WO2019184001A1 - 含铀化合物作为闪烁体的应用 - Google Patents

含铀化合物作为闪烁体的应用 Download PDF

Info

Publication number
WO2019184001A1
WO2019184001A1 PCT/CN2018/082108 CN2018082108W WO2019184001A1 WO 2019184001 A1 WO2019184001 A1 WO 2019184001A1 CN 2018082108 W CN2018082108 W CN 2018082108W WO 2019184001 A1 WO2019184001 A1 WO 2019184001A1
Authority
WO
WIPO (PCT)
Prior art keywords
uranium
formula
phenyl
group
scintillator
Prior art date
Application number
PCT/CN2018/082108
Other languages
English (en)
French (fr)
Inventor
王殳凹
王亚星
尹雪苗
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US16/098,853 priority Critical patent/US11072740B2/en
Publication of WO2019184001A1 publication Critical patent/WO2019184001A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G43/00Compounds of uranium
    • C01G43/006Compounds containing, besides uranium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G47/00Compounds of rhenium
    • C01G47/006Compounds containing, besides rhenium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/63Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/3804Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)] not used, see subgroups
    • C07F9/3839Polyphosphonic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/04Luminescent, e.g. electroluminescent, chemiluminescent materials containing natural or artificial radioactive elements or unspecified radioactive elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/06Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a phosphor layer
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/08Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a binder in the phosphor layer

