WO2019184324A1 - 显示装置及其显示方法、显示设备 - Google Patents

显示装置及其显示方法、显示设备 Download PDF

Info

Publication number
WO2019184324A1
WO2019184324A1 PCT/CN2018/111923 CN2018111923W WO2019184324A1 WO 2019184324 A1 WO2019184324 A1 WO 2019184324A1 CN 2018111923 W CN2018111923 W CN 2018111923W WO 2019184324 A1 WO2019184324 A1 WO 2019184324A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
display
electrode
display device
Prior art date
Application number
PCT/CN2018/111923
Other languages
English (en)
French (fr)
Inventor
王晨如
刘亚丽
张�浩
陈丽莉
董瑞君
张雪冰
栗可
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18903036.4A priority Critical patent/EP3779584A4/en
Priority to US16/483,541 priority patent/US11335283B2/en
Publication of WO2019184324A1 publication Critical patent/WO2019184324A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133601Illuminating devices for spatial active dimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00198Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising elements which are movable in relation to each other, e.g. comprising slidable or rotatable elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators
    • B81B2201/034Electrical rotating micromachines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/047Optical MEMS not provided for in B81B2201/042 - B81B2201/045
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/05Type of movement
    • B81B2203/056Rotation in a plane parallel to the substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/066Adjustment of display parameters for control of contrast

