WO2019184022A1 - 污水脉动净化控制方法及系统 - Google Patents

污水脉动净化控制方法及系统 Download PDF

Info

Publication number
WO2019184022A1
WO2019184022A1 PCT/CN2018/083648 CN2018083648W WO2019184022A1 WO 2019184022 A1 WO2019184022 A1 WO 2019184022A1 CN 2018083648 W CN2018083648 W CN 2018083648W WO 2019184022 A1 WO2019184022 A1 WO 2019184022A1
Authority
WO
WIPO (PCT)
Prior art keywords
sewage
water pump
pulsation
threshold
controller
Prior art date
Application number
PCT/CN2018/083648
Other languages
English (en)
French (fr)
Inventor
张发鹏
于一凡
Original Assignee
南方创业(天津)科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方创业(天津)科技发展有限公司 filed Critical 南方创业(天津)科技发展有限公司
Priority to EP18756363.0A priority Critical patent/EP3569574A4/en
Publication of WO2019184022A1 publication Critical patent/WO2019184022A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/002Grey water, e.g. from clothes washers, showers or dishwashers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor

Definitions

  • the present disclosure relates to the field of sewage treatment technology, and in particular to a sewage pulsation purification control method and system.
  • the design scale is usually determined according to the annual average daily flow rate, and the total coefficient of variation is determined according to the population size. According to the product of the design scale and the total coefficient of variation (highest flow rate), the first-level processing unit is designed, and the second- and third-stage processing units are designed according to the design scale, and each unit is continuously operated.
  • a regulating tank is designed to adjust the discontinuous and uneven incoming water to a continuous quantity of water and water quality.
  • Uniform effluent is sent to the subsequent processing unit to ensure continuous and stable operation of the subsequent processing unit. Only in this way can each processing unit perform a high-efficiency purification function.
  • Objects of the present disclosure include, for example, providing a sewage pulsation purification control method and system to improve the above problems.
  • Embodiments of the present disclosure provide a sewage pulsation purification control method for use in a sewage pulsation purification control system, the method comprising:
  • control water pump When the current environmental parameter satisfies the first trigger condition, the control water pump operates in a heartbeat manner to extract the sewage in the conditioning tank to the reaction pool for processing.
  • the current environmental parameter is a liquid level height or a sewage flow rate of the adjustment pool
  • the control water pump is operated in a heartbeat manner, including:
  • the water pump is controlled to operate in a heartbeat manner.
  • the method further includes:
  • the water pump is controlled to stop running.
  • controlling the water pump to stop running including:
  • the second height threshold is smaller than the first height threshold, and the second flow threshold is smaller than the first flow threshold.
  • the method further includes:
  • the water pump is controlled to continue to operate.
  • controlling the water pump to continue to run including:
  • the third height threshold is greater than the first height threshold, and the third traffic threshold is greater than the first flow threshold.
  • the sewage purification system includes a fan configured to supply oxygen to the reaction pool, and the method further includes:
  • the fan is controlled to start when the fan continues to stop for more than a predetermined time interval.
  • the sewage purification system includes a fan configured to supply oxygen to the reaction pool, and the method further includes:
  • the fan is controlled to start every predetermined time interval.
  • An embodiment of the present disclosure further provides a sewage pulsation purification control system
  • the sewage pulsation purification control system includes a controller, a detecting unit and a water pump, wherein the controller is electrically connected to the detecting unit and the water pump respectively ;
  • the detecting unit is configured to detect a current environmental parameter of the adjustment pool
  • the controller is configured to control the water pump to operate in a heartbeat manner to extract the sewage in the conditioning tank to the reaction pool for processing when the current environmental parameter satisfies the first trigger condition.
  • the detecting unit is configured to detect a liquid level height or a sewage flow rate of the regulating pool, and the controller is configured to when the liquid level height is higher than a preset first height threshold or the sewage flow rate When the first flow threshold is greater than a preset value, the water pump is controlled to operate in a heartbeat manner.
  • the controller is further configured to control the water pump to stop running when the current environmental parameter satisfies the second trigger condition.
  • the controller is configured to control the water pump to stop running when the liquid level height is lower than a preset second height threshold or the sewage flow rate is less than a preset second flow threshold;
  • the second height threshold is smaller than the first height threshold, and the second flow threshold is smaller than the first flow threshold.
  • the controller is further configured to control the water pump to continue running when the current environmental parameter meets a third trigger condition.
  • the controller is further configured to control the continuous operation of the water pump when the liquid level height is higher than a preset third height threshold or the sewage flow rate is greater than a preset third flow threshold;
  • the third height threshold is greater than the first height threshold, and the third traffic threshold is greater than the first flow threshold.
  • the sewage pulsation purification control system further includes a fan configured to supply oxygen to the reaction pool, and the fan is electrically connected to the controller;
  • the controller is further configured to control the fan to be activated in a heartbeat manner with the water pump;
  • the fan is controlled to start when the fan continues to stop for more than a predetermined time interval.
  • the sewage pulsation purification control system further includes a fan configured to supply oxygen to the reaction pool, and the fan is electrically connected to the controller;
  • the controller is also configured to control the fan to start every predetermined time interval.
  • the sewage pulsation purification control method provided by the embodiment of the present disclosure can effectively improve the self-adaptive ability of the small sewage treatment facility for the extremely uneven discharge of sewage, and solves the contradiction between the small flow demand of the sewage treatment and the electromechanical equipment of the same ability, and solves the problem.
  • the problem of the big horse-drawn car makes the power equipment always in an efficient state of operation, achieving a substantial energy-saving effect.
  • the sewage pulsation purification control system provided by the embodiment of the present disclosure can effectively improve the self-adaptive ability of the small sewage treatment facility for the extremely uneven discharge of sewage, and solves the contradiction between the small flow demand of the sewage treatment and the electromechanical equipment of the same ability, and solves the problem.
  • the problem of the big horse-drawn car makes the power equipment always in an efficient state of operation, achieving a substantial energy-saving effect.
  • FIG. 1 is a schematic diagram of functional modules of a sewage pulsation purification control system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of functional modules of another sewage pulsation purification control system according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a sewage pulsation purification control method according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of another sewage pulsation purification control method according to an embodiment of the present disclosure.
  • Icon 100-controller; 200-detection unit; 300-pump; 400-fan.
  • connection may also be a detachable connection or an integral connection; it may be a mechanical connection or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • FIG. 1 is a schematic diagram of functional modules of a sewage pulsation purification control system according to an embodiment of the present disclosure.
  • the sewage pulsation purification control system is applied to a sewage treatment facility, particularly a small sewage treatment facility with extremely uneven discharge of sewage.
  • the sewage pulsation purification control system includes a controller 100, a detecting unit 200, and a water pump 300.
  • the controller 100 is electrically connected to the detecting unit 200 and the water pump 300, respectively, for signal interaction.
  • the detecting unit 200 is configured to detect a current environmental parameter of the adjustment pool.
  • the sewage treatment facility is provided with an adjustment tank, and the detection unit 200 is disposed in the adjustment tank and configured to detect current environmental parameters of the adjustment pool.
  • the current environmental parameter may be, but is not limited to, a liquid level height or a sewage flow rate of the adjustment pool.
  • the detecting unit 200 may be a liquid level sensor.
  • the detecting unit 200 may be a flow meter disposed at the sewage inlet of the regulating pool.
  • the detecting unit 200 may be a gravity sensor configured to detect the gravity of the regulating tank.
