WO2019184097A1 - 新型循环流化床电热调温气化炉及其控制方法 - Google Patents

新型循环流化床电热调温气化炉及其控制方法 Download PDF

Info

Publication number
WO2019184097A1
WO2019184097A1 PCT/CN2018/091239 CN2018091239W WO2019184097A1 WO 2019184097 A1 WO2019184097 A1 WO 2019184097A1 CN 2018091239 W CN2018091239 W CN 2018091239W WO 2019184097 A1 WO2019184097 A1 WO 2019184097A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
electric heating
sensing value
heating body
temperature sensing
Prior art date
Application number
PCT/CN2018/091239
Other languages
English (en)
French (fr)
Inventor
张连华
张晖
Original Assignee
中科聚信洁能热锻装备研发股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科聚信洁能热锻装备研发股份有限公司 filed Critical 中科聚信洁能热锻装备研发股份有限公司
Priority to EP18859985.6A priority Critical patent/EP3572483A4/en
Publication of WO2019184097A1 publication Critical patent/WO2019184097A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • C10J3/56Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/158Screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1269Heating the gasifier by radiating device, e.g. radiant tubes
    • C10J2300/1276Heating the gasifier by radiating device, e.g. radiant tubes by electricity, e.g. resistor heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present disclosure relates to the technical field of coal gas-making equipment, in particular to an electric heating auxiliary temperature regulating device in a circulating fluidized bed gasification furnace, in particular to a novel circulating fluidized bed electrothermal temperature regulating gasification furnace and a control method thereof.
  • the operating temperature of the circulating fluidized bed gasifier is difficult to control in real time, and the startup time is long, resulting in a waste of a large amount of raw coal and power; in addition, because the process of coal gasification is complicated, the temperature of the equipment in operation needs Continuous real-time adjustment, and the existing equipment in the existing equipment for the internal temperature adjustment mode is single, can not meet the actual needs, the above-mentioned shortcomings of the miniaturized equipment is particularly prominent. Therefore, the conventional circulating fluidized bed needs to be further improved and improved.
  • the present disclosure provides a novel circulating fluidized bed electrothermal temperature control gasification furnace and a control method thereof, and the electric heating auxiliary temperature regulating device is arranged to control the circulating fluidized bed gasification furnace.
  • the gasification temperature achieves the purpose of stable temperature regulation, fast response, and large adjustment range.
  • An aspect of the present disclosure includes a novel circulating fluidized bed electrothermal temperature control gasifier comprising a gasification furnace and an electric heating device, the gasification furnace including a circulation gasification chamber, a gas distribution plate and a pre-combustion chamber, and a circulation gasification chamber Located on the upper part of the air distribution plate, the outlet of the pre-combustion chamber is connected with the lower port of the air distribution plate, and the electric heating device comprises an electric heating body, a temperature sensor and a PLC programmable controller, and the electric heating body is a heat-resistant metal conductive heating body, an electric heating body, The temperature sensor is electrically connected to the PLC programmable controller. The electric heater and the temperature sensor are disposed in the gasifier.
  • the temperature sensor sets the first temperature sensing value and the second temperature sensing value, and the second temperature sensing value is greater than the first temperature sensing value.
  • the temperature sensor detects that the furnace temperature is lower than the first temperature sensing value, the temperature sensor will measure The signal is sent to the PLC programmable controller, and the PLC programmable controller instructs the electric heating body to warm the gasification furnace; when the temperature sensor detects that the temperature in the furnace reaches the second temperature sensing value, the temperature sensor sends the measured signal to the PLC.
  • the programmable controller and the PLC programmable controller instruct the electric heater to stop working.
  • the present disclosure further includes a communication pipe disposed between the pre-combustion chamber and the air distribution plate at the bottom of the circulating gasification chamber, one end of the communication pipe communicates with the sidewall of the pre-combustion chamber, and the other end of the communication pipe communicates with the circulation gas through the air distribution plate.
  • a communication pipe disposed between the pre-combustion chamber and the air distribution plate at the bottom of the circulating gasification chamber, one end of the communication pipe communicates with the sidewall of the pre-combustion chamber, and the other end of the communication pipe communicates with the circulation gas through the air distribution plate.
  • the bottom of the room wherein, one end of the communication pipe connecting the pre-combustion chamber is lower than one end of the communication pipe connecting the circulating gasification chamber.
  • the electric heating body is circumferentially fixedly disposed on the inner wall of the gasification furnace.
  • the electric heating body is vertically fixedly disposed on the inner wall of the gasifier.
  • the electric heating body includes a plurality of electric heating blocks, and the plurality of electric heating blocks are respectively electrically connected to the PLC programmable controller.
  • the temperature sensor is fixedly disposed on the inner wall of the gasifier.
  • the electric heater is disposed in the circulating gasification chamber.
  • the electric heater is disposed in the pre-combustion chamber.
  • the temperature sensor is disposed in the circulating gasification chamber and one or more are disposed.
  • the temperature sensor is disposed in the pre-combustion chamber and one or more are disposed.
  • the first set value of the temperature sensor is greater than or equal to 850 ° C.
  • the second set value of the circulating gasification indoor temperature sensor is less than or equal to 1050 ° C.
  • the second set value of the temperature sensor in the pre-combustion chamber is less than or equal to 1150 ° C.
  • Another aspect of the present disclosure includes a novel control method for a circulating fluidized bed electrothermal temperature control gasifier comprising:
  • the PLC programmable controller obtains the temperature sensing value measured by the temperature sensor; the PLC programmable controller compares the obtained temperature sensing value with the preset first temperature sensing value; if the temperature sensing value is lower than the preset first temperature sensing Value, PLC programmable controller controls the heating body to start work.
  • control method further includes: the PLC programmable controller acquires the temperature sensing value measured by the temperature sensor; the PLC programmable controller compares the obtained temperature sensing value with the preset second temperature sensing value; if the temperature sensing The value is higher than the preset second temperature sensing value, and the PLC programmable controller controls the heating body to stop working.
  • the PLC programmable controller controls the startup of the electric heating body, comprising: the PLC programmable controller controls the energization current of the electric heating body according to the comparison value of the temperature sensing value lower than the preset first temperature sensing value, or , controlling the number of electric heating bodies that start the work; and/or, the PLC programmable controller controlling the heating body to stop working includes: the PLC programmable controller is based on the comparison value of the temperature sensing value higher than the preset second temperature sensing value, Control the energizing current of the electric heater, or control the number of electric heaters that stop working.
  • the invention discloses a novel circulating fluidized bed electrothermal temperature regulating gasification furnace and a control method thereof, comprising a gasification furnace and an electric heating device, wherein the gasification furnace comprises a circulation gasification chamber, a distribution air plate and a pre-combustion chamber, and a circulation gasification chamber Located on the upper part of the air distribution plate, the outlet of the pre-combustion chamber is connected with the lower port of the air distribution plate, and the electric heating device comprises an electric heating body, a temperature sensor and a PLC programmable controller, and the electric heating body is a heat-resistant metal conductive heating body, an electric heating body, The temperature sensor is electrically connected to the PLC programmable controller. The electric heater and the temperature sensor are disposed in the gasifier.
  • the temperature sensor sets the first temperature sensing value and the second temperature sensing value, and the second temperature sensing value is greater than the first temperature sensing value.
  • the temperature sensor detects that the furnace temperature is lower than the first temperature sensing value, the temperature sensor will measure The signal is sent to the PLC programmable controller, and the PLC programmable controller instructs the electric heating body to warm the gasification furnace; when the temperature sensor detects that the temperature in the furnace reaches the second temperature sensing value, the temperature sensor sends the measured signal to the PLC.
  • the programmable controller and the PLC programmable controller instruct the electric heater to stop working.