Definitions

  • Embodiments of the present disclosure relate to a display device, a display method thereof, and a display device.
  • At least one embodiment of the present disclosure provides a display device including: a display panel including a plurality of pixel regions; a light transmittance adjusting layer disposed in a stacked manner with the display panel, wherein the light transmittance adjusting layer is configured to be an adjustment The display brightness of a plurality of pixel regions.
  • the light transmittance adjusting layer is located on a light exiting side of the display panel.
  • the display device provided by at least one embodiment of the present disclosure further includes: a backlight module located on a light incident side of the display panel; wherein the light transmittance adjusting layer is located in the backlight module and the display panel between.
  • the light transmittance adjusting layer includes a plurality of light adjusting units arranged in an array, and each of the pixel regions is corresponding to at least one of the light adjusting units.
  • the light conditioning unit is configured to switch between different light transmittances during operation.
  • the pixel region includes at least one pixel unit, and the light adjustment unit is disposed in one-to-one correspondence with the pixel region, or the light adjustment unit and the The pixel units are arranged one by one.
  • the light adjustment unit includes: a light attenuating film including a plurality of light adjustment regions of different light transmittances; and a microelectromechanical driving unit configured to drive the light The attenuating film is moved such that the light adjustment region is laminated with the display panel.
  • the microelectromechanical driving unit includes a first rotating shaft and a second rotating shaft, and the light attenuating film is wound on the first rotating shaft and the second rotating shaft, And rotating the first rotating shaft and the second rotating shaft to expand one of the plurality of light adjusting regions into a plane.
  • the first rotating shaft and the second rotating shaft are both electrostatic micromotors;
  • the electrostatic micromotor includes a rotor and a stator spaced apart from each other, the stator And the rotor is relatively rotatable under the drive of a voltage.
  • the pixel area coincides with an orthographic projection of the light adjustment area on the display panel or is located on the display panel of the light adjustment area. Within the projection.
  • the light adjustment unit includes: a first electrode, a second electrode, and a light adjustment layer; wherein the first electrode and the second electrode are configured to be A voltage is applied to adjust the light transmittance of the light adjustment layer.
  • the light adjustment layer includes a liquid crystal layer and first and second polarizing layers respectively located on both sides of the liquid crystal layer, and the first electrode and The second electrode is located on the same side or different sides of the liquid crystal layer, and the first electrode and the second electrode are applied with a voltage to adjust the light transmittance of the light adjustment layer.
  • the light adjustment layer is an electrochromic layer
  • the electrochromic layer is located between the first electrode and the second electrode
  • the first electrode, the electrochromic layer, and the second electrode are sequentially stacked in a direction perpendicular to a surface of the display panel.
  • the light adjustment layer is an electronic ink layer
  • the electronic ink layer is located between the first electrode and the second electrode
  • the first The electrode, the electronic ink layer, and the second electrode are sequentially stacked in a direction perpendicular to a surface of the display panel.
  • the display device provided by at least one embodiment of the present disclosure further includes a controller configured to control a light transmittance of the light adjustment unit.
  • At least one embodiment of the present disclosure provides a display device including the display device described in any of the foregoing embodiments.
  • the display device further includes: a lens located on a light exiting side of the display panel; wherein the transmittance adjusting layer is located on a side of the lens facing the display panel, or Located on a side of the lens that is remote from the display panel.
  • At least one embodiment of the present disclosure provides a display method of a display device, including: controlling, in a first display state, the light transmittance adjusting layer to have a first light transmittance in at least one of the pixel regions, The display image of the display panel and the light transmittance adjusting layer has a first brightness; and in the second display state, the light transmittance adjusting layer is adjusted to have a second light transmittance through the display panel and The display image of the light transmittance adjusting layer has a second brightness.
  • the light transmittance adjustment layer includes a plurality of light arrangement units arranged in an array, the light adjustment unit including a first electrode, a second electrode, and light adjustment a layer; applying a voltage to the first electrode and the second electrode to adjust a light transmittance of the light adjustment layer.
  • the light transmittance adjusting layer includes a plurality of array-arranged light adjusting units, and the light adjusting unit includes a light attenuating film and a microelectromechanical driving unit;
  • the light attenuating film includes a plurality of light adjusting regions of different light transmittances; the light attenuating film is driven to move by the microelectromechanical driving unit such that the light adjusting regions are laminated with the display panel.
  • the microelectromechanical driving unit includes a first rotating shaft and a second rotating shaft, and the light attenuating film is wound on the first rotating shaft and the second rotating shaft; The first rotating shaft and the second rotating shaft are driven to rotate such that one of the plurality of light adjusting regions is developed into a plane.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another display device according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of another display device according to an embodiment of the present disclosure.
  • 4A-4D are schematic structural diagrams of a light adjustment unit in a display device according to an embodiment of the present disclosure.
  • 5A to 5E are process diagrams of a method of manufacturing a rotating shaft in the light adjusting unit shown in Figs. 4C and 4D;
  • FIG. 6 is a schematic structural diagram of a light adjustment unit in another display device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a light adjustment unit in another display device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • At least one embodiment of the present disclosure provides a display device, a display method thereof, and a display device.
  • the display device includes a display panel including a plurality of pixel regions, and a light transmittance adjusting layer configured to adjust display brightness of the plurality of pixel regions.
  • the light transmittance adjusting layer is laminated with the display panel.
  • the light transmittance adjusting layer can adjust the display brightness of the pixel region such that the number of gray levels of each pixel region is determined by the display panel and the light transmittance adjusting layer, even if the design structure of the display panel is fixed. In this case, the number of gray levels of the display image of the display device can be further increased, and the contrast of the display image can be improved.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • the display device may include a display panel 100 and a light transmittance adjustment layer 200.
  • the display panel 100 includes a plurality of pixel regions 110, and the light transmittance adjustment layer 200 and
  • the display panel 100 is stacked (eg, the orthographic projection of the light transmittance adjusting layer 200 on the plane of the display panel 100 is located inside the display panel 100), and the light transmittance adjusting layer 200 is configured to adjust the display brightness of the plurality of pixel regions 110. .
  • the light transmittance adjusting layer 200 and the display panel 100 are stacked on the display panel 100 in a normal direction (display direction) perpendicular to the display surface, and are parallel to the display surface of the display panel.
  • the intensity of the light emitted from the display device is adjusted by the display panel 100 and the light transmittance adjusting layer 200, and the increase in the number of levels of the display gray scale of the display device is not limited by the design structure of the display panel 100 itself.
  • the set position and the working mode of the light transmittance adjusting layer may be selected according to the type of the display panel.
  • the light transmittance adjusting layer is located on the light exiting side of the display panel.
  • the light transmittance adjusting layer can adjust at least the intensity of the light emitted from the display panel such that the number of levels of the gray scale is increased.
  • the light transmittance adjusting layer 200 is located on the light emitting side of the display panel 100, and the pixel area 110 in the display panel 100 can emit light having the brightness Y1 but cannot emit light having the brightness Y2. According to the display requirement, in one display state, the light transmittance adjusting layer 200 can adjust the light of the brightness Y1 to the light of the brightness Y2, and in the other display state, the brightness of the light of the light transmittance adjusting layer 200. The display panel 100 is adjusted to emit light of other brightness, and the brightness of the light passing through the light transmittance adjusting layer 200 is Y1.
  • the display panel 100 may be a transmissive display panel, a reflective display panel, a transflective display panel, or the like.
  • the display panel 100 may be an organic light emitting display panel, a liquid crystal display panel, an electronic paper display panel, or the like.
  • the display device may further include a backlight module to provide display light, and the backlight module is located on the light incident side of the display panel.
  • the light transmittance adjusting layer may be located between the backlight module and the display panel. The light transmittance adjusting layer can adjust the intensity of the light emitted from the backlight module, so that the intensity of light incident into each pixel region can be controlled, thereby increasing the number of levels of display gray scale of the pixel region 110.
  • FIG. 2 is a schematic structural diagram of another display device according to an embodiment of the present disclosure.
  • the display panel 100 can be a transmissive display panel.
  • the light-incident side of the display panel 100 (opposite the display side) is provided with a backlight module 300, and the backlight module 300 can emit uniform brightness.
  • the light transmittance adjusting layer 200 is located between the display panel 100 and the backlight module 300.
  • the light transmittance adjusting layer 200 can adjust the light of the brightness Y to light of the brightness Y1, the brightness Y2, the brightness Y3, the brightness Y4, and the like according to the display requirements of each of the pixel areas.
  • the brightness of the light rays incident on each of the pixel regions 110 of the display panel 100 can be adjusted as needed, and accordingly, the number of levels of display gray scales in each of the pixel regions 110 is increased, and the contrast of the displayed image can be improved.
  • the specific structure of the backlight module is not limited as long as it can provide light for displaying an image to the display panel.
  • the backlight module can be a direct-lit backlight module, a side-in backlight module, or other types of backlight modules.
  • the light transmittance adjusting layer includes a plurality of light adjusting units arranged in an array, and each of the pixel regions may be disposed corresponding to the at least one light adjusting unit, and the light adjusting unit is configured.
  • an orthographic projection of at least one light adjustment unit on a plane of the display panel coincides with a pixel area. In this manner, by adjusting the light transmittance of the light adjustment unit, the brightness of the light of the pixel region corresponding to the light adjustment unit can be controlled, thereby increasing the number of levels of the display gray scale of the pixel region 110.