  • liquid level height and the sewage flow rate are mainly described in detail, but there are many actual ways, and the present invention is not limited thereto, as long as it can reflect the amount of sewage in the regulating tank or the processing amount of the reaction sewage.
  • the detecting unit 200 After detecting the current environmental parameters of the adjustment pool, the detecting unit 200 feeds back the detected current environmental parameters to the controller 100.
  • the controller 100 is configured to control the water pump 300 to operate in a heartbeat manner to extract the sewage in the conditioning tank to the reaction tank for processing when the current environmental parameter satisfies the first trigger condition.
  • the controller 100 pre-sets a first trigger condition indicating that the adjustment pool has sufficient sewage. After obtaining the current environmental parameter fed back by the detecting unit 200, the controller 100 determines whether the current environmental parameter satisfies a preset first trigger condition, if current If the environmental parameter satisfies the first trigger condition, it indicates that sufficient sewage has been collected in the adjustment pool at this time, and the controller 100 sends a control signal to the water pump 300 to control the water pump 300 to operate in a heartbeat manner, so that the water pump 300 extracts the sewage in the adjustment tank. Purification treatment is carried out in the reaction tank.
  • the normal person's heartbeat frequency is 60-100 beats/min, that is to say, 60-100 movements per minute, which can also be understood as intermittent work.
  • the number of the water pumps 300 may be one or more.
  • the controller 100 controls the water pump 300 to operate in a heartbeat manner, and may control one water pump 300 to operate in a heartbeat manner, or may control multiple water pumps.
  • the 300 is operated in the manner of a heartbeat.
  • the control may be performed in a manner that the plurality of water pumps 300 are operated in a heartbeat manner according to the time series, which is not specifically limited in the embodiment of the present disclosure.
  • the first trigger condition is set according to the current environment parameter.
  • the first trigger condition may be that the liquid level height of the adjustment pool is higher than a preset first height threshold.
  • the current environmental parameter is the sewage flow rate of the regulating pool, it may mean that the current sewage flow rate of the regulating pool is greater than a preset first flow threshold.
  • the first trigger condition may be other trigger conditions than the above two trigger conditions, specifically according to current environment parameter settings.
  • the controller 100 is configured to control the water pump 300 to operate in a heartbeat manner when the current environmental parameter satisfies the first trigger condition. It may be, but not limited to, an industrial computer, a PLC controller, or a personal computer (PC).
  • controller 100 is further configured to control the water pump 300 to stop running when the current environmental parameter satisfies the second trigger condition.
  • the controller 100 is preset with a second trigger condition for characterizing that the sewage in the regulating pool is too small.
  • the controller 100 controls the water pump 300 to operate in a heartbeat manner, if the current environmental parameter satisfies the second trigger condition It means that the sewage collected in the adjustment tank is too small at this time, and at this time, the controller 100 sends a control signal to the water pump 300 to control the water pump 300 to stop running.
  • the second trigger condition corresponds to the first trigger condition.
  • the first trigger condition is that the liquid level height of the adjustment pool is higher than a preset first height threshold
  • the second trigger condition means that the finger level of the adjustment pool is lower than a preset second height.
  • the threshold is less than the first height threshold.
  • the first trigger condition is that the current sewage flow rate of the adjustment pool is greater than a preset first flow threshold
  • the second trigger condition is that the current sewage flow of the adjustment pool is less than a preset second flow threshold
  • the second flow is The threshold is less than the first flow threshold.
  • controller 100 is further configured to control the water pump 300 to continue to run when the current environmental parameter satisfies the third trigger condition.
  • the controller 100 is preset with a third trigger condition that characterizes that the internal sewage is excessively adjusted and has exceeded the sewage discharge capacity of the water pump 300 when operating in a heartbeat mode.
  • a third trigger condition is triggered, at which time the controller 100 sends a control signal to the water pump 300.
  • the water pump 300 is controlled to continue to operate.
  • the third trigger condition corresponds to the first trigger condition.
  • the first trigger condition is that the liquid level height of the adjustment pool is higher than a preset first height threshold
  • the third trigger condition means that the finger level of the adjustment pool is higher than a preset third height.
  • the threshold the third height threshold is greater than the first height threshold.
  • the first triggering condition is that the current sewage flow rate of the regulating pool is greater than a preset first flow threshold
  • the third triggering condition is that the current sewage flow of the regulating pool is greater than a preset third flow threshold
  • the third flow is The threshold is greater than the first traffic threshold.
  • the detecting unit 200 detects the current environmental parameters of the regulating pool in real time. As the sewage in the regulating pool increases recently, the current environmental parameters reach the first triggering condition, and the controller 100 at this time
  • the control water pump 300 operates in a heartbeat manner to extract the sewage in the conditioning tank into the reaction tank for processing.
  • the water pump 300 is operated in a heartbeat manner to draw water from the sewage pool to the reaction tank, if the rate of sewage pump 300 is greater than the rate of sewage entering the regulating tank, the amount of sewage in the regulating tank will gradually decrease, when the current environmental parameters are reached.
  • the controller 100 When the second trigger condition is met (the liquid level height of the adjustment tank is lower than a preset second height threshold or the sewage flow rate is less than a preset second flow threshold), that is, the sewage in the adjustment tank is too small, and the controller 100 at this time The water pump 300 is controlled to stop operating.
  • the water pump 300 When the water pump 300 is operated in a heartbeat manner to draw water from the sewage pool to the reaction tank, if the rate of the sewage pump 300 is less than the rate of entering the sewage in the regulating tank, the amount of sewage in the regulating tank will gradually increase, when the current environmental parameters
  • the third trigger condition is met (the liquid level height of the adjustment tank is higher than a preset third height threshold or the sewage flow rate is greater than a preset third flow threshold), that is, the amount of sewage currently entering the adjustment tank has exceeded the water pump 300.
  • the sewage treatment capacity of the small sewage treatment facility can be adapted to the extremely uneven sewage discharge, improve the self-adaptive capacity of the sewage treatment system, and solve the contradiction between the small flow demand of the sewage treatment and the electromechanical equipment of the same ability. At the same time, the energy consumption of small sewage treatment facilities is reduced.
  • the reaction pool provided by the embodiment of the present disclosure is a reaction tank for biodegrading sewage by using an aerobic bacteria, for example, a membrane bioreactor (Membrane Bio-Reacto, MBR), a moving bed organism.
  • a membrane bioreactor Membrane Bio-Reacto, MBR
  • MBR Membrane Bio-Reacto
  • the sewage pulsation purification control system further includes a configuration to supply oxygen to the reaction tank.
  • the fan 400 and the fan 400 are electrically connected to the controller 100 for signal interaction.
  • the controller 100 is also configured to control the fan 400 to start in a heartbeat manner with the water pump 300, and to control the fan 400 to start when the time the fan 400 continues to stop exceeds a predetermined time interval. In this way, the self-adaptive ability of the sewage treatment facility is further improved, and the protection problem of the microbial system when the nutrient is lacking is solved.
  • controller 100 may also be configured to control the fan 400 to be activated at predetermined intervals.
  • the sewage pulsation purification control system in the process of discharging the sewage into the adjustment tank, the current environmental parameter reaches the first trigger condition, and the controller 100 controls the water pump 300 to operate in a heartbeat manner, thereby The sewage in the conditioning tank is pumped into the reaction tank for treatment.
  • the controller 100 controls the water pump 300 to stop operating.
  • the controller 100 controls the water pump 300 to continue to operate.
  • the sewage treatment capacity of the small sewage treatment facility can be adapted to the extremely uneven sewage discharge, improve the self-adaptive capacity of the sewage treatment system, and solve the contradiction between the small flow demand of the sewage treatment and the electromechanical equipment of the same ability.
  • the problem of the big horse-drawn car is solved, and the power equipment is always in an efficient operation state, achieving a substantial energy-saving effect.
