first sub-pixel of the pixel in the initial pixel matrix; the sum of the M*N one-dimensional filter coefficients X m,n is N 1 , that is, If the first sub-pixel of the initial pixel is used to calculate a luminance value of a sub-pixel corresponding to the first sub-pixel among the S target pixels on the display panel, wherein the first sub-pixel and a one-dimensional one The filter coefficient is obtained as a sub-pixel corresponding to the first sub-pixel in a target pixel, and the first sub-pixel of the initial pixel corresponds to S one-dimensional filter coefficients, and the S one-dimensional filter coefficients respectively belong to S a one-dimensional filter coefficient matrix, the sum of the S one-dimensional filter coefficients is
  • a brightness value of a sub-pixel corresponding to the first sub-pixel in the target pixel on the display panel The P m,n is used to indicate a luminance value of a first sub-pixel of any one of the initial pixel matrices Y, and the X m,n is used to indicate a one-dimensional filtering corresponding to the first sub-pixel coefficient.
  • each pixel on the display panel includes a red sub-pixel, a blue sub-pixel, and a green sub-pixel; the pixel in the original image includes a red sub-pixel and a blue a color sub-pixel and a green sub-pixel; wherein two adjacent pixels on the display panel share at least one sub-pixel,
  • an embodiment of the present application provides a pixel processing apparatus, including:
  • a memory for storing program instructions
  • the processor is configured to read a program instruction in the memory, and execute the program instruction to implement the pixel processing method provided by the first aspect of the embodiment of the present application or the implementation manner of any one of the first aspect.
  • an embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores program instructions, when the program instructions are run on a computer or a processor, causing the computer or processing
  • the pixel processing method provided by the first aspect of the embodiment of the present application or the implementation of any one of the first aspects is performed.
  • an embodiment of the present application provides a computer program product comprising instructions, when executed on a computer or a processor, causing the computer or processor to perform the first aspect or any one of the implementation manners as described above
  • 1a is a schematic diagram showing an arrangement of RGB Stripe of a display screen
  • FIG. 1b is a schematic diagram showing an RGBG arrangement manner of a display screen
  • Figure 1c is a schematic diagram showing an arrangement of RGB deltas of a display screen
  • FIG. 2 is a schematic flowchart of a pixel processing method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a pixel matrix Y according to an embodiment of the present application.
  • 4a is a schematic diagram of periodic arrangement of sub-pixels when RGBG is arranged according to an embodiment of the present application
  • FIG. 4b is a schematic diagram of periodically arranging another seed pixel in an RGBG arrangement according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a periodic arrangement of sub-pixels in an RGB delta arrangement according to an embodiment of the present disclosure
  • FIG. 5b is a schematic diagram of periodically arranging another seed pixel in an RGB delta arrangement according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of N 1 and N 2 according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a pixel processing apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a pixel processing apparatus according to another embodiment of the present disclosure.
  • FIG. 1a shows a conventional pixel arrangement RGB Stripe of a conventional display screen, which is arranged in a strip shape, and each pixel includes one of R (red sub-pixel), G (green sub-pixel), and B (blue sub-pixel).
  • Figure 1b is an RGBG arrangement, each pixel containing two sub-pixels, alternating with a combination of RG and BG.
  • each pixel includes three sub-pixels of RGB, and two sub-pixels are shared by two adjacent pixels.
  • pixel 1 and pixel 2 share one blue sub-pixel.
  • the pixel 2 and the pixel 3 share a red sub-pixel and a green sub-pixel.
  • Sub-pixel rendering (SPR) technology is a technology that enables high-resolution images to be rendered on low-resolution display panels through proprietary sub-pixel rendering algorithms. Therefore, the display of the original picture image on the RGBG arrangement or the RGB delta arrangement requires sub-pixel rendering technology, and the RGBG arrangement or the RGB delta arrangement can be collectively referred to as the SPR arrangement.
  • the embodiment of the present application is applicable to the SPR-distributed screen, and is applicable to display devices such as an active-matrix organic light emitting diode (AMOLED) and a liquid crystal display (LCD). It is not limited to mobile terminals, and can be applied to products such as TVs.
  • AMOLED active-matrix organic light emitting diode
  • LCD liquid crystal display
  • the pixel processing method may include at least the following steps:
  • the initial pixel matrix Y includes any of the initial pixels Y i,j described above , and any of the initial pixels Y i,j includes three sub-pixels P 1 , P 2 , and P 3 having different colors.
  • the three sub-pixels having different colors are the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B, that is, P 1 , P 2 , and P 3 are respectively one of R, G, and B.
  • the above-described initial pixel Y i,j represents a pixel located in the i-th row and the j-th column in the original image.
  • the pixels in the original image are arranged in an RGB Stripe manner.
  • the initial pixel matrix Y includes M*N pixels Y m,n , and the above M and N are positive integers, and the above i, j, m, and n are integers, and the first sub-pixel Y i,j and the display panel The first sub-pixel Z i,j corresponds to.
  • the initial pixel matrix Y is centered on the initial pixel Y i,j .
  • the initial pixel matrix Y is centered on the initial pixel Y i,j , and the initial pixel matrix Y can be:
  • the specific arrangement is shown in Figure 3.
  • the initial pixel matrix Y may not be centered on the initial pixel Y i,j .
  • the initial pixel matrix Y can be:
  • the initial pixel matrix Y can be:
  • M and N are only exemplified herein, and other values may be used in the actual sampling process, which is not limited herein.
  • the brightness values of all the pixels in the original image may also be acquired first. It can be known that the luminance value of a pixel consists of the luminance values of all the sub-pixels it contains.
  • the filter coefficient matrix X corresponding to the initial pixel Y i,j and the initial pixel matrix Y have the same dimension, and the filter coefficients in the filter coefficient matrix X are in one-to-one correspondence with the pixels in the initial pixel matrix.
  • each pixel in the initial pixel matrix Y includes three sub-pixels of different colors, namely, R, G, and B, so the initial pixel matrix Y is three-dimensional, and the filter coefficient matrix X corresponding to the initial pixel Y i,j It is also three-dimensional.
  • the initial pixel Y i,j contains three sub-pixels of different colors, and each sub-pixel corresponds to a one-dimensional filter coefficient matrix.
  • the three sub-pixels included in the initial pixel Y i,j are labeled P 1 , P 2 , and P 3 , and the corresponding one-dimensional filter coefficient matrices are labeled as X 1 , X 2 , and X 3 , respectively .
  • each of the initial pixels Y i,j in the initial pixel matrix Y corresponds to three filter coefficients, wherein each sub-pixel corresponds to one filter coefficient.
  • determining the filter coefficient matrix X corresponding to any of the initial pixels is a one-dimensional filter coefficient matrix X 1 , X corresponding to the three sub-pixels P 1 , P 2 , and P 3 included in any of the initial pixels Y i, j respectively. 2 , X 3 .
  • the number of one-dimensional filter coefficients included in each one-dimensional filter coefficient matrix is the same as the number of sub-pixels corresponding to the one-dimensional filter coefficient matrix in the initial pixel matrix.
  • the sub-pixel j comprises P 1 of the corresponding one-dimensional filter coefficient matrix X 1, the original image original pixel Y i, j-corresponding initial pixel matrix Y comprising of M * N pixels, then the initial The number of sub-pixels P 1 in the pixel matrix Y is also M*N, and the number of one-dimensional filter coefficients included in the one-dimensional filter coefficient matrix X 1 corresponding to P 1 is also M*N.
  • the initial pixel Y i,j includes a sub-pixel P 1 which is a red sub-pixel R, and the corresponding one-dimensional filter coefficient matrix is X 1
  • the initial pixel matrix Y corresponding to the initial pixel Y i,j in the original image contains M *N pixels
  • the number of red sub-pixels R in the initial pixel matrix Y is also M*N
  • the number of one-dimensional filter coefficients included in the one-dimensional filter coefficient matrix X 1 corresponding to the red sub-pixel R is also For M*N.
  • S203 Acquire a brightness value of the target pixel corresponding to the initial pixel on the display panel based on the initial pixel matrix Y and the filter coefficient matrix X.
  • the target pixels on the display panel corresponding to the initial pixels refer to pixels having the same position, and it should be understood that the same position indicates that the position of the target pixel on the display panel and the position of the initial pixel in the original image are consistent.
  • the above initial pixel Y i,j represents a pixel located in the i-th row and the j-th column in the original image.
  • the target pixel corresponding to the initial pixel Y i,j on the display panel is the pixel of the i-th row and the j-th column on the display panel, and is labeled as Z i,j .
  • the target pixel includes at least two sub-pixels of different colors
  • the number of target pixels on the display panel is equal to the initial number of pixels in the original image
  • the number of sub-pixels on the display panel is smaller than the sub-pixel in the original image. The number.
  • the sub-pixels on the display panel are arranged in a periodic manner, and the sub-pixels of the initial pixels in the original image corresponding to the sub-pixels different in the same arrangement period respectively correspond to a one-dimensional filter coefficient matrix, and are arranged in different arrangement periods.
  • the sub-pixels of the initial pixels in the original image corresponding to the sub-pixels of the corresponding position correspond to the same one-dimensional filter coefficient matrix.
  • the multi-phase filtering technique divides the system function of the digital filter into a plurality of groups having different phases according to phase uniform division, forming a plurality of branches, and implementing filtering on each branch.
  • the sub-pixels of the initial pixels in the corresponding original image are configured with respective one-dimensional filter coefficient matrices according to different sub-pixel positions in one arrangement period.
  • the luminance value of the sub-pixel on the display panel that is, to apply the multi-phase filtering technique to the pixel processing.
  • one arrangement period when the display panel is arranged in RGBG, one arrangement period includes two pixels, that is, one arrangement period includes four sub-pixels, which are respectively one R sub-pixel, one B sub-pixel, and two G sub-pixels.
  • the period 1 includes sub-pixels R 1 , B 1 , G 1 , G 1 '
  • the period 2 includes sub-pixels R 2 , B 2 , G 2 , G 2 '.
  • the sub-pixels of the initial pixels in the original image corresponding to the different sub-pixels in the same arrangement period respectively correspond to a one-dimensional filter coefficient matrix, that is, taking the period 1 as an example, the sub-pixels R 1 and B 1 in the arrangement period , G 1 , G 1 ' respectively correspond to one sub-pixel of the initial pixel in the original image, such that the sub-pixel R 1 in the arrangement period corresponds to an R sub-pixel of an initial pixel in the original image; the sub-pixel in the arrangement period
  • the pixel B 1 corresponds to a B sub-pixel of an initial pixel in the original image;
  • the sub-pixel G 1 in the arrangement period corresponds to a G sub-pixel of an initial pixel in the original image;
  • the sub-pixel G 1 ' in the arrangement period Corresponds to the G sub-pixel of one of the original pixels in the original image.
