WO2019181898A1 - Mobile body management system, control method for mobile body management system, and management server for mobile body management system - Google Patents

Mobile body management system, control method for mobile body management system, and management server for mobile body management system Download PDF

Info

Publication number
WO2019181898A1
WO2019181898A1 PCT/JP2019/011308 JP2019011308W WO2019181898A1 WO 2019181898 A1 WO2019181898 A1 WO 2019181898A1 JP 2019011308 W JP2019011308 W JP 2019011308W WO 2019181898 A1 WO2019181898 A1 WO 2019181898A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile body
observed
autonomous mobile
observed information
autonomous
Prior art date
Application number
PCT/JP2019/011308
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤洋
長井誠
大舘正太郎
惣野崇
藤原明彦
松本恒平
廣瀬史也
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2020507813A priority Critical patent/JP6859487B2/en
Publication of WO2019181898A1 publication Critical patent/WO2019181898A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
    • G08G1/127Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station
    • G08G1/13Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station the indicator being in the form of a map

Definitions

  • the present invention relates to a management system that manages the movement of a plurality of mobile objects, a control method thereof, and a management server.
  • US Patent Application Publication No. 2015/0339931 discloses a system, method and apparatus capable of flying according to a flight restricted area (summary).
  • a flight restricted area for example, an airport is cited ([0003], [0004]).
  • U.S. Patent Application Publication No. 2015/0339931 compares the location of the UAV with the flight restricted area and, if necessary, the UAV takes action to avoid entering the no-fly zone. Take (summary).
  • the flight restricted area for example, an airport is cited ([0003], [0004]).
  • the restricted flight area it is possible to set multiple “restricted” degrees. For example, for school routes that elementary school students are attending school, it may be possible to prohibit flying only during school attendance. In addition, it is conceivable that the outdoor concert venue and its surroundings are prohibited from flying only during and before the concert. In other words, the flight restriction area (flight restriction area) can be dynamically changed according to the time zone or the number of people.
  • the present invention has been made in consideration of the above-described problems, and provides a management system for a moving body, a control method therefor, and a management server capable of suitably changing a flight restriction place dynamically. With the goal.
  • the management system includes: A first autonomous mobile body having an autonomous control unit for moving from the departure place to the destination; A communication unit that communicates with the first autonomous mobile body via a communication device, and manages a movement of a plurality of mobile bodies including the first autonomous mobile body, Furthermore, the management system includes: An observed information acquisition unit for acquiring observed information of the first autonomous mobile body that has observed the first autonomous mobile body from the periphery of the first autonomous mobile body; Based on the observed information acquired by the observed information acquisition unit, the movement to change the movement plan or operation state of the first autonomous moving object or the second autonomous moving object that can approach the acquisition point of the observed information And a plan change section.
  • the first autonomous mobile body or the acquisition point of the observed information can be approached by the observed information of the first autonomous mobile body observed from the periphery of the first autonomous mobile body (observation information for the periphery).
  • 2 Change the movement plan or operation state of the autonomous mobile body. Thereby, it becomes possible to reflect the influence which the 1st autonomous mobile body had on the periphery in a subsequent movement plan or operation state. Therefore, the movement of the first autonomous mobile body or the second autonomous mobile body can be more suitably managed.
  • the observed information may include a noise state of the first autonomous mobile body.
  • the observed information may include discomfort experienced by surrounding people as the first autonomous mobile body moves, and information that the surrounding people input to the observed information acquisition unit.
  • the subsequent movement plan or operation state of the first autonomous mobile body or the second autonomous mobile body is set so as to avoid or reduce the situation in which the movement of the first autonomous mobile body gives discomfort to surrounding people. It can be changed.
  • the mobility management unit An observed information database for accumulating negative observed information, which is the observed information including negative evaluation, together with an observed location of the first autonomous mobile body in which the negative evaluation is observed; And a route calculation unit that calculates a new planned route of the first autonomous mobile body or the second autonomous mobile body so as to avoid the observed location.
  • the movement management unit includes a movement restriction unit that sets a movement restriction place that is a place or a region that restricts movement of the first autonomous mobile body or the second autonomous mobile body based on the observed information. Also good. As a result, the calculation load of the movement management unit can be reduced by using the movement restricted place, in comparison with the case where the planned route of the first autonomous moving body or the second autonomous moving body is calculated in consideration of the observed information itself. It becomes possible to reduce.
  • the control method includes: A first autonomous mobile body having an autonomous control unit for moving from the departure place to the destination; A control method for a management system comprising: a movement management unit that communicates with the first autonomous mobile body via a communication device and manages movement of a plurality of mobile bodies including the first autonomous mobile body, Acquiring observed information of the first autonomous moving body, which has observed the first autonomous moving body from the periphery of the first autonomous moving body, in an observed information acquiring unit; Based on the observed information acquired by the observed information acquisition unit, a dynamic plan of the movement plan or operation state of the first autonomous moving object or the second autonomous moving object that can approach the acquisition point of the observed information And a step of changing by the changing unit.
  • the management server which concerns on this invention communicates with the 1st autonomous mobile body provided with the autonomous control part for moving from a departure place to the destination, and manages the movement of the several mobile body containing the said 1st autonomous mobile body And Furthermore, the management server acquires observed information of the first autonomous mobile body that has observed the first autonomous mobile body from the periphery of the first autonomous mobile body from the observed information acquisition unit, and includes the observed information in the observed information
  • a dynamic plan change unit that changes a movement plan or an operation state of the second autonomous mobile body that can approach the acquisition point of the first autonomous mobile body or the observed information is provided.
  • it is a flowchart which shows the outline
  • FIG. 1 is an overall configuration diagram showing an overview of a management system 10 according to an embodiment of the present invention.
  • the management system 10 includes a plurality of customer terminals 20, at least one service management server 22 (hereinafter also referred to as “service server 22”), and at least one traffic management server 24 (hereinafter also referred to as “traffic server 24”). .), A plurality of drones 26, and a plurality of peripheral terminals 28.
  • the service server 22 and the traffic server 24 constitute a movement management unit 30 that manages movement of a plurality of drones 26.
  • the drone 26 (hereinafter also referred to as “delivery drone 26del”) delivers the merchandise G based on the order information Iodr for the merchandise G input via the customer terminal 20.
  • Communication is possible between the customer terminal 20 and the service server 22 and between the service server 22 and the traffic server 24 via the Internet 50.
  • Communication between the service server 22 and the drone 26 and between the service server 22 and the peripheral terminal 28 are possible via the Internet 50 and the wireless relay station 52.
  • the customer terminal 20 is an external terminal that receives an order from a customer for the product G handled by the service server 22.
  • the customer terminal 20 is comprised from a personal computer or a smart phone, for example.
  • the service management server 22 is a server managed by a specific company, and performs order management, inventory management, and delivery management of the company.
  • order management an order (service request) from the customer terminal 20 is accepted.
  • inventory management inventory management of the product G is performed.
  • delivery management delivery of goods G (movement of a plurality of drones 26) is managed.
  • the service server 22 includes an input / output unit 60, a communication unit 62, a calculation unit 64, and a storage unit 66.
  • the communication unit 62 can communicate with the customer terminal 20, the traffic server 24, the drone 26, the peripheral terminal 28, and the like via the Internet 50.
  • the calculation unit 64 includes a central processing unit (CPU) and operates by executing a program stored in the storage unit 66. A part of the function executed by the arithmetic unit 64 can also be realized by using a logic IC (Integrated) Circuit). The calculation unit 64 can also configure a part of the program with hardware (circuit parts).
  • the calculation unit 64 executes order-receiving control for managing the order of the product G and the delivery by the drone 26. In addition, the calculation unit 64 executes observed information reflection control for changing the movement plan or the operation state of the drone 26 based on the observed information Iob transmitted from the user via the peripheral terminal 28.
  • the calculation unit 64 includes a delivery management unit 70 and a movement control unit 72.
  • the delivery management unit 70 manages delivery of the product G.
  • the movement control unit 72 controls the flight of the delivery drone 26del.
  • the delivery management unit 70 includes a dynamic plan change unit 80 that dynamically changes the movement plan and operation state of each delivery drone 26del based on the observed information Iob (described later) acquired by the peripheral terminal 28.
  • the dynamic plan change unit 80 includes a movement restriction unit 90 and a route calculation unit 92.
  • the movement restriction unit 90 sets a movement restriction place Lml, which is a place or area where movement of each drone 26 is restricted, based on the observed place Lob of the observed information Iob.
  • the route calculation unit 92 calculates a new planned route RTp for each delivery drone 26del so as to avoid the movement restricted place Lml (including the observed place Lob).
  • the storage unit 66 stores a program and data used by the calculation unit 64 and includes a random access memory (hereinafter referred to as “RAM”).
  • RAM random access memory
  • a volatile memory such as a register and a non-volatile memory such as a hard disk or a flash memory can be used.
  • the storage unit 66 may include a read only memory (ROM) in addition to the RAM.
  • the storage unit 66 includes an order database 100 (hereinafter referred to as “order DB 100”), an inventory database 102 (hereinafter referred to as “inventory DB 102”), a mobile object database 104 (hereinafter referred to as “mobile object DB 104”), 1 map database 106 (hereinafter referred to as “first map DB 106”), delivery database 108 (hereinafter referred to as “delivery DB 108”), and observed information database 110 (hereinafter referred to as “observed information DB 110”). .
  • order DB 100 order database 100
  • inventory database 102 hereinventory DB 102
  • mobile object database 104 hereinafter referred to as “mobile object DB 104”
  • 1 map database 106 hereinafter referred to as “first map DB 106”
  • delivery database 108 hereinafter referred to as “delivery DB 108”
  • observed information database 110 hereinafter referred to as “observed information DB 110”.
  • the order DB 100 accumulates information (order information Iodr) related to orders received via each customer terminal 20.
  • the inventory DB 102 stores information related to inventory (inventory information Istk).
  • the mobile object DB 104 stores individual information Ii related to the drone 26 used for delivery.
  • the individual information Ii includes, for example, identification information (identification ID) of the drone 26, a type (large size, small size, etc.), a maximum load weight, and a maximum size of the loadable load.
  • the individual information Ii may include any one or more of the number of loads that can be loaded, the maximum number of people that can be used, the fuel consumption, the maximum speed, the number of years of operation, the total movement distance, and the current position Pdcur of the drone 26.
  • the first map DB 106 stores map information (first map information Imap1) for delivery by the drone 26.
  • the first map information Imap1 includes position information of an entry restriction area that requires entry permission by the traffic server 24.
  • the delivery DB 108 accumulates information (delivery information Id) related to delivery of the ordered product G.
  • the delivery information Id includes information related to the delivery drone 26del that delivers the product G.
  • the observed information DB 110 accumulates the observed information Iob of the target drone 26tar obtained by observing the target drone 26tar from the periphery of the specific drone 26 (hereinafter referred to as “target drone 26tar”).
  • the observed information Iob is information of the drone 26 (delivery drone 26del) observed by the observer (person), the negative observed information Iobneg, the observed location Lob, the observed time Tob (or the observed time zone) ) And the identification ID of the target drone 26tar.
  • the negative observed information Iobneg, the observed location Lob, and the observed time Tob (or the observed time zone) indicate that the observer around the target drone 26tar (in other words, the user of the peripheral terminal 28) determines the peripheral terminal 28.
  • the identification ID of the target drone 26tar is specified by the service server 22 based on the flight route RTf, the observed location Lob, the observed time Tob, and the like of the target drone 26tar.
  • the flight route RTf is a route on which the target drone 26tar flew, and is stored in the delivery DB 108.
  • the flight route RTf is preferably a route (based on position information) on which the target drone 26tar actually flies, but a past scheduled route RTp may be used.
  • the negative observation information Iobneg is information including a negative evaluation of the target drone 26tar by an observer around the target drone 26tar.
  • the negative observed information Iobneg includes the noise state of the target drone 26tar and information related to discomfort experienced by the surroundings as the target drone 26tar moves.
  • the observed location Lob is an observation point or an observation area of the target drone 26tar that has generated a negative evaluation.
  • the observed location Lob is a location observed by an observer.
  • the traffic management server 24 manages information (traffic information It) regarding traffic (flight) of a plurality of flying bodies (including the drone 26). For example, when the traffic server 24 receives a flight permission application for the drone 26 from the service server 22, the traffic server 24 determines whether or not to permit the flight permission application, and permits or does not permit the service server 22 according to the determination result. Notice. In addition, the traffic server 24 notifies the service server 22 of various information related to traffic (for example, traffic jam information).
  • the traffic server 24 includes a second map database 130 (hereinafter referred to as “second map DB 130”) and a flight schedule database 132 (hereinafter referred to as “flight schedule DB 132”).
  • 2nd map DB130 accumulate
  • the flight schedule DB 132 stores information (flight schedule information Isc) related to the flight schedule of each aircraft.
  • the drone 26 (autonomous mobile body) of the present embodiment is for product delivery, and the departure place Pst (a warehouse or the like) according to a delivery command (flight command) received from the service server 22 via the Internet 50 and the wireless relay station 52. ) To the delivery destination Pdtar. As will be described later, the drone 26 may be used for other purposes.
  • the drone 26 includes a drone sensor group 150, a communication device 152, a drone control device 154, and a propeller driving unit 156.
  • the drone sensor group 150 includes a camera, a global positioning system sensor (hereinafter referred to as “GPS sensor”), a speedometer, an altimeter, a gyro sensor (all not shown), and the like.
  • GPS sensor global positioning system sensor
  • the camera is arranged at the lower part of the main body of the drone 26, and outputs image information Iimage about a peripheral image obtained by imaging the periphery of the drone 26.
  • the camera is a video camera that takes a video.
  • the camera may be capable of capturing both moving images and still images or only still images.
  • the direction of the camera (the posture of the camera with respect to the main body of the drone 26) can be adjusted by a camera actuator (not shown).
  • the position of the drone 26 with respect to the main body may be fixed.
  • the GPS sensor outputs position information Ipdcur regarding the current position Pdcur of the drone 26.
  • the speedometer detects the flight speed Vd [km / h] of the drone 26.
  • the altimeter detects a ground altitude H (hereinafter also referred to as “altitude H”) [m] as a distance to the ground below the drone 26.
  • the gyro sensor detects the angular velocity ⁇ [rad / sec] of the drone 26.
  • the angular velocity ⁇ includes an angular velocity Y (yaw Y) with respect to the vertical axis, an angular velocity P (pitch P) with respect to the horizontal axis, and an angular velocity R (roll R) with respect to the longitudinal axis.
  • the communication device 152 can perform radio wave communication with the wireless relay station 52 and the like, and includes, for example, a radio wave communication module.
  • the communication device 152 can communicate with the service server 22 and the like via the wireless relay station 52 and the Internet 50.
  • the drone control device 154 (autonomous control unit) controls the entire drone 26 such as flight and shooting of the drone 26.
  • the drone control device 154 autonomously moves (flys) the drone 26 from the departure point Pst to the destination Ptar.
  • the drone control device 154 includes an input / output unit, a calculation unit, and a storage unit (not shown).
  • the propeller drive unit 156 includes a plurality of propellers and a plurality of propeller actuators.
  • the propeller actuator has, for example, an electric motor.
  • the peripheral terminal 28 functions as an observed information acquisition unit that acquires the observed information Iob, and includes, for example, a smartphone that an individual has.
  • the peripheral terminal 28 may include an input terminal installed around the road or a personal computer owned by an individual.
  • Each peripheral terminal 28 includes an input / output unit 160, a communication unit 162, a calculation unit 164, a storage unit 166, and a display unit 168.
  • the input / output unit 160 and the display unit 168 can be configured by a touch panel.
  • the communication unit 162 can communicate with the service server 22 and the like via the wireless relay station 52 and the Internet 50.
  • FIG. 2 is a flowchart showing an outline when the product G ordered from the customer is delivered by the drone 26 in the present embodiment. Note that in FIG. 2, only a rough flow is shown.
  • step S11 the customer terminal 20 accepts an order according to the customer's operation. Specifically, the customer terminal 20 displays an ordering screen on a display unit (not shown) in accordance with a customer operation.
  • the order screen data is obtained from the service management server 22. Further, when displaying the ordering screen, the service server 22 confirms the number of stocks of the product G to be ordered. In the case of out of stock, the service server 22 displays the fact together.
  • the customer terminal 20 receives an order from the customer and transmits it to the service management server 22.
  • step S21 the service server 22 calculates the target drone 26tar and the planned route RTp according to the order information Iodr received by the customer terminal 20.
  • the calculation of the target drone 26tar and the planned route RTp may be performed before ordering and may be determined at the time of ordering. Further information regarding the calculation of the planned route RTp will be described later.
  • step S22 the service server 22 determines whether the traffic server 24 needs to be permitted for the planned route RTp (in other words, whether the planned route RTp includes a portion that requires the traffic server 24). Is determined based on the first map information Imap1. As a part which requires permission of the traffic server 24, a flight restriction area is included, for example.
  • a permission application for the planned route RTp is transmitted to the traffic management server 24 in step S23.
  • the identification ID of the target drone 26 is given to the permission application.
  • the service server 22 monitors whether or not a result notification from the traffic management server 24 has been received.
  • step S31 the traffic management server 24 that has received the permission application (S23) from the service server 22 determines whether the received permission application is permitted or not. For example, when the planned route RTp includes a temporary flight prohibited area, the traffic server 24 disallows the permission application. In addition, when one or more other drones 26 (other devices) are scheduled to pass a part of the planned route RTp at the same time as themselves (own devices), the traffic server 24 disallows the permission application. . On the other hand, when there is no reason for not allowing the drone 26 to fly, the traffic server 24 permits the permission application.
  • the traffic management server 24 When permitting a permission application (S31: TRUE), the traffic management server 24 transmits a permission notice to the service server 22 in step S32. When permission application is not permitted (S31: FALSE), the traffic management server 24 transmits a disapproval notice to the service server 22 in step S33.
  • the reason for non-permission (for example, that the planned route RTp passes through the flight prohibited area, the position of the flight prohibited area, etc.) is also added to the non-permission notice.
  • the process proceeds to the service server 22 again.
  • the process proceeds to step S25.
  • the service server 22 calculates a new scheduled route RTp according to the reason for non-permission included in the result. For example, if the reason for the disapproval is that the scheduled route RTp passes through the flight prohibited area, the service server 22 calculates a new scheduled route RTp that avoids the flight prohibited area (S21). Then, the service server 22 makes another flight permission application as necessary (S23).
  • the service server 22 transmits a delivery command to the target drone 26tar delivering the product G.
  • the delivery command includes information on the planned route RTp.
  • the planned route RTp includes a route (outbound route) from the departure point Pst to the delivery destination Pdtar, which is the current position Pdcur (for example, a warehouse not shown) of the target drone 26tar, and a route from the delivery destination Pdtar to the return destination Irtar ( Including return trip).
  • the planned route RTp may include a route from the current position Pdcur to the warehouse.
  • a route to the warehouse, sales office, or the like may be set as the scheduled route RTp.
  • a route to the delivery destination Pdtar and a route to the return destination Irtar may be set as the new scheduled route RTp.
  • the delivery command can be transmitted by another method instead of directly transmitted from the service server 22 to the target drone 26tar.
  • Move to processing of each drone 26.
  • the drone 26 monitors whether or not a delivery command (S25) has been received from the service server 22.
  • the drone 26 that has received the delivery command starts the delivery control for transporting the product G from the warehouse or sales office to the delivery destination Pdtar and then returning to the return destination Irtar.
  • FIG. 3 is a flowchart of the control at the time of order reception according to this embodiment.
  • the control at the time of order reception is control for managing the order reception of the product G and the delivery by the drone 26, and is executed by the calculation unit 64 of the service server 22.
  • the service server 22 displays an ordering screen on the customer terminal 20 in response to a request from the customer terminal 20.
  • the service server 22 transmits the order screen data to the customer terminal 20 in response to a request from the customer terminal 20.
  • the customer terminal 20 Upon receiving the order screen data, the customer terminal 20 displays the order screen on a display unit (not shown).
  • step S72 the service server 22 determines whether or not an order for the product G has been received.
  • the customer terminal 20 receives an order according to the customer's operation, and transmits the order information Iodr to the service server 22 (S11 in FIG. 2). Therefore, when the service server 22 receives the order information Iodr from the customer terminal 20, the service server 22 determines that an order for the product G has been received. If an order is received (S72: TRUE), the process proceeds to step S73. If no order has been received (S72: FALSE), the process returns to step S71.
  • the service server 22 calculates the target drone 26tar and the planned route RTp. That is, in step S73, the service server 22 acquires the delivery information Id necessary for calculating the target drone 26tar and the scheduled route RTp.
  • the delivery information Id includes the delivery location, delivery deadline, dimensions, weight, etc. of the product G (package).
  • step S74 the service server 22 extracts the target drone 26tar used for delivery of the product G based on the delivery information Id. For example, regional limitation is performed from the drone 26 based on the delivery location included in the delivery information Id. For example, when delivering to the A area, the service server 22 extracts the drone 26 currently arranged in the A area.
  • a limitation based on the performance (attribute) of each individual from the drone 26 is performed. For example, when the commodity G is a large luggage having a size greater than or equal to the first dimension, the large drone 26 is extracted and the small drone 26 is excluded. On the other hand, when the commodity G is a small luggage smaller than the first dimension, both large and small drones 26 are extracted. In the present embodiment, when a small package smaller than the first dimension is delivered alone, the small drone 26 is basically selected.
  • step S75 the service server 22 calculates the planned route RTp of the target drone 26tar.
  • the service server 22 uses the flight restriction area Rlim stored in the first map DB 106. For example, when the flight restriction region Rlim is not included in the shortest aerial route RTmin from the departure point Pst to the delivery destination Pdtar, the shortest aerial route RTmin is set as the scheduled route RTp. When the flight restriction region Rlim is included in the shortest aerial route RTmin, the scheduled route RTp corresponding to the restriction content of the flight restriction region Rlim is set.
  • the flight restriction area Rlim is an area where the flight of the drone 26 is restricted, and includes a flight prohibition area Rban and a conditional flight permission area Ralw.
  • the flight prohibited area Rban is an area where the flight of the drone 26 is prohibited.
  • the conditional flight permission area Ralw is an area where the flight of the drone 26 is permitted only when a predetermined condition (flight permission condition CNalw) is satisfied, and when the flight permission condition CNalw is not satisfied, the flight of the drone 26 is prohibited. It is.
  • the flight permission condition CNalw for example, a time zone or a specific use (emergency use or the like) is included.
  • the flight restriction area Rlim is defined in a three-dimensional direction (front-rear direction, left-right direction, and up-down direction).
  • the flight restriction region Rlim may be defined in a two-dimensional direction (front-rear direction and left-right direction).
  • the flight restriction region Rlim includes not only the front-rear direction and the left-right direction (current position Pdcur defined by latitude and longitude) but also the vertical direction (altitude H). Is set.
  • the flight restriction area Rlim includes an area set based on the observed information Iob.
  • the setting of the flight restriction region Rlim based on the observed information Iob will be described later with reference to FIG.
  • the service server 22 sets the shortest aerial route RTmin as the planned route RTp. Furthermore, when the conditional flight permission area Ralw is included in the shortest aerial route RTmin and the flight permission condition CNalw is not satisfied, the service server 22 schedules the shortest path among the aerial paths that avoid the conditional flight permission area Ralw. The route is RTp.
  • the planned route RTp is calculated separately depending on whether each flight restriction area Rlim passes or detours.
  • the planned route RTp is a route used by the target drone 26tar to deliver the product G, and includes a forward route and a return route.
  • step S76 the service server 22 transmits a delivery command to the target drone 26tar.
  • the delivery command includes the planned route RTp.
  • Step S76 corresponds to step S25 in FIG.
  • FIG. 4 is a flowchart showing an overall flow when reflecting the observed information Iob in the present embodiment. Note that in FIG. 4 only a rough flow is shown.
  • step S101 the peripheral terminal 28 receives the observed information Iob according to the operation of the user (observer). Specifically, the peripheral terminal 28 displays an observed information input screen on the display unit 168 in accordance with a user operation.
  • the observed information input screen is acquired from the service management server 22.
  • the observed information input screen includes an input field for observed information Iob.
  • the observed information Iob is information of the drone 26 observed by the observer (person).
  • the observed information Iob includes negative observed information Iobneg, observed location Lob, observed time Tob (or observed time zone), and identification ID of the target drone 26tar.
  • the peripheral terminal 28 transmits a reflection request signal Srefreq including the observed information Iob from the user to the service management server 22.
  • the service server 22 determines whether or not the route restriction condition CNrtl is satisfied based on the observed information Iob received by the peripheral terminal 28.
  • the route restriction condition CNrtl is a condition for determining whether or not a new restriction is imposed on the planned route RTp of the drone 26.
  • the route restriction condition CNrtl for example, the fact that the reception frequency Nr of the negative observed information Iobneg is equal to or greater than the frequency threshold value THnr can be used. Alternatively, it may be used that the number Ns of transmissions of the negative observation information Iobneg is equal to or greater than the number threshold THns. When the number of receptions Nr or the number Ns of transmissions is used, weighting according to the degree of negative evaluation may be performed.
  • step S111: TRUE When the route restriction condition CNrtl is satisfied (S111: TRUE), the process proceeds to step S112. If the route restriction condition CNrtl is not satisfied (S111: FALSE), the process associated with the acquisition of the current observed information Iob is terminated. In step S112, the service server 22 sets a new flight restriction area Rlim in the observed location Lob.
  • the service server 22 determines whether or not there is a drone 26 that needs to change the planned route RTp.
  • the target drone 26 is not limited to the drone 26 (target drone 26tar) corresponding to the observed information Iob, but may be another drone 26 that can approach the acquisition point of the observed information Iob (hereinafter “other drone 26otr”). Is also included.). For example, if a new flight restriction region Rlim exists on the planned route RTp of the target drone 26tar or another drone 26otr, it is determined that the planned route RTp needs to be changed.
  • a new planned route RTp (or a corrected route) is calculated for the drone 26 that requires a change in the planned route RTp in step S114.
  • S113: FALSE the process associated with the acquisition of the observed information Iob this time is terminated.
  • step S118 is the same as steps S22, S23, S24, S31, S32, and S33 of FIG. 2. Steps S115, S116, S117, S121, S122, and S123 of FIG.
  • the process proceeds to step S118.
  • step S118 the service server 22 transmits a route change command to the drone 26 (target drone 26tar or other drone 26otr) corresponding to the new planned route RTp.
  • the route change command includes information on a new planned route RTp.
  • step S130 the drone 26 (target drone 26tar or other drone 26otr) that has received the route change command changes the current planned route RTp to a new planned route RTp included in the route change command.
  • FIG. 5 is a flowchart of observed information reflection control (hereinafter also referred to as “reflection control”) of the present embodiment.
  • the reflection control is control for changing the movement plan or operation state of the drone 26 based on the observed information Iob transmitted from the user via the peripheral terminal 28, and is executed by the calculation unit 64 of the service server 22. .
  • step S151 of FIG. 5 the service server 22 displays an observed information input screen on the peripheral terminal 28 in response to a request from the peripheral terminal 28.
  • the service server 22 transmits data of the observed information input screen to the peripheral terminal 28 in response to a request from the peripheral terminal 28.
  • the peripheral terminal 28 that has received the observed information input screen data causes the display unit 168 to display the observed information input screen.
  • step S152 the service server 22 determines whether or not the observed information Iob is received from the peripheral terminal 28.
  • S152: TRUE the process proceeds to step S153. If the observed information Iob is not received (S152: FALSE), the process returns to step S151.
  • step S153 the service server 22 identifies the target drone 26tar based on the observed information Iob (particularly, the observed location Lob, the observed time Tob, and the characteristics of the drone 26).
  • the identification ID of the identified target drone 26tar is included in the observed information Iob.
  • step S154 the service server 22 registers the observed information Iob (including the identification ID of the target drone 26tar) in the observed information DB 110.
  • step S155 the service server 22 determines whether or not the route restriction condition CNrtl is satisfied based on the observed information Iob.
  • the route restriction condition CNrtl is a condition for determining whether or not a new restriction is imposed on the planned route RTp of the drone 26.
  • the route restriction condition CNrtl for example, the number of receptions Nr or the number Ns of transmissions of the negative observed information Iobneg can be used.
  • the route restriction condition CNrtl is satisfied (S155: TRUE)
  • the process proceeds to step S156.
  • the route restriction condition CNrtl is not satisfied (S155: FALSE)
  • the current reflection control is terminated.
  • step S156 the service server 22 registers a new flight restriction area Rlim in the first map DB 106.
  • the new flight restriction region Rlim is set based on the observed location Lob.
  • step S157 the service server 22 determines whether there is a drone 26 (target drone 26tar or other drone 26otr) that needs to be changed in the planned route RTp by the new flight restriction region Rlim. In other words, it is determined whether or not there is a planned route RTp that passes through the new flight restriction region Rlim.
  • the process proceeds to step S158. If there is no drone 26 that needs to change the planned route RTp (S157: FALSE), the current reflection control is terminated.
  • a new planned route RTp (or modified route) is calculated for the drone 26 that needs to change the planned route RTp.
  • the new scheduled route RTp calculated here can be, for example, the shortest route that bypasses the new flight restriction region Rlim.
  • Steps S159, S160, S161, and S162 are performed in the same manner as steps S22, S23, S24, and S25 in FIG. 2, as described in steps S115, S116, S117, and S118 in FIG. That is, in step S159, the service server 22 determines whether or not the traffic route 24 needs to be permitted for the planned route RTp (in other words, whether the planned route RTp includes a portion that requires the traffic server 24). Is determined based on the first map information Imap1.
  • step S161 the service server 22 monitors whether or not the result notification from the traffic management server 24 has been received.
  • the process proceeds to step S162. If the result received from the traffic management server 24 indicates disapproval (S161: FALSE), the process returns to step S158.
  • step S162 the service server 22 transmits a route change command to the drone 26 (target drone 26tar or other drone 26otr) corresponding to the new planned route RTp.
  • the route change command includes information on a new planned route RTp.
  • step S163 the service server 22 notifies the customer terminal 20 of the customer corresponding to the drone 26 whose route is changed that the route has been changed.
  • the target drone 26tar or other drone 26otr (observed information) according to the observed information Iob (observation information for the periphery) of the target drone 26tar observed from the periphery of the target drone 26tar (first autonomous mobile body).
  • the movement plan or operation state of the second autonomous mobile body that can approach the Iob acquisition point is changed (S21 in FIG. 2, S75 in FIG. 3, S114 in FIG. 4, S158 in FIG. 5).
  • S21 in FIG. 2, S75 in FIG. 3, S114 in FIG. 4, S158 in FIG. 5 is changed (S21 in FIG. 2, S75 in FIG. 3, S114 in FIG. 4, S158 in FIG. 5).
  • S21 in FIG. 2, S75 in FIG. 3, S114 in FIG. 4, S158 in FIG. 5 Thereby, it becomes possible to reflect the influence which the object drone 26tar gave to the circumference
  • the observed information Iob includes the noise state of the target drone 26tar (first autonomous mobile body) (S101 in FIG. 4 and S152 in FIG. 5). Accordingly, it is possible to change the subsequent movement plan or operation state of the target drone 26tar or another drone 26otr (second autonomous mobile body) in consideration of the noise state given to the surroundings by the target drone 26tar.
  • the observed information Iob indicates that the surrounding person (the user of the peripheral terminal 28) feels uncomfortable feelings as the target drone 26tar (first autonomous mobile body) moves. (S101 in FIG. 4 and S152 in FIG. 5). Accordingly, the subsequent movement plan or operation of the target drone 26tar or other drone 26otr (second autonomous mobile body) is performed so as to avoid or reduce the situation in which the movement of the target drone 26tar causes discomfort to surrounding people. It becomes possible to change the state.
  • the service server 22 (movement management unit 30) includes an observed information DB 110 and a route calculation unit 92 (FIG. 1).
  • the observed information DB 110 is a point or a region of the target drone 26tar (first autonomous mobile body) that has generated the negative evaluation of the negative observed information Iobneg, which is the observed information Iob including the negative evaluation. It accumulates with the observed location Lob.
  • the route calculation unit 92 calculates a new planned route RTp of the target drone 26tar or another drone 26otr (second autonomous mobile body) so as to avoid the observed location Lob (S21 in FIG. 2, S75 in FIG. 3, S114 in FIG. 4 and S158 in FIG. 5). Thereby, it becomes possible to reduce or avoid the occurrence of a new negative evaluation due to a new movement of the target drone 26tar or another drone 26otr.
  • the service server 22 (movement management unit 30) restricts movement of the target drone 26tar (first autonomous mobile body) or another drone 26otr (second autonomous mobile body) based on the observed information Iob.
  • a movement restriction unit 90 for setting a movement restriction place Lml which is a place or area to perform (FIG. 1).
  • the calculation load of the service server 22 can be reduced by using the movement restriction place Lml as compared with the case where the planned route RTp of the target drone 26tar or another drone 26otr is calculated in consideration of the observed information Iob itself each time. It becomes possible to reduce.
  • the drone 26 of the above embodiment was for delivery (FIGS. 1 and 2).
  • the present invention is not limited to this.
  • the drone 26 can be used for applications such as transportation of people, emergency use, photography, advertisement, security monitoring, surveying, entertainment, personal hobbies, and the like.
  • the present invention is applied to the drone 26 (FIGS. 1 and 2).
  • the present invention may be applied to another type of flying body or autonomous mobile body.
  • the present invention can be applied to an autonomous vehicle, a helicopter, or a ship.
  • the mobility management unit 30 of the above embodiment includes a service server 22 and a traffic management server 24 (FIG. 1).
  • the movement management unit 30 may be configured only from the service server 22.
  • a plurality of local control servers arranged for each predetermined area and managing the flight of the drone 26 can be provided.
  • command with respect to the drone 26 from the service server 22 may be transmitted via a local control server.
  • the service server 22 of the above embodiment managed the delivery of the product G (FIGS. 1 and 2).
  • the present invention is not limited to this.
  • the service server 22 may manage uses such as transportation of people, emergency use, shooting, advertisement, security monitoring, surveying, entertainment, personal hobbies, and the like.
  • a new flight restriction region Rlim is set based on the observed information Iob (S112 in FIG. 4 and S156 in FIG. 5), thereby changing the planned route RTp of the target drone 26tar or other drone 26otr. (S114 in FIG. 4 and S158 in FIG. 5).
  • the present invention is not limited to this.
  • the operating state of the target drone 26tar or another drone 26otr it is possible to change the operating state of the target drone 26tar or another drone 26otr.
  • the operating state to be changed for example, the flight speed Vd or altitude H of the target drone 26tar or another drone 26otr can be used. That is, when the noise state is pointed out as the negative observed information Iobneg, decreasing the flight speed Vd or increasing the altitude H is one of the possible responses.
  • the user of the peripheral terminal 28 inputs the observed information Iob to the peripheral terminal 28 (observed information acquisition unit) (S101 in FIG. 4).
  • the present invention is not limited to this.
  • an observation sensor that observes the target drone 26tar may be provided around the planned route RTp of the target drone 26tar, and the output of the observation sensor may be automatically transmitted to the service server 22 as the observed information Iob.
  • the observation sensor for example, a microphone or a vibration sensor can be used.
  • the execution subject of the observed information reflection control is the service server 22 (FIG. 5).
  • the traffic server 24 or the local control server may be the execution subject instead of the service server 22.
  • the target drone 26tar may execute the observation information reflection control.
  • the target drone 26tar (first autonomous mobile body) and the other drone 26otr (second autonomous mobile body) are set as targets whose movement plan or operation state is changed based on the observed information Iob (FIG. 5). S157).
  • the target whose movement plan or operation state is changed based on the observed information Iob may be either the target drone 26tar (first autonomous mobile body) or another drone 26otr (second autonomous mobile body).
  • the observed information Iob includes the noise state of the target drone 26tar (first autonomous mobile body) and information related to discomfort experienced by the surroundings as the target drone 26tar moves (S101 in FIG. 4). , S152 in FIG.
  • the present invention is not limited to this.
  • the observed information Iob may include only one of the noise state of the target drone 26tar or information related to the discomfort experienced by the surroundings as the target drone 26tar moves.
  • other information may be included in the observed information Iob.
  • the newly set flight restriction area Rlim is assumed to be a fixed area (S156 in FIG. 5).
  • the present invention is not limited to this.
  • the peripheral terminal 28 as a mobile terminal such as a smartphone moves with the user. Therefore, from the viewpoint of setting the flight restriction region Rlim according to the user, the new flight restriction region is set according to the position of the user (or the peripheral terminal 28) rather than setting the new flight restriction region Rlim as a fixed region. It is preferable to change the position of Rlim. Therefore, the new flight restriction region Rlim based on the observed information Iob may be changed according to the position of the peripheral terminal 28.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)