  • the adaptive capacity of the sewage treatment facility is further improved, and the protection problem of the microbial system when the nutrient is lacking is solved.
  • FIG. 3 a flow chart of a sewage pulsation purification control method provided by the present embodiment will be described in detail below.
  • Step S101 obtaining current environment parameters of the adjustment pool.
  • the sewage pulsation purification control method provided by the embodiment of the present disclosure is applied to a sewage pulsation purification control system, and the sewage pulsation purification control system includes a controller 100, a detection unit 200 and a water pump 300, and the controller 100 is electrically connected to the detection unit 200 and the water pump 300, respectively. Connect for signal interaction.
  • the sewage treatment facility is provided with an adjustment tank, the detection unit 200 is disposed in the adjustment tank, and the detection unit 200 is configured to detect the current environmental parameters of the adjustment pool and feed back to the controller 100.
  • step S101 can be performed by the detecting unit 200.
  • Step S102 determining whether the current environment parameter satisfies the first trigger condition, and if yes, executing step S103.
  • the controller 100 pre-sets a first trigger condition indicating that the adjustment pool is sufficient. After obtaining the current environmental parameter fed back by the detecting unit 200, the controller 100 determines whether the current environmental parameter satisfies a preset first trigger condition, and if Go to step S103.
  • step S102 can be performed by the controller 100.
  • step S103 the water pump is controlled to operate in a heartbeat manner.
  • the current environmental parameter satisfies the first trigger condition, it indicates that sufficient sewage has been collected in the adjustment pool at this time, and at this time, a control signal is sent to the water pump 300 to control the water pump 300 to operate in a heartbeat manner, so that the water pump 300 extracts the sewage in the adjustment tank to the reaction. Purification treatment in the pool.
  • step S103 can be performed by the controller 100.
  • Step S104 determining whether the current environment parameter satisfies the second trigger condition, and if yes, executing step S105.
  • the controller 100 is preset with a second trigger condition for characterizing that the sewage in the adjustment tank is too small. In the process that the controller 100 controls the water pump 300 to operate in a heartbeat manner, the controller 100 further determines whether the current environmental parameter satisfies the second trigger condition. If yes, step S105 is performed.
  • step S104 can be performed by the controller 100.
  • step S105 the water pump is controlled to stop running.
  • the controller 100 sends a control signal to the water pump 300 to control the water pump 300 to stop running.
  • step S105 can be performed by the controller 100.
  • Step S106 determining whether the current environment parameter satisfies the third trigger condition, and if yes, executing step S107.
  • the controller 100 is preset with a third trigger condition that is indicative of adjusting the amount of internal sewage, which has exceeded the amount of sewage discharged when the water pump 300 is operating in a heartbeat mode.
  • the controller 100 also determines whether the current environmental parameter satisfies the third trigger condition, and if so, performs step S107.
  • step S106 can be performed by the controller 100.
  • step S104 and step S106 is not limited.
  • step S107 the water pump is continuously operated.
  • a third trigger condition is triggered, at which time the controller 100 sends a control signal to the water pump 300 to control the continuous operation of the water pump 300.
  • step S107 can be performed by the controller 100.
  • an embodiment of the present disclosure further provides a flowchart of another sewage pulsation purification control method.
  • the flow shown in FIG. 4 will be described in detail below.
  • step S201 the current environment parameter of the adjustment pool is obtained.
  • Step S202 determining whether the current environment parameter satisfies the first trigger condition, and if yes, executing step S203.
  • step S203 the water pump and the fan are controlled to operate in a heartbeat manner.
  • the sewage pulsation purification control system further includes a fan 400 configured to supply oxygen to the reaction tank, and the fan 400 is electrically connected to the controller 100 for signal interaction.
  • the controller 100 controls the fan 400 to operate in a heartbeat manner while controlling the water pump 300 to operate in a heartbeat manner to supply oxygen to the microorganisms in the reaction tank.
  • controller 100 can also be configured to control the fan 400 to be activated at predetermined intervals.
  • controller 100 may be further configured to control the fan 400 to be activated when the time during which the fan 400 is continuously stopped exceeds a predetermined time interval, further ensuring oxygen supply to the microorganisms in the reaction tank.
  • step S204 it is determined whether the current environment parameter satisfies the second trigger condition. If yes, step S205 is performed.
  • step S205 the water pump is controlled to stop running.
  • Step S206 determining whether the current environment parameter satisfies the third trigger condition, and if yes, executing step S207.
  • step S207 the water pump is continuously operated.
  • the sewage pulsation purification control method in the process of discharging the sewage into the adjustment tank, the current environmental parameter reaches the first trigger condition, and the controller 100 controls the water pump 300 to operate in a heartbeat manner.
  • the sewage in the conditioning tank is pumped into the reaction tank for treatment.
  • the controller 100 controls the water pump 300 to stop operating.
  • the controller 100 controls the water pump 300 to continue to operate.
  • the sewage treatment capacity of the small sewage treatment facility can be adapted to the extremely uneven sewage discharge, improve the self-adaptive capacity of the sewage treatment system, and solve the contradiction between the small flow demand of the sewage treatment and the electromechanical equipment of the same ability.
  • the problem of the big horse-drawn car is solved, and the power equipment is always in an efficient operation state, achieving a substantial energy-saving effect.
  • the adaptive capacity of the sewage treatment facility is further improved, and the protection problem of the microbial system when the nutrient is lacking is solved.
  • the sewage pulsation purification control system provided in this embodiment includes a controller 100, a detecting unit 200, and a water pump 300.
  • the controller 100 is electrically connected to the detecting unit 200 and the water pump 300, respectively, for signal interaction.
  • the detecting unit 200 is configured to detect a current environmental parameter of the adjustment pool.
  • the detecting unit 200 After detecting the current environmental parameters of the adjustment pool, the detecting unit 200 feeds back the detected current environmental parameters to the controller 100.
  • the controller 100 is configured to control the water pump to operate in a heartbeat manner to extract the sewage in the adjustment tank to the reaction pool for processing when the current environmental parameter satisfies the first trigger condition; or configured to when the current environmental parameter satisfies the second trigger condition,
  • the control pump stops running; or is configured to control the water pump to continue running when the current environmental parameter satisfies the third trigger condition.
  • the sewage pulsation purification control system further includes a fan 400 configured to supply oxygen to the reaction tank, and the fan 400 is electrically connected to the controller 100 for signal interaction.
  • the controller 100 is further configured to control the fan 400 to be activated in a heartbeat manner with the water pump 300, and to control the fan 400 to be activated when the time during which the fan 400 continues to be stopped exceeds a predetermined time interval; or configured to control the fan 400 every predetermined The time interval starts.
  • the sewage pulsation purification control method provided by the embodiment is applied to a sewage pulsation purification control system.
  • the detecting unit 200 detects and feeds back the current environmental parameters of the adjustment pool to the controller 100, thereby obtaining current environment parameters of the adjustment pool.
  • the sewage pulsation purification control method provided by the embodiment is applied to a sewage pulsation purification control system.
  • the detecting unit 200 detects and feeds back the current environmental parameters of the adjustment pool to the controller 100, thereby obtaining current environmental parameters of the adjustment pool.
  • S202 Determine whether the current environmental parameter satisfies the first trigger condition. If yes, execute S203, and the controller 100 controls the water pump 300 and the fan 400 to operate in a heartbeat manner. If no, the process ends.
  • the present disclosure provides a sewage pulsation purification control method and system, which can effectively improve the self-adaptive ability of a small sewage treatment facility for extremely uneven discharge of sewage, so that the power equipment is always in an efficient operation state, achieving substantial energy saving. effect.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Activated Sludge Processes (AREA)