  • the four sub-pixels in the arrangement period respectively correspond to four sub-pixels in the original image
  • the four sub-pixels respectively correspond to a one-dimensional filter coefficient matrix
  • the corresponding filter coefficient matrices may be the same or different.
  • the one-dimensional filter coefficient matrix corresponding to the sub-pixel of the original pixel in the original image corresponding to the sub-pixel corresponding to the position in the different arrangement period is the same, that is, the sub-pixel of the original pixel in the original image corresponding to the sub-pixel located at the same position in two periods
  • the corresponding one-dimensional filter coefficient matrix is the same, taking the period 1 and the period 2 as an example, the sub-pixel R 1 and the sub-pixel R 2 , the sub-pixel B 1 and the sub-pixel B 2 , the sub-pixel G 1 and the sub-pixel G 2 , and the sub-pixel G 1 '
  • the one-dimensional filter coefficient matrix corresponding to the sub-pixels of the original pixels in the original image corresponding to the sub-pixel G 2 ' is
  • the sub-pixel R 1 on the RGBG display panel is obtained by one sub-pixel R of the original pixel in the original image and a one-dimensional filter coefficient matrix corresponding to the sub-pixel R, and the sub-pixel and the original pixel on the display panel
  • the sub-pixels and the one-dimensional filter coefficients have correspondence.
  • Fig. 4a the demonstration is performed in only two arrangement periods.
  • the arrangement between the sub-pixels in one arrangement period is not limited to the arrangement shown in FIG. 4a. In an optional case, there may be other arrangements between the sub-pixels, for example. The other arrangement is shown in Figure 4b. There are no restrictions here.
  • one arrangement period is not limited to the number shown in FIG. 4a. In an optional case, one arrangement period may further include other numbers of sub-pixels, and no limit.
  • one arrangement period when the display panel is arranged in RGB delta, one arrangement period includes three pixels, that is, one arrangement period includes six sub-pixels, which are two R sub-pixels and two B sub-pixels, respectively. Two G sub-pixels.
  • the period 1 includes the sub-pixels R 1 , R 1 ', B 1 , B 1 ', G 1 , G 1 '
  • the period 2 includes the sub-pixels R 2 , R 2 ', B 2 , B 2 ', G 2 , G 2 '.
  • the sub-pixels of the initial pixels in the original image corresponding to different sub-pixels in the same arrangement period respectively correspond to a one-dimensional filter coefficient matrix, that is, taking cycle 1 as an example
  • the sub-pixels R 1 and R 1 in the arrangement period ', B 1 , B 1 ', G 1 , G 1 ' respectively correspond to sub-pixels of an initial pixel in the original image, such as sub-pixel R 1 in the arrangement period corresponding to an R sub-pixel of an initial pixel in the original image
  • the sub-pixel R 1 ' in the arrangement period corresponds to an R sub-pixel of an initial pixel in the original image
  • the sub-pixel B 1 in the arrangement period corresponds to a B sub-pixel of an initial pixel in the original image
  • the sub-pixel B 1 ' in the arrangement period corresponds to the B sub-pixel of one initial pixel in the original image
  • the sub-pixel G 1 in the arrangement period corresponds to the G sub-pixel of an initial pixel in the original image
  • the arrangement period
  • the six sub-pixels in the arrangement period respectively correspond to the six sub-pixels of the initial pixel in the original image, and the six sub-pixels respectively correspond to a one-dimensional filter coefficient matrix, and the six one-dimensional filter coefficient matrices may be the same or different.
  • the one-dimensional filter coefficient matrix corresponding to the sub-pixel of the original pixel in the original image corresponding to the sub-pixel corresponding to the position in the different arrangement period is the same, that is, the sub-pixel of the original pixel in the original image corresponding to the sub-pixel located at the same position in two periods
  • the corresponding one-dimensional filter coefficient matrix is the same, taking the period 1 and the period 2 as an example, the original image corresponding to the sub-pixel R 1 and the sub-pixel R 2 , the sub-pixel B 1 and the sub-pixel B 2 , the sub-pixel G 1 and the sub-pixel G 2
  • the one-dimensional filter coefficient matrix corresponding to the sub-pixels of the pixel is the same.
  • the sub-pixel R 1 on the RGB delta display panel is obtained by one sub-pixel R of the original pixel in the original image and a one-dimensional filter coefficient matrix corresponding to the sub-pixel R, and the sub-pixel and the original pixel on the display panel.
  • the sub-pixels and the one-dimensional filter coefficients have correspondence.
  • Fig. 5a the demonstration is performed only in two arrangement periods.
  • the arrangement between the sub-pixels in one arrangement period is not limited to the arrangement shown in FIG. 5a. In an optional case, there may be other arrangements between the sub-pixels, exemplary. The other arrangement is shown in Figure 5b. There are no restrictions here.
  • one permutation period is not limited to the number shown in FIG. 5a. In some optional cases, one permutation period may include other numbers of sub-pixels, and no limitation is imposed herein. .
  • the one-dimensional filter coefficient matrix corresponding to the first sub-pixel of the initial pixel includes M*N one-dimensional filter coefficients X m,n , the M*N one-dimensional filter coefficients X m,n and the initial pixel matrix.
  • the first sub-pixels of the pixels are in one-to-one correspondence; the sum of the M*N one-dimensional filter coefficients X m,n is N 1 , that is,
  • the first sub-pixel of the initial pixel may be any one of the three sub-pixels P 1 , P 2 , and P 3 included in the initial pixel, that is, the first sub-pixel of the initial pixel may be a red sub-pixel included in the initial pixel. Any one of a blue sub-pixel or a green sub-pixel.
  • the luminance values of all the sub-pixels included in the target pixel are separately calculated.
  • the luminance value of the sub-pixel corresponding to the first sub-pixel included in the target pixel is calculated as an example.
  • the luminance value Q i,j of the sub-pixel corresponding to the first sub-pixel in the target pixel on the display panel is the luminance value of the first sub-pixel of each pixel in the initial pixel matrix and the one-dimensional filter coefficient matrix respectively
  • the corresponding one-dimensional filter coefficients are multiplied, then all the multiplied results are accumulated and normalized.
  • P m,n is used to indicate the luminance value of the first sub-prima of any one of the pixels in the initial pixel matrix Y
  • X m,n is used to indicate the one-dimensional filter coefficient corresponding to the first sub-pixel
  • Embodiments of the present application may configure a one-dimensional filter coefficient matrix for each sub-pixel of an initial pixel in an original image corresponding to different sub-pixels in the same period according to a periodic arrangement of sub-pixels on the display panel.
  • the multi-phase filtering applied to the conventional image post-processing is applied to a pixel processing method for displaying a high-resolution image in a low-resolution display panel, and multi-phase filtering the pixels in the original image with high resolution to obtain a lower resolution.
  • the brightness value of the pixel on the display panel can display a high-resolution image on the low-resolution display panel without increasing the resolution of the display panel.
  • the first sub-pixel of the initial pixel is used to calculate a luminance value of a sub-pixel corresponding to the first sub-pixel among the S target pixels on the display panel, where a sub-pixel is calculated
  • the luminance value of the pixel corresponds to a one-dimensional filter coefficient
  • the initial pixel corresponds to S one-dimensional filter coefficients
  • the S one-dimensional filter coefficients belong to S one-dimensional filter coefficient matrix
  • the sum of the S one-dimensional filter coefficients is N 2 , the above N 2 and the N 1 satisfy a predetermined condition, and the above N 1 , N 2 and S are positive integers.
  • the red sub-pixel R i,j included in the pixel i in the original image it is sampled by the sub-pixels R i-1,j and R i,j on the display panel, that is, the pixel i in the original image contains
  • the red sub-pixel R i,j is used to calculate the brightness values of the two sub-pixels R i-1,j and R i,j on the display panel
  • the first sub-pixel R i,j in the original image is used to calculate the display panel
  • the luminance value of the first sub-pixel R i-1,j is upper, the corresponding one-dimensional filter coefficient is b 1 , and the first sub-pixel R i,j in the original image is used to calculate the first sub-display panel
  • the corresponding one-dimensional filter coefficient is a 1
  • N 2 b 1 +a 1 .
  • the sum N 1 of the one-dimensional filter coefficients corresponding to the first sub-pixel of the initial pixel i corresponding to the first sub-pixel Z i,j on the display panel is used with the first sub-pixel of the initial pixel i in the original image.
  • the resulting image cross-color problem can improve the sharpness of the image.
  • the display panel when the display panel is arranged in an RGBG, the display panel includes two types of pixels, each of the pixels includes two sub-pixels of different colors, wherein one of the pixels includes one red sub-pixel and one green sub-pixel, and the other one
  • the pixel includes a blue sub-pixel and a green sub-pixel
  • the pixels in the original image include a red sub-pixel, a blue sub-pixel, and a green sub-pixel.
  • the preset condition that N 2 and N 1 satisfy is
  • the original image includes the same number of pixels as the display panel, and when the display panel is RGBG, the total number of sub-pixels on the display panel is 2 of the total number of sub-pixels included in the original image.
  • the number of red sub-pixels included in the display panel is 1/2 of the number of red sub-pixels included in the original image
  • the number of blue sub-pixels on the display panel is the number of blue sub-pixels included in the original image.
  • each pixel on the display panel includes three sub-pixels of different colors, one red sub-pixel, one blue sub-pixel, and one green sub-pixel, and the pixels in the original image. Includes a red subpixel, a blue subpixel, and a green subpixel. Two adjacent pixels on the display panel share at least one sub-pixel,
  • the original image includes the same number of pixels as the display panel, and when the display panel is RGB delta, the total number of sub-pixels on the display panel is the total number of sub-pixels included in the original image. 2/3, the red sub-pixel, the blue sub-pixel, and the green sub-pixel included in the display panel are 2/3 of the red sub-pixel, the blue sub-pixel, and the green sub-pixel included in the original image, respectively. Therefore, the above
  • the relationship between N 1 and N 2 is limited, that is, the filter coefficient matrix is performed based on the arrangement rule of the sub-pixels. Optimization, so that the target pixels obtained by the pixel processing can be normally displayed on the display panel of the SPR arrangement, avoiding the edge cross color and blurring problem brought by the traditional SPR algorithm, and can improve the sharpness of the image.