Abstract

Provided are a mobile body management system, a control method for the mobile body management system, and a management server for the mobile body management system that make it possible to make dynamic changes to flight restricted locations in a suitable manner. A management system (10) that has an observed information acquisition part (28) and a dynamic plan adjustment part (80). The observed information acquisition part (28) acquires observed information (Iob) about a first autonomous mobile body (26tar) that has been gathered by observing the first autonomous mobile body (26tar) from the periphery of the first autonomous mobile body (26tar). On the basis of the observed information (Iob) acquired by the observed information acquisition part (28), the dynamic plan adjustment part (80) adjusts a movement plan for or the operating state of the first autonomous mobile body (26tar) or a second autonomous mobile body (26otr) that can approach the point at which the observed information (Iob) was acquired. The dynamic plan adjustment part (80) is included, for example, in a management server (22).

Description

移動体の管理システム及びその制御方法並びに管理サーバMobile body management system, control method therefor, and management server
 本発明は、複数の移動体の移動を管理する管理システム及びその制御方法並びに管理サーバに関する。 The present invention relates to a management system that manages the movement of a plurality of mobile objects, a control method thereof, and a management server.
 米国特許出願公開第2015/0339931号明細書では、飛行制限区域に応じた飛行が可能なシステム、方法及び装置が開示されている(要約)。米国特許出願公開第2015/0339931号明細書では、無人飛行体(UAV:unmanned aerial vehicle)の位置が、飛行制限区域と比較される。必要に応じて、UAVは、飛行禁止区域への進入を回避するための対応を採る。飛行制限区域としては、例えば空港が挙げられている([0003]、[0004])。 US Patent Application Publication No. 2015/0339931 discloses a system, method and apparatus capable of flying according to a flight restricted area (summary). In US 2015/0339931, the position of an unmanned vehicle (UAV) is compared to a flight restricted area. If necessary, the UAV will take action to avoid entry into the no-fly zone. As the flight restricted area, for example, an airport is cited ([0003], [0004]).
 上記のように、米国特許出願公開第2015/0339931号明細書では、UAVの位置を飛行制限区域と比較し、必要に応じて、UAVは、飛行禁止区域への進入を回避するための対応を採る(要約)。飛行制限区域としては、例えば空港が挙げられている([0003]、[0004])。 As described above, U.S. Patent Application Publication No. 2015/0339931 compares the location of the UAV with the flight restricted area and, if necessary, the UAV takes action to avoid entering the no-fly zone. Take (summary). As the flight restricted area, for example, an airport is cited ([0003], [0004]).
 飛行制限区域については、「制限」の程度を複数設けることが可能である。例えば、小学生が通学中の通学経路については、通学の間のみ飛行を禁止することが考えられる。また、屋外コンサート会場及びその周辺については、コンサートの開催中及びその前後のみ、飛行を禁止することが考えられる。換言すると、時間帯又は人数に応じて、飛行制限区域(飛行制限領域)を動的に変化させることが可能である。 In the restricted flight area, it is possible to set multiple “restricted” degrees. For example, for school routes that elementary school students are attending school, it may be possible to prohibit flying only during school attendance. In addition, it is conceivable that the outdoor concert venue and its surroundings are prohibited from flying only during and before the concert. In other words, the flight restriction area (flight restriction area) can be dynamically changed according to the time zone or the number of people.
 しかしながら、米国特許出願公開第2015/0339931号明細書では、飛行制限領域又は飛行制限地点としての飛行制限場所を動的に変化させることについては考慮されていないように見受けられる。これらの課題は、飛行体に限らず、自律的な移動を行うその他の自律移動体(自動車、船舶等)にも該当する。 However, in US Patent Application Publication No. 2015/0339931, it seems that dynamic change of the flight restriction area as the flight restriction area or the flight restriction point is not considered. These issues apply not only to flying objects but also to other autonomous moving objects (automobiles, ships, etc.) that perform autonomous movement.
 本発明は上記のような課題を考慮してなされたものであり、飛行制限場所の動的な変化を好適に行うことが可能な移動体の管理システム及びその制御方法並びに管理サーバを提供することを目的とする。 The present invention has been made in consideration of the above-described problems, and provides a management system for a moving body, a control method therefor, and a management server capable of suitably changing a flight restriction place dynamically. With the goal.
 本発明に係る管理システムは、
  出発地から目的地まで移動するための自律制御部を備えた第1自律移動体と、
  通信装置を介して前記第1自律移動体と通信し、前記第1自律移動体を含む複数の移動体の移動を管理する移動管理部と
 を備えるものであって、
 さらに、前記管理システムは、
  前記第1自律移動体の周辺から前記第1自律移動体を観測した前記第1自律移動体の被観測情報を取得する被観測情報取得部と、
  前記被観測情報取得部が取得した前記被観測情報に基づいて、前記第1自律移動体又は前記被観測情報の取得地点に接近し得る第2自律移動体の移動計画又は動作状態を変更する動的計画変更部と
 を備える
 ことを特徴とする。
The management system according to the present invention includes:
A first autonomous mobile body having an autonomous control unit for moving from the departure place to the destination;
A communication unit that communicates with the first autonomous mobile body via a communication device, and manages a movement of a plurality of mobile bodies including the first autonomous mobile body,
Furthermore, the management system includes:
An observed information acquisition unit for acquiring observed information of the first autonomous mobile body that has observed the first autonomous mobile body from the periphery of the first autonomous mobile body;
Based on the observed information acquired by the observed information acquisition unit, the movement to change the movement plan or operation state of the first autonomous moving object or the second autonomous moving object that can approach the acquisition point of the observed information And a plan change section.
 本発明によれば、第1自律移動体の周辺から観測した第1自律移動体の被観測情報(周辺にとっての観測情報)によって第1自律移動体又は被観測情報の取得地点に接近し得る第2自律移動体の移動計画又は動作状態を変更する。これにより、第1自律移動体がその周辺に与えた影響を、その後の移動計画又は動作状態に反映することが可能となる。従って、第1自律移動体又は第2自律移動体の移動をより好適に管理することが可能となる。 According to the present invention, the first autonomous mobile body or the acquisition point of the observed information can be approached by the observed information of the first autonomous mobile body observed from the periphery of the first autonomous mobile body (observation information for the periphery). 2 Change the movement plan or operation state of the autonomous mobile body. Thereby, it becomes possible to reflect the influence which the 1st autonomous mobile body had on the periphery in a subsequent movement plan or operation state. Therefore, the movement of the first autonomous mobile body or the second autonomous mobile body can be more suitably managed.
 前記被観測情報は、前記第1自律移動体の騒音状態を含んでもよい。これにより、第1自律移動体が周囲に与える騒音状態を考慮して、第1自律移動体又は第2自律移動体のその後の移動計画又は動作状態を変化させることが可能となる。 The observed information may include a noise state of the first autonomous mobile body. Thereby, it becomes possible to change the subsequent movement plan or operation state of the first autonomous mobile body or the second autonomous mobile body in consideration of the noise state given to the surroundings by the first autonomous mobile body.
 前記被観測情報は、前記第1自律移動体の移動に伴って周囲の人が受けた不快感を、前記周囲の人が前記被観測情報取得部に入力した情報を含んでもよい。これにより、第1自律移動体の移動が周囲の人に不快感を与える状況を避けるように又は軽減するように、第1自律移動体又は第2自律移動体のその後の移動計画又は動作状態を変化させることが可能となる。 The observed information may include discomfort experienced by surrounding people as the first autonomous mobile body moves, and information that the surrounding people input to the observed information acquisition unit. Thereby, the subsequent movement plan or operation state of the first autonomous mobile body or the second autonomous mobile body is set so as to avoid or reduce the situation in which the movement of the first autonomous mobile body gives discomfort to surrounding people. It can be changed.
 前記移動管理部は、
  否定的な評価を含む前記被観測情報である否定的被観測情報を、前記否定的な評価が観測された前記第1自律移動体の被観測場所と共に蓄積する被観測情報データベースと、
  前記被観測場所を避けるように、前記第1自律移動体又は前記第2自律移動体の新たな予定経路を算出する経路算出部と
 を備えてもよい。
The mobility management unit
An observed information database for accumulating negative observed information, which is the observed information including negative evaluation, together with an observed location of the first autonomous mobile body in which the negative evaluation is observed;
And a route calculation unit that calculates a new planned route of the first autonomous mobile body or the second autonomous mobile body so as to avoid the observed location.
 これにより、第1自律移動体又は第2自律移動体の新たな移動により、新たな否定的な評価が生じることを軽減又は回避することが可能となる。 This makes it possible to reduce or avoid the occurrence of a new negative evaluation due to a new movement of the first autonomous mobile body or the second autonomous mobile body.
 前記移動管理部は、前記被観測情報に基づいて、前記第1自律移動体又は前記第2自律移動体の移動を制限する場所又は領域である移動制限場所を設定する移動制限部を有してもよい。これにより、毎回、被観測情報自体を考慮して第1自律移動体又は第2自律移動体の予定経路を算出する場合と比較して、移動制限場所を用いることで移動管理部の演算負荷を軽減することが可能となる。 The movement management unit includes a movement restriction unit that sets a movement restriction place that is a place or a region that restricts movement of the first autonomous mobile body or the second autonomous mobile body based on the observed information. Also good. As a result, the calculation load of the movement management unit can be reduced by using the movement restricted place, in comparison with the case where the planned route of the first autonomous moving body or the second autonomous moving body is calculated in consideration of the observed information itself. It becomes possible to reduce.
 本発明に係る制御方法は、
  出発地から目的地まで移動するための自律制御部を備えた第1自律移動体と、
  通信装置を介して前記第1自律移動体と通信し、前記第1自律移動体を含む複数の移動体の移動を管理する移動管理部と
 を備える管理システムの制御方法であって、
 前記第1自律移動体の周辺から前記第1自律移動体を観測した前記第1自律移動体の被観測情報を被観測情報取得部で取得するステップと、
 前記被観測情報取得部が取得した前記被観測情報に基づいて、前記第1自律移動体又は前記被観測情報の取得地点に接近し得る第2自律移動体の移動計画又は動作状態を動的計画変更部で変更するステップと
 を有することを特徴とする。
The control method according to the present invention includes:
A first autonomous mobile body having an autonomous control unit for moving from the departure place to the destination;
A control method for a management system comprising: a movement management unit that communicates with the first autonomous mobile body via a communication device and manages movement of a plurality of mobile bodies including the first autonomous mobile body,
Acquiring observed information of the first autonomous moving body, which has observed the first autonomous moving body from the periphery of the first autonomous moving body, in an observed information acquiring unit;
Based on the observed information acquired by the observed information acquisition unit, a dynamic plan of the movement plan or operation state of the first autonomous moving object or the second autonomous moving object that can approach the acquisition point of the observed information And a step of changing by the changing unit.
 本発明に係る管理サーバは、出発地から目的地まで移動するための自律制御部を備えた第1自律移動体と通信し、前記第1自律移動体を含む複数の移動体の移動を管理するものであって、
 さらに、前記管理サーバは、前記第1自律移動体の周辺から前記第1自律移動体を観測した前記第1自律移動体の被観測情報を被観測情報取得部から取得し、前記被観測情報に基づいて、前記第1自律移動体又は前記被観測情報の取得地点に接近し得る第2自律移動体の移動計画又は動作状態を変更する動的計画変更部を備える
 ことを特徴とする。
The management server which concerns on this invention communicates with the 1st autonomous mobile body provided with the autonomous control part for moving from a departure place to the destination, and manages the movement of the several mobile body containing the said 1st autonomous mobile body And
Furthermore, the management server acquires observed information of the first autonomous mobile body that has observed the first autonomous mobile body from the periphery of the first autonomous mobile body from the observed information acquisition unit, and includes the observed information in the observed information A dynamic plan change unit that changes a movement plan or an operation state of the second autonomous mobile body that can approach the acquisition point of the first autonomous mobile body or the observed information is provided.
 本発明によれば、飛行制限領域の動的な変化を好適に行うことが可能となる。 According to the present invention, it is possible to suitably change the flight restriction region dynamically.
本発明の一実施形態に係る管理システムの概要を示す全体構成図である。It is a whole lineblock diagram showing an outline of a management system concerning one embodiment of the present invention. 前記実施形態において、顧客から発注された商品を、ドローンで配送する際の概要を示すフローチャートである。In the said embodiment, it is a flowchart which shows the outline | summary at the time of delivering the goods ordered from the customer by drone. 前記実施形態の受注時制御を示すフローチャートである。It is a flowchart which shows the order control at the time of the said embodiment. 前記実施形態において被観測情報を反映する際の全体的な流れを示すフローチャートである。It is a flowchart which shows the whole flow at the time of reflecting observed information in the said embodiment. 前記実施形態の被観測情報反映制御のフローチャートである。It is a flowchart of the observed information reflection control of the embodiment.
A.一実施形態
<A-1.構成>
[A-1-1.全体構成]
 図1は、本発明の一実施形態に係る管理システム10の概要を示す全体構成図である。管理システム10は、複数の顧客端末20と、少なくとも1台のサービス管理サーバ22(以下「サービスサーバ22」ともいう。)と、少なくとも1台の交通管理サーバ24(以下「交通サーバ24」ともいう。)と、複数のドローン26と、複数の周辺端末28とを有する。サービスサーバ22と交通サーバ24は、複数のドローン26の移動を管理する移動管理部30を構成する。
A. One Embodiment <A-1. Configuration>
[A-1-1. overall structure]
FIG. 1 is an overall configuration diagram showing an overview of a management system 10 according to an embodiment of the present invention. The management system 10 includes a plurality of customer terminals 20, at least one service management server 22 (hereinafter also referred to as “service server 22”), and at least one traffic management server 24 (hereinafter also referred to as “traffic server 24”). .), A plurality of drones 26, and a plurality of peripheral terminals 28. The service server 22 and the traffic server 24 constitute a movement management unit 30 that manages movement of a plurality of drones 26.
 図1では、顧客端末20、サービスサーバ22、交通サーバ24、ドローン26及び周辺端末28を、それぞれ1台のみ示している。管理システム10では、顧客端末20を介して入力された商品Gの発注情報Iodrに基づいて、ドローン26(以下「配送ドローン26del」ともいう。)が商品Gを配送する。 In FIG. 1, only one customer terminal 20, service server 22, transportation server 24, drone 26, and peripheral terminal 28 are shown. In the management system 10, the drone 26 (hereinafter also referred to as “delivery drone 26del”) delivers the merchandise G based on the order information Iodr for the merchandise G input via the customer terminal 20.
 顧客端末20とサービスサーバ22の間、サービスサーバ22と交通サーバ24の間は、インターネット50を介して通信可能である。また、サービスサーバ22とドローン26の間、サービスサーバ22と周辺端末28の間は、インターネット50及び無線中継局52を介して通信可能である。 Communication is possible between the customer terminal 20 and the service server 22 and between the service server 22 and the traffic server 24 via the Internet 50. Communication between the service server 22 and the drone 26 and between the service server 22 and the peripheral terminal 28 are possible via the Internet 50 and the wireless relay station 52.
[A-1-2.顧客端末20]
 顧客端末20は、サービスサーバ22が取り扱う商品Gについて顧客からの発注を受け付ける外部端末である。顧客端末20は、例えば、パーソナルコンピュータ又はスマートフォンから構成される。
[A-1-2. Customer terminal 20]
The customer terminal 20 is an external terminal that receives an order from a customer for the product G handled by the service server 22. The customer terminal 20 is comprised from a personal computer or a smart phone, for example.
[A-1-3.サービス管理サーバ22]
 サービス管理サーバ22は、特定の企業が管理するサーバであり、当該企業の受注管理、在庫管理及び配送管理を行う。受注管理では、顧客端末20からの発注(サービスの要求)を受け付ける。在庫管理では、商品Gの在庫管理を行う。配送管理では、商品Gの配送(複数のドローン26の移動)を管理する。
[A-1-3. Service management server 22]
The service management server 22 is a server managed by a specific company, and performs order management, inventory management, and delivery management of the company. In order management, an order (service request) from the customer terminal 20 is accepted. In inventory management, inventory management of the product G is performed. In delivery management, delivery of goods G (movement of a plurality of drones 26) is managed.