Definitions

  • the invention relates to the field of scintillator technology, in particular to an application of a uranium containing compound as a scintillator.
  • Radiation scintillation refers to the process by which a material absorbs high-energy particles ( ⁇ , ⁇ particles) or rays (X, ⁇ ) and emits visible light.
  • a material with this property is often called a “scintillator” because it can “radiate” Visualization process (ray-visible-photoelectric conversion-imaging), therefore such materials in high-energy physics and nuclear physics experiments, space and astrophysics, medical imaging, environmental monitoring, safety inspection, nuclear non-proliferation testing, industrial non-destructive testing, petroleum It is widely used in logging and geological exploration.
  • the scintillators currently used on a large scale are inorganic scintillators.
  • the early inorganic scintillators include ZnS, NaI, CsI and other crystals.
  • Such pure inorganic salt crystals have low luminous efficiency.
  • Adding a small amount of activator such as Tl + ions to the inorganic salt crystal can further improve the luminous efficiency, and the high fluorescence has been developed.
  • the intensity of the scintillator is NaI: Tl, CsI: Tl, etc., but such ionic materials are more hygroscopic, and additional processing is required in the actual production process.
  • the lanthanide silicates based on the doped illuminant Ce 3+ ions have high stability and large light output, and are also widely used, but the single crystal growth technology of such materials is still not mature enough, for example, Y. 2 Si 2 O 7 : Ce does not melt inconsistently, and growing large-sized single crystals is still a problem.
  • Another very important type of scintillator is Bismuth Citrate crystal (Bi 4 Ge 3 O 12 , BGO), which has a density of about 7 g/cm 3 , which makes it highly absorbing. It is widely used in high energy. Physical, nuclear medicine imaging and other devices. However, the synthesis of precursor GeO 2 is relatively expensive, and finding cheap, high-performance scintillators is still an important part of the development of scintillators.
  • radiation detection materials should have the following points: (1) high light output; (2) fast response time; (3) good radiation and humidity stability; (4) better energy resolution and other performance; ) Strong ray blocking ability.
  • scintillators have been widely used, each scintillator is limited to specific needs in the actual application process, and therefore, scintillator material development is largely application-oriented.
  • scintillator materials are developed with a lattice element (silicate, aluminate, borate, etc.) composed of heavy elements doped with luminescent elements Ce 3+ and Eu 2+ , etc., in order to obtain better material properties;
  • a lattice element silicate, aluminate, borate, etc.
  • luminescent elements Ce 3+ and Eu 2+ , etc. in order to obtain better material properties;
  • the development of scintillator materials is also focused on the growth of high quality crystals such as LaBr 3 :Ce 3+ , PbWO 4 , Bi 4 Ge 3 O 12 (BGO).
  • an object of the present invention is to provide an application of a uranium-containing compound as a scintillator, and the present invention discloses that a uranium-containing organic-inorganic compound or a uranium-containing inorganic substance has an intrinsic scintillation ability, which is improved as a ray scintillator.
  • the performance of the scintillator provides a new concept for the development of scintillators using various types of chemical composition and morphology (organic, inorganic, inorganic) using uranium.
  • the invention discloses the application of a uranium-containing compound as a scintillator, wherein the uranium-containing compound is a uranium-containing organic-inorganic hybrid or a uranium-containing inorganic substance, and the uranium-containing organic-inorganic hybrid is a uranium-containing organic carboxylate or a formula of the formula (I) II) uranium containing organic phosphate:
  • the uranium-containing inorganic material is a uranium-containing nonmetalate of formula (III), a uranium-containing metal salt of formula (IV) or a uranium-containing halide of formula (V):
  • Y of formula (IV) is selected from Mo, V, Cr, Nb, W, Re, Ga, Ge, Sb or Sn elements; m is 1, then n is 2; m is 2, then n is 1;
  • X of the formula (V) is selected from the group consisting of an F element, a Cl element, a Br element or an I element;
  • the A n+ of the formula (II), the formula (III) and the formula (IV) are independently selected from the group consisting of tetramethylammonium cation, Na + , K + , NH 4 + , Li + , Rb + , Cs + , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Pb 2+ or Bi 2+ ;
  • B + of formula (V) is selected from Na + , K + , Li + , Rb + , Cs + or Wherein R 3 , R 4 , R 5 and R 6 are independently selected from hydrogen, alkyl, phenyl, phenyl or nitrogen-containing phenyl.
  • R 1 is a phenyl group or an alkyl group.
  • uranium-containing organic carboxylate of the formula (I) is UO 2 (C 9 O 6 H 4 ) (H 2 O), hereinafter abbreviated as SCU-9, and its structural formula is as follows:
  • Conventional scintillators are mostly ion-bonded (such as CsI:Tl), and the uranyl organic-inorganic hybrid material SCU-9 provided by the present invention is covalently bonded, and has high radiation resistance and water stability.
  • the density of the SCU-9 is only 2.85g/cm 3 , but its radiation blocking ability in the range of medical radiography applications (>20KeV) is significantly better than the current commercial material CsI:Tl (its density is 4.85g/cm 3 ), so The ray blocking ability of materials with uranyl as the luminescent center can be further improved by material design.
  • the molar ratio of uranyl nitrate, boric acid and trimesic acid is from 0.8 to 1: 1-10: 1-2.
  • n 1
  • R 2 is a phenyl group
  • a n+ is a tetramethylammonium cation.