  • the embodiment of the present application further provides a pixel processing apparatus.
  • the pixel processing apparatus 70 may further include: a first obtaining unit 710, a confirming unit 720, and a second acquiring unit 730;
  • the first obtaining unit 710 is configured to acquire an initial pixel matrix Y corresponding to any initial pixel in the original image, where the initial pixel matrix includes any of the initial pixels, and the any initial pixel includes three sub-pixels with different colors.
  • P 1 , P 2 , P 3 please refer to the description of S201 for details.
  • the initial pixel matrix Y is centered on the initial pixel Y i,j described above.
  • the initial pixel matrix Y is centered on the initial pixel Y i,j , and the initial pixel matrix Y can be:
  • the specific arrangement is shown in Figure 3.
  • the initial pixel matrix Y may not be centered on the initial pixel Y i,j described above.
  • the first obtaining unit 710 may also acquire the luminance values of all the pixels in the original image before acquiring the initial pixel matrix Y corresponding to the initial pixel. It can be known that the luminance value of a pixel consists of the luminance values of all the sub-pixels it contains.
  • a determining unit 720 configured to determine a filter coefficient matrix X corresponding to any of the initial pixels, wherein the filter coefficient matrix X and the initial pixel matrix Y have the same dimension, and the filter coefficients in the filter coefficient matrix are The pixels in the initial pixel matrix are in one-to-one correspondence; any sub-pixel of the initial pixel corresponds to a one-dimensional filter coefficient matrix. For details, refer to the description of S202.
  • a second obtaining unit 730 configured to acquire, according to the initial pixel matrix Y and the filter coefficient matrix X, a brightness value of a target pixel corresponding to the initial pixel on a display panel, where the target pixel includes at least two colors different in color a sub-pixel, the number of target pixels on the display panel is equal to the number of initial pixels in the original image, and the number of sub-pixels on the display panel is smaller than the number of sub-pixels in the original image, detailed For instructions, please refer to the description of S203.
  • the sub-pixels on the display panel are arranged periodically, and the sub-pixels of the initial pixels in the original image corresponding to different sub-pixels in the same arrangement period respectively correspond to a one-dimensional filter coefficient matrix, and are arranged in different arrangement periods.
  • the sub-pixels of the initial pixels in the original image corresponding to the sub-pixels of the corresponding position correspond to the same one-dimensional filter coefficient matrix.
  • the determining unit 720 is configured to determine a one-dimensional filter coefficient matrix X 1 , X 2 , X 3 corresponding to the three sub-pixels P 1 , P 2 , and P 3 included in any of the initial pixels.
  • the second obtaining unit 730 is configured to acquire a target pixel corresponding to the sub-pixel of the initial pixel on the display panel based on the one-dimensional filter coefficient matrix corresponding to the sub-pixel of the pixel in the initial pixel matrix and the sub-pixel of the initial pixel The brightness value of the sub-pixel.
  • the one-dimensional filter coefficient matrix corresponding to the first sub-pixel of the initial pixel includes M*N one-dimensional filter coefficients X m,n , and the M*N one-dimensional filter coefficients X m And n are in one-to-one correspondence with the first sub-pixel of the pixel in the initial pixel matrix; the sum of the M*N one-dimensional filter coefficients X m,n is N 1 , that is, If the first sub-pixel of the initial pixel is used to calculate a luminance value of a sub-pixel corresponding to the first sub-pixel among the S target pixels on the display panel, wherein the first sub-pixel and a one-dimensional one The filter coefficient is obtained as a sub-pixel corresponding to the first sub-pixel in a target pixel, and the first sub-pixel of the initial pixel corresponds to S one-dimensional filter coefficients, and the S one-dimensional filter coefficients respectively belong to S a one-dimensional filter coefficient matrix, the sum of the S one-dimensional filter coefficients is N
  • the brightness value of the sub-pixel corresponding to the first sub-pixel in the target pixel on the display panel The P m,n is used to indicate a luminance value of a first sub-pixel of any one of the initial pixel matrices Y, and the X m,n is used to indicate a one-dimensional filtering corresponding to the first sub-pixel coefficient.
  • each pixel on the display panel includes a red sub-pixel, a blue sub-pixel, and a green sub-pixel; the pixel in the original image includes a red sub-pixel and a blue a sub-pixel and a green sub-pixel; wherein two adjacent pixels on the display panel share at least one sub-pixel,
  • each unit can also refer to the foregoing embodiment of the pixel processing method, which will not be described in detail herein.
  • the pixel processing apparatus 80 may include at least one processor 801, at least one network interface 804, a user interface 803, a memory 805, and at least one communication bus. 802, display 806.
  • the communication bus 802 is used to implement connection communication between these components, it should be understood that the various components in the pixel processing device 80 may also be coupled by other connectors, which may include various types of interfaces, transmission lines or buses. Etc., in various embodiments of the present application, coupling refers to interconnections in a particular manner, including being directly connected or indirectly connected through other devices.
  • the processor 801 may include at least one of the following types: a central processing unit (CPU), a digital signal processor (DSP), a microprocessor, and an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), Microcontroller Unit (MCU), Field Programmable Gate Array (FPGA), or integrated circuit for implementing logic operations.
  • the processor 801 can be a single-CPU processor or a multi-core processor.
  • the plurality of processors or units included within processor 801 may be integrated in one chip or on multiple different chips.
  • the user interface 803 may include a keyboard, a physical button (pressing a button, a rocker button, etc.), a dial, a slide switch, a joystick, a click wheel, a light mouse (a light mouse is a touch sensitive surface that does not display a visual output, or is The extension of the touch sensitive surface formed by the touch screen) and the like.
  • the network interface 804 can optionally include a standard wired interface, a wireless interface (such as a WI-FI interface).
  • the memory 805 may be a non-power-down volatile memory, such as an EMMC (Embedded Multi Media Card), a UFS (Universal Flash Storage), or a Read-Only Memory (ROM).
  • the memory 805 includes the flash in the embodiment of the present application, or other types of static storage devices that can store static information and instructions, and may also be a volatile memory, such as a random access memory ( Random Access Memory (RAM) or other type of dynamic storage device that can store information and instructions. It can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM) or a Read-Only Disc (Compact Disc Read).
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • Compact Disc Read Compact Disc Read
  • CD-ROM Compact Discs, laser discs, CDs, digital versatile discs, Blu-ray discs, etc.
  • CD storage including compact discs, laser discs, CDs, digital versatile discs, Blu-ray discs, etc.
  • disk storage media or other magnetic storage devices or can be used for carrying or storing Any other program code in the form of an instruction or data structure and capable of being accessed by a computer
  • the memory 805 can optionally be at least one storage system located away from the foregoing processor 801. As shown in FIG. 8, an operating system, a network communication module, a user interface module, and program instructions may be included in the memory 805 as a computer storage medium.
  • Memory 805 can exist independently and coupled to processor 801 via a connector. Memory 805 can also be integrated with processor 801.
  • the memory 805 can store various types of computer program instructions that execute the program instructions of the present application, and is controlled by the processor 801.
  • the various types of computer program instructions that are executed can also be regarded as the driver of the processor 801. program.
  • processor 801 is configured to execute computer program instructions stored in memory 805 to implement the methods in various method embodiments of the present application.
  • the computer program instructions are large in number and can form computer executable instructions executable by at least one of the processors 801 to drive the associated processor to perform various types of processing, such as communication signals supporting the various types of wireless communication protocols described above. Processing algorithms, operating system runs, or application runs.
  • a display screen 806 is used to display information input by the user, for example, can be used to display an image obtained by a pixel processing method.
  • display 806 can include a display panel and a touch panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), a light emitting diode (LED) display device or a cathode ray tube (Cathode Ray Tube). , CRT), etc. to configure the display panel.
  • Touch panels also known as touch screens, touch sensitive screens, etc., can collect contact or non-contact operations on or near the user (such as the user using a finger, stylus, etc.
  • the operation near the touch panel may also include a somatosensory operation; the operation includes a single-point control operation, a multi-point control operation, and the like, and the corresponding connection device is driven according to a preset program.
  • the display screen 806 can be any of the display panels listed in the embodiments of the present application.
  • Embodiments of the present application may configure a one-dimensional filter coefficient matrix for each sub-pixel of an initial pixel in an original image corresponding to different sub-pixels in the same period according to a periodic arrangement of sub-pixels on the display panel.
  • the multi-phase filtering applied to the conventional image post-processing is applied to a pixel processing method for displaying a high-resolution image in a low-resolution display panel, and multi-phase filtering the pixels in the original image with high resolution to obtain a lower resolution. Display the brightness value of the pixel on the panel, and display the high-resolution image on the low-resolution display panel without increasing the resolution of the display panel.
  • the embodiment of the present application further provides a computer readable storage medium having instructions stored therein, when executed on a computer or a processor, causing a computer or a processor to execute any of the above pixel processing methods One or more steps.
  • the various component modules of the above apparatus may be stored in the computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the embodiment of the present application further provides a computer program product including instructions, and the technical solution of the present application may contribute to the prior art or all or part of the technical solution may be a software product.
  • the computer software product is stored in a storage medium and includes instructions for causing a computer device, mobile terminal or processor therein to perform all or part of the steps of the methods described in various embodiments of the present application. Please refer to the related description of the memory 805 for the kind of the storage medium.