  • the light adjustment unit is disposed in one-to-one correspondence with the pixel regions.
  • the orthographic projection of a light adjustment unit on the plane of the display panel completely coincides with a pixel area.
  • each light adjusting unit can adjust the brightness of the light emitted from one pixel area, which can improve the fineness of the adjustment and improve the display effect.
  • the light adjustment unit 210 is disposed in one-to-one correspondence with the pixel region 110.
  • the orthographic projection of the light adjustment unit 210 on the plane of the display panel 100 coincides with the pixel area 110 disposed corresponding thereto.
  • the pixel region includes at least one pixel unit, and the light adjustment unit is disposed in one-to-one correspondence with the pixel unit.
  • each light adjustment unit can adjust the brightness of the light emitted by one pixel unit, and further increase the number of levels of display gray scale of each pixel area.
  • FIG. 3 is a schematic structural diagram of another display device according to an embodiment of the present disclosure. Exemplarily, as shown in FIG. 3, each of the pixel regions 110 includes a red pixel unit R, a green pixel unit G, and a blue pixel unit B.
  • the light adjustment unit 210 is disposed in one-to-one correspondence with each pixel unit.
  • the brightness of the light emitted by the red pixel unit R is changed from Y1 to Y4, the brightness of the light emitted by the green pixel unit G is changed from Y2 to Y5, and the brightness of the light emitted by the blue pixel unit B is changed from Y3 to Y6, the color or grayscale of the image composed of the light Y4, the light Y5, and the light Y6 is not separately obtained by the display panel 100, so that not only the number of levels of the display gray scale of the pixel region 110 is increased, but also the visual effect of displaying the image is improved.
  • the display device further includes a controller 600, such as a control chip, for controlling the display brightness of the pixel area of the display panel and controlling the light transmittance of the light adjustment unit of the light transmittance adjusting layer, etc., thereby controlling The display brightness of the display panel is achieved to achieve the desired display effect.
  • the controller such as a central processing unit (CPU), a single chip microcomputer, or the like, may be a dedicated processor or a general purpose processor, for example, connected to a display panel and a light transmittance adjusting layer signal through a signal line, and output corresponding control signals and output signals.
  • the specific structure of the light adjustment unit is not limited as long as it has a function of changing the brightness of the light emitted from the pixel area.
  • the light adjustment unit includes: a light attenuating film and a microelectromechanical driving unit, the light attenuating film includes a plurality of light adjusting regions of different light transmittances, and the microelectromechanical driving unit is configured To drive the light attenuating film to determine which light conditioning region of the light attenuating film to use.
  • the microelectromechanical driving unit is configured to drive the light attenuating film to move such that the light adjustment region is laminated with the display panel, for example, stacked on the display panel in the normal direction (display direction) of the display surface and parallel to the display surface.
  • the microelectromechanical driving unit may drive the light attenuating film to move such that the light adjusting region having the corresponding transmittance corresponds to the pixel region.
  • the controller can be used to control whether the microelectromechanical driving unit drives the light attenuating film.
  • the controller can be signaled to the MEMS drive unit in a wired or wireless manner to enable control of the MEMS drive unit.
  • the driving type of the microelectromechanical driving unit is not limited.
  • the driving mode of the microelectromechanical driving unit may be a rotating (or twisting) driving or a linear (or oscillating) driving;
  • the microelectromechanical driving unit can be realized by a MEMS preparation process, and details are not described herein again.
  • the microelectromechanical driving unit includes a first rotating shaft and a second rotating shaft, and the light attenuating film is wound on the first rotating shaft and the second rotating shaft, and the first rotating shaft and the second rotating shaft rotate So that one of the plurality of light adjustment regions is developed into a plane.
  • the light attenuating film is moved such that the light adjusting regions of different transmittances correspond to the pixel regions.
  • the arrangement of the light attenuating film wound on the first rotating shaft and the second rotating shaft can reduce the size of the microelectromechanical driving unit, and the driving method is simple, and the structure of the microelectromechanical driving unit is simplified.
  • FIG. 4A-4D are schematic structural diagrams of a light adjusting unit in a display device according to an embodiment of the present disclosure, wherein FIG. 4A is a schematic structural view of a microelectromechanical driving unit, and FIG. 4B is a microelectromechanical driving unit in FIG. 4A.
  • FIG. 4A is a schematic structural view of a microelectromechanical driving unit
  • FIG. 4B is a microelectromechanical driving unit in FIG. 4A.
  • FIG. 4C is a schematic plan view of the rotating shaft of FIG. 4B
  • FIG. 4D is a cross-sectional view of the rotating shaft shown in FIG. 4C along N1 to N2.
  • the light attenuating film 410 is wound around the first rotating shaft 421 and the second rotating shaft 422, and the light attenuating film 410 includes a plurality of light adjusting regions 411, for example The first light adjustment area 411a, the second light adjustment area 411b, and the third light adjustment area 411c.
  • the light transmittances of the first light adjustment region 411a, the second light adjustment region 411b, and the third light adjustment region 411c are sequentially decreased.
  • driving the first rotating shaft 421 and the second rotating shaft 422 to rotate can make the specific light adjusting region 411 correspond to the pixel region.
  • one of the light-adjusting regions 410 (for example, the first light-adjusting region 411a) has a light transmittance of about 100% so that the brightness of the light after passing through the light-adjusting region does not change.
  • a portion of the first light adjustment region 411a corresponding to the pixel region (or pixel unit) is hollowed out such that the light transmittance of the first light adjustment region 411a is 100%.
  • the pixel area coincides with the orthographic projection of the light adjustment area on the display panel or within the orthographic projection of the light adjustment area on the display panel.
  • the light adjustment unit can adjust the brightness of all the light rays emitted from the entire pixel area, thereby improving the display effect of the display device.
  • the pixel unit coincides with the orthographic projection of the light adjustment area on the display panel or within the positive projection of the light adjustment area on the display panel.
  • the light adjustment unit can be adjusted to adjust the brightness of all the light rays emitted by each pixel unit, thereby improving the display effect of the display device.
  • the specific structure of the rotating shafts is not limited as long as the rotating shaft can provide a sufficiently large torque (for example, dynamic torque).
  • the rotating shaft may be an electrostatic micromotor, an electromagnetic micromotor, a piezoelectric micromotor, or the like.
  • the technical solution in at least one embodiment of the present disclosure will be described by taking the rotating shaft as an electrostatic micromotor as an example.
  • each of the rotating shafts may include two electrostatic micromotors, and the two electrostatic micromotors may stretch the light attenuating film, such that the first rotating shaft 421 and the second rotating shaft 422 may attenuate at least a portion of the light attenuating film (for example, one The light adjustment area) is stretched to a flat surface.
  • the rotating shaft (the first rotating shaft 521 or the second rotating shaft 422) is an electrostatic micromotor including a rotor 610 and a plurality of stators 620, and the rotor 610 and the stator 620 are mutually interval.
  • a bias voltage is applied to the stator 620, an electric field is generated between the corresponding rotor 610 and the stator 620, and electrostatic attraction is generated between the corresponding rotor 610 and the stator 620, thereby aligning the rotor 610 and the stator 620 through grouping.
  • the stator 620 is energized (a bias voltage is applied to 620) such that the rotor 610 can continue to rotate.
  • the electrostatic micromotor may further include a flange 630 and a base 640, and the rotor 610 and the flange 630 are fixed to the base 640, and the flange 630 is used for
  • the position of the rotor 610 is defined to prevent the rotor 610 from coming off.
  • substrate 640 can be a silicon wafer.
  • the material of the rotor 610 and the stator 620 may include a conductive material such as polysilicon or the like.
  • the electrostatic micromotor may further include an insulating layer 650.
  • the insulating layer 650 may prevent the rotor 610 and the stator 620 from being electrically connected through the substrate 640.
  • the rotor 610 includes a first portion 611, a second portion 612, and a third portion 613, the second portion 612 being disposed in plurality, and the first portion 611 and The third portion 613 is coupled by a second portion 612 that defines the position of the third portion 613 such that the rotor 610 does not fall out.
  • the third portion 613 is located between the flange 630 and the base 640, the flange 630 is coupled to the base 640 (or insulating layer 650), and the inner edge of the third portion 613 is located within the outer edge of the flange 630.
  • the spacing between the second portion 612 and the stator 620 is relatively small such that when an electric field is generated between the rotor 610 and the stator 620, the charge in the rotor 610 is concentrated primarily at the second portion 612, thus, different through the stator 620 Static electricity is generated on the second portion 612, which can drive the rotor 610 to rotate.
  • the stator 620 is located between the second portion 612 and the substrate 640.
  • the electrostatic force between the stator 620 and the rotor 610 causes the rotor 610 to be secured to the base 640, preventing the rotor 610 from falling out.
  • the first portion 611 is located on a side of the stator 620 that is remote from the flange 630, and the outer edge of the first portion 611 can be circular.
  • the light attenuating film can be fixed on the rotor 610.
  • the light attenuating film is fixed on the outer edge of the rotor 610.
  • the rotor 610 can drive the light attenuating film to move, and the light attenuating film can be wound around the first portion 611. On the outer edge.
  • the side of the first portion 611 and the third portion 613 facing the substrate 640 may be provided with a protrusion 614.
  • the protrusion 614 can reduce the friction of the first portion 611 and the third portion 613 on the substrate 640 as the rotor 610 moves.
  • the first portion 611 may increase the stability of the structure of the rotor 610, and the rotor 610 may also be configured to include only the second portion 612 and the third portion 613, for example, a light attenuating film. It can be fixed to the second portion 612.
  • the size of the rotating shaft is not limited.
  • the electrostatic micromotor may be sized to be no greater than 150 microns, such as no greater than 100 microns.
  • the thickness and material of the light attenuating film are not limited.
  • the thickness of the light attenuating film can be set to be no more than 50 ⁇ m.
  • the material of the light attenuating film may be a flexible material such as polymethyl methacrylate, polyethylene terephthalate, polyimide or other materials.
  • a light-adjusting region of a different transmittance of the light-attenuating film can be realized by a rubbing process.
  • FIGS. 4C and 4D are process diagrams showing a method of manufacturing a rotating shaft in the light adjusting unit shown in Figs. 4C and 4D.
  • a method of manufacturing an electrostatic micromotor in a display device will be described by taking a rotating shaft (electrostatic micromotor) as shown in FIGS. 4C and 4D as an example.