Abstract

一种污水脉动净化控制方法,该方法包括获得调节池的当前环境参数;当当前环境参数满足第一触发条件时,控制水泵(300)以心跳的方式运行以便将调节池内的污水抽取至反应池进行处理。还公开了一种污水脉动净化控制系统。

Description

污水脉动净化控制方法及系统
相关申请的交叉引用
本公开要求于2018年03月27日提交中国专利局的申请号为2018102587314、名称为“污水脉动净化控制方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及污水处理技术领域,具体而言,涉及一种污水脉动净化控制方法及系统。
背景技术
在大中型城镇污水处理设施的设计中(处理规模大于1000m3/d),通常按照全年日平均流量确定设计规模,按照人口规模确定总变化系数。按设计规模与总变化系数的乘积(最高时流量),设计一级处理单元,按设计规模设计二级和三级处理单元,各单元均为连续运行。
在工业污水处理设施的设计中,为保证后续处理单元的均匀、连续运行,在工艺流程的首端,设计有调节池,将不连续、不均匀的来水,调节为水量、水质都连续、均匀的出水,送入后续处理单元,保证后续处理单元的连续、稳定运行,只有这样才能保证各处理单元发挥高效能的净化功能。
近几年,我国大力发展农村污水处理设施的建设,急需适用的小型、离网的污水处理设施和设备。由于设计方法和理论的缺失,当前已建或已开发的小型污水处理设施或设备,只能沿用大中型城镇污水处理设施的设计方法和理论,而一般小型污水处理设施或设备的污水排放极不均匀,沿用大中型城镇污水处理设施的设计方法和理论会导致极不均匀的污水排放与连续均匀的处理单元的矛盾,出现大马拉小车的情况,以至于污水处理设施的能耗大大增加。
发明内容
本公开的目的包括,例如提供了一种污水脉动净化控制方法及系统,以改善上述的问题。
本公开的实施例是这样实现的:
本公开的实施例提供了一种污水脉动净化控制方法,应用于污水脉动净化控制系统,所述方法包括:
获得调节池的当前环境参数;
当所述当前环境参数满足第一触发条件时,控制水泵以心跳的方式运行以便将所述调节池内的污水抽取至反应池进行处理。
可选的,所述当前环境参数为调节池的液位高度或污水流量,所述当所述当前环境参数满足第一触发条件时,控制水泵以心跳的方式运行,包括:
当所述液位高度高于预先设定的第一高度阈值或所述污水流量大于预先设定的第一流量阈值时,控制所述水泵以心跳的方式运行。
可选的,所述方法还包括:
当所述当前环境参数满足第二触发条件时,控制所述水泵停止运行。
可选的,所述当所述当前环境参数满足第二触发条件时,控制所述水泵停止运行,包括:
当所述液位高度低于预先设定的第二高度阈值或所述污水流量小于预先设定的第二流量阈值时,控制所述水泵停止运行;
所述第二高度阈值小于所述第一高度阈值,所述第二流量阈值小于所述第一流量阈值。
可选的,所述方法还包括:
当所述当前环境参数满足第三触发条件时,控制所述水泵持续运行。
可选的,所述当所述当前环境参数满足第三触发条件时,控制所述水泵持续运行,包括:
当所述液位高度高于预先设定的第三高度阈值或所述污水流量大于预先设定的第三流量阈值时,控制所述水泵持续运行;
所述第三高度阈值大于所述第一高度阈值,所述第三流量阈值大于所述第一流量阈值。
可选的,所述污水净化系统包括配置成为所述反应池供氧的风机,所述方法还包括:
控制所述风机随着所述水泵以心跳的方式启动;
当所述风机持续停止的时间超过预先设定的时间间隔时,控制所述风机启动。
可选的,所述污水净化系统包括配置成为所述反应池供氧的风机,所述方法还包括:
控制所述风机每隔预定的时间间隔启动。
本公开的实施例还提供了一种污水脉动净化控制系统,所述污水脉动净化控制系统包括有控制器、检测单元和水泵,所述控制器分别与所述检测单元和所述水泵电性连接;
所述检测单元配置成检测调节池的当前环境参数;
所述控制器配置成当所述当前环境参数满足第一触发条件时,控制所述水泵以心跳的方式运行以便将所述调节池内的污水抽取至反应池进行处理。
可选的,所述检测单元配置成检测所述调节池的液位高度或污水流量,所述控制器配置成当所述液位高度高于预先设定的第一高度阈值或所述污水流量大于预先设定的第一流量阈值时,控制所述水泵以心跳的方式运行。
可选的,所述控制器还配置成当所述当前环境参数满足第二触发条件时,控制所述水泵停止运行。
可选的,所述控制器配置成当所述液位高度低于预先设定的第二高度阈值 或所述污水流量小于预先设定的第二流量阈值时,控制所述水泵停止运行;
所述第二高度阈值小于所述第一高度阈值,所述第二流量阈值小于所述第一流量阈值。
可选的,所述控制器还配置成当所述当前环境参数满足第三触发条件时,控制所述水泵持续运行。
可选的,所述控制器还配置成当所述液位高度高于预先设定的第三高度阈值或所述污水流量大于预先设定的第三流量阈值时,控制所述水泵持续运行;
所述第三高度阈值大于所述第一高度阈值,所述第三流量阈值大于所述第一流量阈值。
可选的,污水脉动净化控制系统还包括配置成为所述反应池供氧的风机,所述风机与所述控制器电性连接;
所述控制器还配置成控制所述风机随着所述水泵以心跳的方式启动;以及
当所述风机持续停止的时间超过预先设定的时间间隔时,控制所述风机启动。
可选的,污水脉动净化控制系统还包括配置成为所述反应池供氧的风机,所述风机与所述控制器电性连接;
所述控制器还配置成控制所述风机每隔预定的时间间隔启动。
与现有的技术相比,本公开的实施例提供的污水脉动净化控制方法的有益 效果包括,例如:
本公开的实施例提供的污水脉动净化控制方法能够有效提高小型污水处理设施对于污水排放极不均匀的自适应能力,解决了污水处理的小流量需求与同等能力的机电设备难寻的矛盾,解决了大马拉小车的难题,让动力设备始终处于高效运行状态,达到大幅节能效果。
与现有的技术相比,本公开的实施例提供的污水脉动净化控制系统的有益效果包括,例如:
本公开的实施例提供的污水脉动净化控制系统能够有效提高小型污水处理设施对于污水排放极不均匀的自适应能力,解决了污水处理的小流量需求与同等能力的机电设备难寻的矛盾,解决了大马拉小车的难题,让动力设备始终处于高效运行状态,达到大幅节能效果。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例提供的污水脉动净化控制系统的功能模块示意图;
图2为本公开实施例提供的另一污水脉动净化控制系统的功能模块示意图;
图3为本公开实施例提供的污水脉动净化控制方法的流程图;
图4为本公开实施例提供的另一污水脉动净化控制方法的流程图。
图标:100-控制器;200-检测单元;300-水泵;400-风机。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本公开的描述中,需要说明的是,若出现术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置 关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,若出现术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,若出现术语“水平”、“竖直”、“悬垂”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本公开的描述中,还需要说明的是,除非另有明确的规定和限定,若出现术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