  • the modules in the apparatus of the embodiment of the present application may be combined, divided, and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本申请实施例提供了一种像素处理方法及装置,其中,方法包括:获取原始图像中任一初始像素对应的初始像素矩阵;确定任一初始像素对应的滤波系数矩阵;基于初始像素矩阵和滤波系数矩阵获取显示面板上与初始像素对应的目标像素的亮度值;其中,显示面板上的子像素呈周期排布,同一个排布周期内部不同的子像素对应的原始图像中的初始像素的子像素分别对应一个一维滤波系数矩阵,不同排布周期内相应位置的子像素对应的原始图像中的初始像素的子像素对应相同的一维滤波系数矩阵。实施本申请实施例可以将高分辨率的图像显示在低分辨率的显示面板上。

Description

像素处理方法及装置
本申请要求于2018年03月31日提交中国国家知识产权局、申请号为201810281666.7、申请名称为“像素处理方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及图像处理领域,尤其涉及一种像素处理方法及装置。
背景技术
随着科技的不断发展,人们对于电子产品的体验要求越来越高。例如人们不断追求电子产品的显示效果,具有高每英寸的像素数量(Pixels Per Inch,PPI)的显示面板已经成为各种显示终端必备的配置之一。高PPI的显示终端能够提供更加细腻精美的画面,提升观看的视觉效果。
在显示面板的尺寸固定的情况下,PPI越高,显示面板包含的像素也就越多,从而显示面板的显示分辨率也就越高,因此PPI象征着显示面板的分辨率。若想要显示高分辨率的图像,则需要高分辨率的显示面板,而在显示面板尺寸固定的情况下,显示面板的分辨率越高,会导致显示面板所需的数据线和扫描线也越多,导致显示面板的穿透率下降,功耗增加,且工艺难度和制造成本也都大幅增加。
发明内容
本申请实施例提供了一种像素处理方法及装置,可以使高分辨率的图像显示在低分辨率的显示面板上。
第一方面,本申请实施例提供了一种像素处理方法,包括:获取原始图像中任一初始像素对应的初始像素矩阵Y,所述任一初始像素包括三个子像素;确定所述任一初始像素对应的滤波系数矩阵X,其中,所述滤波系数矩阵中的滤波系数与所述初始像素矩阵中的像素一一对应;基于所述初始像素矩阵Y和所述滤波系数矩阵X获取显示面板上与所述初始像素对应的目标像素的亮度值,所述目标像素包含至少两个颜色不同的子像素;其中,所述显示面板上的子像素呈周期排布,同一个排布周期内部不同的子像素对应的原始图像中的初始像素的子像素分别对应一个一维滤波系数矩阵,不同排布周期内相应位置的子像素对应的原始图像中的初始像素的子像素对应相同的一维滤波系数矩阵。
按照相位划分把数字滤波器的系统函数分解成若干个具有不同相位的组,形成多个分支,在每个分支上实现滤波即为多相位滤波技术。在本申请实施例中利用显示面板上子像素的周期性排布,根据一个排布周期内以及不同排布周期间子像素位置的和子像素的类别,将子像素分成不同的组,并为每个组对应的原始图像中初始像素的子像素配置各自的一维滤波系数矩阵实现分组滤波,以获得显示面板上子像素的亮度值,即本申请实施例将用于传统图像后处理的多相位滤波应用于将高分辨率图像显示在低分辨率显示面板的像素处理方法中,对具有高分辨率的原始图像中的像素进行多相位滤波得到较低分辨率的显示面板上像素点的亮度值,在不提高显示面板的分辨率的前提下,在低分辨率的显示面板上可以 显示高分辨率的图像。
在一种可能的实现方式中,所述显示面板上的目标像素的个数等于所述原始图像中的初始像素个数,所述显示面板上的子像素的个数小于所述原始图像中的子像素的个数。
在一种可能的实现方式中,所述初始像素矩阵包含所述任一初始像素。
在一种可能的实现方式中,所述初始像素矩阵Y以所述初始像素为中心。
实施本申请实施例,可以使初始像素位于初始像素矩阵中心,提高初始像素对应的目标像素的亮度值的计算精度。
在一种可能的实现方式中,所述确定所述任一初始像素对应的滤波系数矩阵X包括:确定所述任一初始像素包括的三个子像素分别对应的一维滤波系数矩阵;所述基于所述初始像素矩阵Y和所述滤波系数矩阵X获取显示面板上与所述初始像素对应的目标像素的亮度值包括:基于所述初始像素的任一子像素对应的子像素矩阵和所述任一子像素对应的一维滤波系数矩阵获取显示面板上与所述初始像素的任一子像素对应的目标像素的子像素的亮度值。
本申请实施例提供了一种具体的方案,在计算显示面板上目标像素的亮度值时,以子像素为单位进行计算,基于原始图像中初始像素矩阵中的子像素以及初始像素的子像素对应的一维滤波系数矩阵,最终获得显示面板上目标像素的亮度值,使高分辨率的图像显示在低分辨率的显示面板上。
在一种可能的实现方式中,所述初始像素的第一子像素对应的一维滤波系数矩阵包括M*N个一维滤波系数X m,n,所述M*N个一维滤波系数X m,n与所述初始像素矩阵中像素的第一子像素一一对应;所述M*N个一维滤波系数X m,n之和为N 1,即
Figure PCTCN2019077185-appb-000001
若所述初始像素的第一子像素用于计算显示面板上的S个目标像素中与所述第一子像素对应的子像素的亮度值,其中,一个所述第一子像素和一个一维滤波系数得到一个目标像素中与所述第一子像素对应的子像素,则所述初始像素的所述第一子像素对应S个一维滤波系数,所述S个一维滤波系数分别属于S个一维滤波系数矩阵,所述S个一维滤波系数的和为N 2,所述N 2与所述N 1满足预设条件,所述N 1、N 2及S为正整数,所述初始像素的第一子像素为所述初始像素包括的三个子像素中的任意一个子像素。
本申请实施例通过多相位滤波技术在对具有高分辨率的原始图像的像素进行像素处理时,对N 1和N 2的关系进行限定,也即基于子像素的排布规律对滤波系数矩阵进行优化,使得通过像素处理得到的目标像素可以正常显示在SPR排布的显示面板上,避免了传统SPR算法带来的边缘串色和模糊问题,可以提高图像的清晰度。
在一种可能的实现方式中,所述显示面板上的所述目标像素中与所述第一子像素对应的子像素的亮度值
Figure PCTCN2019077185-appb-000002
其中,所述P m,n用于指示所述初始像素矩阵Y中任意一个像素的第一子像素的亮度值,所述X m,n用于指示所述第一子像素对应的一维滤波 系数。
本申请实施例提供了一种目标像素的子像素亮度值的具体计算方式,最终获得显示面板上目标像素的亮度值,使高分辨率的图像显示在低分辨率的显示面板上。
在一种可能的实现方式中,所述显示面板包括两种像素,每种像素包括两种颜色不同的子像素,其中一种像素包括一个红色子像素和一个绿色子像素,另外一种像素包括一个蓝色子像素和一个绿色子像素;所述原始图像中的像素包括一个红色子像素、一个蓝色子像素及一个绿色子像素;其中,当所述第一子像素为红色子像素或蓝色子像素时,
Figure PCTCN2019077185-appb-000003
当所述第一子像素为绿色子像素时,N 2=N 1
本申请实施例适用于RGBG排布的显示面板,提供了RGBG显示面板上各颜色子像素对应的原始图像中初始像素的子像素对应的滤波系数的优化关系式,使图像正常显示在RGBG显示面板上,且有效解决串色问题,提高图像的清晰度。
在一种可能的实现方式中,所述显示面板上的每个像素包括一个红色子像素、一个蓝色子像素及一个绿色子像素;所述原始图像中的像素包含一个红色子像素、一个蓝色子像素及一个绿色子像素;其中,所述显示面板上相邻两个像素共用至少一个子像素,所述
Figure PCTCN2019077185-appb-000004
本申请实施例适用于RGB delta排布的显示面板,提供了RGB delta显示面板上各颜色子像素对应的原始图像中初始像素的子像素对应的滤波系数的优化关系式,使图像正常显示在RGB delta显示面板上,且有效解决串色问题,提高图像的清晰度。
第二方面,本申请实施例提供了一种像素处理装置,包括:第一获取单元,用于获取原始图像中任一初始像素对应的初始像素矩阵Y,所述任一初始像素包括三个子像素;确定单元,用于确定所述任一初始像素对应的滤波系数矩阵X,其中,所述滤波系数矩阵中的滤波系数与所述初始像素矩阵中的像素一一对应;第二获取单元,用于基于所述初始像素矩阵Y和所述滤波系数矩阵X获取显示面板上与所述初始像素对应的目标像素的亮度值,所述目标像素包含至少两个颜色不同的子像素;其中,所述显示面板上的子像素呈周期排布,同一个排布周期内部不同的子像素对应的原始图像中的初始像素的子像素分别对应一个一维滤波系数矩阵,不同排布周期内相应位置的子像素对应的原始图像中的初始像素的子像素对应相同的一维滤波系数矩阵。
在一种可能的实现方式中,所述显示面板上的目标像素的个数等于所述原始图像中的初始像素个数,所述显示面板上的子像素的个数小于所述原始图像中的子像素的个数。
在一种可能的实现方式中,所述初始像素矩阵包含所述任一初始像素。
在一种可能的实现方式中,所述初始像素矩阵Y以所述初始像素为中心。
在一种可能的实现方式中,所述确定单元用于确定所述任一初始像素包括的三个子像素分别对应的一维滤波系数矩阵;所述第二获取单元用于基于所述初始像素的任一的子像素对应的子像素矩阵和所述任一子像素对应的一维滤波系数矩阵获取显示面板上与所述初始像素的任一子像素对应的目标像素的子像素的亮度值。
在一种可能的实现方式中,所述初始像素的第一子像素对应的一维滤波系数矩阵包括M*N个一维滤波系数X m,n,所述M*N个一维滤波系数X m,n与所述初始像素矩阵中像素的第一子像素一一对应;所述M*N个一维滤波系数X m,n之和为N 1,即
Figure PCTCN2019077185-appb-000005
若所述初始像素的第一子像素用于计算显示面板上的S个目标像素中与所述第一子像素对应的子像素的亮度值,其中,一个所述第一子像素和一个一维滤波系数得到一个目标像素中与所述第一子像素对应的子像素,则所述初始像素的所述第一子像素对应S个一维滤波系数,所述S个一维滤波系数分别属于S个一维滤波系数矩阵,所述S个一维滤波系数的和为N 2,所述N 2与所述N 1满足预设条件,所述N 1、N 2及S为正整数,所述初始像素的第一子像素为所述初始像素包括的三个子像素中的任意一个子像素。
在一种可能的实现方式中,所述显示面板上的所述目标像素中与所述第一子像素对应的子像素的亮度值
Figure PCTCN2019077185-appb-000006
其中,所述P m,n用于指示所述初始像素矩阵Y中任意一个像素的第一子像素的亮度值,所述X m,n用于指示所述第一子像素对应的一维滤波系数。
在一种可能的实现方式中,所述显示面板包括两种像素,每种像素包括两种颜色不同的子像素,其中一种像素包括一个红色子像素和一个绿色子像素,另外一种像素包括一个蓝色子像素和一个绿色子像素;所述原始图像中的像素包括一个红色子像素、一个蓝色子像素及一个绿色子像素;其中,当所述第一子像素为红色子像素或蓝色子像素时,
Figure PCTCN2019077185-appb-000007
当所述第一子像素为绿色子像素时,N 2=N 1
在一种可能的实现方式中,所述显示面板上的每个像素包括一个红色子像素、一个蓝色子像素及一个绿色子像素;所述原始图像中的像素包含一个红色子像素、一个蓝色子像素及一个绿色子像素;其中,所述显示面板上相邻两个像素共用至少一个子像素,所述
Figure PCTCN2019077185-appb-000008
第三方面,本申请实施例提供了一种像素处理装置,包括:
存储器,用于存储程序指令;
处理器,用于读取存储器中的程序指令,并执行该程序指令以实现本申请实施例第一方面或第一方面的任一种实现方式提供的像素处理方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序指令,当所述程序指令在计算机或处理器上运行时,使所述计算机或处理器执行本申请实施例第一方面或第一方面的任一种实现方式提供的像素处理方法。
第五方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机或处理器上运行时,使得所述计算机或处理器执行如上述第一方面或者其任一种实现方式提供 的像素处理方法。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需使用的附图作简单地介绍。
图1a为显示屏幕的RGB Stripe排布方式示意图;
图1b为显示屏幕的RGBG排布方式示意图;
图1c为显示屏幕的RGB delta排布方式示意图;
图2为本申请实施例提供的一种像素处理方法流程示意图;
图3为本申请实施例提供的像素矩阵Y示意图;
图4a为本申请实施例提供的RGBG排布时子像素周期性排布示意图;
图4b为本申请实施例提供的RGBG排布时另一种子像素周期性排布示意图;
图5a为本申请实施例提供的RGB delta排布时子像素周期性排布示意图;
图5b为本申请实施例提供的RGB delta排布时另一种子像素周期性排布示意图;
图6为本申请实施例提供的N 1与N 2示意图;
图7为本申请实施例提供的像素处理装置结构示意图;
图8为本申请另一实施例提供的像素处理装置结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
首先介绍本申请实施例将要涉及的显示屏幕的三种排布方式。请参见图1a-图1c。
图1a为传统显示屏幕常用的像素排布方式RGB Stripe,呈长条状排布,每个像素包含R(红色子像素)、G(绿色子像素)、B(蓝色子像素)各一个。
图1b为RGBG排布,每个像素包含有两个子像素,以RG、BG的组合交替出现。
图1c为RGB delta排布,每个像素均包含RGB三个子像素,相邻两个像素存在共用的子像素,以图1c中的第a行为例,像素1和像素2共用一个蓝色子像素,像素2和像素3共用红色子像素和绿色子像素。
可以看出,在RGB Stripe排布方式中,三个像素由9个子像素组成;在RGBG排布方式中,三个像素由6个子像素组成;在RGB delta排布方式中,三个像素由6个子像素组成。因此,当像素个数相同时,RGBG排布方式和RGB delta排布方式比RGB Stripe排布方式所需的子像素个数更少。子像素渲染(Sub-pixel rendering,SPR)技术是通过专有子像素呈现算法使得低分辨率的显示面板上可以呈现高分辨率图像的技术。故将原始画面图 像显示在RGBG排布或RGB delta排布的屏幕上需要采用子像素渲染技术,RGBG排布或RGB delta排布可统称为SPR排布。
应当理解,本申请实施例适用于SPR排布的屏,同时适用于有源矩阵有机发光二极体(Active-matrix organic light emitting diode,AMOLED)、液晶显示器(Liquid Crystal Display,LCD)等显示设备,不局限于可移动终端,同时可适用于电视等产品。
接下来结合图2介绍本申请实施例提供的像处理染方法。如图2所示,像素处理方法至少可以包括以下几个步骤:
S201:获取原始图像中任一初始像素对应的初始像素矩阵Y。
具体地,初始像素矩阵Y包含上述任一初始像素Y i,j,上述任一初始像素Y i,j包括三个颜色不同的子像素P 1、P 2、P 3。三个颜色不同的子像素分别为红色子像素R、绿色子像素G和蓝色子像素B,即P 1、P 2、P 3分别为R、G、B中的一种。上述初始像素Y i,j表示位于原始图像中第i行第j列的像素。
具体地,原始图像中的像素以RGB Stripe方式排布。上述初始像素矩阵Y包括M*N个像素Y m,n,上述M和N均为正整数,上述i、j、m、n为整数,上述第一子像素Y i,j与显示面板上的第一子像素Z i,j对应。
可选地,上述初始像素矩阵Y以上述初始像素Y i,j为中心。上述
Figure PCTCN2019077185-appb-000009
例如,假设M=3,N=5。初始像素矩阵Y以初始像素Y i,j为中心,则初始像素矩阵Y可以为:
Figure PCTCN2019077185-appb-000010
具体排列方式如图3所示。
可选地,上述初始像素矩阵Y可以不以上述初始像素Y i,j为中心。
假设M=3,N=5时,初始像素矩阵Y可以为:
Figure PCTCN2019077185-appb-000011
假设M=3,N=4时,初始像素矩阵Y可以为:
Figure PCTCN2019077185-appb-000012
此处对于M和N的取值仅为示例性说明,在实际采样过程中还可以是其他值,在此不做限定。
可选的,在获取初始像素对应的初始像素矩阵Y之前,还可以先获取原始图像中所有像素的亮度值。可以知道的是,像素的亮度值由其包含的所有子像素的亮度值组成。
S202:确定上述任一初始像素对应的滤波系数矩阵X。
具体地,上述初始像素Y i,j对应的滤波系数矩阵X和上述初始像素矩阵Y具有相同的维度,上述滤波系数矩阵X中的滤波系数与上述初始像素矩阵中的像素一一对应。
具体地,初始像素矩阵Y中的每个像素都包含三个颜色不同的子像素,即R、G、B,因此初始像素矩阵Y是三维的,初始像素Y i,j对应的滤波系数矩阵X也是三维的。初始像素Y i,j包含三个颜色不同的子像素,每个子像素都会对应一个一维滤波系数矩阵。初始像素 Y i,j包含的三个子像素标记为P 1、P 2、P 3,其对应的一维滤波系数矩阵分别标记为X 1、X 2、X 3。应当理解,本申请实施例对三个子像素的排布顺序不作限定,例如可以是RGB、RBG、GRB、GBR、BRG、BGR中的任一种排布顺序。可以知道的是,上述初始像素矩阵Y中的每个初始像素Y i,j对应三个滤波系数,其中,每个子像素对应一个滤波系数。
具体地,确定任一初始像素对应的滤波系数矩阵X即为确定任一初始像素Y i,j包括的三个子像素P 1、P 2、P 3分别对应的一维滤波系数矩阵X 1、X 2、X 3。每个一维滤波系数矩阵中包含的一维滤波系数的个数与初始像素矩阵中与该一维滤波系数矩阵对应的子像素的个数相同。即若确定初始像素Y i,j包括的子像素P 1对应的一维滤波系数矩阵X 1,原始图像中初始像素Y i,j对应的初始像素矩阵Y内包含M*N个像素,那么初始像素矩阵Y内子像素P 1的个数也为M*N个,与P 1对应的一维滤波系数矩阵X 1内包含的一维滤波系数的个数也为M*N个。
例如,假设初始像素Y i,j包括的子像素P 1为红色子像素R,对应的一维滤波系数矩阵为X 1,原始图像中初始像素Y i,j对应的初始像素矩阵Y内包含M*N个像素,那么初始像素矩阵Y内红色子像素R的个数也为M*N个,与红色子像素R对应的一维滤波系数矩阵X 1内包含的一维滤波系数的个数也为M*N个。
S203:基于上述初始像素矩阵Y和上述滤波系数矩阵X获取显示面板上与上述初始像素对应的目标像素的亮度值。
具体地,显示面板上与上述初始像素对应的目标像素指的是位置相同的像素,应当理解,位置相同表示目标像素在显示面板上的位置和初始像素在原始图像中的位置具有一致性。例如上述初始像素Y i,j,表示的是位于原始图像中第i行第j列的像素。那么显示面板上与该初始像素Y i,j对应的目标像素即为显示面板上第i行第j列的像素,标为Z i,j
示例性地,目标像素包含至少两个颜色不同的子像素,显示面板上的目标像素个数等于原始图像中的初始像素个数,显示面板上的子像素的个数小于原始图像中的子像素的个数。
示例性地,显示面板上的子像素呈周期排布,同一个排布周期内部不同的子像素对应的原始图像中的初始像素的子像素分别对应一个一维滤波系数矩阵,不同排布周期内相应位置的子像素对应的原始图像中的初始像素的子像素对应相同的一维滤波系数矩阵。
应当理解,多相位滤波技术即按照相位均匀划分把数字滤波器的系统函数分解成若干个具有不同相位的组,形成多个分支,在每个分支上实现滤波。在本申请实施例中利用显示面板上子像素的周期性排布,根据一个排布周期内子像素位置的不同,为对应的原始图像中初始像素的子像素配置各自的一维滤波系数矩阵实现滤波,以获得显示面板上子像素的亮度值,即为将多相位滤波技术运用至像素处理中。
具体参见图4a-图5b,分别为两种排布方式时,对显示面板上子像素的周期性排布进行说明。
如图4a所示,当显示面板为RGBG排布时,一个排布周期内包括两个像素,即一个排布周期内包括四个子像素,分别为一个R子像素、一个B子像素、两个G子像素。例如,周期1内包括子像素R 1、B 1、G 1、G 1',周期2内包括子像素R 2、B 2、G 2、G 2'。同一个排布周期内不同的子像素对应的原始图像中的初始像素的子像素分别对应一个一维滤波系数 矩阵,即以周期1为例,该排布周期内的子像素R 1、B 1、G 1、G 1'分别对应原始图像中初始像素的一个子像素,如该排布周期内的子像素R 1对应原始图像中的一个初始像素的R子像素;该排布周期内的子像素B 1对应原始图像中的一个初始像素的B子像素;该排布周期内的子像素G 1对应原始图像中的一个初始像素的G子像素;该排布周期内的子像素G 1'对应原始图像中的一个初始像素的G子像素。该排布周期内的四个子像素分别会对应原始图中的四个子像素,这四个子像素分别对应一个一维滤波系数矩阵,各自对应的滤波系数矩阵可以相同也可以不同。不同排布周期内相应位置的子像素对应的原始图像中原始像素的子像素对应的一维滤波系数矩阵相同,即位于两个周期内相同位置的子像素对应的原始图像中原始像素的子像素对应的一维滤波系数矩阵相同,以周期1和周期2为例,子像素R 1和子像素R 2、子像素B 1和子像素B 2、子像素G 1和子像素G 2、子像素G 1'和子像素G 2'对应的原始图像中的原始像素的子像素对应的一维滤波系数矩阵相同。应当理解,RGBG显示面板上的子像素R 1是由原始图像中的原始像素的一个子像素R与该子像素R对应的一维滤波系数矩阵得到的,显示面板上的子像素与原始像素的子像素、以及一维滤波系数具有对应性。
图4a中仅以2个排列周期进行演示,在实际面板中,可以存在多个排列周期,以一个排列周期为单位,在整个显示面板上横向以及纵向排列。
此外,一个排列周期内各个子像素之间的排列方式也不限于图4a所示的排列方式,在一种可选的情况中,各个子像素之间还可以有其他的排列方式,示例性的,其他的排列方式如图4b所示。在此不做限制。
此外,一个排列周期内包含的子像素的个数也不限于图4a所示的个数,在一种可选的情况中,一个排列周期还可以包括其他个数的子像素,在此不做限制。
