WO2019184073A1 - 一种用于大尺寸井眼硬岩钻井的多循环流道钻井系统及钻井工艺 - Google Patents

一种用于大尺寸井眼硬岩钻井的多循环流道钻井系统及钻井工艺 Download PDF

Info

Publication number
WO2019184073A1
WO2019184073A1 PCT/CN2018/088048 CN2018088048W WO2019184073A1 WO 2019184073 A1 WO2019184073 A1 WO 2019184073A1 CN 2018088048 W CN2018088048 W CN 2018088048W WO 2019184073 A1 WO2019184073 A1 WO 2019184073A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
drilling
air hammer
channel
coaxial
Prior art date
Application number
PCT/CN2018/088048
Other languages
English (en)
French (fr)
Inventor
龚智勇
Original Assignee
北京首创热力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京首创热力股份有限公司 filed Critical 北京首创热力股份有限公司
Priority to RU2020134447A priority Critical patent/RU2750375C1/ru
Priority to EP18912219.5A priority patent/EP3770374A4/en
Publication of WO2019184073A1 publication Critical patent/WO2019184073A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/14Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor using liquids and gases, e.g. foams
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/18Pipes provided with plural fluid passages
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/12Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor using drilling pipes with plural fluid passages, e.g. closed circulation systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/16Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor using gaseous fluids
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/06Down-hole impacting means, e.g. hammers
    • E21B4/14Fluid operated hammers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the invention relates to the technical field of drilling engineering, in particular to a multi-cycle flow channel drilling system and a drilling process for large-scale well bore hard rock drilling.
  • Rotary drilling uses a wheel-cutter bit, a hob bit, a scraper bit, etc. to cut the rock-breaking method to implement drilling.
  • Two drilling processes mud positive circulation and gas lift reverse circulation can be used. If the drilling capacity (torque) is insufficient and it is difficult to achieve the capability of drilling a well, it is usually possible to complete the drilling by multi-stage reaming.
  • the gas drill reverse circulation rotary drilling method can be used in the country.
  • the diameter of the wellbore can reach 1000m theoretically (such as the AD130/1000 large shaft drilling rig of China Coal Special Chisel Company).
  • this drilling method meets the requirements of large-scale wellbore circulation and sand carrying, it is only suitable for drilling soft rock and is completely unsuitable for drilling in hard rock formation.
  • Rotary drilling rig drilling is mainly based on “drilling + digging”. At present, rotary drilling rigs can achieve drilling operations of 4 to 5 m in diameter. However, the method still focuses on soft rock drilling, its drilling efficiency in hard rock formation is very low, and the maximum drilling depth is also within 1500m (such as the Sany Heavy Industry SR630RC8 rotary drilling rig, its maximum drilling diameter The maximum drilling depth is 140m). This method cannot meet the requirements of hard rock, deep well and high efficiency drilling.
  • Shaft drilling machine drilling still belongs to the field of mine construction. This method is usually used for soft rock drilling.
  • the drilling and blasting method is a method of blasting and excavating hard rock in the field of mine construction. This method has a high construction cost and a long cycle, and does not belong to the drilling category.
  • Impact rotary (or swirling) drilling mainly uses air hammer as a rock breaking tool.
  • the air hammer's hard rock drilling efficiency is very high, and its efficiency can be increased by more than 10 times compared with conventional rotary drilling.
  • the air hammer for large-diameter drilling in China is mainly concentrated in oil drilling, pile foundation engineering, coal mine drilling, mine rescue and other fields.
  • the maximum diameter of the circulating air hammer drilling in the oil and gas drilling industry is usually The gas consumption is 400-500m 3 /min, and the maximum depth of drilling is no more than 600m.
  • the largest diameter positive circulating air hammer (usually ⁇ 800mm ⁇ 1200mm) is used in conjunction with the rotary drilling rig to drill the hole with a maximum depth of less than 100m.
  • Jilin University combines the advantages of high-impact hard rock drilling of air hammer with the advantage of protective well wall for mud positive circulation drilling, and invented the closed-loop three-channel reverse circulation air hammer drilling technology (the announcement number is CN102966304B, the patent name is “mud”
  • the invention relates to the Chinese invention patent of the wall-drilling hammer and the drilling process. However, the invention still uses the sand-carrying process in which the mud is circulating, so the method is only suitable for hard rock drilling of small-sized wellbores.
  • the object of the present invention is to provide a multi-cycle flow channel drilling system and drilling process for large-scale well bore hard rock drilling, and provide an effective solution for large-scale well bore deep well hard rock, which can not only improve drilling Efficiency, while reducing energy consumption and saving overall costs.
  • a multi-cycle flow path drilling system for large-scale borehole hard rock drilling including downhole air hammer ground manifolds and equipment, gas lift manifolds and equipment, drilling drives, multi-cycle runners and mud circulation equipment
  • the underground air hammer ground pipe and the equipment and the gas lift pipe sink and the equipment are all connected by the drilling drive device and the multi-circulation flow path drilling tool, and the mud circulation device is connected with the drilling drive device through the erosion-resistant gooseneck pipe and the sand discharge line.
  • the multi-cycle flow path drilling tool comprises a coaxial four-channel drill pipe, a coaxial three-channel drill pipe, a coaxial three-channel drill collar and a closed reverse circulation air hammer, which are connected in sequence from top to bottom, and a coaxial four-flow.
  • the top of the drill pipe is connected with the drilling drive device, and the bottom of the coaxial four-channel drill pipe is connected to the coaxial three-channel drill pipe through the gas mixing joint.
  • the coaxial four-channel drill pipe is a four-channel structure, which is an underground air hammer exhaust flow passage, an air hammer injection air passage, a gas lift air flow passage, and a gas lift sand flow passage, and a downhole air.
  • the hammer air flow channel and the underground air hammer ground pipe are connected with the device, the gas lift air flow channel and the gas lift pipe are connected with the device, and the gas lift sand flow channel is connected with the drilling driving device; the coaxial three-channel drill pipe and the same
  • the shaft three-channel drill collars are all three-channel structures, from the outside to the inside, respectively, the downhole air hammer exhaust flow passage, the downhole air hammer injection air passage and the gas lift sand discharge passage, the downhole air hammer exhaust flow passage and the downhole air hammer injection air passage. Connected at the bottom of the multi-cycle runner.
  • the gas mixing joint comprises a top end pipe, a bottom end pipe, a suspension joint and a joint outer pipe, and the top end pipe and the bottom end pipe are fixed and connected by a suspension joint, and are installed in the outer pipe of the joint, and the inner wall of the outer pipe of the joint.
  • the outer channel is formed, and the top end tube is a three-layer tube wall structure, and a plurality of air mixing holes are formed in the innermost tube wall, and the bottom end tube is a two-layer tube wall structure.
  • a circular hole passage is opened in the middle of the suspension joint, and a discontinuous annular passage is opened in the circumferential direction coaxially, and a suspension boss is radially disposed on the outer circumference of the suspension joint.
  • the outer tube to the inner three-layer tube wall is the outer tube wall A, the middle tube wall and the inner tube wall A, the outer channel A and the intermediate channel are formed between the adjacent tube walls, and the inner tube wall is the inner channel. A, the mixing hole is opened on the inner tube wall.
  • top end tube and the suspension joint are connected by welding or screwing, and the outer passage A and the inner passage A are respectively communicated with the annular passage and the circular passage of the suspension joint, and the bottom of the intermediate passage is blocked.
  • the bottom end tube includes an outer tube wall B and an inner tube wall B in order from the outside to the inside, and an outer passage B is formed between the two tube walls, and the inner tube wall is an inner passage B inside.
  • bottom end tube and the suspension joint are connected by welding or screwing, and the outer passage B and the inner passage B communicate with the annular passage and the circular passage of the suspension joint, respectively.
  • the outer tube of the joint has a threaded, square or hexagonal joint at both ends.
  • the drilling driving device comprises a drilling driving device comprising a faucet, a coaxial four-channel kelly and a roller square filling
  • the gas injector is a four-circulating flow channel gas injector, which is installed at the bottom of the faucet and injects gas.
  • a coaxial four-channel kelly is installed at the bottom of the device, and the roller is installed at the bottom of the coaxial four-channel kelly.
  • the gas injector is connected to the multi-circulation runner through the coaxial four-channel kelly.
  • the gas injector is also connected to a downhole air hammer exhaust hose.
  • the drilling drive device comprises a top drive and a gas injector, wherein the gas injector is a four-cycle flow path gas injector, which is installed at the bottom of the top drive, and the top drive is connected to the multi-circulation flow path drilling tool through the gas injector.
  • the gas injector is also connected to a downhole air hammer exhaust hose.
  • the downhole air hammer ground pipe and equipment comprises a downhole air hammer gas injection unit, a downhole air hammer pressure unit, a downhole air hammer pressure relief mechanism, a downhole air hammer gas injection flow control valve, a downhole air hammer
  • the gas injection flow meter, the underground air hammer floor gas injection pipe and the underground air hammer high pressure gas injection hose, and the underground air hammer high pressure gas injection hose are connected with the gas injector.
  • the gas lift pipe sink and the device include a gas lift gas injection unit, a gas lift pressurization unit, a gas lift pressure release mechanism, a gas lift gas flow control valve, a gas lift gas flow flow meter, and a gas lift
  • the ground gas injection pipe and the gas lift high pressure gas injection hose, and the gas lift high pressure gas injection hose are connected with the gas injector.
  • the present invention provides a multi-cycle flow drilling process for large borehole hard rock drilling, comprising the steps of:
  • the compressed air of the ground air hammer and the equipment of the underground air hammer is generated by the underground air hammer gas injection unit and the underground air hammer pressure unit, and flows through the underground air hammer pressure relief mechanism, the underground air hammer injection gas flow control valve, and the underground air hammer.
  • the gas injection flow meter, the underground air hammer ground gas injection pipe, and the underground air hammer high pressure gas injection hose reach the gas injector;
  • the compressed gas sequentially enters into the downhole air hammer flow channel of the coaxial four-channel drill pipe, the coaxial three-channel drill pipe and the coaxial three-channel drill collar, and descends along the flow channel And reach the closed reverse circulation air hammer, and drive the closed reverse circulation air hammer to do work;
  • the gas passes through the internal flow passage of the closed reverse circulation air hammer, and enters into the underground air hammer exhaust flow passage of the coaxial three-channel drill collar, the coaxial three-channel drill pipe and the coaxial four-channel drill pipe.
  • the flow path is up and reaches the gas injector;
  • the exhaust gas driven by the closed reverse circulation air hammer is discharged to the outside of the drilling system via the downhole air hammer exhaust hose connected to the gas injector;
  • the compressed gas of the gas lift pipe and the equipment is generated by the gas lift gas injection unit and the gas lift pressure unit, and flows through the gas lift pressure relief mechanism, the gas lift gas flow control valve, and the gas lift injection.
  • the gas flow meter, the gas lift ground gas injection pipe, and the gas lift high pressure gas injection hose reach the gas injector;
  • the compressed gas enters into the gas-filled gas flow channel of the coaxial four-channel drill pipe, the coaxial three-channel drill pipe and the coaxial three-channel drill collar, and follows and flows down the flow channel. a coaxial joint between the coaxial four-channel drill pipe and the coaxial three-channel drill pipe;
  • the compressed gas in the gas injection airflow passage is mixed with the drilling fluid in the gas lift sand discharge passage, and the bottom hole drilling fluid is carried under the pressure difference between the wellbore annulus and the gas lift sand discharge passage.
  • the cuttings that have been broken by the closed reverse circulation air hammer are returned to the gas lift sand passage of the coaxial three-channel drill collar, the coaxial three-channel drill pipe and the coaxial four-channel drill pipe, and then reach the gas injector. ;
  • the cuttings in the gas lift sand passage pass through the faucet, the erosion resistant gooseneck, the sand discharge pipeline and the sand discharge hard pipeline, and finally return to the mud circulation system and be purified by the mud circulation system.
  • the drilling fluid will once again be pumped through the mud return line into the borehole annulus.
  • the invention requires an annular infusion drilling fluid, and the drilling fluid level is maintained within a reasonable height range.
  • the drilling fluid can protect the well wall and is beneficial to the stability of the wellbore;
  • the invention combines the advantages of both the gas lift reverse circulation sand discharge and the closed reverse circulation air hammer, and can ensure the drilling efficiency while greatly reducing the gas injection amount, especially when drilling in a large diameter well section. Obvious; this will help reduce equipment investment, reduce site footprint, reduce the demand for power and drilling fluid, and save fuel consumption;
  • the present invention is a closed cycle of all fluids, and the drilling fluid and the bottom cuttings are also discharged to the surface by means of gas lift reverse circulation, so that it is not necessary to install a rotary blowout preventer such as a positive circulation gas drilling.
  • Figure 1 is a schematic view of the overall structure of the present invention