  • a substrate 640 is provided on which a polysilicon material is deposited and patterned to form a stator 620.
  • the materials of the substrate 640 and the stator 620 are not limited, as long as the substrate 640 can be used to manufacture an electrostatic micromotor that meets the dimensional requirements, and the stator 620 has a certain conductivity.
  • the patterning process may be a photolithographic patterning process, for example, including: coating a photoresist layer on a structure layer to be patterned, and exposing the photoresist layer using a mask. The exposed photoresist layer is developed to obtain a photoresist pattern, the structural layer is etched using a photoresist pattern, and then the photoresist pattern is optionally removed. It should be noted that if the patterned structural layer includes a photoresist material, the photoresist coating process may not be required.
  • an insulating material may be deposited on the substrate 640 to form the insulating layer 650 prior to forming the stator 620.
  • the material of the insulating layer 650 may include materials such as silicon dioxide, silicon nitride, silicon oxynitride, etc., and the insulating layer 650 may have a single layer structure or a multilayer structure.
  • the above materials can also improve the adhesion of other structures formed in the subsequent process (for example, the stator 620, the flange 630, etc.) on the substrate 640 while insulating.
  • a thin film of insulating material is deposited on the substrate 640 and patterned to form a first sacrificial layer 661.
  • a plurality of recesses 670 may be formed in the first sacrificial layer 661, and the shape and position of the recesses may correspond to the protrusions 614 in FIG. 4D.
  • the material of the first sacrificial layer 661 may include phosphorus doped silicon dioxide (PSG), boron doped phosphorus silicon dioxide (BPSG), or other materials.
  • PSG phosphorus doped silicon dioxide
  • BPSG boron doped phosphorus silicon dioxide
  • a thin film of conductive material (eg, polysilicon) is deposited on the substrate 640 and patterned to form a rotor 610 having a central location disposed to expose the substrate 640 (or to expose the insulating layer 650).
  • a rotor 610 having a central location disposed to expose the substrate 640 (or to expose the insulating layer 650).
  • a thin film of insulating material is deposited on the substrate 640 and patterned to form a second sacrificial layer 662.
  • the second sacrificial layer 662 is disposed to expose the substrate 640 (or expose the insulating layer 650) at a design location of the flange 630 in a subsequent process.
  • the material of the second sacrificial layer 662 may include phosphorus doped silicon dioxide (PSG), boron doped phosphorus silicon dioxide (BPSG), or other materials.
  • a flange 630 is formed on the second sacrificial layer 662, and the flange 630 is in contact with the substrate 640 or the insulating layer 650.
  • the size of the flange 630 can be set by a patterning process.
  • the material of the flange 630 is not limited as long as the flange 630 has a good connection force with the insulating layer 650 or the substrate 640.
  • the material of the flange 630 may include polysilicon, silicon oxide, silicon nitride, silicon oxynitride, or the like.
  • first sacrificial layer 661 and the second sacrificial layer 662 are removed, for example, by a chemical dissolution method, to obtain a structure as shown in FIG. 4D.
  • the light adjustment unit includes a first electrode, a second electrode, and a light adjustment layer, and the first electrode and the second electrode are configured to be applied with a voltage to adjust the transparency of the light adjustment layer. Light rate. At this time, the magnitude of the voltage applied to the first electrode and the second electrode may be controlled by the controller to control the light transmittance of the light adjustment layer.
  • FIG. 6 is a schematic structural diagram of a light adjustment unit in another display device according to an embodiment of the present disclosure. Exemplarily, as shown in FIG. 6, the light adjustment unit 400 includes a first electrode 430, a second electrode 440, and a light adjustment layer 450.
  • the light transmittance of the light adjustment layer 450 is controlled by the electric field, and thus, the light transmittance of the light adjustment unit 400 can be adjusted.
  • the first electrode and the second electrode may be transparent electrodes or translucent electrodes.
  • the material of the transparent electrode may include indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO), gallium zinc oxide (GZO) zinc oxide (ZnO), indium oxide (In 2 O 3 ), Alumina zinc (AZO) and carbon nanotubes.
  • the specific structure of the light adjustment layer is not limited as long as the light transmittance thereof can be controlled by the electric field.
  • the light adjustment layer is an electrochromic layer
  • the electrochromic layer is located between the first electrode and the second electrode, the first electrode, the electrochromic layer and the second The electrodes are sequentially stacked in a direction perpendicular to the face of the display panel.
  • the light adjustment layer 450 is an electrochromic layer
  • the first electrode 430, the electrochromic layer 450, and the second electrode 440 are sequentially stacked in a direction perpendicular to the plane in which the display panel 100 is located.
  • the electrochromic layer 450 includes an electrochromic material that changes in transmittance under the action of an electric field, such as a transition from a transparent state to a dark state. For example, in a case where the first electrode 430 and the second electrode 440 are not applied with voltage or the applied voltage is equal, the potential difference between the first electrode 430 and the second electrode 440 is zero, and the electrochromic layer 450 has a transparent state; In the case where the potential difference between the first electrode 430 and the second electrode 440 is greater than zero, the electrochromic layer 450 has a dark state, and the light transmittance of the electrochromic layer 450 gradually decreases as the potential difference increases. For example, the magnitude of the voltage applied to the first electrode 430 and the second electrode 440 may be controlled by the controller to change the color of the electrochromic layer 450 to adjust the light transmittance of the electrochromic layer 450.
  • the type of electrochromic material in the electrochromic layer is not limited.
  • the electrochromic material may include tungsten trioxide, polythiophenes and derivatives thereof, viologens, tetrathiafulvalene or metal phthalocyanine compounds, and the like.
  • the light adjustment layer is an electronic ink layer
  • the electronic ink layer is located between the first electrode and the second electrode
  • the first electrode, the electronic ink layer and the second electrode are vertical Stacked in the direction of the face of the display panel.
  • the light adjustment layer 450 is an electronic ink layer.
  • a polar light blocking material or a light blocking material may be disposed in the electronic ink layer 450, and the electric field generated between the first electrode 430 and the second electrode 440 controls the migration or reversal of the light blocking material.
  • the electronic ink layers are made to have different light transmittances.
  • the magnitude of the voltage applied to the first electrode 430 and the second electrode 440 may be controlled by the controller to change the light transmittance of the electronic ink layer.
  • the light adjustment layer includes a liquid crystal layer and a first polarizing layer and a second polarizing layer respectively located on both sides of the liquid crystal layer, and the first electrode and the second electrode are located in the liquid crystal layer On the same side or on the different side, the first electrode and the second electrode are applied with a voltage to adjust the light transmittance of the light adjustment layer.
  • FIG. 7 is a schematic structural diagram of a light adjustment unit in another display device according to an embodiment of the present disclosure.
  • the light adjustment layer 450 includes a liquid crystal layer 451 and a first polarizing layer 452 and a second polarizing layer 453 respectively located on both sides of the liquid crystal layer 451.
  • the liquid crystal layer 451 includes liquid crystal molecules, and the electric field generated by the first electrode 430 and the second electrode 440 controls the twist of the liquid crystal molecules. Under the cooperation of the first polarizing layer 452 and the second polarizing layer 453, the light of the light adjusting layer 450 can be changed. Transmittance. For example, the magnitude of the voltage applied to the first electrode 430 and the second electrode 440 may be controlled by the controller to change the degree of twist of the liquid crystal molecules in the liquid crystal layer 451, thereby changing the light transmittance of the liquid crystal layer 451.
  • At least one embodiment of the present disclosure provides a display device including the display device of any of the foregoing embodiments.
  • the display device may be any product or component having a display function, such as a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, etc., which is not limited by at least one embodiment of the present disclosure.
  • the display device can be applied to a two-dimensional display or three-dimensional display field.
  • the display device can be applied to the fields of virtual reality (VR), augmented reality (VA), mixed reality (MR), and the like.
  • VR virtual reality
  • VA augmented reality
  • MR mixed reality
  • the display device in at least one embodiment of the present disclosure further includes a lens that is located on the light exit side of the display panel.
  • FIG. 8 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • the display panel 100 can generate a parallax image that passes through the lens 500 and enters the left and right eyes of the user (the positions of S1 and S2) respectively, and the lens 500 can form a virtual image P, and the virtual image P
  • the size and distance to the user's eyes are greater than the size of the display panel 100 and the distance to the user's eyes.
  • the lens 500 can increase the viewing angle and imaging distance of the display image of the display device, so that the design pitch of the display panel 100 and the user's eyes can be reduced, which is advantageous for miniaturization of the display device.
  • the light transmittance adjusting layer 200 may be disposed on the lens 500.
  • the light transmittance adjusting layer 200 may be located on a side of the lens 500 facing the display panel 100 or on a side of the lens 500 remote from the display panel 100.
  • the display panel can be configured to provide a parallax image.
  • at least two display panels may be disposed in the display device, and the display images generated by the at least two display panels are respectively injected into the left and right eyes of the user, so that the display device can also implement the three-dimensional display function. .
  • At least one embodiment of the present disclosure provides a display method of any of the above display devices, the method comprising: controlling, in a first display state, a light transmittance adjusting layer having a first light transmittance in at least one pixel region, The display image of the display panel and the light transmittance adjusting layer has a first brightness; in the second display state, the adjusted light transmittance adjusting layer has a second light transmittance, and the display image passing through the display panel and the light transmittance adjusting layer has Second brightness.
  • the light transmittance adjusting layer can adjust the display brightness of the pixel region, so that the number of gray levels of each pixel region is determined by the display panel and the light transmittance adjusting layer, and the design structure of the display panel is fixed.
  • the number of gray levels of the display image of the display device can be further increased, and the contrast of the displayed image can be improved.
  • the specific structure of the display device in the above display method may refer to related content in the foregoing embodiments, and at least one embodiment of the present disclosure is not limited herein.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示装置及其显示方法、显示设备,显示装置包括显示面板(100)和光透过率调节层(200),显示面板(100)包括多个像素区域(110),光透过率调节层(200)与显示面板(100)层叠设置,并且光透过率调节层(200)配置为调节多个像素区域(110)的显示亮度。光透过率调节层(200)可以增加显示装置的显示图像的灰阶级数,提高显示图像的对比度。