如图5a所示,当显示面板为RGB delta排布时,一个排布周期内包括三个像素,即一个排布周期包括六个子像素,分别为两个R子像素、两个B子像素、两个G子像素。例如,周期1内包括子像素R 1、R 1'、B 1、B 1'、G 1、G 1',周期2内包括子像素R 2、R 2'、B 2、B 2'、G 2、G 2'。同一个排布周期内不同的子像素对应的原始图像中的初始像素的子像素分别对应一个一维滤波系数矩阵,即以周期1为例,该排布周期内的子像素R 1、R 1'、B 1、B 1'、G 1、G 1'分别对应原始图像中一个初始像素的子像素,如该排布周期内的子像素R 1对应原始图像中的一个初始像素的R子像素;如该排布周期内的子像素R 1'对应原始图像中的一个初始像素的R子像素;该排布周期内的子像素B 1对应原始图像中的一个初始像素的B子像素;该排布周期内的子像素B 1'对应原始图像中的一个初始像素的B子像素;该排布周期内的子像素G 1对应原始图像中的一个初始像素的G子像素;该排布周期内的子像素G 1'对应原始图像中的一个初始像素的G子像素。该排布周期内的六个子像素分别会对应原始图中的初始像素的六个子像素,这六个子像素分别对应一个一维滤波系数矩阵,这六个一维滤波系数矩阵可以相同也可以不同。不同排布周期内相应位置的子像素对应的原始图像中原始像素的子像素对应的一维滤波系数矩阵相同,即位于两个周期内相同位置的子像素对应的原始图像中原始像素的子像素对应的一维滤波系数矩阵相同,以周期1和周期2为例,子像素R 1和子像素R 2,子像素B 1和子像素B 2,子像素G 1和子像素G 2对应的原始图像中原始像素的子像素对应的一维滤波系数矩阵相同。应当理解,RGB delta显示面板上的子像素 R 1是由原始图像中的原始像素的一个子像素R与该子像素R对应的一维滤波系数矩阵得到的,显示面板上的子像素与原始像素的子像素、以及一维滤波系数具有对应性。
图5a中仅以2个排列周期进行演示,在实际面板中,可以存在多个排列周期,以一个排列周期为单位,在整个显示面板上横向以及纵向排列。
此外,一个排列周期内各个子像素之间的排列方式也不限于图5a所示的排列方式,在一种可选的情况中,各个子像素之间还可以有其他的排列方式,示例性的,其他的排列方式如图5b所示。在此不做限制。
此外,一个排列周期内包含的子像素的个数也不限于图5a所示的个数,在一些可选的情况中,一个排列周期还可以包括其他个数的子像素,在此不做限制。
具体地,初始像素的第一子像素对应的一维滤波系数矩阵包括M*N个一维滤波系数X m,n,上述M*N个一维滤波系数X m,n与上述初始像素矩阵中像素的第一子像素一一对应;上述M*N个一维滤波系数X m,n之和为N 1,即
Figure PCTCN2019077185-appb-000013
其中,初始像素的第一子像素可以是初始像素包括的三个子像素P 1、P 2、P 3中的任意一个子像素,即初始像素的第一子像素可以是初始像素包括的红色子像素、蓝色子像素或者绿色子像素中的任意一个。
具体地,计算目标像素的亮度值时,需分别计算目标像素包括的所有子像素的亮度值。接下来以计算目标像素包括的与上述第一子像素对应的子像素的亮度值为例进行说明。
显示面板上的上述目标像素中与上述第一子像素对应的子像素的亮度值Q i,j为上述初始像素矩阵中每个像素的第一子像素的亮度值分别与上述一维滤波系数矩阵中对应的一维滤波系数相乘,然后累加所有相乘的结果,并进行归一化得到。即:
Figure PCTCN2019077185-appb-000014
其中,P m,n用于指示初始像素矩阵Y中任意一个像素的第一子素的亮度值,X m,n用于指示第一子像素对应的一维滤波系数。
可以知道的是,对于显示面板上目标像素包括的其他子像素的亮度值的计算过程可以参照上述与第一子像素对应的子像素的亮度值的计算过程,在此不再赘述。
实施本申请实施例可以通过根根据显示面板上子像素的周期性排布,对同一个周期内不同的子像素对应的原始图像中初始像素的子像素分别配置一个一维滤波系数矩阵,将用于传统图像后处理的多相位滤波应用于将高分辨率图像显示在低分辨率显示面板的像素处理方法中,对具有高分辨率的原始图像中的像素进行多相位滤波得到较低分辨率的显示面板上像素点的亮度值,在不提高显示面板的分辨率的前提下,在低分辨率的显示面板上可以显示高分辨率的图像。
在另外一个可选的实施例中,若上述初始像素的第一子像素用于计算显示面板上的S个目标像素中与上述第一子像素对应的子像素的亮度值,其中,计算一个子像素的亮度值对应一个一维滤波系数,则上述初始像素对应S个一维滤波系数,上述S个一维滤波系数分别属于S个一维滤波系数矩阵,该S个一维滤波系数的和为N 2,上述N 2与所述N 1满足预设条件,上述N 1、N 2及S为正整数。接下来结合图6对N 1和N 2进行说明。
如图6所示,以显示面板为RGB delta排布为例进行说明,假设第一子像素为红色子 像素,计算显示面板上的目标像素i包含的红色子像素R i,j的亮度值时,采样的是原始图像(RGB Stripe)中的以初始像素i为中心的1*3的矩阵中的红色子像素R i-1,j、R i,j、R i+1,j,对应的一维滤波系数分别为a 0、a 1、a 2,那么N 1=a 0+a 1+a 2。而对于原始图像中的像素i包含的红色子像素R i,j来说,会被显示面板上的子像素R i-1,j和R i,j采样到,即原始图像中的像素i包含的红色子像素R i,j用于计算显示面板上2个子像素R i-1,j和R i,j的亮度值,当原始图像中的第一子像素R i,j用于计算显示面板上的第一子像素R i-1,j的亮度值时,对应的一维滤波系数为b 1,当原始图像中的第一子像素R i,j用于计算显示面板上的第一子像素R i,j的亮度值时,对应的一维滤波系数为a 1,那么N 2=b 1+a 1
具体地,显示面板上的第一子像素Z i,j对应的初始像素i的第一子像素对应的一维滤波系数之和N 1,与原始图像中初始像素i的第一子像素用于计算显示面板上S个目标像素的第一子像素的亮度值时对应的S个一维滤波系数之和N 2,两者之间满足预设条件时,可以解决由原始图像转化到低分辨率的显示面板上时,产生的图像串色的问题,可以提高图像的清晰度。
可选地,当显示面板为RGBG排布时,显示面板上包括两种像素,每种像素包括两种颜色不同的子像素,其中一种像素包括一个红色子像素和一个绿色子像素,另外一种像素包括一个蓝色子像素和一个绿色子像素,原始图像中的像素包括一个红色子像素、一个蓝色子像素和一个绿色子像素。当上述第一子像素为红色子像素或者蓝色子像素时,上述
Figure PCTCN2019077185-appb-000015
即,当计算显示面板上目标像素的红色子像素或蓝色子像素的亮度值时,N 2和N 1满足的预设条件是
Figure PCTCN2019077185-appb-000016
当上述第一子像素为绿色子像素时,N 2=N 1,即当计算显示面板上目标像素的绿色子像素的亮度值时,N 2和N 1满足的预设条件是N 2=N 1
具体地,原始图像包含的像素的个数与显示面板包含的像素的个数相同,当显示面板为RGBG排布时,显示面板上的子像素的总数为原始图像包含的子像素的总数的2/3,显示面板包含的红色子像素的个数是原始图像包含的红色子像素个数的1/2,显示面板上蓝色子像素的个数是原始图像包含的蓝色子像素个数的1/2,显示面板上绿色子像素与原始图像包含的绿色子像素的个数相等。因此,当上述第一子像素为红色子像素或者蓝色子像素时,
Figure PCTCN2019077185-appb-000017
当上述第一子像素为绿色子像素时,N 2=N 1
可选地,显示面板为RGB delta排布时,显示面板上的每个像素包括三种颜色不同的子像素,一个红色子像素、一个蓝色子像素和一个绿色子像素,原始图像中的像素包括一个红色子像素、一个蓝色子像素和一个绿色子像素。显示面板上相邻两个像素共用至少一个子像素,上述
Figure PCTCN2019077185-appb-000018
具体地,原始图像包含的像素的个数与显示面板包含的像素的个数相同,当显示面板为RGB delta排布时,显示面板上的子像素的总数为原始图像包含的子像素的总数的2/3,显示面板包含的红色子像素、蓝色子像素及绿色子像素分别是原始图像包含的红色子像素、 蓝色子像素及绿色子像素的2/3。因此,上述
Figure PCTCN2019077185-appb-000019
本申请实施例通过多相位滤波技术在对具有高分辨率的原始图像的像素进行像素处理时,对N 1和N 2的关系进行限定,也即基于子像素的排布规律对滤波系数矩阵进行优化,使得通过像素处理得到的目标像素可以正常显示在SPR排布的显示面板上,避免了传统SPR算法带来的边缘串色和模糊问题,可以提高图像的清晰度。
本申请实施例还提供了一种像素处理装置,如图7所示,像素处理装置70至少可以包括:第一获取单元710、确认单元720及第二获取单元730;其中:
第一获取单元710,用于获取原始图像中任一初始像素对应的初始像素矩阵Y,所述初始像素矩阵包含所述任一初始像素,所述任一初始像素包括三个颜色不同的子像素P 1、P 2、P 3,详细说明请参照S201的描述。
在一个可能的实施例中,上述初始像素矩阵Y以上述初始像素Y i,j为中心。上述
Figure PCTCN2019077185-appb-000020
例如,假设M=3,N=5。初始像素矩阵Y以初始像素Y i,j为中心,则初始像素矩阵Y可以为:
Figure PCTCN2019077185-appb-000021
具体排列方式如图3所示。
在一个可能的实施例中,上述初始像素矩阵Y可以不以上述初始像素Y i,j为中心。
在一个可能的实施例中,第一获取单元710在获取初始像素对应的初始像素矩阵Y之前,还可以先获取原始图像中所有像素的亮度值。可以知道的是,像素的亮度值由其包含的所有子像素的亮度值组成。
确定单元720,用于确定所述任一初始像素对应的滤波系数矩阵X,其中,所述滤波系数矩阵X和所述初始像素矩阵Y具有相同的维度,所述滤波系数矩阵中的滤波系数与所述初始像素矩阵中的像素一一对应;所述初始像素的任一子像素对应一个一维滤波系数矩阵,详细说明请参照S202的描述。
第二获取单元730,用于基于所述初始像素矩阵Y和所述滤波系数矩阵X获取显示面板上与所述初始像素对应的目标像素的亮度值,所述目标像素包含至少两个颜色不同的子像素,所述显示面板上的目标像素个数等于所述原始图像中的初始像素个数,所述显示面板上的子像素的个数小于所述原始图像中的子像素的个数,详细说明请参照S203的描述。
其中,所述显示面板上的子像素呈周期排布,同一个排布周期内部不同的子像素对应的原始图像中的初始像素的子像素分别对应一个一维滤波系数矩阵,不同排布周期内相应位置的子像素对应的原始图像中的初始像素的子像素对应相同的一维滤波系数矩阵,详细说明请参照图4a-图5b的描述。
在一个可能的实施例中,确定单元720用于确定所述任一初始像素包括的三个子像素P 1、P 2、P 3分别对应的一维滤波系数矩阵X 1、X 2、X 3。第二获取单元730用于基于所述初始像素矩阵中像素的子像素和所述初始像素的子像素对应的一维滤波系数矩阵获取显示面板上与所述初始像素的子像素对应的目标像素的子像素的亮度值。
在一个可能的实施例中,所述初始像素的第一子像素对应的一维滤波系数矩阵包括M*N个一维滤波系数X m,n,所述M*N个一维滤波系数X m,n与所述初始像素矩阵中像素的第一子像素一一对应;所述M*N个一维滤波系数X m,n之和为N 1,即
Figure PCTCN2019077185-appb-000022
若所述初始像素的第一子像素用于计算显示面板上的S个目标像素中与所述第一子像素对应的子像素的亮度值,其中,一个所述第一子像素和一个一维滤波系数得到一个目标像素中与所述第一子像素对应的子像素,则所述初始像素的所述第一子像素对应S个一维滤波系数,所述S个一维滤波系数分别属于S个一维滤波系数矩阵,所述S个一维滤波系数的和为N 2,所述N 2与所述N 1满足预设条件,所述N 1、N 2及S为正整数,所述初始像素的第一子像素为所述初始像素包括的三个子像素P 1、P 2、P 3中的任意一个子像素,详细说明请参照如图6的描述。
在一个可能的实施例中,所述显示面板上的所述目标像素中与所述第一子像素对应的子像素的亮度值
Figure PCTCN2019077185-appb-000023
其中,所述P m,n用于指示所述初始像素矩阵Y中任意一个像素的第一子像素的亮度值,所述X m,n用于指示所述第一子像素对应的一维滤波系数。