请参阅图1,图1为本公开的实施例提供的污水脉动净化控制系统的功能模块示意图,污水脉动净化控制系统应用于污水处理设施,特别是污水排放极不均匀的小型污水处理设施。污水脉动净化控制系统包括有控制器100、检测单元200和水泵300,控制器100分别与检测单元200和水泵300电性连接以进行信号交互。
其中,检测单元200配置成检测调节池的当前环境参数。污水处理设施设置有调节池,检测单元200设置于调节池内且配置成检测调节池的当前环境参数。本公开实施例中,当前环境参数可以是,但不限于调节池的液位高度或污水流量等。
例如,当当前环境参数为调节池的液位高度时,检测单元200可以是液位传感器,当当前环境参数为调节池的污水流量时,检测单元200可以是设置在调节池污水入口的流量计。或者,当当其环境参数为调节池内污水的重量时,该检测单元200可以是配置成检测调节池重力的重力传感器。
下文主要对液位高度和污水流量做详细介绍,但是实际的方式有很多种,在此不做限定,只要能够反应调节池内的污水量,或反应污水的处理量等的参数均可。
检测单元200检测到调节池的当前环境参数后,将检测到的当前环境参数反馈给控制器100。
控制器100配置成当当前环境参数满足第一触发条件时,控制水泵300以心跳的方式运行以便将调节池内的污水抽取至反应池进行处理。
控制器100预先设定有表征调节池污水充足的第一触发条件,在获得检测单元200反馈的当前环境参数后,控制器100判断当前环境参数是否满足预先设定的第一触发条件,如果当前环境参数满足第一触发条件则说明此时调节池内已汇集了足够的污水,此时控制器100向水泵300发出控制信号以控制水泵300以心跳的方式运行,以便水泵300将调节池内的污水抽取至反应池内进行净化处理。
可以理解的,正常人心跳次数为60~100次/分,也就是说每分钟产生60-100次动作,也可以理解为间歇性作业。
本公开实施例中,水泵300的数量可以为一台或多台,控制器100控制水泵300以心跳的方式运行,可以是控制一台水泵300以心跳的方式运行,也可以是控制多台水泵300同时以心跳的方式运行,还可以是控制多台水泵300按时序以心跳的方式运行等,本公开实施例中不做具体限定。
本公开实施例中,第一触发条件根据当前环境参数设定。例如,当前环境 参数为调节池的液位高度时,第一触发条件可以是指调节池的液位高度高于预先设定的第一高度阈值。当前环境参数为调节池的污水流量时,可以是指调节池的当前污水流量大于预先设定的第一流量阈值。
可以理解的,在其他的一些实施例中,第一触发条件可以为上述两种触发条件以外的其他触发条件,具体根据当前环境参数设定。
本公开实施例中,控制器100配置成当当前环境参数满足第一触发条件时,控制水泵300以心跳的方式运行。其可以是,但不限于工控机、PLC控制器或个人电脑(personal computer,PC)等。
可选的,控制器100还配置成当当前环境参数满足第二触发条件时,控制水泵300停止运行。
本公开实施例中,控制器100预先设定有表征调节池污水过少的第二触发条件,在控制器100控制水泵300以心跳的方式运行的过程中,如果当前环境参数满足第二触发条件则说明此时调节池内汇集的污水过少,此时控制器100向水泵300发出控制信号控制水泵300停止运行。
本公开实施例中,第二触发条件与第一触发条件相对应。例如,当第一触发条件是指调节池的液位高度高于预先设定的第一高度阈值时,则第二触发条件是指调节池的指液位高度低于预先设定的第二高度阈值,第二高度阈值小于第一高度阈值。当第一触发条件是指调节池的当前污水流量大于预先设定的第一流量阈值时,则第二触发条件是指调节池的当前污水流量小于预先设定的第二流量阈值,第二流量阈值小于第一流量阈值。
可选的,控制器100还配置成当当前环境参数满足第三触发条件时,控制水泵300持续运行。
本公开实施例中,控制器100预先设定有表征调节内污水过多,已经超出水泵300以心跳方式运行时的污水排出能力的第三触发条件。在控制器100 控制水泵300以心跳的方式运行的过程中,如果进入污水池的污水量持续超过水泵300的排出能力,会触发第三触发条件,此时控制器100向水泵300发出控制信号以控制水泵300持续运行。
本公开实施例中,第三触发条件与第一触发条件相对应。例如,当第一触发条件是指调节池的液位高度高于预先设定的第一高度阈值时,则第三触发条件是指调节池的指液位高度高于预先设定的第三高度阈值,第三高度阈值大于第一高度阈值。当第一触发条件是指调节池的当前污水流量大于预先设定的第一流量阈值时,则第三触发条件是指调节池的当前污水流量大于预先设定的第三流量阈值,第三流量阈值大于第一流量阈值。
通过上述的方式,在向调节池内排污的过程中,检测单元200实时检测调节池的当前环境参数,随着调节池内的污水最近增多,当前环境参数达到满足第一触发条件,此时控制器100控制水泵300以心跳的方式运行从而将调节池内的污水抽取至反应池内进行处理。在水泵300以心跳的方式运行将污水池内的水抽取至反应池的过程中,如果水泵300抽取污水的速率大于进入调节池内污水的速率,调节池内的污水量会逐渐减少,当当前环境参数达到满足第二触发条件时(调节池的液位高度低于预先设定的第二高度阈值或污水流量小于预先设定的第二流量阈值),即调节池内的污水过少,此时控制器100控制水泵300停止运行。在水泵300以心跳的方式运行将污水池内的水抽取至反应池的过程中,如果水泵300抽取污水的速率小于进入调节池内污水的速率,调节池内的污水量仍然会逐渐增多,当当前环境参数达到满足第三触发条件时(调节池的液位高度高于预先设定的第三高度阈值或污水流量大于预先设定的第三流量阈值),即当前进入调节池的污水量已经超出水泵300以心跳方式运行时的污水排出量,此时控制器100控制水泵300持续运行。如此,使得小型污水处理设施的污水处理能力能够与极不均匀的污水排放相适应,提高污水处理系统的自适应能力,解决了污水处理的小流量需求与同等能力的机电设备难寻的矛盾,同时降低了小型污水处理设施的能耗。
可选的,请参阅图2,本公开实施例提供的反应池为利用耗氧细菌对污水进行生物降解处理的反应池,例如基于膜生物反应器(Membrane Bio-Reacto,MBR)、移动床生物膜反应器(Moving Bed Biofilm Reactor,MBBR)或序批式活性污泥法(Sequencing Batch Reactor Activated Sludge Process,SBR)等的反应池时,污水脉动净化控制系统还包括有配置成为反应池供氧的风机400,风机400与控制器100电性连接以进行信号交互。
控制器100还配置成控制风机400随着水泵300以心跳的方式启动,以及当风机400持续停止的时间超过预先设定的时间间隔时控制风机400启动。如此,进一步提高污水处理设施的自适应能力,解决营养物缺乏时微生物系统的保护难题。
可以理解的,在其他的一些实施例中,控制器100也可以被配置成控制风机400每隔预定的时间间隔启动。
若液位超高,说明系统进入高峰流量期,泵按连续运行,并且报警。
综上所述,通过本公开实施例提供的污水脉动净化控制系统,在向调节池内排污的过程中,当前环境参数达到满足第一触发条件,控制器100控制水泵300以心跳的方式运行从而将调节池内的污水抽取至反应池内进行处理。当当前环境参数达到满足第二触发条件时,控制器100控制水泵300停止运行。当当前环境参数达到满足第三触发条件时,控制器100控制水泵300持续运行。如此,使得小型污水处理设施的污水处理能力能够与极不均匀的污水排放相适应,提高污水处理系统的自适应能力,解决了污水处理的小流量需求与同等能力的机电设备难寻的矛盾,解决了大马拉小车的难题,让动力设备始终处于高效运行状态,达到大幅节能效果。同时,通过控制为反应池供氧的风机400进一步提高污水处理设施的自适应能力,解决营养物缺乏时微生物系统的保护难题。