Description

显示装置及其显示方法、显示设备
本申请要求于2018年3月28日递交的中国专利申请第201810264274.X号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种显示装置及其显示方法、显示设备。
背景技术
随着社会的发展,电子显示产品的应用越来越多,用户对电子显示产品的显示效果也有了越来越高的追求。对比度是衡量电子显示产品的显示图像的效果的重要参数之一,高对比度的显示图像可以给用户更好的视觉体验。但是,当前的电子显示产品受限于自身结构的设计,显示图像的灰阶级数通常是固定的,而且灰阶级数较低,使得电子显示产品难以显示具有更高对比度的显示图像。
发明内容
本公开至少一个实施例提供一种显示装置,包括:显示面板,包括多个像素区域;光透过率调节层,与所述显示面板层叠设置,所述光透过率调节层配置为调节所述多个像素区域的显示亮度。
例如,在本公开至少一个实施例提供的显示装置中,所述光透过率调节层位于所述显示面板的出光侧。
例如,本公开至少一个实施例提供的显示装置还包括:背光模组,位于所述显示面板的入光侧;其中,所述光透过率调节层位于所述背光模组和所述显示面板之间。
例如,在本公开至少一个实施例提供的显示装置中,所述光透过率调节层包括多个阵列排布的光调节单元,每个所述像素区域与至少一个所述光调节单元对应设置,以及所述光调节单元配置为在工作中可在不同的光透过率之间切换。
例如,在本公开至少一个实施例提供的显示装置中,所述像素区域包括至少一个像素单元,并且所述光调节单元与所述像素区域一一对应设置,或者所述光调节单元与所述像素单元一一对应设置。
例如,在本公开至少一个实施例提供的显示装置中,所述光调节单元包括:光衰减膜,包括多个不同光透过率的光调节区域;微机电驱动单元,配置为驱动所述光衰减膜移动,以使得所述光调节区域与所述显示面板层叠设置。
例如,在本公开至少一个实施例提供的显示装置中,所述微机电驱动单元包括第一转轴和第二转轴,所述光衰减膜缠绕在所述第一转轴和所述第二转轴上,以及所述第一转轴和所述第二转轴转动以使得多个所述光调节区域中的一个展开为平面。
例如,在本公开至少一个实施例提供的显示装置中,所述第一转轴和所述第二转轴均为静电型微电机;所述静电型微电机包括彼此间隔的转子和定子,所述定子和所述转子可在电压的驱动下相对转动。
例如,在本公开至少一个实施例提供的显示装置中,所述像素区域与所述光调节区域在所述显示面板上的正投影重合或者位于所述光调节区域在所述显示面板上的正投影之内。
例如,在本公开至少一个实施例提供的显示装置中,所述光调节单元包括:第一电极、第二电极以及光调节层;其中,所述第一电极和所述第二电极配置为被施加电压以调节所述光调节层的透光率。
例如,在本公开至少一个实施例提供的显示装置中,所述光调节层包括液晶层以及分别位于所述液晶层两侧的第一偏光层和第二偏光层,以及所述第一电极和所述第二电极位于所述液晶层的同一侧或者不同侧,所述第一电极和所述第二电极被施加电压以调整所述光调节层的透光率。
例如,在本公开至少一个实施例提供的显示装置中,所述光调节层为电致变色层,所述电致变色层位于所述第一电极和所述第二电极之间,以及所述第一电极、所述电致变色层和所述第二电极沿垂直于所述显示面板所在面的方向依次叠置。
例如,在本公开至少一个实施例提供的显示装置中,所述光调节层为电子墨水层,所述电子墨水层位于所述第一电极和所述第二电极之间,以及所述第一电极、所述电子墨水层和所述第二电极沿垂直于所述显示面板所在面 的方向依次叠置。
例如,本公开至少一个实施例提供的显示装置还包括控制器,配置为控制所述光调节单元的光透过率。
本公开至少一个实施例提供一种显示设备,包括前述任一实施例中所述的显示装置。
例如,本公开至少一个实施例中所述的显示设备还包括:透镜,位于所述显示面板的出光侧;其中,所述透过率调节层位于所述透镜面向所述显示面板一侧,或者位于所述透镜的远离显示面板的一侧。
本公开至少一个实施例提供一种显示装置的显示方法,包括:在至少一个所述像素区域中,在第一显示态,控制所述光透过率调节层具有第一光透过率,经过所述显示面板和所述光透过率调节层的显示图像具有第一亮度;在第二显示态,调整所述光透过率调节层具有第二光透过率,经过所述显示面板和所述光透过率调节层的显示图像具有第二亮度。
例如,在本公开至少一个实施例提供的显示方法中,所述光透过率调节层包括多个阵列排布的光调节单元,所述光调节单元包括第一电极、第二电极以及光调节层;对所述第一电极和所述第二电极施加电压以调节所述光调节层的透光率。
例如,在本公开至少一个实施例提供的显示方法中,所述光透过率调节层包括多个阵列排布的光调节单元,所述光调节单元包括光衰减膜和微机电驱动单元;所述光衰减膜包括多个不同光透过率的光调节区域;利用所述微机电驱动单元驱动所述光衰减膜移动,以使得所述光调节区域与所述显示面板层叠。
例如,在本公开至少一个实施例提供的显示方法中,所述微机电驱动单元包括第一转轴和第二转轴,所述光衰减膜缠绕在所述第一转轴和所述第二转轴上;驱动所述第一转轴和所述第二转轴转动以使得多个所述光调节区域中的一个展开为平面。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一个实施例提供的一种显示装置的结构示意图;
图2为本公开一个实施例提供的另一种显示装置的结构示意图;
图3为本公开一个实施例提供的另一种显示装置的结构示意图;
图4A~图4D为本公开一个实施例提供的一种显示装置中的光调节单元的结构示意图;
图5A~图5E为图4C和图4D所示光调节单元中的转轴的制造方法的过程图;
图6为本公开一个实施例提供的另一种显示装置中的光调节单元的结构示意图;
图7为本公开一个实施例提供的另一种显示装置中的光调节单元的结构示意图;以及
图8为本公开一个实施例提供的一种显示设备的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开至少一个实施例提供一种显示装置及其显示方法、显示设备。该显示装置包括显示面板和光透过率调节层,显示面板包括多个像素区域,并且光透过率调节层配置为调节多个像素区域的显示亮度。例如,光透过率调 节层与显示面板层叠设置。在上述显示装置中,光透过率调节层可以调节像素区域的显示亮度,使得每个像素区域的灰阶级数由显示面板和光透过率调节层共同决定,即使在显示面板的设计结构固定的情况下,也可以进一步提升显示装置的显示图像的灰阶级数,提高显示图像的对比度。
下面,结合附图对根据本公开至少一个实施例提供的显示装置及其显示方法、显示设备进行详细说明。
图1为本公开一个实施例提供的一种显示装置的结构示意图。例如,在本公开至少一个实施例中,如图1所示,显示装置可以包括显示面板100和光透过率调节层200,显示面板100包括多个像素区域110,光透过率调节层200与显示面板100层叠设置(例如光透过率调节层200在显示面板100所在平面上的正投影位于显示面板100内部),并且光透过率调节层200配置为调节多个像素区域110的显示亮度。如图所示,光透过率调节层200与显示面板100在垂直于显示面的法线方向(显示方向)上与显示面板100层叠设置,且与显示面板的显示面平行。如此,显示装置出射光的强度由显示面板100和光透过率调节层200共同调节,对显示装置的显示灰阶的级数的提升不会受限于显示面板100自身的设计结构。
在本公开至少一个实施例中,光透过率调节层的设置位置以及工作方式可以根据显示面板的类型进行选择。
例如,在本公开至少一个实施例提供的显示装置中,光透过率调节层位于显示面板的出光侧。如此,光透过率调节层至少可以对显示面板出射的光的强度进行调节,使得显示灰阶的级数增加。
示例性的,如图1所示,光透过率调节层200位于显示面板100的出光侧,显示面板100中的像素区域110可以出射具有亮度Y1的光线但是不能出射具有亮度Y2的光线。根据显示需求,在一种显示态,光透过率调节层200可以将亮度Y1的光线调节为亮度Y2的光线,在另一种显示态,透过光透过率调节层200的光线的亮度不变,或者显示面板100调节为出射其它亮度的光线,该光线经过光透过率调节层200后的亮度为Y1。如此,对于显示装置,每个像素区域110中的显示灰阶的级数增加,可以提高显示图像的对比度。例如,显示面板100可以为透射式显示面板、反射式显示面板、半透半反式显示面板或其它类型。例如,显示面板100可以为有机发光显示面板、液晶显示面板、电子纸显示面板或其它类型。
例如,在本公开至少一个实施例提供中,显示装置还可以包括背光模组,以提供显示用光,该背光模组位于显示面板的入光侧。例如,在本公开至少一个实施例中,光透过率调节层可以位于背光模组和显示面板之间。光透过率调节层可以对背光模组出射的光线的强度进行调节,如此可以控制射入每个像素区域的光的强度,从而增加像素区域110的显示灰阶的级数。
图2为本公开一个实施例提供的另一种显示装置的结构示意图。示例性的,如图2所示,显示面板100可以为透射式显示面板,显示面板100的入光侧(与显示侧相对)设置有背光模组300,背光模组300可以出射具有均匀亮度Y的光线。光透过率调节层200位于显示面板100和背光模组300之间。根据每个像素区域的显示需求,光透过率调节层200可以将亮度Y的光线调节为亮度Y1、亮度Y2、亮度Y3、亮度Y4等的光线。因此,射入显示面板100的每个像素区域110的光线的亮度可以根据需要进行调控,相应地,每个像素区域110中的显示灰阶的级数增加,可以提高显示图像的对比度。
在本公开至少一个实施例中,对背光模组的具体化结构不做限制,只要其可以向显示面板提供用于显示图像的光线即可。例如,该背光模组可以为直下式背光模组、侧入式背光模组或其它类型的背光模组。
下面,以光透过率调节层位于显示面板的出光侧为例,对本公开下述至少一个实施例中的技术方案进行说明。
例如,在本公开至少一个实施例提供的显示装置中,光透过率调节层包括多个阵列排布的光调节单元,每个像素区域可以与至少一个光调节单元对应设置,光调节单元配置为在工作中可在不同的光透过率之间切换。例如,至少一个光调节单元在显示面板所在平面上的正投影与一个像素区域重合。如此,通过调节光调节单元的光透过率,可以对于该光调节单元对应的像素区域的光线的亮度进行控制,从而增加像素区域110的显示灰阶的级数。
例如,在本公开至少一个实施例提供的显示装置中,光调节单元与像素区域一一对应设置。例如,一个光调节单元在显示面板所在平面上的正投影与一个像素区域完全重合。如此,每个光调节单元可以对一个像素区域出射的光线的亮度进行调节,可以提高调节的精细程度,改善显示效果。示例性的,如图1和图2所示,光调节单元210与像素区域110一一对应设置。例如,光调节单元210在显示面板100所在平面上的正投影与与之对应设置的 像素区域110重合。
例如,在本公开至少一个实施例提供的显示装置中,像素区域包括至少一个像素单元,光调节单元与像素单元一一对应设置。如此,每个光调节单元可以对一个像素单元出射的光线的亮度进行调节,则还可以进一步增加每个像素区域的显示灰阶的级数。图3为本公开一个实施例提供的另一种显示装置的结构示意图。示例性的,如图3所示,每个像素区域110包括红色像素单元R、绿色像素单元G、蓝色像素单元B,光调节单元210与每个像素单元一一对应设置,在经过不同的光调节单元调节之后,红色像素单元R出射的光线的亮度由Y1转变为Y4,绿色像素单元G出射的光线的亮度由Y2转变为Y5,蓝色像素单元B出射的光线的亮度由Y3转变为Y6,光线Y4、光线Y5和光线Y6构成的图像的颜色或者灰度不是由显示面板100单独获得,如此不仅增加了像素区域110的显示灰阶的级数,还提高了显示图像的视觉效果。
在该实施例中,显示装置还包括控制器600,例如控制芯片,用于控制显示面板的像素区域的显示亮度以及控制光透过率调节层的光调节单元的光透过率等,从而控制显示面板的显示亮度,实现所期望的显示效果。该控制器例如中央处理器(CPU)、单片机等,可以为专用处理器或通用处理器,例如通过信号线与显示面板和光透过率调节层信号连接,并输出相应的控制信号和输出信号。
在本公开至少一个实施例中,对光调节单元的具体化结构不做限制,只要其具有改变像素区域出射的光线的亮度的功能即可。
例如,在本公开至少一个实施例提供的显示装置中,光调节单元包括:光衰减膜和微机电驱动单元,光衰减膜包括多个不同光透过率的光调节区域,微机电驱动单元配置为驱动光衰减膜移动,以确定要使用光衰减膜的哪个光调节区域。例如,微机电驱动单元配置为驱动光衰减膜移动以使得光调节区域与显示面板层叠设置,例如在显示面的法线方向(显示方向)上与显示面板层叠且与显示面平行。在显示过程中,微机电驱动单元可以驱动光衰减膜移动,使得具有相应透过率的光调节区域与像素区域对应。此时,可以利用控制器控制微机电驱动单元是否对光衰减膜进行驱动。例如,控制器可以以有线或无线的方式与微机电驱动单元进行信号连接,从而实现对微机电驱动单元的控制。在本公开至少一个实施例中,对微机电驱动单元的驱动类 型不做限制,例如,微机电驱动单元的驱动方式可以为旋转式(或扭转式)驱动或者直线式(或摆动式)驱动;例如微机电驱动单元可以通过MEMS制备工艺实现,这里不再赘述。
下面,以微机电驱动单元的驱动方式为旋转式驱动为例,对本公开下述至少一个实施例中的技术方案进行说明。
例如,在本公开至少一个实施例提供的显示装置中,微机电驱动单元包括第一转轴和第二转轴,光衰减膜缠绕在第一转轴和第二转轴上,第一转轴和第二转轴转动以使得多个光调节区域中的一个展开为平面。通过驱动第一转轴和第二转轴旋转,使得光衰减膜移动,使得不同透过率的光调节区域与像素区域对应。光衰减膜缠绕在第一转轴和第二转轴上的设置方式,可以降低微机电驱动单元的尺寸,驱动方式简单,便于简化微机电驱动单元的结构。
图4A~图4D为本公开一个实施例提供的一种显示装置中的光调节单元的结构示意图,其中,图4A为微机电驱动单元的结构示意图,图4B为图4A中的微机电驱动单元沿M1~M2的截面图,图4C为图4B中的转轴的平面结构示意图,图4D为图4C所示的转轴沿N1~N2的截面图。
例如,在本公开至少一个实施例中,如图4A和图4B所示,光衰减膜410缠绕在第一转轴421和第二转轴422上,光衰减膜410包括多个光调节区域411,例如第一光调节区域411a、第二光调节区域411b、第三光调节区域411c。例如,第一光调节区域411a、第二光调节区域411b和第三光调节区域411c的光透过率依次减小。如此,驱动第一转轴421和第二转轴422旋转即可使得特定的光调节区域411与像素区域对应。例如,光衰减膜410中的一个光调节区域(例如第一光调节区域411a)的光透过率约为100%,以使得光透过该光调节区域后的亮度不变。例如,第一光调节区域411a的与像素区域(或者像素单元)对应的部分被镂空,以使得第一光调节区域411a的光透过率为100%。
例如,在本公开至少一个实施例提供的显示装置中,像素区域与光调节区域在显示面板上的正投影重合或者位于光调节区域在显示面板上的正投影之内。如此,可以使得光调节单元对整个像素区域出射的全部光线的亮度进行调节,提高显示装置的显示效果。
例如,在本公开至少一个实施例提供的显示装置中,像素单元与光调节区域在显示面板上的正投影重合或者位于光调节区域在显示面板上的正投 影之内。如此,可以使得光调节单元对每个像素单元出射的全部光线的亮度进行调节,提高显示装置的显示效果。
在本公开至少一个实施例中,对转轴(第一转轴421和第二转轴422)的具体化结构不做限制,只要该转轴可以提供足够大的转矩(例如动态转矩)即可。例如,该转轴可以为静电型微电机、电磁型微电机、压电微电机等。下面,以转轴为静电型微电机为例,对本公开下述至少一个实施例中的技术方案进行说明。例如,每个转轴可以包括两个静电型微电机,两个静电型微电机可以将光衰减膜拉伸,如此,第一转轴421和第二转轴422可以将光衰减膜的至少部分(例如一个光调节区域)拉伸为平面。
示例性的,如图4C和4D所示,转轴(第一转轴521或第二转轴422)为静电型微电机,该静电型微电机包括转子610和多个定子620,转子610和定子620彼此间隔。对定子620施加偏置电压,则相应的转子610和定子620之间会产生电场,并且相应的转子610和定子620之间会产生静电引力,从而使得转子610和定子620对准,通过分组连续激励定子620(向620上施加偏置电压),使得转子610可以持续转动。
例如,在本公开至少一个实施例中,如图4C和4D所示,静电型微电机还可以包括凸缘630和基底640,转子610和凸缘630固定于基底640上,凸缘630用于限定转子610的位置,防止转子610脱落。例如,基底640可以为硅晶圆。例如,转子610和定子620的材料可以包括导电材料例如多晶硅等。
例如,在本公开至少一个实施例中,如图4C和4D所示,静电型微电机还可以包括绝缘层650。例如,在基底640的材料包括硅的情况下,绝缘层650可以防止转子610和定子620通过基底640电连接。
例如,在本公开至少一个实施例中,如图4C和4D所示,转子610包括第一部分611、第二部分612和第三部分613,第二部分612设置为多个,并且第一部分611和第三部分613通过第二部分612连接,凸缘630对第三部分613的位置进行限定,使得转子610不会脱落。例如,第三部分613位于凸缘630和基底640之间,凸缘630与基底640(或者绝缘层650)连接,并且第三部分613的内边缘位于凸缘630的外边缘之内。例如,第二部分612和定子620之间的间距比较小,使得转子610和定子620之间产生电场时,转子610中的电荷主要集中在第二部分612处,如此,通过定子620使得不 同的第二部分612上产生静电,可以驱动转子610旋转。
例如,在本公开至少一个实施例中,如图4C和4D所示,定子620位于第二部分612和基底640之间。如此,在使用过程中,定子620和转子610之间的静电力使得转子610固定在基底640上,防止转子610脱落。
例如,在本公开至少一个实施例中,如图4C和4D所示,第一部分611位于定子620的远离凸缘630的一侧,第一部分611的外边缘可以为圆形。如此,可以将光衰减膜可以固定在转子610上,进一步地,例如光衰减膜固定在转子610的外边缘上,如此,转子610可以带动光衰减膜移动,光衰减膜可以缠绕在第一部分611的外边缘上。
例如,在本公开至少一个实施例中,如图4C和4D所示,第一部分611和第三部分613的面向基底640的一侧可以设置有凸起614。在转子610移动时,凸起614可以降低第一部分611和第三部分613在基底640上的摩擦力。
需要说明的是,在本公开至少一个实施例中,第一部分611可以增加转子610的结构的稳定性,转子610也可以设置为只包括第二部分612和第三部分613,例如,光衰减膜可以固定在第二部分612上。
在本公开至少一个实施例中,对转轴(静电型微电机)的尺寸不做限制。例如,静电型微电机的尺寸可以设置为不大于150微米,例如不大于100微米。
在本公开至少一个实施例中,对光衰减膜的厚度和材料不做限制。例如,光衰减膜的厚度可以设置为不大于50微米。光衰减膜的材料可以为柔性材料,例如、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯、聚酰亚胺或其他材料。又例如,可以通过摩擦工艺实现光衰减膜的不同透过率的光调节区域。
图5A~图5E为图4C和图4D所示光调节单元中的转轴的制造方法的过程图。下面,以制造如图4C和图4D所示的转轴(静电型微电机)为例,对本公开至少一个实施例中的显示装置中的静电型微电机的制造方法进行说明。
如图5A所示,提供基底640,在基底640上沉积多晶硅材料并对其进行构图工艺以形成定子620。
需要说明的是,对基底640和定子620的材料不做限制,只要利用该基底640可以制造符合尺寸要求的静电型微电机,并且定子620具有一定的导 电能力即可。
例如,在本公开至少一个实施例中,构图工艺可以为光刻构图工艺,例如可以包括:在需要被构图的结构层上涂覆光刻胶层,使用掩模板对光刻胶层进行曝光,对曝光的光刻胶层进行显影以得到光刻胶图案,使用光刻胶图案对结构层进行蚀刻,然后可选地去除光刻胶图案。需要说明的是,如果被构图的结构层包括光刻胶材料,则可以不需要再进行涂覆光刻胶的工艺。
例如,如图5A所示,在形成定子620之前,可以在基底640上沉积绝缘材料以形成绝缘层650。绝缘层650的材料可以包括二氧化硅、氮化硅、氮氧化硅等材料,绝缘层650可以为一层结构,也可以为多层结构。上述材料在起到绝缘作用的同时,还可以提高后续工艺中形成的其它结构(例如定子620、凸缘630等)在基底640上的附着力。
如图5B所示,在基底640上沉积绝缘材料薄膜并对其进行构图工艺以形成第一牺牲层661。例如,第一牺牲层661中可以形成多个凹陷670,凹陷的形状和位置可以与图4D中的凸起614对应。
例如,第一牺牲层661的材料可以包括掺磷二氧化硅(PSG)、掺硼磷二氧化硅(BPSG)或其它材料。
如图5C所示,在基底640上沉积导电材料(例如多晶硅)薄膜并对其进行构图工艺以形成转子610,转子610的中心位置设置为暴露基底640(或者暴露绝缘层650),该中心位置对应于后续工艺中形成的凸缘630。
如图5D所示,在基底640上沉积绝缘材料薄膜并对其进行构图工艺以形成第二牺牲层662。在后续工艺中的凸缘630的设计位置,第二牺牲层662设置为暴露基底640(或者暴露绝缘层650)。例如,第二牺牲层662的材料可以包括掺磷二氧化硅(PSG)、掺硼磷二氧化硅(BPSG)或其它材料。
如图5E所示,在第二牺牲层662上形成凸缘630,凸缘630与基底640或者绝缘层650接触。例如,凸缘630的尺寸可以通过构图工艺进行设置。例如,在本公开至少一个实施例中,对凸缘630的材料不做限制,只要凸缘630与绝缘层650或者基底640之间具有良好的连接力即可。例如,凸缘630的材料可以包括多晶硅、氧化硅、氮化硅、氮氧化硅等。
之后,例如通过化学溶解方法,去除第一牺牲层661和第二牺牲层662,得到如图4D所示的结构。
例如,在本公开至少一个实施例提供的显示装置中,光调节单元包括第 一电极、第二电极以及光调节层,第一电极和第二电极配置为被施加电压以调节光调节层的透光率。此时,可以利用控制器控制对第一电极以及第二电极施加电压的大小,从而控制光调节层的透光率。图6为本公开一个实施例提供的另一种显示装置中的光调节单元的结构示意图。示例性的,如图6所示,光调节单元400包括第一电极430、第二电极440以及光调节层450。第一电极430和第二电极440被施加电压之后可以产生电场,利用该电场对光调节层450的透光率进行控制,如此,可以对光调节单元400的光透过率进行调节。
例如,在本公开至少一个实施例中,第一电极和第二电极可以为透明电极或者半透明电极。例如,透明电极的材料可以包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)氧化锌(ZnO)、氧化铟(In 2O 3)、氧化铝锌(AZO)和碳纳米管等。
在本公开至少一个实施例中,对光调节层的具体化结构不做限制,只要其透光率可以受电场控制即可。
例如,在本公开至少一个实施例提供的显示装置中,光调节层为电致变色层,电致变色层位于第一电极和第二电极之间,第一电极、电致变色层和第二电极沿垂直于显示面板所在面的方向依次叠置。示例性的,如图6所示,光调节层450为电致变色层,第一电极430、电致变色层450和第二电极440沿垂直于显示面板100所在面的方向依次叠置。电致变色层450包括电致变色材料,电致变色材料在电场作用下的透光率发生变化,例如可由透明态向深色态转变。例如,第一电极430和第二电极440未被施加电压或者被施加的电压相等的情况下,第一电极430和第二电极440之间的电势差为零,电致变色层450具有透明态;在第一电极430和第二电极440之间的电势差大于零的情况下,电致变色层450具有深色态,且电致变色层450的透光率随着电势差的增加逐渐减小。例如,可以利用控制器控制对第一电极430以及第二电极440施加电压的大小,从而改变电致变色层450的颜色以调节电致变色层450的透光率。
在本公开至少一个实施例中,对电致变色层中的电致变色材料的类型不做限制。例如,电致变色材料可以包括三氧化钨、聚噻吩类及其衍生物、紫罗碱类、四硫富瓦烯或金属酞菁类化合物等。
例如,在本公开至少一个实施例提供的显示装置中,光调节层为电子墨 水层,电子墨水层位于第一电极和第二电极之间,第一电极、电子墨水层和第二电极沿垂直于显示面板所在面的方向依次叠置。示例性的,如图6所示,光调节层450为电子墨水层。例如,电子墨水层450中可以设置极性挡光材料或者带有电荷的挡光材料,通过第一电极430和第二电极440之间产生的电场控制挡光材料的迁移或者反转,如此,使得电子墨水层具有不同的光透过率。例如,可以利用控制器控制对第一电极430以及第二电极440施加电压的大小,从而改变电子墨水层的光透过率。
例如,在本公开至少一个实施例提供的显示装置中,光调节层包括液晶层以及分别位于液晶层两侧的第一偏光层和第二偏光层,第一电极和第二电极位于液晶层的同一侧或者不同侧,第一电极和第二电极被施加电压以调整光调节层的透光率。图7为本公开一个实施例提供的另一种显示装置中的光调节单元的结构示意图。示例性的,如图7所示,光调节层450包括液晶层451以及分别位于液晶层451两侧的第一偏光层452和第二偏光层453。液晶层451包括液晶分子,通过第一电极430和第二电极440产生的电场控制液晶分子的扭转,在第一偏光层452和第二偏光层453的配合下,可以改变光调节层450的光透过率。例如,可以利用控制器控制对第一电极430以及第二电极440施加电压的大小,从而改变液晶层451中液晶分子的扭转程度,进而改变液晶层451的光透过率。
本公开至少一个实施例提供一种显示设备,包括前述任一实施例中的显示装置。该显示设备可以为平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件,本公开至少一个实施例对此不作限定。
例如,在本公开至少一个实施例中,显示设备可以应用于二维显示或者三维显示领域。例如,显示设备可以应用于虚拟现实(VR)领域、增强现实(VA)、混合现实(MR)等领域。
例如,本公开至少一个实施例中的显示设备还包括透镜,该透镜位于显示面板的出光侧。图8为本公开一个实施例提供的一种显示设备的结构示意图。示例性的,如图8所示,显示面板100可以产生视差图像,该视差图像经过透镜500后分别进入用户的左右眼(S1、S2的位置),透镜500可以形成虚像P,并且该虚像P的尺寸以及至用户的眼睛的距离大于显示面板100的尺寸以及至用户眼睛的距离。如此,透镜500可以增加显示设备的显示图 像的视角和成像距离,使得显示面板100和用户眼睛的设计间距可以减小,有利于显示设备的小型化。
例如,在本公开至少一个实施例中,如图8所示,光透过率调节层200可以设置在透镜500上。例如,光透过率调节层200可以位于透镜500的面向显示面板100的一侧,或者位于透镜500的远离显示面板100的一侧。
例如,在本公开至少一个实施例中,对显示设备中的显示面板的类型不做限制。例如,在本公开一些实施例中,显示面板可以设置为提供视差图像。例如,在本公开另一些实施例中,显示设备中可以设置有至少两个显示面板,至少两个显示面板产生的显示图像分别射入用户的左右眼,如此,显示设备也可以实现三维显示功能。
本公开至少一个实施例提供上述任一种显示装置的显示方法,该方法包括:在至少一个像素区域中,在第一显示态,控制光透过率调节层具有第一光透过率,经过显示面板和光透过率调节层的显示图像具有第一亮度;在第二显示态,调整光透过率调节层具有第二光透过率,经过显示面板和光透过率调节层的显示图像具有第二亮度。在上述显示方法中,光透过率调节层可以调节像素区域的显示亮度,使得每个像素区域的灰阶级数由显示面板和光透过率调节层共同决定,在显示面板的设计结构固定的情况下,可以进一步提升显示装置的显示图像的灰阶级数,提高显示图像的对比度。需要说明的是,上述显示方法中的显示装置的具体化结构可以参考前述实施例中的相关内容,本公开至少一个实施例在此不做限制。
对于本公开,还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种显示装置,包括:
    显示面板,包括多个像素区域;
    光透过率调节层,与所述显示面板层叠设置,其中,所述光透过率调节层配置为调节所述多个像素区域的显示亮度。
  2. 根据权利要求1所述的显示装置,其中,
    所述光透过率调节层位于所述显示面板的出光侧。
  3. 根据权利要求1所述的显示装置,还包括:
    背光模组,位于所述显示面板的入光侧;
    其中,所述光透过率调节层位于所述背光模组和所述显示面板之间。
  4. 根据权利要求1-3中任一项所述的显示装置,其中,
    所述光透过率调节层包括多个阵列排布的光调节单元,每个所述像素区域与至少一个所述光调节单元对应设置,以及
    所述光调节单元配置为在工作中可在不同的光透过率之间切换。
  5. 根据权利要求4所述的显示装置,其中,
    所述像素区域包括至少一个像素单元,并且
    所述光调节单元与所述像素区域一一对应设置,或者所述光调节单元与所述像素单元一一对应设置。
  6. 根据权利要求4或5所述的显示装置,其中,所述光调节单元包括:
    光衰减膜,包括多个不同光透过率的光调节区域;
    微机电驱动单元,配置为驱动所述光衰减膜移动,以使得所述光调节区域与所述显示面板层叠设置。
  7. 根据权利要求6所述的显示装置,其中,
    所述微机电驱动单元包括第一转轴和第二转轴,所述光衰减膜缠绕在所述第一转轴和所述第二转轴上,以及
    所述第一转轴和所述第二转轴转动以使得多个所述光调节区域中的一个展开为平面。
  8. 根据权利要求7所述的显示装置,其中,所述第一转轴和所述第二转轴均为静电型微电机;
    所述静电型微电机包括彼此间隔的转子和定子,所述定子和所述转子可 在电压的驱动下相对转动。
  9. 根据权利要求7所述的显示装置,其中,
    所述像素区域与所述光调节区域在所述显示面板上的正投影重合或者位于所述光调节区域在所述显示面板上的正投影之内。
  10. 根据权利要求4或5所述的显示装置,其中,所述光调节单元包括:
    第一电极、第二电极以及光调节层;
    其中,所述第一电极和所述第二电极配置为被施加电压以调节所述光调节层的透光率。
  11. 根据权利要求10所述的显示装置,其中,
    所述光调节层包括液晶层以及分别位于所述液晶层两侧的第一偏光层和第二偏光层,以及
    所述第一电极和所述第二电极位于所述液晶层的同一侧或者不同侧,所述第一电极和所述第二电极被施加电压以调整所述光调节层的透光率。
  12. 根据权利要求10所述的显示装置,其中,
    所述光调节层为电致变色层,所述电致变色层位于所述第一电极和所述第二电极之间,以及
    所述第一电极、所述电致变色层和所述第二电极沿垂直于所述显示面板所在面的方向依次叠置。
  13. 根据权利要求10所述的显示装置,其中,
    所述光调节层为电子墨水层,所述电子墨水层位于所述第一电极和所述第二电极之间,以及
    所述第一电极、所述电子墨水层和所述第二电极沿垂直于所述显示面板所在面的方向依次叠置。
  14. 根据权利要求4-13任一所述的显示装置,还包括控制器,配置为控制所述光调节单元的光透过率。
  15. 一种显示设备,包括权利要求1-14中任一项所述的显示装置。
  16. 根据权利要求15所述的显示设备,还包括:
    透镜,位于所述显示面板的出光侧;
    其中,所述透过率调节层位于所述透镜面向所述显示面板一侧,或者位于所述透镜的远离显示面板的一侧。
  17. 一种根据权利要求1-14中任一项所述的显示装置的显示方法,包 括:
    在至少一个所述像素区域中,
    在第一显示态,控制所述光透过率调节层具有第一光透过率,经过所述显示面板和所述光透过率调节层的显示图像具有第一亮度;
    在第二显示态,调整所述光透过率调节层具有第二光透过率,经过所述显示面板和所述光透过率调节层的显示图像具有第二亮度。
  18. 根据权利要求17所述的显示方法,其中,所述光透过率调节层包括多个阵列排布的光调节单元,所述光调节单元包括第一电极、第二电极以及光调节层;
    对所述第一电极和所述第二电极施加电压以调节所述光调节层的透光率。
  19. 根据权利要求17所述的显示方法,其中,所述光透过率调节层包括多个阵列排布的光调节单元,所述光调节单元包括光衰减膜和微机电驱动单元;所述光衰减膜包括多个不同光透过率的光调节区域;
    利用所述微机电驱动单元驱动所述光衰减膜移动,以使得所述光调节区域与所述显示面板层叠。
  20. 根据权利要求19所述的显示方法,其中,所述微机电驱动单元包括第一转轴和第二转轴,所述光衰减膜缠绕在所述第一转轴和所述第二转轴上;
    驱动所述第一转轴和所述第二转轴转动以使得多个所述光调节区域中的一个展开为平面。
PCT/CN2018/111923 2018-03-28 2018-10-25 显示装置及其显示方法、显示设备 WO2019184324A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18903036.4A EP3779584A4 (en) 2018-03-28 2018-10-25 DISPLAY APPARATUS AND ASSOCIATED DISPLAY METHOD, AND DISPLAY DEVICE
US16/483,541 US11335283B2 (en) 2018-03-28 2018-10-25 Display device and display method thereof, display equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810264274.X 2018-03-28
CN201810264274.XA CN110320723B (zh) 2018-03-28 2018-03-28 显示装置及其显示方法、显示设备