在一个可能的实施例中,所述显示面板包括两种像素,每种像素包括两种颜色不同的子像素,其中一种像素包括一个红色子像素和一个绿色子像素,另外一种像素包括一个蓝色子像素和一个绿色子像素;所述原始图像中的像素包括一个红色子像素、一个蓝色子像素及一个绿色子像素;其中,当所述第一子像素为红色子像素或蓝色子像素时,
Figure PCTCN2019077185-appb-000024
当所述第一子像素为绿色子像素时,N 2=N 1
在一个可能的实施例中,所述显示面板上的每个像素包括一个红色子像素、一个蓝色子像素及一个绿色子像素;所述原始图像中的像素包含一个红色子像素、一个蓝色子像素及一个绿色子像素;其中,所述显示面板上相邻两个像素共用至少一个子像素,所述
Figure PCTCN2019077185-appb-000025
可以理解的是,各个单元的描述还可以参考前述像素处理方法的实施例,这里不再一一详述。
本申请实施例提供了另外一种像素处理装置,如图8所示,像素处理装置80至少可以包括:至少一个处理器801,至少一个网络接口804,用户接口803,存储器805,至少一个通信总线802,显示屏806。其中,通信总线802用于实现这些组件之间的连接通信,应当理解,像素处理装置80中的各个组件还可以通过其他连接器相耦合,所述其他连接器可包括各类接口、传输线或总线等,在本申请的各个实施例中,耦合是指通过特定方式的相互联系,包括直接相连或通过其他设备间接相连。
其中,处理器801可以包括如下至少一种类型:通用中央处理器(Central Processing  Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、微处理器、专用集成电路(Application Specific Integrated Circuit,ASIC)、微控制器(Microcontroller Unit,MCU)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、或者用于实现逻辑运算的集成电路。例如,处理器801可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。处理器801内包括的多个处理器或单元可以是集成在一个芯片中或位于多个不同的芯片上。
用户接口803可以包括键盘、物理按钮(按压按钮、摇臂按钮等)、拨号盘、滑动开关、操纵杆、点击滚轮、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)等等。网络接口804可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。
存储器805可以是非掉电易失性存储器,例如是EMMC(Embedded Multi Media Card,嵌入式多媒体卡)、UFS(Universal Flash Storage,通用闪存存储)或只读存储器(Read-Only Memory,ROM),可选的,存储器805包括本申请实施例中的flash,或者是可存储静态信息和指令的其他类型的静态存储设备,还可以是掉电易失性存储器(volatile memory),例如随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的程序代码并能够由计算机存取的任何其他计算机可读存储介质,但不限于此。可选的,存储器805可选的还可以是至少一个位于远离前述处理器801的存储系统。如图8所示,作为一种计算机存储介质的存储器805中可以包括操作系统、网络通信模块、用户接口模块以及程序指令。
存储器805可以是独立存在,通过连接器与处理器801相耦合。存储器805也可以和处理器801集成在一起。其中,存储器805能够存储执行本申请方案的程序指令在内的各类计算机程序指令,并由处理器801来控制执行,被执行的各类计算机程序指令也可被视为是处理器801的驱动程序。例如,处理器801用于执行存储器805中存储的计算机程序指令,从而实现本申请中各个方法实施例中的方法。所述计算机程序指令数量很大,可形成能够被处理器801中的至少一个处理器执行的计算机可执行指令,以驱动相关处理器执行各类处理,如支持上述各类无线通信协议的通信信号处理算法、操作系统运行或应用程序运行。
显示屏806,用于显示由用户输入的信息,例如可以用于显示通过像素处理方法获得的图像。示例性的,显示屏806可以包括显示面板和触控面板。其中,显示面板可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)、发光二级管(Light Emitting Diode,LED)显示设备或阴极射线管(Cathode Ray Tube,CRT)等来配置显示面板。触控面板,也称为触摸屏、触敏屏等,可收集用户在其上或附近的接触或者非接触操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板上或在触控面板附近的操作,也可以包括体感操作;该操作包括单点控制操作、多点控制 操作等操作类型),并根据预先设定的程式驱动相应的连接装置。示例性的,显示屏806可以是本申请实施例所列举的任一种显示面板。
实施本申请实施例可以通过根根据显示面板上子像素的周期性排布,对同一个周期内不同的子像素对应的原始图像中初始像素的子像素分别配置一个一维滤波系数矩阵,将用于传统图像后处理的多相位滤波应用于将高分辨率图像显示在低分辨率显示面板的像素处理方法中,对具有高分辨率的原始图像中的像素进行多相位滤波得到较低分辨率的显示面板上像素点的亮度值,在不提高显示面板的分辨率的前提下,在低分辨率的显示面板上可以显示高分辨率的图像
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质的类型请参考对存储器805的描述。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机或处理器上运行时,使得计算机或处理器执行上述任一个像素处理方法中的一个或多个步骤。上述装置的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在所述计算机可读取存储介质中。
基于这样的理解,本申请实施例还提供一种包含指令的计算机程序产品,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备、移动终端或其中的处理器执行本申请各个实施例所述方法的全部或部分步骤。该存储介质的种类请参考存储器805的相关描述。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (16)

  1. 一种像素处理方法,其特征在于,包括:
    获取原始图像中任一初始像素对应的初始像素矩阵Y,所述任一初始像素包括三个子像素;
    确定所述任一初始像素对应的滤波系数矩阵X,其中,所述滤波系数矩阵中的滤波系数与所述初始像素矩阵中的像素一一对应;
    基于所述初始像素矩阵Y和所述滤波系数矩阵X获取显示面板上与所述初始像素对应的目标像素的亮度值,所述目标像素包含至少两个颜色不同的子像素;
    其中,所述显示面板上的子像素呈周期排布,同一个排布周期内部不同的子像素对应的原始图像中的初始像素的子像素分别对应一个一维滤波系数矩阵,不同排布周期内相应位置的子像素对应的原始图像中的初始像素的子像素对应相同的一维滤波系数矩阵。
  2. 如权利要求1所述的方法,其特征在于,所述初始像素矩阵Y以所述初始像素为中心。
  3. 如权利要求1所述的方法,其特征在于,所述确定所述任一初始像素对应的滤波系数矩阵X包括:确定所述任一初始像素包括的三个子像素分别对应的一维滤波系数矩阵;
    所述基于所述初始像素矩阵Y和所述滤波系数矩阵X获取显示面板上与所述初始像素对应的目标像素的亮度值包括:
    基于所述初始像素的任一子像素对应的子像素矩阵和所述任一子像素对应的一维滤波系数矩阵获取显示面板上与所述初始像素的任一子像素对应的目标像素的子像素的亮度值。
  4. 如权利要求3所述的方法,其特征在于,所述初始像素的第一子像素对应的一维滤波系数矩阵包括M*N个一维滤波系数X m,n,所述M*N个一维滤波系数X m,n与所述初始像素矩阵中像素的第一子像素一一对应;所述M*N个一维滤波系数X m,n之和为N 1,即
    Figure PCTCN2019077185-appb-100001
    若所述初始像素的第一子像素用于计算显示面板上的S个目标像素中与所述第一子像素对应的子像素的亮度值,其中,一个所述第一子像素和一个一维滤波系数得到一个目标像素中与所述第一子像素对应的子像素,则所述初始像素的所述第一子像素对应S个一维滤波系数,所述S个一维滤波系数分别属于S个一维滤波系数矩阵,所述S个一维滤波系数的和为N 2,所述N 2与所述N 1满足预设条件,所述N 1、N 2及S为正整数,所述初始像素的第一子像素为所述初始像素包括的三个子像素中的任意一个子像素。
  5. 如权利要求4所述的方法,其特征在于,所述显示面板上的所述目标像素中与所述 第一子像素对应的子像素的亮度值
    Figure PCTCN2019077185-appb-100002
    其中,所述P m,n用于指示所述初始像素矩阵Y中任意一个像素的第一子像素的亮度值,所述X m,n用于指示所述第一子像素对应的一维滤波系数。
  6. 如权利要求4或5所述的方法,其特征在于,所述显示面板包括两种像素,每种像素包括两种颜色不同的子像素,其中一种像素包括一个红色子像素和一个绿色子像素,另外一种像素包括一个蓝色子像素和一个绿色子像素;所述原始图像中的像素包括一个红色子像素、一个蓝色子像素及一个绿色子像素;其中,当所述第一子像素为红色子像素或蓝色子像素时,
    Figure PCTCN2019077185-appb-100003
    当所述第一子像素为绿色子像素时,N 2=N 1
  7. 如权利要求4或5所述的方法,其特征在于,所述显示面板上的每个像素包括一个红色子像素、一个蓝色子像素及一个绿色子像素;所述原始图像中的像素包含一个红色子像素、一个蓝色子像素及一个绿色子像素;其中,所述显示面板上相邻两个像素共用至少一个子像素,所述
    Figure PCTCN2019077185-appb-100004
  8. 一种像素处理装置,其特征在于,包括:
    第一获取单元,用于获取原始图像中任一初始像素对应的初始像素矩阵Y,所述任一初始像素包括三个子像素;
    确定单元,用于确定所述任一初始像素对应的滤波系数矩阵X,其中,所述滤波系数矩阵中的滤波系数与所述初始像素矩阵中的像素一一对应;
    第二获取单元,用于基于所述初始像素矩阵Y和所述滤波系数矩阵X获取显示面板上与所述初始像素对应的目标像素的亮度值,所述目标像素包含至少两个颜色不同的子像素;
    其中,所述显示面板上的子像素呈周期排布,同一个排布周期内部不同的子像素对应的原始图像中的初始像素的子像素分别对应一个一维滤波系数矩阵,不同排布周期内相应位置的子像素对应的原始图像中的初始像素的子像素对应相同的一维滤波系数矩阵。
  9. 如权利要求8所述的装置,其特征在于,所述初始像素矩阵Y以所述初始像素为中心。
  10. 如权利要求8所述的装置,其特征在于,所述确定单元用于确定所述任一初始像素包括的三个子像素分别对应的一维滤波系数矩阵;