 図1に示すように、サービスサーバ22は、入出力部60と、通信部62と、演算部64と、記憶部66とを含む。通信部62は、インターネット50を介することで、顧客端末20、交通サーバ24、ドローン26、周辺端末28等との通信が可能である。 As shown in FIG. 1, the service server 22 includes an input / output unit 60, a communication unit 62, a calculation unit 64, and a storage unit 66. The communication unit 62 can communicate with the customer terminal 20, the traffic server 24, the drone 26, the peripheral terminal 28, and the like via the Internet 50.
 演算部64は、中央演算装置(CPU)を含み、記憶部66に記憶されているプログラムを実行することにより動作する。演算部64が実行する機能の一部は、ロジックIC(Integrated Circuit)を用いて実現することもできる。演算部64は、前記プログラムの一部をハードウェア(回路部品)で構成することもできる。 The calculation unit 64 includes a central processing unit (CPU) and operates by executing a program stored in the storage unit 66. A part of the function executed by the arithmetic unit 64 can also be realized by using a logic IC (Integrated) Circuit). The calculation unit 64 can also configure a part of the program with hardware (circuit parts).
 演算部64は、商品Gの受注及びドローン26による配送を管理する受注時制御を実行する。また、演算部64は、周辺端末28を介してユーザから送信された被観測情報Iobによってドローン26の移動計画又は動作状態を変更する被観測情報反映制御を実行する。演算部64は、配送管理部70と、移動制御部72とを有する。配送管理部70は、商品Gの配送を管理する。移動制御部72は、配送ドローン26delの飛行を制御する。 The calculation unit 64 executes order-receiving control for managing the order of the product G and the delivery by the drone 26. In addition, the calculation unit 64 executes observed information reflection control for changing the movement plan or the operation state of the drone 26 based on the observed information Iob transmitted from the user via the peripheral terminal 28. The calculation unit 64 includes a delivery management unit 70 and a movement control unit 72. The delivery management unit 70 manages delivery of the product G. The movement control unit 72 controls the flight of the delivery drone 26del.
 配送管理部70は、周辺端末28が取得した被観測情報Iob(後述)に基づいて、各配送ドローン26delの移動計画及び動作状態を動的に変更する動的計画変更部80を有する。動的計画変更部80は、移動制限部90と、経路算出部92とを有する。 The delivery management unit 70 includes a dynamic plan change unit 80 that dynamically changes the movement plan and operation state of each delivery drone 26del based on the observed information Iob (described later) acquired by the peripheral terminal 28. The dynamic plan change unit 80 includes a movement restriction unit 90 and a route calculation unit 92.
 移動制限部90は、各ドローン26の移動を制限する場所又は領域である移動制限場所Lmlを、被観測情報Iobの被観測場所Lob等に基づいて設定する。経路算出部92は、移動制限場所Lml(被観測場所Lobを含む)を避けるように、各配送ドローン26delの新たな予定経路RTpを算出する。 The movement restriction unit 90 sets a movement restriction place Lml, which is a place or area where movement of each drone 26 is restricted, based on the observed place Lob of the observed information Iob. The route calculation unit 92 calculates a new planned route RTp for each delivery drone 26del so as to avoid the movement restricted place Lml (including the observed place Lob).
 記憶部66は、演算部64が用いるプログラム及びデータを記憶するものであり、ランダム・アクセス・メモリ(以下「RAM」という。)を備える。RAMとしては、レジスタ等の揮発性メモリと、ハードディスク、フラッシュメモリ等の不揮発性メモリとを用いることができる。また、記憶部66は、RAMに加え、リード・オンリー・メモリ(ROM)を有してもよい。 The storage unit 66 stores a program and data used by the calculation unit 64 and includes a random access memory (hereinafter referred to as “RAM”). As the RAM, a volatile memory such as a register and a non-volatile memory such as a hard disk or a flash memory can be used. The storage unit 66 may include a read only memory (ROM) in addition to the RAM.
 記憶部66は、注文データベース100(以下「注文DB100」という。)と、在庫データベース102(以下「在庫DB102」という。)と、移動体データベース104(以下「移動体DB104」という。)と、第1地図データベース106(以下「第1地図DB106」という。)と、配送データベース108(以下「配送DB108」という。)と、被観測情報データベース110(以下「被観測情報DB110」という。)とを有する。 The storage unit 66 includes an order database 100 (hereinafter referred to as “order DB 100”), an inventory database 102 (hereinafter referred to as “inventory DB 102”), a mobile object database 104 (hereinafter referred to as “mobile object DB 104”), 1 map database 106 (hereinafter referred to as “first map DB 106”), delivery database 108 (hereinafter referred to as “delivery DB 108”), and observed information database 110 (hereinafter referred to as “observed information DB 110”). .
 注文DB100は、各顧客端末20を介して受け付けた注文に関する情報(発注情報Iodr)を蓄積する。在庫DB102は、在庫に関する情報(在庫情報Istk)を蓄積する。移動体DB104は、配送に用いるドローン26に関する個体情報Iiを蓄積する。また、個体情報Iiは、例えば、ドローン26の識別情報(識別ID)、種類(大型、小型等)、最大積載重量、積載可能な荷物の最大寸法を含む。また、個体情報Iiは、積載可能な荷物の個数、最大利用可能人数、燃費、最高速度、稼働年数、総移動距離、ドローン26の現在位置Pdcurのいずれか1つ又は複数を含んでもよい。 The order DB 100 accumulates information (order information Iodr) related to orders received via each customer terminal 20. The inventory DB 102 stores information related to inventory (inventory information Istk). The mobile object DB 104 stores individual information Ii related to the drone 26 used for delivery. The individual information Ii includes, for example, identification information (identification ID) of the drone 26, a type (large size, small size, etc.), a maximum load weight, and a maximum size of the loadable load. The individual information Ii may include any one or more of the number of loads that can be loaded, the maximum number of people that can be used, the fuel consumption, the maximum speed, the number of years of operation, the total movement distance, and the current position Pdcur of the drone 26.
 第1地図DB106は、ドローン26による配送を行うための地図情報(第1地図情報Imap1)を蓄積する。第1地図情報Imap1には、交通サーバ24による進入許可を要する進入制限領域の位置情報が含まれる。 The first map DB 106 stores map information (first map information Imap1) for delivery by the drone 26. The first map information Imap1 includes position information of an entry restriction area that requires entry permission by the traffic server 24.
 配送DB108は、注文を受けた商品Gの配送に関する情報(配送情報Id)を蓄積する。配送情報Idには、商品Gの配送を行う配送ドローン26delに関する情報も含まれる。 The delivery DB 108 accumulates information (delivery information Id) related to delivery of the ordered product G. The delivery information Id includes information related to the delivery drone 26del that delivers the product G.
 被観測情報DB110は、特定のドローン26(以下「対象ドローン26tar」という。)の周辺から対象ドローン26tarを観測した対象ドローン26tarの被観測情報Iobを蓄積する。被観測情報Iobは、観測者(人)が観測したドローン26(配送ドローン26del)の情報であり、否定的被観測情報Iobnegと、被観測場所Lobと、被観測時刻Tob(又は被観測時間帯)と、対象ドローン26tarの識別IDとを含む。 The observed information DB 110 accumulates the observed information Iob of the target drone 26tar obtained by observing the target drone 26tar from the periphery of the specific drone 26 (hereinafter referred to as “target drone 26tar”). The observed information Iob is information of the drone 26 (delivery drone 26del) observed by the observer (person), the negative observed information Iobneg, the observed location Lob, the observed time Tob (or the observed time zone) ) And the identification ID of the target drone 26tar.
 このうち、否定的被観測情報Iobneg、被観測場所Lob及び被観測時刻Tob(又は被観測時間帯)は、対象ドローン26tar周辺の観測者(換言すると、周辺端末28のユーザ)が周辺端末28を介してサービスサーバ22に送信した情報である。対象ドローン26tarの識別IDは、対象ドローン26tarの飛行経路RTf、被観測場所Lob、被観測時刻Tob等に基づいてサービスサーバ22が特定する。飛行経路RTfは、対象ドローン26tarが飛行した経路であり、配送DB108に記憶されている。飛行経路RTfは、対象ドローン26tarが実際に飛行した経路(位置情報に基づくもの)であることが好ましいが、過去の予定経路RTpを用いてもよい。 Among these, the negative observed information Iobneg, the observed location Lob, and the observed time Tob (or the observed time zone) indicate that the observer around the target drone 26tar (in other words, the user of the peripheral terminal 28) determines the peripheral terminal 28. Information transmitted to the service server 22 via the service server 22. The identification ID of the target drone 26tar is specified by the service server 22 based on the flight route RTf, the observed location Lob, the observed time Tob, and the like of the target drone 26tar. The flight route RTf is a route on which the target drone 26tar flew, and is stored in the delivery DB 108. The flight route RTf is preferably a route (based on position information) on which the target drone 26tar actually flies, but a past scheduled route RTp may be used.
 否定的被観測情報Iobnegは、対象ドローン26tar周辺の観測者による、対象ドローン26tarについての否定的な評価を含む情報である。否定的被観測情報Iobnegは、対象ドローン26tarの騒音状態と、対象ドローン26tarの移動に伴って周囲が受ける不快感に関する情報とを含む。被観測場所Lobは、否定的な評価を発生させた対象ドローン26tarの観測地点又は観測領域である。被観測場所Lobは、観測者が観測した場所である。 The negative observation information Iobneg is information including a negative evaluation of the target drone 26tar by an observer around the target drone 26tar. The negative observed information Iobneg includes the noise state of the target drone 26tar and information related to discomfort experienced by the surroundings as the target drone 26tar moves. The observed location Lob is an observation point or an observation area of the target drone 26tar that has generated a negative evaluation. The observed location Lob is a location observed by an observer.
[A-1-4.交通管理サーバ24]
 交通管理サーバ24は、複数の飛行体(ドローン26を含む)の交通(飛行)に関する情報(交通情報It)を管理する。例えば、交通サーバ24は、ドローン26の飛行許可申請をサービスサーバ22から受信した場合、当該飛行許可申請を許可するか否かを判定し、判定結果に応じて許可又は不許可をサービスサーバ22に通知する。また、交通サーバ24は、交通に関する各種の情報(例えば渋滞情報)をサービスサーバ22に通知する。
[A-1-4. Traffic management server 24]
The traffic management server 24 manages information (traffic information It) regarding traffic (flight) of a plurality of flying bodies (including the drone 26). For example, when the traffic server 24 receives a flight permission application for the drone 26 from the service server 22, the traffic server 24 determines whether or not to permit the flight permission application, and permits or does not permit the service server 22 according to the determination result. Notice. In addition, the traffic server 24 notifies the service server 22 of various information related to traffic (for example, traffic jam information).
 図1に示すように、交通サーバ24は、第2地図データベース130(以下「第2地図DB130」という。)と、飛行スケジュールデータベース132(以下「飛行スケジュールDB132」という。)とを有する。第2地図DB130は、飛行体の交通(飛行)に関する地図情報(第2地図情報Imap2)を蓄積する。飛行スケジュールDB132は、各飛行体の飛行スケジュールに関する情報(飛行スケジュール情報Isc)を蓄積する。 As shown in FIG. 1, the traffic server 24 includes a second map database 130 (hereinafter referred to as “second map DB 130”) and a flight schedule database 132 (hereinafter referred to as “flight schedule DB 132”). 2nd map DB130 accumulate | stores the map information (2nd map information Imap2) regarding the traffic (flight) of a flying body. The flight schedule DB 132 stores information (flight schedule information Isc) related to the flight schedule of each aircraft.
[A-1-5.ドローン26]
(A-1-5-1.ドローン26の概要)
 本実施形態のドローン26(自律移動体)は、商品配送用であり、インターネット50及び無線中継局52を介してサービスサーバ22から受信した配送指令(飛行指令)に応じて出発地Pst(倉庫等)から配送目的地Pdtarまで商品Gを配送する。後述するように、ドローン26はその他の用途で用いてもよい。
[A-1-5. Drone 26]
(A-1-5-1. Outline of drone 26)
The drone 26 (autonomous mobile body) of the present embodiment is for product delivery, and the departure place Pst (a warehouse or the like) according to a delivery command (flight command) received from the service server 22 via the Internet 50 and the wireless relay station 52. ) To the delivery destination Pdtar. As will be described later, the drone 26 may be used for other purposes.
 図1に示すように、ドローン26は、ドローンセンサ群150と、通信装置152と、ドローン制御装置154と、プロペラ駆動部156とを有する。 1, the drone 26 includes a drone sensor group 150, a communication device 152, a drone control device 154, and a propeller driving unit 156.
(A-1-5-2.ドローンセンサ群150)
 ドローンセンサ群150は、カメラ、グローバル・ポジショニング・システム・センサ(以下「GPSセンサ」という。)、速度計、高度計、ジャイロセンサ(いずれも図示せず)等を有する。
(A-1-5-2. Drone sensor group 150)
The drone sensor group 150 includes a camera, a global positioning system sensor (hereinafter referred to as “GPS sensor”), a speedometer, an altimeter, a gyro sensor (all not shown), and the like.
 カメラは、ドローン26の本体の下部に配置され、ドローン26の周辺を撮像した周辺画像に関する画像情報Iimageを出力する。カメラは、動画を撮影するビデオカメラである。或いは、カメラは、動画及び静止画の両方又は静止画のみを撮影可能としてもよい。カメラは、図示しないカメラアクチュエータにより向き(ドローン26の本体に対するカメラの姿勢)を調整可能である。或いは、カメラは、ドローン26の本体に対する位置が固定されてもよい。 The camera is arranged at the lower part of the main body of the drone 26, and outputs image information Iimage about a peripheral image obtained by imaging the periphery of the drone 26. The camera is a video camera that takes a video. Alternatively, the camera may be capable of capturing both moving images and still images or only still images. The direction of the camera (the posture of the camera with respect to the main body of the drone 26) can be adjusted by a camera actuator (not shown). Alternatively, the position of the drone 26 with respect to the main body may be fixed.
 GPSセンサは、ドローン26の現在位置Pdcurに関する位置情報Ipdcurを出力する。速度計は、ドローン26の飛行速度Vd[km/h]を検出する。高度計は、ドローン26下方の地面に対する距離としての対地高度H(以下「高度H」ともいう。)[m]を検出する。ジャイロセンサは、ドローン26の角速度ω[rad/sec]を検出する。角速度ωは、上下軸に対する角速度Y(ヨーY)と、左右軸に対する角速度P(ピッチP)と、前後軸に対する角速度R(ロールR)とを含む。 The GPS sensor outputs position information Ipdcur regarding the current position Pdcur of the drone 26. The speedometer detects the flight speed Vd [km / h] of the drone 26. The altimeter detects a ground altitude H (hereinafter also referred to as “altitude H”) [m] as a distance to the ground below the drone 26. The gyro sensor detects the angular velocity ω [rad / sec] of the drone 26. The angular velocity ω includes an angular velocity Y (yaw Y) with respect to the vertical axis, an angular velocity P (pitch P) with respect to the horizontal axis, and an angular velocity R (roll R) with respect to the longitudinal axis.
(A-1-5-3.通信装置152)
 通信装置152は、無線中継局52等との電波通信が可能であり、例えば、電波通信モジュールを含む。通信装置152は、無線中継局52及びインターネット50を介することでサービスサーバ22等との通信が可能である。
(A-1-5-3. Communication Device 152)
The communication device 152 can perform radio wave communication with the wireless relay station 52 and the like, and includes, for example, a radio wave communication module. The communication device 152 can communicate with the service server 22 and the like via the wireless relay station 52 and the Internet 50.
(A-1-5-4.ドローン制御装置154)
 ドローン制御装置154(自律制御部)は、ドローン26の飛行、撮影等、ドローン26全体を制御する。ドローン制御装置154は、ドローン26を出発地Pstから目的地Ptarまで自律的に移動(飛行)させる。ドローン制御装置154は、図示しない入出力部、演算部及び記憶部を含む。
(A-1-5-4. Drone control device 154)
The drone control device 154 (autonomous control unit) controls the entire drone 26 such as flight and shooting of the drone 26. The drone control device 154 autonomously moves (flys) the drone 26 from the departure point Pst to the destination Ptar. The drone control device 154 includes an input / output unit, a calculation unit, and a storage unit (not shown).
(A-1-5-5.プロペラ駆動部156)
 プロペラ駆動部156は、複数のプロペラと、複数のプロペラアクチュエータとを有する。プロペラアクチュエータは、例えば電動モータを有する。
(A-1-5-5. Propeller drive unit 156)
The propeller drive unit 156 includes a plurality of propellers and a plurality of propeller actuators. The propeller actuator has, for example, an electric motor.
[A-1-6.周辺端末28]
 周辺端末28は、被観測情報Iobを取得する被観測情報取得部として機能するものであり、例えば、個々人が有するスマートフォンが含まれる。周辺端末28は、道路周辺に設置された入力端末又は個々人が有するパーソナルコンピュータを含んでもよい。各周辺端末28は、入出力部160と、通信部162と、演算部164と、記憶部166と、表示部168とを有する。入出力部160及び表示部168は、タッチパネルで構成することができる。通信部162は、無線中継局52及びインターネット50を介することでサービスサーバ22等との通信が可能である。
[A-1-6. Peripheral terminal 28]
The peripheral terminal 28 functions as an observed information acquisition unit that acquires the observed information Iob, and includes, for example, a smartphone that an individual has. The peripheral terminal 28 may include an input terminal installed around the road or a personal computer owned by an individual. Each peripheral terminal 28 includes an input / output unit 160, a communication unit 162, a calculation unit 164, a storage unit 166, and a display unit 168. The input / output unit 160 and the display unit 168 can be configured by a touch panel. The communication unit 162 can communicate with the service server 22 and the like via the wireless relay station 52 and the Internet 50.
<A-2.本実施形態の制御>
[A-2-1.発注及び配送時]
(A-2-1-1.発注及び配送時の流れの概要)
 図2は、本実施形態において、顧客から発注された商品Gを、ドローン26で配送する際の概要を示すフローチャートである。図2では、大まかな流れのみを示していることに留意されたい。
<A-2. Control of this embodiment>
[A-2-1. During ordering and delivery]
(A-2-1. Outline of flow for ordering and delivery)
FIG. 2 is a flowchart showing an outline when the product G ordered from the customer is delivered by the drone 26 in the present embodiment. Note that in FIG. 2, only a rough flow is shown.