参阅图3,本实施例提供的污水脉动净化控制方法的流程图,下面将对图 3所示的流程进行详细阐述。
步骤S101,获得调节池的当前环境参数。
本公开实施例提供的污水脉动净化控制方法应用于污水脉动净化控制系统,污水脉动净化控制系统包括有控制器100、检测单元200和水泵300,控制器100分别与检测单元200和水泵300电性连接以进行信号交互。
污水处理设施设置有调节池,检测单元200设置于调节池内,检测单元200配置成检测调节池的当前环境参数并反馈给控制器100。
可以理解的,步骤S101可以被检测单元200执行。
步骤S102,判断当前环境参数是否满足第一触发条件,如果是,执行步骤S103。
控制器100预先设定有表征调节池污水充足的第一触发条件,在获得检测单元200反馈的当前环境参数后,控制器100判断当前环境参数是否满足预先设定的第一触发条件,如果是,执行步骤S103。
可以理解的,步骤S102可以被控制器100执行。
步骤S103,控制水泵以心跳的方式运行。
如果当前环境参数满足第一触发条件则说明此时调节池内已汇集了足够的污水,此时向水泵300发出控制信号控制水泵300以心跳的方式运行,以便水泵300将调节池内的污水抽取至反应池内进行净化处理。
可以理解的,步骤S103可以被控制器100执行。
步骤S104,判断当前环境参数是否满足第二触发条件,如果是,执行步骤S105。
控制器100预先设定有表征调节池污水过少的第二触发条件,在控制器100控制水泵300以心跳的方式运行的过程中,控制器100还判断当前环境参 数是否满足第二触发条件,如果是,则执行步骤S105。
可以理解的,步骤S104可以被控制器100执行。
步骤S105,控制水泵停止运行。
如果当前环境参数满足第二触发条件则说明此时调节池内汇集的污水过低,此时控制器100向水泵300发出控制信号控制水泵300停止运行。
可以理解的,步骤S105可以被控制器100执行。
步骤S106,判断当前环境参数是否满足第三触发条件,如果是,执行步骤S107。
本公开实施例中,控制器100预先设定有表征调节内污水过多,已经超出水泵300以心跳方式运行时的污水排出量的第三触发条件。在控制器100控制水泵300以心跳的方式运行的过程中,控制器100还判断当前环境参数是否满足第三触发条件,如果是,执行步骤S107。
可以理解的,步骤S106可以被控制器100执行。
需要说明的是,本公开实施例中,步骤S104与步骤S106的顺序并不限定。
步骤S107,控制水泵持续运行。
如果进入污水池的污水量持续超过水泵300的排出量,会触发第三触发条件,此时控制器100向水泵300发出控制信号以控制水泵300持续运行。
可以理解的,步骤S107可以被控制器100执行。
请参阅图4,本公开的实施例还提供了另一种污水脉动净化控制方法的流程图,下面将对图4所示的流程进行详细阐述。
步骤S201,获得调节池的当前环境参数。
步骤S202,判断当前环境参数是否满足第一触发条件,如果是,执行步 骤S203。
步骤S203,控制水泵和风机以心跳的方式运行。
本公开实施例中,污水脉动净化控制系统还包括有配置成为反应池供氧的风机400,风机400与控制器100电性连接以进行信号交互。当当前环境参数满足第一触发条件时,控制器100在控制水泵300以心跳的方式运行的同时,还控制风机400以心跳的方式运行,以便为反应池内的微生物供氧。
当然,在其他的一些实施例中,控制器100也可以被配置成控制风机400每隔预定的时间间隔启动。
进一步的,控制器100还可被配置成当风机400持续停止的时间超过预先设定的时间间隔时,控制风机400启动,进一步保障为反应池内的微生物供氧。
步骤S204,判断当前环境参数是否满足第二触发条件,如果是,执行步骤S205。
步骤S205,控制水泵停止运行。
步骤S206,判断当前环境参数是否满足第三触发条件,如果是,执行步骤S207。
步骤S207,控制水泵持续运行。
综上所述,通过本公开的实施例提供的污水脉动净化控制方法,在向调节池内排污的过程中,当前环境参数达到满足第一触发条件,控制器100控制水泵300以心跳的方式运行从而将调节池内的污水抽取至反应池内进行处理。当当前环境参数达到满足第二触发条件时,控制器100控制水泵300停止运行。当当前环境参数达到满足第三触发条件时,控制器100控制水泵300持续运行。如此,使得小型污水处理设施的污水处理能力能够与极不均匀的污水排放相适应,提高污水处理系统的自适应能力,解决了污水处理的小流量需求与同等能力的机电设备难寻的矛盾,解决了大马拉小车的难题,让动力设备始终处于高 效运行状态,达到大幅节能效果。同时,通过控制为反应池供氧的风机400进一步提高污水处理设施的自适应能力,解决营养物缺乏时微生物系统的保护难题。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应所述以权利要求的保护范围为准。
在一个实施例中:
请参考图1:本实施例提供的污水脉动净化控制系统包括有控制器100、检测单元200和水泵300,控制器100分别与检测单元200和水泵300电性连接以进行信号交互。
其中,检测单元200配置成检测调节池的当前环境参数。
检测单元200检测到调节池的当前环境参数后,将检测到的当前环境参数反馈给控制器100。
控制器100配置成当当前环境参数满足第一触发条件时,控制水泵以心跳的方式运行以便将调节池内的污水抽取至反应池进行处理;或配置成当当前环境参数满足第二触发条件时,控制水泵停止运行;或配置成当当前环境参数满 足第三触发条件时,控制水泵持续运行。
请参考图2,污水脉动净化控制系统还包括配置成为反应池供氧的风机400,风机400与控制器100电性连接以进行信号交互。
控制器100还配置成控制风机400随着水泵300以心跳的方式启动,以及当风机400持续停止的时间超过预先设定的时间间隔时控制风机400启动;或配置成控制风机400每隔预定的时间间隔启动。
请参考图3,本实施例提供的污水脉动净化控制方法,其应用于污水脉动净化控制系统。
S101,检测单元200将调节池的当前环境参数进行检测并反馈给控制器100,从而获得调节池的当前环境参数。
S102,判断当前环境参数是否满足第一触发条件,若是,则执行S103,控制器100控制水泵300以心跳的方式运行。若否,则结束进程。
S104,判断当前环境参数是否满足第二触发条件,若是,则执行S105,控制器100控制水泵300停止运行。若否,则结束进程。
S106,判断当前环境参数是否满足第三触发条件,若是,则执行S107,控制器100控制水泵300持续运行。若否,则结束进程。
请参考图4,本实施例提供的污水脉动净化控制方法,其应用于污水脉动净化控制系统。
S201,检测单元200将调节池的当前环境参数进行检测并反馈给控制器100,从而获得调节池的当前环境参数。
S202,判断当前环境参数是否满足第一触发条件,若是,则执行S203, 控制器100控制水泵300和风机400以心跳的方式运行。若否,则结束进程。
S204,判断当前环境参数是否满足第二触发条件,若是,则执行S205,控制器100控制水泵300停止运行。若否,则结束进程。
S206,判断当前环境参数是否满足第三触发条件,若是,则执行S207,控制器100控制水泵300持续运行。若否,则结束进程。
工业实用性:
综上所述,本公开提供了一种污水脉动净化控制方法及系统,其能够有效提高小型污水处理设施对于污水排放极不均匀的自适应能力,让动力设备始终处于高效运行状态,达到大幅节能效果。