    所述第二获取单元用于基于所述初始像素的任一的子像素对应的子像素矩阵和所述任一子像素对应的一维滤波系数矩阵获取显示面板上与所述初始像素的任一子像素对应的目标像素的子像素的亮度值。
  11. 如权利要求10所述的装置,其特征在于:
    所述初始像素的第一子像素对应的一维滤波系数矩阵包括M*N个一维滤波系数X m,n,所述M*N个一维滤波系数X m,n与所述初始像素矩阵中像素的第一子像素一一对应;所述M*N个一维滤波系数X m,n之和为N 1,即
    Figure PCTCN2019077185-appb-100005
    若所述初始像素的第一子像素用于计算显示面板上的S个目标像素中与所述第一子像素对应的子像素的亮度值,其中,一个所述第一子像素和一个一维滤波系数得到一个目标像素中与所述第一子像素对应的子像素,则所述初始像素的所述第一子像素对应S个一维滤波系数,所述S个一维滤波系数分别属于S个一维滤波系数矩阵,所述S个一维滤波系数的和为N 2,所述N 2与所述N 1满足预设条件,所述N 1、N 2及S为正整数,所述初始像素的第一子像素为所述初始像素包括的三个子像素中的任意一个子像素。
  12. 如权利要求11所述的装置,其特征在于,所述显示面板上的所述目标像素中与所述第一子像素对应的子像素的亮度值
    Figure PCTCN2019077185-appb-100006
    其中,所述P m,n用于指示所述初始像素矩阵Y中任意一个像素的第一子像素的亮度值,所述X m,n用于指示所述第一子像素对应的一维滤波系数。
  13. 如权利要求11或12所述的装置,其特征在于,所述显示面板包括两种像素,每种像素包括两种颜色不同的子像素,其中一种像素包括一个红色子像素和一个绿色子像素,另外一种像素包括一个蓝色子像素和一个绿色子像素;所述原始图像中的像素包括一个红色子像素、一个蓝色子像素及一个绿色子像素;其中,当所述第一子像素为红色子像素或蓝色子像素时,
    Figure PCTCN2019077185-appb-100007
    当所述第一子像素为绿色子像素时,N 2=N 1
  14. 如权利要求11或12所述的装置,其特征在于,所述显示面板上的每个像素包括一个红色子像素、一个蓝色子像素及一个绿色子像素;所述原始图像中的像素包含一个红色子像素、一个蓝色子像素及一个绿色子像素;其中,所述显示面板上相邻两个像素共用至少一个子像素,所述
    Figure PCTCN2019077185-appb-100008
  15. 一种像素处理装置,其特征在于,包括:
    存储器,用于存储程序指令;
    处理器,用于读取所述存储器中的程序指令,并执行该程序指令以实现如权利要求1-7任一项所述的像素处理方法。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有程序指令,当所述程序指令在计算机或处理器上运行时,使所述计算机或处理器执行如权利要求1-7任一项所述的像素处理方法。
PCT/CN2019/077185 2018-03-31 2019-03-06 像素处理方法及装置 WO2019184669A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810281666.7 2018-03-31
CN201810281666.7A CN110322401B (zh) 2018-03-31 2018-03-31 像素处理方法及装置

Publications (1)

Publication Number Publication Date
WO2019184669A1 true WO2019184669A1 (zh) 2019-10-03

Family

ID=68058543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077185 WO2019184669A1 (zh) 2018-03-31 2019-03-06 像素处理方法及装置

Country Status (2)

Country Link
CN (1) CN110322401B (zh)
WO (1) WO2019184669A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111371965B (zh) * 2020-03-23 2021-09-28 华兴源创(成都)科技有限公司 用于显示屏亮度拍摄除干扰的图像处理方法、装置及设备
CN111464676A (zh) * 2020-03-30 2020-07-28 Oppo广东移动通信有限公司 显示屏及电子设备
CN112968047A (zh) * 2021-02-08 2021-06-15 合肥视涯技术有限公司 一种阵列基板、显示面板及显示装置
CN114089942A (zh) * 2021-11-29 2022-02-25 合肥芯颖科技有限公司 一种显示处理方法、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236763B1 (en) * 1997-09-19 2001-05-22 Texas Instruments Incorporated Method and apparatus for removing noise artifacts in decompressed video signals
CN101212672A (zh) * 2006-12-30 2008-07-02 安凯(广州)软件技术有限公司 视频内容自适应的亚像素插值方法和装置
CN106886380A (zh) * 2015-12-16 2017-06-23 上海和辉光电有限公司 显示装置、图像数据处理装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5256283B2 (ja) * 2007-05-18 2013-08-07 三星ディスプレイ株式會社 2次元サブピクセルレイアウトを有するディスプレイパネルのための画像色バランス調整
KR20160065397A (ko) * 2014-11-28 2016-06-09 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
CN104952423A (zh) * 2015-07-03 2015-09-30 深圳市华星光电技术有限公司 一种图像显示方法以及显示系统
CN107221544B (zh) * 2017-06-02 2023-09-26 展谱光电科技(上海)有限公司 多光谱摄像装置及其摄像方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236763B1 (en) * 1997-09-19 2001-05-22 Texas Instruments Incorporated Method and apparatus for removing noise artifacts in decompressed video signals
CN101212672A (zh) * 2006-12-30 2008-07-02 安凯(广州)软件技术有限公司 视频内容自适应的亚像素插值方法和装置
CN106886380A (zh) * 2015-12-16 2017-06-23 上海和辉光电有限公司 显示装置、图像数据处理装置及方法

Also Published As

Publication number Publication date
CN110322401B (zh) 2023-08-22
CN110322401A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
WO2019184669A1 (zh) 像素处理方法及装置
CN110098240B (zh) 像素结构及显示装置、像素驱动电路、显示控制方法
CN109859673B (zh) 具有用于弯曲边缘的像素调光的显示器
CN109147644B (zh) 显示面板及显示方法
US9576519B2 (en) Display method and display device
US20210358379A1 (en) Display substrate, method for driving the same, display device, and high-precision metal mask
US10204537B2 (en) Display driving method and device and display device
US10140902B2 (en) Display method and display panel
KR102023184B1 (ko) 표시장치, 데이터 처리장치 및 그 방법
US9997560B2 (en) Display substrate, method for fabricating the same and display device
CN111192902A (zh) 显示面板及其驱动方法、显示装置
US10290250B2 (en) Pixel array and driving method thereof, display panel and display device
EP3822766A1 (en) Image processing method and device for tiled screen and tiled screen
WO2016192241A1 (zh) 显示方法及显示装置
JP2020529639A (ja) 画像表示方法、表示システム及びコンピューター読取可能記憶媒体
WO2015123908A1 (zh) 显示方法和显示装置
JP7364569B2 (ja) 画素アレイ及びその駆動方法、表示装置
WO2020140794A1 (zh) 显示面板和装置、图像处理方法和装置、虚拟现实系统
US9568759B2 (en) Manufacturing method of touch display panel
US11158237B2 (en) Driving method for display panel, and display device based on viewing distance
CN103390380A (zh) 图像质量处理方法及使用该方法的显示装置
TW201701252A (zh) 顯示面板及其驅動方法
CN112951147B (zh) 一种显示器色度视角修正方法、智能终端及存储介质
US8427500B1 (en) Spatially aware sub-pixel rendering
US20150123974A1 (en) Visualization Method Of Entire Grid Data Of Numerical Weather Prediction Model Having Ultra-High Grid Resolution By Magnification Mode And Hardware Device Performing The Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777839

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19777839

Country of ref document: EP

Kind code of ref document: A1