 ステップS11において、顧客端末20は、顧客の操作に応じて発注を受け付ける。具体的には、顧客端末20は、顧客の操作に応じて発注画面を表示部(図示せず)に表示する。発注画面のデータは、サービス管理サーバ22から取得したものである。また、発注画面を表示させるに当たり、サービスサーバ22は、発注対象の商品Gの在庫数を確認する。在庫切れの場合、サービスサーバ22は、その旨を併せて表示させる。発注があった場合、顧客端末20は、顧客からの発注を受け付けてサービス管理サーバ22に送信する。 In step S11, the customer terminal 20 accepts an order according to the customer's operation. Specifically, the customer terminal 20 displays an ordering screen on a display unit (not shown) in accordance with a customer operation. The order screen data is obtained from the service management server 22. Further, when displaying the ordering screen, the service server 22 confirms the number of stocks of the product G to be ordered. In the case of out of stock, the service server 22 displays the fact together. When there is an order, the customer terminal 20 receives an order from the customer and transmits it to the service management server 22.
 サービスサーバ22の処理に移る。ステップS21において、サービスサーバ22は、顧客端末20が受け付けた発注情報Iodrに応じて、対象ドローン26tar及び予定経路RTpを算出する。なお、対象ドローン26tar及び予定経路RTpの算出は、発注前に行っておき、発注時に確定してもよい。予定経路RTpの算出に関する更なる情報については後述する。 Move on to processing of the service server 22. In step S21, the service server 22 calculates the target drone 26tar and the planned route RTp according to the order information Iodr received by the customer terminal 20. The calculation of the target drone 26tar and the planned route RTp may be performed before ordering and may be determined at the time of ordering. Further information regarding the calculation of the planned route RTp will be described later.
 ステップS22において、サービスサーバ22は、予定経路RTpについて交通サーバ24の許可が必要であるか否か(換言すると、交通サーバ24の許可が必要な部分が予定経路RTpに含まれているか否か)を、第1地図情報Imap1に基づいて判定する。交通サーバ24の許可が必要な部分としては、例えば飛行制限領域が含まれる。 In step S22, the service server 22 determines whether the traffic server 24 needs to be permitted for the planned route RTp (in other words, whether the planned route RTp includes a portion that requires the traffic server 24). Is determined based on the first map information Imap1. As a part which requires permission of the traffic server 24, a flight restriction area is included, for example.
 交通サーバ24の許可が必要である場合(S22:TRUE)、ステップS23において、予定経路RTpについての許可申請を、交通管理サーバ24に対して送信する。許可申請には、対象となるドローン26の識別IDが付与される。許可申請の送信後、ステップS24において、サービスサーバ22は、交通管理サーバ24からの結果通知を受信したか否かを監視する。 When permission of the traffic server 24 is necessary (S22: TRUE), a permission application for the planned route RTp is transmitted to the traffic management server 24 in step S23. The identification ID of the target drone 26 is given to the permission application. After transmitting the permission application, in step S24, the service server 22 monitors whether or not a result notification from the traffic management server 24 has been received.
 交通管理サーバ24の処理に移る。サービスサーバ22からの許可申請(S23)を受信した交通管理サーバ24は、ステップS31において、受信した許可申請について許可又は不許可のいずれとするかを判定する。例えば、予定経路RTpが、一時的な飛行禁止区域を含む場合、交通サーバ24は許可申請を不許可とする。また、1又は複数の他のドローン26(他機)が、自ら(自機)と同時刻に予定経路RTpの一部を通過する予定である場合、交通サーバ24は許可申請を不許可とする。一方、ドローン26の飛行を認めない事由が予定経路RTpに存在しない場合、交通サーバ24は許可申請を許可する。 The process proceeds to the traffic management server 24. In step S31, the traffic management server 24 that has received the permission application (S23) from the service server 22 determines whether the received permission application is permitted or not. For example, when the planned route RTp includes a temporary flight prohibited area, the traffic server 24 disallows the permission application. In addition, when one or more other drones 26 (other devices) are scheduled to pass a part of the planned route RTp at the same time as themselves (own devices), the traffic server 24 disallows the permission application. . On the other hand, when there is no reason for not allowing the drone 26 to fly, the traffic server 24 permits the permission application.
 許可申請を許可する場合(S31:TRUE)、ステップS32において、交通管理サーバ24は、許可通知をサービスサーバ22に送信する。許可申請を許可しない場合(S31:FALSE)、ステップS33において、交通管理サーバ24は、不許可通知をサービスサーバ22に送信する。不許可通知には、不許可の理由等(例えば、予定経路RTpが飛行禁止領域を通過すること、飛行禁止領域の位置等)も付加される。 When permitting a permission application (S31: TRUE), the traffic management server 24 transmits a permission notice to the service server 22 in step S32. When permission application is not permitted (S31: FALSE), the traffic management server 24 transmits a disapproval notice to the service server 22 in step S33. The reason for non-permission (for example, that the planned route RTp passes through the flight prohibited area, the position of the flight prohibited area, etc.) is also added to the non-permission notice.
 再びサービスサーバ22の処理に移る。交通管理サーバ24から受信した結果が許可を示す場合(S24:TRUE)、ステップS25に進む。交通管理サーバ24から受信した結果が不許可を示す場合(S24:FALSE)、ステップS21に戻る。そして、サービスサーバ22は、結果に含まれる不許可の理由に応じて、新たな予定経路RTpを算出する。例えば、不許可の理由が、予定経路RTpが飛行禁止領域を通過することである場合、サービスサーバ22は、飛行禁止領域を避ける新たな予定経路RTpを算出する(S21)。そして、サービスサーバ22は、必要に応じて再度飛行許可申請を行う(S23)。 The process proceeds to the service server 22 again. When the result received from the traffic management server 24 indicates permission (S24: TRUE), the process proceeds to step S25. If the result received from the traffic management server 24 indicates disapproval (S24: FALSE), the process returns to step S21. Then, the service server 22 calculates a new scheduled route RTp according to the reason for non-permission included in the result. For example, if the reason for the disapproval is that the scheduled route RTp passes through the flight prohibited area, the service server 22 calculates a new scheduled route RTp that avoids the flight prohibited area (S21). Then, the service server 22 makes another flight permission application as necessary (S23).
 ステップS25において、サービスサーバ22は、商品Gを配送する対象ドローン26tarに対して配送指令を送信する。配送指令には、予定経路RTpの情報が含まれる。予定経路RTpは、対象ドローン26tarの現在位置Pdcur(例えば、図示しない倉庫)である出発地Pstから配送目的地Pdtarまでの経路(往路)と、配送目的地Pdtarから帰還目的地Irtarまでの経路(復路)を含む。 In step S25, the service server 22 transmits a delivery command to the target drone 26tar delivering the product G. The delivery command includes information on the planned route RTp. The planned route RTp includes a route (outbound route) from the departure point Pst to the delivery destination Pdtar, which is the current position Pdcur (for example, a warehouse not shown) of the target drone 26tar, and a route from the delivery destination Pdtar to the return destination Irtar ( Including return trip).
 配送のために対象ドローン26tarが倉庫、営業所等に立ち寄る必要がある場合、予定経路RTpは、現在位置Pdcurから倉庫等への経路を含んでもよい。或いは、配送のために対象ドローン26tarが倉庫等に立ち寄る必要がある場合、倉庫、営業所等までの経路を予定経路RTpとして設定してもよい。その場合、新たな予定経路RTpとして、配送目的地Pdtarまでの経路と、帰還目的地Irtarまでの経路(復路)を設定してもよい。なお、後述するように、配送指令は、サービスサーバ22から対象ドローン26tarに対して直接送信するのではなく、別の方法で送信することも可能である。 When the target drone 26tar needs to stop at a warehouse, a sales office or the like for delivery, the planned route RTp may include a route from the current position Pdcur to the warehouse. Alternatively, when the target drone 26tar needs to stop at a warehouse or the like for delivery, a route to the warehouse, sales office, or the like may be set as the scheduled route RTp. In this case, a route to the delivery destination Pdtar and a route to the return destination Irtar (return route) may be set as the new scheduled route RTp. As will be described later, the delivery command can be transmitted by another method instead of directly transmitted from the service server 22 to the target drone 26tar.
 各ドローン26の処理に移る。ドローン26は、サービスサーバ22から配送指令(S25)を受信したか否かを監視している。配送指令を受信したドローン26は、ステップS51において、商品Gを倉庫又は営業所から配送目的地Pdtarまで運び、その後帰還目的地Irtarまで戻る配送制御を開始する。 移 Move to processing of each drone 26. The drone 26 monitors whether or not a delivery command (S25) has been received from the service server 22. In step S51, the drone 26 that has received the delivery command starts the delivery control for transporting the product G from the warehouse or sales office to the delivery destination Pdtar and then returning to the return destination Irtar.
(A-2-1-2.サービスサーバ22による受注時制御)
 図3は、本実施形態の受注時制御のフローチャートである。上記のように、受注時制御は、商品Gの受注及びドローン26による配送を管理する制御であり、サービスサーバ22の演算部64が実行する。
(A-1-2. Control at the time of order received by the service server 22)
FIG. 3 is a flowchart of the control at the time of order reception according to this embodiment. As described above, the control at the time of order reception is control for managing the order reception of the product G and the delivery by the drone 26, and is executed by the calculation unit 64 of the service server 22.
 図3のステップS71において、サービスサーバ22は、顧客端末20からの要求に応じて、顧客端末20に発注画面を表示させる。換言すると、サービスサーバ22は、顧客端末20からの要求に応じて、発注画面のデータを顧客端末20に送信する。発注画面のデータを受信した顧客端末20は、図示しない表示部に発注画面を表示させる。 3, the service server 22 displays an ordering screen on the customer terminal 20 in response to a request from the customer terminal 20. In other words, the service server 22 transmits the order screen data to the customer terminal 20 in response to a request from the customer terminal 20. Upon receiving the order screen data, the customer terminal 20 displays the order screen on a display unit (not shown).
 ステップS72において、サービスサーバ22は、商品Gを受注したか否かを判定する。上記のように、顧客端末20が、顧客の操作に応じて発注を受け付け、発注情報Iodrをサービスサーバ22に送信する(図2のS11)。従って、サービスサーバ22は、顧客端末20から発注情報Iodrを受信したとき、商品Gを受注したと判定する。受注した場合(S72:TRUE)、ステップS73に進む。受注していない場合(S72:FALSE)、ステップS71に戻る。 In step S72, the service server 22 determines whether or not an order for the product G has been received. As described above, the customer terminal 20 receives an order according to the customer's operation, and transmits the order information Iodr to the service server 22 (S11 in FIG. 2). Therefore, when the service server 22 receives the order information Iodr from the customer terminal 20, the service server 22 determines that an order for the product G has been received. If an order is received (S72: TRUE), the process proceeds to step S73. If no order has been received (S72: FALSE), the process returns to step S71.
 ステップS73~S75において、サービスサーバ22は、対象ドローン26tar及び予定経路RTpを算出する。すなわち、ステップS73において、サービスサーバ22は、対象ドローン26tar及び予定経路RTpを算出するために必要な配送情報Idを取得する。配送情報Idには、商品G(荷物)の配送地、配送期限、寸法、重量等が含まれる。 In steps S73 to S75, the service server 22 calculates the target drone 26tar and the planned route RTp. That is, in step S73, the service server 22 acquires the delivery information Id necessary for calculating the target drone 26tar and the scheduled route RTp. The delivery information Id includes the delivery location, delivery deadline, dimensions, weight, etc. of the product G (package).
 ステップS74において、サービスサーバ22は、商品Gの配達に利用する対象ドローン26tarを、配送情報Idに基づいて抽出する。例えば、配送情報Idに含まれる配送地に基づいて、ドローン26の中から地域的な限定を行う。例えば、A地域に配達する場合、サービスサーバ22は、現在A地域に配置されているドローン26を抽出する。 In step S74, the service server 22 extracts the target drone 26tar used for delivery of the product G based on the delivery information Id. For example, regional limitation is performed from the drone 26 based on the delivery location included in the delivery information Id. For example, when delivering to the A area, the service server 22 extracts the drone 26 currently arranged in the A area.
 また、配送情報Idに含まれる商品Gの寸法及び重量に基づいて、ドローン26の中から各個体の性能(属性)に基づく限定を行う。例えば、商品Gが第1寸法以上の大型荷物である場合、大型のドローン26を抽出し、小型のドローン26を除外する。一方、商品Gが第1寸法より小さい小型荷物である場合、大型及び小型両方のドローン26を抽出する。なお、本実施形態では、第1寸法よりも小さい小型荷物を単体で配送する場合、基本的には、小型のドローン26が選択される。 Also, based on the size and weight of the product G included in the delivery information Id, a limitation based on the performance (attribute) of each individual from the drone 26 is performed. For example, when the commodity G is a large luggage having a size greater than or equal to the first dimension, the large drone 26 is extracted and the small drone 26 is excluded. On the other hand, when the commodity G is a small luggage smaller than the first dimension, both large and small drones 26 are extracted. In the present embodiment, when a small package smaller than the first dimension is delivered alone, the small drone 26 is basically selected.
 ステップS75において、サービスサーバ22は、対象ドローン26tarの予定経路RTpを算出する。その際、サービスサーバ22は、第1地図DB106に記憶されている飛行制限領域Rlimを用いる。例えば、出発地Pstから配送目的地Pdtarまでの最短空中経路RTminに飛行制限領域Rlimが含まれない場合、最短空中経路RTminを予定経路RTpとする。最短空中経路RTminに飛行制限領域Rlimが含まれる場合、飛行制限領域Rlimの制限内容に応じた予定経路RTpを設定する。 In step S75, the service server 22 calculates the planned route RTp of the target drone 26tar. At that time, the service server 22 uses the flight restriction area Rlim stored in the first map DB 106. For example, when the flight restriction region Rlim is not included in the shortest aerial route RTmin from the departure point Pst to the delivery destination Pdtar, the shortest aerial route RTmin is set as the scheduled route RTp. When the flight restriction region Rlim is included in the shortest aerial route RTmin, the scheduled route RTp corresponding to the restriction content of the flight restriction region Rlim is set.
 飛行制限領域Rlimは、ドローン26の飛行が制限される領域であり、飛行禁止領域Rban及び条件付き飛行許可領域Ralwを含む。飛行禁止領域Rbanは、ドローン26の飛行が禁止されている領域である。また、条件付き飛行許可領域Ralwは、所定の条件(飛行許可条件CNalw)が満たされる場合のみドローン26の飛行が許可され、飛行許可条件CNalwが満たされない場合、ドローン26の飛行が禁止される領域である。飛行許可条件CNalwとしては、例えば時間帯又は特定用途(緊急用途等)が含まれる。 The flight restriction area Rlim is an area where the flight of the drone 26 is restricted, and includes a flight prohibition area Rban and a conditional flight permission area Ralw. The flight prohibited area Rban is an area where the flight of the drone 26 is prohibited. Further, the conditional flight permission area Ralw is an area where the flight of the drone 26 is permitted only when a predetermined condition (flight permission condition CNalw) is satisfied, and when the flight permission condition CNalw is not satisfied, the flight of the drone 26 is prohibited. It is. As the flight permission condition CNalw, for example, a time zone or a specific use (emergency use or the like) is included.
 飛行制限領域Rlimは、3次元方向(前後方向、左右方向及び上下方向)で定義する。或いは、2次元方向(前後方向及び左右方向)で飛行制限領域Rlimを定義してもよい。飛行制限領域Rlimを3次元方向で定義した場合、例えば、前後方向及び左右方向(緯度及び経度で規定される現在位置Pdcur)のみではなく、上下方向(高度H)も含めて飛行制限領域Rlimが設定される。 The flight restriction area Rlim is defined in a three-dimensional direction (front-rear direction, left-right direction, and up-down direction). Alternatively, the flight restriction region Rlim may be defined in a two-dimensional direction (front-rear direction and left-right direction). When the flight restriction region Rlim is defined in a three-dimensional direction, for example, the flight restriction region Rlim includes not only the front-rear direction and the left-right direction (current position Pdcur defined by latitude and longitude) but also the vertical direction (altitude H). Is set.
 飛行制限領域Rlimには、被観測情報Iobに基づいて設定された領域も含まれる。被観測情報Iobに基づく飛行制限領域Rlimの設定については、図5を参照して後述する。 The flight restriction area Rlim includes an area set based on the observed information Iob. The setting of the flight restriction region Rlim based on the observed information Iob will be described later with reference to FIG.
 最短空中経路RTminに飛行禁止領域Rbanが含まれる場合、飛行禁止領域Rbanを避けた空中経路のうち最短となる経路を予定経路RTpとする。また、最短空中経路RTminに条件付き飛行許可領域Ralwが含まれ且つ飛行許可条件CNalwが満たされる場合、サービスサーバ22は、最短空中経路RTminを予定経路RTpとする。さらに、最短空中経路RTminに条件付き飛行許可領域Ralwが含まれ且つ飛行許可条件CNalwが満たされない場合、サービスサーバ22は、条件付き飛行許可領域Ralwを避けた空中経路のうち最短となる経路を予定経路RTpとする。 When the flight prohibition region Rban is included in the shortest aerial route RTmin, the shortest route out of the aerial routes avoiding the flight prohibition region Rban is set as the scheduled route RTp. Further, when the conditional flight permission region Ralw is included in the shortest aerial route RTmin and the flight permission condition CNalw is satisfied, the service server 22 sets the shortest aerial route RTmin as the planned route RTp. Furthermore, when the conditional flight permission area Ralw is included in the shortest aerial route RTmin and the flight permission condition CNalw is not satisfied, the service server 22 schedules the shortest path among the aerial paths that avoid the conditional flight permission area Ralw. The route is RTp.