  • FIG. 2 is a schematic view showing the path of the fluid in the multi-cycle flow path drilling tool of the present invention
  • Figure 3 is a schematic structural view of a gas mixing joint
  • Figure 4 is a schematic cross-sectional view taken along line A-A of Figure 3;
  • Figure 5 is a schematic cross-sectional view taken along line B-B of Figure 3;
  • FIG. 6 is a schematic structural view of a coaxial four-channel drill pipe
  • FIG. 7 is a schematic structural view of a coaxial three-channel drill pipe
  • Figure 8 is a schematic cross-sectional view taken along line C-C of Figure 3.
  • FIG. 9 is a schematic structural view of a coaxial four-channel kelly
  • Figure 10 is a schematic cross-sectional view taken along line K-K of Figure 9;
  • Figure 11 is a schematic cross-sectional view taken along line F-F of Figure 9;
  • Figure 12 is a schematic cross-sectional view taken along line J-J of Figure 9.
  • the present invention is a multi-cycle flow channel drilling system for large-scale well bore hard rock drilling, including downhole air hammer ground manifold and equipment, gas lift manifold and equipment, drilling drive, multi-cycle
  • the flow path drilling tool and the mud circulation device 6, the underground air hammer ground pipe and the equipment and the gas lift pipe sink and the device are all connected by the drilling drive device and the multi-circulation flow path drilling tool, and the mud circulation device 6 passes the erosion resistant gooseneck pipe 15 and the blast line 14 are connected to the drilling drive.
  • the multi-cycle flow path drilling tool comprises a coaxial four-channel drill pipe 22, a coaxial three-channel drill pipe 23 and a coaxial three-channel drill pipe 24 correspondingly connected from top to bottom.
  • the closed reverse circulation air hammer 25 the top of the coaxial four-channel drill pipe 22 is connected with the drilling drive device, and the bottom of the coaxial four-channel drill pipe 22 is connected to the coaxial three-channel drill pipe 23 through the air mixing joint 34.
  • the coaxial four-channel drill pipe 22 has a four-channel structure, from the outside to the inside, respectively, a downhole air hammer exhaust flow passage 32, a downhole air hammer injection air passage 31, and a gas lift.
  • the downhole air hammer injection air passage 31 and the downhole air hammer ground manifold are connected to the device, the gas lift injection air passage 33 and the gas lift pipe sink are connected with the device, and the gas lift sand discharge passage 33 is connected with the drilling drive device.
  • the coaxial four-channel drill pipe 22 includes a four-channel drill pipe outer pipe 50, a four-channel first inner pipe 51, a four-flow second inner pipe 52, and a fourth flow path third. Inner tube 53.
  • the coaxial four-channel drill pipe 22 forms a downhole air hammer exhaust flow path 32, a downhole air hammer injection flow path 31, a gas lift flow path 33, and a gas lift sand flow path 35 from the outside to the inside.
  • One ends of the four-channel first inner tube 51, the four-channel second inner tube 52 and the four-channel third inner tube 53 are respectively fixed with corresponding diameter inner tube short ribs 54 respectively, and the other ends are respectively fixed with diameter phases.
  • Corresponding inner tube nipples 55 are used for the two ends to be inserted and fixed with the four-channel kelly 12 and the aeration joint 34, respectively.
  • the coaxial three-channel drill pipe 23 and the coaxial three-channel drill collar 24 are all three-channel structures, and the underground air hammer exhaust flow passage 32 and the underground air hammer are respectively from the outside to the inside.
  • the injection air passage 31 and the gas lift sand passage 35, the downhole air hammer exhaust passage 31 and the downhole air hammer flow passage 35 communicate at the bottom of the multi-cycle flow path drill.
  • the coaxial three-channel drill pipe 23 includes a three-channel drill pipe outer pipe 60, a three-passage first inner pipe 61, and a three-passage second inner pipe 62.
  • the coaxial three-channel drill pipe 23 forms a downhole air hammer exhaust flow path 32, a downhole air hammer flow path 31, and a gas lift sand flow path 35 from the outside to the inside.
  • One ends of the three-channel first inner tube 61 and the three-channel second inner tube 62 are respectively fixed with a corresponding diameter of the inner tube male short section 63 by screwing or welding, and the other end is respectively fixed with a corresponding inner diameter of the inner tube.
  • Section 64 which is used for the two ends to be fixedly coupled to the aeration joint 34 and the coaxial three-channel drill collar 24, respectively.
  • the length of the three-channel drill pipe outer tube 50 of the coaxial four-channel drill pipe 22 and the three-channel drill pipe outer pipe 60 of the coaxial three-channel drill pipe 23 can be set according to actual drilling conditions, and both ends are specially threaded connections.
  • All the inner tube short and inner tube shorts of the coaxial four-channel drill pipe 22 and the coaxial three-channel drill pipe 23 are provided with righting blocks, and the righting block can be three or four according to actual use requirements.
  • the righting block of the inner tube short section serves to strengthen the wall of the tube, and the inner tube has a short section to support the wall and the suspension.
  • the aeration joint 34 shown in FIGS. 3 and 8 includes a top end tube 341, a bottom end tube 342, a suspension joint 343, and a joint outer tube 80.
  • the top end tube 341 and the bottom end tube 342 are fixed and connected by a suspension joint 343.
  • the top end tube 341 is a three-layer tube wall structure, and a plurality of air mixing holes 344 are opened on the innermost tube wall, and the bottom end tube 342 is opened. It is a two-layer pipe wall structure.
  • the two ends are respectively connected with the coaxial four-channel drill pipe 22 and the coaxial three-channel drill pipe 23, and it is convenient to turn the four-flow passage to the three-flow passage.
  • the two different flow path drills are connected, and each flow channel is independent of each other and does not interfere with each other.
  • the function of the aeration hole is to connect the gas-injection airflow channel in the coaxial four-channel drill pipe of the multi-circulation flow path drilling tool with the gas lift sand flow channel, and the compressed gas in the gas injection airflow channel and the gas lift sand discharge channel
  • the drilling fluid is mixed, and the average density of the mixed gas, liquid and solid three-phase flow drops sharply.
  • the bottom drilling fluid will carry the closed reverse circulation air.
  • the broken rock fragments of the hammer are returned, and the gas lift reverse circulation sand discharge is completed.
  • a circular hole passage 3431 is opened in the middle of the suspension joint, and a discontinuous annular passage 3432 is opened in the circumferential direction, and a suspension boss 3433 is radially disposed on the outer circumference of the suspension joint.
  • the suspension joint 343 is snapped into the joint outer tube 80 by the suspension boss 3433.
  • the outer end to inner three-layer pipe wall is an outer pipe wall A81, an intermediate pipe wall 82 and an inner pipe wall A83, and an outer passage A3411 and an intermediate passage 3412 are formed between adjacent pipe walls, and the inner pipe wall 81 is internally inside.
  • the air mixing hole is opened on the inner pipe wall 83.
  • the top end tube 341 and the suspension joint 343 are connected by welding or screwing, and the outer passage A3411 and the inner passage A3413 communicate with the annular passage 3431 and the circular hole passage 3432 of the suspension joint 343, respectively, and the bottom portion of the intermediate passage 3412 is closed.
  • the bottom end pipe 342 includes an outer pipe wall B84 and an inner pipe wall B85 from the outside to the inside, and an outer passage B3421 is formed between the two pipe walls, and an inner passage B3422 is formed inside the inner pipe wall 85.
  • the bottom end tube 342 and the suspension joint 343 are welded or screwed, and the outer passage B84 and the inner passage B85 communicate with the annular passage 3431 and the circular hole passage 3432 of the suspension joint 343, respectively.
  • the outer tube 80 of the joint has a threaded, square or hexagonal joint at both ends.
  • the threaded way is respectively connected with the upper four-channel drill pipe and the lower three-channel drill pipe, and the thread can be one end male buckle, one end female buckle, or two ends male buckle, or two ends female buckle; or can pass four or six squares
  • the joints and the like are respectively connected to the upper four-channel drill pipe and the lower three-channel drill pipe, and the joint outer pipe 80 has a hexagonal cross section or a square cross section.
  • the drilling drive of the drilling system may be a combination of a faucet 16, a coaxial four-way kelly 12 and a roller square fillet 11, or a top drive and a gas injector 17.
  • Figure 1 shows the drilling drive unit of the drilling system using the coaxial four-channel kelly 12.
  • the gas injector 17 is a four-circulating flow channel gas injector, which is installed at the bottom of the faucet 16, and a coaxial four-channel kelly 12 is installed at the bottom of the gas injector 17, and the gas injector 17 passes through the coaxial four-channel kelly and multi-cycle
  • the flow path drilling tool is connected; or the drilling drive device is driven by the top drive, and the coaxial four-channel kelly 12 and the roller square fill 11 are not required at this time.
  • the gas injector 17 is also connected to a downhole air hammer exhaust hose 19.
  • the coaxial four-channel kelly 12 is a coaxial four-channel structure like the coaxial four-channel drill pipe 22. It can be a square drill pipe or a hexagonal drill pipe. From the outside to the inside, there are a downhole air hammer exhaust flow passage 32, a downhole air hammer injection air passage 31, a gas lift air passage 33, and a gas lift sand passage 35.
  • the underground air hammer ground manifold and equipment include a downhole air hammer gas injection unit, a downhole air hammer boost unit 2, a downhole air hammer pressure relief mechanism 3, a downhole air hammer injection gas flow control valve 4, and a downhole air hammer injection.
  • the gas flow meter 5, the downhole air hammer floor gas injection pipe sink 7 and the downhole air hammer high pressure gas injection hose 13, and the downhole air hammer high pressure gas injection hose 13 are connected to the gas injector 17.
  • the gas lift manifold and the device include a gas lift gas injection unit 26, a gas lift pressurizing unit 27, a gas lift pressure relief mechanism 28, a gas lift gas flow control valve 29, a gas lift gas flow meter 30, and a gas lift.
  • the ground gas injection pipe 20 and the gas lift high pressure gas injection hose 18, and the gas lift high pressure gas injection hose 18 are connected to the gas injector 17.
  • the mud circulation system 6 is in communication with the borehole annulus 21 of the well through a mud return line 8.
  • the present invention provides a multi-cycle flow drilling process for large borehole hard rock drilling, comprising the steps of:
  • Step a as shown in FIG. 2, the compressed air of the underground air hammer ground pipe and the equipment is generated by the downhole air hammer gas injection unit 1 and the underground air hammer pressure unit 2, flows through the underground air hammer pressure relief mechanism 3, and the downhole air.
  • the hammer gas injection flow control valve 4, the downhole air hammer gas injection flow meter 5, the downhole air hammer floor gas injection pipe sink 7, and the downhole air hammer high pressure gas injection hose 13 reach the gas injector 17.
  • Step b under the splitting action of the gas injector 17, the compressed gas sequentially enters the coaxial four-channel drill pipe 22, the coaxial three-channel drill pipe 23, and the coaxial three-channel drill collar 24 of the downhole air hammer flow passage 31. In the middle, along the flow path and reach the closed reverse circulation air hammer 25, the closed reverse circulation air hammer 25 is driven to work.
  • Step c the gas after the work passes through the internal flow channel of the closed reverse circulation air hammer 25, and enters the downhole air hammer row of the coaxial three-channel drill collar 24, the coaxial three-channel drill pipe 23 and the coaxial four-channel drill pipe 22. In the air flow path 32, it goes up the flow path and reaches the gas injector 17.
  • Step d under the splitting action of the gas injector 17, the exhaust gas that drives the closed-end reverse circulation air hammer 25 to work is discharged to the outside of the drilling system via the downhole air hammer exhaust hose 19 connected to the gas injector 17.
  • Step e together with steps a to d, the compressed gas of the gas lift pipe and the device is generated by the gas lift gas injection unit 26 and the gas lift pressure unit 27, and flows through the gas lift pressure relief mechanism 28 and the gas lift gas flow control valve. 29.
  • the gas lift gas flow meter 30, the gas lift ground gas injection pipe 20, and the gas lift high pressure gas injection hose 18 reach the gas injector 17.
  • Step f under the splitting action of the gas injector 17, the compressed gas enters the gas-injecting gas flow path 33 of the coaxial four-channel drill pipe 22, descends along the flow path and reaches the coaxial four-channel drill pipe 22 and At the aeration joint 34 where the coaxial three-channel drill pipe 23 is connected.
  • Step g at the gas mixture joint 34, the compressed gas in the gas lift gas flow passage 33 is mixed with the drilling fluid in the gas lift sand discharge passage 35, and the pressure difference is between the well bore annulus 21 and the gas lift sand discharge passage 35.
  • the bottom drilling fluid will carry the cuttings that have been broken by the closed reverse circulation air hammer 25, and then pass through the coaxial three-channel drill collar 24, the coaxial three-channel drill pipe 23 and the coaxial four-channel drill pipe.
  • the gas lift of 22 passes through the flow passage 35 and then reaches the gas injector 17.
  • Step h under the action of the gas injector 17, the cuttings in the gas lift sand passage 35 pass through the faucet or top drive 16, the erosion resistant gooseneck 15 and the sand discharge line 14, and finally return to the mud circulation system 6,
  • the drilling fluid purified by the mud circulation system 6 will again be pumped into the borehole annulus 21 through the mud return line 8.
  • the system configuration of the present invention is specifically realized in that the ground injection device associated with the downhole air hammer, the injection line, and the exhaust line are connected.
  • the underground air hammer related ground injection device namely the downhole air hammer gas injection unit 1 and the downhole air hammer pressure unit 2 (including the air compressor and the supercharger), provides high pressure gas for the operation of the closed reverse circulation air hammer 25;