  • n 1
  • M is a B element
  • a n+ is Na + .
  • Its molecular formula is Na[(UO 2 )B 6 O 10 (OH)], hereinafter referred to as NaBUO-4.
  • X is a Cl element
  • B + is Wherein R 3 , R 4 , R 5 and R 6 are independently selected from hydrogen, alkyl, phenyl, phenyl or nitrogen-containing phenyl.
  • B + is NH 4 + or
  • the invention proposes a new use of a uranium-containing compound, which comprises a uranium compound as a scintillator, and the uranium has excellent luminescence and material designability, and is a luminescent element which has not yet been introduced into the research and development of the scintillator.
  • the most stable valence state of uranium is hexavalent, and its chemical form is uranyl (UO 2 2+ ). Its important feature is the green fluorescence emission caused by the orbital transition of uranyl molecules.
  • uranyl luminescence is Intrinsic luminescence, without the need to introduce a ligand that transfers energy, can be directly transmitted from the excitation source energy to the element itself.
  • uranium is the last stable element on earth, and it has a high density and ray blocking ability. As shown in Figure 1, uranium has the strongest radiation blocking ability compared to the mainstream scintillator core elements W, Pb, Bi, Tl, and the like.
  • the present invention has at least the following advantages:
  • the invention proposes a method and a concept for utilizing uranium element as a scintillator, including uranium-containing organic-inorganic hybrid or uranium-containing inorganic material, which has superior material properties and large design space, and provides a brand-new design concept of scintillator material.
  • Figure 1 is a graph of element density and ray blocking ability
  • Figure 2 is a structural view of an X-ray test experimental device
  • Figure 3 is an X-ray fluorescence spectrum of different substances
  • Figure 4 is a graph showing the relationship between different X-ray power and SCU-9 fluorescence intensity
  • Figure 5 shows the results of SCU-9 and CsI:Tl radiation stability comparison and the trend of radiation stability
  • Figure 6 shows the results of humidity stability comparison and humidity stability of SCU-9 and CsI:Tl;
  • Figure 7 shows the results of the SCU-9 and CsI:Tl materials for the ability to block radiation in the 30eV-30KeV X-ray energy range.
  • the reactants UO 2 (NO 3 ) 2 ⁇ 6H 2 O, H 3 BO 3 and trimesic acid were placed in a polytetrafluoroethylene reactor at a molar ratio of 1:10:1, and a small amount of deionized water was added. Dissolved, sealed, heated to 200 ° C, heated for 3 days, then gradually cooled to room temperature, the product was washed with a large amount of boiling water until all the boric acid was dissolved, the obtained crystal product was washed with ethanol, and then air-dried at room temperature to obtain SCU-9 crystal.
  • the one-dimensional chain polymer formed by coordinating the central metal UO 2 2+ of the product crystal with a carboxylic acid has a density of 2.85 g/cm 3 .
  • the X-ray fluorescence spectrum of the SCU-9 crystal was tested by an X-ray test experimental device.
  • the structure of the X-ray test experimental device is shown in Fig. 2.
  • the sample in the figure is the SCU-9 crystal in this embodiment, and the test results are as follows.
  • the upper curve in Figure 3 is shown.
  • Luminescence stability under irradiation is another characteristic of scintillator performance.
  • Figure 5a shows the comparison of SCU-9 and CsI:Tl radiation stability
  • Figures 5b and c show the irradiation stability of SCU-9 and CsI:Tl, respectively.
  • the results showed that SCU-9 still maintained 65% of luminescence output under the final 53Gy dose radiation, CsI under the same conditions: Tl is only about 20%.
  • the stability of the scintillator under high humidity is also a must-test property.
  • the experimental results are shown in Figure 6.
  • FIG. 6a shows the comparison of humidity stability between SCU-9 and CsI:Tl
  • Figure 6b, c The humidity stability trends of SCU-9 and CsI:Tl are respectively decreased. With the increase of relative humidity, the luminous output of SCU-9 and CsI:Tl are decreasing. At 95% humidity, the CsI:Tl light output is reduced. As small as 10% or less, the SCU-9 still maintains about 80% of the light output.
  • the structural formula of the uranium-containing organic phosphate of the formula (II) is as follows, hereinafter referred to as ([TMA][(UO 2 ) 2 (1,3-pbpH)(1,3-pbpH 2 )]):
  • the preparation method is as follows:
  • the isophthalic acid (1,3-bp pH 4 ), tetramethylammonium hydroxide and UO 2 (NO 3 ) 2 ⁇ 6H 2 O were placed in a polytetrafluoroethylene reactor at a molar ratio of 2:2:1.
  • Add 1 drop of HF acid add 1 mL of deionized water to dissolve, seal, warm to 200 ° C, heat for 3 days, then gradually cool to room temperature, the product is washed with water, then the crystal product obtained is washed with ethanol, and then dried at room temperature to obtain [TMA] [(UO 2 ) 2 (1,3-pbpH) (1,3-pbpH 2 )] compound.
  • This compound can be used as a scintillator.
  • the preparation method is as follows:
  • Na 2 MoO 4 and UO 2 (NO 3 ) 2 ⁇ 6H 2 O were placed in a polytetrafluoroethylene reactor at a molar ratio of 1:4, dissolved in a small amount of deionized water, sealed, heated to 200 ° C, heated for 3 days. Then, it was gradually cooled to room temperature, and the product was washed with a large amount of boiling water, and the obtained crystal product was washed with ethanol, and then dried at room temperature to obtain Na 2 UO 2 (MoO 4 ) 2 H 2 O. This compound can be used as a scintillator.
  • X of the formula (V) is a Cl element, and B + is Its structural formula is as follows, hereinafter referred to as [BTA] 2 [UO 2 Cl 4 ] compound:
  • the preparation method is as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Measurement Of Radiation (AREA)
  • Luminescent Compositions (AREA)