 なお、最短空中経路RTmin上に飛行制限領域Rlimが複数存在する場合、それぞれの飛行制限領域Rlimについて通過する場合と迂回する場合に場合分けして予定経路RTpを算出する。また、予定経路RTpは、対象ドローン26tarが商品Gの配送に用いる経路であり、往路と復路を含む。 In addition, when there are a plurality of flight restriction areas Rlim on the shortest aerial route RTmin, the planned route RTp is calculated separately depending on whether each flight restriction area Rlim passes or detours. The planned route RTp is a route used by the target drone 26tar to deliver the product G, and includes a forward route and a return route.
 ステップS76において、サービスサーバ22は、対象ドローン26tarに対して配送指令を送信する。配送指令は、予定経路RTpを含む。ステップS76は、図2のステップS25に対応する。 In step S76, the service server 22 transmits a delivery command to the target drone 26tar. The delivery command includes the planned route RTp. Step S76 corresponds to step S25 in FIG.
[A-2-2.被観測情報Iobの反映時(被観測情報反映制御)]
(A-2-2-1.被観測情報Iobの反映時の全体的な流れ)
 図4は、本実施形態において被観測情報Iobを反映する際の全体的な流れを示すフローチャートである。図4では、大まかな流れのみを示していることに留意されたい。
[A-2-2. When reflecting observed information Iob (observed information reflection control)]
(A-2-2-1. Overall flow when reflecting observed information Iob)
FIG. 4 is a flowchart showing an overall flow when reflecting the observed information Iob in the present embodiment. Note that in FIG. 4 only a rough flow is shown.
 ステップS101において、周辺端末28は、ユーザ(観測者)の操作に応じて被観測情報Iobを受け付ける。具体的には、周辺端末28は、ユーザの操作に応じて被観測情報入力画面を表示部168に表示する。被観測情報入力画面は、サービス管理サーバ22から取得したものである。また、被観測情報入力画面は、被観測情報Iobの入力欄を含む。 In step S101, the peripheral terminal 28 receives the observed information Iob according to the operation of the user (observer). Specifically, the peripheral terminal 28 displays an observed information input screen on the display unit 168 in accordance with a user operation. The observed information input screen is acquired from the service management server 22. The observed information input screen includes an input field for observed information Iob.
 上記のように、被観測情報Iobは、観測者(人)が観測したドローン26の情報である。被観測情報Iobは、否定的被観測情報Iobnegと、被観測場所Lobと、被観測時刻Tob(又は被観測時間帯)と、対象ドローン26tarの識別IDとを含む。被観測情報Iobの送信要求があった場合、周辺端末28は、ユーザからの被観測情報Iobを含む反映要求信号Srefreqをサービス管理サーバ22に送信する。 As described above, the observed information Iob is information of the drone 26 observed by the observer (person). The observed information Iob includes negative observed information Iobneg, observed location Lob, observed time Tob (or observed time zone), and identification ID of the target drone 26tar. When there is a transmission request for the observed information Iob, the peripheral terminal 28 transmits a reflection request signal Srefreq including the observed information Iob from the user to the service management server 22.
 サービスサーバ22の処理に移る。ステップS111において、サービスサーバ22は、周辺端末28が受け付けた被観測情報Iobに基づいて、経路制限条件CNrtlが成立したか否かを判定する。経路制限条件CNrtlは、ドローン26の予定経路RTpについて新たな制限を課すか否かを判定する条件である。経路制限条件CNrtlとしては、例えば、否定的被観測情報Iobnegの受信回数Nrが回数閾値THnr以上になったことを用いることができる。或いは、否定的被観測情報Iobnegの送信人数Nsが人数閾値THns以上になったことを用いてもよい。受信回数Nr又は送信人数Nsを用いる場合、否定的な評価の程度に応じた重み付けを行ってもよい。 Move on to processing of the service server 22. In step S111, the service server 22 determines whether or not the route restriction condition CNrtl is satisfied based on the observed information Iob received by the peripheral terminal 28. The route restriction condition CNrtl is a condition for determining whether or not a new restriction is imposed on the planned route RTp of the drone 26. As the route restriction condition CNrtl, for example, the fact that the reception frequency Nr of the negative observed information Iobneg is equal to or greater than the frequency threshold value THnr can be used. Alternatively, it may be used that the number Ns of transmissions of the negative observation information Iobneg is equal to or greater than the number threshold THns. When the number of receptions Nr or the number Ns of transmissions is used, weighting according to the degree of negative evaluation may be performed.
 経路制限条件CNrtlが成立した場合(S111:TRUE)、ステップS112に進む。経路制限条件CNrtlが成立しない場合(S111:FALSE)、今回の被観測情報Iobの取得に伴う処理を終了する。ステップS112において、サービスサーバ22は、被観測場所Lobに新たな飛行制限領域Rlimを設定する。 When the route restriction condition CNrtl is satisfied (S111: TRUE), the process proceeds to step S112. If the route restriction condition CNrtl is not satisfied (S111: FALSE), the process associated with the acquisition of the current observed information Iob is terminated. In step S112, the service server 22 sets a new flight restriction area Rlim in the observed location Lob.
 ステップS113において、サービスサーバ22は、予定経路RTpの変更が必要なドローン26があるか否かを判定する。ステップS113において対象となるドローン26は、被観測情報Iobに対応するドローン26(対象ドローン26tar)のみではなく、被観測情報Iobの取得地点に接近し得る他のドローン26(以下「他のドローン26otr」ともいう。)も含まれる。例えば、対象ドローン26tar又は他のドローン26otrの予定経路RTp上に、新たな飛行制限領域Rlimが存在する場合、予定経路RTpの変更が必要であると判定する。 In step S113, the service server 22 determines whether or not there is a drone 26 that needs to change the planned route RTp. In step S113, the target drone 26 is not limited to the drone 26 (target drone 26tar) corresponding to the observed information Iob, but may be another drone 26 that can approach the acquisition point of the observed information Iob (hereinafter “other drone 26otr”). Is also included.). For example, if a new flight restriction region Rlim exists on the planned route RTp of the target drone 26tar or another drone 26otr, it is determined that the planned route RTp needs to be changed.
 予定経路RTpの変更が必要なドローン26が存在する場合(S113:TRUE)、ステップS114において、予定経路RTpの変更が必要なドローン26について、新たな予定経路RTp(又は修正経路)を算出する。予定経路RTpの変更が必要なドローン26が存在しない場合(S113:FALSE)、今回の被観測情報Iobの取得に伴う処理を終了する。 If there is a drone 26 that requires a change in the planned route RTp (S113: TRUE), a new planned route RTp (or a corrected route) is calculated for the drone 26 that requires a change in the planned route RTp in step S114. When there is no drone 26 that needs to change the planned route RTp (S113: FALSE), the process associated with the acquisition of the observed information Iob this time is terminated.
 図4のステップS115、S116、S117、S121、S122、S123は、図2のステップS22、S23、S24、S31、S32、S33と同様である。ステップS117において交通管理サーバ24から受信した結果が許可を示す場合(S117:TRUE)、ステップS118に進む。 4 are the same as steps S22, S23, S24, S31, S32, and S33 of FIG. 2. Steps S115, S116, S117, S121, S122, and S123 of FIG. When the result received from the traffic management server 24 in step S117 indicates permission (S117: TRUE), the process proceeds to step S118.
 ステップS118において、サービスサーバ22は、新たな予定経路RTpに対応するドローン26(対象ドローン26tar又は他のドローン26otr)に対して経路変更指令を送信する。経路変更指令には、新たな予定経路RTpの情報が含まれる。ステップS130において、経路変更指令を受信したドローン26(対象ドローン26tar又は他のドローン26otr)は、現在の予定経路RTpを、経路変更指令に含まれる新たな予定経路RTpに変更する。 In step S118, the service server 22 transmits a route change command to the drone 26 (target drone 26tar or other drone 26otr) corresponding to the new planned route RTp. The route change command includes information on a new planned route RTp. In step S130, the drone 26 (target drone 26tar or other drone 26otr) that has received the route change command changes the current planned route RTp to a new planned route RTp included in the route change command.
(A-2-2-2.サービス管理サーバ22による被観測情報反映制御)
 図5は、本実施形態の被観測情報反映制御(以下「反映制御」ともいう。)のフローチャートである。上記のように、反映制御は、周辺端末28を介してユーザから送信された被観測情報Iobによってドローン26の移動計画又は動作状態を変更する制御であり、サービスサーバ22の演算部64が実行する。
(A-2-2-2. Observed information reflection control by the service management server 22)
FIG. 5 is a flowchart of observed information reflection control (hereinafter also referred to as “reflection control”) of the present embodiment. As described above, the reflection control is control for changing the movement plan or operation state of the drone 26 based on the observed information Iob transmitted from the user via the peripheral terminal 28, and is executed by the calculation unit 64 of the service server 22. .
 図5のステップS151において、サービスサーバ22は、周辺端末28からの要求に応じて、周辺端末28に被観測情報入力画面を表示させる。換言すると、サービスサーバ22は、周辺端末28からの要求に応じて、被観測情報入力画面のデータを周辺端末28に送信する。被観測情報入力画面のデータを受信した周辺端末28は、表示部168に被観測情報入力画面を表示させる。 In step S151 of FIG. 5, the service server 22 displays an observed information input screen on the peripheral terminal 28 in response to a request from the peripheral terminal 28. In other words, the service server 22 transmits data of the observed information input screen to the peripheral terminal 28 in response to a request from the peripheral terminal 28. The peripheral terminal 28 that has received the observed information input screen data causes the display unit 168 to display the observed information input screen.
 ステップS152において、サービスサーバ22は、周辺端末28から被観測情報Iobを受信したか否かを判定する。被観測情報Iobの受信があった場合(S152:TRUE)、ステップS153に進む。被観測情報Iobの受信がない場合(S152:FALSE)、ステップS151に戻る。 In step S152, the service server 22 determines whether or not the observed information Iob is received from the peripheral terminal 28. When the observed information Iob is received (S152: TRUE), the process proceeds to step S153. If the observed information Iob is not received (S152: FALSE), the process returns to step S151.
 ステップS153において、サービスサーバ22は、被観測情報Iob(特に、被観測場所Lob、被観測時刻Tob及びドローン26の特徴)に基づいて対象ドローン26tarを特定する。特定された対象ドローン26tarの識別IDは、被観測情報Iobに含められる。ステップS154において、サービスサーバ22は、被観測情報Iob(対象ドローン26tarの識別IDを含む。)を被観測情報DB110に登録する。 In step S153, the service server 22 identifies the target drone 26tar based on the observed information Iob (particularly, the observed location Lob, the observed time Tob, and the characteristics of the drone 26). The identification ID of the identified target drone 26tar is included in the observed information Iob. In step S154, the service server 22 registers the observed information Iob (including the identification ID of the target drone 26tar) in the observed information DB 110.
 ステップS155において、サービスサーバ22は、経路制限条件CNrtlが成立したか否かを被観測情報Iobに基づいて判定する。上記のように、経路制限条件CNrtlは、ドローン26の予定経路RTpについて新たな制限を課すか否かを判定する条件である。経路制限条件CNrtlとしては、例えば、否定的被観測情報Iobnegの受信回数Nr又は送信人数Nsを用いることができる。経路制限条件CNrtlが成立した場合(S155:TRUE)、ステップS156に進む。経路制限条件CNrtlが成立しない場合(S155:FALSE)、今回の反映制御を終了する。 In step S155, the service server 22 determines whether or not the route restriction condition CNrtl is satisfied based on the observed information Iob. As described above, the route restriction condition CNrtl is a condition for determining whether or not a new restriction is imposed on the planned route RTp of the drone 26. As the route restriction condition CNrtl, for example, the number of receptions Nr or the number Ns of transmissions of the negative observed information Iobneg can be used. When the route restriction condition CNrtl is satisfied (S155: TRUE), the process proceeds to step S156. When the route restriction condition CNrtl is not satisfied (S155: FALSE), the current reflection control is terminated.
 ステップS156において、サービスサーバ22は、新たな飛行制限領域Rlimを第1地図DB106に登録する。新たな飛行制限領域Rlimは、被観測場所Lobに基づいて設定する。 In step S156, the service server 22 registers a new flight restriction area Rlim in the first map DB 106. The new flight restriction region Rlim is set based on the observed location Lob.
 ステップS157において、サービスサーバ22は、新たな飛行制限領域Rlimにより、予定経路RTpの変更が必要なドローン26(対象ドローン26tar又は他のドローン26otr)があるか否かを判定する。換言すると、新たな飛行制限領域Rlimを通過する予定経路RTpが存在するか否かを判定する。予定経路RTpの変更が必要なドローン26がある場合(S157:TRUE)、ステップS158に進む。予定経路RTpの変更が必要なドローン26がない場合(S157:FALSE)、今回の反映制御を終了する。 In step S157, the service server 22 determines whether there is a drone 26 (target drone 26tar or other drone 26otr) that needs to be changed in the planned route RTp by the new flight restriction region Rlim. In other words, it is determined whether or not there is a planned route RTp that passes through the new flight restriction region Rlim. When there is a drone 26 that needs to change the planned route RTp (S157: TRUE), the process proceeds to step S158. If there is no drone 26 that needs to change the planned route RTp (S157: FALSE), the current reflection control is terminated.
 ステップS158において、予定経路RTpの変更が必要なドローン26について、新たな予定経路RTp(又は修正経路)を算出する。ここで算出される新たな予定経路RTpは、例えば、新たな飛行制限領域Rlimを迂回する最短経路とすることができる。 In step S158, a new planned route RTp (or modified route) is calculated for the drone 26 that needs to change the planned route RTp. The new scheduled route RTp calculated here can be, for example, the shortest route that bypasses the new flight restriction region Rlim.
 ステップS159、S160、S161、S162は、図4のステップS115、S116、S117、S118で説明したように、図2のステップS22、S23、S24、S25と同様に行う。すなわち、ステップS159において、サービスサーバ22は、予定経路RTpについて交通サーバ24の許可が必要であるか否か(換言すると、交通サーバ24の許可が必要な部分が予定経路RTpに含まれているか否か)を、第1地図情報Imap1に基づいて判定する。 Steps S159, S160, S161, and S162 are performed in the same manner as steps S22, S23, S24, and S25 in FIG. 2, as described in steps S115, S116, S117, and S118 in FIG. That is, in step S159, the service server 22 determines whether or not the traffic route 24 needs to be permitted for the planned route RTp (in other words, whether the planned route RTp includes a portion that requires the traffic server 24). Is determined based on the first map information Imap1.
 交通サーバ24の許可が必要である場合(S159:TRUE)、ステップS160において、予定経路RTpについての許可申請を、交通管理サーバ24に対して送信する。 When permission of the traffic server 24 is necessary (S159: TRUE), a permission application for the planned route RTp is transmitted to the traffic management server 24 in step S160.
 許可申請の送信後、ステップS161において、サービスサーバ22は、交通管理サーバ24からの結果通知を受信したか否かを監視する。交通管理サーバ24から受信した結果が許可を示す場合(S161:TRUE)、ステップS162に進む。交通管理サーバ24から受信した結果が不許可を示す場合(S161:FALSE)、ステップS158に戻る。 After transmitting the permission application, in step S161, the service server 22 monitors whether or not the result notification from the traffic management server 24 has been received. When the result received from the traffic management server 24 indicates permission (S161: TRUE), the process proceeds to step S162. If the result received from the traffic management server 24 indicates disapproval (S161: FALSE), the process returns to step S158.
 ステップS162において、サービスサーバ22は、新たな予定経路RTpに対応するドローン26(対象ドローン26tar又は他のドローン26otr)に対して経路変更指令を送信する。経路変更指令には、新たな予定経路RTpの情報が含まれる。ステップS163において、サービスサーバ22は、経路変更するドローン26に対応する顧客の顧客端末20に対して、経路変更が行われた旨を通知する。 In step S162, the service server 22 transmits a route change command to the drone 26 (target drone 26tar or other drone 26otr) corresponding to the new planned route RTp. The route change command includes information on a new planned route RTp. In step S163, the service server 22 notifies the customer terminal 20 of the customer corresponding to the drone 26 whose route is changed that the route has been changed.
<A-3.本実施形態の効果>
 本実施形態によれば、対象ドローン26tar(第1自律移動体)の周辺から観測した対象ドローン26tarの被観測情報Iob(周辺にとっての観測情報)によって対象ドローン26tar又は他のドローン26otr(被観測情報Iobの取得地点に接近し得る第2自律移動体)の移動計画又は動作状態を変更する(図2のS21、図3のS75、図4のS114、図5のS158)。これにより、対象ドローン26tarがその周辺に与えた影響を、その後の移動計画又は動作状態に反映することが可能となる。従って、対象ドローン26tar又は他のドローン26otrの移動をより好適に管理することが可能となる。
<A-3. Effects of this embodiment>
According to the present embodiment, the target drone 26tar or other drone 26otr (observed information) according to the observed information Iob (observation information for the periphery) of the target drone 26tar observed from the periphery of the target drone 26tar (first autonomous mobile body). The movement plan or operation state of the second autonomous mobile body that can approach the Iob acquisition point is changed (S21 in FIG. 2, S75 in FIG. 3, S114 in FIG. 4, S158 in FIG. 5). Thereby, it becomes possible to reflect the influence which the object drone 26tar gave to the circumference | surroundings in a subsequent movement plan or operation | movement state. Accordingly, it is possible to more suitably manage the movement of the target drone 26tar or the other drone 26otr.
 本実施形態において、被観測情報Iobは、対象ドローン26tar(第1自律移動体)の騒音状態を含む(図4のS101、図5のS152)。これにより、対象ドローン26tarが周囲に与える騒音状態を考慮して、対象ドローン26tar又は他のドローン26otr(第2自律移動体)のその後の移動計画又は動作状態を変化させることが可能となる。 In the present embodiment, the observed information Iob includes the noise state of the target drone 26tar (first autonomous mobile body) (S101 in FIG. 4 and S152 in FIG. 5). Accordingly, it is possible to change the subsequent movement plan or operation state of the target drone 26tar or another drone 26otr (second autonomous mobile body) in consideration of the noise state given to the surroundings by the target drone 26tar.
 本実施形態において、被観測情報Iobは、対象ドローン26tar(第1自律移動体)の移動に伴って周囲の人(周辺端末28のユーザ)が受けた不快感を、周囲の人が周辺端末28に入力した情報を含む(図4のS101、図5のS152)。これにより、対象ドローン26tarの移動が周囲の人に不快感を与える状況を避けるように又は軽減するように、対象ドローン26tar又は他のドローン26otr(第2自律移動体)のその後の移動計画又は動作状態を変化させることが可能となる。 In the present embodiment, the observed information Iob indicates that the surrounding person (the user of the peripheral terminal 28) feels uncomfortable feelings as the target drone 26tar (first autonomous mobile body) moves. (S101 in FIG. 4 and S152 in FIG. 5). Accordingly, the subsequent movement plan or operation of the target drone 26tar or other drone 26otr (second autonomous mobile body) is performed so as to avoid or reduce the situation in which the movement of the target drone 26tar causes discomfort to surrounding people. It becomes possible to change the state.
 本実施形態において、サービスサーバ22(移動管理部30)は、被観測情報DB110と、経路算出部92を含む(図1)。被観測情報DB110は、否定的な評価を含む被観測情報Iobである否定的被観測情報Iobnegを、否定的な評価を発生させた対象ドローン26tar(第1自律移動体)の地点又は領域である被観測場所Lobと共に蓄積する。経路算出部92は、被観測場所Lobを避けるように、対象ドローン26tar又は他のドローン26otr(第2自律移動体)の新たな予定経路RTpを算出する(図2のS21、図3のS75、図4のS114、図5のS158)。これにより、対象ドローン26tar又は他のドローン26otrの新たな移動により、新たな否定的な評価が生じることを軽減又は回避することが可能となる。 In this embodiment, the service server 22 (movement management unit 30) includes an observed information DB 110 and a route calculation unit 92 (FIG. 1). The observed information DB 110 is a point or a region of the target drone 26tar (first autonomous mobile body) that has generated the negative evaluation of the negative observed information Iobneg, which is the observed information Iob including the negative evaluation. It accumulates with the observed location Lob. The route calculation unit 92 calculates a new planned route RTp of the target drone 26tar or another drone 26otr (second autonomous mobile body) so as to avoid the observed location Lob (S21 in FIG. 2, S75 in FIG. 3, S114 in FIG. 4 and S158 in FIG. 5). Thereby, it becomes possible to reduce or avoid the occurrence of a new negative evaluation due to a new movement of the target drone 26tar or another drone 26otr.
 本実施形態において、サービスサーバ22(移動管理部30)は、被観測情報Iobに基づいて、対象ドローン26tar(第1自律移動体)又は他のドローン26otr(第2自律移動体)の移動を制限する場所又は領域である移動制限場所Lmlを設定する移動制限部90を有する(図1)。これにより、毎回、被観測情報Iob自体を考慮して対象ドローン26tar又は他のドローン26otrの予定経路RTpを算出する場合と比較して、移動制限場所Lmlを用いることでサービスサーバ22の演算負荷を軽減することが可能となる。 In this embodiment, the service server 22 (movement management unit 30) restricts movement of the target drone 26tar (first autonomous mobile body) or another drone 26otr (second autonomous mobile body) based on the observed information Iob. There is a movement restriction unit 90 for setting a movement restriction place Lml, which is a place or area to perform (FIG. 1). Thereby, the calculation load of the service server 22 can be reduced by using the movement restriction place Lml as compared with the case where the planned route RTp of the target drone 26tar or another drone 26otr is calculated in consideration of the observed information Iob itself each time. It becomes possible to reduce.
B.変形例
 なお、本発明は、上記実施形態に限らず、本明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
B. Modifications It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be adopted based on the description of the present specification. For example, the following configuration can be adopted.
<B-1.移動体>
 上記実施形態のドローン26は、配送用であった(図1及び図2)。しかしながら、例えば、被観測情報Iobによって対象ドローン26tar又は他のドローン26otrの移動計画又は動作状態を変更する観点からすれば、これに限らない。例えば、ドローン26は、人の運送、緊急用途、撮影、広告、セキュリティ監視、測量、エンターテインメント、個人趣味等の用途で用いることも可能である。
<B-1. Mobile>
The drone 26 of the above embodiment was for delivery (FIGS. 1 and 2). However, for example, from the viewpoint of changing the movement plan or operation state of the target drone 26tar or the other drone 26otr according to the observed information Iob, the present invention is not limited to this. For example, the drone 26 can be used for applications such as transportation of people, emergency use, photography, advertisement, security monitoring, surveying, entertainment, personal hobbies, and the like.
 上記実施形態では、ドローン26に本発明を適用した(図1及び図2)。しかしながら、例えば、被観測情報Iobによって自律移動体の移動計画又は動作状態を変更する観点からすれば、別種類の飛行体又は自律移動体に本発明を適用してもよい。例えば、自動運転車、ヘリコプタ又は船舶に本発明を適用することも可能である。 In the above embodiment, the present invention is applied to the drone 26 (FIGS. 1 and 2). However, for example, from the viewpoint of changing the movement plan or operation state of the autonomous mobile body according to the observed information Iob, the present invention may be applied to another type of flying body or autonomous mobile body. For example, the present invention can be applied to an autonomous vehicle, a helicopter, or a ship.
<B-2.移動管理部30>
 上記実施形態の移動管理部30は、サービスサーバ22及び交通管理サーバ24を含んだ(図1)。しかしながら、例えば、複数のドローン26(又は自律移動体)の移動を管理する観点からすれば、これに限らない。例えば、サービスサーバ22のみから移動管理部30を構成してもよい。或いは、サービスサーバ22及び交通管理サーバ24に加えて、所定区域毎に複数配置されて、ドローン26の飛行を管理するローカル管制サーバを設けることも可能である。そして、サービスサーバ22からドローン26に対する配送指令は、ローカル管制サーバを介して送信されてもよい。
<B-2. Mobility Management Unit 30>
The mobility management unit 30 of the above embodiment includes a service server 22 and a traffic management server 24 (FIG. 1). However, for example, from the viewpoint of managing the movement of a plurality of drones 26 (or autonomous mobile bodies), the present invention is not limited to this. For example, the movement management unit 30 may be configured only from the service server 22. Alternatively, in addition to the service server 22 and the traffic management server 24, a plurality of local control servers arranged for each predetermined area and managing the flight of the drone 26 can be provided. And the delivery instruction | command with respect to the drone 26 from the service server 22 may be transmitted via a local control server.
 上記実施形態のサービスサーバ22は、商品Gの配送を管理した(図1及び図2)。しかしながら、例えば、被観測情報Iobによって対象ドローン26tar又は他のドローン26otrの移動計画又は動作状態を変更する観点からすれば、これに限らない。例えば、サービスサーバ22は、人の運送、緊急用途、撮影、広告、セキュリティ監視、測量、エンターテインメント、個人趣味等の用途を管理するものであってもよい。 The service server 22 of the above embodiment managed the delivery of the product G (FIGS. 1 and 2). However, for example, from the viewpoint of changing the movement plan or operation state of the target drone 26tar or the other drone 26otr according to the observed information Iob, the present invention is not limited to this. For example, the service server 22 may manage uses such as transportation of people, emergency use, shooting, advertisement, security monitoring, surveying, entertainment, personal hobbies, and the like.
<B-3.被観測情報Iobの反映>
 上記実施形態では、被観測情報Iobに基づいて新たな飛行制限領域Rlimを設定し(図4のS112、図5のS156)、これにより、対象ドローン26tar又は他のドローン26otrの予定経路RTpを変更した(図4のS114、図5のS158)。しかしながら、例えば、被観測情報Iobによって対象ドローン26tar又は他のドローン26otrの移動計画又は動作状態を変更する観点からすれば、これに限らない。
<B-3. Reflection of observed information Iob>
In the above embodiment, a new flight restriction region Rlim is set based on the observed information Iob (S112 in FIG. 4 and S156 in FIG. 5), thereby changing the planned route RTp of the target drone 26tar or other drone 26otr. (S114 in FIG. 4 and S158 in FIG. 5). However, for example, from the viewpoint of changing the movement plan or operation state of the target drone 26tar or the other drone 26otr according to the observed information Iob, the present invention is not limited to this.
 例えば、新たな飛行制限領域Rlimの設定に加えて又はこれに代えて、対象ドローン26tar又は他のドローン26otrの動作状態を変更することが可能である。変更する動作状態としては、例えば、対象ドローン26tar又は他のドローン26otrの飛行速度Vd又は高度Hを用いることができる。すなわち、否定的被観測情報Iobnegとして、騒音状態が指摘されている場合、飛行速度Vdを下げることで又は高度Hを上げることが、取り得る対応の1つとなる。 For example, in addition to or instead of setting a new flight restriction region Rlim, it is possible to change the operating state of the target drone 26tar or another drone 26otr. As the operating state to be changed, for example, the flight speed Vd or altitude H of the target drone 26tar or another drone 26otr can be used. That is, when the noise state is pointed out as the negative observed information Iobneg, decreasing the flight speed Vd or increasing the altitude H is one of the possible responses.
 上記実施形態では、周辺端末28のユーザが被観測情報Iobを周辺端末28(被観測情報取得部)に入力した(図4のS101)。しかしながら、例えば、対象ドローン26tar(又は第1自律移動体)の周辺から対象ドローン26tarを観測した対象ドローン26tarの被観測情報Iobを取得する観点からすれば、これに限らない。例えば、対象ドローン26tarの予定経路RTpの周辺に対象ドローン26tarを観測する観測センサを設けておき、当該観測センサの出力を被観測情報Iobとして自動的にサービスサーバ22に送信してもよい。観測センサとしては、例えば、マイクロフォン又は振動センサを用いることができる。 In the above embodiment, the user of the peripheral terminal 28 inputs the observed information Iob to the peripheral terminal 28 (observed information acquisition unit) (S101 in FIG. 4). However, for example, from the viewpoint of obtaining the observed information Iob of the target drone 26tar obtained by observing the target drone 26tar from the periphery of the target drone 26tar (or the first autonomous mobile body), the present invention is not limited to this. For example, an observation sensor that observes the target drone 26tar may be provided around the planned route RTp of the target drone 26tar, and the output of the observation sensor may be automatically transmitted to the service server 22 as the observed information Iob. As the observation sensor, for example, a microphone or a vibration sensor can be used.
 上記実施形態では、被観測情報反映制御の実行主体は、サービスサーバ22であった(図5)。しかしながら、例えば、被観測情報Iobによって対象ドローン26tar又は他のドローン26otrの移動計画又は動作状態を変更する観点からすれば、これに限らない。例えば、サービスサーバ22の代わりに交通サーバ24又は前記ローカル管制サーバが実行主体となってもよい。或いは、対象ドローン26tarが被観測情報反映制御を実行してもよい。 In the above embodiment, the execution subject of the observed information reflection control is the service server 22 (FIG. 5). However, for example, from the viewpoint of changing the movement plan or operation state of the target drone 26tar or the other drone 26otr according to the observed information Iob, the present invention is not limited to this. For example, the traffic server 24 or the local control server may be the execution subject instead of the service server 22. Alternatively, the target drone 26tar may execute the observation information reflection control.
 上記実施形態では、被観測情報Iobに基づいて移動計画又は動作状態を変更する対象を対象ドローン26tar(第1自律移動体)及び他のドローン26otr(第2自律移動体)とした(図5のS157)。しかしながら、例えば、被観測情報Iobによって対象ドローン26tar又は他のドローン26otrの移動計画又は動作状態を変更する観点からすれば、これに限らない。例えば、被観測情報Iobに基づいて移動計画又は動作状態を変更する対象は、対象ドローン26tar(第1自律移動体)又は他のドローン26otr(第2自律移動体)のいずれか一方としてもよい。 In the above embodiment, the target drone 26tar (first autonomous mobile body) and the other drone 26otr (second autonomous mobile body) are set as targets whose movement plan or operation state is changed based on the observed information Iob (FIG. 5). S157). However, for example, from the viewpoint of changing the movement plan or operation state of the target drone 26tar or the other drone 26otr according to the observed information Iob, the present invention is not limited to this. For example, the target whose movement plan or operation state is changed based on the observed information Iob may be either the target drone 26tar (first autonomous mobile body) or another drone 26otr (second autonomous mobile body).
 上記実施形態では、被観測情報Iobは、対象ドローン26tar(第1自律移動体)の騒音状態と、対象ドローン26tarの移動に伴って周囲が受ける不快感に関する情報とを含んだ(図4のS101、図5のS152)。しかしながら、例えば、被観測情報Iobによって対象ドローン26tar又は他のドローン26otrの移動計画又は動作状態を変更する観点からすれば、これに限らない。例えば、被観測情報Iobは、対象ドローン26tarの騒音状態、又は対象ドローン26tarの移動に伴って周囲が受ける不快感に関する情報のいずれか一方のみを含んでもよい。或いは、その他の情報を被観測情報Iobに含めてもよい。 In the above embodiment, the observed information Iob includes the noise state of the target drone 26tar (first autonomous mobile body) and information related to discomfort experienced by the surroundings as the target drone 26tar moves (S101 in FIG. 4). , S152 in FIG. However, for example, from the viewpoint of changing the movement plan or operation state of the target drone 26tar or the other drone 26otr according to the observed information Iob, the present invention is not limited to this. For example, the observed information Iob may include only one of the noise state of the target drone 26tar or information related to the discomfort experienced by the surroundings as the target drone 26tar moves. Alternatively, other information may be included in the observed information Iob.
 上記実施形態の被観測情報反映制御では、新たに設定する飛行制限領域Rlimは、固定領域を想定していた(図5のS156)。しかしながら、例えば、被観測情報Iobによって対象ドローン26tar又は他のドローン26otrの移動計画又は動作状態を変更する観点からすれば、これに限らない。例えば、固定領域としての新たな飛行制限領域Rlimに加えて又はこれに代えて、被観測情報Iobが入力された周辺端末28に対応付けて新たな飛行制限領域Rlimを設定することも可能である。 In the observed information reflection control of the above embodiment, the newly set flight restriction area Rlim is assumed to be a fixed area (S156 in FIG. 5). However, for example, from the viewpoint of changing the movement plan or operation state of the target drone 26tar or the other drone 26otr according to the observed information Iob, the present invention is not limited to this. For example, in addition to or instead of the new flight restriction area Rlim as the fixed area, it is also possible to set a new flight restriction area Rlim in association with the peripheral terminal 28 to which the observed information Iob is input. .
 すなわち、スマートフォン等の携帯端末としての周辺端末28は、ユーザと共に移動する。そのため、ユーザに応じて飛行制限領域Rlimを設定する観点からすれば、新たな飛行制限領域Rlimを固定領域として設定するよりも、ユーザ(又は周辺端末28)の位置に伴って新たな飛行制限領域Rlimの位置を変化させることが好ましい。そこで、被観測情報Iobに基づく新たな飛行制限領域Rlimは、周辺端末28の位置に応じて変化させてもよい。 That is, the peripheral terminal 28 as a mobile terminal such as a smartphone moves with the user. Therefore, from the viewpoint of setting the flight restriction region Rlim according to the user, the new flight restriction region is set according to the position of the user (or the peripheral terminal 28) rather than setting the new flight restriction region Rlim as a fixed region. It is preferable to change the position of Rlim. Therefore, the new flight restriction region Rlim based on the observed information Iob may be changed according to the position of the peripheral terminal 28.
<B-4.その他>
 上記実施形態では、図2~図5に示すフローを用いた。しかしながら、例えば、本発明の効果を得られる場合、フローの内容(各ステップの順番)は、これに限らない。例えば、図5のステップS162とS163の順番を入れ替えることが可能である。
<B-4. Other>
In the above embodiment, the flow shown in FIGS. 2 to 5 is used. However, for example, when the effect of the present invention can be obtained, the content of the flow (the order of each step) is not limited to this. For example, the order of steps S162 and S163 in FIG. 5 can be switched.
10…管理システム
22…サービス管理サーバ(管理サーバ)
26otr…他のドローン(第2自律移動体)
26tar…対象ドローン(第1自律移動体)
28…周辺端末(被観測情報取得部) 30…移動管理部
62…通信部(通信装置)      80…動的計画変更部
90…移動制限部          92…経路算出部
110…被観測情報DB
154…ドローン制御装置(自律制御部)
Iob…被観測情報         Iobneg…否定的被観測情報
Lml…移動制限場所        Lob…被観測場所
Pst…出発地           Ptar…目的地
RTp…予定経路
10 ... management system 22 ... service management server (management server)
26 trr ... Other drones (second autonomous mobile body)
26 tar ... Target drone (first autonomous mobile body)
28 ... Peripheral terminal (observed information acquisition unit) 30 ... Movement management unit 62 ... Communication unit (communication device) 80 ... Dynamic plan change unit 90 ... Movement restriction unit 92 ... Route calculation unit 110 ... Observed information DB
154 ... Drone control device (autonomous control unit)
Iob: Observed information Iobneg: Negative observed information Lml ... Movement restriction place Lob: Observed place Pst ... Departure point Ptar ... Destination RTp ... Planned route