  • the novel circulating fluidized bed electrothermal temperature-regulating gasifier of the present disclosure is provided with an electric heating body on a circulating fluidized bed gasification furnace, which can timely supply heat to the circulating fluidized bed gasifier, when cold coal, carbon-containing fly ash and gasification
  • the electric heating body is controlled to be electrically heated to quickly and efficiently assist in raising the temperature of coal combustion in the circulating fluidized bed gasification furnace, when circulating fluidized bed gas
  • the electric heating body is controlled to stop working, thereby realizing the effect of rapidly adjusting the temperature in the gasification furnace in real time. It meets the real-time needs of equipment operating temperature, improves coal conversion rate and saves energy.
  • the novel design is novel and unique, the structure is simple, the response speed is fast, the control effect is good, the gas conversion rate of coal can be greatly improved, and the operation cost of the equipment is reduced.
  • Figure 1 is a schematic structural view of an embodiment of the present disclosure
  • Figure 2 is a second schematic structural view of the main cross-sectional view of the embodiment of the present disclosure.
  • FIG. 3 is a flow chart of a control method of a novel circulating fluidized bed electrothermal temperature control gasifier according to the present disclosure
  • FIG. 4 is a second flow chart of a control method for a novel circulating fluidized bed electrothermal temperature control gasifier according to the present disclosure
  • Figure 5 is a third flowchart of a control method for a novel circulating fluidized bed electrothermal temperature control gasifier according to the present disclosure
  • FIG. 6 is a fourth flow chart of a control method for a novel circulating fluidized bed electrothermal temperature control gasifier according to the present disclosure.
  • connection should be understood broadly, for example, may be a fixed connection, or may be Removable connection, or integral connection; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • installation may be a fixed connection, or may be Removable connection, or integral connection; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the circulating gasification chamber 1 is located above the air distribution plate 2, and the pre-combustion chamber 3 and the air distribution plate 2 are connected to the inlet of the gasifying agent delivery pipe d; the electric heating body 4 is heat resistant.
  • the metal conductive heating element, the electric heating body 4, the temperature sensor 5 and the PLC programmable controller 6 are electrically connected.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Embodiment 1 of the present disclosure includes a novel circulating fluidized bed electrothermal temperature control gasification furnace, as shown in FIG. 1 , comprising a gasification furnace and an electric heating device, the gasification furnace comprising: a circulation gasification chamber 1 and a ventilation panel 2 And the pre-combustion chamber 3, the circulating gasification chamber 1 is located above the air distribution plate 2, and the outlet of the pre-combustion chamber 3 is in communication with the lower opening of the air distribution plate 2.
  • the electric heating device comprises: an electric heating body 4, a temperature sensor 5 and a PLC programmable controller 6.
  • the electric heating body 4 is a heat-resistant metal conductive heating body, and the electric heating body 4 and the temperature sensor 5 are electrically connected to the PLC programmable controller 6, respectively.
  • the electric heater 4 and the temperature sensor 5 are disposed in the gasifier.
  • the temperature sensor 5 sets the first temperature sensing value and the second temperature sensing value, and the second temperature sensing value is greater than the first temperature sensing value, when the temperature sensor 5 detects that the temperature in the gasifier is lower than the first temperature sensing value
  • the temperature sensor 5 sends the measured signal to the PLC programmable controller 6, and the PLC programmable controller 6 instructs the electric heating body 4 to warm the gasification furnace; when the temperature sensor 5 detects that the temperature in the gasification furnace reaches the second temperature sensing At the time of the value, the temperature sensor 5 sends the measured signal to the PLC programmable controller 6, and the PLC programmable controller 6 instructs the electric heater 4 to stop operating.
  • the gasifier is a device that converts fuels such as coal, petroleum coke, and biomass into syngas.
  • the circulating gasification chamber 1, the air distribution plate 2 and the pre-combustion chamber 3 are integrated, the circulating gasification chamber 1 is located at the upper portion of the air distribution plate 2, and the pre-combustion chamber 3 is located at the lower portion of the air distribution plate 2,
  • the pulverized coal, the carbonaceous fly ash and the gasifying agent are respectively fed through the pipeline from the bottom of the pre-combustion chamber 3, wherein the pulverized coal is sent into the pre-combustion chamber 3 through the pulverized coal conveying pipe b, and the carbon-containing fly ash is transported by the carbon-containing fly ash.
  • the pipe c is sent into the pre-combustion chamber 3, and the gasifying agent is sent into the pre-combustion chamber 3 through the gasifying agent conveying pipe d, and the pre-combustion is heated in the pre-combustion chamber 3, and the gasifying agent blows the solid particles such as pulverized coal to the suspension.
  • a circulation gasification chamber 1 communicating with the pre-combustion chamber 3 is provided at an upper portion of the pre-combustion chamber 3, and a distribution panel 2 is disposed between the pre-combustion chamber 3 and the circulation gasification chamber 1.
  • the airflow blows up the flowing high-temperature pulverized coal, semi-coke and gas, and enters the circulation gasification chamber through the air distribution plate 2.
  • the coal gas pipeline is also provided on the side wall of the bottom of the circulation gasification chamber 1 for input into the circulation gasification chamber. After the coal and the coal are sufficiently circulated and vaporized in the circulating gasification chamber 1, the generated gas is output through an outlet provided at the upper portion of the circulation gasification chamber 1. As indicated by the arrow in Fig. 1, it is the direction of the air flow in the circulation gasification chamber 1.
  • an electric heating body 4 and a temperature sensor 5 are provided in the gasification furnace.
  • the electric heating body 4 is a heat-resistant metal conductive heating element for heating in a conductive state to heat and heat the gasifier in which the electric heating body 4 is located, and the temperature sensor 5 is for detecting the temperature of the gasification furnace.
  • the number of the electric heating body 4 and the temperature sensor 5 disposed in the gasification furnace, and the number of the electric heating body 4 and the temperature sensor 5 are not particularly limited as long as the heating temperature in the gasification furnace can be heated and the ambient temperature is detected. can.
  • the electric heater 4 and the temperature sensor 5 are electrically connected to the PLC programmable controller 6, respectively (the connecting line is not shown in FIG. 1). In this way, the electric heating body 4 and the temperature sensor 5 can be transmitted and received with the PLC programmable controller 6, respectively.
  • the first temperature sensing value and the second temperature sensing value are preset in the PLC programmable controller 6, and the second temperature sensing value is greater than the first temperature sensing value, wherein the first temperature sensing value is set to gasification
  • the furnace can work normally and produce the lowest acceptable value of the gas. If the temperature in the gasifier is lower than the first temperature induction value, the coal gasification efficiency and carbon conversion rate will be reduced, and phenols such as tar may be harmful. substance.
  • the second temperature sensing value is set to the highest temperature acceptable value of the gas that can be normally produced in the gasification furnace. If the temperature in the gasification furnace is higher than the second temperature sensing value, the energy waste is caused on the one hand, and at the same time, Causes an unsafe accident of the gasifier.
  • the PLC programmable controller 6 obtains the temperature sensing value detected by the temperature sensor 5, and compares with the preset first temperature sensing value. When the comparison result is that the temperature sensing value is lower than the first temperature sensing value, the PLC may The programming controller 6 controls the electric heating body 4 to conduct electricity, and heats and heats the environment inside the gasification furnace. The temperature sensor 5 continues to detect the ambient temperature in the gasifier, and outputs the detection result to the PLC programmable controller 6, when the PLC programmable controller 6 compares the acquired temperature sensing value with the preset second temperature sensing.
  • the PLC programmable controller 6 controls the electric heating body 4 to stop working, and no longer heats up the environment in the gasifier. Therefore, according to the temperature detection of the temperature sensor 5, the temperature in the gasifier is controlled in real time by the PLC programmable controller 6.
  • a novel circulating fluidized bed electrothermal temperature control gasification furnace of the embodiment of the present disclosure comprises a gasification furnace and an electric heating device.
  • the gasification furnace comprises a circulation gasification chamber, a distribution board and a pre-combustion chamber, and the circulation gasification chamber is located in the cloth.
  • the upper surface of the wind plate and the outlet of the pre-combustion chamber are connected with the lower port of the air distribution plate.