Abstract

含铀化合物作为闪烁体的应用,所述含铀化合物为有机无机杂化物或含铀无机物,含铀有机无机杂化物为含铀有机羧酸盐或含铀有机磷酸盐;含铀无机物为含铀非金属酸盐、含铀金属盐或含铀卤化物。所述含铀化合物具有本征闪烁能力,为利用铀元素进行各类型化学组成与形态(有机无机、无机)的闪烁体开发提供了新理念。

Description

含铀化合物作为闪烁体的应用 技术领域
本发明涉及闪烁体技术领域,尤其涉及一种含铀化合物作为闪烁体的应用。
背景技术
辐射闪烁性能是指材料吸收高能粒子(α、β粒子)或射线(X、γ)后发射可见光的过程,具备这种性质的材料通常被称为“闪烁体”,由于其能够对辐射进行“可视化”过程(射线-可见光-光电转换-成像),因此此类材料在高能物理和核物理实验、空间和天体物理、医学成像、环境监测、安全检查、核不扩散检测、工业无损检测、石油测井和地质勘探等领域均具有广泛应用。
目前大规模使用的闪烁体为无机闪烁体。早期无机闪烁体包含ZnS,NaI,CsI等晶体,此类纯无机盐晶体发光效率较低,在无机盐晶体中加入少量激活剂如Tl +离子等能进一步提高发光效率,目前已发展的高荧光强度的闪烁体有NaI:Tl、CsI:Tl等,但此类离子型材料较易吸湿,在实际制作产品过程需额外的处理方式。此外,以掺杂发光体Ce 3+离子为主的镧系硅酸盐具有高的稳定性、较大的光输出,也被广泛应用,但此类材料单晶生长技术仍不够成熟,例如Y 2Si 2O 7:Ce不一致融化,生长大尺寸单晶仍是难题。另外一类非常重要的闪烁体为锗酸铋晶体(Bi 4Ge 3O 12,BGO),其密度约为7g/cm 3,使得此类晶体具有较高的射线吸收能力,目前广泛应用于高能物理、核医学成像等装置。但合成前体GeO 2价格较为昂贵,寻找廉价、高性能闪烁体仍是闪烁体发展的重要内容。
一般来说辐射探测材料应具备以下几点:(1)高光输出;(2)快速响应时间;(3)良好的辐射和湿度稳定性;(4)较好的能量分辨率等性能;(5)强的射线阻止能力。虽然各类闪烁体已经被广泛使用,但是每种闪烁体在实际应用过程中仅限于特定需求,因此,闪烁体材料开发很大程度上以应用为导向。当前闪烁体材料开发以重元素组成的晶格基质(硅酸盐、铝酸盐、硼酸盐等)掺杂发光元素Ce 3+、Eu 2+等为主,力求获得较好的材料性能;另外一方面,闪烁体材料发展也着力生长LaBr 3:Ce 3+、PbWO 4、Bi 4Ge 3O 12(BGO)等高质量晶体。
发明内容
为解决上述技术问题,本发明的目的是提供一种含铀化合物作为闪烁体的应用,本发明公开了含铀有机无机化合物或含铀无机物具有本征闪烁能力,作为射线闪烁体,提高了闪烁 体的性能,为利用铀元素进行各类型化学组成与形态(有机无机、无机)的闪烁体开发提供了新理念。
本发明公开了含铀化合物作为闪烁体的应用,含铀化合物为含铀有机无机杂化物或含铀无机物,含铀有机无机杂化物为式(Ⅰ)的含铀有机羧酸盐或式(Ⅱ)的含铀有机磷酸盐:
Figure PCTCN2018082108-appb-000001
含铀无机物为式(Ⅲ)的含铀非金属酸盐、式(Ⅳ)的含铀金属盐或式(Ⅴ)的含铀卤化物:
Figure PCTCN2018082108-appb-000002
其中,
式(Ⅰ)中的R 1选自苯基、取代苯基或烷基;优选地,烷基为C 1-C 8烷基;n=1或2;
式(Ⅱ)中的R 2选自苯基、取代苯基或烷基;优选地,烷基为C 1-C 8烷基;n=1或2;
式(Ⅲ)的M选自B、N、Si、Se、P、As、S或Te元素;n=1或2;
式(Ⅳ)的Y选自Mo、V、Cr、Nb、W、Re、Ga、Ge、Sb或Sn元素;m为1,则n为2;m为2,则n为1;
式(Ⅴ)的X选自F元素、Cl元素、Br元素或I元素;
式(Ⅱ)、式(Ⅲ)和式(Ⅳ)的A n+独立地选自四甲基铵阳离子、Na +、K +、NH 4 +、Li +、Rb +、Cs +、Mg 2+、Ca 2+、Sr 2+、Ba 2+、Pb 2+或Bi 2+
式(Ⅴ)的B +选自Na +、K +、Li +、Rb +、Cs +
Figure PCTCN2018082108-appb-000003