Claims (7)

  1.  出発地から目的地まで移動するための自律制御部を備えた第1自律移動体と、
     通信装置を介して前記第1自律移動体と通信し、前記第1自律移動体を含む複数の移動体の移動を管理する移動管理部と
     を備える管理システムであって、
     さらに、前記管理システムは、
      前記第1自律移動体の周辺から前記第1自律移動体を観測した前記第1自律移動体の被観測情報を取得する被観測情報取得部と、
      前記被観測情報取得部が取得した前記被観測情報に基づいて、前記第1自律移動体又は前記被観測情報の取得地点に接近し得る第2自律移動体の移動計画又は動作状態を変更する動的計画変更部と
     を備える
     ことを特徴とする管理システム。
    A first autonomous mobile body having an autonomous control unit for moving from the departure place to the destination;
    A management system comprising: a movement management unit that communicates with the first autonomous mobile body via a communication device and manages movement of a plurality of mobile bodies including the first autonomous mobile body,
    Furthermore, the management system includes:
    An observed information acquisition unit for acquiring observed information of the first autonomous mobile body that has observed the first autonomous mobile body from the periphery of the first autonomous mobile body;
    Based on the observed information acquired by the observed information acquisition unit, the movement to change the movement plan or operation state of the first autonomous moving object or the second autonomous moving object that can approach the acquisition point of the observed information A management system characterized by comprising a plan change section.
  2.  請求項1に記載の管理システムにおいて、
     前記被観測情報は、前記第1自律移動体の騒音状態を含む
     ことを特徴とする管理システム。
    The management system according to claim 1,
    The observed system information includes a noise state of the first autonomous mobile body.
  3.  請求項1又は2に記載の管理システムにおいて、
     前記被観測情報は、前記第1自律移動体の移動に伴って周囲の人が受けた不快感を、前記周囲の人が前記被観測情報取得部に入力した情報を含む
     ことを特徴とする管理システム。
    In the management system according to claim 1 or 2,
    The observed information includes discomfort experienced by surrounding people as the first autonomous mobile body moves, and includes information input by the surrounding people to the observed information acquisition unit. system.
  4.  請求項1~3のいずれか1項に記載の管理システムにおいて、
     前記移動管理部は、
      否定的な評価を含む前記被観測情報である否定的被観測情報を、前記否定的な評価が観測された前記第1自律移動体の被観測場所と共に蓄積する被観測情報データベースと、
      前記被観測場所を避けるように、前記第1自律移動体又は前記第2自律移動体の新たな予定経路を算出する経路算出部と
     を備えることを特徴とする管理システム。
    The management system according to any one of claims 1 to 3,
    The mobility management unit
    An observed information database for accumulating negative observed information, which is the observed information including negative evaluation, together with an observed location of the first autonomous mobile body in which the negative evaluation is observed;
    A management system comprising: a route calculation unit that calculates a new planned route of the first autonomous mobile body or the second autonomous mobile body so as to avoid the observed location.
  5.  請求項1~4のいずれか1項に記載の管理システムにおいて、
     前記移動管理部は、前記被観測情報に基づいて、前記第1自律移動体又は前記第2自律移動体の移動を制限する場所又は領域である移動制限場所を設定する移動制限部を有する
     ことを特徴とする管理システム。
    The management system according to any one of claims 1 to 4,
    The movement management unit includes a movement restriction unit that sets a movement restriction place that is a place or a region that restricts movement of the first autonomous mobile body or the second autonomous mobile body based on the observed information. Management system featuring.
  6.  出発地から目的地まで移動するための自律制御部を備えた第1自律移動体と、
     通信装置を介して前記第1自律移動体と通信し、前記第1自律移動体を含む複数の移動体の移動を管理する移動管理部と
     を備える管理システムの制御方法であって、
     前記第1自律移動体の周辺から前記第1自律移動体を観測した前記第1自律移動体の被観測情報を被観測情報取得部で取得するステップと、
     前記被観測情報取得部が取得した前記被観測情報に基づいて、前記第1自律移動体又は前記被観測情報の取得地点に接近し得る第2自律移動体の移動計画又は動作状態を動的計画変更部で変更するステップと
     を有することを特徴とする管理システムの制御方法。
    A first autonomous mobile body having an autonomous control unit for moving from the departure place to the destination;
    A control method for a management system comprising: a movement management unit that communicates with the first autonomous mobile body via a communication device and manages movement of a plurality of mobile bodies including the first autonomous mobile body,
    Acquiring observed information of the first autonomous moving body, which has observed the first autonomous moving body from the periphery of the first autonomous moving body, in an observed information acquiring unit;
    Based on the observed information acquired by the observed information acquisition unit, a dynamic plan of the movement plan or operation state of the first autonomous moving object or the second autonomous moving object that can approach the acquisition point of the observed information And a step of changing by the changing unit.
  7.  出発地から目的地まで移動するための自律制御部を備えた第1自律移動体と通信し、前記第1自律移動体を含む複数の移動体の移動を管理する管理サーバであって、
     前記管理サーバは、前記第1自律移動体の周辺から前記第1自律移動体を観測した前記第1自律移動体の被観測情報を被観測情報取得部から取得し、前記被観測情報に基づいて、前記第1自律移動体又は前記被観測情報の取得地点に接近し得る第2自律移動体の移動計画又は動作状態を変更する動的計画変更部を備える
     ことを特徴とする管理サーバ。
    A management server that communicates with a first autonomous mobile body including an autonomous control unit for moving from a departure place to a destination, and manages movement of a plurality of mobile bodies including the first autonomous mobile body,
    The management server acquires observed information of the first autonomous mobile body that has observed the first autonomous mobile body from the periphery of the first autonomous mobile body from an observed information acquisition unit, and based on the observed information A management server comprising: a dynamic plan change unit that changes a movement plan or an operation state of the second autonomous mobile body that can approach the acquisition point of the first autonomous mobile body or the observed information.
PCT/JP2019/011308 2018-03-19 2019-03-19 Mobile body management system, control method for mobile body management system, and management server for mobile body management system WO2019181898A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020507813A JP6859487B2 (en) 2018-03-19 2019-03-19 Mobile management system, its control method, and management server