  • the downhole air hammer pressure relief mechanism 3 and the downhole air hammer gas injection flow control valve 4 adjust the amount of injected gas and release the pressure in the relevant flow passage of the downhole air hammer, which belongs to the safety control mechanism.
  • the downhole air hammer gas injection unit 1 and the downhole air hammer pressure relief mechanism 3 are connected by a high pressure line.
  • the downhole air hammer pressure relief mechanism 3 is installed in the downstream direction to install a downhole air hammer gas injection flowmeter 5 for metering the amount of gas delivered into the downhole air hammer; the downhole air hammer gas injection flowmeter 5 is connected upstream to the downhole air hammer pressure relief mechanism 3, downstream Connect the underground air hammer to the ground gas injection pipe.
  • the downhole air hammer floor gas injection pipe 7 is connected to a downhole air hammer high pressure gas injection hose 13 installed on the drill floor 9.
  • the downhole air hammer exhaust hose 19 is directly connected to the gas injector 17 below the faucet 16.
  • Gas lift related ground injection equipment namely gas lift gas injection unit 26 and gas lift boost unit 27 (including air compressors and boosters), provides high pressure gas for the formation of a gas lift reverse cycle.
  • the gas lift pressure relief mechanism 28 and the gas lift gas flow control valve 29 adjust the amount of injected gas and simultaneously release the pressure in the gas flow passage, which belongs to the safety control mechanism; the gas lift gas injection unit 26 and the gas lift pressure relief mechanism 28 are connected through the high pressure pipeline.
  • a gas lift gas flow meter 30 is installed in the downstream direction of the gas lift pressure relief mechanism 28 for metering the gas volume for gas lift.
  • the gas lift gas flow meter 30 is connected upstream of the gas lift pressure relief mechanism 28, and downstream of the gas lift ground gas injection manifold 20.
  • the gas lift floor gas injection manifold 20 is connected to a high pressure gas lift high pressure gas injection hose 18 mounted on the rig derrick.
  • the gas lift reverse circulation sand discharge line 14 is connected upstream of the erosion resistant gooseneck pipe 15 above the faucet 16, and downstream to the mud circulation system 6 through a section of the sand discharge hard line 10.
  • the drilling fluid purified by the mud circulation system 6 is reinjected into the borehole annulus 21 through the mud return line 8 to ensure that the drilling fluid level in the borehole annulus is maintained within a reasonable height range.
  • the drilling drive device of the multi-circulation runner drilling system for large-scale well bore hard rock drilling can adopt the combination of the faucet 16, the coaxial four-channel kelly 12 and the roller square fill 11 . It is also possible to adopt the top drive method, and the top drive can simultaneously realize the functions of the faucet 16, the coaxial four-way square drill pipe 12 and the roller square fill 11 .
  • the faucet 16 (or top drive) is coupled to the multi-cycle tool. The upper end of the faucet 16 (or the top drive) is connected with a special erosion-resistant gooseneck pipe 15, and the outlet of the erosion-resistant gooseneck 15 is connected by a high-pressure gas-lifting reverse circulation sand discharge line 14.
  • the lower end is connected to the gas injector 17 by means of a thread or a flange, and the faucet and the gas injector 17 can also be processed as a whole, that is, a four-flow gas injection faucet.
  • the lower end of the gas injector 17 is screwed to the four-way kelly 12 by a thread, and the four-way kelly 12 is connected to the square joint and is connected to the coaxial four-channel drill pipe 22.
  • the lower end of the top drive is connected to the gas injector 17 and the coaxial four-channel drill pipe 22 by a positive buckle.
  • the coaxial three-channel drill pipe 23, the coaxial three-channel drill collar 24 and the closed reverse circulation air hammer 25 are sequentially connected below the coaxial four-channel drill pipe 22.
  • the underground air hammer gas injection unit 1 is composed of several air compressors, and the underground air hammer pressure unit 2 is composed of several superchargers. The specific equipment quantity should be determined according to the actual project.
  • the downhole air hammer gas injection unit 1 and the downhole air hammer pressure unit 2 provide the necessary high pressure gas for the closed reverse circulation air hammer 25 to operate.
  • the downhole air hammer gas injection unit 1 and the downhole air hammer pressure relief mechanism 3 are connected by a high pressure line, and the pressure level of the high pressure line is usually not lower than 21 MPa.
  • the downhole air hammer pressure relief mechanism 3 is composed of a series of valves, muffling equipment, pressure gauges, etc., and is a safety device for releasing system pressure and regulating the amount of gas entering the system.
  • Downhole air hammer pressure relief mechanism 2 is provided with a downhole air hammer injection gas flow control valve 4 and a downhole air hammer gas injection flow meter 5 for regulating and metering the actual gas volume entering the downhole closed cycle air hammer 25.
  • the underground air hammer floor gas injection pipe sink 7 is a high-pressure pipe sink, and its pressure level is usually not lower than 21 MPa.
  • the gas injector 17 has a pressure level of usually not less than 21 MPa, and the two are connected by a crucible.
  • the gas injector 17 has a four-channel structure, the upper end of which is connected to the faucet or top drive 16, and the lower end is connected to the coaxial four-channel drill pipe 22 (or the four-channel kelly 12).
  • the function of the gas injector 17 is to distribute the high pressure gas from the downhole air hammer high pressure gas injection hose 13 to the downhole air hammer flow channel 31 of the four-channel square drill pipe 12, and the second is to be closed from the underground.
  • the gas discharged from the circulating air hammer 25 is discharged outside the system through the downhole air hammer exhaust hose 19, and the third is to distribute the high pressure gas from the gas lift high pressure gas injection hose 18 to the gas lift gas flow of the four-way square drill pipe 12.
  • the fourth is to connect the faucet 16 and the gas lift sand passage 35 of the four-way gangster 12.
  • the upper part of the gas injector 17 is connected to the faucet or the top drive 16, and if the faucet 16 is connected, it is a reverse connection; if the top drive is connected, it is a positive connection.
  • the gooseneck on the faucet or top drive 16 is an erosion-resistant gooseneck 15 , and the erosion-resistant gooseneck 15 has a buffer zone at the turn, which can effectively reduce the erosion of the gooseneck by the high-speed fluid, and the erosion resistance
  • the gooseneck 15 is a replaceable component.
  • the four-way kelly 12 connected to the lower portion of the injector 17 is typically a hexagonal kelly.
  • the lower end of the four-way kelly 12 is connected to the square joint.
  • the coaxial four-channel drill pipe 22 can be directly connected without using the four-way square drill pipe 12. From the top to the bottom of the well assembly: coaxial four-channel drill pipe 22, coaxial three-channel drill pipe 23, coaxial three-channel drill collar 24 and closed reverse circulation air hammer 25, which are mainly threaded with each other. Connection or welding, flange connection is also possible for special occasions.
  • the outer tube of the coaxial four-channel drill pipe 22, the coaxial three-channel drill pipe 23, and the coaxial three-channel drill collar 24 may be a conventional standard drill pipe or a non-standard drill pipe, which is determined according to the diameter of the wellbore.
  • Three inner tubes and two inner tubes are respectively added inside.
  • the closed reverse circulation air hammer 25 comprises a closed reverse circulation air hammer body and a dedicated large diameter reverse circulation drill bit.
  • the gas lift gas injection unit 26 is composed of several air compressors, and the gas lift pressure unit 27 is composed of several superchargers. The specific equipment quantity should be determined according to the actual project.
  • the gas lift gas injection unit 26 and the gas lift boost unit 27 provide the necessary high pressure gas for the gas lift reverse cycle.
  • the gas lift gas injection unit 26 is connected to the gas lift pressure relief mechanism 28 through a high pressure line, and the pressure level of the high pressure line is usually not lower than 21 MPa.
  • the gas lift pressure relief mechanism 28 is composed of a series of valves, muffling devices, pressure gauges, etc., and is a safety device for releasing system pressure and regulating the amount of gas entering the system. Downstream of the gas lift pressure relief mechanism 28, a downhole gas lift gas flow control valve 29 and a gas lift gas flow meter 30 are provided for regulating and metering the actual gas volume consumed by the gas lift reverse cycle.
  • the gas lift ground gas injection pipe 20 is a high pressure manifold, and its pressure level is usually not lower than 21 MPa, and is composed of a series of high-pressure hard pipelines, high-pressure hose lines, conversion joints, and the like.
  • the part of the high-pressure gas injection pipeline on the derrick may be a hose line or a hard pipeline, which is determined by the actual situation on site.
  • the gas lift high pressure gas injection hose 18 connected to the gas injector 17 is usually not less than 21 MPa in pressure level, and the two are connected by a crucible.
  • the gas lift sand discharge line includes a sand discharge line 14 and a sand discharge hard line 10, and the pressure level is not less than 7 MPa.
  • the drilling fluid containing the cuttings carried by the gas lift enters the mud circulation system 6 through the sand discharging line 14 and the sand discharging hard line 10, respectively. After a series of purification treatments, the drilling fluid is again transported through the mud return line 8 to the borehole annulus 21 for use in the reverse circulation of the gas.
  • the process flow of implementing the drilling of the multi-cycle flow channel drilling system of the present invention is as follows:
  • the compressed gas required for the operation of the closed reverse circulation air hammer 25 is generated by the downhole air hammer gas injection unit 1 and the downhole air hammer pressure unit 2, flows through the downhole air hammer pressure relief mechanism 3, the downhole air hammer injection gas flow control valve 4, The underground air hammer gas injection flowmeter 5, the underground air hammer ground gas injection pipe sink 7, and the underground air hammer high pressure gas injection hose 13 reach the gas injector 17.
  • the compressed gas enters the four-channel drill (four-way square drill pipe 12, coaxial four-channel drill pipe 22) and the three-channel drill (coaxial three-channel drill pipe 23,
  • the downhole air hammer injection passage 31 of the coaxial three-channel drill collar 24) descends along the flow passage and reaches the closed reverse circulation air hammer 25, and drives the closed reverse circulation air hammer 25 to work, and the gas after the work is passed.
  • the compressed gas required for the gas lift reverse circulation is generated by the gas lift gas injection unit 26 and the gas lift pressure unit 27, and flows through the gas lift pressure relief mechanism 28, the gas lift gas flow control valve 29, and the gas lift gas flow rate.
  • the meter 30, the gas lift floor gas injection pipe 20, and the gas lift high pressure gas injection hose 18 reach the gas injector 17. Under the action of the gas injector 17, the compressed gas enters into the gas-injection gas flow path 33 of the four-channel drill (four-way square drill pipe 12, coaxial four-channel drill pipe 22), along the flow path Downstream and reaching the junction of the coaxial four-channel drill pipe 22 and the coaxial three-channel drill pipe 23.
  • gas mixing joint 34 at the same place, which can communicate with the gas lift air passage 33 and the gas lift sand flow passage 35 in the coaxial four-channel drill pipe 22, and the compressed gas and gas lift in the gas lift air passage 33.
  • the drilling fluid in the sand channel 34 is mixed. After mixing, the average density of gas, liquid and solid three-phase flow drops sharply. At the same time, under the pressure difference between the borehole annulus and the gas lift sand channel 35, the bottom hole drilling fluid will be crushed by the closed reverse circulation air hammer 25.
  • the falling debris is returned to the third channel drill (coaxial three-channel drill collar 24, coaxial three-channel drill pipe 23) and four-channel drill (coaxial four-channel drill pipe 22, four-way runner)
  • the gas lift of the drill pipe 12) lifts the sand flow path 35 and then reaches the gas injector 17.
  • the cuttings in the gas lift sand passage 35 pass through the water head 16, the erosion resistant gooseneck 15, the sand discharge line 14, and the sand hard line 10, and finally return to the mud circulation system 6.
  • the drilling fluid purified by the mud circulation system 6 will again be pumped into the wellbore annulus through the mud return line 8.
  • the main components such as the gas injector 17, the coaxial four-channel drill pipe 22, the coaxial three-channel drill pipe 23, the coaxial three-channel drill collar 24, and the large-diameter closed reverse circulation air hammer 25 are formed.
  • the gas injector 17, the four-channel square drill pipe 12, and the coaxial four-channel drill pipe 22 have four passages, which are respectively used for air hammer injection, air hammer exhaust, gas lift gas injection and gas lift sand discharge;
  • the coaxial three-channel drill pipe 23 and the coaxial three-channel drill collar 24 have three flow passages, which are respectively used for air hammer injection, air hammer exhaust, and gas lift sand discharge.
  • each flow passage is independent of each other and does not interfere with each other;
  • the closed-type reverse circulation air hammer 25 has its intake air and exhaust gas both completed inside the hammer body, and the working performance is free from external interference.
  • the system is an organic combination of gas lift reverse circulation sand discharge and air hammer hard rock rapid drilling.
  • Gas lift reverse circulation sand discharge can effectively solve the problem that the above-mentioned large-size wellbore drilling method can not effectively discharge sand; closed reverse circulation air hammer can not only effectively improve the hard rock drilling efficiency, but also the air hammer working performance will not be affected by the formation.
  • the system uses less gas injection equipment, less gas injection, and lower comprehensive cost.
  • the gas consumption of this system is more than 60% compared with conventional positive circulation air hammer drilling; this system can not only achieve gas lift reverse circulation Sand is discharged, and if necessary, it can be switched to positive circulation mud drilling.

Abstract

公开了一种用于大尺寸井眼硬岩钻井的多循环流道钻井系统及钻井工艺,钻井系统包括井下空气锤地面管汇与设备、气举管汇与设备、钻井驱动装置、多循环流道钻具和泥浆循环设备(6),井下空气锤地面管汇与设备和气举管汇与设备均通过钻井驱动装置与多循环流道钻具对应连通,泥浆循环设备(6)通过耐冲蚀鹅颈管(15)和排砂管线(14)与钻井驱动装置连接。本系统集合了气举反循环排砂和闭式反循环空气锤二者的优势,在保证钻进效率的同时还可以大幅度降低注气量,有利于减少设备投入、减小场地占用面积、降低对动力和钻井液的需求量、节省燃油消耗。

Description

一种用于大尺寸井眼硬岩钻井的多循环流道钻井系统及钻井工艺 技术领域
本发明涉及钻井工程技术领域,具体涉及一种用于大尺寸井眼硬岩钻井的多循环流道钻井系统及钻井工艺。
背景技术
目前,国内外大尺寸井眼钻井方法有很多种,主要分为旋转钻井、旋挖钻机钻井、钻爆法凿井(矿山建设)、竖井掘进机钻井(矿山建设)、冲击回转(或冲旋)钻井等。
(1)旋转钻井
旋转钻井采用牙轮钻头、滚刀钻头、刮刀钻头等以切削破岩方式为主的破岩工具来实施钻井,可采用泥浆正循环和气举反循环两种钻井工艺。如果钻井能力(扭矩)不足,难以实现一钻成井的能力时,通常还可采用多级扩孔的方式完成钻井。现国内采用气举反循环旋转钻井法最大可钻
Figure PCTCN2018088048-appb-000001
直径的井眼,理论钻探可达1000m(如中煤特凿公司的AD130/1000型大型竖井钻机)。但是,这种钻井方式尽管满足大尺寸井眼循环携砂的要求,但其只适合钻软岩,完全不适合于硬岩地层的钻进。
(2)旋挖钻机钻井
旋挖钻机钻井以“钻+挖”这种方式为主。目前旋挖钻机可实现4~5m直径的钻井作业。但该工法仍侧重于软岩钻进,其在硬岩层的钻进效率很低,且最大钻井深度也在1500m以内(如三一重工SR630RC8型旋挖钻机,其最大钻井直径
Figure PCTCN2018088048-appb-000002
最大钻深140m)。此法不能满足硬岩、深井、高效钻井的要求。
(3)竖井掘进机钻井、钻爆法凿井(矿山建设)
竖井掘进机钻井依然属于矿山建设领域,此法通常用于软岩钻进。而钻爆法是矿山建设领域的一种爆破开挖硬岩的方法。此法建井成本高、周期长,且并不属于钻井范畴。
(4)冲击回转(或冲旋)钻井
冲击回转(或冲旋)钻井主要以空气锤作为破岩工具。空气锤的硬岩钻进效率非常高,其效率最大可较常规旋转钻井提高10倍以上。目前,国内大直径钻井用的空气锤主要集中在石油钻井、桩基工程和煤矿钻井、矿山救援等领域。
①大直径正循环空气锤(单体锤/集束式锤)
目前,油气钻井行业正循环空气锤钻井最大直径通常为
Figure PCTCN2018088048-appb-000003
消耗气量400~500m 3/min,钻进最大深度不超过600m。桩基工程领域采用最大直径正循环空气锤(通常φ800mm~φ1200mm)配合旋挖钻机实施钻井,最大深度不足100m。
采用现有正循环空气锤实施大尺寸井眼钻井,其所需气量大、设备数量多、成本高等成了普遍问题。同时,大尺寸井眼正循环空气锤钻井时排沙十分困难,不仅能耗极高,且存在很大的井下安全隐患。而且高速气体对井壁冲蚀明显,很容易造成井壁失稳等复杂问题。该工法虽然高效,但依然不能满足大尺寸硬岩深井钻井的要求。
②大直径反循环空气锤(单体锤/集束式锤)
目前,国内拥有大直径反循环空气锤钻井技术的主要有:中石油川庆钻探工程有限公司的φ450~700mm井眼用单体大直径反循环空气锤(涉及公告号为CN105113978B,专利名称为“一种可用于大尺寸井眼钻井的单体大直径反循环空气锤”的中国发明专利;以及公告号为CN105178859A,专利名称为“一种用于油气钻井的全井段自吸式反循环气体钻井系统”的中国发明专利);中煤科工集团西安研究院有限公司的Φ500~800mm井眼用反循环集束式空气锤(涉及申请号为201410747538.9,专利名称:“扩孔用反循环集束式潜孔锤”的中国发明专利申请;以及公告号为CN204326956U,专利名称为“一种扩孔用反循环集束式潜孔锤”的中国实用新型专利)。大直径反循环空气锤钻井,需要配套采用双壁钻杆,是采用纯气体实施驱动空气锤和循环带砂的一种大尺寸井眼硬岩钻井技术。但是目前该技术受到井深、地层出水、井漏等条件的制约,且仍处在试验研究阶段。据悉,该技术目前最大试验或应用井深不超过800m,井眼直径不超过Φ800mm。
③闭式循环三通道反循环空气锤
吉林大学将空气锤的高效硬岩钻进优势和泥浆正循环钻井的保护井壁优势相结合,发明了闭式循环三通道反循环空气锤钻井技术(其公告号为CN102966304B,专利名称为“泥浆护壁空气潜孔锤钻具及钻井工艺”的中国发明专利),然而该发明仍然采用的是泥浆正循环的携砂工艺,因此该方法仅仅适合用于小尺寸井眼的硬岩钻井。
发明内容
本发明的目的是提供一种用于大尺寸井眼硬岩钻井的多循环流道钻井系统及钻井工艺,为大尺寸井眼深井硬岩提供一种行之有效的解决办法,不仅可以提高 钻井效率,同时还能降低能耗,节约综合成本。
本发明通过以下技术方案实现上述目的:
一种用于大尺寸井眼硬岩钻井的多循环流道钻井系统,包括井下空气锤地面管汇与设备、气举管汇与设备、钻井驱动装置、多循环流道钻具和泥浆循环设备,井下空气锤地面管汇与设备和气举管汇与设备均通过钻井驱动装置与多循环流道钻具对应连通,泥浆循环设备通过耐冲蚀鹅颈管和排砂管线与钻井驱动装置连接。
进一步地,多循环流道钻具包括自上至下依次连通的同轴四流道钻杆、同轴三流道钻杆、同轴三流道钻铤和闭式反循环空气锤,同轴四流道钻杆顶部与钻井驱动装置连通,同轴四流道钻杆底部通过混气接头与同轴三流道钻杆连通。
进一步地,所述同轴四流道钻杆为四通道结构,由外向内分别为井下井下空气锤排气流道、空气锤注气流道、气举注气流道和气举排砂流道,井下空气锤注气流道与井下空气锤地面管汇与设备连通,气举注气流道与气举管汇与设备连通,气举排砂流道与钻井驱动装置连通;所述同轴三流道钻杆和同轴三流道钻铤均为三通道结构,由外向内分别为井下空气锤排气流道、井下空气锤注气流道和气举排砂流道,井下空气锤排气流道和井下空气锤注气流道在多循环流道钻具的底部连通。
进一步地,所述混气接头包括顶部端管、底部端管、悬挂接头和接头外管,顶部端管和底部端管通过悬挂接头固定并连通后安装在接头外管内,并与接头外管内壁形成外通道,顶部端管为三层管壁结构,其最内层管壁上开设有若干混气孔,底部端管为两层管壁结构。
进一步地,悬挂接头中部开有圆孔通道,周向同轴开设有不连续的环形通道,悬挂接头外周径向设置有悬挂凸台。
进一步地,顶部端管由外到内的三层管壁为外管壁A、中间管壁和内管壁A,相邻管壁间形成外通道A、中间通道,内管壁内部为内通道A,混气孔开设在内管壁上。
进一步地,顶部端管与悬挂接头之间通过焊接或者螺纹连接,外通道A和内通道A分别与悬挂接头的环形通道和圆孔通道连通,中间通道底部封堵。
进一步地,底部端管由外到内依次包括外管壁B和内管壁B,两管壁间形成外通道B,内管壁内部为内通道B。
进一步地,底部端管与悬挂接头之间通过焊接或者螺纹连接,外通道B和内 通道B分别与悬挂接头的环形通道和圆孔通道连通。
进一步地,接头外管两头具有螺纹、四方或六方接头。
进一步地,所述钻井驱动装置包括钻井驱动装置包括水龙头、同轴四流道方钻杆和滚子方补心,注气器为四循环流道注气器,其安装在水龙头底部,注气器底部安装有同轴四流道方钻杆,滚子方补心安装在同轴四流道方钻杆底部,注气器通过同轴四流道方钻杆与多循环流道钻具连通,注气器还连通有井下空气锤排气软管。
进一步地,所述钻井驱动装置包括顶驱和注气器,注气器为四循环流道注气器,其安装在顶驱底部,顶驱通过注气器与多循环流道钻具连通,注气器还连通有井下空气锤排气软管。
进一步地,所述井下空气锤地面管汇与设备包括依次连接的井下空气锤注气单元、井下空气锤增压单元、井下空气锤泄压机构、井下空气锤注气流量控制阀、井下空气锤注气流量计、井下空气锤地面注气管汇和井下空气锤高压注气软管,井下空气锤高压注气软管与注气器连接。
进一步地,所述气举管汇与设备包括依次连接的气举注气单元、气举增压单元、气举泄压机构、气举注气流量控制阀、气举注气流量计、气举地面注气管汇和气举高压注气软管,气举高压注气软管与注气器连接。
另一方面,本发明提供了一种用于大尺寸井眼硬岩钻井的多循环流道钻井工艺,包括以下步骤:
a、井下空气锤地面管汇与设备的压缩气体由井下空气锤注气单元和井下空气锤增压单元产生,流经井下空气锤泄压机构、井下空气锤注气流量控制阀、井下空气锤注气流量计、井下空气锤地面注气管汇、井下空气锤高压注气软管到达注气器;
b、在注气器的分流作用下,压缩气体依次进入到同轴四流道钻杆、同轴三流道钻杆和同轴三流道钻铤的井下空气锤注气流道中,沿该流道下行并到达闭式反循环空气锤处,驱动闭式反循环空气锤做功;
c、做功后的气体通过闭式反循环空气锤内部流道,进入到同轴三流道钻铤、同轴三流道钻杆和同轴四流道钻杆的井下空气锤排气流道中,沿该流道上行并到达注气器;
d、在注气器的分流作用下,驱动完闭式反循环空气锤做功的废气经由与注气器相连的井下空气锤排气软管排出到钻井系统之外;
e、与步骤a~d同时,气举管汇与设备的压缩气体由气举注气单元和气举增压单元产生,流经气举泄压机构、气举注气流量控制阀、气举注气流量计、气举地面注气管汇、气举高压注气软管到达注气器;
f、在注气器的作用下,压缩气体进入到同轴四流道钻杆、同轴三流道钻杆和同轴三流道钻铤的气举注气流道中,顺着该流道下行并到达同轴四流道钻杆与同轴三流道钻杆连接处的混气接头处;
g、在混气接头处,气举注气流道内的压缩气体与气举排砂流道内的钻井液混合,并在井眼环空与气举排砂流道内压差作用下,井底钻井液会携带被闭式反循环空气锤破碎掉的岩屑上返,依次经过同轴三流道钻铤、同轴三流道钻杆和同轴四流道钻杆的气举排砂流道,然后到达注气器;
h、在注气器的作用下,气举排砂通道内的岩屑经过水龙头、耐冲蚀鹅颈管、排砂管线以及排砂硬管线,最终回至泥浆循环系统,经过泥浆循环系统净化过的钻井液将再一次通过泥浆回流管线泵入到井眼环空中。
本发明的一种用于大尺寸井眼硬岩钻井的多循环流道钻井系统及钻井工艺,与现有技术相比,具有以下进步特点:
①本发明要求环空灌注钻井液,且钻井液液面要维持在合理高度范围内。钻井液对井壁可以起到保护作用,有利于井筒稳定;
②利用气举反循环工艺排砂,不仅解决了大尺寸井眼深井排砂困难的问题,同时钻进时井底岩屑全部从钻具中心的气举排砂流道排至地表,避免了气流在携带岩屑上返的过程中对井壁造成冲蚀,有利于防止复杂地层钻进过程中井壁扰动性坍塌的发生;
③本发明集合了气举反循环排砂和闭式反循环空气锤二者的优势,在保证钻进效率的同时还可以大幅度降低注气量,特别是在大直径井段钻进时更为明显;这有利于减少设备投入、减小场地占用面积、降低对动力和钻井液的需求量、节省燃油消耗;
④处理地层出水能力较常规大直径正、反循环空气锤强。通常,不论是正循环空气锤还是反循环空气锤,如果地层出水均会影响空气锤的工作性能;本系统所涉及的闭式反循环空气锤完全不受地层出水的影响;
⑤本发明为所有流体封闭循环,钻井液和井底岩屑也通过气举反循环的方式排至地表,故无需安装如正循环气体钻井所用的旋转防喷器。
附图说明
图1为本发明的整体结构示意图;
图2为本发明的流体在多循环流道钻具内的路径示意图;
图3为混气接头的结构示意图;
图4为图3中A-A处截面示意图;
图5为图3中B-B处截面示意图;
图6为同轴四流道钻杆的结构示意图;
图7为同轴三流道钻杆的结构示意图;
图8为图3中C-C处截面示意图。
图9为同轴四流道方钻杆的结构示意图;
图10为图9中K-K处截面示意图;
图11为图9中F-F处截面示意图;
图12为图9中J-J处截面示意图。
图中,1、井下空气锤注气单元;2、井下空气锤增压单元;3、井下空气锤泄压机构;4、井下空气锤注气流量控制阀;5、井下空气锤注气流量计;6、泥浆循环系统;7、井下空气锤地面注气管汇;8、泥浆回流管线;9、钻台;10、排砂硬管线;11、滚子方补心;12、同轴四流道方钻杆;13、井下空气锤高压注气软管;14、排砂软管线;15、耐冲蚀鹅颈管;16、水龙头;17、四循环流道注气器;18、气举高压注气软管;19、井下空气锤排气软管;20、气举地面注气管汇;21、井眼环空;22、同轴四流道钻杆;23、同轴三流道钻杆;24、同轴三流道钻铤;25、闭式反循环空气锤;26、气举注气单元;27、气举增压单元;28、气举泄压机构;29、气举注气流量控制阀;30、气举注气流量计;31、井下空气锤注气流道;32、井下空气锤排气流道;33、气举注气流道;34、混气结构;341、顶部端管;3411、外通道A;3412、中间通道;3413、内通道A;342、底部端管;3421、外通道B;3422、内通道B;343、悬挂接头;3431、圆孔通道;3432、环形通道;3433、悬挂凸台;35、气举排砂流道;50、四流道钻杆外管;51、四流道第一内管;52、四流道第二内管;53、四流道第三内管;54、内管公短节;55、内管母短节;60、三流道钻杆外管;61、三流道第一内管;62、三流道第二内管;63、内管公短节64、内管母短节;80、接头外管;81、外管壁A;82、中间管壁;83、内管壁A;84、外管壁B;85、内管壁B。
具体实施方式
以下结合附图及实施例对本发明作进一步详细说明。
如图1所示,本发明一种用于大尺寸井眼硬岩钻井的多循环流道钻井系统,包括井下空气锤地面管汇与设备、气举管汇与设备、钻井驱动装置、多循环流道钻具和泥浆循环设备6,井下空气锤地面管汇与设备和气举管汇与设备均通过钻井驱动装置与多循环流道钻具对应连通,泥浆循环设备6通过耐冲蚀鹅颈管15和排砂管线14与钻井驱动装置连接。
如图2至图8所示,其中,多循环流道钻具包括自上至下依次对应连通的同轴四流道钻杆22、同轴三流道钻杆23、同轴三流道钻铤24和闭式反循环空气锤25,同轴四流道钻杆22顶部与钻井驱动装置连通,同轴四流道钻杆22底部通过混气接头34与同轴三流道钻杆23连通。
如图2、图4及图6所示,同轴四流道钻杆22为四通道结构,由外向内分别为井下空气锤排气流道32、井下空气锤注气流道31、气举注气流道33和气举排砂流道35。井下空气锤注气流道31与井下空气锤地面管汇与设备连通,气举注气流道33与气举管汇与设备连通,气举排砂流道33与钻井驱动装置连通。具体地,如图6所示,同轴四流道钻杆22包括四流道钻杆外管50、四流道第一内管51、四流道第二内管52和四流道第三内管53。由此,同轴四流道钻杆22由外向内形成井下空气锤排气流道32、井下空气锤注气流道31、气举注气流道33和气举排砂流道35。其中四流道第一内管51、四流道第二内管52和四流道第三内管53的一端分别固定有直径相对应的内管公短节54,另一端分别固定有直径相对应的内管母短节55,其用于两端分别与四流道方钻杆12和混气接头34插接固定。
如图2、图5和图7所示,同轴三流道钻杆23和同轴三流道钻铤24均为三通道结构,由外向内分别为井下空气锤排气流道32、井下空气锤注气流道31和气举排砂流道35,井下空气锤排气流道31和井下空气锤注气流道35在多循环流道钻具的底部连通。如图7所示,其中同轴三流道钻杆23包括三流道钻杆外管60、三流道第一内管61和三流道第二内管62。由此,同轴三流道钻杆23由外向内形成井下空气锤排气流道32、井下空气锤注气流道31和气举排砂流道35。三流道第一内管61和三流道第二内管62的一端分别通过螺纹或焊接的方式固定有直径相对应的内管公短节63,另一端分别固定有直径相对应的内管母短节64,其用于两端分别与混气接头34和同轴三流道钻铤24插接固定。
同轴四流道钻杆22的四流道钻杆外管50和同轴三流道钻杆23的三流道钻杆外管60的长度可根据实际钻井情况设置,两端均为特制螺纹连接,一头公扣,一头母扣。同轴四流道钻杆22和同轴三流道钻杆23中所有的内管公短节和内管 母短节均带有扶正块,扶正块根据实际使用需求可为三块或四块,内管公短节的扶正块起到扶正管壁的作用,内管母短节扶正管壁和悬挂的作用。
同轴四流道钻杆22与同轴三流道钻杆23的井下空气锤排气流道32、井下空气锤注气流道31和气举排砂流道35,各流道为分别连通。
如图3和图8所示的混气接头34,包括顶部端管341、底部端管342、悬挂接头343和接头外管80,顶部端管341和底部端管342通过悬挂接头343固定并连通后安装在接头外管80内,并与接头外管80内壁形成外通道345,顶部端管341为三层管壁结构,其最内层管壁上开设有若干混气孔344,底部端管342为两层管壁结构。其两端分别与同轴四流道钻杆22和同轴三流道钻杆23对应连接,方便的将由四流道转三流道。两不同流道钻具连通,且各个流道相互独立,互不干扰。混气孔的作用是将多循环流道钻具的同轴四流道钻杆内的气举注气流道与气举排砂流道连通,将气举注气流道内的压缩气体与气举排砂流道内的钻井液混合,混合后的气、液、固三相流平均密度骤降,同时在井眼环空与气举排砂流道内压差作用下,井底钻井液会携带被闭式反循环空气锤破碎掉的岩屑上返,完成气举反循环排砂。
悬挂接头中部开有圆孔通道3431,周向同轴开设有不连续的环形通道3432,悬挂接头外周径向设置有悬挂凸台3433。悬挂接头343通过悬挂凸台3433卡装在接头外管80内。
顶部端管341由外到内的三层管壁为外管壁A81、中间管壁82和内管壁A83,相邻管壁间形成外通道A3411、中间通道3412,内管壁81内部为内通道A3413,混气孔开设在内管壁83上。
顶部端管341与悬挂接头343之间通过焊接或者螺纹连接,外通道A3411和内通道A3413分别与悬挂接头343的环形通道3431和圆孔通道3432连通,中间通道3412底部封堵。
底部端管342由外到内依次包括外管壁B84和内管壁B85,两管壁间形成外通道B3421,内管壁85内部为内通道B3422。
底部端管342与悬挂接头343之间通过焊接或者螺纹连接,外通道B84和内通道B85分别与悬挂接头343的环形通道3431和圆孔通道3432连通。
接头外管80两头具有螺纹、四方或六方接头。通过螺纹方式分别与上方的四流道钻杆和下方的三流道钻杆连接,螺纹可以为一端公扣、一端母扣,或者两端公扣,或者两端母扣;也可以通过四方或六方接头等插接的方式分别与上方的四 流道钻杆和下方的三流道钻杆连接,接头外管80为六方截面,也可以是四方截面。
钻井系统的钻井驱动装置可以采用水龙头16、同轴四流道方钻杆12和滚子方补心11的组合方式,也可以采用顶驱和注气器17的方式。图1所示为钻井系统的钻井驱动装置利用同轴四流道方钻杆12的情况,同轴四流道方钻杆12上方为钻井驱动装置的水龙头16和注气器17,注气器17为四循环流道注气器,其安装在水龙头16底部,注气器17底部安装有同轴四流道方钻杆12,注气器17通过同轴四流道方钻杆与多循环流道钻具连通;或者钻井驱动装置为顶驱驱动,此时便不需要同轴四流道方钻杆12和滚子方补心11。顶驱下方连接注气器17,注气器17为四循环流道注气器,顶驱通过注气器17与多循环流道钻具连通。注气器17还连通有井下空气锤排气软管19。
如图9至图12所示,同轴四流道方钻杆12与同轴四流道钻杆22一样,为同轴四通道结构。可以是四方钻杆,也可以是六方钻杆。其由外向内分别为井下空气锤排气流道32、井下空气锤注气流道31、气举注气流道33和气举排砂流道35。
井下空气锤地面管汇与设备包括依次连接的井下空气锤注气单元1、井下空气锤增压单元2、井下空气锤泄压机构3、井下空气锤注气流量控制阀4、井下空气锤注气流量计5、井下空气锤地面注气管汇7和井下空气锤高压注气软管13,井下空气锤高压注气软管13与注气器17连接。
气举管汇与设备包括依次连接的气举注气单元26、气举增压单元27、气举泄压机构28、气举注气流量控制阀29、气举注气流量计30、气举地面注气管汇20和气举高压注气软管18,气举高压注气软管18与注气器17连接。
泥浆循环系统6通过泥浆回流管线8与钻井的井眼环空21连通。
另一方面,本发明提供了一种用于大尺寸井眼硬岩钻井的多循环流道钻井工艺,包括以下步骤:
步骤a、如图2所示,井下空气锤地面管汇与设备的压缩气体由井下空气锤注气单元1和井下空气锤增压单元2产生,流经井下空气锤泄压机构3、井下空气锤注气流量控制阀4、井下空气锤注气流量计5、井下空气锤地面注气管汇7、井下空气锤高压注气软管13到达注气器17。
步骤b、在注气器17的分流作用下,压缩气体依次进入到同轴四流道钻杆22、同轴三流道钻杆23和同轴三流道钻铤24的井下空气锤注气流道31中,沿该流道下行并到达闭式反循环空气锤25处,驱动闭式反循环空气锤25做功。
步骤c、做功后的气体通过闭式反循环空气锤25内部流道,进入到同轴三流道钻铤24、同轴三流道钻杆23和同轴四流道钻杆22的井下空气锤排气流道32中,沿该流道上行并到达注气器17。
步骤d、在注气器17的分流作用下,驱动完闭式反循环空气锤25做功的废气经由与注气器17相连的井下空气锤排气软管19排出到钻井系统之外。
步骤e、与步骤a~d同时,气举管汇与设备的压缩气体由气举注气单元26和气举增压单元27产生,流经气举泄压机构28、气举注气流量控制阀29、气举注气流量计30、气举地面注气管汇20、气举高压注气软管18到达注气器17。
步骤f、在注气器17的分流作用下,压缩气体进入到同轴四流道钻杆22的气举注气流道33中,沿该流道下行并到达同轴四流道钻杆22与同轴三流道钻杆23连接处的混气接头34处。
步骤g、在混气接头34处,气举注气流道33内的压缩气体与气举排砂流道35内的钻井液混合,并在井眼环空21与气举排砂流道35内压差作用下,井底钻井液会携带被闭式反循环空气锤25破碎掉的岩屑上返,依次经过同轴三流道钻铤24、同轴三流道钻杆23和同轴四流道钻杆22的气举排砂流道35,然后到达注气器17。
步骤h、在注气器17的作用下,气举排砂通道35内的岩屑经过水龙头或顶驱16、耐冲蚀鹅颈管15和排砂管线14,最终回至泥浆循环系统6,经过泥浆循环系统6净化过的钻井液将再一次通过泥浆回流管线8泵入到井眼环空21中。
本发明的系统配置具体是这样实现的:井下空气锤相关的地面注入设备、注入管线与排气管线连接。井下空气锤相关的地面注入设备即井下空气锤注气单元1和井下空气锤增压单元2(包括空气压缩机和增压机),其为闭式反循环空气锤25的工作提供高压气体;井下空气锤泄压机构3和井下空气锤注气流量控制阀4调整注入气量大小,同时释放井下空气锤相关流道内的压力,属于安全控制机构。井下空气锤注气单元1与井下空气锤泄压机构3通过高压管线连接。井下空气锤泄压机构3下游方向安装井下空气锤注气流量计5,用于计量送入井下空气锤的气量;该井下空气锤注气流量计5上游连接井下空气锤泄压机构3,下游连接井下空气锤地面注气管汇7。井下空气锤地面注气管汇7与安装在钻台9上的井下空气锤高压注气软管13相连。井下空气锤排气软管19直接与水龙头16下方的注气器17相连。
气举相关的地面注入设备、注入管线与排砂管线连接。气举相关的地面注入 设备即气举注气单元26和气举增压单元27(包括空气压缩机和增压机),其为气举反循环的形成提供高压气体。气举泄压机构28和气举注气流量控制阀29调整注入气量大小,同时释气举流道内的压力,属于安全控制机构;气举注气单元26与气举泄压机构28通过高压管线连接;气举泄压机构28下游方向安装气举注气流量计30,用于计量用于气举的气量。该气举注气流量计30上游连接气举泄压机构28,其下游连接气举地面注气管汇20。气举地面注气管汇20与安装在钻机井架上的高压气举高压注气软管18相连。气举反循环排砂管线14上游与水龙头16上方的耐冲蚀鹅颈管15相连,下游通过一段排砂硬管线10连接到泥浆循环系统6中。经过泥浆循环系统6净化过的钻井液通过泥浆回流管线8再次注入到井眼环空21之中,以确保井眼环空中钻井液液面维持在合理高度范围内。
本发明一种用于大尺寸井眼硬岩钻井的多循环流道钻井系统中的钻井驱动装置可以采用水龙头16、同轴四流道方钻杆12和滚子方补心11的组合方式,也可以采用顶驱这种方式,顶驱可以同时实现水龙头16、同轴四流道方钻杆12和滚子方补心11三者的功能。水龙头16(或顶驱)与多循环钻具装置连接。水龙头16(或顶驱)上端连接特制的耐冲蚀鹅颈管15,耐冲蚀鹅颈管15出口通过由壬与高压气举反循环排砂管线14连接。若为水龙头,则下端通过螺纹或者法兰与注气器17连接,也可以将水龙头和注气器17加工制造为一个整体,即四流道注气水龙头。注气器17下端通过螺纹与四流道方钻杆12反扣连接,四流道方钻杆12下方连接方保接头,并与同轴四流道钻杆22正扣连接。若为顶驱,则顶驱下端通过正扣连接注气器17和同轴四流道钻杆22。同轴四流道钻杆22下方依次连接同轴三流道钻杆23、同轴三流道钻铤24和闭式反循环空气锤25。
井下空气锤注气单元1由数个空压机组成,井下空气锤增压单元2由数个增压机组成,具体设备数量应当根据工程实际来定。井下空气锤注气单元1和井下空气锤增压单元2为闭式反循环空气锤25工作提供必需的高压气体。井下空气锤注气单元1与井下空气锤泄压机构3通过高压管线连接,该高压管线的压力级别通常不低于21MPa。井下空气锤泄压机构3由一系列阀门、消声设备、压力仪表等组成,属于安全装置,用于释放系统压力和调节进入系统的气量。井下空气锤泄压机构2下游设置井下空气锤注气流量控制阀4和井下空气锤注气流量计5,用于调节并计量进入井下闭式反循环空气锤25的实际气量。井下空气锤地面注气管汇7为高压管汇,其压力级别通常不低于21MPa,由一系列的高压硬管线、高压软管线、转换接头等通过由壬连接构成,高压注气管线在钻机井架上的部分 可采用软管线,也可采用硬管线,这由现场实际情况而定。与注气器17相连接的井下空气锤高压注气软管13压力级别通常不低于21MPa,二者通过由壬连接。注气器17为四通道结构,其上端与水龙头或顶驱16相连,下端与同轴四流道钻杆22(或四流道方钻杆12)相连。注气器17的作用:一是将来自井下空气锤高压注气软管13的高压气体分配到四流道方钻杆12的井下空气锤注气流道31中,二是将来自井下闭式反循环空气锤25排出的气体通过井下空气锤排气软管19排出系统之外,三是将来自气举高压注气软管18的高压气体分配到四流道方钻杆12的气举注气流道33中,四是将水龙头16和四流道方钻杆12的气举排砂流道35相连。注气器17上部连接水龙头或顶驱16,若连接水龙头16,则为反扣连接;若连接顶驱,则为正扣连接。水龙头或顶驱16上面的鹅颈管为耐冲蚀鹅颈管15,耐冲蚀鹅颈管15转弯处有缓冲区域,可有效降低高速流体对鹅颈管的冲蚀,且该耐冲蚀鹅颈管15属于可更换部件。
使用水龙头16时,注气器17下部连接的四流道方钻杆12通常为六棱方钻杆。四流道方钻杆12下端连接方保接头。若使用顶驱,则可以不使用四流道方钻杆12,直接连接同轴四流道钻杆22。入井钻具组合从上至下为:同轴四流道钻杆22、同轴三流道钻杆23、同轴三流道钻铤24和闭式反循环空气锤25,其相互之间主要采用螺纹连接或焊接,某些特殊场合也可以采用法兰连接。同轴四流道钻杆22、同轴三流道钻杆23、同轴三流道钻铤24的外管可以是常规标准钻杆,也可以定制非标钻杆,其根据井眼直径大小决定,其内部分别加入三层内管和两层内管。闭式反循环空气锤25包括闭式反循环空气锤锤体和专用大直径反循环钻头组成。
气举注气单元26由数个空压机组成,气举增压单元27由数个增压机组成,具体设备数量应当根据工程实际来定。气举注气单元26和气举增压单元27为气举反循环提供必需的高压气体。气举注气单元26与气举泄压机构28通过高压管线连接,该高压管线的压力级别通常不低于21MPa。
气举泄压机构28由一系列阀门、消声设备、压力仪表等组成,属于安全装置,用于释放系统压力和调节进入系统的气量。气举泄压机构28下游设置井下气举注气流量控制阀29和气举注气流量计30,用于调节并计量气举反循环所消耗的实际气量。气举地面注气管汇20为高压管汇,其压力级别通常不低于21MPa,由一系列的高压硬管线、高压软管线、转换接头等通过由壬连接构成。高压注气管线在井架上的部分可采用软管线,也可采用硬管线,这由现场实际情况而定。 与注气器17相连接的气举高压注气软管18压力级别通常不低于21MPa,二者通过由壬连接。
气举排砂管线包括排砂管线14和排砂硬管线10,其压力级别不低于7MPa。通过气举携带上来的含有岩屑的钻井液分别经过排砂管线14和排砂硬管线10进入泥浆循环系统6中。钻井液通过一系列的净化处理之后,通过泥浆回流管线8再次输送到井眼环空21之中,供气举反循环使用。
如图2所示,本发明的多循环流道钻井系统实施钻井的工艺流程如下:
闭式反循环空气锤25工作所需压缩气体由井下空气锤注气单元1和井下空气锤增压单元2产生,流经井下空气锤泄压机构3、井下空气锤注气流量控制阀4、井下空气锤注气流量计5、井下空气锤地面注气管汇7、井下空气锤高压注气软管13到达注气器17。在注气器17的作用下,压缩气体进入到四流道钻具(四流道方钻杆12、同轴四流道钻杆22)和三流道钻具(同轴三流道钻杆23、同轴三流道钻铤24)的井下空气锤注气流道31中,顺着该流道下行并到达闭式反循环空气锤25处,驱动闭式反循环空气锤25做功,做功后的气体通过闭式反循环空气锤25内部流道,进入到三流道钻具(同轴三流道钻铤24、同轴三流道钻杆23)和四流道钻具(同轴四流道钻杆22、四流道方钻杆12)的井下空气锤排气流道32中,顺着该流道上行并到达注气器17。在注气器17的分流作用下,驱动完闭式反循环空气锤25做功的废气经由与注气器17相连的井下空气锤排气软管19排出到钻井系统之外。
与此同时,气举反循环所需压缩气体由气举注气单元26和气举增压单元27产生,流经气举泄压机构28、气举注气流量控制阀29、气举注气流量计30、气举地面注气管汇20、气举高压注气软管18到达注气器17。在注气器17的作用下,压缩气体进入到四流道钻具(四流道方钻杆12、同轴四流道钻杆22)的气举注气流道33中,顺着该流道下行并到达同轴四流道钻杆22与同轴三流道钻杆23连接处。该处有一个混气接头34,可以连通同轴四流道钻杆22内的气举注气流道33与气举排砂流道35,将气举注气流道33内的压缩气体与气举排砂流道34内的钻井液混合。混合后的气、液、固三相流平均密度骤降,同时在井眼环空与气举排砂流道35内压差作用下,井底钻井液会携带被闭式反循环空气锤25破碎掉的岩屑上返,依次经过三流道钻具(同轴三流道钻铤24、同轴三流道钻杆23)和四流道钻具(同轴四流道钻杆22、四流道方钻杆12)的气举排砂流道35,然后到达注气器17。在注气器17的作用下,气举排砂通道35内的岩屑经过水龙 头16、耐冲蚀鹅颈管15、排砂管线14以及排砂硬管线10,最终回至泥浆循环系统6。经过泥浆循环系统6净化过的钻井液将再一次通过泥浆回流管线8泵入到井眼环空中。
本发明中由注气器17、同轴四流道钻杆22、同轴三流道钻杆23、同轴三流道钻铤24以及大直径的闭式反循环空气锤25等主要部件构成。其中,注气器17、四流道方钻杆12、同轴四流道钻杆22有四个通道,分别用于空气锤注气、空气锤排气、气举注气和气举排砂;同轴三流道钻杆23、同轴三流道钻铤24有三个流道,分别用于空气锤注气、空气锤排气和气举排砂。前述四流道和三流道,各个流道相互独立,互不干扰;闭式反循环空气锤25,其进气和排气均在锤体内部完成,工作性能不受外界干扰。
本系统为气举反循环排砂和空气锤硬岩快速钻进的有机结合。气举反循环排砂,可以有效解决前述大尺寸井眼钻井工法无法有效排砂的问题;闭式反循环空气锤,不仅可以有效提高硬岩钻进效率,而且空气锤工作性能不会受到地层出水等外界环境的影响;只要钻机的提升能力和扭矩足够大,本系统可满足各种井眼尺寸的硬岩钻进,特别是大尺寸井眼深井硬岩钻进,比如,井眼尺寸Φ660mm以上,甚至Φ1000mm以上;井深800m以上。相对于正循环气体钻井,本系统使用注气设备少、注气量小,综合成本低;本系统所用气量,较常规正循环空气锤钻井节省60%以上;本系统不仅可以用气举反循环实现排砂,必要时也可切换为正循环泥浆钻井。
本发明中的具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (10)

  1. 一种用于大尺寸井眼硬岩钻井的多循环流道钻井系统,其特征在于,包括井下空气锤地面管汇与设备、气举管汇与设备、钻井驱动装置、多循环流道钻具和泥浆循环设备(6),井下空气锤地面管汇与设备、气举管汇与设备均通过钻井驱动装置与多循环流道钻具对应连通,泥浆循环设备(6)通过耐冲蚀鹅颈管(15)和排砂管线(14)与钻井驱动装置连接。
  2. 根据权利要求1所述的用于大尺寸井眼硬岩钻井的多循环流道钻井系统,其特征在于,所述多循环流道钻具包括自上至下依次对应连通的同轴四流道钻杆(22)、同轴三流道钻杆(23)、同轴三流道钻铤(24)和闭式反循环空气锤(25),同轴四流道钻杆顶部与钻井驱动装置连通,同轴四流道钻杆底部通过混气接头(34)与同轴三流道钻杆连通。
  3. 根据权利要求2所述的用于大尺寸井眼硬岩钻井的多循环流道钻井系统,其特征在于,所述同轴四流道钻杆(22)为同轴四通道结构,由外向内分别为井下空气锤排气流道(32)、井下空气锤注气流道(31)、气举注气流道(33)和气举排砂流道(35),井下空气锤注气流道与井下空气锤地面管汇与设备连通,气举注气流道与气举管汇与设备连通,气举排砂流道与钻井驱动装置连通;所述同轴三流道钻杆(23)和同轴三流道钻铤(24)均为同轴三通道结构,由外向内分别为井下空气锤排气流道(32)、井下空气锤注气流道(31)和气举排砂流道(35),井下空气锤排气流道和井下空气锤注气流道在多循环流道钻具的底部连通。
  4. 根据权利要求2或3所述的用于大尺寸井眼硬岩钻井的多循环流道钻井系统,其特征在于,所述混气接头(34)包括顶部端管(341)、底部端管(342)、悬挂接头(343)和接头外管(80),顶部端管和底部端管通过悬挂接头固定并连通后安装在接头外管内,并与接头外管内壁形成外通道(345),顶部端管为三层管壁结构,其最内层管壁上开设有若干混气孔(344),底部端管为两层管壁结构。
  5. 根据权利要求1所述的用于大尺寸井眼硬岩钻井的多循环流道钻井系统,其特征在于,所述钻井驱动装置包括水龙头(16)、同轴四流道方钻 杆(12)和滚子方补心(11),注气器为四循环流道注气器,其安装在水龙头底部,注气器底部安装有四流道方钻杆(12),滚子方补心安装在同轴四流道方钻杆底部,注气器通过四流道方钻杆与多循环流道钻具连通,注气器(17)还连通有井下空气锤排气软管(19)。
  6. 根据权利要求1所述的用于大尺寸井眼硬岩钻井的多循环流道钻井系统,其特征在于,所述钻井驱动装置包括顶驱和注气器(17),注气器为四循环流道注气器,其安装在顶驱底部,顶驱通过注气器与多循环流道钻具连通,注气器(17)还连通有井下空气锤排气软管(19)。
  7. 根据权利要求5所述的用于大尺寸井眼硬岩钻井的多循环流道钻井系统,其特征在于,所述井下空气锤地面管汇与设备包括依次连接的井下空气锤注气单元(1)、井下空气锤增压单元(2)、井下空气锤泄压机构(3)、井下空气锤注气流量控制阀(4)、井下空气锤注气流量计(5)、井下空气锤地面注气管汇(7)和井下空气锤高压注气软管(13),井下空气锤高压注气软管(13)与注气器(17)连接。
  8. 根据权利要求5所述的用于大尺寸井眼硬岩钻井的多循环流道钻井系统,其特征在于,所述气举管汇与设备包括依次连接的气举注气单元(26)、气举增压单元(27)、气举泄压机构(28)、气举注气流量控制阀(29)、气举注气流量计(30)、气举地面注气管汇(20)和气举高压注气软管(18),气举高压注气软管(18)与注气器(17)连接。
  9. 根据权利要求1所述的用于大尺寸井眼硬岩钻井的多循环流道钻井系统,其特征在于,泥浆循环系统(6)通过泥浆回流管线(8)与钻井的井眼环空(21)连通。
  10. 一种用于大尺寸井眼硬岩钻井的多循环流道钻井工艺,其特征在于,包括以下步骤:
    a、井下空气锤地面管汇与设备的压缩气体由井下空气锤注气单元(1)和井下空气锤增压单元(2)产生,流经井下空气锤泄压机构(3)、井下空气锤注气流量控制阀(4)、井下空气锤注气流量计(5)、井下空气锤地面注 气管汇(7)、井下空气锤高压注气软管(13)到达注气器(17);
    b、在注气器(17)的分流作用下,压缩气体依次进入到同轴四流道钻杆(22)、同轴三流道钻杆(23)和同轴三流道钻铤(24)的井下空气锤注气流道(31)中,沿该流道下行并到达闭式反循环空气锤(25)处,驱动闭式反循环空气锤(25)做功;
    c、做功后的气体通过闭式反循环空气锤(25)内部流道,进入到同轴三流道钻铤(24)、同轴三流道钻杆(23)和同轴四流道钻杆(22)的井下空气锤排气流道(32)中,沿该流道上行并到达注气器(17);
    d、在注气器(17)的分流作用下,驱动完闭式反循环空气锤(25)做功的废气经由与注气器(17)相连的井下空气锤排气软管(19)排出到钻井系统之外;
    e、与步骤a~d同时,气举管汇与设备的压缩气体由气举注气单元(26)和气举增压单元(27)产生,流经气举泄压机构(28)、气举注气流量控制阀(29)、气举注气流量计(30)、气举地面注气管汇(20)、气举高压注气软管(18)到达注气器(17);
    f、在注气器(17)的分流作用下,压缩气体进入到同轴四流道钻杆(22)的气举注气流道(33)中,沿该流道下行并到达同轴四流道钻杆(22)与同轴三流道钻杆(23)连接处的混气接头(34)处;
    g、在混气接头(34)处,气举注气流道(33)内的压缩气体与气举排砂流道(35)内的钻井液混合,并在井眼环空(21)与气举排砂流道(35)内压差作用下,井底钻井液会携带被闭式反循环空气锤(25)破碎掉的岩屑上返,依次经过同轴三流道钻铤(24)、同轴三流道钻杆(23)和同轴四流道钻杆(22)的气举排砂流道(35),然后到达注气器(17);
    h、在注气器(17)的作用下,气举排砂通道(35)内的岩屑经过水龙头或顶驱(16)、耐冲蚀鹅颈管(15)和排砂管线(14),最终回至泥浆循环系统(6),经过泥浆循环系统(6)净化过的钻井液将再一次通过泥浆回流管线(8)泵入到井眼环空(21)中。
PCT/CN2018/088048 2018-03-27 2018-05-23 一种用于大尺寸井眼硬岩钻井的多循环流道钻井系统及钻井工艺 WO2019184073A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2020134447A RU2750375C1 (ru) 2018-03-27 2018-05-23 Буровая система с несколькими каналами для циркуляции потока и способ бурения для бурения скважин с большим диаметром ствола в твердых породах
EP18912219.5A EP3770374A4 (en) 2018-03-27 2018-05-23 MULTI-CYCLE FLOW DUCT DRILLING SYSTEM AND DRILLING METHOD FOR USE IN HARD ROCK DRILLING WITH A LARGE HOLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810256214.3 2018-03-27
CN201810256214 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019184073A1 true WO2019184073A1 (zh) 2019-10-03

Family

ID=63139388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088048 WO2019184073A1 (zh) 2018-03-27 2018-05-23 一种用于大尺寸井眼硬岩钻井的多循环流道钻井系统及钻井工艺

Country Status (4)

Country Link
EP (1) EP3770374A4 (zh)
CN (3) CN208220665U (zh)
RU (1) RU2750375C1 (zh)
WO (1) WO2019184073A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112012698A (zh) * 2020-08-19 2020-12-01 中煤科工集团西安研究院有限公司 一种煤矿井下孔内积水抽排装置及方法
CN112253120A (zh) * 2020-11-26 2021-01-22 河南理工大学 煤矿废弃资源流态化共采方法
CN113738294A (zh) * 2021-09-30 2021-12-03 浙江易通特种基础工程股份有限公司 一种全液压钻机的成孔装置及其施工方法
CN114482886A (zh) * 2019-12-19 2022-05-13 中化地质矿山总局河北地质勘查院 一种钻探孔内埋钻事故的气动处理方法
CN114622853A (zh) * 2021-07-16 2022-06-14 中国石油天然气集团有限公司 干气体和雾化连续循环钻井的一键式循环切换装置和方法
CN115030675A (zh) * 2022-06-23 2022-09-09 海通建设集团有限公司 一种气举反循环清孔装置及清孔方法
CN116227208A (zh) * 2023-03-06 2023-06-06 安徽理工大学 钻井法凿井气举反循环高效排渣施工参数确定方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208220665U (zh) * 2018-03-27 2018-12-11 北京首创热力股份有限公司 一种用于大尺寸井眼硬岩钻井的多循环流道钻井系统
CN110106882A (zh) * 2019-04-28 2019-08-09 云南建投第一勘察设计有限公司 一种用于钻孔灌注桩的气举反循环装置
CN110593763B (zh) * 2019-08-26 2021-03-16 中煤科工集团西安研究院有限公司 一种扩孔用闭气循环贯通式泥浆护壁集束式潜孔锤及方法
CN110984861B (zh) * 2019-12-26 2021-05-07 马鸿彦 基于空气反循环作用的油气井全井段自吸式气体钻井装置
CN115059462B (zh) * 2020-04-10 2023-02-14 中国地质科学院探矿工艺研究所 一种空气反循环连续取样钻进系统工艺方法
CN111594066B (zh) * 2020-06-23 2021-08-24 西南石油大学 一种三通道钻杆
CN114427358A (zh) * 2020-10-29 2022-05-03 中国石油化工股份有限公司 应用在待修油井中并能由修井机驱动的冲砂装置
CN112647848B (zh) * 2020-11-30 2023-04-14 中海石油(中国)有限公司天津分公司 深井钻井过程模拟实验装置以及实验方法
CN113250604B (zh) * 2021-06-29 2023-10-13 重庆科技学院 自配气集束式气动潜孔锤组
CN114086542B (zh) * 2021-10-14 2023-02-28 深圳市工勘岩土集团有限公司 大直径深长嵌岩桩全回转与气举反循环组合钻进施工方法
WO2023070145A1 (en) * 2021-10-29 2023-05-04 Tri-Tube Drilling Systems Pty Ltd Drill string and components therefor
CN115182691B (zh) * 2022-09-07 2022-12-20 南通欧通石油设备有限公司 一种石油开采用泥浆输送设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005267303A1 (en) * 2004-06-25 2006-02-02 Terraroc Finland Oy Entrainment fluid channeling device for a down-hole drill string
CN2763452Y (zh) * 2004-12-29 2006-03-08 大港油田集团有限责任公司 钻井用液动冲击器
WO2012116155A1 (en) * 2011-02-24 2012-08-30 Foro Energy, Inc. Electric motor for laser-mechanical drilling
CN102966304A (zh) 2012-11-28 2013-03-13 吉林大学 泥浆护壁空气潜孔锤钻具及钻井工艺
CN204326956U (zh) 2014-12-08 2015-05-13 中煤科工集团西安研究院有限公司 一种扩孔用反循环集束式潜孔锤
CN105113978A (zh) 2015-09-16 2015-12-02 中国石油集团川庆钻探工程有限公司 一种可用于大尺寸井眼钻井的单体大直径反循环空气锤
CN105178859A (zh) 2015-10-10 2015-12-23 中国石油集团川庆钻探工程有限公司 一种用于油气钻井的全井段自吸式反循环气体钻井系统
CN205743802U (zh) * 2016-06-27 2016-11-30 中石化石油工程技术服务有限公司 石油钻井用划眼打捞一体化工具
CN106812462A (zh) * 2016-12-28 2017-06-09 倪红坚 一种多维冲击钻井工具

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU589412A1 (ru) * 1975-10-01 1978-01-25 Всесоюзный научно-исследовательский институт организации и механизации шахтного строительства Устройство дл бурени скважин большого диаметра
SU1105602A1 (ru) * 1982-05-11 1984-07-30 Туркменский Научно-Исследовательский Геологоразведочный Институт Бурильна колонна
GB2181473B (en) * 1985-10-04 1989-02-01 Tone Boring Co Air pressure impact drilling apparatus
JPH03290585A (ja) * 1990-04-09 1991-12-20 Tokyo Riyuuki Seizo Kk 方向制御形クラスタダウンホールドリル掘さく機
GB9119563D0 (en) * 1991-09-13 1991-10-23 Rig Technology Ltd Improvements in and relating to drilling platforms
US5662180A (en) * 1995-10-17 1997-09-02 Dresser-Rand Company Percussion drill assembly
AT407184B (de) * 1996-05-20 2001-01-25 Boehler Pneumatik Internat Gmb Hydraulischer tieflochbohrhammer
RU2223380C2 (ru) * 2000-09-19 2004-02-10 Открытое акционерное общество "Татнефть" Соединение многорядной колонны (варианты)
CN1206441C (zh) * 2002-01-11 2005-06-15 中国石油天然气集团公司 油气井反循环钻井方法及设备
CN1189641C (zh) * 2002-08-30 2005-02-16 曾细平 无人下井钻孔水力采煤方法及其专用装置
US7389830B2 (en) * 2005-04-29 2008-06-24 Aps Technology, Inc. Rotary steerable motor system for underground drilling
US8985221B2 (en) * 2007-12-10 2015-03-24 Ngsip, Llc System and method for production of reservoir fluids
HK1155608A2 (en) * 2012-02-10 2012-05-18 Top Mark Mechanical Equipment Ltd Method and apparatus for controlling the operation of cluster drill of down-the-hole hammers
CN104632073A (zh) * 2013-11-07 2015-05-20 大连市勘察测绘研究院有限公司 一种贯通式潜孔锤反循环钻进方法
GB2540921B (en) * 2014-07-31 2020-12-16 Halliburton Energy Services Inc Wellbore operations using a multi-tube system
CN105178897B (zh) * 2015-10-10 2018-03-30 中国石油集团川庆钻探工程有限公司 一种气体钻井地面管汇连接结构
CN208220665U (zh) * 2018-03-27 2018-12-11 北京首创热力股份有限公司 一种用于大尺寸井眼硬岩钻井的多循环流道钻井系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005267303A1 (en) * 2004-06-25 2006-02-02 Terraroc Finland Oy Entrainment fluid channeling device for a down-hole drill string
CN2763452Y (zh) * 2004-12-29 2006-03-08 大港油田集团有限责任公司 钻井用液动冲击器
WO2012116155A1 (en) * 2011-02-24 2012-08-30 Foro Energy, Inc. Electric motor for laser-mechanical drilling
CN102966304A (zh) 2012-11-28 2013-03-13 吉林大学 泥浆护壁空气潜孔锤钻具及钻井工艺
CN204326956U (zh) 2014-12-08 2015-05-13 中煤科工集团西安研究院有限公司 一种扩孔用反循环集束式潜孔锤
CN105113978A (zh) 2015-09-16 2015-12-02 中国石油集团川庆钻探工程有限公司 一种可用于大尺寸井眼钻井的单体大直径反循环空气锤
CN105178859A (zh) 2015-10-10 2015-12-23 中国石油集团川庆钻探工程有限公司 一种用于油气钻井的全井段自吸式反循环气体钻井系统
CN205743802U (zh) * 2016-06-27 2016-11-30 中石化石油工程技术服务有限公司 石油钻井用划眼打捞一体化工具
CN106812462A (zh) * 2016-12-28 2017-06-09 倪红坚 一种多维冲击钻井工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3770374A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114482886B (zh) * 2019-12-19 2023-12-15 中化地质矿山总局河北地质勘查院 一种钻探孔内埋钻事故的气动处理方法
CN114482886A (zh) * 2019-12-19 2022-05-13 中化地质矿山总局河北地质勘查院 一种钻探孔内埋钻事故的气动处理方法
CN112012698B (zh) * 2020-08-19 2022-07-19 中煤科工集团西安研究院有限公司 一种煤矿井下孔内积水抽排装置及方法
CN112012698A (zh) * 2020-08-19 2020-12-01 中煤科工集团西安研究院有限公司 一种煤矿井下孔内积水抽排装置及方法
CN112253120A (zh) * 2020-11-26 2021-01-22 河南理工大学 煤矿废弃资源流态化共采方法
CN112253120B (zh) * 2020-11-26 2023-06-09 河南理工大学 煤矿废弃资源流态化共采方法
CN114622853A (zh) * 2021-07-16 2022-06-14 中国石油天然气集团有限公司 干气体和雾化连续循环钻井的一键式循环切换装置和方法
CN114622853B (zh) * 2021-07-16 2024-02-06 中国石油天然气集团有限公司 干气体和雾化连续循环钻井的一键式循环切换装置和方法
CN113738294A (zh) * 2021-09-30 2021-12-03 浙江易通特种基础工程股份有限公司 一种全液压钻机的成孔装置及其施工方法
CN115030675A (zh) * 2022-06-23 2022-09-09 海通建设集团有限公司 一种气举反循环清孔装置及清孔方法
CN115030675B (zh) * 2022-06-23 2023-10-13 海通建设集团有限公司 一种气举反循环清孔装置及清孔方法
CN116227208A (zh) * 2023-03-06 2023-06-06 安徽理工大学 钻井法凿井气举反循环高效排渣施工参数确定方法
CN116227208B (zh) * 2023-03-06 2024-03-08 安徽理工大学 钻井法凿井气举反循环排渣施工参数确定方法

Also Published As

Publication number Publication date
EP3770374A4 (en) 2021-12-01
CN208220665U (zh) 2018-12-11
EP3770374A1 (en) 2021-01-27
CN208152960U (zh) 2018-11-27
CN108412435B (zh) 2024-03-19
RU2750375C1 (ru) 2021-06-28
CN108412435A (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
WO2019184073A1 (zh) 一种用于大尺寸井眼硬岩钻井的多循环流道钻井系统及钻井工艺
CN105178859B (zh) 一种用于油气钻井的全井段自吸式反循环气体钻井系统
CN109057755B (zh) 一种井下旋流气液分采管柱和系统分析方法
CN104832082B (zh) 一种用于旋挖钻机的气动潜孔锤反循环出渣施工工艺
CN111155929B (zh) 一种煤矿井下防治水孔高水压顶水定向钻具及钻进方法
CN109025825B (zh) 基于文丘里效应的井下自吸式粒子射流钻井装置
CN205036295U (zh) 一种全井段自吸式反循环气体钻井系统
CN105113978A (zh) 一种可用于大尺寸井眼钻井的单体大直径反循环空气锤
CN105178897B (zh) 一种气体钻井地面管汇连接结构
CN204691658U (zh) 旋挖钻机潜孔锤施工专用工作装置
CN208152959U (zh) 一种多循环流道钻具的混气接头
CN104763342B (zh) 一种用于非开挖铺设管线的回拉扩孔总成
CN205036331U (zh) 反循环气体钻井钻具组合结构
CN211900442U (zh) 顶部驱动气体反循环钻井地面装备系统
CN111350487B (zh) 一种射流泵-双螺杆泵同井注采复合举升系统
CN105041255A (zh) 打捞钻孔内细碎落物的孔底组合钻具及其打捞方法
CN111206876B (zh) 顶部驱动气体反循环钻井地面装备系统
CN204476278U (zh) 一种用于非开挖铺设管线的多级扩孔器及回拉扩孔总成
CN201218066Y (zh) 井下降压工具
CN105134114A (zh) 一种反循环气体钻井钻具组合结构
CN205036327U (zh) 气体钻井地面管汇连接结构
CN107461184A (zh) 一种页岩气水平井裂缝解堵返排系统及工艺方法
CN206830103U (zh) 一种平底磨鞋
CN205977171U (zh) 侧接旋转水泥头
CN205089211U (zh) 油气钻井用单体大直径反循环空气锤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018912219

Country of ref document: EP

Effective date: 20201021