其中,R 3、R 4、R 5和R 6独立地选自氢、烷基、苯基、苯基或含氮苯基。
进一步地,R 1为苯基或烷基。
进一步地,式(Ⅰ)的含铀有机羧酸盐为UO 2(C 9O 6H 4)(H 2O),以下简称SCU-9,其结构式如下:
Figure PCTCN2018082108-appb-000004
传统闪烁体多以离子键结合(如CsI:Tl),本发明提供的铀酰有机无机杂化材料SCU-9以共价方式键合,具有较高的辐射抗性和水稳定性。SCU-9的密度仅有2.85g/cm 3,但其在医学射线成像应用范围内(>20KeV)对射线阻止能力明显优于目前商用材料CsI:Tl(其密度4.85g/cm 3),因此以铀酰为发光中心的材料对射线阻止能力可通过材料设计进一步提高。
进一步地,UO 2(C 9O 6H 4)(H 2O)的制备方法包括以下步骤:
将硝酸双氧铀(UO 2(NO 3) 2·6H 2O)、硼酸(H 3BO 3)和均苯三酸溶于水,在密闭条件下于190-250℃下反应,冷却、洗涤后得到UO 2(C 9O 6H 4)(H 2O)。
进一步地,硝酸双氧铀、硼酸和均苯三酸的摩尔比为0.8-1:1-10:1-2。
进一步地,在式(Ⅱ)中,n=1,R 2为苯基,A n+为四甲基铵阳离子。
进一步地,式(Ⅱ)的含铀有机磷酸盐的结构式如下:
Figure PCTCN2018082108-appb-000005
进一步地,在式(Ⅲ)中,n=1,M为B元素,A n+为Na +。其分子式为Na[(UO 2)B 6O 10(OH)],以下简称为NaBUO-4。
进一步地,在式(Ⅳ)中,n=1,m=2,Y为Mo元素,A n+为Na +、Li +、K +、Rb +或Cs +
或n=2,m=1,Y为Mo元素,A n+为Mg 2+、Ca 2+、Sr 2+、Ba 2+、Pb 2+或Bi 2+
进一步地,在式(Ⅴ)中,X为Cl元素,B +
Figure PCTCN2018082108-appb-000006
其中,R 3、R 4、R 5和R 6独立地选自氢、烷基、苯基、苯基或含氮苯基。优选地,B +为NH 4 +
Figure PCTCN2018082108-appb-000007
本发明提出了含铀化合物的新用途,含铀化合物作为闪烁体,铀具备优异的发光和材料可设计性能,是闪烁体研究与开发仍然未引入的一个发光元素。铀元素最稳定价态为六价,其化学形式为铀酰(UO 2 2+),其重要特点是铀酰分子轨道跃迁导致的绿色荧光发射,与镧系发光元素相比,铀酰发光为本征发光,不需引入传递能量的配体,可直接由激发源能量传递至元素本身发光。同时,铀是地球上存在的最后一个稳定元素,本身具有较高的密度和射线阻止能力。如图1所示,与主流闪烁体核心元素W、Pb、Bi、Tl等相比,铀具有最强的射线 阻止能力。
借由上述方案,本发明至少具有以下优点:
本发明提出了利用铀元素作为闪烁体的方法和概念,包括含铀有机无机杂化物或含铀无机物,材料性能优越、设计空间大,提供了一种全新的闪烁体材料设计理念。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1是元素密度与射线阻滞能力图;
图2是X射线测试实验装置结构图;
图3是不同物质的X射线荧光光谱图;
图4是不同X射线功率与SCU-9荧光强度的关系图;
图5为SCU-9和CsI:Tl辐照稳定性对比结果及辐照稳定性变化趋势;
图6为SCU-9和CsI:Tl湿度稳定性对比结果及湿度稳定性变化趋势;
图7是30eV-30KeVX射线能量范围内,SCU-9和CsI:Tl材料对于射线的阻止能力测试结果。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1 SCU-9晶体的合成
将反应物UO 2(NO 3) 2·6H 2O、H 3BO 3和均苯三酸以摩尔比为1:10:1的比例置入聚四氟乙烯反应釜中,加少量去离子水溶解,密封,升温至200℃,加热3天,后逐渐冷却至室温,产物用大量沸水洗涤,至硼酸全部溶解,所得晶体产物用乙醇洗涤,后于室温下晾干,得到SCU-9晶体。该产物晶体的中心金属UO 2 2+与羧酸配位形成的一维链状聚合物,密度为2.85g/cm 3