  • the electric heating device comprises an electric heating body, a temperature sensor and a PLC programmable controller, and the electric heating body is a heat-resistant metal conductive heating body, an electric heating body and a temperature sensor. Electrical connection to the PLC programmable controller.
  • the electric heater and the temperature sensor are disposed in the gasifier.
  • the temperature sensor sets the first temperature sensing value and the second temperature sensing value, and the second temperature sensing value is greater than the first temperature sensing value.
  • the temperature sensor detects that the furnace temperature is lower than the first temperature sensing value, the temperature sensor will measure The signal is sent to the PLC programmable controller, and the PLC programmable controller instructs the electric heating body to warm the gasification furnace; when the temperature sensor detects that the temperature in the furnace reaches the second temperature sensing value, the temperature sensor sends the measured signal to the PLC.
  • the programmable controller and the PLC programmable controller instruct the electric heater to stop working.
  • the novel circulating fluidized bed electrothermal temperature-regulating gasifier of the present disclosure is provided with an electric heating body on a circulating fluidized bed gasification furnace, which can timely supply heat to the circulating fluidized bed gasifier, when cold coal, carbon-containing fly ash and gasification
  • the electric heating body is controlled to be electrically heated to quickly and efficiently assist in raising the temperature of coal combustion in the circulating fluidized bed gasification furnace, when circulating fluidized bed gas
  • the electric heating body is controlled to stop working, thereby realizing the effect of rapidly adjusting the temperature in the gasification furnace in real time. It meets the real-time needs of the operating temperature of the equipment, improves the gas conversion rate, and saves energy.
  • the electric heating body 4 is fixedly disposed on the inner wall of the gasification furnace. In this way, when the electric heating body 4 is electrically heated, the heat generated by the electric heating body 4 directly acts on the gasification furnace for heating and heating the temperature in the gasification furnace to increase the heating rate of the gasification furnace.
  • the electric heating body 4 is circumferentially fixedly disposed on the inner wall of the gasification furnace.
  • the structure and the quantity of the electric heating body 4 are not specifically limited in the embodiment of the present disclosure.
  • the electric heating body 4 is circumferentially fixedly disposed on the inner wall of the gasification furnace. It can be understood that the electric heating body 4 is an interconnected structure, and the extending direction thereof is fixedly disposed along the circumferential direction of the inner wall of the gasification furnace.
  • the electric heating body 4 is vertically fixedly disposed on the inner wall of the gasification furnace.
  • the electric heating body 4 is vertically disposed on the inner wall of the gasification furnace. It can be understood that the electric heating body 4 is an interconnected structure, and the extending direction thereof is fixedly disposed along the vertical direction of the inner wall of the gasification furnace.
  • the electric heating body 4 includes a plurality of electric heating blocks, and the plurality of electric heating blocks are respectively electrically connected to the PLC programmable controller.
  • the electric heating body 4 is a block-shaped electric heating block, and a plurality of electric heating bodies 4 are provided on the inner wall of the gasification furnace, and the plurality of electric heating bodies 4 are electrically connected to the PLC programmable controller 6, respectively.
  • the plurality of electric heating blocks may be fixedly disposed on the inner wall of the gasification furnace in a circumferential direction, or a plurality of electric heating blocks may be vertically fixedly disposed on the inner wall of the gasification furnace.
  • the temperature sensor 5 is also disposed on the inner wall of the gasification furnace, so that the temperature sensor 5 can directly detect and output the ambient temperature in the gasification furnace, thereby improving the detection of the temperature sensor 5 . Temperature accuracy.
  • the specific position and the number of the temperature sensors 5 in the inner wall of the gasifier are not limited in the embodiment of the present disclosure, as shown in FIG. 1 as an example, and those skilled in the art can Make specific settings.
  • the temperature sensor 5 is provided in plurality, the plurality of temperature sensors 5 should be disposed on the inner wall of the gasifier and electrically connected to the PLC programmable controller 6, respectively.
  • the gasification furnace includes two parts of the circulating gasification chamber 1 and the pre-combustion chamber 3 which are in communication with each other, electric heating may be respectively disposed circumferentially or vertically on the inner walls of the circulating gasification chamber 1 and the pre-combustion chamber 3, respectively.
  • the body 4, the electric heating body 4 may also be separately disposed in the circulating gasification chamber 1, or may be separately disposed in the pre-combustion chamber 3; moreover, the temperature sensor 5 may be disposed in conjunction with the electric heating body 4, that is, when circulating the gasification chamber 1 and When the electric heating body 4 is provided in the pre-combustion chamber 3, the temperature sensor 5 is also provided in the circulating gasification chamber 1 and/or the pre-combustion chamber 3 in which the electric heating body 4 is provided.
  • an electric heating body 4 is disposed in both the circulating gasification chamber 1 and the pre-combustion chamber 3 of the gasification furnace, and is disposed in both the circulation gasification chamber 1 and the pre-combustion chamber 3 of the gasification furnace.
  • the temperature sensor 5 disposed in the circulating gasification chamber 1 detects the temperature in the circulating gasification chamber 1, and sends the measured temperature sensing value to the PLC programmable controller 6, the PLC programmable controller 6
  • the temperature sensing value is compared with a preset first temperature sensing value or a second temperature sensing value, and the electric heating body 4 in the circulating gasification chamber 1 is controlled to operate or stop according to the comparison result.
  • the first set value of the temperature sensor 5, that is, the first temperature sensing value of the temperature sensor 5 is set to be greater than or equal to 850 °C.
  • the temperature in the gasification furnace including the circulation gasification chamber 1 and the pre-combustion chamber 3
  • the coal gasification efficiency and the carbon conversion rate are lowered, and phenolic harmful substances such as tar are also generated.
  • the second set value of the temperature sensor 5 in the circulation gasification chamber 1, that is, the temperature sensor 5 in the circulation gasification chamber 1 is set to be less than or equal to 1050 ° C.
  • the second set value of the temperature sensor 5 in the pre-combustion chamber 3, that is, the second temperature sensing of the temperature sensor 5 in the pre-combustion chamber 3 The value is set to be less than or equal to 1150 °C.
  • the gasification conditions of the coal can be fully ensured, and at the same time, the raw coal can be fully burned and the conversion rate of the coal can be improved.
  • the temperature of the pre-combustion chamber 3 in the gasifier is greater than 1150 ° C, and / or the temperature of the circulating gasification chamber 1 is greater than 1050 ° C, the excessive temperature may not further increase the gas production of the raw coal, and may also be due to temperature High causes an unsafe accident in the gasifier.
  • a control method for a novel circulating fluidized bed electrothermal temperature control gasifier comprising:
  • the PLC programmable controller 6 acquires the temperature sensing value measured by the temperature sensor 5.
  • the PLC programmable controller 6 compares the acquired temperature sensing value with a preset first temperature sensing value.
  • the PLC programmable controller 6 controls the heating body 4 to start working.
  • the electric heating body 4 and the temperature sensor 5 are respectively provided in the pre-combustion chamber 3 and the circulating gasification chamber 1 of the gasification furnace as an example.
  • the cold coal enters the circulating gasification chamber 1 of the gasification furnace from the coal conveying pipe a, and the pulverized coal and carbonaceous
  • the fly ash and the gasifying agent enter the pre-combustion chamber 3 from the pulverized coal conveying pipe b, the carbon-containing fly ash conveying pipe c and the gasifying agent conveying pipe d, respectively, so that the temperature in the furnace is lowered, and the temperature sensor 5 respectively circulates the gasification chamber 1 and
  • the temperature in the pre-combustion chamber 3 is detected, and the PLC programmable controller 6 obtains the temperature sensing value measured by the temperature sensor 5, and compares the obtained temperature sensing value with the preset first temperature sensing value, if the result is compared
  • the temperature sensing value measured for the temperature sensor 5 is lower than the preset first temperature sensing value, that is, it is considered that the gasification furnace (specifically, the circulating gas
  • the method for controlling a novel circulating fluidized bed electrothermal temperature-controlled gasifier further includes:
  • the PLC programmable controller 6 acquires the temperature sensing value measured by the temperature sensor 5.
  • the PLC programmable controller 6 compares the obtained temperature sensing value with a preset second temperature sensing value.
  • the PLC programmable controller 6 controls the heating body 4 to stop working.
  • the heating body 4 heats the circulating gasification chamber 1 and the pre-combustion chamber 3 in the gasifier for a period of time, the temperature in the circulating gasification chamber 1 and the pre-combustion chamber 3 gradually increases with the working time of the electric heating body 4. Since the temperature in the circulating gasification chamber 1 and the pre-combustion chamber 3 is too high, the coal gasification may be adversely affected. In order to determine the appropriate time to control the electric heating body 4 to stop working, as shown in FIG.
  • the temperature sensor 5 respectively The temperature in the circulating gasification chamber 1 and the pre-combustion chamber 3 is detected, and the PLC programmable controller 6 acquires the temperature sensing value measured by the temperature sensor 5, wherein both the circulation gasification chamber 1 and the pre-combustion chamber 3 are provided.
  • the PLC programmable controller 6 acquires the temperature sensing values measured by the temperature sensor 5 in the circulating gasification chamber 1 and the pre-combustion chamber 3, respectively.
  • the PLC programmable controller 6 compares the acquired temperature sensing value with a preset second temperature sensing value. Similarly, when different second temperature sensing values are set in the circulating gasification chamber 1 and the pre-combustion chamber 3, the PLC programmable controller 6 performs the comparison.
  • the temperature sensing value is higher than the preset second temperature sensing value, it is considered that the temperature in the gasifier (specifically, the circulating gasification chamber 1 or the pre-combustion chamber 3 where the temperature sensor 5 is located) has risen to a high warning position.
  • the heating temperature should not be further increased. Therefore, the PLC programmable controller 6 controls the heating body 4 to stop working, and no longer heats up the environment.
  • the PLC programmable controller 6 controls the startup work of the electric heater 4 to include:
  • the PLC programmable controller 6 controls the energization current of the electric heating body 4 according to the comparison value of the temperature sensing value lower than the preset first temperature sensing value, or controls the number of the electric heating bodies 4 that start the operation.
  • a plurality of range intervals of the difference between the first temperature sensing value and the first temperature sensing value may be further preset in the PLC programmable controller 6, and the setting current of the electric heating body 4 is divided into a plurality of setting intervals, such as As shown in FIG.
  • PLC programmable control The device 6 can select a setting interval with a larger current to control a large current to be supplied to the electric heating body 4, so that the electric heating body 4 operates with a higher heating efficiency; conversely, if the temperature sensing value is lower than the preset first
  • the PLC programmable controller 6 can select the setting interval with a small current to control the relatively small current flowing into the electric heating body 4, so that the electric heating body 4 Working at a relatively low heating efficiency in order to increase the temperature in the gasifier while conserving energy conservation.
  • the heating efficiency in the gasification furnace is controlled by controlling the energizing current of the electric heating body 4, and for example, when the electric heating body 4 is a plurality of strip-shaped electric heating blocks in the inner wall of the gasification furnace
  • the plurality of electric heating bodies 4 are respectively connected to the PLC programmable controller 6, and the control mode of the electric heating body 4 can be preset by a plurality of PLC programmable controllers 6, and the temperature sensing value is lower than the preset according to the temperature.
  • the range of the magnitude of the difference between the first temperature sensing values and the difference between the magnitudes of the electric heating bodies 4 that control the starting operation adjusts the heating capacity of the electric heating body 4.
  • the manner in which the plurality of electric heaters 4 are divided into all of the starting, 1/2 start, or 1/4 start can also adjust the speed at which the electric heater 4 heats the temperature in the gasifier in which it is placed.
  • the PLC programmable controller 6 controls the heating body 4 to stop working, including:
  • the PLC programmable controller 6 controls the energization current of the electric heating body 4 according to the comparison value of the temperature sensing value higher than the preset second temperature sensing value, or controls the number of the electric heating bodies 4 that stop working.
  • a plurality of range intervals of the difference between the second temperature sensing value and the second temperature sensing value may be further preset in the PLC programmable controller 6, and the setting current of the electric heating body 4 is divided into a plurality of setting intervals, such that, for example, As shown in FIG.
  • the PLC programmable controller 6 when the comparison value of the temperature sensing value is higher than the preset second temperature sensing value is within a range in which the comparison difference is large, in order to lower the temperature in the gasifier to a suitable working temperature as soon as possible In the range, the PLC programmable controller 6 can select a setting interval with a small current to control a small current to be supplied to the electric heating body 4, thereby reducing the heating efficiency of the electric heating body 4, and even selecting to reduce the input current value to 0, so that the electric heater 4 stops working.
  • the PLC programmable controller 6 can select the setting interval in which the current change is small to control the current reducing. The smaller proportion allows the electric heating body 4 to reduce the heating efficiency with a small variation range, so as to avoid the influence of sudden cooling on the work in the gasifier as much as possible.
  • the cooling efficiency in the gasification furnace is controlled by controlling the energizing current of the electric heating body 4, and for example, when the electric heating body 4 is a plurality of strip-shaped electric heating blocks in the inner wall of the gasification furnace
  • the plurality of electric heating bodies 4 are respectively connected to the PLC programmable controller 6, and the control mode of the electric heating body 4 can be preset by a plurality of PLC programmable controllers 6, and the temperature sensing value is higher than the preset.
  • the range of the magnitude of the difference between the comparison values of the second temperature sensing values adjusts the heating capacity of the electric heating body 4 corresponding to the number of the electric heating bodies 4 that control the stop operation.
  • the speed of cooling in the gasification furnace can be adjusted by dividing the plurality of electric heating bodies 4 into all of the stop, 1/2 stop, or 1/4 stop.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Embodiment 2 of the present disclosure includes a novel circulating fluidized bed electrothermal temperature control gasification furnace, as shown in FIG. 2, a novel circulating fluidized bed electrothermal temperature control gasification furnace of the second embodiment and a novel embodiment
  • the circulating fluidized bed electrothermal temperature control gasification furnace is different in that it further comprises a communication pipe e disposed between the pre-combustion chamber 3 and the bottom air distribution plate 2 of the circulating gasification chamber 1, and one end of the communication pipe e is connected.
  • the side wall of the pre-combustion chamber 3, the other end of the communication pipe e is connected to the bottom of the circulating gasification chamber 1 through the air distribution plate 2.
  • one end of the communication duct e communicating with the pre-combustion chamber 3 is lower than one end of the communication duct e connecting the circulating gasification chamber.
  • the connection relationship and working principle of other parts and components in the new circulating fluidized bed electrothermal temperature control gasification furnace are the same as those in the first embodiment.
  • the circulating gasification chamber 1 and the pre-combustion chamber 3 are two separate bodies, the air distribution plate 2 is disposed at the bottom of the circulation gasification chamber 1, and the pre-combustion chamber 3 is connected.
  • the pipe e penetrates with the lower portion of the air distribution plate 2 at the bottom of the circulating gasification chamber 1, and the end of the communication pipe e communicating with the pre-combustion chamber 3 is lower than the end of the communication pipe e that communicates with the circulation gasification chamber, and the communication pipe e is in a certain upward direction.
  • the blowing air stream blows solid particles such as pulverized coal and semi-coke in the pre-combustion chamber 3 to a suspended fluidized state, and passes up through the communication pipe e to the circulation gasification chamber 1.
  • the present disclosure provides a novel circulating fluidized bed electrothermal temperature-controlled gasification furnace, which fully ensures the gasification conditions of coal in the gasification furnace, especially for the raw coal in the ultra-small circulating fluidized bed gasification furnace.
  • the coal gasification rate and conversion rate are improved, no phenolic harmful substances such as tar are produced, and clean gas is obtained, thereby achieving clean and efficient utilization of coal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

一种循环流化床电热调温气化炉,属于煤制气设备技术领域。包括气化炉以及电热装置,气化炉包括循环气化室1、布风板2和预燃烧室3,循环气化室1位于布风板2的上面、预燃烧室3的出口与布风板2的下口相连通,电热装置包含电热体4、温度传感器5和PLC可编程控制器6,电热体4为耐热金属导电发热体,电热体4、温度传感器5和PLC可编程控制器6之间电连接。电热体4和温度传感器5设置在气化炉内。温度传感器设定第一温度感应值和第二温度感应值,当温度传感器检测到炉内温度低于第一温度感应值时,PLC可编程控制器指令电热体对气化炉加温;当温度传感器检测到炉内温度达到第二温度感应值时,PLC可编程控制器指令电热体停止工作。

Description

新型循环流化床电热调温气化炉及其控制方法
相关申请的交叉引用
本申请要求于2018年03月30日提交中国专利局的申请号为2018102769844、名称为“新型循环流化床电热调温气化炉”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及煤制气设备技术领域,具体为一种循环流化床气化炉中的电热辅助调温装置,特别是一种新型循环流化床电热调温气化炉及其控制方法。
背景技术
人们为了提高煤气化过程中煤清洁利用和碳转化率,设计出各种煤制气设备,将原煤转化为煤气的燃烧方式获取能源,每种煤制气设备的问世都在不同程度上推进了煤制气技术的进步。循环流化床煤制气设备是煤炭清洁高效利用的高端装备,是国家发改委和国家能源局鼓励推广的现代化设备,通过该设备制成的煤气中焦油等污染物含量低、成分洁净,同时还能够大幅提高煤的燃烧气化率,可以替代天然气,具有助力供给侧改革、改善天然气供求矛盾、化解煤炭产能的效果,因而受到众多热加工企业的青睐。
但在实际应用中,特别是在小型化煤制气设备应用中还存在一定的缺陷,主要包括:循环流化床气化炉的气化率低,固废物煤渣中含有大量未燃尽的原煤,需另进行配套燃烧;工艺流程复杂,处理固废物难度较大、造成环境污染;难以实施小型化,也不能满足中小热加工企业的需要。现有技术中,循环流化床气化炉运行温度难以实时控制,加之启动时间长,造成大量原煤和动力的浪费;再则,因为煤炭气化的过程较为复杂,设备在运行中的温度需要不断实时调节,而现有设备中对于设备内部温度调节方式单一,不能适应实际需要,小型化设备的上述缺点尤为突出。因此,传统的循环流化床需进一步改进完善和提高。
发明内容
针对传统循环流化床气化炉技术的不足,本公开提供一种新型循环流化床电热调温气化炉及其控制方法,通过设置电热辅助调温装置控制循环流化床气化炉内的气化温度,实现温度调节稳定、响应速度快、调节范围大的目的。
本公开的一方面,包括一种新型循环流化床电热调温气化炉,包括气化炉以及电热装置,气化炉包括循环气化室、布风板和预燃烧室,循环气化室位于布风板的上面、预燃烧室的出口与布风板的下口相连通,电热装置包含电热体、温度传感器和PLC可编程控制器,电热体为耐热金属导电发热体,电热体、温度传感器和PLC可编程控制器之间电连接。电热体和温度传感器设置在气化炉内。温度传感器设定第一温度感应值和第二温度感应值,且第二温度感应值大于第一温度感应值,当温度传感器检测到炉内温度低于第一温度感应值时,温度传感器将测得信号发送到PLC可编程控制器,PLC可编程控制器指令电热体对气化炉加温;当温度传感器检测到炉内温度达到第二温度感应值时,温度传感器将测得信号发送到PLC可编程控制器,PLC可编程控制器指令电热体停止工作。
可选的,本公开还包括设置在预燃烧室与循环气化室底部布风板之间的连通管道,连通管道的一端连通预燃烧室侧壁,连通管道另一端通过布风板连通循环气化室底部。其中,连通管道连通预燃烧室的一端低于连通管道连通循环气化室的一端。
可选的,电热体周向固定设置在气化炉的内壁上。
可选的,电热体竖向固定设置在气化炉的内壁上。
可选的,电热体包括多个电热块,多个电热块分别与PLC可编程控制器电连接。
可选的,温度传感器固定设置在气化炉内壁上。
可选的,电热体设置在循环气化室内。
可选的,电热体设置在预燃烧室内。
可选的,温度传感器设置在循环气化室内,且设置一只或多只。
可选的,温度传感器设置在预燃烧室内,且设置一只或多只。
可选的,温度传感器第一设定值大于或等于850℃。
可选的,循环气化室内温度传感器第二设定值小于或等于1050℃。
可选的,预燃烧室内温度传感器第二设定值小于或等于1150℃。
本公开的另一方面,包括一种新型循环流化床电热调温气化炉的控制方法,包括:
PLC可编程控制器获取温度传感器测得的温度感应值;PLC可编程控制器将获取到的温度感应值与预设第一温度感应值比对;若温度感应值低于预设第一温度感应值,PLC可编程控制器控制电热体启动工作。
可选的,控制方法还包括:PLC可编程控制器获取温度传感器测得的温度感应值;PLC可编程控制器将获取到的温度感应值与预设第二温度感应值比对;若温度感应值高于预设第二温度感应值,PLC可编程控制器控制电热体停止工作。
可选的,所述PLC可编程控制器控制电热体启动工作包括:PLC可编程控制器根据温度感应值低于预设第一温度感应值的比对差值,控制电热体的通电电流,或者,控制启动 工作的电热体的数量;和/或,PLC可编程控制器控制电热体停止工作包括:PLC可编程控制器根据温度感应值高于预设第二温度感应值的比对差值,控制电热体的通电电流,或者,控制停止工作的电热体的数量。
本公开的一种新型循环流化床电热调温气化炉及其控制方法,包括气化炉以及电热装置,气化炉包括循环气化室、布风板和预燃烧室,循环气化室位于布风板的上面、预燃烧室的出口与布风板的下口相连通,电热装置包含电热体、温度传感器和PLC可编程控制器,电热体为耐热金属导电发热体,电热体、温度传感器和PLC可编程控制器之间电连接。电热体和温度传感器设置在气化炉内。温度传感器设定第一温度感应值和第二温度感应值,且第二温度感应值大于第一温度感应值,当温度传感器检测到炉内温度低于第一温度感应值时,温度传感器将测得信号发送到PLC可编程控制器,PLC可编程控制器指令电热体对气化炉加温;当温度传感器检测到炉内温度达到第二温度感应值时,温度传感器将测得信号发送到PLC可编程控制器,PLC可编程控制器指令电热体停止工作。本公开的新型循环流化床电热调温气化炉,在循环流化床气化炉上设置电热体,能够适时供给循环流化床气化炉热量,当冷煤、含碳飞灰和气化剂不断加入炉内而导致循环流化床气化炉内温度降低时,控制电热体通电加热,以快速高效地辅助提升循环流化床气化炉内煤炭燃烧的温度,当循环流化床气化炉内的温度达到需要的工作温度时,控制电热体断电停止工作,从而实现实时快速调控气化炉内温度的效果。满足了设备运行温度的实时需要,提高了煤转化率,节约了能源。
本公开设计新颖独特、结构简单、响应速度快、控制效果好、能够大幅提高煤的气转化率,降低设备运行成本。
附图说明
为了更清楚地说明本公开具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
附图1为本公开实施例的结构示意图之一;
附图2为本公开实施例的主剖视结构示意图之二;
附图3为本公开的一种新型循环流化床电热调温气化炉的控制方法流程图之一;
附图4为本公开的一种新型循环流化床电热调温气化炉的控制方法流程图之二;
附图5为本公开的一种新型循环流化床电热调温气化炉的控制方法流程图之三;
附图6为本公开的一种新型循环流化床电热调温气化炉的控制方法流程图之四。
附图标记:1-循环气化室;2-布风板;3-预燃烧室;4-电热体;5-温度传感器;6-PLC可编程控制器;a-输煤管道;b-粉煤输送管道;c-含碳飞灰输送管道;d-气化剂输送管道;e-连通管道。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图对本公开的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本公开的描述中,需要说明的是,如出现术语“中心”、“上”、“下”、“竖直”、“水平”、“内”、“外”等,其所指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,如出现术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,如出现术语“安装”、“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
以下结合附图对本公开作进一步解释说明:
如附图1、2所示,循环气化室1位于布风板2的上面,预燃烧室3与布风板2下方与气化剂输送管道d的进口相连通;电热体4为耐热金属导电发热体,电热体4、温度传感器5和PLC可编程控制器6之间电连接。
实施例一:
本公开实施例一包括一种新型循环流化床电热调温气化炉,如附图1所示,包括气化炉和电热装置,气化炉包括:循环气化室1、布风板2和预燃烧室3,循环气化室1位于布风板2的上面、预燃烧室3的出口与布风板2的下口相连通。电热装置包含:电热体4、 温度传感器5和PLC可编程控制器6,电热体4为耐热金属导电发热体,电热体4和温度传感器5分别和PLC可编程控制器6之间电连接。电热体4和温度传感器5设置在气化炉内。温度传感器5设定第一温度感应值和第二温度感应值,且第二温度感应值大于第一温度感应值,当温度传感器5检测到气化炉内的温度低于第一温度感应值时,温度传感器5将测得信号发送到PLC可编程控制器6,PLC可编程控制器6指令电热体4对气化炉加温;当温度传感器5检测到气化炉内温度达到第二温度感应值时,温度传感器5将测得信号发送到PLC可编程控制器6,PLC可编程控制器6指令电热体4停止工作。
需要说明的是,第一,气化炉是将煤炭、石油焦、生物质等燃料转化为合成气的装置。在本实施例中,循环气化室1、布风板2和预燃烧室3为一整体,循环气化室1位于布风板2的上部,预燃烧室3位于布风板2的下部,由预燃烧室3底部分别通过管道输入粉煤、含碳飞灰以及气化剂,其中,粉煤通过粉煤输送管道b送入预燃烧室3内,含碳飞灰由含碳飞灰输送管道c送入预燃烧室3内,气化剂通过气化剂输送管道d送入预燃烧室3内,在预燃烧室3内升温预燃烧,气化剂将粉煤等固体颗粒吹至悬浮的流化状态,并向上传送。在预燃烧室3的上部设置有与预燃烧室3相连通的循环气化室1,且在预燃烧室3与循环气化室1之间设置有布风板2。气流向上吹送流动的高温粉煤、半焦和煤气,经过布风板2进入循环气化室,循环气化室1底部的侧壁上还设有输煤管道,用于向循环气化室内输入煤,煤在循环气化室1中充分循环气化后,产生的煤气通过设置在循环气化室1上部的出口输出。如图1中箭头所示,即为循环气化室1中的气流方向。
第二,在气化炉内设置有电热体4和温度传感器5。电热体4为耐热金属导电发热体,用于在导电状态下发热以对电热体4所处的气化炉中进行加热升温,温度传感器5用于对气化炉的温度进行检测。本公开实施例中对于设置在气化炉内的电热体4和温度传感器5,以及电热体4和温度传感器5的数量不作具体限定,只要能够对气化炉内进行加热升温以及检测环境温度即可。
第三,如图1所示,电热体4和温度传感器5分别和PLC可编程控制器6之间电连接(图1中未示出连接线)。这样一来,能够使得电热体4和温度传感器5分别与PLC可编程控制器6之间传送信号以及接收指令。
第四,在PLC可编程控制器6中预设有第一温度感应值和第二温度感应值,且第二温度感应值大于第一温度感应值,其中,第一温度感应值设为气化炉内能够正常工作并产出煤气的最低温可接受值,若气化炉内的温度低于该第一温度感应值,会降低煤气化效率和碳转化率,还会产生焦油等酚类有害物质。第二温度感应值设为气化炉内能够正常工作产出煤气的最高温可接受值,若气化炉内的温度高于该第二温度感应值,一方面导致能源的浪费,同时还可能造成气化炉的不安全事故。PLC可编程控制器6获取温度传感器5检测到 的温度感应值,与上述预设的第一温度感应值进行比对,当比对结果为温度感应值低于第一温度感应值时,PLC可编程控制器6控制电热体4导电工作,对气化炉内环境进行加热升温。温度传感器5继续对气化炉内的环境温度进行检测,并将检测结果输出至PLC可编程控制器6,当PLC可编程控制器6将获取的温度感应值与上述预设的第二温度感应值进行比对,且比对结果为温度感应值高于第二温度感应值时,PLC可编程控制器6控制电热体4断电停止工作,不再对气化炉内环境加热升温。从而根据温度传感器5的温度检测,并通过PLC可编程控制器6对气化炉内温度实时控制。
本公开实施例的一种新型循环流化床电热调温气化炉,包括气化炉以及电热装置,气化炉包括循环气化室、布风板和预燃烧室,循环气化室位于布风板的上面、预燃烧室的出口与布风板的下口相连通,电热装置包含电热体、温度传感器和PLC可编程控制器,电热体为耐热金属导电发热体,电热体、温度传感器和PLC可编程控制器之间电连接。电热体和温度传感器设置在气化炉内。温度传感器设定第一温度感应值和第二温度感应值,且第二温度感应值大于第一温度感应值,当温度传感器检测到炉内温度低于第一温度感应值时,温度传感器将测得信号发送到PLC可编程控制器,PLC可编程控制器指令电热体对气化炉加温;当温度传感器检测到炉内温度达到第二温度感应值时,温度传感器将测得信号发送到PLC可编程控制器,PLC可编程控制器指令电热体停止工作。本公开的新型循环流化床电热调温气化炉,在循环流化床气化炉上设置电热体,能够适时供给循环流化床气化炉热量,当冷煤、含碳飞灰和气化剂不断加入炉内而导致循环流化床气化炉内温度降低时,控制电热体通电加热,以快速高效地辅助提升循环流化床气化炉内煤炭燃烧的温度,当循环流化床气化炉内的温度达到需要的工作温度时,控制电热体断电停止工作,从而实现实时快速调控气化炉内温度的效果。满足了设备运行温度的实时需要,提高了煤气转化率,同时节约了能源。
可选的,如图1所示,电热体4固定设置在气化炉内壁上。这样一来,当电热体4导电加热时,电热体4发出的热量直接作用于气化炉内,用于对气化炉内的温度进行加热升温,提高气化炉升温速度。
可选的,如图1所示,电热体4周向固定设置在气化炉的内壁上。
需要说明的是,本公开实施例中未对电热体4的结构及数量进行具体限制。示例的,电热体4周向固定设置在气化炉的内壁上可以理解为,电热体4为一相互连接的结构,其延伸方向沿气化炉内壁的周向固定设置。
可选的,电热体4竖向固定设置在气化炉的内壁上。
同理,电热体4竖向固定设置在气化炉的内壁上可以理解为,电热体4为一相互连接的结构,其延伸方向沿气化炉内壁的竖向固定设置。
可选的,电热体4包括多个电热块,多个电热块分别与PLC可编程控制器电连接。
如图1所示,电热体4为条块状的电热块,且在气化炉内壁设置有多个,多个电热体4分别与PLC可编程控制器6电连接。其中,多个电热块可以为周向固定设置在气化炉的内壁,或者,多个电热块竖向固定设置在气化炉的内壁。
可选的,如图1所示,温度传感器5也设置在气化炉的内壁上,从而使得温度传感器5能够直接对气化炉内的环境温度进行检测和输出,提高了温度传感器5的检测温度准确性。同样的,本公开实施例中未对温度传感器5在气化炉内壁的具体设置位置和设置数量进行限制,如图1中所示的为其中一种举例示意情形,本领域技术人员可根据需要进行具体设置。当温度传感器5设置有多个时,多个温度传感器5应在气化炉内壁分布设置,且分别与PLC可编程控制器6电连接。
需要说明的是,由于气化炉包括有相互连通的循环气化室1和预燃烧室3两部分,可以在循环气化室1和预燃烧室3的内壁上分别周向或竖向设置电热体4,电热体4也可单独设置在循环气化室1内,也可单独设置在预燃烧室3内;而且,温度传感器5可以与电热体4配套设置,即当循环气化室1和/或预燃烧室3内设置电热体4时,在设置有电热体4的循环气化室1和/或预燃烧室3内也设置温度传感器5。
示例的,如图1所示,在气化炉的循环气化室1和预燃烧室3内均设置电热体4,且在气化炉的循环气化室1和预燃烧室3内均设置温度传感器5,其中电热体4在循环气化室1和预燃烧室3的内壁周向设置,这样一来,设置在预燃烧室3内的温度传感器5对预燃烧室3内的温度进行检测,并将测得的温度感应值发送至PLC可编程控制器6,PLC可编程控制器6将温度感应值与预设的第一温度感应值或第二温度感应值进行比对,并根据比对结果控制预燃烧室3内的电热体4工作或停止工作。同样的,设置在循环气化室1内的温度传感器5对循环气化室1内的温度进行检测,并将测得的温度感应值发送至PLC可编程控制器6,PLC可编程控制器6将温度感应值与预设的第一温度感应值或第二温度感应值进行比对,并根据比对结果控制循环气化室1内的电热体4工作或停止工作。
可选的,温度传感器5的第一设定值,亦即温度传感器5的第一温度感应值设置为大于或等于850℃。当气化炉内(包括循环气化室1以及预燃烧室3)的温度低于该第一温度感应值,会降低煤气化效率和碳转化率,还会产生焦油等酚类有害物质。
可选的,当在循环气化室1内设置有温度传感器5时,循环气化室1内的温度传感器5的第二设定值,亦即循环气化室1内的温度传感器5的第二温度感应值设置为小于或等于1050℃。
可选的,当在预燃烧室3内设置有温度传感器5时,预燃烧室3内的温度传感器5的第二设定值,亦即预燃烧室3内的温度传感器5的第二温度感应值设置为小于或等于 1150℃。
这样一来能够使得煤的气化条件得到充分保证,同时也能够使得原煤充分燃尽,提升煤的转化率。当气化炉内预燃烧室3的温度大于1150℃,和/或循环气化室1的温度大于1050℃时,过高的温度并不能够进一步提高原煤的产气量,且还可能由于温度过高造成气化炉的不安全事故。
本公开实施例的另一方面,提供一种新型循环流化床电热调温气化炉的控制方法,如图3所示,包括:
S101、PLC可编程控制器6获取温度传感器5测得的温度感应值。
S102、PLC可编程控制器6将获取到的温度感应值与预设第一温度感应值比对。
S103、若温度感应值低于预设第一温度感应值,PLC可编程控制器6控制电热体4启动工作。
以下以在气化炉的预燃烧室3和循环气化室1内均分别设置有电热体4和温度传感器5为例进行说明。
在本公开实施例的新型循环流化床电热调温气化炉工作时,如图1所示,冷煤从输煤管道a进入气化炉的循环气化室1内,粉煤、含碳飞灰和气化剂分别从粉煤输送管道b、含碳飞灰输送管道c和气化剂输送管道d进入预燃烧室3内,使得炉内温度下降,温度传感器5分别对循环气化室1和预燃烧室3内的温度进行检测,PLC可编程控制器6获取温度传感器5测得的温度感应值,并将获取到的温度感应值与预设第一温度感应值比对,若比对结果为温度传感器5测得的温度感应值低于预设的第一温度感应值,即认为此时气化炉内(具体为该温度传感器5所在的循环气化室1或预燃烧室3)的温度较低需要进行加热,此时PLC可编程控制器6控制该温度传感器5所在的循环气化室1或预燃烧室3内的电热体4启动工作,对环境进行加热升温,以便使得气化炉内的温度尽快提升至适宜的工作温度范围内。
可选的,如图4所示,本公开实施例的一种新型循环流化床电热调温气化炉的控制方法还包括:
S201、PLC可编程控制器6获取温度传感器5测得的温度感应值。
S202、PLC可编程控制器6将获取到的温度感应值与预设第二温度感应值比对。
S203、若温度感应值高于预设第二温度感应值,PLC可编程控制器6控制电热体4停止工作。
当电热体4对气化炉内循环气化室1和预燃烧室3的加热进行一段时间后,循环气化室1和预燃烧室3内的温度随着电热体4的工作时间逐渐升高,由于循环气化室1和预燃烧室3内的温度过高也会对煤气化产生不利的影响,为了确定适宜的时间控制电热体4停 止工作,如图4所示,温度传感器5分别对循环气化室1和预燃烧室3内的温度进行检测,PLC可编程控制器6获取温度传感器5测得的温度感应值,其中,在循环气化室1和预燃烧室3内均设置有温度传感器5的情况下,PLC可编程控制器6对循环气化室1和预燃烧室3内的温度传感器5测得的温度感应值进行分别获取。PLC可编程控制器6将获取到的温度感应值与预设第二温度感应值比对。同样的,在循环气化室1和预燃烧室3内设置不同的第二温度感应值时,PLC可编程控制器6分别进行比对。若温度感应值高于预设第二温度感应值,即认为此时气化炉内(具体为该温度传感器5所在的循环气化室1或预燃烧室3)的温度已经升高至高警戒位,不应再进行加热升温,因此,PLC可编程控制器6控制电热体4停止工作,不再对环境进行加热升温。
可选的,如图5所示,所述PLC可编程控制器6控制电热体4启动工作包括:
S1031、PLC可编程控制器6根据温度感应值低于预设第一温度感应值的比对差值,控制电热体4的通电电流,或者,控制启动工作的电热体4的数量。
示例的,可以在PLC可编程控制器6中进一步预设多个与第一温度感应值比对差值的范围区间,并对电热体4的通电电流划分多个设置区间,这样一来,如图5所示,当温度感应值低于预设第一温度感应值的比对差值处于比对差值较大的范围区间内时,为了尽快提升气化炉内的温度,PLC可编程控制器6可以选择电流较大的设置区间,以控制向电热体4中通入较大电流,从而使得电热体4以较高的加热效率进行工作;反之,若温度感应值低于预设第一温度感应值处于比对差值较小的范围区间内时,PLC可编程控制器6可以选择电流较小的设置区间,以控制向电热体4中通入相对较小的电流,使得电热体4以相对较低的加热效率进行工作,以便在提高气化炉内温度的同时,兼顾节约能源。
此外,不限于上述举例的方式,除了通过控制电热体4的通电电流来调控气化炉内的升温效率,又例如,当电热体4为多个条块状的电热块在气化炉内壁排布设置的情况下,多个电热体4分别与PLC可编程控制器6连接,还可以通过预设多种PLC可编程控制器6对电热体4的控制模式,根据温度感应值低于预设第一温度感应值的比对差值所处的差值大小的范围区间,对应控制启动工作的电热体4的数量对电热体4的加热能力进行调节。如,将多个电热体4划分为全部启动、1/2启动或1/4启动的方式,也能够对电热体4加热其所处的气化炉内温度的速度加以调节。
可选的,如图6所示,所述PLC可编程控制器6控制电热体4停止工作包括:
S2031、PLC可编程控制器6根据温度感应值高于预设第二温度感应值的比对差值,控制电热体4的通电电流,或者,控制停止工作的电热体4的数量。
同样的,可以在PLC可编程控制器6中进一步预设多个与第二温度感应值比对差值 的范围区间,并对电热体4的通电电流划分多个设置区间,这样一来,如图6所示,当温度感应值高于预设第二温度感应值的比对差值处于比对差值较大的范围区间内时,为了尽快将气化炉内的温度降低至适宜工作温度范围内,PLC可编程控制器6可以选择电流较小的设置区间,以控制使电热体4中通入较小电流,从而使得减小电热体4的加热效率,甚至选择将输入电流值降为0,以使电热体4停止工作。反之,若温度感应值高于预设第二温度感应值处于比对差值较小的范围区间内时,PLC可编程控制器6可以选择电流改变较小的设置区间,以控制减小电流的比例较小,使得电热体4以较小的变化幅度降低加热效率,以尽可能避免突然降温对气化炉内工作的影响。
此外,不限于上述举例的方式,除了通过控制电热体4的通电电流来调控气化炉内的降温效率,又例如,当电热体4为多个条块状的电热块在气化炉内壁排布设置的情况下,多个电热体4分别与PLC可编程控制器6连接,还可以通过预设多种PLC可编程控制器6对电热体4的控制模式,根据温度感应值高于预设第二温度感应值的比对差值所处的差值大小的范围区间,对应控制停止工作的电热体4的数量对电热体4的加热能力进行调节。如,将多个电热体4划分为全部停止、1/2停止或1/4停止的方式,也能够对气化炉内降温的速度加以调节。
实施例二:
本公开实施例二包括一种新型循环流化床电热调温气化炉,如附图2所示,实施例二的一种新型循环流化床电热调温气化炉与实施例一的新型循环流化床电热调温气化炉相比,不同之处在于,还包括设置在预燃烧室3与循环气化室1底部布风板2之间的连通管道e,连通管道e的一端连通预燃烧室3侧壁,连通管道e另一端通过布风板2连通循环气化室1底部。其中,连通管道e连通预燃烧室3的一端低于连通管道e连通循环气化室的一端。新型循环流化床电热调温气化炉中的其他零部件以及零部件之间的连接关系、工作原理均与实施例一相同。
如图2所示,在本实施例中,循环气化室1和预燃烧室3为两个独立的分体,布风板2设置在循环气化室1的底部,预燃烧室3通过连通管道e与循环气化室1底部的布风板2的下部相贯通,且连通管道e连通预燃烧室3的一端低于连通管道e连通循环气化室的一端,连通管道e呈一定的向上倾斜的角度,吹送气流将预燃烧室3内的粉煤和半焦等固体颗粒吹至悬浮的流化状态,并通过连通管道e向上至循环气化室1内。
以上所述者,仅为本公开的最佳实施例而已,并非用于限制本公开的范围,凡依本公开申请专利范围所作的等效变化或修饰,皆为本公开所涵盖。
工业实用性
本公开提供了一种新型循环流化床电热调温气化炉,使气化炉内煤的气化条件得到充分保证,尤其是对于超小型循环流化床气化炉中原煤也能充分燃尽,提升了煤的气化速度和转化率,不产生焦油等酚类有害物质,获得洁净的煤气,实现了煤炭的清洁高效利用。

Claims (16)

  1. 一种新型循环流化床电热调温气化炉,包括:气化炉和电热装置,所述的气化炉包括:循环气化室、布风板和预燃烧室,所述的循环气化室位于布风板的上面,预燃烧室的出口与布风板的下口相连通,其特征在于:
    所述的电热装置包含:电热体、温度传感器和PLC可编程控制器,所述的电热体为耐热金属导电发热体,所述的电热体、温度传感器和PLC可编程控制器之间电连接;
    所述的电热体和温度传感器设置在气化炉内;
    所述的温度传感器设定第一温度感应值和第二温度感应值,且第二温度感应值大于第一温度感应值,当温度传感器检测到炉内温度低于第一温度感应值时,温度传感器将测得信号发送到PLC可编程控制器,PLC可编程控制器指令电热体对气化炉加温;当温度传感器检测到炉内温度达到第二温度感应值时,温度传感器将测得信号发送到PLC可编程控制器,PLC可编程控制器指令电热体停止工作。
  2. 根据权利要求1所述的新型循环流化床电热调温气化炉,其特征在于:还包括设置在所述预燃烧室与所述循环气化室底部布风板之间的连通管道,所述连通管道的一端连通所述预燃烧室侧壁,所述连通管道另一端通过所述布风板连通所述循环气化室底部;
    其中,所述连通管道连通所述预燃烧室的一端低于所述连通管道连通所述循环气化室的一端。
  3. 根据权利要求1或2所述的新型循化流化床电热调温气化炉,其特征在于,所述电热体周向固定设置在所述气化炉的内壁上。
  4. 根据权利要求1或2所述的新型循化流化床电热调温气化炉,其特征在于,所述电热体竖向固定设置在所述气化炉的内壁上。
  5. 根据权利要求1所述的新型循环流化床电热调温气化炉,其特征在于:所述电热体包括多个电热块,所述多个电热块分别与所述PLC可编程控制器电连接。
  6. 根据权利要求1或2所述的新型循环流化床电热调温气化炉,其特征在于:所述的温度传感器固定设置在气化炉内壁上。
  7. 根据权利要求1-6任一项所述的新型循环流化床电热调温气化炉,其特征在于:所述的电热体设置在循环气化室内。
  8. 根据权利要求1-6任一项所述的新型循环流化床电热调温气化炉,其特征在于:所述的电热体设置在预燃烧室内。
  9. 根据权利要求1-8任一项所述的新型循环流化床电热调温气化炉,其特征在于: 所述的温度传感器设置在循环气化室内,且设置一只或多只。
  10. 根据权利要求1-8任一项所述的新型循环流化床电热调温气化炉,其特征在于:所述的温度传感器设置在预燃烧室内,且设置一只或多只。
  11. 根据权利要求1-10任一项所述的新型循环流化床电热调温气化炉,其特征在于:所述的温度传感器第一设定值大于或等于850℃。
  12. 根据权利要求1-10任一项所述的新型循环流化床电热调温气化炉,其特征在于:所述的循环气化室内温度传感器第二设定值小于或等于1050℃。
  13. 根据权利要求1-10任一项所述的新型循环流化床电热调温气化炉,其特征在于:所述的预燃烧室内温度传感器第二设定值小于或等于1150℃。
  14. 一种新型循环流化床电热调温气化炉的控制方法,其特征在于,包括:
    PLC可编程控制器获取温度传感器测得的温度感应值;
    PLC可编程控制器将获取到的温度感应值与预设第一温度感应值比对;
    若所述温度感应值低于所述预设第一温度感应值,所述PLC可编程控制器控制电热体启动工作。
  15. 根据权利要求14所述的新型循环流化床电热调温气化炉的控制方法,其特征在于,所述方法还包括:
    PLC可编程控制器获取温度传感器测得的温度感应值;
    PLC可编程控制器将获取到的温度感应值与预设第二温度感应值比对;
    若所述温度感应值高于所述预设第二温度感应值,所述PLC可编程控制器控制电热体停止工作。
  16. 根据权利要求15所述的新型循环流化床电热调温气化炉的控制方法,其特征在于,所述PLC可编程控制器控制电热体启动工作包括:
    所述PLC可编程控制器根据所述温度感应值低于所述预设第一温度感应值的比对差值,控制所述电热体的通电电流,或者,控制启动工作的所述电热体的数量;
    和/或,所述PLC可编程控制器控制电热体停止工作包括:
    所述PLC可编程控制器根据所述温度感应值高于所述预设第二温度感应值的比对差值,控制所述电热体的通电电流,或者,控制停止工作的所述电热体的数量。
PCT/CN2018/091239 2018-03-30 2018-06-14 新型循环流化床电热调温气化炉及其控制方法 WO2019184097A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18859985.6A EP3572483A4 (en) 2018-03-30 2018-06-14 INNOVATIVE CIRCULATING BURBED BED CARBURETOR WITH ELECTRIC HEATING SUPPORTED TEMPERATURE ADJUSTMENT FUNCTION AND CONTROL METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810276984.4A CN108192672B (zh) 2018-03-30 2018-03-30 循环流化床电热调温气化炉
CN201810276984.4 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019184097A1 true WO2019184097A1 (zh) 2019-10-03

Family

ID=62596511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091239 WO2019184097A1 (zh) 2018-03-30 2018-06-14 新型循环流化床电热调温气化炉及其控制方法

Country Status (3)

Country Link
EP (1) EP3572483A4 (zh)
CN (1) CN108192672B (zh)
WO (1) WO2019184097A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708466A (zh) * 2020-12-31 2021-04-27 苏州允清环境能源科技有限公司 有机固废低焦油气化热电联供的系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202808735U (zh) * 2012-09-28 2013-03-20 中冶东方工程技术有限公司 废热烟气循环利用与调节装置
JP2013209438A (ja) * 2012-03-30 2013-10-10 Ihi Corp 流動層システムおよびバイオマス導入方法
JP2014159528A (ja) * 2013-02-20 2014-09-04 Ihi Corp 合成ガス生成システム
CN106753579A (zh) * 2016-12-26 2017-05-31 东北大学 一种固体热载体煤气化电力蓄能系统和方法
CN206289222U (zh) * 2016-11-28 2017-06-30 江苏华威机械制造有限公司 流化床气化系统分离渣煤粉碎再循环气化装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100390254C (zh) * 2004-09-30 2008-05-28 中国科学院工程热物理研究所 双循环流化床煤气-蒸汽联产方法及装置
DE102008032166A1 (de) * 2008-07-08 2010-01-14 Karl-Heinz Tetzlaff Verfahren und Vorrichtung zur Herstellung von teerfreiem Synthesgas aus Biomasse
DE102009039837A1 (de) * 2009-09-03 2011-03-10 Karl-Heinz Tetzlaff Elektrische Heizung für einen Wirbelschichtreaktor zur Herstellung von Synthesegas
US8845769B2 (en) * 2010-01-19 2014-09-30 Zeropoint Clean Tech, Inc. Downdraft gasifier with improved stability
CN202171244U (zh) * 2011-07-29 2012-03-21 宁波丽辰电器有限公司 一种液体燃料的气化燃烧装置
CN204981784U (zh) * 2015-07-27 2016-01-20 昆明理工大学 一种新型秸秆气化装置
CN206279175U (zh) * 2016-11-25 2017-06-27 付保国 一种生物质气化炉
CN106753588B (zh) * 2017-02-20 2018-11-23 中聚信海洋工程装备有限公司 一种气化剂混合预燃烧工艺及装置
CN106753580B (zh) * 2017-03-01 2018-04-10 中聚信海洋工程装备有限公司 一种炉内自循环流化床气化炉
CN107699295A (zh) * 2017-11-15 2018-02-16 青岛科信新能源技术有限公司 一种生物质气化炉自动控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209438A (ja) * 2012-03-30 2013-10-10 Ihi Corp 流動層システムおよびバイオマス導入方法
CN202808735U (zh) * 2012-09-28 2013-03-20 中冶东方工程技术有限公司 废热烟气循环利用与调节装置
JP2014159528A (ja) * 2013-02-20 2014-09-04 Ihi Corp 合成ガス生成システム
CN206289222U (zh) * 2016-11-28 2017-06-30 江苏华威机械制造有限公司 流化床气化系统分离渣煤粉碎再循环气化装置
CN106753579A (zh) * 2016-12-26 2017-05-31 东北大学 一种固体热载体煤气化电力蓄能系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3572483A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708466A (zh) * 2020-12-31 2021-04-27 苏州允清环境能源科技有限公司 有机固废低焦油气化热电联供的系统及方法
CN112708466B (zh) * 2020-12-31 2022-03-15 苏州允清环境能源科技有限公司 有机固废低焦油气化热电联供的系统及方法

Also Published As

Publication number Publication date
EP3572483A1 (en) 2019-11-27
CN108192672B (zh) 2023-08-04
EP3572483A4 (en) 2020-02-26
CN108192672A (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
CN101762154B (zh) 一种节能型陶瓷隧道窑
CN204329000U (zh) 锅炉专用生物质颗粒燃烧机
CN203116079U (zh) 一种高效燃气采暖热水炉
CN103982911B (zh) 分段式陶瓷窑燃气与空气联动控制系统
CN108332213A (zh) 一种垃圾焚烧炉控制系统
CN106152486A (zh) 一种节能燃烧自动化锅炉
CN112146263A (zh) 热水设备及其控制方法、电子设备
CN207247174U (zh) 一种生物质炉体模块
WO2019184097A1 (zh) 新型循环流化床电热调温气化炉及其控制方法
CN204285782U (zh) 烤烟用生物质颗粒燃烧炉
CN104613641A (zh) 烤烟用生物质颗粒燃烧炉
CN204285422U (zh) 生物质颗粒蒸汽炉
CN203754429U (zh) 一种生产活性炭的活化沸腾炉
CN207334775U (zh) 生物质燃气锅炉烟气排放氧含量监测分析控制装置
CN103939880A (zh) 一种生物质气化热能转换系统的自适应智能控制方法
CN107957078A (zh) 一种生物质比例式燃烧控制系统
CN201443779U (zh) 锅炉自动化节能控制系统
CN107166428A (zh) 一种基于烟气再循环的层燃锅炉烟气含氧量控制系统
CN204730243U (zh) 正压式生物质粉料煤粉流化气流床气化炉的热煤气系统
CN207279689U (zh) 一种基于烟气再循环的层燃锅炉烟气含氧量控制系统
CN207702723U (zh) 一种应用在模块锅炉机组中的预混式燃气锅炉
CN106765070A (zh) 高功率循环流化床锅炉进风控制系统
CN203011167U (zh) 空燃比自动均衡系统
CN202209788U (zh) 热风炉节能节电控制装置
CN202485204U (zh) 双风机双控制节能热风炉

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018859985

Country of ref document: EP

Effective date: 20190603

ENP Entry into the national phase

Ref document number: 2018859985

Country of ref document: EP

Effective date: 20190603

ENP Entry into the national phase

Ref document number: 2018859985

Country of ref document: EP

Effective date: 20190603