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018051466 2018-03-19
JP2018-051466 2018-03-19

Publications (1)

Publication Number Publication Date
WO2019181898A1 true WO2019181898A1 (en) 2019-09-26

Family

ID=67986251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011308 WO2019181898A1 (en) 2018-03-19 2019-03-19 Mobile body management system, control method for mobile body management system, and management server for mobile body management system

Country Status (2)

Country Link
JP (1) JP6859487B2 (en)
WO (1) WO2019181898A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308154A (en) * 2007-05-24 2008-12-25 Honeywell Internatl Inc Flight path planning to reduce detection of unmanned aerial vehicle
US9422055B1 (en) * 2015-09-02 2016-08-23 Amazon Technologies, Inc. Unmanned aerial vehicle motor driving randomization for noise abatement
JP2016184288A (en) * 2015-03-26 2016-10-20 富士重工業株式会社 Flight path creation device, flight path creation method, and flight path creation program
US20170076610A1 (en) * 2015-03-31 2017-03-16 SZ DJI Technology Co., Ltd Open platform for flight restricted region
WO2018020607A1 (en) * 2016-07-27 2018-02-01 株式会社オプティム Unmanned aircraft control system, unmanned aircraft control method, and unmanned aircraft control program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308154A (en) * 2007-05-24 2008-12-25 Honeywell Internatl Inc Flight path planning to reduce detection of unmanned aerial vehicle
JP2016184288A (en) * 2015-03-26 2016-10-20 富士重工業株式会社 Flight path creation device, flight path creation method, and flight path creation program
US20170076610A1 (en) * 2015-03-31 2017-03-16 SZ DJI Technology Co., Ltd Open platform for flight restricted region
US9422055B1 (en) * 2015-09-02 2016-08-23 Amazon Technologies, Inc. Unmanned aerial vehicle motor driving randomization for noise abatement
WO2018020607A1 (en) * 2016-07-27 2018-02-01 株式会社オプティム Unmanned aircraft control system, unmanned aircraft control method, and unmanned aircraft control program

Also Published As

Publication number Publication date
JP6859487B2 (en) 2021-04-14
JPWO2019181898A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
US11594139B2 (en) Management system, control method therefor, and management server
US11403589B2 (en) Establishing a location for unmanned delivery/pickup of a parcel
JP7094741B2 (en) Mobile management system, its control method, and management server
US20180281951A1 (en) Alert system for an unmanned aerial vehicle
US20180257228A1 (en) Systems and methods for robotic assistance with retail location monitoring
US20190197643A1 (en) Distribution of Aerial Vehicle Transport Capacity
WO2020136822A1 (en) Airspace management system, airspace management method, and program
US10937324B2 (en) Orchestration in heterogeneous drone swarms
US20210042418A1 (en) Tamper-resistant geo-fence system for drones
JP2018523184A (en) High performance aircraft dynamic cookies
WO2019146580A1 (en) Information processing device and information processing method
US20210018938A1 (en) Computation load distribution
JP7391832B2 (en) Mobile body management system and its control method, management server, and autonomous mobile body
JP2023029358A (en) Automatic control system, automatic control method, and automatic control device
US20240086828A1 (en) Aerial vehicle delivery of items
WO2019181898A1 (en) Mobile body management system, control method for mobile body management system, and management server for mobile body management system
Trujillo et al. Operator informational needs for multiple autonomous small vehicles
US10046858B2 (en) Delivery of payloads using aircraft
WO2020219552A1 (en) Cloud based flight management computation
JP6613015B1 (en) Mobile body management system
US20200086983A1 (en) Smart device for personalized temperature control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771159

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020507813

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771159

Country of ref document: EP

Kind code of ref document: A1