采用X射线测试实验装置测试SCU-9晶体在X射线荧光光谱图,其中,X射线测试实验装置结构如图2所示,图中样品在本实施例中即为SCU-9晶体,测试结果如图3中上方曲线所示。
此外,测试不同X射线功率与SCU-9荧光强度的关系,以CsI:Tl作为对照,实验结果表明随着X射线能量的增加,样品荧光强度也会增加(图4b,其中电压均为40kV),并且两者呈线性关系(图4a),符合闪烁体应用的特征。
辐射下的发光稳定性是闪烁体性能的另一个特性,图5a为SCU-9和CsI:Tl辐照稳定性对比结果,图5b、c分别为SCU-9和CsI:Tl的辐照稳定性变化趋势,随着剂量的增加,SCU-9 和CsI:Tl的发光输出均呈下降趋势,结果显示在最终的53Gy剂量辐射下SCU-9仍然保持65%的发光输出,相同条件下的CsI:Tl仅为20%左右。同样为了扩大应用范围,高湿度下闪烁体的稳定性也是一项必测得性质,实验结果如图6所示,图6a为SCU-9和CsI:Tl湿度稳定性对比结果,图6b、c分别为SCU-9和CsI:Tl的湿度稳定性变化趋势,随着相对湿度的增加,SCU-9和CsI:Tl的发光输出均呈下降趋势,在95%湿度下,CsI:Tl光输出减小到10%以下,而SCU-9仍保持80%左右的光输出量。
计算30eV-30KeV X射线能量范围内,SCU-9和CsI:Tl材料对于射线的阻止能力,如图7所示,20KeV以上,SCU-9化合物对射线的阻止能力强于商用产品CsI:Tl。
实施例2 (NaBUO-4)的合成
将NaNO 3、H 3BO 3和UO 2(NO 3) 2·6H 2O以3:15:1摩尔比置入聚四氟乙烯反应釜中,加少量去离子水溶解,密封,升温至190℃,加热1天,后逐渐冷却至室温,产物用大量沸水洗涤,至硼酸全部溶解,所得晶体产物用乙醇洗涤,后于室温下晾干,得到(NaBUO-4)。
按照实施例1中的方法,测试(NaBUO-4)的X射线荧光光谱图,结果如图3中下方曲线所示。
实施例3
式(Ⅱ)的含铀有机磷酸盐的结构式如下,以下简称([TMA][(UO 2) 2(1,3-pbpH)(1,3-pbpH 2)]):
Figure PCTCN2018082108-appb-000008
其制备方法如下:
将间苯二磷酸(1,3-bppH 4)、四甲基氢氧化铵和UO 2(NO 3) 2·6H 2O以2:2:1摩尔比置入聚四氟乙烯反应釜中,加1滴HF酸,加1mL去离子水溶解,密封,升温至200℃,加热3天,后逐渐冷却至室温,产物用水洗涤,后所得晶体产物用乙醇洗涤,后于室温下晾干,得到[TMA][(UO 2) 2(1,3-pbpH)(1,3-pbpH 2)]化合物。该化合物可作为闪烁体使用。
实施例4
式(Ⅳ)的含铀金属盐结构式如下,其中,n=1,m=2,Y为Mo元素,A n+为Na +,以下简称Na 2UO 2(MoO 4) 2H 2O:
Figure PCTCN2018082108-appb-000009
其制备方法如下:
将Na 2MoO 4和UO 2(NO 3) 2·6H 2O以1:4摩尔比置入聚四氟乙烯反应釜中,加少量去离子水溶解,密封,升温至200℃,加热3天,后逐渐冷却至室温,产物用大量沸水洗涤,后所得晶体产物用乙醇洗涤,后于室温下晾干,得到Na 2UO 2(MoO 4) 2H 2O。该化合物可作为闪烁体使用。
实施例5
式(Ⅴ)的X为Cl元素,B +
Figure PCTCN2018082108-appb-000010
其结构式如下,以下简称[BTA] 2[UO 2Cl 4]化合物:
Figure PCTCN2018082108-appb-000011
其制备方法如下:
UO 2(CH 3COOH) 2·2H 2O和苯基三乙基氢氧化铵以1:2.9摩尔比置入烧杯中,加2mL盐酸,再加10mL去离子水溶解,后在室温下挥发5-7天,至有晶体析出,产物用水洗涤,后所得 晶体产物用乙醇洗涤,后于室温下晾干,得到[BTA] 2[UO 2Cl 4]化合物。该化合物可作为闪烁体使用。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

  1. 含铀化合物作为闪烁体的应用,其特征在于:所述含铀化合物为含铀有机无机杂化物或含铀无机物,所述含铀有机无机杂化物为式(Ⅰ)的含铀有机羧酸盐或式(Ⅱ)的含铀有机磷酸盐:
    Figure PCTCN2018082108-appb-100001
    所述含铀无机物为式(Ⅲ)的含铀非金属酸盐、式(Ⅳ)的含铀金属盐或式(Ⅴ)的含铀卤化物:
    Figure PCTCN2018082108-appb-100002
    其中,m为1或2;n为1或2;
    式(Ⅰ)中的R 1选自苯基、取代苯基或烷基;
    式(Ⅱ)中的R 2选自苯基、取代苯基或烷基;
    式(Ⅲ)的M选自B、N、Si、Se、P、As、S或Te元素;
    式(Ⅳ)的Y选自Mo、V、Cr、Nb、W、Re、Ga、Ge、Sb或Sn元素;
    式(Ⅴ)的X选自F元素、Cl元素、Br元素或I元素;
    式(Ⅱ)、式(Ⅲ)和式(Ⅳ)的A n+独立地选自四甲基铵阳离子、Na +、K +、NH 4 +、Li +、Rb +、Cs +、Mg 2+、Ca 2+、Sr 2+、Ba 2+、Pb 2+或Bi 2+
    式(Ⅴ)的B +选自Na +、K +、Li +、Rb +、Cs +
    Figure PCTCN2018082108-appb-100003
    其中,R 3、R 4、R 5和R 6独立地选自氢、烷基、苯基、苯基或含氮苯基。
  2. 根据权利要求1所述的应用,其特征在于:R 1为苯基或烷基。
  3. 根据权利要求2所述的应用,其特征在于,式(Ⅰ)的含铀有机羧酸盐为UO 2(C 9O 6H 4)(H 2O),其结构式如下:
    Figure PCTCN2018082108-appb-100004
  4. 根据权利要求3所述的应用,其特征在于,UO 2(C 9O 6H 4)(H 2O)的制备方法包括以下步骤:
    将硝酸双氧铀、硼酸和均苯三酸溶于水,在密闭条件下于190-250℃下反应,冷却、洗涤后得到UO 2(C 9O 6H 4)(H 2O)。
  5. 根据权利要求4所述的应用,其特征在于:所述硝酸双氧铀、硼酸和均苯三酸的摩尔比为0.8-1:1-10:1-2。
  6. 根据权利要求1所述的应用,其特征在于:在式(Ⅱ)中,n=1,R 2为苯基,A n+为四甲基铵阳离子。
  7. 根据权利要求6所述的应用,其特征在于,式(Ⅱ)的含铀有机磷酸盐的结构式如下:
    Figure PCTCN2018082108-appb-100005
  8. 根据权利要求1所述的应用,其特征在于:在式(Ⅲ)中,n=1,M为B元素,A n+为Na +
  9. 根据权利要求1所述的应用,其特征在于:在式(Ⅳ)中,n=1,m=2,Y为Mo元素,A n+为Na +、Li +、K +、Rb +或Cs +
    或n=2,m=1,Y为Mo元素,A n+为Mg 2+、Ca 2+、Sr 2+、Ba 2+、Pb 2+或Bi 2+
  10. 根据权利要求1所述的应用,其特征在于:在式(Ⅴ)中,X为Cl元素,B +
    Figure PCTCN2018082108-appb-100006
    其中,R 3、R 4、R 5和R 6独立地选自氢、烷基、苯基、苯基或含氮苯基。
PCT/CN2018/082108 2018-03-28 2018-04-08 含铀化合物作为闪烁体的应用 WO2019184001A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/098,853 US11072740B2 (en) 2018-03-28 2018-04-08 Use of uranium-containing compound as scintillator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810264190.6A CN108384532B (zh) 2018-03-28 2018-03-28 含铀化合物作为闪烁体的应用
CN201810264190.6 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019184001A1 true WO2019184001A1 (zh) 2019-10-03

Family

ID=63072877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082108 WO2019184001A1 (zh) 2018-03-28 2018-04-08 含铀化合物作为闪烁体的应用

Country Status (2)

Country Link
CN (1) CN108384532B (zh)
WO (1) WO2019184001A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114232094A (zh) * 2021-12-29 2022-03-25 上海应用技术大学 一种铀掺杂硅酸铋闪烁晶体及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1250526A (zh) * 1998-01-12 2000-04-12 Tasr有限公司 闪烁材料和闪烁波导元件
US20060027759A1 (en) * 2004-08-09 2006-02-09 General Electric Company Scintillator array for use in a ct imaging system and method for making the scintillator array
CN106324655A (zh) * 2015-06-30 2017-01-11 中国辐射防护研究院 掺杂中子灵敏物质铀的塑料闪烁体及其测量热中子的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1250526A (zh) * 1998-01-12 2000-04-12 Tasr有限公司 闪烁材料和闪烁波导元件
US20060027759A1 (en) * 2004-08-09 2006-02-09 General Electric Company Scintillator array for use in a ct imaging system and method for making the scintillator array
CN106324655A (zh) * 2015-06-30 2017-01-11 中国辐射防护研究院 掺杂中子灵敏物质铀的塑料闪烁体及其测量热中子的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, YAXING ET AL.: "Emergence of Uranium as a Distinct Metal Center for Building Intrinsic X-ray Scintillators", ANGEW. CHEM. INT. ED., vol. 57, no. 26, 30 March 2018 (2018-03-30), pages 7883 - 7887, XP055641087 *

Also Published As

Publication number Publication date
CN108384532B (zh) 2020-05-22
CN108384532A (zh) 2018-08-10

Similar Documents

Publication Publication Date Title
Zhao et al. All-inorganic copper halide as a stable and self-absorption-free X-ray scintillator
Yang et al. Lead‐free halide Rb2CuBr3 as sensitive x‐ray scintillator
Cheng et al. Zero‐Dimensional Cs3Cu2I5 Perovskite Single Crystal as Sensitive X‐Ray and γ‐Ray Scintillator
Cheng et al. Non-hygroscopic, self-absorption free, and efficient 1D CsCu2I3 perovskite single crystal for radiation detection
Hu et al. X-ray scintillation in lead-free double perovskite crystals
CN109943322B (zh) 一种化合物作为闪烁体材料的应用及其制备方法
Zhang et al. Large-area laminar TEA2MnI4 single-crystal scintillator for X-ray imaging with impressive high resolution
Wang et al. Phase transition triggered aggregation-induced emission in a photoluminescent uranyl–organic framework
CN111722261B (zh) 作为闪烁体应用的一种晶体材料的制备方法
US20230002927A1 (en) Li+ doped metal halide scintillation crystal with zero-dimensional perovskite structure, preparation method and use thereof
Zhou et al. Compositional engineering of doped zero-dimensional zinc halide blue emitters for efficient X-ray scintillation
Ayer et al. BaWO 2 F 4: a mixed anion X-ray scintillator with excellent photoluminescence quantum efficiency
Meng et al. Stable Organic Antimony Halides with Near‐Unity Photoluminescence Quantum Yield for X‐Ray Imaging
Li et al. Lead-free scintillators based on pyridine manganese halide for X-ray imaging
Yorov et al. Mn4+-Doped Fluoride Nanocrystals Enable High-Resolution Red-Emitting X-ray Imaging Screens
Kim et al. Thallium-based heavy inorganic scintillators: recent developments and future perspectives
WO2019184001A1 (zh) 含铀化合物作为闪烁体的应用
Du et al. One-dimensional hybrid copper (I) iodide single crystal with renewable scintillation properties
CN114316952A (zh) 芳香胺构筑的双层dj型铅碘钙钛矿及制备方法和应用
Luo et al. A centimeter-scaled lead-free two-dimensional perovskite FA 3 Bi 2 Br 9 single crystal for X-ray detection
WO2023169120A1 (zh) 二价铕硫化物近红外闪烁体及其制备方法
US8496851B2 (en) Scintillation materials in single crystalline, polycrystalline and ceramic form
CN113801144B (zh) 一种x射线激发发光材料及其制备方法
CN112898961B (zh) 一种有机无机杂化闪烁体及其制备方法与应用
US11072740B2 (en) Use of uranium-containing compound as scintillator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912736

Country of ref document: EP

Kind code of ref document: A1