Publications (1)

Publication Number Publication Date
WO2019184324A1 true WO2019184324A1 (zh) 2019-10-03

Family

ID=68058536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111923 WO2019184324A1 (zh) 2018-03-28 2018-10-25 显示装置及其显示方法、显示设备

Country Status (4)

Country Link
US (1) US11335283B2 (zh)
EP (1) EP3779584A4 (zh)
CN (1) CN110320723B (zh)
WO (1) WO2019184324A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110751900B (zh) * 2019-10-31 2022-03-01 Oppo广东移动通信有限公司 显示装置和电子设备
CN111524929B (zh) * 2020-04-30 2023-03-31 京东方科技集团股份有限公司 显示模组及其组装方法
CN111552133B (zh) * 2020-06-05 2022-04-22 京东方科技集团股份有限公司 一种显示面板、显示装置及其显示方法
CN113189811A (zh) * 2021-04-22 2021-07-30 维沃移动通信(杭州)有限公司 显示面板及电子设备
CN114624912A (zh) * 2022-03-22 2022-06-14 武汉华星光电技术有限公司 显示装置及其亮度调节方法
CN116540452A (zh) * 2023-05-31 2023-08-04 惠科股份有限公司 背光模组和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080021958A (ko) * 2006-09-05 2008-03-10 삼성전자주식회사 광 제어 소자 및 이를 구비하는 표시 장치
CN103943071A (zh) * 2013-01-17 2014-07-23 联想(北京)有限公司 局部控制背光的显示装置和终端设备
CN104865750A (zh) * 2015-06-12 2015-08-26 深圳市华星光电技术有限公司 光阀及显示装置
CN105700243A (zh) * 2016-04-29 2016-06-22 京东方科技集团股份有限公司 一种显示面板以及显示装置
CN106952621A (zh) * 2017-05-25 2017-07-14 京东方科技集团股份有限公司 一种显示装置及其驱动方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053397A1 (ja) * 2010-10-19 2012-04-26 シャープ株式会社 液晶表示装置
US10636336B2 (en) * 2015-04-17 2020-04-28 Nvidia Corporation Mixed primary display with spatially modulated backlight
CN104834104B (zh) * 2015-05-25 2017-05-24 京东方科技集团股份有限公司 一种2d/3d可切换显示面板及其显示方法、显示装置
KR102541940B1 (ko) * 2016-05-31 2023-06-12 엘지디스플레이 주식회사 광 밸브 패널과 이를 이용한 액정표시장치
KR102629584B1 (ko) * 2016-07-19 2024-01-25 삼성전자주식회사 빔 조향 백라이트 유닛 및 이를 포함하는 홀로그래픽 디스플레이 장치
CN107077000B (zh) 2017-01-23 2021-03-02 深圳市大疆创新科技有限公司 可穿戴设备
TWI635604B (zh) * 2017-09-13 2018-09-11 錼創科技股份有限公司 顯示裝置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080021958A (ko) * 2006-09-05 2008-03-10 삼성전자주식회사 광 제어 소자 및 이를 구비하는 표시 장치
CN103943071A (zh) * 2013-01-17 2014-07-23 联想(北京)有限公司 局部控制背光的显示装置和终端设备
CN104865750A (zh) * 2015-06-12 2015-08-26 深圳市华星光电技术有限公司 光阀及显示装置
CN105700243A (zh) * 2016-04-29 2016-06-22 京东方科技集团股份有限公司 一种显示面板以及显示装置
CN106952621A (zh) * 2017-05-25 2017-07-14 京东方科技集团股份有限公司 一种显示装置及其驱动方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3779584A4

Also Published As

Publication number Publication date
US11335283B2 (en) 2022-05-17
CN110320723B (zh) 2023-12-19
EP3779584A4 (en) 2022-01-05
EP3779584A1 (en) 2021-02-17
CN110320723A (zh) 2019-10-11
US20210335294A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2019184324A1 (zh) 显示装置及其显示方法、显示设备
EP3418797B1 (en) Switchable privacy screen device and manufacturing method thereof, and display device
CN102819147B (zh) 显示装置
CN109946868A (zh) 光线方向控制装置及显示装置
WO2018076669A1 (zh) 显示面板及其驱动和制作方法以及显示装置
WO2017016205A1 (zh) 显示面板及其制作方法、驱动方法、显示装置
WO2018176629A1 (zh) 显示面板及其制造方法
JP2002365657A (ja) 液晶装置、投射型表示装置および電子機器
WO2020042431A1 (en) Display panel, display apparatus and anti-peeping method
KR20120098183A (ko) 전기 영동 표시 장치 및 그 제조 방법
WO2014173140A1 (zh) 彩色滤光片、彩色滤光片制作方法和显示装置
WO2019184394A1 (zh) 立体显示装置和立体显示装置的控制方法
JP2008241726A (ja) 液晶ディスプレイ用基板
WO2015018157A1 (zh) 阵列基板、彩膜基板、显示装置及取向层的制作方法
WO2013185442A1 (zh) 阵列基板及其制作方法、液晶显示面板及其工作方法
CN104297997B (zh) 一种液晶显示面板及其显示方法、显示装置
WO2014146371A1 (zh) 一种电致变色面板及显示装置
WO2018120646A1 (zh) 显示面板及其应用的液晶显示面板及液晶显示装置
WO2013075574A1 (zh) 阵列基板和掩模板
CN109799631A (zh) 一种液晶透镜及其制作方法、显示装置
CN103323979A (zh) 制造设备、制造方法、光学元件、显示装置和电子设备
TW200912428A (en) Display device driven by electric field and method for manufacturing the same
WO2015100918A1 (zh) 一种显示装置及其制备方法
JP4359155B2 (ja) 電気泳動表示装置
WO2018120647A1 (zh) 显示面板及显示装置的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018903036

Country of ref document: EP

Effective date: 20201028