Claims (16)

  1. 一种污水脉动净化控制方法,应用于污水脉动净化控制系统,其特征在于,所述方法包括:
    获得调节池的当前环境参数;
    当所述当前环境参数满足第一触发条件时,控制水泵以心跳的方式运行以便将所述调节池内的污水抽取至反应池进行处理。
  2. 根据权利要求1所述的污水脉动净化控制方法,其特征在于,所述当前环境参数为调节池的液位高度或污水流量,所述当所述当前环境参数满足第一触发条件时,控制水泵以心跳的方式运行,包括:
    当所述液位高度高于预先设定的第一高度阈值或所述污水流量大于预先设定的第一流量阈值时,控制所述水泵以心跳的方式运行。
  3. 根据权利要求2所述的污水脉动净化控制方法,其特征在于,所述方法还包括:
    当所述当前环境参数满足第二触发条件时,控制所述水泵停止运行。
  4. 根据权利要求3所述的污水脉动净化控制方法,其特征在于,所述当所述当前环境参数满足第二触发条件时,控制所述水泵停止运行,包括:
    当所述液位高度低于预先设定的第二高度阈值或所述污水流量小于预先设定的第二流量阈值时,控制所述水泵停止运行;
    所述第二高度阈值小于所述第一高度阈值,所述第二流量阈值小于所述第一流量阈值。
  5. 根据权利要求2所述的污水脉动净化控制方法,其特征在于,所述方法还包括:
    当所述当前环境参数满足第三触发条件时,控制所述水泵持续运行。
  6. 根据权利要求5所述的污水脉动净化控制方法,其特征在于,所述当所述当前环境参数满足第三触发条件时,控制所述水泵持续运行,包括:
    当所述液位高度高于预先设定的第三高度阈值或所述污水流量大于预先设定的第三流量阈值时,控制所述水泵持续运行;
    所述第三高度阈值大于所述第一高度阈值,所述第三流量阈值大于所述第一流量阈值。
  7. 根据权利要求2-6任一项所述的污水脉动净化控制方法,其特征在于,所述污水净化系统包括配置成为所述反应池供氧的风机,所述方法还包括:
    控制所述风机随着所述水泵以心跳的方式启动;
    当所述风机持续停止的时间超过预先设定的时间间隔时,控制所述风机启动。
  8. 根据权利要求2-6任一项所述的污水脉动净化控制方法,其特征在于,所述污水净化系统包括配置成为所述反应池供氧的风机,所述方法还包括:
    控制所述风机每隔预定的时间间隔启动。
  9. 一种污水脉动净化控制系统,其特征在于,所述污水脉动净化控制系统包括有控制器、检测单元和水泵,所述控制器分别与所述检测单元和所述水泵电性连接;
    所述检测单元配置成检测调节池的当前环境参数;
    所述控制器配置成当所述当前环境参数满足第一触发条件时,控制所述水泵以心跳的方式运行以便将所述调节池内的污水抽取至反应池进行处理。
  10. 根据权利要求9所述的污水脉动净化控制系统,其特征在于,所述检测单元配置成检测所述调节池的液位高度或污水流量,所述控制器配置成当所述液位高度高于预先设定的第一高度阈值或所述污水流量大于预先设定的第一流量阈值时,控制所述水泵以心跳的方式运行。
  11. 根据权利要求10所述的污水脉动净化控制系统,其特征在于,所述控制器还配置成当所述当前环境参数满足第二触发条件时,控制所述水泵停止运行。
  12. 根据权利要求11所述的污水脉动净化控制系统,其特征在于,所述控制器配置成当所述液位高度低于预先设定的第二高度阈值或所述污水流量小于预先设定的第二流量阈值时,控制所述水泵停止运行;
    所述第二高度阈值小于所述第一高度阈值,所述第二流量阈值小于所述第一流量阈值。
  13. 根据权利要求10所述的污水脉动净化控制系统,其特征在于,所述控制器还配置成当所述当前环境参数满足第三触发条件时,控制所述水泵持续运行。
  14. 根据权利要求13所述的污水脉动净化控制系统,其特征在于,所述控制器还配置成当所述液位高度高于预先设定的第三高度阈值或所述污水流量大于预先设定的第三流量阈值时,控制所述水泵持续运行;
    所述第三高度阈值大于所述第一高度阈值,所述第三流量阈值大于所述第 一流量阈值。
  15. 根据权利要求10-14任一项所述的污水脉动净化控制系统,其特征在于,还包括配置成为所述反应池供氧的风机,所述风机与所述控制器电性连接;
    所述控制器还配置成控制所述风机随着所述水泵以心跳的方式启动;以及
    当所述风机持续停止的时间超过预先设定的时间间隔时,控制所述风机启动。
  16. 根据权利要求10-14任一项所述的污水脉动净化控制系统,其特征在于,还包括配置成为所述反应池供氧的风机,所述风机与所述控制器电性连接;
    所述控制器还配置成控制所述风机每隔预定的时间间隔启动。
PCT/CN2018/083648 2018-03-27 2018-04-19 污水脉动净化控制方法及系统 WO2019184022A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18756363.0A EP3569574A4 (en) 2018-03-27 2018-04-19 METHOD AND SYSTEM FOR THE CONTROL OF PULSE CLEANING OF WASTE WATER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810258731.4A CN108217786A (zh) 2018-03-27 2018-03-27 污水脉动净化控制方法及系统
CN201810258731.4 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019184022A1 true WO2019184022A1 (zh) 2019-10-03

Family

ID=62659081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083648 WO2019184022A1 (zh) 2018-03-27 2018-04-19 污水脉动净化控制方法及系统

Country Status (3)

Country Link
EP (1) EP3569574A4 (zh)
CN (1) CN108217786A (zh)
WO (1) WO2019184022A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109111030B (zh) * 2018-08-27 2021-12-07 重庆固润科技发展有限公司 一体化污水处理智能控制系统及控制方法
CN111115727A (zh) * 2020-01-02 2020-05-08 中建一局华江建设有限公司 一种农村污水处理系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132291A (ja) * 1993-11-09 1995-05-23 Funai Electric Co Ltd アルカリイオン水または強酸性水生成器
CN1850657A (zh) * 2006-06-01 2006-10-25 北京工业大学 脉冲进水sbr深度脱氮工艺及过程控制装置和方法
CN202789464U (zh) * 2012-07-18 2013-03-13 江苏大湖环境工程有限公司 一种污水处理系统的控制系统
CN106597879A (zh) * 2016-11-03 2017-04-26 中冶华天工程技术有限公司 一种污水处理提升泵优化调度方法
CN106647244A (zh) * 2016-11-03 2017-05-10 中冶华天工程技术有限公司 一种污水处理提升泵运行系统
CN207061902U (zh) * 2017-08-09 2018-03-02 浙江大学 用于污水处理的可控脉冲进水装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005013911A (ja) * 2003-06-27 2005-01-20 Tsurumi Mfg Co Ltd 汚水処理施設における廃水の移送方法
CN102432104B (zh) * 2011-11-04 2013-07-17 同济大学 高效低动力多层水平流生物膜污水处理方法与设备
CN102849895A (zh) * 2012-08-10 2013-01-02 杭州净洋环保科技有限公司 一套生活污水脱氮系统及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132291A (ja) * 1993-11-09 1995-05-23 Funai Electric Co Ltd アルカリイオン水または強酸性水生成器
CN1850657A (zh) * 2006-06-01 2006-10-25 北京工业大学 脉冲进水sbr深度脱氮工艺及过程控制装置和方法
CN202789464U (zh) * 2012-07-18 2013-03-13 江苏大湖环境工程有限公司 一种污水处理系统的控制系统
CN106597879A (zh) * 2016-11-03 2017-04-26 中冶华天工程技术有限公司 一种污水处理提升泵优化调度方法
CN106647244A (zh) * 2016-11-03 2017-05-10 中冶华天工程技术有限公司 一种污水处理提升泵运行系统
CN207061902U (zh) * 2017-08-09 2018-03-02 浙江大学 用于污水处理的可控脉冲进水装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3569574A4 *

Also Published As

Publication number Publication date
CN108217786A (zh) 2018-06-29
EP3569574A4 (en) 2020-10-21
EP3569574A1 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
KR101729932B1 (ko) 실시간 수처리 설비 감시 자동 제어 시스템
CN109111030B (zh) 一体化污水处理智能控制系统及控制方法
WO2019184022A1 (zh) 污水脉动净化控制方法及系统
CN201347566Y (zh) 变频恒压供水自动控制系统
CN202347587U (zh) 一种恒压变频供水装置
CN211596928U (zh) 一种智慧节电型无负压供水设备
CN211497312U (zh) 环保智能型污水处理系统
CN207738594U (zh) 一种污水处理的一体化装置
CN107265625B (zh) 一种高原地区曝气系统及曝气方法
WO2019178926A1 (zh) 污水处理设备的控制系统、方法、电子设备及计算机可读存储介质
CN205635244U (zh) 一种智能化小型生活污水处理系统
CN110606545A (zh) 一种乡镇污水处理用曝气系统及其控制方法
CN104846881A (zh) 无负压管网叠压供水控制装置
CN210825600U (zh) 一种乡镇污水处理用曝气系统
CN108609728A (zh) 一种利用溶解氧改性污泥丝状菌膨胀的系统及控制方法
JP4464851B2 (ja) 曝気装置の運転制御方法
CN104846955A (zh) 无负压管网叠压稳流分压给水设备
CN114278530B (zh) 一种二次供水设备的水泵节能控制方法
CN205935058U (zh) 一种变频调速恒压供水装置
CN208649036U (zh) 同步除碳脱氮的废水处理装置
CN214693528U (zh) 一种精准曝气自动调节装置
CN210559634U (zh) 一种溶解氧自动稳定控制系统
CN107503398A (zh) 一种无压力传感器恒压供水系统的智能苏醒方法
CN204738342U (zh) 一种轻小型智能家用深井恒压供水系统
CN211620044U (zh) 一种反应器系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018756363

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018756363

Country of ref document: EP

Effective date: 20180604

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE