WO2019181736A1 - Ejector - Google Patents

Ejector Download PDF

Info

Publication number
WO2019181736A1
WO2019181736A1 PCT/JP2019/010600 JP2019010600W WO2019181736A1 WO 2019181736 A1 WO2019181736 A1 WO 2019181736A1 JP 2019010600 W JP2019010600 W JP 2019010600W WO 2019181736 A1 WO2019181736 A1 WO 2019181736A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
needle
taper
sectional area
ejector
Prior art date
Application number
PCT/JP2019/010600
Other languages
French (fr)
Japanese (ja)
Inventor
田中 康太
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018160630A external-priority patent/JP6891864B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112019001467.6T priority Critical patent/DE112019001467B4/en
Publication of WO2019181736A1 publication Critical patent/WO2019181736A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • F04F5/20Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/48Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/54Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type

Definitions

  • This disclosure relates to ejectors.
  • the optimum minimum area of the region between the nozzle and the needle in the nozzle and the optimum outlet channel cross-sectional area are determined. Is decided.
  • the ejector is used in a plurality of operating conditions, it is difficult to determine the minimum area of the ejector and the outlet channel cross-sectional area that are optimal for all of the operating conditions.
  • the needle lift amount is large, the cross-sectional area of the outlet channel may become large, resulting in excessive expansion.
  • there is a method of shortening the nozzle there is a method of shortening the nozzle.
  • the nozzle efficiency will deteriorate. This is because, in order to increase the nozzle efficiency, it is generally desirable to gradually increase the flow path cross-sectional area from the root side to the outlet.
  • This disclosure has a first object of suppressing overexpansion of the ejector by a method different from shortening the nozzle.
  • Patent Document 1 discloses an ejector in which a needle has a two-step taper. That is, the needle includes a first taper portion that tapers toward the tip end side, and a second taper portion that tapers further toward the tip end side from the first taper portion. And the taper angle of the 1st taper part and the taper angle of the 2nd taper part are discontinuous in the boundary part of the 1st taper part and the 2nd taper part.
  • the flow passage cross-sectional area of the gap between the nozzle and the needle suddenly expands on the tip side of the boundary portion of the needle.
  • a throat that minimizes the cross-sectional area of the flow path of the gap between the nozzle and the needle is formed on the wall surface on the needle side of the nozzle, and the working fluid boils at this throat.
  • the working fluid boils at the boundary portion separately from the throat portion. If the working fluid boils at a portion other than the intended throat, the energy recovery efficiency of the ejector will be reduced.
  • a second object of the present disclosure is to suppress a decrease in energy recovery efficiency that occurs due to boiling of the working fluid at a portion other than the intended portion in an ejector including a needle having a two-step taper. To do.
  • an ejector is disposed in a nozzle and a fluid flow path inside the nozzle, and moves in an axial direction with respect to the nozzle and tapers toward a tip end side of the ejector.
  • the fluid outside the nozzle is sucked by the entraining action of the working fluid ejected from the tip end side of the ejector in the nozzle through the fluid flow path inside the nozzle, and the needle of the nozzle.
  • the side wall surface has an outlet located at an end of the fluid flow path on the tip side, and a throat portion that is located on the opposite side of the tip from the tip and protrudes toward the needle.
  • the cross-sectional area of the throat channel is the area of the gap between the nozzle and the needle in the cross-section passing through the throat and perpendicular to the axial direction.
  • the area of the gap between the nozzle and the needle in a cross section orthogonal to the axial direction through The throat flow path cross-sectional area is smaller than the outlet flow path cross-sectional area, and out of the area of the gap between the nozzle and the needle in all cross sections orthogonal to the axial direction in the fluid flow path
  • the throat channel cross-sectional area is the smallest and the needle lift amount is in the second range larger than the first range
  • the throat channel cross-sectional area is larger than the outlet channel cross-sectional area
  • the cross-sectional area of the outlet flow path is the smallest. That.
  • the throat channel cross-sectional area is smaller than the outlet channel cross-sectional area.
  • the throat flow path cross-sectional area is minimized. That is, the nozzle and the needle operate as a Laval nozzle.
  • the throat channel cross-sectional area is larger than the outlet channel cross-sectional area.
  • the outlet channel cross-sectional area is minimized. That is, the nozzle and the needle operate as a Laval nozzle.
  • the ejector includes a nozzle and a needle disposed in a fluid flow path inside the nozzle, and the ejector in the nozzle passes through the fluid flow path inside the nozzle.
  • the fluid outside the nozzle is sucked by the entrainment action of the working fluid ejected from the tip end side of the ejector, and the needle tapers toward the tip end side, and the first taper portion A taper of the first taper portion at a boundary between the first taper portion and the second taper portion, and a second taper portion connected to the tip end side and further tapered toward the tip end side.
  • the second taper angle which is the taper angle of the second taper portion at the boundary portion, is larger than the first taper angle, which is a corner, and the nozzle-side wall surface of the nozzle has the nose.
  • the boundary portion is located on the tip side of the throat portion, and the entrainment effect When the is exhibited, the portion of the wall surface closer to the distal end than the throat portion is an ejector having a shape that narrows the region surrounded by the wall surface toward the distal end side.
  • boiling at the boundary portion can be suppressed by narrowing the flow path surrounded by the wall surface of the nozzle toward the front end side from the boundary portion of the nozzle. .
  • the first embodiment will be described below.
  • the ejector according to the present embodiment is used in an ejector cycle for a vehicle air conditioner.
  • 1 is a schematic diagram of an ejector cycle using carbon dioxide as a refrigerant
  • FIG. 2 is a schematic diagram of an ejector 40
  • FIG. 3 is an enlarged view of a nozzle 41.
  • the refrigerant corresponds to the working fluid.
  • a compressor 10 is a well-known variable capacity compressor that obtains power from a traveling engine and sucks and compresses a refrigerant.
  • the discharge capacity of the compressor 10 is the temperature or pressure in an evaporator 30 to be described later. Is controlled to be within a predetermined range.
  • the heat radiator 20 is a high-pressure heat exchanger that cools the refrigerant by exchanging heat between the refrigerant discharged from the compressor 10 and outdoor air.
  • the evaporator 30 is a low-pressure side heat exchanger that cools the air blown into the room by evaporating the liquid by evaporating the liquid phase refrigerant by exchanging heat between the air blown into the room and the liquid phase refrigerant.
  • the refrigerant is carbon dioxide
  • the discharge pressure of the compressor 10 is equal to or higher than the critical pressure of the refrigerant.
  • the refrigerant does not condense in the radiator 20 and its enthalpy is lowered by lowering the temperature.
  • the refrigerant is not carbon dioxide but HFC134a, for example, when the discharge pressure of the compressor 10 is less than the critical pressure, the enthalpy is reduced while the refrigerant is condensed in the radiator 20.
  • the ejector 40 expands the refrigerant under reduced pressure and sucks the gas-phase refrigerant evaporated in the evaporator 30 and converts the expansion energy into pressure energy to increase the suction pressure of the compressor 10, which will be described in detail later. .
  • the gas-liquid separator 50 is a gas-liquid separator that stores the refrigerant by flowing the refrigerant flowing out from the ejector 40 into the vapor-phase refrigerant and the liquid-phase refrigerant.
  • the gas-phase refrigerant outlet of the gas-liquid separator 50 is connected to the suction side of the compressor 10.
  • the liquid-phase refrigerant outlet of the gas-liquid separator 50 is connected to the inflow side on the evaporator 30 side.
  • the throttle 60 is a decompression unit that decompresses the liquid-phase refrigerant that has flowed out of the gas-liquid separator 50.
  • the blower 21 blows cooling air, that is, outside air, to the radiator 20.
  • the blower 31 blows air blown into the evaporator 30 into the room.
  • the ejector 40 is a momentum transport type pump. As shown in FIG. 2, the ejector 40 includes a nozzle 41, a mixing unit 42, a diffuser 43, a needle 44, a housing 45, a block 46, and the like.
  • the nozzle 41 is a plug nozzle that converts the pressure energy of the flowing high-pressure refrigerant into velocity energy and decompresses and expands the refrigerant in an isentropic manner.
  • the mixing unit 42 mixes the refrigerant flow injected from the nozzle 41 and the gas-phase refrigerant while sucking the vapor-phase refrigerant evaporated in the evaporator 30 by the high-speed refrigerant flow injected from the nozzle 41.
  • the diffuser 43 converts the velocity energy into pressure energy and increases the pressure of the refrigerant while mixing the refrigerant injected from the nozzle 41 and the refrigerant sucked from the evaporator 30.
  • the needle 44 is formed in a conical taper shape so that the cross-sectional area decreases toward the tip side of the ejector 40.
  • the cross-sectional area refers to a cross-sectional area when cut by a plane perpendicular to the axis of the needle 44.
  • the nozzle 41 and the needle 44 may be made of metal such as stainless steel.
  • the needle 44 is driven by an actuator (not shown) according to the flow rate of the high-pressure refrigerant flowing into the nozzle 41 and can be displaced in the axial direction of the needle 44.
  • the needle 44 is disposed coaxially with the nozzle 41 in the space inside the nozzle 41.
  • the housing 45 is a cylindrical member that forms the mixing portion 42 and the diffuser 43, and the outlet 45 a of the diffuser 43 is connected to the inlet 76 side of the gas-liquid separator 50.
  • the block 46 is a metal member that houses the nozzle 41 and is provided with a high-pressure refrigerant inlet 46a connected to the radiator 20 side and a low-pressure refrigerant inlet 46b connected to the evaporator 30 side.
  • the housing 45 and the block 46 are joined by welding or brazing.
  • As the material of the housing 45 and the block 46 aluminum, stainless steel, brass or the like can be considered.
  • the needle 44 and the nozzle 41 which are press-fitted and fixed on the same axis are press-fitted and fixed to the block 46, whereby the needle 44 and the nozzle 41 are assembled inside the block 46.
  • a hole for press-fitting the nozzle 41 is closed by a lid 46c.
  • mixing is performed so that the sum of the momentum of the refrigerant flow ejected from the nozzle 41 and the momentum of the refrigerant flow sucked into the ejector 40 from the evaporator 30 is preserved. Increased static pressure.
  • the dynamic pressure of the refrigerant is converted into a static pressure by gradually increasing the cross-sectional area of the flow path. Therefore, in the ejector 40, the refrigerant pressure rises in both the mixing unit 42 and the diffuser 43.
  • the refrigerant pressure increases so that the sum of momentums of the two refrigerant flows is preserved in the mixing unit 42, and the refrigerant pressure increases so that energy is preserved in the diffuser 43.
  • the needle 44 has a body portion 440, a first taper portion 441, and a second taper portion 442.
  • the trunk portion 440, the first taper portion 441, and the second taper portion 442 are integrally and coaxially formed as a whole.
  • the body portion 440 has a substantially cylindrical shape, and is connected to the first taper portion 441 on the distal end side.
  • the first taper portion 441 has a substantially truncated cone shape that is tapered toward the tip side.
  • the first taper angle ⁇ E1 that is the Dapper angle of the first taper portion 441 is constant. Therefore, the first taper angle ⁇ E1 is constant from the end on the body 440 side to the end on the front end side of the first taper portion 441.
  • the second taper portion 442 has a substantially conical shape that is connected to the end of the first taper portion 441 on the front end side and is further tapered toward the front end side.
  • the second taper angle ⁇ E2 that is the Dapper angle of the second taper portion 442 is constant. Therefore, the second taper angle ⁇ E2 is constant from the end on the first taper portion 441 side to the end on the tip end side in the second taper portion 442.
  • the second taper angle ⁇ E2 at the boundary portion 44x is larger than the first taper angle ⁇ E1 at the boundary portion 44x (that is, the bendable portion) between the first taper portion 441 and the second taper portion 442. Further, the first taper angle ⁇ E1 and the second taper angle ⁇ E2 are discontinuous at the boundary portion 44x. That is, the taper angle of the needle 44 changes suddenly and discontinuously from the first taper portion 441 side to the second taper portion 442 side of the boundary portion 44x.
  • the wall surface that is, the inner wall surface of the nozzle 41 on the needle 44 side has a root surface 410, a first diaphragm surface 411, and a second diaphragm surface 412.
  • the root surface 410, the first diaphragm surface 411, and the second diaphragm surface 412 are disposed coaxially with the body portion 440, the first taper portion 441, and the second taper portion 442.
  • the root surface 410 has a substantially cylindrical shape and surrounds the trunk portion 440.
  • the first diaphragm surface 411 is connected to the tip side end of the root surface 410 and further tapers toward the tip side at a first taper angle ⁇ Z1.
  • the shape of the first diaphragm surface 411 is substantially the same as the side surface of the truncated cone. Accordingly, the first diaphragm surface 411 is reduced in diameter toward the distal end side. For this reason, the region surrounded by the first diaphragm surface 411 becomes narrower toward the tip side.
  • the diameter of the first diaphragm surface 411 refers to the diameter of the first diaphragm surface 411 in a cross section orthogonal to the axis of the nozzle 41.
  • the first taper angle ⁇ Z1 which is the taper angle of the first diaphragm surface 411, is larger than the first taper angle ⁇ E1 described above. Therefore, the flow path cross-sectional area of the gap between the first throttle surface 411 and the first taper portion 441 also decreases toward the tip side.
  • the second aperture surface 412 is connected to the end of the first aperture surface 411 on the tip side and is further tapered toward the tip side at a second taper angle ⁇ Z2.
  • the shape of the second diaphragm surface 412 is substantially the same as the side surface of the cone. Accordingly, the second aperture surface 412 is reduced in diameter toward the tip side. For this reason, the region surrounded by the second diaphragm surface 412 becomes narrower toward the tip side.
  • the diameter of the second diaphragm surface 412 refers to the diameter of the second diaphragm surface 412 in a cross section orthogonal to the axis of the nozzle 41.
  • the second taper angle ⁇ Z2 that is the taper angle of the second diaphragm surface 412 is smaller than the first taper angle ⁇ E1 described above. Therefore, the flow path cross-sectional area of the gap between the second throttle surface 412 and the first taper portion 441 may increase as it goes toward the tip side. Further, the first taper angle ⁇ Z1 and the second taper angle ⁇ Z2 are discontinuous at the throat portion 41x corresponding to the boundary between the first diaphragm surface 411 and the second diaphragm surface 412.
  • the second taper angle ⁇ Z2 of the second diaphragm surface 412 is smaller than the above-described second taper angle ⁇ E2. Therefore, the flow path cross-sectional area of the gap between the second throttle surface 412 and the second taper portion 442 is increased toward the tip side.
  • the channel cross-sectional area of the gap between the nozzle 41 and the needle 44 varies depending on the position along the axis CL (hereinafter referred to as the axial position), as indicated by the solid line 71 in FIG.
  • the axis CL is the axis of the needle 44 and the axis of the nozzle 41.
  • the flow path cross-sectional area at a certain axial position refers to the area of the gap between the nozzle 41 and the needle 44 in a cross section that passes through the axial position and is orthogonal to the direction of the axis CL.
  • the needle 44 is not present in the cross section, the area of the portion surrounded by the nozzle 41 in the cross section becomes the flow path cross sectional area.
  • the flow path cross-sectional area continues to decrease at a constant reduction rate toward the axial position P1 corresponding to the throat 41x. Then, at the axial position P1, the channel cross-sectional area turns from decreasing to increasing. That is, the channel cross-sectional area is minimal and minimal at the axial position P1.
  • the flow path cross-sectional area continues to increase at a constant increase rate from the axial position P1 to the axial position P2 corresponding to the boundary portion 44x. Furthermore, at the axial direction position P2, the increasing rate of the channel cross-sectional area increases discontinuously.
  • the flow path cross-sectional area continues to increase while maintaining the increased rate after the increase.
  • the throat portion 41x along the direction of the axis CL minimizes and minimizes the flow path cross-sectional area.
  • the rate of increase refers to the amount of increase in the cross-sectional area of the channel when the axial position is changed by a unit distance toward the tip side.
  • the boundary portion 44x is positioned closer to the distal end side in the axis CL direction than the throat portion 41x. This positional relationship is realized in most cases when the ejector 40 is used.
  • the tip of the needle 44 may be further on the tip side of the ejector 40 than the tip of the nozzle 41, or may be on the side opposite to the tip side.
  • the relationship among the first taper angle ⁇ E1, the second taper angle ⁇ E2, the first taper angle ⁇ Z1, and the second taper angle ⁇ Z2 is summarized as follows: ⁇ Z2 ⁇ E1 ⁇ E2.
  • the nozzle 41 of the ejector 40 accelerates the refrigerant passing through the nozzle 41 to a speed higher than the speed of sound.
  • the flow path cross-sectional area gradually decreases from the upstream to the downstream of the refrigerant flow, becomes minimum at the throat portion 41x, and the flow path cross-sectional area increases at the downstream portion from the throat portion 41x.
  • the relationship ⁇ E1 ⁇ Z1 is also realized.
  • the refrigerant discharged from the compressor 10 is cooled on the radiator 20 side, and then flows into the fluid flow path inside the nozzle 41 from the high-pressure refrigerant inlet 46a of the ejector 40.
  • the refrigerant that has flowed into the nozzle 41 is isentropically decompressed and expanded in the throat portion 41x to boil.
  • the pressure energy of the refrigerant is converted into velocity energy, and the gas-liquid two-phase refrigerant is ejected from the tip of the nozzle 41 at a high speed equal to or higher than the speed of sound.
  • the gas-phase refrigerant evaporated in the evaporator 30 is sucked from the outside of the nozzle 41 to the mixing unit 42 through the space between the nozzle 41 and the block 46 by the entrainment effect of the injected refrigerant. Is done.
  • the refrigerant injected from the tip of the nozzle 41 and the refrigerant sucked from the low-pressure refrigerant inlet 46 b are mixed with each other in the mixing unit 42 after flowing into the mixing unit 42.
  • the refrigerant mixed in the mixing unit 42 enters the diffuser 43.
  • the speed energy of the refrigerant is converted into pressure energy by increasing the refrigerant passage area, and the pressure of the refrigerant increases.
  • the refrigerant that has passed through the diffuser 43 flows out from the outlet 45a and flows into the gas-liquid separator 50.
  • the gas-phase refrigerant is sucked into the compressor 10 and compressed again. Further, the liquid phase refrigerant out of the refrigerant flowing into the gas-liquid separator 50 is decompressed again by the throttle 60 and then evaporated by the evaporator 30.
  • the nozzle 41 is often arranged as shown in FIGS. That is, the first taper portion 441 faces both the first diaphragm surface 411 and the second diaphragm surface 412, and part or all of the second taper portion 442 faces the second taper portion 442. And the axial direction position of the boundary part 44x exists in the front end side rather than the axial direction position of the throat part 41x.
  • the rate of increase in the cross-sectional area of the flow path increases discontinuously toward the front end side at the boundary portion 44 x, so that the refrigerant may also boil at the boundary portion 44 x. There is.
  • the region surrounded by the second diaphragm surface 412 becomes narrower toward the tip side.
  • a comparative example in which the region surrounded by the second diaphragm surface 412 of the nozzle 41 is not narrowed toward the front end side and is constant in width will be described with reference to FIG. To do.
  • the increasing rate of the flow path cross-sectional area is larger than the solid line 71 in the range from the axial position P2 to the axial position P3.
  • boiling occurs at the boundary 44x. That is, a boiling delay occurs.
  • Boiling delay means that boiling occurs in the refrigerant flow downstream of the throat 41x. When the boiling delay occurs, it becomes difficult for boiling to occur in the throat 41x. As a result, the energy recovery efficiency of the ejector 40 decreases.
  • energy recovery efficiency refers to the rate at which loss generated by expansion of the refrigerant can be recovered as kinetic energy.
  • the ejector 40 is designed to maximize energy recovery efficiency by causing boiling at the throat 41x. Therefore, when boiling occurs on the tip side of the nozzle 41, the energy recovery efficiency decreases.
  • the region surrounded by the second diaphragm surface 412 becomes narrower toward the tip side.
  • the occurrence of boiling at the boundary portion 44x can be suppressed, and consequently boiling at the throat portion 41x is likely to occur. Therefore, even if a boiling delay occurs, it is possible to suppress a decrease in energy recovery efficiency that occurs due to the boiling delay.
  • the needle 44 has a tapered second tapered portion 442. As a result, the flow gathers on the axis CL due to the inertial force of the refrigerant. Thereby, appropriate free expansion can be promoted.
  • the tip side of the inner wall surface of the nozzle 41 has a shape that narrows the region surrounded by the inner wall surface toward the tip side.
  • boiling at the boundary 44x can be suppressed.
  • the shape of the portion on the tip side from the boundary portion 44x, that is, the second taper portion 442 is different from that of the first embodiment.
  • the 2nd taper part 442 is tapering toward the front end side of the ejector 40 similarly to 1st Embodiment.
  • the surface of the tip of the second taper portion 442 is a smooth curved surface.
  • the tip of the second taper portion 442 is sharp.
  • the second taper angle ⁇ E2 which is the taper angle of the second taper portion 442 at the boundary portion 44x, is larger than the first taper angle ⁇ E1. Further, the first taper angle ⁇ E1 and the second taper angle ⁇ E2 are discontinuous at the boundary portion 44x. Therefore, as in the first embodiment, the area surrounded by the second diaphragm surface 412 becomes narrower toward the distal end side, so that an effect equivalent to that of the first embodiment can be obtained.
  • the shapes of the first diaphragm surface 411 and the second diaphragm surface 412 are changed with respect to the first embodiment. Others are the same as in the first embodiment.
  • the cross section when the first diaphragm surface 411 is cut along a plane including the axis line CL is a smooth curve.
  • the cross section when the second diaphragm surface 412 is cut along a plane including the axis CL is also a smooth curve.
  • neither the first taper angle ⁇ Z1 nor the second taper angle ⁇ Z2 is constant. Specifically, the first taper angle ⁇ Z1 decreases as it goes toward the tip of the ejector 40. Further, the second taper angle ⁇ Z2 decreases toward the tip of the ejector 40, and becomes 0 degree at the forefront of the nozzle 41.
  • the first taper angle ⁇ Z1 and the second taper angle ⁇ Z2 are continuous in the throat portion 41x. That is, the first taper angle ⁇ Z1 and the second taper angle ⁇ Z2 in the throat portion 41x are the same.
  • the portion that minimizes and minimizes the cross-sectional area of the refrigerant flow path between the nozzle 41 and the needle 44 is the boundary between the first throttle surface 411 and the second throttle surface 412. This boundary is the throat 41x.
  • the first taper portion 441 faces the throat portion 41x.
  • the position of the throat portion 41x may change according to the change in the axial position of the nozzle 41, or the position of the throat portion 41x may be changed to the axial position of the nozzle 41. It may be constant regardless of the case.
  • the boundary portion 44x is closer to the distal end side of the ejector 40 than the throat portion 41x. Therefore, also in this embodiment, an effect equivalent to that of the first embodiment can be obtained.
  • FIG. 8 is a schematic diagram of an ejector cycle using carbon dioxide as a refrigerant.
  • This ejector cycle is configured to be capable of switching between a cooling operation mode for cooling indoor blown air that is a heat exchange target fluid and a heating operation mode for heating indoor blown air.
  • the solid line arrows in FIG. 8 indicate the refrigerant flow in the cooling operation mode, and the broken line arrows indicate the refrigerant flow in the heating operation mode.
  • This ejector cycle includes an ejector 40, a compressor 111, an accumulator 114, a throttle 115, a first four-way valve 141, an outdoor heat exchanger 142, a blower 142a, a second four-way valve 143, a use side heat exchanger 144, and a blower 144a. is doing.
  • the structure of the ejector 40 is roughly as shown in FIG. The detailed configuration of the ejector 40 will be described later.
  • the compressor 111 is a device having the same function as the compressor 10 of the first embodiment.
  • the accumulator 114 is a gas-liquid that stores the refrigerant by flowing the refrigerant flowing out from the ejector 40 into the vapor-phase refrigerant and the liquid-phase refrigerant. It is a separation part.
  • the gas-phase refrigerant outlet of the accumulator 114 is connected to the suction side of the compressor 111.
  • the liquid-phase refrigerant outlet of the accumulator 114 is connected to the inflow side of the use side heat exchanger 144.
  • the throttle 115 is a decompression unit that decompresses the liquid-phase refrigerant that has flowed out of the accumulator 114.
  • a first four-way valve 141 is connected to the refrigerant discharge side of the compressor 111.
  • the first four-way valve 141 is an electric refrigerant flow switching unit whose operation is controlled by a control signal output from a control device (not shown). Specifically, the first four-way valve 141 switches between a refrigerant flow path indicated by a solid arrow in FIG. 8 and a refrigerant flow path indicated by a broken arrow in FIG.
  • the outlet side of the compressor 111 and the outdoor heat exchanger 142 are connected, and the outlet side of the throttle 115 and the use side heat exchanger 144 are connected. Is connected.
  • the discharge port side of the compressor 111 and the use side heat exchanger 144 are connected, and between the outflow side of the throttle 115 and the outdoor heat exchanger 142. Is connected.
  • a second four-way valve 143 is connected to the outlet side of the outdoor heat exchanger 142.
  • the second four-way valve 143 is an electric refrigerant flow switching unit whose operation is controlled by a control signal output from the control device. Specifically, the first four-way valve 141 switches between a refrigerant flow path indicated by a solid arrow in FIG. 8 and a refrigerant flow path indicated by a broken arrow in FIG.
  • the outdoor heat exchanger 142 and the high-pressure refrigerant inlet 46a side of the ejector 40 are connected, and the use-side heat exchanger 144 and the low-pressure refrigerant inlet 46b of the ejector 40 are connected. Are connected at the same time.
  • the outdoor heat exchanger 142 and the low pressure refrigerant inlet 46b side of the ejector 40 are connected, and the use side heat exchanger 144 and the high pressure refrigerant inlet 46a of the ejector 40 are connected. Are connected at the same time.
  • the outdoor heat exchanger 142 is a heat exchanger that exchanges heat between the refrigerant flowing out of the first four-way valve 141 and the outdoor air blown by the blower 142a.
  • the use side heat exchanger 144 is a heat exchanger that exchanges heat between the refrigerant passing through the inside and the indoor blown air that is the heat exchange target fluid blown by the blower 144a.
  • the ejector 40 includes a nozzle 41, a mixing unit 42, a diffuser 43, a needle 44, a housing 45, a block 46, and the like, as in the first embodiment.
  • the components other than the nozzle 41 and the needle 44, such as the mixing unit 42, the diffuser 43, the housing 45, and the block 46, are the same as those in the first embodiment.
  • the needle 44 is formed in a conical taper shape so that the cross-sectional area decreases toward the tip end side (that is, the refrigerant outflow side) of the ejector 40.
  • the cross-sectional area refers to a cross-sectional area when cut by a plane perpendicular to the axis of the needle 44.
  • the nozzle 41 and the needle 44 may be made of metal such as stainless steel.
  • the needle 44 is driven by an actuator (not shown) according to the flow rate of the high-pressure refrigerant flowing into the nozzle 41 and can be displaced in the axial direction of the needle 44.
  • the needle 44 is disposed coaxially with the nozzle 41 in the space inside the nozzle 41.
  • the needle 44 has a body portion 440 and a first taper portion 441 as shown in FIG.
  • the trunk portion 440 and the first taper portion 441 are integrally and coaxially formed as a whole.
  • the body portion 440 has a substantially cylindrical shape, and is connected to the first taper portion 441 on the distal end side.
  • the first taper portion 441 has a substantially conical shape tapered toward the outflow side (that is, the front end side) of the fluid flow path surrounded by the inner wall surface inside the nozzle 41.
  • the first taper angle ⁇ E1 that is the Dapper angle of the first taper portion 441 is constant. Therefore, the first taper angle ⁇ E1 is constant from the end on the body 440 side to the end on the front end side of the first taper portion 441.
  • the second tapered portion 442 shown in the first embodiment does not exist. That is, the first taper portion 441 is a member that is on the most distal end side of the needle 44. And the 1st taper part 441 is sharp in the front end side.
  • the portion on the tip side of the body portion 440 has a constant first taper angle ⁇ E1.
  • the wall surface that is, the inner wall surface of the nozzle 41 on the needle 44 side has a root surface 410, a first diaphragm surface 411, and a second diaphragm surface 412.
  • the root surface 410, the first diaphragm surface 411, and the second diaphragm surface 412 are disposed coaxially with the body portion 440, the first taper portion 441, and the second taper portion 442.
  • the root surface 410 has a substantially cylindrical shape, and mainly surrounds the body portion 440 and, in some cases, the first taper portion 441 of the needle 44.
  • the first diaphragm surface 411 is connected to the tip side end of the root surface 410 and further tapers toward the tip side at a first taper angle ⁇ Z1.
  • the shape of the first diaphragm surface 411 is substantially the same as the side surface of the truncated cone. Accordingly, the first diaphragm surface 411 is reduced in diameter toward the distal end side. For this reason, the region surrounded by the first diaphragm surface 411 becomes narrower toward the tip side.
  • the first taper angle ⁇ Z1 which is the taper angle of the first diaphragm surface 411, is larger than the first taper angle ⁇ E1 described above. Therefore, the flow path cross-sectional area of the gap between the first throttle surface 411 and the first taper portion 441 also decreases toward the tip side.
  • the second diaphragm surface 412 is connected to the end of the first diaphragm surface 411 on the distal end side, and further tapers continuously and smoothly at a constant second taper angle ⁇ Z2 toward the distal end side.
  • the shape of the second diaphragm surface 412 is substantially the same as the side surface of the cone. Accordingly, the second aperture surface 412 is reduced in diameter toward the tip side.
  • the region surrounded by the second diaphragm surface 412 becomes narrower toward the tip side.
  • the area of the region surrounded by the second diaphragm surface 412 on a surface passing through a certain axial position and orthogonal to the direction of the axial line CL is continuous as the axial position moves toward the tip. Slowly becomes smaller.
  • the end of the second diaphragm surface 412 on the front end side corresponds to the outlet 41z of the nozzle 41. The refrigerant flows out from the inside of the nozzle 41 through the circular outlet 41z.
  • the outlet 41z is located on the inner wall surface of the nozzle 41 at the end of the ejector 40 in the fluid flow path.
  • the throat portion 41x is located on the opposite side of the distal end side from the outlet 41z and protrudes toward the needle 44. The reason why the throat portion 41x protrudes toward the needle 44 is that the first taper angle ⁇ Z1 is larger than the second taper angle ⁇ Z2.
  • the diameter of the outlet 41z is smaller than the diameter of the throat 41x. Therefore, the circumference of the outlet 41z is shorter than the circumference of the throat 41x.
  • the circumferential length of the throat portion 41x is a length that goes around the axis of the nozzle 41 along the throat portion 41x.
  • the peripheral length of the outlet 41z is a length that goes around the axis of the nozzle 41 along the outlet 41z.
  • the second taper angle ⁇ Z2 that is the taper angle of the second diaphragm surface 412 is smaller than the first taper angle ⁇ E1 described above. Further, the first taper angle ⁇ Z1 and the second taper angle ⁇ Z2 are discontinuous at the throat portion 41x corresponding to the boundary between the first diaphragm surface 411 and the second diaphragm surface 412.
  • the flow path cross-sectional area of the gap between the nozzle 41 and the needle 44 will be described.
  • the flow path cross-sectional area at a certain axial position refers to the area of the gap between the nozzle 41 and the needle 44 in a cross section passing through the axial position and orthogonal to the axis CL.
  • the needle 44 is not present in the cross section, the area of the portion surrounded by the nozzle 41 in the cross section becomes the flow path cross sectional area.
  • the channel cross-sectional area of the gap between the nozzle 41 and the needle 44 varies depending on the position in the axial direction, as indicated by solid lines 73 and 74 in FIGS.
  • the correspondence between the axial position and the channel cross-sectional area changes as the needle lift amount changes.
  • the needle lift amount is an amount indicating the relative position of the needle 44 to the nozzle 41 in the axial direction.
  • the needle lift amount is zero when the first taper portion 441 of the needle 44 is in contact with the throat portion 41x of the nozzle 41 (ie, the valve is closed).
  • the predetermined movement amount corresponds to the needle lift amount. That is, the needle lift amount is an amount indicating the degree of separation of the needle 44 from the nozzle 41 in the axial direction.
  • the needle 44 moves in the axial direction of the needle 44 with respect to the nozzle 41.
  • the needle lift amount in the state of FIG. 10 is smaller than the needle lift amount in the state of FIG.
  • the cross-sectional area of the flow path is the minimum and minimum at the position of the throat portion 41x, increases from the throat portion 41x toward the root side, and increases from the throat portion 41x toward the distal end side. Become.
  • the nozzle 41 and the needle 44 operate as a Laval nozzle.
  • the cross-sectional area of the flow path is neither minimum nor minimum at the position of the throat portion 41x. That is, the channel cross-sectional area is smaller from the root side toward the throat part 41x than the throat part 41x, and is smaller from the throat part 41x toward the distal end side.
  • the decreasing gradient of the channel cross-sectional area from the base side toward the throat 41x is larger than the decreasing gradient of the channel cross-sectional area from the throat 41x toward the tip side than the throat portion 41x.
  • the nozzle 41 and the needle 44 operate as a plug nozzle.
  • R is the needle lift amount.
  • L is the absolute value of the difference between the axial position of the outlet 41z and the axial position of the throat 41x, that is, the tip length.
  • r1 is a radius of the first tapered portion 441 of the needle 44 in a cross section including the outlet 41z and orthogonal to the axis CL.
  • r2 is the radius of the exit 41z.
  • r3 is a radius of the first tapered portion 441 of the needle 44 in a cross section including the throat portion 41x and orthogonal to the axis line CL.
  • r4 is the radius of the throat 41x. Note that these formulas indicate that the tip of the first taper portion 441 of the needle 44 protrudes out of the outlet 41z, that is, the tip of the first taper portion 441 is located on the tip side of the outlet 41z. It is assumed.
  • the value Y in the above formula is a design value determined only by the shape of the nozzle 41 and the needle 44. Therefore, when the needle lift amount R is smaller than the design value Y, the nozzle 41 and the needle 44 operate as a Laval nozzle. When the needle lift amount R is larger than the design value Y, the nozzle 41 and the needle 44 operate as plug nozzles. In order for the design value Y to be a positive value, it is necessary that ⁇ E1> ⁇ Z2.
  • the ejector 40 operates as a Laval nozzle or a plug nozzle depending on the amount of needle lift.
  • the ejector 40 operates as a Laval nozzle or a plug nozzle depending on the needle lift amount.
  • the tip of the first taper portion 441 of the needle 44 is on the tip side of the outlet 41z.
  • the inner wall surface of the nozzle 41 has an inclination that tapers toward the tip end side of the ejector 40 at the outlet 41z. Therefore, in the valve open state, the ability of the ejector 40 can be easily adjusted by adjusting the needle lift amount and adjusting the flow path cross-sectional area at the outlet 41z. If the outlet 41z is not inclined toward the front end side of the ejector 40 on the inner wall surface of the nozzle 41, the outlet 41z does not have a minimum channel cross-sectional area. It becomes difficult to adjust the capacity of the ejector 40 by adjusting the above. This is because the needle 44 is on the tip side with respect to the outlet 41z, and the needle 44 is tapered toward the tip side.
  • the tip of the first taper portion 441 of the needle 44 is located on the tip side of the ejector 40 from the outlet 41z. Therefore, the capacity adjustment of the ejector 40 can be easily performed. That is, regardless of whether the ejector 40 operates as a Laval nozzle or a plug nozzle, the ability of the ejector 40 can be adjusted by adjusting the needle lift amount R.
  • the entraining action of the ejector 40 in this embodiment is the same as in the first, second, and third embodiments. That is, the fluid outside the nozzle 41 is sucked by the entraining action of the working fluid ejected from the tip end side of the ejector 40 in the nozzle 41 through the fluid flow path inside the nozzle 41.
  • the operation of the ejector cycle having the above configuration will be described.
  • the ejector cycle of the present embodiment it is possible to switch between a cooling operation mode for cooling indoor blown air and a heating operation mode for heating indoor blown air.
  • Cooling operation mode The cooling operation mode is executed when the cooling operation mode is selected by an operation switch of an operation panel (not shown).
  • the control device operates the compressor 111, the blower 142a, and the blower 144a, and switches the first four-way valve 141 and the second four-way valve 143 so that the refrigerant flow path becomes a solid line arrow in FIG.
  • the compressor 111 the first four-way valve 141, the outdoor heat exchanger 142, the second four-way valve 143, the high-pressure refrigerant inlet 46a of the ejector 40, the outlet 45a of the ejector 40, and the accumulator 114
  • the refrigerant circulates in the order of the gas-phase refrigerant outlet and the compressor 111.
  • a cycle in which the refrigerant circulates in the order of the liquid-phase refrigerant outlet of the accumulator 14, the throttle 115, the first four-way valve 141, the use side heat exchanger 144, the second four-way valve 143, the low-pressure refrigerant inlet 46b of the ejector 40, and the accumulator 114. Is configured.
  • the refrigerant compressed by the compressor 111 is cooled by exchanging heat with the outside air blown by the blower 142a in the outdoor heat exchanger 142, and isentropically decompressed and expanded by the nozzle 41 of the ejector 40. Be injected. Due to the suction action of the injected refrigerant, the refrigerant flowing out from the use side heat exchanger 144 is sucked into the low-pressure refrigerant inlet 46b.
  • the refrigerant injected from the nozzle 41 and the refrigerant sucked from the low-pressure refrigerant inlet 46b are mixed in the mixing unit 42 and pressurized by the diffuser 43.
  • the refrigerant flowing out from the diffuser 43 through the outlet 45a is gas-liquid separated by the accumulator 114, and the gas phase refrigerant flowing out from the gas phase refrigerant outlet of the accumulator 114 is sucked into the compressor 111 and compressed again.
  • the liquid-phase refrigerant that has flowed out from the liquid-phase refrigerant outlet of the accumulator 114 is further decompressed and expanded in an isenthalpy manner at the throttle 115 and flows into the use-side heat exchanger 144 via the first four-way valve 141. It absorbs heat from the indoor air blown by the blower 144a and evaporates. Thereby, indoor ventilation air is cooled. The refrigerant flowing out from the use side heat exchanger 144 is sucked into the low-pressure refrigerant inlet 46b through the second four-way valve 143.
  • the refrigerant discharged from the compressor 111 is radiated by the outdoor heat exchanger 142, and the refrigerant is evaporated by the use side heat exchanger 144. ing. Therefore, indoor air can be cooled in the cooling operation mode of the present embodiment.
  • Heating operation mode is executed when the heating operation mode is selected by an operation switch of an operation panel (not shown).
  • the control device operates the compressor 111, the blower 142a, and the blower 144a, and switches the first four-way valve 141 and the second four-way valve 143 so that the refrigerant flow path becomes a broken line arrow in FIG.
  • the gas phase refrigerant of the compressor 111 the first four-way valve 141, the use side heat exchanger 144, the second four-way valve 143, the ejector 40, the high-pressure refrigerant inlet 46 a, and the accumulator 114.
  • the refrigerant circulates in the order of the outlet and the compressor 111.
  • the refrigerant compressed by the compressor 111 exchanges heat with the indoor blown air blown by the blower 144a in the use side heat exchanger 144 and dissipates heat. Thereby, indoor blowing air is heated.
  • the refrigerant radiated and cooled by the use side heat exchanger 144 is decompressed and expanded in an isentropic manner by the nozzle 41 of the ejector 40 and is injected. Due to the suction action of the injected refrigerant, the refrigerant flowing out of the outdoor heat exchanger 142 is sucked into the low-pressure refrigerant inlet 46b.
  • the injection refrigerant injected from the nozzle 41 and the suction refrigerant sucked into the low-pressure refrigerant inlet 46b are mixed in the mixing section 42 and pressurized by the diffuser 43.
  • the refrigerant flowing out of the diffuser 43 is gas-liquid separated by the accumulator 114, and the gas phase refrigerant flowing out from the gas phase refrigerant outlet is sucked into the compressor 111 and compressed again.
  • the liquid-phase refrigerant that has flowed out from the liquid-phase refrigerant outlet of the accumulator 114 is further decompressed and expanded in an isenthalpy manner at the throttle 115 and flows into the outdoor heat exchanger 142 via the first four-way valve 141. It absorbs heat from the outside air blown by the blower 142a and evaporates. The refrigerant flowing out of the outdoor heat exchanger 142 is sucked into the low-pressure refrigerant inlet 46b.
  • the refrigerant discharged from the compressor 111 is dissipated by the use side heat exchanger 144 and the outdoor heat exchanger 142 is switched to the refrigerant flow path for evaporating the refrigerant. . Therefore, indoor air can be heated in the heating operation mode of the present embodiment.
  • the control device adjusts the refrigerant flow rate by adjusting the needle lift amount and the like.
  • the needle lift amount is realized by a control device driving a drive mechanism (not shown) (for example, a rotor and a stator) that changes the position of the needle 44 with respect to the nozzle 41.
  • the refrigerant flow rate is the amount of refrigerant flowing in the nozzle 41 per unit time.
  • the cooling capacity in the passenger compartment is adjusted by adjusting the refrigerant flow rate.
  • the heating capacity in the passenger compartment is adjusted by adjusting the refrigerant flow rate.
  • FIG. 12 shows the throat channel cross-sectional area 200 and the outlet channel cross-sectional area 201 in the range of the needle lift amount R realized in the cooling operation mode and the heating operation mode of the present embodiment.
  • the throat channel cross-sectional area 200 is the channel cross-sectional area of the gap between the nozzle 41 and the needle 44 in the throat 41x.
  • the outlet channel cross-sectional area 201 is the channel cross-sectional area of the gap between the nozzle 41 and the needle 44 at the outlet 41z.
  • the solid line indicating the throat channel cross-sectional area 200 and the solid line indicating the outlet channel cross-sectional area 201 intersect at a point 203. Therefore, at the needle lift amount R smaller than the needle lift amount R corresponding to this point 203, the outlet flow passage cross-sectional area 201 is larger than the throat flow passage cross-sectional area 200. Then, at the needle lift amount R larger than the needle lift amount R corresponding to the point 203, the throat channel cross-sectional area 200 is larger than the outlet channel cross-sectional area 201.
  • the throat portion 41x becomes the choke point having the smallest channel cross-sectional area in the region surrounded by the rectangle 210, and the outlet 41z flows most in the region surrounded by the rectangle 220.
  • the choke point has a small road cross-sectional area.
  • the choke point is a position where the refrigerant passing through the nozzle 41 exceeds the speed of sound.
  • the nozzle 41 and the needle 44 operate as a Laval nozzle.
  • the nozzle 41 and the needle 44 operate as plug nozzles.
  • control device may realize the rated cooling operation in the cooling operation mode.
  • the control device controls the ejector 40 so that the needle lift amount R becomes a value C1 in the rectangle 220 as shown in FIG. 12 in order to maximize the cooling capacity by increasing the refrigerant flow rate.
  • the nozzle 41 and the needle 44 are in the state shown in FIG. 11, and operate as a plug nozzle.
  • the cooling intermediate operation may be realized.
  • the control device reduces the cooling capacity, so that the needle lift amount R is a value C2 within the rectangle 210 as shown in FIG.
  • the ejector 40 is controlled so that In this case, the nozzle 41 and the needle 44 are in a state as shown in FIG. 10, and operate as a Laval nozzle.
  • control device may realize a heating rated operation in the heating operation mode.
  • the control device controls the ejector 40 so that the needle lift amount R becomes a value H1 in the rectangle 210, as shown in FIG. 12, in order to maximize the heating capacity by increasing the refrigerant flow rate.
  • the nozzle 41 and the needle 44 are in a state as shown in FIG. 10, and operate as a Laval nozzle.
  • an intermediate cooling operation may be realized.
  • the control device reduces the heating capacity to a value H2 within the rectangle 210 as shown in FIG.
  • the ejector 40 is controlled so that In this case, the nozzle 41 and the needle 44 are in a state as shown in FIG. 10, and operate as a Laval nozzle.
  • the inner wall surface of the nozzle is not tapered but has a straight cylindrical shape on the tip side of the throat.
  • the inner wall surface of the nozzle 41 of the present embodiment tapers continuously and smoothly from the throat 41x to the outlet 41z.
  • the minimum value of the channel cross-sectional area in the nozzle 41 and the outlet channel cross-sectional area can be determined from the characteristics of the refrigerant.
  • the operation condition varies greatly depending on the operation mode such as cooling or heating, and the refrigerant flow rate according to the capacity. And it is difficult to maintain the above-mentioned optimal shape in a plurality of operating conditions.
  • FIG. 13 shows an example of operating conditions of an ejector when an ejector having a straight cylindrical shape on the tip side from the throat is used in an air conditioner, unlike the present embodiment.
  • the choke point is always at the throat regardless of the amount of needle lift.
  • the vertical axis represents the throat flow path cross-sectional area
  • the horizontal axis represents the needle lift amount.
  • the solid lines 250, 260, 270, and 280 are throat flow paths when nozzles having straight portions of 0.5 mm, 1.0 mm, 2.0 mm, and 3.0 mm are used, respectively.
  • the relationship between a cross-sectional area and a needle lift amount is shown.
  • the length of the straight portion is a length along the axis CL from the throat portion to the needle. It is very difficult to process a nozzle having a straight portion shorter than 0.5 mm. Therefore, a nozzle having a straight part length of 0.5 mm is a nozzle that is at the processing limit.
  • Black circles 251, 252, 253, and 254 in the figure respectively show the optimum outlet channel cross-sectional area in the needle lift amount that realizes the above-described intermediate heating operation, heating rated operation, cooling intermediate operation, and cooling rated operation. .
  • the optimum throat channel cross-sectional area and the outlet channel cross-sectional area greatly differ depending on cooling and heating, or depending on the air-conditioning capability (ie, rated or intermediate).
  • the efficiency will decrease.
  • the outlet channel cross-sectional area is larger than the optimum value, a state called overexpansion that falls below the target nozzle outlet pressure occurs, and a shock wave is generated near the nozzle outlet, resulting in energy loss.
  • the outlet channel cross-sectional area is small, the underexpanded state is higher than the target outlet pressure, and the subsequent section becomes free expansion. In the case of free expansion, a pseudo wall is created by the expansion wave, so operation is similar to a Laval nozzle.
  • the cooling intermediate operation corresponding to the black circle 253 becomes overexpanded due to the above processing limit.
  • the nozzle shown by the solid line 250 has an optimum outlet flow passage cross-sectional area in the middle of heating and underexpands in the heating rated operation and cooling rated operation, but the cooling intermediate operation becomes overexpanded.
  • the nozzle 41 since high efficiency is required in a low flow rate region where the needle lift amount is small, the nozzle 41 operates as a Laval nozzle. On the other hand, in the high flow rate region where the needle lift amount is large, the same nozzle 41 operates as a plug nozzle. As described above, the choke point is changed, so that the width of the optimum operation region can be widened. Since the optimum Laval nozzle shape is more efficient than the plug nozzle shape, this embodiment is superior to the case where all regions are plug nozzles.
  • the needle 44 and the inner wall surface of the nozzle 41 are in contact with each other in the valve-closed state.
  • the first taper angle ⁇ E1 of the portion in contact with the inner wall surface in the valve-closed state and the portion on the tip side of the portion is the outlet 41z of the inner wall surface of the nozzle 41. Is larger than the second taper angle ⁇ Z2.
  • the needle 44 and the inner wall surface of the nozzle 41 are in contact with each other, and a gap exists between the needle 44 and the outlet 41z.
  • the shape of the tip side portion of the first taper portion 441 is different from that of the fourth embodiment.
  • the base side portion of the first taper portion 441 is tapered in a conical shape with a constant taper angle toward the tip end side of the ejector 40 as in the fourth embodiment.
  • the surface of the tip side portion of the first taper portion 441 is a smooth curved surface with a rounded tip and no pointed portion. With this configuration, the entire length of the needle 44 can be suppressed.
  • the taper angle of the portion on the base side of the first taper portion 441 is larger than the second taper angle ⁇ Z2 of the nozzle 41. Further, the taper angle at any position of the tip side portion of the first taper portion 441 is larger than the second taper angle ⁇ Z ⁇ b> 2 of the nozzle 41.
  • the throat flow path cross-sectional area is smaller than the outlet flow path cross-sectional area.
  • the needle 44 operates as a Laval nozzle.
  • the throat section channel cross-sectional area is larger than the outlet channel cross-sectional area, so that the nozzle 41 and the needle 44 are plugged. Operates as a nozzle.
  • the shapes of the first diaphragm surface 411 and the second diaphragm surface 412 are changed with respect to the fourth embodiment. Others are the same as in the fourth embodiment.
  • the cross section when the first diaphragm surface 411 is cut along a plane including the axis line CL is a smooth curve.
  • the cross section when the second diaphragm surface 412 is cut along a plane including the axis CL is also a smooth curve.
  • neither the first taper angle ⁇ Z1 nor the second taper angle ⁇ Z2 is constant. Specifically, the first taper angle ⁇ Z1 decreases as it goes toward the tip of the ejector 40. Further, the second taper angle ⁇ Z2 decreases as it goes toward the tip of the ejector 40. However, the second taper angle ⁇ Z2 is a positive value even at the outlet 41z. That is, the second diaphragm surface 412 has a tapered gradient at the outlet 41z.
  • the first taper angle ⁇ Z1 and the second taper angle ⁇ Z2 are continuous in the throat 41x. That is, the first taper angle ⁇ Z1 and the second taper angle ⁇ Z2 in the throat portion 41x are the same.
  • the throat flow path cross-sectional area is smaller than the outlet flow path cross-sectional area.
  • the needle 44 operates as a Laval nozzle.
  • the throat section channel cross-sectional area is larger than the outlet channel cross-sectional area, so that the nozzle 41 and the needle 44 are plugged. Operates as a nozzle.
  • the present invention allows the following modifications and equivalent modifications of the above embodiments.
  • the following modifications can select application and non-application to the said embodiment each independently. In other words, any combination of the following modifications can be applied to the above-described embodiment.
  • the ejector 40 is used for the ejector cycle for vehicle air conditioners. However, this is not necessarily the case. For example, it may be used for a water heater.
  • the first taper angle ⁇ Z1 of the nozzle 41 is larger than the second taper angle ⁇ Z2.
  • the ejector 40 of the first, second, and third embodiments may be used for the ejector cycle of the fourth embodiment.
  • the needle lift amount of the ejector 40 is variable.
  • the needle lift amount is in the first range, the above-described cooling intermediate operation, heating rated operation, and heating intermediate operation are realized.
  • the channel cross-sectional area between the nozzle 41 and the needle 44 is minimum and minimal at the position of the throat portion 41x, and the throat channel cross-sectional area is smaller than the outlet channel cross-sectional area.
  • the cooling rated operation is realized.
  • the channel cross-sectional area between the nozzle 41 and the needle 44 is minimum at the position of the throat 41x, and the throat channel cross-sectional area is larger than the outlet channel cross-sectional area. Further, when the needle lift amount is larger than the design value Y, the tip of the first taper portion 441 of the needle 44 is on the tip side of the outlet 41z. Therefore, the same effect as the fourth embodiment can be obtained.
  • the ejectors 40 in the fourth and subsequent embodiments may be used in cycles other than the ejector cycle as shown in FIG.
  • it may be used for an ejector cycle in which only cooling is possible between cooling and heating, and the cooling capacity is adjusted by adjusting the needle lift amount.
  • it may be used for an ejector cycle in which only heating is possible between cooling and heating, and the cooling capacity is adjusted by adjusting the needle lift amount.
  • the throat channel cross-sectional area is smaller than the outlet channel cross-sectional area.
  • the throat flow path cross-sectional area is the smallest, and the needle lift amount is less than the first range.
  • the cross-sectional area of the throat channel is larger than the cross-sectional area of the outlet channel, and the area of the gap between the nozzle and the needle in all cross sections orthogonal to the axial direction in the fluid channel Of these, the outlet channel cross-sectional area is the smallest.
  • the wall surface is tapered toward the tip side at the outlet.
  • the wall surface of the nozzle and the needle are in contact with each other in the valve-closed state, and the portion of the needle that is in contact with the wall surface of the nozzle in the valve-closed state and the tip side of the portion.
  • the taper angle of the part is larger than the taper angle at the outlet of the nozzle wall.
  • a part of the needle is on the tip side from the outlet. In this way, the ability adjustment of the ejector can be easily performed. That is, regardless of whether the ejector operates as a Laval nozzle or as a plug nozzle, the ability of the ejector can be adjusted by adjusting the needle lift amount.
  • the needle is tapered to the tip side of the first taper portion, and the second taper is further tapered toward the tip side while being connected to the tip side end of the first taper portion.
  • the second taper angle of the second taper portion at the boundary portion is larger than the first taper angle of the taper angle of the first taper portion at the boundary portion between the first taper portion and the second taper portion.
  • the taper angle is larger, and in the throat, the flow path cross-sectional area of the gap between the nozzle and the needle is minimized, and when the entrainment action is exerted, the boundary portion is closer to the tip than the throat.
  • the portion of the wall surface closer to the tip side than the throat has a shape that narrows the region surrounded by the wall surface toward the tip side.
  • boiling at the boundary portion can be suppressed by narrowing the flow path surrounded by the wall surface of the nozzle toward the front end side from the boundary portion of the nozzle. .
  • the taper angle at which the wall surface tapers toward the tip side on the tip side from the throat is smaller than the first taper angle. In this way, a shape is realized in which the cross-sectional area of the flow path between the nozzle and the needle increases from the throat to the tip side.

Abstract

This ejector is configured such that the wall surface on a needle side of a nozzle has an outlet (41z) positioned at the end on the leading end side in a fluid flow path and a throat (41x) that is positioned on the opposite side of the outlet on the leading end side and that projects toward the needle. When a needle lift amount (R) is within a first range, a throat flow path cross-sectional area is smaller than an outlet flow path cross-sectional area, and the throat flow path cross-sectional area is smallest among areas of gaps between the nozzle and the needle in all cross-sections orthogonal to an axial direction within the fluid flow path. When the needle lift amount is within a second range greater than the first range, the throat flow path cross-sectional area is larger than the outlet flow path cross-sectional area, and the outlet flow path cross-sectional area is smallest among the areas of the gaps between the nozzle and the needle in all the cross-sections orthogonal to the axial direction within the fluid flow path.

Description

エジェクタEjector 関連出願への相互参照Cross-reference to related applications
 本出願は、2018年3月22日に出願された日本特許出願番号2018-54863号と、2018年8月29日に出願された日本特許出願番号2018-160630号とに基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2018-54863 filed on Mar. 22, 2018 and Japanese Patent Application No. 2018-160630 filed on Aug. 29, 2018. The description is incorporated by reference.
 本開示は、エジェクタに関するものである。 This disclosure relates to ejectors.
 従来、ノズルとニードルを有し、ノズルの内部の流体流路を通ってノズルの先端側から噴射される作動流体の巻き込み作用によってノズルの外部の流体を吸引するエジェクタが知られている。例えば、特許文献1には、ノズルの先端において、ノズルの内面が囲む部分の断面積が一定となっている。 Conventionally, there has been known an ejector that has a nozzle and a needle, and sucks a fluid outside the nozzle by an entraining action of a working fluid ejected from the tip of the nozzle through a fluid flow path inside the nozzle. For example, in Patent Document 1, the cross-sectional area of the portion surrounded by the inner surface of the nozzle is constant at the tip of the nozzle.
特開2004-144043号公報JP 2004-144043 A
 発明者の検討によれば、エジェクタの動作条件(例えばニードルリフト量)および使用される冷媒が決まると、ノズル内におけるノズルとニードルの間の領域の最適な最小面積と最適な出口流路断面積が決まる。しかし、エジェクタが複数の動作条件で使用される場合、それらすべての動作条件に対して最適となるエジェクタの最小面積と出口流路断面積を決めることは困難である。
 特に、ニードルリフト量が大きい場合に、出口流路断面積が大きくなり過膨張となってしまう場合がある。この対策として、ノズルを短くする方法があるが、そのようにするとノズル効率が悪くなる。ノズル効率を増加させるためには一般的に根元側から出口にかけて流路断面積を緩やかに拡大させることが望ましいからである。
According to the inventor's study, when the operating conditions of the ejector (for example, the needle lift amount) and the refrigerant to be used are determined, the optimum minimum area of the region between the nozzle and the needle in the nozzle and the optimum outlet channel cross-sectional area are determined. Is decided. However, when the ejector is used in a plurality of operating conditions, it is difficult to determine the minimum area of the ejector and the outlet channel cross-sectional area that are optimal for all of the operating conditions.
In particular, when the needle lift amount is large, the cross-sectional area of the outlet channel may become large, resulting in excessive expansion. As a countermeasure for this, there is a method of shortening the nozzle. However, if this is done, the nozzle efficiency will deteriorate. This is because, in order to increase the nozzle efficiency, it is generally desirable to gradually increase the flow path cross-sectional area from the root side to the outlet.
 本開示は、ノズルを短くするのとは別の方法で、エジェクタの過膨張を抑制することを第1の目的とする。 This disclosure has a first object of suppressing overexpansion of the ejector by a method different from shortening the nozzle.
 また、特許文献1には、ニードルが2段テーパを有するエジェクタが開示されている。すなわち、ニードルは、先端側に向かって先細る第1テーパ部と、第1テーパ部から更に先端側に向かって先細る第2テーパ部とを備える。そして、第1テーパ部と第2テーパ部との境界部において、第1テーパ部のテーパ角と第2テーパ部のテーパ角とが不連続になっている。 Further, Patent Document 1 discloses an ejector in which a needle has a two-step taper. That is, the needle includes a first taper portion that tapers toward the tip end side, and a second taper portion that tapers further toward the tip end side from the first taper portion. And the taper angle of the 1st taper part and the taper angle of the 2nd taper part are discontinuous in the boundary part of the 1st taper part and the 2nd taper part.
 発明者の検討によれば、ニードルが2段テーパを有すると、ニードルの上記境界部よりも先端側で、ノズルとニードルの間の空隙の流路断面積が急に広がる。通常は、ノズルとニードルとの間の空隙の流路断面積を極小にする喉部がノズルのニードル側の壁面に形成され、この喉部で作動流体が沸騰することが望ましい。しかし、発明者の検討により、喉部とは別に、上記境界部においても、作動流体の沸騰が発生してしまう。意図された喉部以外の部分で作動流体が沸騰してしまうと、エジェクタのエネルギー回収効率が低下してしまう。 According to the inventor's study, when the needle has a two-step taper, the flow passage cross-sectional area of the gap between the nozzle and the needle suddenly expands on the tip side of the boundary portion of the needle. Usually, it is desirable that a throat that minimizes the cross-sectional area of the flow path of the gap between the nozzle and the needle is formed on the wall surface on the needle side of the nozzle, and the working fluid boils at this throat. However, as a result of the inventors' investigation, the working fluid boils at the boundary portion separately from the throat portion. If the working fluid boils at a portion other than the intended throat, the energy recovery efficiency of the ejector will be reduced.
 本開示は、2段テーパを有するニードルを備えたエジェクタにおいて、意図した部分以外で作動流体が沸騰してしまうことに起因して発生するエネルギー回収効率の低下を抑制することを第2の目的とする。 A second object of the present disclosure is to suppress a decrease in energy recovery efficiency that occurs due to boiling of the working fluid at a portion other than the intended portion in an ejector including a needle having a two-step taper. To do.
 本開示の1つの観点によれば、エジェクタは、ノズルと、前記ノズルの内部の流体流路に配置され、前記ノズルに対して軸線方向に移動すると共に当該エジェクタの先端側に向かって先細るニードルと、を備え、前記ノズルの内部の流体流路を通って前記ノズルにおける当該エジェクタの先端側から噴射される作動流体の巻き込み作用によって、前記ノズルの外部の流体が吸引され、前記ノズルの前記ニードル側の壁面は、前記流体流路における前記先端側の端部に位置する出口と、前記出口よりも前記先端側とは反対側に位置して前記ニードルに向かって突出する喉部と、を有し、喉部流路断面積は、前記喉部を通り前記軸線方向に直交する断面における前記ノズルと前記ニードルとの間の空隙の面積であり、出口流路断面積は、前記出口を通り前記軸線方向に直交する断面における前記ノズルと前記ニードルとの間の空隙の面積であり、前記軸線方向における前記ニードルの前記ノズルに対する離れ度合いを示すニードルリフト量が第1範囲にある場合、前記喉部流路断面積は前記出口流路断面積よりも小さく、かつ、前記流体流路内において前記軸線方向に直交するすべての断面における前記ノズルと前記ニードルとの間の空隙の面積のうち、前記喉部流路断面積が最小であり、前記ニードルリフト量が前記第1範囲よりも大きい第2範囲にある場合、前記喉部流路断面積は前記出口流路断面積よりも大きく、かつ、前記流体流路内において前記軸線方向に直交するすべての断面における前記ノズルと前記ニードルとの間の空隙の面積のうち、前記出口流路断面積が最小である。 According to one aspect of the present disclosure, an ejector is disposed in a nozzle and a fluid flow path inside the nozzle, and moves in an axial direction with respect to the nozzle and tapers toward a tip end side of the ejector. The fluid outside the nozzle is sucked by the entraining action of the working fluid ejected from the tip end side of the ejector in the nozzle through the fluid flow path inside the nozzle, and the needle of the nozzle The side wall surface has an outlet located at an end of the fluid flow path on the tip side, and a throat portion that is located on the opposite side of the tip from the tip and protrudes toward the needle. The cross-sectional area of the throat channel is the area of the gap between the nozzle and the needle in the cross-section passing through the throat and perpendicular to the axial direction. When the needle lift amount indicating the degree of separation of the needle from the nozzle in the axial direction is in the first range, the area of the gap between the nozzle and the needle in a cross section orthogonal to the axial direction through The throat flow path cross-sectional area is smaller than the outlet flow path cross-sectional area, and out of the area of the gap between the nozzle and the needle in all cross sections orthogonal to the axial direction in the fluid flow path When the throat channel cross-sectional area is the smallest and the needle lift amount is in the second range larger than the first range, the throat channel cross-sectional area is larger than the outlet channel cross-sectional area, In addition, among the areas of the gaps between the nozzle and the needle in all cross sections orthogonal to the axial direction in the fluid flow path, the cross-sectional area of the outlet flow path is the smallest. That.
 このように、ニードルリフト量が第1範囲にある場合、喉部流路断面積は出口流路断面積よりも小さくなる。そして、ノズルとニードルとの間の空隙の流路断面積のうち、喉部流路断面積が最小となる。つまり、ノズルおよびニードルがラバルノズルとして動作する。 Thus, when the needle lift amount is in the first range, the throat channel cross-sectional area is smaller than the outlet channel cross-sectional area. Of the flow path cross-sectional area of the gap between the nozzle and the needle, the throat flow path cross-sectional area is minimized. That is, the nozzle and the needle operate as a Laval nozzle.
 また、ニードルリフト量が第1範囲よりも大きい第2範囲にある場合、喉部流路断面積は出口流路断面積よりも大きくなる。ノズルとニードルとの間の空隙の流路断面積のうち、出口流路断面積が最小となる。つまり、ノズルおよびニードルがラバルノズルとして動作する。このように、ニードルリフト量が大きいときでも、ノズルおよびニードルがプラグノズルとして動作することにより、過膨張を抑えることができる。 Also, when the needle lift amount is in the second range that is larger than the first range, the throat channel cross-sectional area is larger than the outlet channel cross-sectional area. Of the channel cross-sectional area of the gap between the nozzle and the needle, the outlet channel cross-sectional area is minimized. That is, the nozzle and the needle operate as a Laval nozzle. Thus, even when the amount of needle lift is large, overexpansion can be suppressed by operating the nozzle and needle as a plug nozzle.
 また、本開示の他の観点によれば、エジェクタは、ノズルと、前記ノズルの内部の流体流路に配置されるニードルと、を備え、前記ノズルの内部の流体流路を通って前記ノズルにおける当該エジェクタの先端側から噴射される作動流体の巻き込み作用によって、前記ノズルの外部の流体が吸引され、前記ニードルは、前記先端側に向かって先細る第1テーパ部と、前記第1テーパ部の前記先端側の端に接続すると共に更に前記先端側に向かって先細る第2テーパ部と、を備え、前記第1テーパ部と前記第2テーパ部との境界部における前記第1テーパ部のテーパ角である第1テーパ角よりも、前記境界部における前記第2テーパ部のテーパ角である第2テーパ角の方が大きくなっており、前記ノズルの前記ニードル側の壁面には、前記ノズルと前記ニードルとの間の空隙の流路断面積を極小にする喉部が形成され、前記巻き込み作用が発揮されるとき、前記喉部よりも前記先端側に前記境界部があり、前記巻き込み作用が発揮されるとき、前記壁面のうち前記喉部よりも前記先端側の部分は、前記壁面によって囲まれる領域を前記先端側に向かって狭める形状を有するエジェクタである。 According to another aspect of the present disclosure, the ejector includes a nozzle and a needle disposed in a fluid flow path inside the nozzle, and the ejector in the nozzle passes through the fluid flow path inside the nozzle. The fluid outside the nozzle is sucked by the entrainment action of the working fluid ejected from the tip end side of the ejector, and the needle tapers toward the tip end side, and the first taper portion A taper of the first taper portion at a boundary between the first taper portion and the second taper portion, and a second taper portion connected to the tip end side and further tapered toward the tip end side. The second taper angle, which is the taper angle of the second taper portion at the boundary portion, is larger than the first taper angle, which is a corner, and the nozzle-side wall surface of the nozzle has the nose. When the throat portion that minimizes the flow path cross-sectional area of the gap between the needle and the needle is formed and the entrainment effect is exhibited, the boundary portion is located on the tip side of the throat portion, and the entrainment effect When the is exhibited, the portion of the wall surface closer to the distal end than the throat portion is an ejector having a shape that narrows the region surrounded by the wall surface toward the distal end side.
 このように、巻き込み作用が発揮されるとき、ノズルの境界部よりも先端側で、ノズルの壁面によって囲まれる流路を先端側に向かって狭めることで、境界部における沸騰を抑制することができる。その結果、意図した部分以外で作動流体が沸騰して沸騰遅れが発生してしまうことに起因して発生するエネルギー回収効率の低下を抑制することができる。 Thus, when the entrainment effect is exerted, boiling at the boundary portion can be suppressed by narrowing the flow path surrounded by the wall surface of the nozzle toward the front end side from the boundary portion of the nozzle. . As a result, it is possible to suppress a decrease in energy recovery efficiency that occurs due to boiling of the working fluid at a portion other than the intended portion and a boiling delay.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that reference numerals with parentheses attached to each component and the like indicate an example of a correspondence relationship between the component and the like and specific components described in the embodiments described later.
第1実施形態に係るエジェクタタサイクルの模式図である。It is a schematic diagram of the ejector cycle which concerns on 1st Embodiment. エジェクタの模式図である。It is a schematic diagram of an ejector. エジェクタの拡大図である。It is an enlarged view of an ejector. ノズルの先端部とニードルの先端部の拡大図である。It is an enlarged view of the front-end | tip part of a nozzle and the front-end | tip part of a needle. 流路断面積の変化を示す図である。It is a figure which shows the change of a flow-path cross-sectional area. 第2実施形態に係るエジェクタの拡大図である。It is an enlarged view of the ejector which concerns on 2nd Embodiment. 第3実施形態に係るエジェクタの拡大図である。It is an enlarged view of the ejector which concerns on 3rd Embodiment. 第4実施形態に係るエジェクタサイクルの模式図である。It is a schematic diagram of the ejector cycle which concerns on 4th Embodiment. ノズルの先端部とニードルの先端部の拡大図である。It is an enlarged view of the front-end | tip part of a nozzle and the front-end | tip part of a needle. ノズルがラバルノズルとして動作する場合の流路断面積の変化を示す図である。It is a figure which shows the change of a flow-path cross-sectional area in case a nozzle operate | moves as a Laval nozzle. ノズルがプラグノズルとして動作する場合の流路断面積の変化を示す図である。It is a figure which shows the change of flow-path cross-sectional area in case a nozzle operate | moves as a plug nozzle. ノズルがラバルノズルとして動作する領域とプラグノズルとして作動する領域とを示すグラフである。It is a graph which shows the area | region where a nozzle operate | moves as a Laval nozzle, and the area | region which operate | moves as a plug nozzle. 従来のストレート形状のノズルを用いた場合のニードルリフト量と出口流路断面積との関係を示す図である。It is a figure which shows the relationship between the needle lift amount at the time of using the conventional straight-shaped nozzle, and an exit flow-path cross-sectional area. 第5実施形態に係るエジェクタの拡大図である。It is an enlarged view of the ejector which concerns on 5th Embodiment. 第6実施形態に係るエジェクタの拡大図である。It is an enlarged view of the ejector which concerns on 6th Embodiment.
 (第1実施形態)
 以下、第1実施形態について説明する。本実施形態に係るエジェクタは、車両空調装置用のエジェクタサイクルに用いられる。図1は二酸化炭素を冷媒とするエジェクタサイクルの模式図であり、図2はエジェクタ40の模式図であり、図3はノズル41の拡大図である。冷媒が作動流体に対応する。
(First embodiment)
The first embodiment will be described below. The ejector according to the present embodiment is used in an ejector cycle for a vehicle air conditioner. 1 is a schematic diagram of an ejector cycle using carbon dioxide as a refrigerant, FIG. 2 is a schematic diagram of an ejector 40, and FIG. 3 is an enlarged view of a nozzle 41. The refrigerant corresponds to the working fluid.
 図1中、圧縮機10は走行用エンジンから動力を得て冷媒を吸入圧縮する周知の可変容量型の圧縮機であり、圧縮機10の吐出容量は、後述する蒸発器30内の温度または圧力が所定範囲内になるように制御される。なお、電動圧縮機のごとく、吐出冷媒流量を回転数により制御することができるものを圧縮機10として採用してもよい。 In FIG. 1, a compressor 10 is a well-known variable capacity compressor that obtains power from a traveling engine and sucks and compresses a refrigerant. The discharge capacity of the compressor 10 is the temperature or pressure in an evaporator 30 to be described later. Is controlled to be within a predetermined range. In addition, you may employ | adopt as the compressor 10 what can control discharge refrigerant | coolant flow volume by rotation speed like an electric compressor.
 放熱器20は圧縮機10から吐出した冷媒と室外空気とを熱交換して冷媒を冷却する高圧側熱交換器である。蒸発器30は、室内に吹き出す空気と液相冷媒とを熱交換させて液相冷媒を蒸発させることにより冷媒を蒸発させて室内に吹き出す空気を冷却する低圧側熱交換器である。 The heat radiator 20 is a high-pressure heat exchanger that cools the refrigerant by exchanging heat between the refrigerant discharged from the compressor 10 and outdoor air. The evaporator 30 is a low-pressure side heat exchanger that cools the air blown into the room by evaporating the liquid by evaporating the liquid phase refrigerant by exchanging heat between the air blown into the room and the liquid phase refrigerant.
 なお、本実施形態では、冷媒を二酸化炭素として、圧縮機10の吐出圧を冷媒の臨界圧力以上としている。放熱器20内で冷媒は凝縮することなく、温度を低下させることでそのエンタルピを低下させる。しかし、例えば冷媒が二酸化炭素ではなくHFC134aであれば、圧縮機10の吐出圧を臨界圧力未満とした場合には、放熱器20内で冷媒は凝縮しながらそのエンタルピを低下させる。 In the present embodiment, the refrigerant is carbon dioxide, and the discharge pressure of the compressor 10 is equal to or higher than the critical pressure of the refrigerant. The refrigerant does not condense in the radiator 20 and its enthalpy is lowered by lowering the temperature. However, if the refrigerant is not carbon dioxide but HFC134a, for example, when the discharge pressure of the compressor 10 is less than the critical pressure, the enthalpy is reduced while the refrigerant is condensed in the radiator 20.
 エジェクタ40は冷媒を減圧膨張させて蒸発器30にて蒸発した気相冷媒を吸引すると共に、膨張エネルギーを圧力エネルギーに変換して圧縮機10の吸入圧を上昇させるものであり、詳細は後述する。 The ejector 40 expands the refrigerant under reduced pressure and sucks the gas-phase refrigerant evaporated in the evaporator 30 and converts the expansion energy into pressure energy to increase the suction pressure of the compressor 10, which will be described in detail later. .
 気液分離器50はエジェクタ40から流出した冷媒が流入すると共に、その流入した冷媒を気相冷媒と液相冷媒とに分離して冷媒を蓄える気液分離部である。気液分離器50の気相冷媒流出口は圧縮機10の吸引側に接続される。気液分離器50の液相冷媒流出口は蒸発器30側の流入側に接続される。絞り60は気液分離器50から流出した液相冷媒を減圧する減圧部である。 The gas-liquid separator 50 is a gas-liquid separator that stores the refrigerant by flowing the refrigerant flowing out from the ejector 40 into the vapor-phase refrigerant and the liquid-phase refrigerant. The gas-phase refrigerant outlet of the gas-liquid separator 50 is connected to the suction side of the compressor 10. The liquid-phase refrigerant outlet of the gas-liquid separator 50 is connected to the inflow side on the evaporator 30 side. The throttle 60 is a decompression unit that decompresses the liquid-phase refrigerant that has flowed out of the gas-liquid separator 50.
 送風機21は放熱器20に冷却風、つまり外気を送風する。送風機31は蒸発器30に室内に吹き出す空気を送風する。 The blower 21 blows cooling air, that is, outside air, to the radiator 20. The blower 31 blows air blown into the evaporator 30 into the room.
 次に、エジェクタ40について述べる。以下、エジェクタ40の先端側のことを、単に先端側と呼ぶ。エジェクタ40は、運動量輸送式のポンプである。エジェクタ40は、図2に示すように、ノズル41、混合部42、ディフューザ43、ニードル44、ハウジング45、ブロック46等を有する。ノズル41は、流入する高圧冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を等エントロピ的に減圧膨張させるプラグノズルである。混合部42は、ノズル41から噴射する高い速度の冷媒流により蒸発器30にて蒸発した気相冷媒を吸引しながら、ノズル41から噴射する冷媒流と当該気相冷媒とを混合する。ディフューザ43は、ノズル41から噴射する冷媒と蒸発器30から吸引した冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させる。 Next, the ejector 40 will be described. Hereinafter, the tip side of the ejector 40 is simply referred to as the tip side. The ejector 40 is a momentum transport type pump. As shown in FIG. 2, the ejector 40 includes a nozzle 41, a mixing unit 42, a diffuser 43, a needle 44, a housing 45, a block 46, and the like. The nozzle 41 is a plug nozzle that converts the pressure energy of the flowing high-pressure refrigerant into velocity energy and decompresses and expands the refrigerant in an isentropic manner. The mixing unit 42 mixes the refrigerant flow injected from the nozzle 41 and the gas-phase refrigerant while sucking the vapor-phase refrigerant evaporated in the evaporator 30 by the high-speed refrigerant flow injected from the nozzle 41. The diffuser 43 converts the velocity energy into pressure energy and increases the pressure of the refrigerant while mixing the refrigerant injected from the nozzle 41 and the refrigerant sucked from the evaporator 30.
 ニードル44は、エジェクタ40の先端側に向かうほど断面積が縮小するように円錐テーパ状に形成される。ここで、断面積とは、ニードル44の軸線に垂直な面で切ったときの断面積をいう。ノズル41およびニードル44は、ステンレス等の金属製であってもよい。ニードル44は、ノズル41に流れ込む高圧冷媒の流量等に応じて、不図示のアクチュエータによって駆動されてニードル44の軸線方向に変位可能となっている。ニードル44は、ノズル41の内部の空間に、ノズル41と同軸に、配置される。 The needle 44 is formed in a conical taper shape so that the cross-sectional area decreases toward the tip side of the ejector 40. Here, the cross-sectional area refers to a cross-sectional area when cut by a plane perpendicular to the axis of the needle 44. The nozzle 41 and the needle 44 may be made of metal such as stainless steel. The needle 44 is driven by an actuator (not shown) according to the flow rate of the high-pressure refrigerant flowing into the nozzle 41 and can be displaced in the axial direction of the needle 44. The needle 44 is disposed coaxially with the nozzle 41 in the space inside the nozzle 41.
 ハウジング45は、混合部42およびディフューザ43を形成する筒状の部材であり、ディフューザ43の流出口45aは気液分離器50の流入口76側に接続されている。ブロック46は、ノズル41を収納すると共に、放熱器20側に接続される高圧冷媒入口46a、および蒸発器30側に接続される低圧冷媒入口46bが設けられた金属製の部材である。ハウジング45とブロック46とは溶接またはろう付けにて接合されている。ハウジング45およびブロック46の材質としては、アルミニウム、ステンレス、黄銅等が考えられる。 The housing 45 is a cylindrical member that forms the mixing portion 42 and the diffuser 43, and the outlet 45 a of the diffuser 43 is connected to the inlet 76 side of the gas-liquid separator 50. The block 46 is a metal member that houses the nozzle 41 and is provided with a high-pressure refrigerant inlet 46a connected to the radiator 20 side and a low-pressure refrigerant inlet 46b connected to the evaporator 30 side. The housing 45 and the block 46 are joined by welding or brazing. As the material of the housing 45 and the block 46, aluminum, stainless steel, brass or the like can be considered.
 そして、ニードル44が同軸上に圧入固定されたノズル41をブロック46に圧入固定することにより、ニードル44およびノズル41がブロック46の内部に組み付けられる。ノズル41を圧入するための穴は蓋46cにより閉塞されている。 Then, the needle 44 and the nozzle 41 which are press-fitted and fixed on the same axis are press-fitted and fixed to the block 46, whereby the needle 44 and the nozzle 41 are assembled inside the block 46. A hole for press-fitting the nozzle 41 is closed by a lid 46c.
 混合部42においては、ノズル41から噴射する冷媒流の運動量と、蒸発器30からエジェクタ40に吸引される冷媒流の運動量との和が保存されるように混合するので、混合部42においても冷媒の静圧が上昇する。 In the mixing unit 42, mixing is performed so that the sum of the momentum of the refrigerant flow ejected from the nozzle 41 and the momentum of the refrigerant flow sucked into the ejector 40 from the evaporator 30 is preserved. Increased static pressure.
 一方、ディフューザ43においては、流路断面積が徐々に拡大することにより、冷媒の動圧が静圧に変換される。したがって、エジェクタ40においては、混合部42およびディフューザ43の両者にて冷媒圧力が上昇する。 On the other hand, in the diffuser 43, the dynamic pressure of the refrigerant is converted into a static pressure by gradually increasing the cross-sectional area of the flow path. Therefore, in the ejector 40, the refrigerant pressure rises in both the mixing unit 42 and the diffuser 43.
 エジェクタ40においては、混合部42で2種類の冷媒流の運動量の和が保存されるように冷媒圧力が増大し、ディフューザ43でエネルギーが保存されるように冷媒圧力が増大することが望ましい。 In the ejector 40, it is desirable that the refrigerant pressure increases so that the sum of momentums of the two refrigerant flows is preserved in the mixing unit 42, and the refrigerant pressure increases so that energy is preserved in the diffuser 43.
 ここで、ニードル44とノズル41の構成についてより詳細に記載する。ニードル44は、図3、図4に示すように、胴部440、第1テーパ部441、第2テーパ部442を有している。胴部440、第1テーパ部441、第2テーパ部442は、全体として一体かつ同軸に成形されている。胴部440は、略円柱形状を有しており、先端側において第1テーパ部441に接続されている。 Here, the configuration of the needle 44 and the nozzle 41 will be described in more detail. As shown in FIGS. 3 and 4, the needle 44 has a body portion 440, a first taper portion 441, and a second taper portion 442. The trunk portion 440, the first taper portion 441, and the second taper portion 442 are integrally and coaxially formed as a whole. The body portion 440 has a substantially cylindrical shape, and is connected to the first taper portion 441 on the distal end side.
 第1テーパ部441は、先端側に向かって先細った略円錐台形形状を有している。第1テーパ部441のデーパー角である第1テーパ角θE1は、本実施形態では一定である。したがって、第1テーパ角θE1は、第1テーパ部441における胴部440側の端から先端側の端まで、一定である。 The first taper portion 441 has a substantially truncated cone shape that is tapered toward the tip side. In the present embodiment, the first taper angle θE1 that is the Dapper angle of the first taper portion 441 is constant. Therefore, the first taper angle θE1 is constant from the end on the body 440 side to the end on the front end side of the first taper portion 441.
 第2テーパ部442は、第1テーパ部441の先端側の端に接続すると共に、更に先端側に向かって先細った略円錐形状を有している。第2テーパ部442のデーパー角である第2テーパ角θE2は、本実施形態では一定である。したがって、第2テーパ角θE2は、第2テーパ部442における第1テーパ部441側の端から先端側の端まで、一定である。 The second taper portion 442 has a substantially conical shape that is connected to the end of the first taper portion 441 on the front end side and is further tapered toward the front end side. In the present embodiment, the second taper angle θE2 that is the Dapper angle of the second taper portion 442 is constant. Therefore, the second taper angle θE2 is constant from the end on the first taper portion 441 side to the end on the tip end side in the second taper portion 442.
 したがって、第1テーパ部441と第2テーパ部442との境界部44x(すなわち変角部)における第1テーパ角θE1よりも、境界部44xにおける第2テーパ角θE2の方が大きい。また、境界部44xにおいて第1テーパ角θE1と第2テーパ角θE2とが不連続になっている。つまり、境界部44xの第1テーパ部441側から第2テーパ部442側にかけて、ニードル44のテーパ角が不連続に急変する。 Therefore, the second taper angle θE2 at the boundary portion 44x is larger than the first taper angle θE1 at the boundary portion 44x (that is, the bendable portion) between the first taper portion 441 and the second taper portion 442. Further, the first taper angle θE1 and the second taper angle θE2 are discontinuous at the boundary portion 44x. That is, the taper angle of the needle 44 changes suddenly and discontinuously from the first taper portion 441 side to the second taper portion 442 side of the boundary portion 44x.
 また、ノズル41のニードル44側の壁面すなわち内壁面は、根元面410、第1絞り面411、第2絞り面412を有する。根元面410、第1絞り面411、第2絞り面412は、胴部440、第1テーパ部441、第2テーパ部442と同軸に配置される。根元面410は、略円筒形状を有して胴部440を囲む。 Further, the wall surface, that is, the inner wall surface of the nozzle 41 on the needle 44 side has a root surface 410, a first diaphragm surface 411, and a second diaphragm surface 412. The root surface 410, the first diaphragm surface 411, and the second diaphragm surface 412 are disposed coaxially with the body portion 440, the first taper portion 441, and the second taper portion 442. The root surface 410 has a substantially cylindrical shape and surrounds the trunk portion 440.
 第1絞り面411は、根元面410の先端側の端に接続すると共に更に先端側に向かって第1テーパ角θZ1で先細っている。第1絞り面411の形状は、円錐台形の側面と概ね同じである。したがって、第1絞り面411は、先端側に向かうにつれて縮径している。このため、第1絞り面411によって囲まれる領域は、先端側に向かうにつれて狭くなっている。ここで、第1絞り面411の径とは、ノズル41の軸線に直交する断面における第1絞り面411の径をいう。 The first diaphragm surface 411 is connected to the tip side end of the root surface 410 and further tapers toward the tip side at a first taper angle θZ1. The shape of the first diaphragm surface 411 is substantially the same as the side surface of the truncated cone. Accordingly, the first diaphragm surface 411 is reduced in diameter toward the distal end side. For this reason, the region surrounded by the first diaphragm surface 411 becomes narrower toward the tip side. Here, the diameter of the first diaphragm surface 411 refers to the diameter of the first diaphragm surface 411 in a cross section orthogonal to the axis of the nozzle 41.
 また、第1絞り面411のテーパ角である第1テーパ角θZ1は、上述の第1テーパ角θE1よりも大きい。したがって、第1絞り面411と第1テーパ部441の間の空隙の流路断面積も、先端側に向かうにつれて減少する。 Also, the first taper angle θZ1, which is the taper angle of the first diaphragm surface 411, is larger than the first taper angle θE1 described above. Therefore, the flow path cross-sectional area of the gap between the first throttle surface 411 and the first taper portion 441 also decreases toward the tip side.
 第2絞り面412は、第1絞り面411の先端側の端に接続すると共に更に先端側に向かって第2テーパ角θZ2で先細っている。第2絞り面412の形状は、円錐の側面と概ね同じである。したがって、第2絞り面412は、先端側に向かうにつれて縮径している。このため、第2絞り面412によって囲まれる領域は、先端側に向かうにつれて狭くなっている。ここで、第2絞り面412の径とは、ノズル41の軸線に直交する断面における第2絞り面412の径をいう。 The second aperture surface 412 is connected to the end of the first aperture surface 411 on the tip side and is further tapered toward the tip side at a second taper angle θZ2. The shape of the second diaphragm surface 412 is substantially the same as the side surface of the cone. Accordingly, the second aperture surface 412 is reduced in diameter toward the tip side. For this reason, the region surrounded by the second diaphragm surface 412 becomes narrower toward the tip side. Here, the diameter of the second diaphragm surface 412 refers to the diameter of the second diaphragm surface 412 in a cross section orthogonal to the axis of the nozzle 41.
 また、第2絞り面412のテーパ角である第2テーパ角θZ2は、上述の第1テーパ角θE1よりも小さい。したがって、第2絞り面412と第1テーパ部441の間の空隙の流路断面積は、先端側に向かうにつれて拡大している場合がある。また、第1絞り面411と第2絞り面412の境界に相当する喉部41xにおいて、第1テーパ角θZ1と第2テーパ角θZ2とは不連続になっている。 Further, the second taper angle θZ2 that is the taper angle of the second diaphragm surface 412 is smaller than the first taper angle θE1 described above. Therefore, the flow path cross-sectional area of the gap between the second throttle surface 412 and the first taper portion 441 may increase as it goes toward the tip side. Further, the first taper angle θZ1 and the second taper angle θZ2 are discontinuous at the throat portion 41x corresponding to the boundary between the first diaphragm surface 411 and the second diaphragm surface 412.
 また、第2絞り面412の第2テーパ角θZ2は、上述の第2テーパ角θE2よりも小さい。したがって、第2絞り面412と第2テーパ部442の間の空隙の流路断面積は、先端側に向かうにつれて拡大している。 Further, the second taper angle θZ2 of the second diaphragm surface 412 is smaller than the above-described second taper angle θE2. Therefore, the flow path cross-sectional area of the gap between the second throttle surface 412 and the second taper portion 442 is increased toward the tip side.
 したがって、ノズル41とニードル44の空隙の流路断面積は、図5の実線71に示すように、軸線CLに沿った位置(以下、軸線方向位置という)によって異なる。ここで、軸線CLは、ニードル44の軸線であると共にノズル41の軸線である。また、ある軸線方向位置における流路断面積は、当該軸線方向位置を通り軸線CLの方向に直交する断面における、ノズル41とニードル44の間の空隙の面積をいう。ただし、当該断面にニードル44がなければ、当該断面においてノズル41に囲まれた部分の面積が、流路断面積となる。 Therefore, the channel cross-sectional area of the gap between the nozzle 41 and the needle 44 varies depending on the position along the axis CL (hereinafter referred to as the axial position), as indicated by the solid line 71 in FIG. Here, the axis CL is the axis of the needle 44 and the axis of the nozzle 41. The flow path cross-sectional area at a certain axial position refers to the area of the gap between the nozzle 41 and the needle 44 in a cross section that passes through the axial position and is orthogonal to the direction of the axis CL. However, if the needle 44 is not present in the cross section, the area of the portion surrounded by the nozzle 41 in the cross section becomes the flow path cross sectional area.
 実線71に示すように、第1絞り面411に対応する軸線方向位置では、喉部41xに対応する軸線方向位置P1に向かって流路断面積は一定の減少率で減り続ける。そして、軸線方向位置P1において流路断面積は減少から増大に転じる。つまり、軸線方向位置P1において、流路断面積は極小かつ最小になる。そして、軸線方向位置P1から境界部44xに対応する軸線方向位置P2まで、流路断面積は一定の増加率で増加し続ける。更に、軸線方向位置P2において、流路断面積の増加率は不連続に増大する。そして、軸線方向位置P2からノズル41の先端に対応する軸線方向位置P3まで、流路断面積は当該増大後の増加率を維持して増加し続ける。このように、軸線CL方向に沿った喉部41xが、流路断面積を極小かつ最小にする。なお、増加率とは、軸線方向位置を先端側に単位距離だけ変化させたときの流路断面積の増加量をいう。 As shown by the solid line 71, at the axial position corresponding to the first throttle surface 411, the flow path cross-sectional area continues to decrease at a constant reduction rate toward the axial position P1 corresponding to the throat 41x. Then, at the axial position P1, the channel cross-sectional area turns from decreasing to increasing. That is, the channel cross-sectional area is minimal and minimal at the axial position P1. The flow path cross-sectional area continues to increase at a constant increase rate from the axial position P1 to the axial position P2 corresponding to the boundary portion 44x. Furthermore, at the axial direction position P2, the increasing rate of the channel cross-sectional area increases discontinuously. Then, from the axial position P2 to the axial position P3 corresponding to the tip of the nozzle 41, the flow path cross-sectional area continues to increase while maintaining the increased rate after the increase. Thus, the throat portion 41x along the direction of the axis CL minimizes and minimizes the flow path cross-sectional area. The rate of increase refers to the amount of increase in the cross-sectional area of the channel when the axial position is changed by a unit distance toward the tip side.
 なお、図4、図5の例では、喉部41xよりも境界部44xの方が軸線CL方向の先端側に位置する。エジェクタ40が使用される際は、殆どの場合この位置関係が実現する。なお、ニードル44の先端は、ノズル41の先端よりも更にエジェクタ40の先端側にあってもよいし、当該先端側とは反対側にあってもよい。 In the examples of FIGS. 4 and 5, the boundary portion 44x is positioned closer to the distal end side in the axis CL direction than the throat portion 41x. This positional relationship is realized in most cases when the ejector 40 is used. The tip of the needle 44 may be further on the tip side of the ejector 40 than the tip of the nozzle 41, or may be on the side opposite to the tip side.
 ここで、第1テーパ角θE1、第2テーパ角θE2、第1テーパ角θZ1、第2テーパ角θZ2の間の関係についてまとめると、θZ2<θE1<θE2となる。一般的な使用条件においてエジェクタ40のノズル41では、ノズル41の内部を通る冷媒が音速以上にまで加速される。それを実現するため、冷媒の流路断面積は徐々に縮小していき、流路断面積が最小になる喉部41xを通過後に徐々に増えていくことが好ましい。実際、本実施形態では、冷媒流れの上流から下流に向けて流路断面積が徐々に小さくなり、喉部41xで最小となり、喉部41xよりも下流部分では流路断面積が広がっていく。上記のような構造となるために、上述の角度関係となることが望ましい。なお、本実施形態では、θE1<θZ1という関係も実現する。 Here, the relationship among the first taper angle θE1, the second taper angle θE2, the first taper angle θZ1, and the second taper angle θZ2 is summarized as follows: θZ2 <θE1 <θE2. In general usage conditions, the nozzle 41 of the ejector 40 accelerates the refrigerant passing through the nozzle 41 to a speed higher than the speed of sound. In order to realize this, it is preferable that the flow path cross-sectional area of the refrigerant gradually decreases and gradually increases after passing through the throat portion 41x where the flow path cross-sectional area is minimized. In fact, in the present embodiment, the flow path cross-sectional area gradually decreases from the upstream to the downstream of the refrigerant flow, becomes minimum at the throat portion 41x, and the flow path cross-sectional area increases at the downstream portion from the throat portion 41x. In order to obtain the above-described structure, it is desirable that the above-described angular relationship be satisfied. In the present embodiment, the relationship θE1 <θZ1 is also realized.
 次に、エジェクタサイクルの概略作動について説明する。圧縮機10から吐出された冷媒は放熱器20側で冷却された後、エジェクタ40の高圧冷媒入口46aからノズル41の内部の流体流路に流れ込む。ノズル41の内部に流れ込んだ冷媒は、喉部41xにおいて等エントロピ的に減圧膨張されて沸騰する。この際、冷媒の圧力エネルギーが速度エネルギーに変換され、ノズル41の先端から気液二相状態の冷媒が音速以上の高速度となって噴射される。そして、蒸発器30にて蒸発した気相冷媒が、この噴射された冷媒による巻き込み作用により、低圧冷媒入口46bからノズル41とブロック46の間を通って、ノズル41の外部から混合部42に吸引される。 Next, the general operation of the ejector cycle will be described. The refrigerant discharged from the compressor 10 is cooled on the radiator 20 side, and then flows into the fluid flow path inside the nozzle 41 from the high-pressure refrigerant inlet 46a of the ejector 40. The refrigerant that has flowed into the nozzle 41 is isentropically decompressed and expanded in the throat portion 41x to boil. At this time, the pressure energy of the refrigerant is converted into velocity energy, and the gas-liquid two-phase refrigerant is ejected from the tip of the nozzle 41 at a high speed equal to or higher than the speed of sound. Then, the gas-phase refrigerant evaporated in the evaporator 30 is sucked from the outside of the nozzle 41 to the mixing unit 42 through the space between the nozzle 41 and the block 46 by the entrainment effect of the injected refrigerant. Is done.
 ノズル41の先端から噴射された冷媒と低圧冷媒入口46bより吸引された冷媒は、混合部42へ流入した後に混合部42で互いに混合される。そして、混合部42で混合された冷媒は、ディフューザ43に入る。ディフューザ43では、冷媒通路面積の拡大によって冷媒の速度エネルギーが圧力エネルギーに変換されて冷媒の圧力が上昇する。ディフューザ43を通った冷媒は、流出口45aから流出して気液分離器50に流入する。気液分離器50に流入した冷媒のうち気相冷媒は、圧縮機10に吸入されて再び圧縮される。また、気液分離器50に流入した冷媒のうち液相冷媒は絞り60で再度減圧された後に蒸発器30で蒸発する。 The refrigerant injected from the tip of the nozzle 41 and the refrigerant sucked from the low-pressure refrigerant inlet 46 b are mixed with each other in the mixing unit 42 after flowing into the mixing unit 42. The refrigerant mixed in the mixing unit 42 enters the diffuser 43. In the diffuser 43, the speed energy of the refrigerant is converted into pressure energy by increasing the refrigerant passage area, and the pressure of the refrigerant increases. The refrigerant that has passed through the diffuser 43 flows out from the outlet 45a and flows into the gas-liquid separator 50. Of the refrigerant flowing into the gas-liquid separator 50, the gas-phase refrigerant is sucked into the compressor 10 and compressed again. Further, the liquid phase refrigerant out of the refrigerant flowing into the gas-liquid separator 50 is decompressed again by the throttle 60 and then evaporated by the evaporator 30.
 このように、エジェクタ40の巻き込み作用が発揮されるときに、ノズル41は多くの場合図4、図5のような配置にある。つまり、第1テーパ部441は第1絞り面411にも第2絞り面412にも対向し、第2テーパ部442は一部または全部が第2テーパ部442に対向する。そして、喉部41xの軸線方向位置よりも境界部44xの軸線方向位置の方が先端側にある。 In this way, when the ejecting action of the ejector 40 is exerted, the nozzle 41 is often arranged as shown in FIGS. That is, the first taper portion 441 faces both the first diaphragm surface 411 and the second diaphragm surface 412, and part or all of the second taper portion 442 faces the second taper portion 442. And the axial direction position of the boundary part 44x exists in the front end side rather than the axial direction position of the throat part 41x.
 このような場合、図5に示したように、境界部44xにおいて先端側に向けて流路断面積の増加率が不連続に増大するので、境界部44xにおいても冷媒の沸騰が発生する可能性がある。 In such a case, as shown in FIG. 5, the rate of increase in the cross-sectional area of the flow path increases discontinuously toward the front end side at the boundary portion 44 x, so that the refrigerant may also boil at the boundary portion 44 x. There is.
 しかし、本実施形態では、既に説明した通り、第2絞り面412によって囲まれる領域が先端側に向かうにつれて狭くなっている。ここで、ノズル41の第2絞り面412によって囲まれる領域が、本実施形態とは異なり、先端側に向かうにつれて狭くならず広さ一定になっている比較例について、図5を参照して説明する。この比較例では、図5の点線72のように、軸線方向位置P2から軸線方向位置P3までの範囲で、流路断面積の増加率が、実線71よりも大きくなってしまう。このような例では、境界部44xにおいて沸騰が発生する。つまり、沸騰遅れが発生する。沸騰遅れとは、喉部41xよりも冷媒流れ下流で沸騰が発生することをいう。沸騰遅れが発生すると、喉部41xにおいて沸騰が発生しにくくなる。ひいては、エジェクタ40のエネルギー回収効率が低下する。 However, in the present embodiment, as already described, the region surrounded by the second diaphragm surface 412 becomes narrower toward the tip side. Here, unlike the present embodiment, a comparative example in which the region surrounded by the second diaphragm surface 412 of the nozzle 41 is not narrowed toward the front end side and is constant in width will be described with reference to FIG. To do. In this comparative example, as shown by the dotted line 72 in FIG. 5, the increasing rate of the flow path cross-sectional area is larger than the solid line 71 in the range from the axial position P2 to the axial position P3. In such an example, boiling occurs at the boundary 44x. That is, a boiling delay occurs. Boiling delay means that boiling occurs in the refrigerant flow downstream of the throat 41x. When the boiling delay occurs, it becomes difficult for boiling to occur in the throat 41x. As a result, the energy recovery efficiency of the ejector 40 decreases.
 ここで、エネルギー回収効率とは、冷媒の膨張によって発生する損失を運動エネルギーとして回収することのできる割合をいう。エジェクタ40は、喉部41xで沸騰を発生させることによりエネルギー回収効率を最大化するよう、設計されている。したがって、ノズル41よりも先端側で沸騰が発生すると、エネルギー回収効率が低下する。 Here, energy recovery efficiency refers to the rate at which loss generated by expansion of the refrigerant can be recovered as kinetic energy. The ejector 40 is designed to maximize energy recovery efficiency by causing boiling at the throat 41x. Therefore, when boiling occurs on the tip side of the nozzle 41, the energy recovery efficiency decreases.
 これに対し、本実施形態では、第2絞り面412によって囲まれる領域が先端側に向かうにつれて狭くなっている。これにより、比較例の場合よりも境界部44xより先端側での流路断面の急激な増加を抑制することができる。その結果、境界部44xにおける沸騰の発生を抑制することができ、ひいては、喉部41xにおける沸騰が発生し易くなる。したがって、仮に沸騰遅れが発生したとしても、沸騰遅れに起因して発生するエネルギー回収効率の低下を抑制することができる。 In contrast, in the present embodiment, the region surrounded by the second diaphragm surface 412 becomes narrower toward the tip side. As a result, it is possible to suppress a rapid increase in the cross section of the flow path on the tip side from the boundary portion 44x as compared with the comparative example. As a result, the occurrence of boiling at the boundary portion 44x can be suppressed, and consequently boiling at the throat portion 41x is likely to occur. Therefore, even if a boiling delay occurs, it is possible to suppress a decrease in energy recovery efficiency that occurs due to the boiling delay.
 また、先細る第2テーパ部442をニードル44が有している。このようになっていることで、冷媒の慣性力で軸線CLに流れが集まる。これにより、適正な自由膨張を促進することができる。 Also, the needle 44 has a tapered second tapered portion 442. As a result, the flow gathers on the axis CL due to the inertial force of the refrigerant. Thereby, appropriate free expansion can be promoted.
 以上説明した通り、エジェクタ40において巻き込み作用が発揮されるとき、ノズル41の内壁面の喉部41xよりも先端側は、当該内壁面によって囲まれる領域を先端側に向かって狭める形状を有する。このようになっていることで、境界部44xにおける沸騰を抑制することができる。その結果、意図した部分以外で冷媒が沸騰して沸騰遅れが発生してしまうことに起因して発生するエネルギー回収効率の低下を抑制することができる。 As described above, when the entraining action is exerted in the ejector 40, the tip side of the inner wall surface of the nozzle 41 has a shape that narrows the region surrounded by the inner wall surface toward the tip side. With this configuration, boiling at the boundary 44x can be suppressed. As a result, it is possible to suppress a decrease in energy recovery efficiency that occurs due to boiling of the refrigerant at a portion other than the intended portion, resulting in a boiling delay.
 (第2実施形態)
 次に第2実施形態について説明する。本実施形態は、第1実施形態に対し、ニードル44の形状が変更されている。その他は、第1実施形態と同様である。
(Second Embodiment)
Next, a second embodiment will be described. In the present embodiment, the shape of the needle 44 is changed with respect to the first embodiment. Others are the same as in the first embodiment.
 本実施形態では、図6に示す様に、境界部44xより先端側の部分すなわち第2テーパ部442の形状が、第1実施形態と異なっている。本実施形態では、第2テーパ部442は、第1実施形態と同様、エジェクタ40の先端側に向かって先細っている。しかし、第2テーパ部442の先端部の表面は、第1実施形態とは異なり、滑らかな曲面となっている。なお、第1実施形態では、第2テーパ部442の先端部は尖っている。 In this embodiment, as shown in FIG. 6, the shape of the portion on the tip side from the boundary portion 44x, that is, the second taper portion 442 is different from that of the first embodiment. In this embodiment, the 2nd taper part 442 is tapering toward the front end side of the ejector 40 similarly to 1st Embodiment. However, unlike the first embodiment, the surface of the tip of the second taper portion 442 is a smooth curved surface. In the first embodiment, the tip of the second taper portion 442 is sharp.
 このようになっていることで、ニードル44の全長を抑えることができる。ただしその一方で、第2テーパ部442の表面において渦が発生する可能性が高くなる。 In this way, the entire length of the needle 44 can be suppressed. However, on the other hand, the possibility that vortices are generated on the surface of the second tapered portion 442 is increased.
 また、本実施形態においても、境界部44xにおける第2テーパ部442のテーパ角である第2テーパ角θE2の方が、第1テーパ角θE1よりも大きい。また、境界部44xにおいて第1テーパ角θE1と第2テーパ角θE2とが不連続になっている。したがって、第1実施形態と同様、第2絞り面412によって囲まれる領域が先端側に向かうにつれて狭くなっていることで、第1実施形態と同等の効果を得ることができる。 Also in the present embodiment, the second taper angle θE2, which is the taper angle of the second taper portion 442 at the boundary portion 44x, is larger than the first taper angle θE1. Further, the first taper angle θE1 and the second taper angle θE2 are discontinuous at the boundary portion 44x. Therefore, as in the first embodiment, the area surrounded by the second diaphragm surface 412 becomes narrower toward the distal end side, so that an effect equivalent to that of the first embodiment can be obtained.
 (第3実施形態)
 次に第3実施形態について説明する。本実施形態は、第1実施形態に対し、第1絞り面411、第2絞り面412の形状が変更されている。その他は、第1実施形態と同様である。本実施形態では、図7に示すように、軸線CLを含む平面で第1絞り面411を切断したときの断面は、滑らかな曲線となっている。また同様に、軸線CLを含む平面で第2絞り面412を切断したときの断面も、滑らかな曲線となっている。
(Third embodiment)
Next, a third embodiment will be described. In the present embodiment, the shapes of the first diaphragm surface 411 and the second diaphragm surface 412 are changed with respect to the first embodiment. Others are the same as in the first embodiment. In the present embodiment, as shown in FIG. 7, the cross section when the first diaphragm surface 411 is cut along a plane including the axis line CL is a smooth curve. Similarly, the cross section when the second diaphragm surface 412 is cut along a plane including the axis CL is also a smooth curve.
 したがって、第1テーパ角θZ1および第2テーパ角θZ2は、どちらも、一定ではない。具体的には、第1テーパ角θZ1は、エジェクタ40の先端に向かうにつれて減少している。また、第2テーパ角θZ2は、エジェクタ40の先端に向かうにつれて減少していき、ノズル41の最先端で0度になる。 Therefore, neither the first taper angle θZ1 nor the second taper angle θZ2 is constant. Specifically, the first taper angle θZ1 decreases as it goes toward the tip of the ejector 40. Further, the second taper angle θZ2 decreases toward the tip of the ejector 40, and becomes 0 degree at the forefront of the nozzle 41.
 しかも、本実施形態では、喉部41xにおいて第1テーパ角θZ1と第2テーパ角θZ2とが連続になっている。すなわち、喉部41xにおける第1テーパ角θZ1と第2テーパ角θZ2とは同じである。第1絞り面411、第2絞り面412をこのような形状とすることで、ノズル41の加工難度は上がるが、エネルギー回収効率は上昇する。 Moreover, in the present embodiment, the first taper angle θZ1 and the second taper angle θZ2 are continuous in the throat portion 41x. That is, the first taper angle θZ1 and the second taper angle θZ2 in the throat portion 41x are the same. By forming the first diaphragm surface 411 and the second diaphragm surface 412 in such a shape, the processing difficulty of the nozzle 41 increases, but the energy recovery efficiency increases.
 この場合でも、ノズル41とニードル44の間を通る冷媒の流路断面積を極小かつ最小にする部分が、第1絞り面411と第2絞り面412の境界となる。そしてこの境界が喉部41xである。 Even in this case, the portion that minimizes and minimizes the cross-sectional area of the refrigerant flow path between the nozzle 41 and the needle 44 is the boundary between the first throttle surface 411 and the second throttle surface 412. This boundary is the throat 41x.
 本実施形態においても、エジェクタ40が作動して巻き込み作用が発揮されるとき、殆どの場合、第1テーパ部441が喉部41xに対向する。この場合、第1テーパ部441の形状によっては、喉部41xの位置がノズル41の軸線方向位置の変化に応じて変化する場合もあれば、喉部41xの位置がノズル41の軸線方向位置によらず一定となる場合もある。いずれの場合も、巻き込み作用が発揮されるとき、喉部41xよりも境界部44xの方がエジェクタ40の先端側にある。したがって、本実施形態においても、第1実施形態と同等の効果を得ることができる。 Also in this embodiment, when the ejector 40 is actuated to exert the entrainment effect, in most cases, the first taper portion 441 faces the throat portion 41x. In this case, depending on the shape of the first taper portion 441, the position of the throat portion 41x may change according to the change in the axial position of the nozzle 41, or the position of the throat portion 41x may be changed to the axial position of the nozzle 41. It may be constant regardless of the case. In any case, when the entrainment effect is exerted, the boundary portion 44x is closer to the distal end side of the ejector 40 than the throat portion 41x. Therefore, also in this embodiment, an effect equivalent to that of the first embodiment can be obtained.
 (第4実施形態)
 次に第4実施形態について説明する。本実施形態に係るエジェクタは、車両空調装置用のエジェクタサイクルに用いられる。図8は、二酸化炭素を冷媒とするエジェクタサイクルの模式図である。
(Fourth embodiment)
Next, a fourth embodiment will be described. The ejector according to the present embodiment is used in an ejector cycle for a vehicle air conditioner. FIG. 8 is a schematic diagram of an ejector cycle using carbon dioxide as a refrigerant.
 このエジェクタサイクルは、熱交換対象流体である室内送風空気を冷却する冷房運転モードと、室内送風空気を加熱する暖房運転モードを切替可能に構成されている。図8における実線矢印は、冷房運転モード時における冷媒の流れを示し、破線矢印は、暖房運転モードにおける冷媒の流れを示す。 This ejector cycle is configured to be capable of switching between a cooling operation mode for cooling indoor blown air that is a heat exchange target fluid and a heating operation mode for heating indoor blown air. The solid line arrows in FIG. 8 indicate the refrigerant flow in the cooling operation mode, and the broken line arrows indicate the refrigerant flow in the heating operation mode.
 このエジェクタサイクルは、エジェクタ40、圧縮機111、アキュムレータ114、絞り115、第1四方弁141、室外熱交換器142、送風機142a、第2四方弁143、利用側熱交換器144、送風機144aを有している。エジェクタ40の構造は、大まかには図2に示した通りである。エジェクタ40の詳細構成については後述する。 This ejector cycle includes an ejector 40, a compressor 111, an accumulator 114, a throttle 115, a first four-way valve 141, an outdoor heat exchanger 142, a blower 142a, a second four-way valve 143, a use side heat exchanger 144, and a blower 144a. is doing. The structure of the ejector 40 is roughly as shown in FIG. The detailed configuration of the ejector 40 will be described later.
 圧縮機111は、第1実施形態の圧縮機10と同様の機能を有する装置である。アキュムレータ114は、第1実施形態の気液分離器50と同様、エジェクタ40から流出した冷媒が流入すると共に、その流入した冷媒を気相冷媒と液相冷媒とに分離して冷媒を蓄える気液分離部である。アキュムレータ114の気相冷媒流出口は圧縮機111の吸引側に接続される。アキュムレータ114の液相冷媒流出口は利用側熱交換器144の流入側に接続される。絞り115はアキュムレータ114から流出した液相冷媒を減圧する減圧部である。 The compressor 111 is a device having the same function as the compressor 10 of the first embodiment. As with the gas-liquid separator 50 of the first embodiment, the accumulator 114 is a gas-liquid that stores the refrigerant by flowing the refrigerant flowing out from the ejector 40 into the vapor-phase refrigerant and the liquid-phase refrigerant. It is a separation part. The gas-phase refrigerant outlet of the accumulator 114 is connected to the suction side of the compressor 111. The liquid-phase refrigerant outlet of the accumulator 114 is connected to the inflow side of the use side heat exchanger 144. The throttle 115 is a decompression unit that decompresses the liquid-phase refrigerant that has flowed out of the accumulator 114.
 圧縮機111の冷媒吐出側には、第1四方弁141が接続されている。この第1四方弁141は、不図示の制御装置から出力される制御信号によって、その作動が制御される電気式の冷媒流路切替部である。具体的には、第1四方弁141は、図8に実線矢印で示す冷媒流路と、図8に破線矢印で示す冷媒流路とを切り替える。 A first four-way valve 141 is connected to the refrigerant discharge side of the compressor 111. The first four-way valve 141 is an electric refrigerant flow switching unit whose operation is controlled by a control signal output from a control device (not shown). Specifically, the first four-way valve 141 switches between a refrigerant flow path indicated by a solid arrow in FIG. 8 and a refrigerant flow path indicated by a broken arrow in FIG.
 図8に実線矢印で示す冷媒流路においては、圧縮機111の吐出口側と室外熱交換器142との間が接続されると共に、絞り115の流出側と利用側熱交換器144との間が接続される。図8に破線矢印で示す冷媒流路においては、圧縮機111の吐出口側と利用側熱交換器144との間が接続されると共に、絞り115の流出側と室外熱交換器142との間が接続される。 In the refrigerant flow path indicated by the solid line arrow in FIG. 8, the outlet side of the compressor 111 and the outdoor heat exchanger 142 are connected, and the outlet side of the throttle 115 and the use side heat exchanger 144 are connected. Is connected. In the refrigerant flow path indicated by the broken line arrow in FIG. 8, the discharge port side of the compressor 111 and the use side heat exchanger 144 are connected, and between the outflow side of the throttle 115 and the outdoor heat exchanger 142. Is connected.
 室外熱交換器142の出口側には、第2四方弁143が接続されている。この第2四方弁143は、上記制御装置から出力される制御信号によって、その作動が制御される電気式の冷媒流路切替部である。具体的には、第1四方弁141は、図8に実線矢印で示す冷媒流路と、図8に破線矢印で示す冷媒流路とを切り替える。 A second four-way valve 143 is connected to the outlet side of the outdoor heat exchanger 142. The second four-way valve 143 is an electric refrigerant flow switching unit whose operation is controlled by a control signal output from the control device. Specifically, the first four-way valve 141 switches between a refrigerant flow path indicated by a solid arrow in FIG. 8 and a refrigerant flow path indicated by a broken arrow in FIG.
 図8に実線矢印で示す冷媒流路においては、室外熱交換器142とエジェクタ40の高圧冷媒入口46a側との間が接続されると共に、利用側熱交換器144とエジェクタ40の低圧冷媒入口46b側との間が同時に接続される。図8に破線矢印で示す冷媒流路においては、室外熱交換器142とエジェクタ40の低圧冷媒入口46b側との間が接続されると共に、利用側熱交換器144とエジェクタ40の高圧冷媒入口46a側との間が同時に接続される。 In the refrigerant flow path indicated by the solid line arrow in FIG. 8, the outdoor heat exchanger 142 and the high-pressure refrigerant inlet 46a side of the ejector 40 are connected, and the use-side heat exchanger 144 and the low-pressure refrigerant inlet 46b of the ejector 40 are connected. Are connected at the same time. In the refrigerant flow path indicated by the broken line arrow in FIG. 8, the outdoor heat exchanger 142 and the low pressure refrigerant inlet 46b side of the ejector 40 are connected, and the use side heat exchanger 144 and the high pressure refrigerant inlet 46a of the ejector 40 are connected. Are connected at the same time.
 室外熱交換器142は、第1四方弁141から流出した冷媒と、送風機142aにより送風される室外空気とを熱交換する熱交換器である。利用側熱交換器144は、その内部を通過する冷媒と送風機144aにより送風される熱交換対象流体である室内送風空気とを熱交換させる熱交換器である。 The outdoor heat exchanger 142 is a heat exchanger that exchanges heat between the refrigerant flowing out of the first four-way valve 141 and the outdoor air blown by the blower 142a. The use side heat exchanger 144 is a heat exchanger that exchanges heat between the refrigerant passing through the inside and the indoor blown air that is the heat exchange target fluid blown by the blower 144a.
 エジェクタ40は、第1実施形態と同様、ノズル41、混合部42、ディフューザ43、ニードル44、ハウジング45、ブロック46等を有する。混合部42、ディフューザ43、ハウジング45、ブロック46等の、ノズル41およびニードル44以外の構成は、第1実施形態と同じである。 The ejector 40 includes a nozzle 41, a mixing unit 42, a diffuser 43, a needle 44, a housing 45, a block 46, and the like, as in the first embodiment. The components other than the nozzle 41 and the needle 44, such as the mixing unit 42, the diffuser 43, the housing 45, and the block 46, are the same as those in the first embodiment.
 ここで、ニードル44とノズル41の構成についてより詳細に記載する。ニードル44は、エジェクタ40の先端側(すなわち、冷媒の流出側)に向かうほど断面積が縮小するように円錐テーパ状に形成される。ここで、断面積とは、ニードル44の軸線に垂直な面で切ったときの断面積をいう。ノズル41およびニードル44は、ステンレス等の金属製であってもよい。ニードル44は、ノズル41に流れ込む高圧冷媒の流量等に応じて、不図示のアクチュエータによって駆動されてニードル44の軸線方向に変位可能となっている。ニードル44は、ノズル41の内部の空間に、ノズル41と同軸に、配置される。 Here, the configuration of the needle 44 and the nozzle 41 will be described in more detail. The needle 44 is formed in a conical taper shape so that the cross-sectional area decreases toward the tip end side (that is, the refrigerant outflow side) of the ejector 40. Here, the cross-sectional area refers to a cross-sectional area when cut by a plane perpendicular to the axis of the needle 44. The nozzle 41 and the needle 44 may be made of metal such as stainless steel. The needle 44 is driven by an actuator (not shown) according to the flow rate of the high-pressure refrigerant flowing into the nozzle 41 and can be displaced in the axial direction of the needle 44. The needle 44 is disposed coaxially with the nozzle 41 in the space inside the nozzle 41.
 ニードル44は、図9に示すように、胴部440、第1テーパ部441を有している。胴部440、第1テーパ部441は、全体として一体かつ同軸に成形されている。胴部440は、略円柱形状を有しており、先端側において第1テーパ部441に接続されている。 The needle 44 has a body portion 440 and a first taper portion 441 as shown in FIG. The trunk portion 440 and the first taper portion 441 are integrally and coaxially formed as a whole. The body portion 440 has a substantially cylindrical shape, and is connected to the first taper portion 441 on the distal end side.
 第1テーパ部441は、ノズル41の内部において上記内壁面に囲まれた流体流路における流出側(すなわち先端側)に向かって先細った略円錐形状を有している。第1テーパ部441のデーパー角である第1テーパ角θE1は、本実施形態では一定である。したがって、第1テーパ角θE1は、第1テーパ部441における胴部440側の端から先端側の端まで、一定である。本実施形態では、第1実施形態で示した第2テーパ部442は存在しない。すなわち、第1テーパ部441は、ニードル44の最も先端側にある部材である。そして、第1テーパ部441は、その先端側において尖っている。このように、本実施形態では、胴部440よりも先端側の部分は、一定の第1テーパ角θE1を有している。 The first taper portion 441 has a substantially conical shape tapered toward the outflow side (that is, the front end side) of the fluid flow path surrounded by the inner wall surface inside the nozzle 41. In the present embodiment, the first taper angle θE1 that is the Dapper angle of the first taper portion 441 is constant. Therefore, the first taper angle θE1 is constant from the end on the body 440 side to the end on the front end side of the first taper portion 441. In the present embodiment, the second tapered portion 442 shown in the first embodiment does not exist. That is, the first taper portion 441 is a member that is on the most distal end side of the needle 44. And the 1st taper part 441 is sharp in the front end side. Thus, in the present embodiment, the portion on the tip side of the body portion 440 has a constant first taper angle θE1.
 また、ノズル41のニードル44側の壁面すなわち内壁面は、根元面410、第1絞り面411、第2絞り面412を有する。根元面410、第1絞り面411、第2絞り面412は、胴部440、第1テーパ部441、第2テーパ部442と同軸に配置される。根元面410は、略円筒形状を有してニードル44の主に胴部440および場合によっては第1テーパ部441を囲む。 Further, the wall surface, that is, the inner wall surface of the nozzle 41 on the needle 44 side has a root surface 410, a first diaphragm surface 411, and a second diaphragm surface 412. The root surface 410, the first diaphragm surface 411, and the second diaphragm surface 412 are disposed coaxially with the body portion 440, the first taper portion 441, and the second taper portion 442. The root surface 410 has a substantially cylindrical shape, and mainly surrounds the body portion 440 and, in some cases, the first taper portion 441 of the needle 44.
 第1絞り面411は、根元面410の先端側の端に接続すると共に更に先端側に向かって第1テーパ角θZ1で先細っている。第1絞り面411の形状は、円錐台形の側面と概ね同じである。したがって、第1絞り面411は、先端側に向かうにつれて縮径している。このため、第1絞り面411によって囲まれる領域は、先端側に向かうにつれて狭くなっている。 The first diaphragm surface 411 is connected to the tip side end of the root surface 410 and further tapers toward the tip side at a first taper angle θZ1. The shape of the first diaphragm surface 411 is substantially the same as the side surface of the truncated cone. Accordingly, the first diaphragm surface 411 is reduced in diameter toward the distal end side. For this reason, the region surrounded by the first diaphragm surface 411 becomes narrower toward the tip side.
 また、第1絞り面411のテーパ角である第1テーパ角θZ1は、上述の第1テーパ角θE1よりも大きい。したがって、第1絞り面411と第1テーパ部441の間の空隙の流路断面積も、先端側に向かうにつれて減少する。 Also, the first taper angle θZ1, which is the taper angle of the first diaphragm surface 411, is larger than the first taper angle θE1 described above. Therefore, the flow path cross-sectional area of the gap between the first throttle surface 411 and the first taper portion 441 also decreases toward the tip side.
 第2絞り面412は、第1絞り面411の先端側の端に接続すると共に更に先端側に向かって一定の第2テーパ角θZ2で、連続的かつ滑らかに先細っている。第2絞り面412の形状は、円錐の側面と概ね同じである。したがって、第2絞り面412は、先端側に向かうにつれて縮径している。 The second diaphragm surface 412 is connected to the end of the first diaphragm surface 411 on the distal end side, and further tapers continuously and smoothly at a constant second taper angle θZ2 toward the distal end side. The shape of the second diaphragm surface 412 is substantially the same as the side surface of the cone. Accordingly, the second aperture surface 412 is reduced in diameter toward the tip side.
 このため、第2絞り面412によって囲まれる領域は、先端側に向かうにつれて狭くなっている。別の言い方をすれば、ある軸線方向位置を通り軸線CLの方向に直交する面において、第2絞り面412に囲まれる領域の面積は、当該軸線方向位置が先端方向に向かうほど、連続的かつ緩やかに、小さくなる。第2絞り面412の先端側の端部は、ノズル41の出口41zに相当する。この円形の出口41zを通って冷媒はノズル41の内部から外部に流出する。 For this reason, the region surrounded by the second diaphragm surface 412 becomes narrower toward the tip side. In other words, the area of the region surrounded by the second diaphragm surface 412 on a surface passing through a certain axial position and orthogonal to the direction of the axial line CL is continuous as the axial position moves toward the tip. Slowly becomes smaller. The end of the second diaphragm surface 412 on the front end side corresponds to the outlet 41z of the nozzle 41. The refrigerant flows out from the inside of the nozzle 41 through the circular outlet 41z.
 このように、出口41zは、ノズル41の上記内壁面において、流体流路におけるエジェクタ40の先端側の端部に位置する。そして、喉部41xは、出口41zよりも当該先端側とは反対側に位置してニードル44に向かって突出する。喉部41xがニードル44に向かって突出するのは、第1テーパ角θZ1が第2テーパ角θZ2よりも大きいからである。 Thus, the outlet 41z is located on the inner wall surface of the nozzle 41 at the end of the ejector 40 in the fluid flow path. The throat portion 41x is located on the opposite side of the distal end side from the outlet 41z and protrudes toward the needle 44. The reason why the throat portion 41x protrudes toward the needle 44 is that the first taper angle θZ1 is larger than the second taper angle θZ2.
 喉部41xの径よりも、出口41zの径の方が小さい。したがって、喉部41xの周長よりも、出口41zの周長の方が短い。ここで、喉部41xの周長とは、喉部41xに沿ってノズル41の軸線の周りを一周する長さである。また、出口41zの周長とは、出口41zに沿ってノズル41の軸線の周りを一周する長さである。 The diameter of the outlet 41z is smaller than the diameter of the throat 41x. Therefore, the circumference of the outlet 41z is shorter than the circumference of the throat 41x. Here, the circumferential length of the throat portion 41x is a length that goes around the axis of the nozzle 41 along the throat portion 41x. Further, the peripheral length of the outlet 41z is a length that goes around the axis of the nozzle 41 along the outlet 41z.
 また、第2絞り面412のテーパ角である第2テーパ角θZ2は、上述の第1テーパ角θE1よりも小さい。また、第1絞り面411と第2絞り面412の境界に相当する喉部41xにおいて、第1テーパ角θZ1と第2テーパ角θZ2とは不連続になっている。 Further, the second taper angle θZ2 that is the taper angle of the second diaphragm surface 412 is smaller than the first taper angle θE1 described above. Further, the first taper angle θZ1 and the second taper angle θZ2 are discontinuous at the throat portion 41x corresponding to the boundary between the first diaphragm surface 411 and the second diaphragm surface 412.
 ここで、ノズル41とニードル44の間の空隙の流路断面積について説明する。ここで、ある軸線方向位置における流路断面積は、当該軸線方向位置を通り軸線CLに直交する断面における、ノズル41とニードル44の間の空隙の面積をいう。ただし、当該断面にニードル44がなければ、当該断面においてノズル41に囲まれた部分の面積が、流路断面積となる。 Here, the flow path cross-sectional area of the gap between the nozzle 41 and the needle 44 will be described. Here, the flow path cross-sectional area at a certain axial position refers to the area of the gap between the nozzle 41 and the needle 44 in a cross section passing through the axial position and orthogonal to the axis CL. However, if the needle 44 is not present in the cross section, the area of the portion surrounded by the nozzle 41 in the cross section becomes the flow path cross sectional area.
 ノズル41とニードル44の間の空隙の流路断面積は、図10、図11の実線73、74に示すように、軸線方向位置によって異なる。しかも、軸線方向位置と流路断面積の対応関係は、ニードルリフト量が変化すると変化する。 The channel cross-sectional area of the gap between the nozzle 41 and the needle 44 varies depending on the position in the axial direction, as indicated by solid lines 73 and 74 in FIGS. In addition, the correspondence between the axial position and the channel cross-sectional area changes as the needle lift amount changes.
 ここで、ニードルリフト量は、軸線方向におけるニードル44のノズル41に対する相対位置を示す量である。ニードル44の第1テーパ部441がノズル41の喉部41xに接触した状態(すなわち閉弁状態)におけるニードルリフト量はゼロである。そして、閉弁状態よりもニードル44の根元方向(すなわち、開弁方向)にニードル44が所定移動量だけ移動した状態においては、当該所定移動量がニードルリフト量に相当する。つまり、ニードルリフト量は、軸線方向におけるニードル44のノズル41に対する離れ度合いを示す量である。本実施形態では、ニードル44はノズル41に対してニードル44の軸線方向に移動する。 Here, the needle lift amount is an amount indicating the relative position of the needle 44 to the nozzle 41 in the axial direction. The needle lift amount is zero when the first taper portion 441 of the needle 44 is in contact with the throat portion 41x of the nozzle 41 (ie, the valve is closed). In a state where the needle 44 has moved by a predetermined movement amount in the root direction of the needle 44 (that is, the valve opening direction) rather than the valve closing state, the predetermined movement amount corresponds to the needle lift amount. That is, the needle lift amount is an amount indicating the degree of separation of the needle 44 from the nozzle 41 in the axial direction. In the present embodiment, the needle 44 moves in the axial direction of the needle 44 with respect to the nozzle 41.
 図10の状態におけるニードルリフト量は、図11の状態におけるニードルリフト量よりも小さい。図10の状態においては、流路断面積は、喉部41xの位置において最小かつ極小となり、かつ、喉部41xから根元側に向かって大きくなり、かつ、喉部41xから先端側に向かって大きくなる。この場合、ノズル41およびニードル44はラバルノズルとして動作する。 The needle lift amount in the state of FIG. 10 is smaller than the needle lift amount in the state of FIG. In the state of FIG. 10, the cross-sectional area of the flow path is the minimum and minimum at the position of the throat portion 41x, increases from the throat portion 41x toward the root side, and increases from the throat portion 41x toward the distal end side. Become. In this case, the nozzle 41 and the needle 44 operate as a Laval nozzle.
 これに対し、図11の状態においては、流路断面積は、喉部41xの位置において最小にも極小にもならない。すなわち、流路断面積は、喉部41xよりも根元側から喉部41xに向かって小さくなり、かつ、喉部41xから先端側に向かって小さくなる。このとき、喉部41xよりも根元側から喉部41xに向かう流路断面積の減少勾配は、喉部41xから先端側に向かう流路断面積の減少勾配よりも大きい。この場合、ノズル41およびニードル44はプラグノズルとして動作する。 On the other hand, in the state shown in FIG. 11, the cross-sectional area of the flow path is neither minimum nor minimum at the position of the throat portion 41x. That is, the channel cross-sectional area is smaller from the root side toward the throat part 41x than the throat part 41x, and is smaller from the throat part 41x toward the distal end side. At this time, the decreasing gradient of the channel cross-sectional area from the base side toward the throat 41x is larger than the decreasing gradient of the channel cross-sectional area from the throat 41x toward the tip side than the throat portion 41x. In this case, the nozzle 41 and the needle 44 operate as a plug nozzle.
 このように、ニードルリフト量によってエジェクタ40がラバルノズルとして作動したりプラグノズルとして作動したりする理由について、以下説明する。喉部41xにおける流路断面積をA1とし、出口41zにおける流路断面積をA2とすると、A1、A2は以下の式で表される。
A1=π×r4-π×r3=π×r4-π×(r4-R×tan(θE1/2))
A2=π×r2-π×r1=π×r2-π×(r3-L×tan(θE1/2))
  =π×(r4-L×tan(θZ2/2))
   -π×(r4-R×tan(θE1/2)-L×tan(θE1/2))
 ここで、Rはニードルリフト量である。また、Lは出口41zの軸線方向位置と喉部41xの軸線方向位置の差の絶対値、すなわち、先端部長さである。r1は、出口41zを含むと共に軸線CLに直交する断面における、ニードル44の第1テーパ部441の半径である。r2は、出口41zの半径である。r3は、喉部41xを含むと共に軸線CLに直交する断面における、ニードル44の第1テーパ部441の半径である。r4は、喉部41xの半径である。なお、これらの式は、ニードル44の第1テーパ部441の先端が出口41zの外に突き出ている、すなわち、第1テーパ部441の先端が出口41zよりも先端側に位置していることを前提としている。
The reason why the ejector 40 operates as a Laval nozzle or a plug nozzle depending on the needle lift amount will be described below. Assuming that the channel cross-sectional area at the throat 41x is A1, and the channel cross-sectional area at the outlet 41z is A2, A1 and A2 are expressed by the following equations.
A1 = π × r4 2 −π × r3 2 = π × r4 2 −π × (r4−R × tan (θE1 / 2)) 2
A2 = π × r2 2 −π × r1 2 = π × r2 2 −π × (r3−L × tan (θE1 / 2)) 2
= Π × (r4-L × tan (θZ2 / 2)) 2
−π × (r4−R × tan (θE1 / 2) −L × tan (θE1 / 2)) 2
Here, R is the needle lift amount. L is the absolute value of the difference between the axial position of the outlet 41z and the axial position of the throat 41x, that is, the tip length. r1 is a radius of the first tapered portion 441 of the needle 44 in a cross section including the outlet 41z and orthogonal to the axis CL. r2 is the radius of the exit 41z. r3 is a radius of the first tapered portion 441 of the needle 44 in a cross section including the throat portion 41x and orthogonal to the axis line CL. r4 is the radius of the throat 41x. Note that these formulas indicate that the tip of the first taper portion 441 of the needle 44 protrudes out of the outlet 41z, that is, the tip of the first taper portion 441 is located on the tip side of the outlet 41z. It is assumed.
 図10のように、ノズル41およびニードル44がラバルノズルとして動作する場合は、A1<A2となるため、
Y=(tan(θE1/2)-tan(θZ2/2))×(2×r4-L×tan(θZ2/2)-L×tan(θE1/2))/(2×tan(θE1/2))>Rとなる。
As shown in FIG. 10, when the nozzle 41 and the needle 44 operate as a Laval nozzle, since A1 <A2,
Y = (tan (θE1 / 2) −tan (θZ2 / 2)) × (2 × r4−L × tan (θZ2 / 2) −L × tan (θE1 / 2)) / (2 × tan 2 (θE1 / 2))> R.
 上式の値Yは、ノズル41およびニードル44の形状のみによって決まる設計値である。したがって、当該設計値Yよりもニードルリフト量Rが小さいときには、ノズル41およびニードル44がラバルノズルとして動作する。そして、設計値Yよりもニードルリフト量Rが大きいときには、ノズル41およびニードル44がプラグノズルとして動作する。設計値Yが正の値になるためには、θE1>θZ2である必要がある。 The value Y in the above formula is a design value determined only by the shape of the nozzle 41 and the needle 44. Therefore, when the needle lift amount R is smaller than the design value Y, the nozzle 41 and the needle 44 operate as a Laval nozzle. When the needle lift amount R is larger than the design value Y, the nozzle 41 and the needle 44 operate as plug nozzles. In order for the design value Y to be a positive value, it is necessary that θE1> θZ2.
 このように、ニードル44の第1テーパ角θE1がノズル41の第2テーパ角θZ2よりも大きいので、ニードルリフト量によってはエジェクタ40がラバルノズルとして作動したりプラグノズルとして作動したりする。 Thus, since the first taper angle θE1 of the needle 44 is larger than the second taper angle θZ2 of the nozzle 41, the ejector 40 operates as a Laval nozzle or a plug nozzle depending on the amount of needle lift.
 また、本実施形態では、閉弁状態において、ニードル44の第1テーパ部441とノズル41の喉部41xとが接触し、かつ、ニードル44と出口41zとの間に空隙が存在する。したがって、ニードルリフト量がゼロよりも大きい開弁状態において、ニードルリフト量によってはエジェクタ40がラバルノズルとして作動したりプラグノズルとして作動したりする。 In the present embodiment, in the valve-closed state, the first tapered portion 441 of the needle 44 and the throat portion 41x of the nozzle 41 are in contact, and a gap exists between the needle 44 and the outlet 41z. Therefore, in the valve opening state in which the needle lift amount is greater than zero, the ejector 40 operates as a Laval nozzle or a plug nozzle depending on the needle lift amount.
 また、閉弁状態において、ニードル44の第1テーパ部441の先端が出口41zよりも先端側にある。そして、ノズル41の内壁面は、出口41zにおいて、エジェクタ40の先端側に向けて先細った傾斜になっている。したがって、開弁状態において、ニードルリフト量を調整して出口41zにおける流路断面積の調整を行うことで、エジェクタ40の能力を容易に調整することができる。もし、ノズル41の内壁面において、出口41zがエジェクタ40の先端側に向けて先細った傾斜になっていなければ、出口41zは流路断面積が最小とならないので、出口41zの流路断面積の調整によるエジェクタ40の能力調整が困難になる。これは、ニードル44が出口41zよりも先端側にあり、かつ、ニードル44が先端側に向けて先細っているからである。 In the closed state, the tip of the first taper portion 441 of the needle 44 is on the tip side of the outlet 41z. The inner wall surface of the nozzle 41 has an inclination that tapers toward the tip end side of the ejector 40 at the outlet 41z. Therefore, in the valve open state, the ability of the ejector 40 can be easily adjusted by adjusting the needle lift amount and adjusting the flow path cross-sectional area at the outlet 41z. If the outlet 41z is not inclined toward the front end side of the ejector 40 on the inner wall surface of the nozzle 41, the outlet 41z does not have a minimum channel cross-sectional area. It becomes difficult to adjust the capacity of the ejector 40 by adjusting the above. This is because the needle 44 is on the tip side with respect to the outlet 41z, and the needle 44 is tapered toward the tip side.
 更に、上記設計値Yよりもニードルリフト量Rが大きい場合も、ニードル44の第1テーパ部441の先端が出口41zよりもエジェクタ40の先端側にある。したがって、エジェクタ40の能力調整が容易にできる。すなわち、エジェクタ40がラバルノズルとして作動する場合も、プラグノズルとして作動する場合も、ニードルリフト量Rを調整することでエジェクタ40の能力を調整することができる。 Furthermore, even when the needle lift amount R is larger than the design value Y, the tip of the first taper portion 441 of the needle 44 is located on the tip side of the ejector 40 from the outlet 41z. Therefore, the capacity adjustment of the ejector 40 can be easily performed. That is, regardless of whether the ejector 40 operates as a Laval nozzle or a plug nozzle, the ability of the ejector 40 can be adjusted by adjusting the needle lift amount R.
 本実施形態におけるエジェクタ40の巻き込み作用については、第1、第2、第3実施形態と同様である。すなわち、ノズル41の内部の流体流路を通ってノズル41における当該エジェクタ40の先端側から噴射される作動流体の巻き込み作用によって、ノズル41の外部の流体が吸引される。 The entraining action of the ejector 40 in this embodiment is the same as in the first, second, and third embodiments. That is, the fluid outside the nozzle 41 is sucked by the entraining action of the working fluid ejected from the tip end side of the ejector 40 in the nozzle 41 through the fluid flow path inside the nozzle 41.
 次に、上記のような構成を有するエジェクタサイクルの作動について説明する。本実施形態のエジェクタサイクルでは、室内送風空気を冷却する冷房運転モードおよび室内送風空気を加熱する暖房運転モードを切り替えることができる。 Next, the operation of the ejector cycle having the above configuration will be described. In the ejector cycle of the present embodiment, it is possible to switch between a cooling operation mode for cooling indoor blown air and a heating operation mode for heating indoor blown air.
 a.冷房運転モード
 冷房運転モードは、不図示の操作パネルの作動スイッチにより冷房運転モードが選択されると実行される。冷房運転モードでは、上記制御装置が、圧縮機111、送風機142a、送風機144aを作動させるとともに、冷媒流路が図8の実線矢印となるよう第1四方弁141および第2四方弁143を切り替える。
a. Cooling operation mode The cooling operation mode is executed when the cooling operation mode is selected by an operation switch of an operation panel (not shown). In the cooling operation mode, the control device operates the compressor 111, the blower 142a, and the blower 144a, and switches the first four-way valve 141 and the second four-way valve 143 so that the refrigerant flow path becomes a solid line arrow in FIG.
 これにより図5の実線矢印のように圧縮機111、第1四方弁141、室外熱交換器142、第2四方弁143、エジェクタ40の高圧冷媒入口46a、エジェクタ40の流出口45a、アキュムレータ114の気相冷媒出口、圧縮機111の順に冷媒が循環する。それと共に、アキュムレータ14の液相冷媒出口、絞り115、第1四方弁141、利用側熱交換器144、第2四方弁143、エジェクタ40の低圧冷媒入口46b、アキュムレータ114の順に冷媒が循環するサイクルが構成される。 Accordingly, as indicated by the solid line arrow in FIG. 5, the compressor 111, the first four-way valve 141, the outdoor heat exchanger 142, the second four-way valve 143, the high-pressure refrigerant inlet 46a of the ejector 40, the outlet 45a of the ejector 40, and the accumulator 114 The refrigerant circulates in the order of the gas-phase refrigerant outlet and the compressor 111. At the same time, a cycle in which the refrigerant circulates in the order of the liquid-phase refrigerant outlet of the accumulator 14, the throttle 115, the first four-way valve 141, the use side heat exchanger 144, the second four-way valve 143, the low-pressure refrigerant inlet 46b of the ejector 40, and the accumulator 114. Is configured.
 したがって、圧縮機111にて圧縮された冷媒は、室外熱交換器142にて送風機142aにより送風された外気と熱交換して冷却され、エジェクタ40のノズル41にて等エントロピ的に減圧膨張されて噴射される。この噴射冷媒の吸引作用により、利用側熱交換器144から流出した冷媒が低圧冷媒入口46bに吸引される。 Therefore, the refrigerant compressed by the compressor 111 is cooled by exchanging heat with the outside air blown by the blower 142a in the outdoor heat exchanger 142, and isentropically decompressed and expanded by the nozzle 41 of the ejector 40. Be injected. Due to the suction action of the injected refrigerant, the refrigerant flowing out from the use side heat exchanger 144 is sucked into the low-pressure refrigerant inlet 46b.
 さらに、エジェクタ40において、ノズル41から噴射された噴射冷媒と低圧冷媒入口46bから吸引された吸引冷媒が混合部42にて混合され、ディフューザ43にて昇圧される。そして、ディフューザ43から流出口45aを介して流出した冷媒は、アキュムレータ114にて気液分離され、アキュムレータ114の気相冷媒出口から流出した気相冷媒は、圧縮機111に吸入されて再び圧縮される。 Further, in the ejector 40, the refrigerant injected from the nozzle 41 and the refrigerant sucked from the low-pressure refrigerant inlet 46b are mixed in the mixing unit 42 and pressurized by the diffuser 43. The refrigerant flowing out from the diffuser 43 through the outlet 45a is gas-liquid separated by the accumulator 114, and the gas phase refrigerant flowing out from the gas phase refrigerant outlet of the accumulator 114 is sucked into the compressor 111 and compressed again. The
 一方、アキュムレータ114の液相冷媒出口から流出した液相冷媒は、絞り115にて更に等エンタルピ的に減圧膨張されて、第1四方弁141を介して、利用側熱交換器144へ流入し、送風機144aにより送風された室内送風空気から吸熱して蒸発する。これにより、室内送風空気が冷却される。そして、利用側熱交換器144から流出した冷媒は、第2四方弁143を介して低圧冷媒入口46bに吸入される。 On the other hand, the liquid-phase refrigerant that has flowed out from the liquid-phase refrigerant outlet of the accumulator 114 is further decompressed and expanded in an isenthalpy manner at the throttle 115 and flows into the use-side heat exchanger 144 via the first four-way valve 141. It absorbs heat from the indoor air blown by the blower 144a and evaporates. Thereby, indoor ventilation air is cooled. The refrigerant flowing out from the use side heat exchanger 144 is sucked into the low-pressure refrigerant inlet 46b through the second four-way valve 143.
 このように、本実施形態の冷房運転モードでは、圧縮機111から吐出された冷媒を室外熱交換器142にて放熱させるとともに、利用側熱交換器144にて冷媒を蒸発させる冷媒流路に切り替えている。従って、本実施形態の冷房運転モードでは室内送風空気を冷却できる。 As described above, in the cooling operation mode of the present embodiment, the refrigerant discharged from the compressor 111 is radiated by the outdoor heat exchanger 142, and the refrigerant is evaporated by the use side heat exchanger 144. ing. Therefore, indoor air can be cooled in the cooling operation mode of the present embodiment.
 b.暖房運転モード
 暖房運転モードは、不図示の操作パネルの作動スイッチにより暖房運転モードが選択されると実行される。暖房運転モードでは、上記制御装置が、圧縮機111、送風機142a、送風機144aを作動させるとともに、冷媒流路が図8の破線矢印となるよう第1四方弁141および第2四方弁143を切り替える。
b. Heating operation mode The heating operation mode is executed when the heating operation mode is selected by an operation switch of an operation panel (not shown). In the heating operation mode, the control device operates the compressor 111, the blower 142a, and the blower 144a, and switches the first four-way valve 141 and the second four-way valve 143 so that the refrigerant flow path becomes a broken line arrow in FIG.
 これにより、図8の破線矢印に示すように、圧縮機111、第1四方弁141、利用側熱交換器144、第2四方弁143、エジェクタ40、高圧冷媒入口46a、アキュムレータ114の気相冷媒出口、圧縮機111の順に冷媒が循環する。それと共に、アキュムレータ114の液相冷媒出口、絞り115、第1四方弁141、室外熱交換器142、第2四方弁143、エジェクタ40の低圧冷媒入口46b、アキュムレータ14の順に冷媒が循環するサイクルが構成される。 Thereby, as indicated by the broken line arrows in FIG. 8, the gas phase refrigerant of the compressor 111, the first four-way valve 141, the use side heat exchanger 144, the second four-way valve 143, the ejector 40, the high-pressure refrigerant inlet 46 a, and the accumulator 114. The refrigerant circulates in the order of the outlet and the compressor 111. At the same time, there is a cycle in which the refrigerant circulates in the order of the liquid refrigerant outlet of the accumulator 114, the throttle 115, the first four-way valve 141, the outdoor heat exchanger 142, the second four-way valve 143, the low-pressure refrigerant inlet 46b of the ejector 40, and the accumulator 14. Composed.
 従って、圧縮機111にて圧縮された冷媒は、利用側熱交換器144にて送風機144aにより送風された室内送風空気と熱交換して放熱する。これにより、室内送風空気が加熱される。利用側熱交換器144にて放熱して冷却された冷媒は、エジェクタ40のノズル41にて等エントロピ的に減圧膨張されて噴射される。この噴射冷媒の吸引作用により、室外熱交換器142から流出した冷媒が低圧冷媒入口46bに吸引される。 Therefore, the refrigerant compressed by the compressor 111 exchanges heat with the indoor blown air blown by the blower 144a in the use side heat exchanger 144 and dissipates heat. Thereby, indoor blowing air is heated. The refrigerant radiated and cooled by the use side heat exchanger 144 is decompressed and expanded in an isentropic manner by the nozzle 41 of the ejector 40 and is injected. Due to the suction action of the injected refrigerant, the refrigerant flowing out of the outdoor heat exchanger 142 is sucked into the low-pressure refrigerant inlet 46b.
 さらに、エジェクタ40において、ノズル41から噴射された噴射冷媒と低圧冷媒入口46bに吸引された吸引冷媒とが混合部42にて混合され、ディフューザ43にて昇圧される。そして、ディフューザ43から流出した冷媒は、アキュムレータ114にて気液分離され、気相冷媒出口から流出した気相冷媒は、圧縮機111に吸入されて再び圧縮される。 Further, in the ejector 40, the injection refrigerant injected from the nozzle 41 and the suction refrigerant sucked into the low-pressure refrigerant inlet 46b are mixed in the mixing section 42 and pressurized by the diffuser 43. The refrigerant flowing out of the diffuser 43 is gas-liquid separated by the accumulator 114, and the gas phase refrigerant flowing out from the gas phase refrigerant outlet is sucked into the compressor 111 and compressed again.
 一方、アキュムレータ114の液相冷媒出口から流出した液相冷媒は、絞り115にて更に等エンタルピ的に減圧膨張されて、第1四方弁141を介して、室外熱交換器142へ流入して、送風機142aにより送風された外気から吸熱して蒸発する。そして、室外熱交換器142から流出した冷媒は、低圧冷媒入口46bに吸入される。 On the other hand, the liquid-phase refrigerant that has flowed out from the liquid-phase refrigerant outlet of the accumulator 114 is further decompressed and expanded in an isenthalpy manner at the throttle 115 and flows into the outdoor heat exchanger 142 via the first four-way valve 141. It absorbs heat from the outside air blown by the blower 142a and evaporates. The refrigerant flowing out of the outdoor heat exchanger 142 is sucked into the low-pressure refrigerant inlet 46b.
 つまり、本実施形態の暖房運転モードでは、圧縮機111から吐出された冷媒を利用側熱交換器144にて放熱させるとともに、室外熱交換器142にて冷媒を蒸発させる冷媒流路に切り替えている。従って、本実施形態の暖房運転モードでは室内送風空気を加熱できる。 That is, in the heating operation mode of the present embodiment, the refrigerant discharged from the compressor 111 is dissipated by the use side heat exchanger 144 and the outdoor heat exchanger 142 is switched to the refrigerant flow path for evaporating the refrigerant. . Therefore, indoor air can be heated in the heating operation mode of the present embodiment.
 冷房運転モードおよび暖房運転モードの両方において、上記制御装置は、ニードルリフト量等を調整することで、冷媒流量を調整する。ニードルリフト量は、ノズル41に対するニードル44の位置を変化させる不図示の駆動機構(例えばロータとステータ)を制御装置が駆動することによって実現する。 In both the cooling operation mode and the heating operation mode, the control device adjusts the refrigerant flow rate by adjusting the needle lift amount and the like. The needle lift amount is realized by a control device driving a drive mechanism (not shown) (for example, a rotor and a stator) that changes the position of the needle 44 with respect to the nozzle 41.
 冷媒流量とは、ノズル41内を単位時間当たりに流れる冷媒の量である。冷房運転モードにおいては、冷媒流量が調整されることにより、車室内の冷房能力が調整される。暖房運転モードにおいては、冷媒流量が調整されることにより、車室内の暖房能力が調整される。 The refrigerant flow rate is the amount of refrigerant flowing in the nozzle 41 per unit time. In the cooling operation mode, the cooling capacity in the passenger compartment is adjusted by adjusting the refrigerant flow rate. In the heating operation mode, the heating capacity in the passenger compartment is adjusted by adjusting the refrigerant flow rate.
 図12に、本実施形態の冷房運転モードおよび暖房運転モードで実現するニードルリフト量Rの範囲における、喉部流路断面積200および出口流路断面積201を示す。喉部流路断面積200は、喉部41xにおけるノズル41とニードル44の間の空隙の流路断面積である。出口流路断面積201は、出口41zにおけるノズル41とニードル44の間の空隙の流路断面積である。 FIG. 12 shows the throat channel cross-sectional area 200 and the outlet channel cross-sectional area 201 in the range of the needle lift amount R realized in the cooling operation mode and the heating operation mode of the present embodiment. The throat channel cross-sectional area 200 is the channel cross-sectional area of the gap between the nozzle 41 and the needle 44 in the throat 41x. The outlet channel cross-sectional area 201 is the channel cross-sectional area of the gap between the nozzle 41 and the needle 44 at the outlet 41z.
 図12において、喉部流路断面積200を示す実線と、出口流路断面積201を示す実線とは、点203において交わる。したがって、この点203に対応するニードルリフト量Rよりも小さいニードルリフト量Rでは、出口流路断面積201の方が喉部流路断面積200よりも大きい。そして、点203に対応するニードルリフト量Rよりも大きいニードルリフト量Rでは、喉部流路断面積200の方が出口流路断面積201よりも大きい。 12, the solid line indicating the throat channel cross-sectional area 200 and the solid line indicating the outlet channel cross-sectional area 201 intersect at a point 203. Therefore, at the needle lift amount R smaller than the needle lift amount R corresponding to this point 203, the outlet flow passage cross-sectional area 201 is larger than the throat flow passage cross-sectional area 200. Then, at the needle lift amount R larger than the needle lift amount R corresponding to the point 203, the throat channel cross-sectional area 200 is larger than the outlet channel cross-sectional area 201.
 流路断面積のこのような振る舞いにより、矩形210で囲まれた領域では、喉部41xが、最も流路断面積が小さいチョーク点となり、矩形220で囲まれた領域では、出口41zが最も流路断面積が小さいチョーク点となる。なお、チョーク点とは、ノズル41の内部を通る冷媒が音速を超える位置をいう。 Due to this behavior of the channel cross-sectional area, the throat portion 41x becomes the choke point having the smallest channel cross-sectional area in the region surrounded by the rectangle 210, and the outlet 41z flows most in the region surrounded by the rectangle 220. The choke point has a small road cross-sectional area. The choke point is a position where the refrigerant passing through the nozzle 41 exceeds the speed of sound.
 このようになっているので、矩形210で囲まれた領域に相当するニードルリフト量Rの範囲(すなわち、第1範囲)では、ノズル41およびニードル44がラバルノズルとして動作する。そして、矩形220で囲まれた領域に相当するニードルリフト量Rの範囲(すなわち、第2範囲)では、ノズル41およびニードル44がプラグノズルとして動作する。 Since this is the case, in the range of the needle lift amount R corresponding to the region surrounded by the rectangle 210 (that is, the first range), the nozzle 41 and the needle 44 operate as a Laval nozzle. In the range of the needle lift amount R corresponding to the area surrounded by the rectangle 220 (that is, the second range), the nozzle 41 and the needle 44 operate as plug nozzles.
 例えば、上記制御装置は、冷房運転モードにおいて、冷房定格運転を実現する場合がある。その場合、制御装置は、冷媒流量を多くして冷房能力を最大化するため、図12に示すように、ニードルリフト量Rが矩形220内の値C1となるよう、エジェクタ40を制御する。この場合、ノズル41およびニードル44は、図11に示すような状態となり、プラグノズルとして動作する。 For example, the control device may realize the rated cooling operation in the cooling operation mode. In this case, the control device controls the ejector 40 so that the needle lift amount R becomes a value C1 in the rectangle 220 as shown in FIG. 12 in order to maximize the cooling capacity by increasing the refrigerant flow rate. In this case, the nozzle 41 and the needle 44 are in the state shown in FIG. 11, and operate as a plug nozzle.
 また例えば、冷房運転モードにおいて、冷房中間運転を実現する場合がある。その場合、制御装置は、上述の冷房定格運転よりも冷媒流量を(例えば半分まで)少なくして冷房能力を低減するため、図12に示すように、ニードルリフト量Rが矩形210内の値C2となるよう、エジェクタ40を制御する。この場合、ノズル41およびニードル44は、図10に示すような状態となり、ラバルノズルとして動作する。 Also, for example, in the cooling operation mode, the cooling intermediate operation may be realized. In that case, in order to reduce the cooling capacity by reducing the refrigerant flow rate (for example, up to half) from the above-described cooling rated operation, the control device reduces the cooling capacity, so that the needle lift amount R is a value C2 within the rectangle 210 as shown in FIG. The ejector 40 is controlled so that In this case, the nozzle 41 and the needle 44 are in a state as shown in FIG. 10, and operate as a Laval nozzle.
 また例えば、上記制御装置は、暖房運転モードにおいて、暖房定格運転を実現する場合がある。その場合、制御装置は、冷媒流量を多くして暖房能力を最大化するため、図12に示すように、ニードルリフト量Rが矩形210内の値H1となるよう、エジェクタ40を制御する。この場合、ノズル41およびニードル44は、図10に示すような状態となり、ラバルノズルとして動作する。 For example, the control device may realize a heating rated operation in the heating operation mode. In this case, the control device controls the ejector 40 so that the needle lift amount R becomes a value H1 in the rectangle 210, as shown in FIG. 12, in order to maximize the heating capacity by increasing the refrigerant flow rate. In this case, the nozzle 41 and the needle 44 are in a state as shown in FIG. 10, and operate as a Laval nozzle.
 また例えば、暖房運転モードにおいて、冷房中間運転を実現する場合がある。その場合、制御装置は、上述の暖房定格運転よりも冷媒流量を(例えば半分まで)少なくして暖房能力を低減するため、図12に示すように、ニードルリフト量Rが矩形210内の値H2となるよう、エジェクタ40を制御する。この場合、ノズル41およびニードル44は、図10に示すような状態となり、ラバルノズルとして動作する。 Also, for example, in the heating operation mode, an intermediate cooling operation may be realized. In that case, in order to reduce the heating capacity by reducing the refrigerant flow rate (for example, up to half) from the above-mentioned heating rated operation, the control device reduces the heating capacity to a value H2 within the rectangle 210 as shown in FIG. The ejector 40 is controlled so that In this case, the nozzle 41 and the needle 44 are in a state as shown in FIG. 10, and operate as a Laval nozzle.
 以上のような構成および作動を実現するエジェクタ40の効果について、以下説明する。従来のエジェクタにおいては、ノズルの内壁面は、喉部よりも先端側において、先細らずにストレートの円筒形状になっていた。これに対し、本実施形態のノズル41の内壁面は、喉部41xから出口41zまで、連続的かつ滑らかに、先細っている。 The effect of the ejector 40 that realizes the above-described configuration and operation will be described below. In the conventional ejector, the inner wall surface of the nozzle is not tapered but has a straight cylindrical shape on the tip side of the throat. On the other hand, the inner wall surface of the nozzle 41 of the present embodiment tapers continuously and smoothly from the throat 41x to the outlet 41z.
 エジェクタ40の動作条件が決まると、冷媒の特性からノズル41内の流路断面積の最小値と出口流路断面積がわかる。本実施形態のように、エジェクタ40が空調装置の構成要素である場合、冷房や暖房といった運転モードの違いや、能力の大小に応じた冷媒流量の大小によって動作条件が大きく異なる。そして、複数の動作条件において前述の最適な形状を維持することは困難である。 When the operating conditions of the ejector 40 are determined, the minimum value of the channel cross-sectional area in the nozzle 41 and the outlet channel cross-sectional area can be determined from the characteristics of the refrigerant. When the ejector 40 is a constituent element of the air conditioner as in the present embodiment, the operation condition varies greatly depending on the operation mode such as cooling or heating, and the refrigerant flow rate according to the capacity. And it is difficult to maintain the above-mentioned optimal shape in a plurality of operating conditions.
 例えば、図13に、本実施形態とは異なり、喉部よりも先端側がストレートの円筒形状になっているエジェクタを空調装置に用いた場合における、エジェクタの運転条件の例を示す。この例では、ニードルリフト量にかかわらず、チョーク点は常に喉部である。 For example, FIG. 13 shows an example of operating conditions of an ejector when an ejector having a straight cylindrical shape on the tip side from the throat is used in an air conditioner, unlike the present embodiment. In this example, the choke point is always at the throat regardless of the amount of needle lift.
 図13のグラフは、縦軸が喉部流路断面積であり、横軸がニードルリフト量である。また、実線250、260、270、280は、ストレート部の長さがそれぞれ0.5mm、1.0mm、2.0mm、3.0mmとなっているノズルが用いられた場合の、喉部流路断面積とニードルリフト量との関係を示す。ストレート部の長さとは、喉部からニードルまでの軸線CLに沿った長さである。ストレート部の長さが0.5mmより短いノズルは、加工することが非常に困難である。したがって、ストレート部の長さが0.5mmのノズルは、加工限界にあるノズルである。 In the graph of FIG. 13, the vertical axis represents the throat flow path cross-sectional area, and the horizontal axis represents the needle lift amount. The solid lines 250, 260, 270, and 280 are throat flow paths when nozzles having straight portions of 0.5 mm, 1.0 mm, 2.0 mm, and 3.0 mm are used, respectively. The relationship between a cross-sectional area and a needle lift amount is shown. The length of the straight portion is a length along the axis CL from the throat portion to the needle. It is very difficult to process a nozzle having a straight portion shorter than 0.5 mm. Therefore, a nozzle having a straight part length of 0.5 mm is a nozzle that is at the processing limit.
 図中の黒丸251、252、253、254は、それぞれ、上述の暖房中間運転、暖房定格運転、冷房中間運転、冷房定格運転を実現するニードルリフト量における最適な出口流路断面積を示している。図13に示されるように、冷房と暖房によって、または、空調能力(すなわち、定格か中間か)によって、最適な喉部流路断面積と出口流路断面積が大きく異なる。 Black circles 251, 252, 253, and 254 in the figure respectively show the optimum outlet channel cross-sectional area in the needle lift amount that realizes the above-described intermediate heating operation, heating rated operation, cooling intermediate operation, and cooling rated operation. . As shown in FIG. 13, the optimum throat channel cross-sectional area and the outlet channel cross-sectional area greatly differ depending on cooling and heating, or depending on the air-conditioning capability (ie, rated or intermediate).
 でエジェクタは動作条件に応じて最適な喉部流路断面積と出口流路断面積で運転されなければ効率が低下する。例えば出口流路断面積が最適値よりも大きい場合には狙いのノズル出口圧力よりも低下してしまう過膨張と呼ばれる状態になり、ノズル出口近傍で衝撃波が発生しエネルギー損失となる。出口流路断面積が小さい場合は狙いの出口圧力よりも高い不足膨張状態となり、その後の区間が自由膨張となる。自由膨張の場合は膨張波によって疑似的な壁ができるためラバルノズルに近い状態の運転にはなる。したがって、最適なラバルノズルよりも効率が劣ってしまうももの、過膨張よりは性能低下が小さい。従来のノズルでは、ノズルの流路断面積が喉部から出口へ至るまでに広がるもしくは略一定となるため、前述した過膨張を抑制することが何も考慮されていない。 Thus, if the ejector is not operated with the optimal throat channel cross-sectional area and outlet channel cross-sectional area according to the operating conditions, the efficiency will decrease. For example, when the outlet channel cross-sectional area is larger than the optimum value, a state called overexpansion that falls below the target nozzle outlet pressure occurs, and a shock wave is generated near the nozzle outlet, resulting in energy loss. When the outlet channel cross-sectional area is small, the underexpanded state is higher than the target outlet pressure, and the subsequent section becomes free expansion. In the case of free expansion, a pseudo wall is created by the expansion wave, so operation is similar to a Laval nozzle. Therefore, although the efficiency is inferior to that of the optimum Laval nozzle, the performance degradation is smaller than the overexpansion. In the conventional nozzle, since the cross-sectional area of the flow path of the nozzle spreads from the throat to the outlet or becomes substantially constant, nothing is considered to suppress the above-described overexpansion.
 上述の暖房中間運転、暖房定格運転、冷房中間運転、冷房定格運転のいずれにおいても過膨張を抑制しようとしても、上述の加工限界により、黒丸253に該当する冷房中間運転が過膨張になってしまう。すなわち、実線250に示すノズルでは、暖房中間において最適な出口流路断面積となり、暖房定格運転、冷房定格運転において不足膨張となるが、冷房中間運転が過膨張になってしまう。 Even if it is going to suppress overexpansion in any of the above-mentioned heating intermediate operation, heating rated operation, cooling intermediate operation, and cooling rated operation, the cooling intermediate operation corresponding to the black circle 253 becomes overexpanded due to the above processing limit. . That is, the nozzle shown by the solid line 250 has an optimum outlet flow passage cross-sectional area in the middle of heating and underexpands in the heating rated operation and cooling rated operation, but the cooling intermediate operation becomes overexpanded.
 また、従来のエジェクタでは、ニードルリフト量が大きい場合にノズルの出口流路断面積が大きくなり過膨張となる場合がある。その対策として、出口流路断面積を小さくするために、喉部から出口までの距離を短くする方法がある。しかし、喉部から出口までの距離を短くすると、ノズル効率が悪くなる。ノズル効率を増加させるためには一般的に喉部から出口にかけて流路断面積を緩やかに拡大させることが望ましいからである。これに対し、本実施形態では、喉部から出口までの距離を短くすることなく、過膨張を抑制することができる。 Also, in the case of a conventional ejector, when the needle lift amount is large, the cross-sectional area of the outlet channel of the nozzle may become large, resulting in excessive expansion. As a countermeasure, there is a method of shortening the distance from the throat to the outlet in order to reduce the sectional area of the outlet channel. However, if the distance from the throat to the outlet is shortened, the nozzle efficiency is deteriorated. This is because, in order to increase the nozzle efficiency, it is generally desirable to gradually increase the flow path cross-sectional area from the throat to the outlet. On the other hand, in this embodiment, overexpansion can be suppressed without shortening the distance from the throat to the outlet.
 本実施形態では、ニードルリフト量の小さい低流量域では、高効率が求められるので、ラバルノズルとしてノズル41が作動する。一方、ニードルリフト量の大きい高流量域では、同じノズル41がプラグノズルとして動作する。このように、チョーク点が変化することで、最適な運転領域の幅を広げることが可能となった。なお、最適なラバルノズル形状の方がプラグノズル形状よりも効率が良いため、すべての領域をプラグノズルとするよりも本実施形態は優れている。 In this embodiment, since high efficiency is required in a low flow rate region where the needle lift amount is small, the nozzle 41 operates as a Laval nozzle. On the other hand, in the high flow rate region where the needle lift amount is large, the same nozzle 41 operates as a plug nozzle. As described above, the choke point is changed, so that the width of the optimum operation region can be widened. Since the optimum Laval nozzle shape is more efficient than the plug nozzle shape, this embodiment is superior to the case where all regions are plug nozzles.
 また、本実施形態では、閉弁状態において、ニードル44とノズル41の内壁面とが接触する。そして、ニードル44の第1テーパ部441のうち、閉弁状態において当該内壁面と接触する部分および当該部分よりも先端側にある部分の第1テーパ角θE1は、ノズル41の内壁面の出口41zにおける第2テーパ角θZ2よりも大きい。また、 閉弁状態において、ニードル44とノズル41の内壁面とが接触し、かつ、ニードル44と出口41zとの間に空隙が存在する。このようになっていることで、ラバルノズルとしての動作とプラグノズルとしての動作を確実に切り替えることができる。 In the present embodiment, the needle 44 and the inner wall surface of the nozzle 41 are in contact with each other in the valve-closed state. Of the first taper portion 441 of the needle 44, the first taper angle θE1 of the portion in contact with the inner wall surface in the valve-closed state and the portion on the tip side of the portion is the outlet 41z of the inner wall surface of the nozzle 41. Is larger than the second taper angle θZ2. Further, in the valve-closed state, the needle 44 and the inner wall surface of the nozzle 41 are in contact with each other, and a gap exists between the needle 44 and the outlet 41z. By doing so, the operation as a Laval nozzle and the operation as a plug nozzle can be switched reliably.
 (第5実施形態)
 次に第5実施形態について説明する。本実施形態は、第4実施形態に対し、ニードル44の形状が変更されている。その他は、第4実施形態と同様である。
(Fifth embodiment)
Next, a fifth embodiment will be described. In the present embodiment, the shape of the needle 44 is changed with respect to the fourth embodiment. Others are the same as in the fourth embodiment.
 本実施形態では、図14に示す様に、第1テーパ部441の先端側の部分の形状のみが、第4実施形態と異なっている。本実施形態では、第1テーパ部441の根元側の部分は、第4実施形態と同様、エジェクタ40の先端側に向かって、円錐状に一定のテーパ角で先細っている。しかし、第1テーパ部441の先端側の部分の表面は、第4実施形態とは異なり、先端が丸まって尖った部分がない滑らかな曲面となっている。このようになっていることで、ニードル44の全長を抑えることができる。 In this embodiment, as shown in FIG. 14, only the shape of the tip side portion of the first taper portion 441 is different from that of the fourth embodiment. In the present embodiment, the base side portion of the first taper portion 441 is tapered in a conical shape with a constant taper angle toward the tip end side of the ejector 40 as in the fourth embodiment. However, unlike the fourth embodiment, the surface of the tip side portion of the first taper portion 441 is a smooth curved surface with a rounded tip and no pointed portion. With this configuration, the entire length of the needle 44 can be suppressed.
 本実施形態においても、第1テーパ部441の根元側の部分のテーパ角は、ノズル41の第2テーパ角θZ2よりも大きい。また、第1テーパ部441の先端側の部分のどの位置のテーパ角も、ノズル41の第2テーパ角θZ2より大きい。 Also in the present embodiment, the taper angle of the portion on the base side of the first taper portion 441 is larger than the second taper angle θZ2 of the nozzle 41. Further, the taper angle at any position of the tip side portion of the first taper portion 441 is larger than the second taper angle θZ <b> 2 of the nozzle 41.
 本実施形態においても、図12において矩形210で囲まれた領域に相当するニードルリフト量Rの第1範囲においては、喉部流路断面積が出口流路断面積よりも小さいので、ノズル41およびニードル44がラバルノズルとして動作する。そして、図12において矩形220で囲まれた領域に相当するニードルリフト量Rの第2範囲においては、喉部流路断面積が出口流路断面積よりも大きいので、ノズル41およびニードル44がプラグノズルとして動作する。 Also in the present embodiment, in the first range of the needle lift amount R corresponding to the region surrounded by the rectangle 210 in FIG. 12, the throat flow path cross-sectional area is smaller than the outlet flow path cross-sectional area. The needle 44 operates as a Laval nozzle. Then, in the second range of the needle lift amount R corresponding to the region surrounded by the rectangle 220 in FIG. 12, the throat section channel cross-sectional area is larger than the outlet channel cross-sectional area, so that the nozzle 41 and the needle 44 are plugged. Operates as a nozzle.
 (第6実施形態)
 次に第6実施形態について説明する。本実施形態は、第4実施形態に対し、第1絞り面411、第2絞り面412の形状が変更されている。その他は、第4実施形態と同様である。本実施形態では、図15に示すように、軸線CLを含む平面で第1絞り面411を切断したときの断面は、滑らかな曲線となっている。また同様に、軸線CLを含む平面で第2絞り面412を切断したときの断面も、滑らかな曲線となっている。
(Sixth embodiment)
Next, a sixth embodiment will be described. In the present embodiment, the shapes of the first diaphragm surface 411 and the second diaphragm surface 412 are changed with respect to the fourth embodiment. Others are the same as in the fourth embodiment. In the present embodiment, as shown in FIG. 15, the cross section when the first diaphragm surface 411 is cut along a plane including the axis line CL is a smooth curve. Similarly, the cross section when the second diaphragm surface 412 is cut along a plane including the axis CL is also a smooth curve.
 したがって、第1テーパ角θZ1および第2テーパ角θZ2は、どちらも、一定ではない。具体的には、第1テーパ角θZ1は、エジェクタ40の先端に向かうにつれて減少している。また、第2テーパ角θZ2は、エジェクタ40の先端に向かうにつれて減少していく。ただし、第2テーパ角θZ2は、出口41zでも正の値となっている。つまり、第2絞り面412は、出口41zにおいても先細りの勾配を有している。 Therefore, neither the first taper angle θZ1 nor the second taper angle θZ2 is constant. Specifically, the first taper angle θZ1 decreases as it goes toward the tip of the ejector 40. Further, the second taper angle θZ2 decreases as it goes toward the tip of the ejector 40. However, the second taper angle θZ2 is a positive value even at the outlet 41z. That is, the second diaphragm surface 412 has a tapered gradient at the outlet 41z.
 本実施形態では、喉部41xにおいて第1テーパ角θZ1と第2テーパ角θZ2とが連続になっている。すなわち、喉部41xにおける第1テーパ角θZ1と第2テーパ角θZ2とは同じである。第1絞り面411、第2絞り面412をこのような形状とすることで、ノズル41の加工難度は上がるが、エネルギー回収効率は上昇する。 In the present embodiment, the first taper angle θZ1 and the second taper angle θZ2 are continuous in the throat 41x. That is, the first taper angle θZ1 and the second taper angle θZ2 in the throat portion 41x are the same. By forming the first diaphragm surface 411 and the second diaphragm surface 412 in such a shape, the processing difficulty of the nozzle 41 increases, but the energy recovery efficiency increases.
 本実施形態においても、図12において矩形210で囲まれた領域に相当するニードルリフト量Rの第1範囲においては、喉部流路断面積が出口流路断面積よりも小さいので、ノズル41およびニードル44がラバルノズルとして動作する。そして、図12において矩形220で囲まれた領域に相当するニードルリフト量Rの第2範囲においては、喉部流路断面積が出口流路断面積よりも大きいので、ノズル41およびニードル44がプラグノズルとして動作する。 Also in the present embodiment, in the first range of the needle lift amount R corresponding to the region surrounded by the rectangle 210 in FIG. 12, the throat flow path cross-sectional area is smaller than the outlet flow path cross-sectional area. The needle 44 operates as a Laval nozzle. Then, in the second range of the needle lift amount R corresponding to the region surrounded by the rectangle 220 in FIG. 12, the throat section channel cross-sectional area is larger than the outlet channel cross-sectional area, so that the nozzle 41 and the needle 44 are plugged. Operates as a nozzle.
 (他の実施形態)
 なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記実施形態において、センサから車両の外部環境情報(例えば車外の湿度)を取得することが記載されている場合、そのセンサを廃し、車両の外部のサーバまたはクラウドからその外部環境情報を受信することも可能である。あるいは、そのセンサを廃し、車両の外部のサーバまたはクラウドからその外部環境情報に関連する関連情報を取得し、取得した関連情報からその外部環境情報を推定することも可能である。特に、ある量について複数個の値が例示されている場合、特に別記した場合および原理的に明らかに不可能な場合を除き、それら複数個の値の間の値を採用することも可能である。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。また、本発明は、上記各実施形態に対する以下のような変形例および均等範囲の変形例も許容される。なお、以下の変形例は、それぞれ独立に、上記実施形態に適用および不適用を選択できる。すなわち、以下の変形例のうち任意の組み合わせを、上記実施形態に適用することができる。
(Other embodiments)
Note that the present disclosure is not limited to the above-described embodiment, and can be modified as appropriate. Further, the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. In each of the above-described embodiments, the elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Further, in each of the above embodiments, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to the specific number except for the case. In the above embodiment, when it is described that external environment information (for example, humidity outside the vehicle) is acquired from a sensor, the sensor is discarded and the external environment information is received from a server or cloud outside the vehicle. It is also possible to do. Alternatively, it is possible to eliminate the sensor, acquire related information related to the external environment information from a server or cloud outside the vehicle, and estimate the external environment information from the acquired related information. In particular, when a plurality of values are exemplified for a certain amount, it is also possible to adopt a value between the plurality of values unless specifically stated otherwise and in principle impossible. . Further, in each of the above embodiments, when referring to the shape, positional relationship, etc. of the component, etc., the shape, unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to the positional relationship or the like. In addition, the present invention allows the following modifications and equivalent modifications of the above embodiments. In addition, the following modifications can select application and non-application to the said embodiment each independently. In other words, any combination of the following modifications can be applied to the above-described embodiment.
 (変形例1)
 上記実施形態では、エジェクタ40は車両空調装置用のエジェクタサイクルに用いられる。しかし、必ずしもこのようになっておらずともよい。例えば、給湯器に用いられてもよい。
(Modification 1)
In the said embodiment, the ejector 40 is used for the ejector cycle for vehicle air conditioners. However, this is not necessarily the case. For example, it may be used for a water heater.
 (変形例2)
 上記実施形態では、ノズル41の第1テーパ角θZ1は第2テーパ角θZ2よりも大きくなっている。しかし、必ずしもこのようになっておらずともよい。エジェクタ40において巻き込み作用が発揮されるときに、喉部41xよりも境界部44xの方が先端側にあれば、第1テーパ角θZ1と第2テーパ角θZ2の関係はどのようになっていてもよい。
(Modification 2)
In the above embodiment, the first taper angle θZ1 of the nozzle 41 is larger than the second taper angle θZ2. However, this is not necessarily the case. When the entraining action is exerted in the ejector 40, if the boundary portion 44x is closer to the distal end than the throat portion 41x, the relationship between the first taper angle θZ1 and the second taper angle θZ2 is whatever. Good.
 (変形例3)
 上記第1、第2、第3実施形態のエジェクタ40は、第4実施形態のエジェクタサイクルに用いられてもよい。その場合、このエジェクタ40のニードルリフト量は可変となっている。そして、ニードルリフト量が第1範囲にある場合、上述の冷房中間運転、暖房定格運転、暖房中間運転が実現する。この第1範囲では、ノズル41とニードル44の間の流路断面積は、喉部41xの位置において最小かつ極小となり、喉部流路断面積は出口流路断面積よりも小さい。また、ニードルリフト量が第1範囲よりも大きい第2範囲にある場合、冷房定格運転が実現する。この第2範囲では、ノズル41とニードル44の間の流路断面積は、喉部41xの位置において最小となり、喉部流路断面積は出口流路断面積よりも大きい。また、設計値Yよりもニードルリフト量が大きい場合に、ニードル44の第1テーパ部441の先端が出口41zよりも先端側にある。したがって、第4実施形態と同様の効果を得ることができる。
(Modification 3)
The ejector 40 of the first, second, and third embodiments may be used for the ejector cycle of the fourth embodiment. In that case, the needle lift amount of the ejector 40 is variable. When the needle lift amount is in the first range, the above-described cooling intermediate operation, heating rated operation, and heating intermediate operation are realized. In this first range, the channel cross-sectional area between the nozzle 41 and the needle 44 is minimum and minimal at the position of the throat portion 41x, and the throat channel cross-sectional area is smaller than the outlet channel cross-sectional area. Further, when the needle lift amount is in the second range that is larger than the first range, the cooling rated operation is realized. In this second range, the channel cross-sectional area between the nozzle 41 and the needle 44 is minimum at the position of the throat 41x, and the throat channel cross-sectional area is larger than the outlet channel cross-sectional area. Further, when the needle lift amount is larger than the design value Y, the tip of the first taper portion 441 of the needle 44 is on the tip side of the outlet 41z. Therefore, the same effect as the fourth embodiment can be obtained.
 (変形例4)
 上記第4実施形態以降のエジェクタ40は、図8に示すようなエジェクタサイクル以外のサイクルにおいて用いられてもよい。例えば、冷房と暖房のうち冷房のみが可能でニードルリフト量が調整されることで冷房能力が調整されるエジェクタサイクルに用いられてもよい。あるいは、冷房と暖房のうち暖房のみが可能でニードルリフト量が調整されることで冷房能力が調整されるエジェクタサイクルに用いられてもよい。
(Modification 4)
The ejectors 40 in the fourth and subsequent embodiments may be used in cycles other than the ejector cycle as shown in FIG. For example, it may be used for an ejector cycle in which only cooling is possible between cooling and heating, and the cooling capacity is adjusted by adjusting the needle lift amount. Alternatively, it may be used for an ejector cycle in which only heating is possible between cooling and heating, and the cooling capacity is adjusted by adjusting the needle lift amount.
 (変形例5)
 上記実施形態では、設計値Yよりもニードルリフト量Rが大きい場合に、ニードル44の第1テーパ部441の先端が出口41zよりも先端側にある。しかし、必ずしもこのようになっていなくてもよい。つまり、設計値Yよりもニードルリフト量Rが大きい場合に、ニードル44の第1テーパ部441の先端が出口41zよりも根元側にあってもよい。
(Modification 5)
In the above embodiment, when the needle lift amount R is larger than the design value Y, the tip of the first tapered portion 441 of the needle 44 is on the tip side of the outlet 41z. However, this need not be the case. That is, when the needle lift amount R is larger than the design value Y, the tip of the first tapered portion 441 of the needle 44 may be closer to the root side than the outlet 41z.
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、エジェクタにおいて、ニードルリフト量が第1範囲にある場合、喉部流路断面積は出口流路断面積よりも小さく、かつ、流体流路内において軸線方向に直交するすべての断面におけるノズルとニードルとの間の空隙の面積のうち、喉部流路断面積が最小であり、ニードルリフト量が第1範囲よりも大きい第2範囲にある場合、喉部流路断面積は出口流路断面積よりも大きく、かつ、流体流路内において軸線方向に直交するすべての断面におけるノズルとニードルとの間の空隙の面積のうち、出口流路断面積が最小である。
(Summary)
According to the first aspect shown in part or all of the above embodiments, in the ejector, when the needle lift amount is in the first range, the throat channel cross-sectional area is smaller than the outlet channel cross-sectional area. In addition, among the areas of the gaps between the nozzle and the needle in all cross sections orthogonal to the axial direction in the fluid flow path, the throat flow path cross-sectional area is the smallest, and the needle lift amount is less than the first range. When in the large second range, the cross-sectional area of the throat channel is larger than the cross-sectional area of the outlet channel, and the area of the gap between the nozzle and the needle in all cross sections orthogonal to the axial direction in the fluid channel Of these, the outlet channel cross-sectional area is the smallest.
 また、第2の観点によれば、壁面は、出口において、先端側に向かって先細っている。このようになっているので、ニードルの先端が出口よりも先端側にある場合、ニードルリフト量を調整して出口における流路断面積の調整を行うことで、エジェクタの能力を容易に行うことができる。 Further, according to the second aspect, the wall surface is tapered toward the tip side at the outlet. Thus, when the tip of the needle is on the tip side of the outlet, the ability of the ejector can be easily achieved by adjusting the needle lift amount and adjusting the cross-sectional area of the flow path at the outlet. it can.
 また、第3の観点によれば、閉弁状態において、ノズルの前記壁面とニードルとが接触し、ニードルのうち、閉弁状態においてノズルの壁面と接触する部分およびその部分よりも先端側にある部分のテーパ角は、ノズルの壁面の出口におけるテーパ角よりも大きい。このようになっていることで、ラバルノズルとしての動作とプラグノズルとしての動作を確実に切り替えることができる。 Further, according to the third aspect, the wall surface of the nozzle and the needle are in contact with each other in the valve-closed state, and the portion of the needle that is in contact with the wall surface of the nozzle in the valve-closed state and the tip side of the portion. The taper angle of the part is larger than the taper angle at the outlet of the nozzle wall. By doing so, the operation as a Laval nozzle and the operation as a plug nozzle can be switched reliably.
 また、第4の観点によれば、第2範囲において、ニードルの一部が出口よりも先端側にある。このようになっていることで、エジェクタの能力調整が容易にできる。すなわち、エジェクタがラバルノズルとして作動する場合も、プラグノズルとして作動する場合も、ニードルリフト量を調整することでエジェクタの能力を調整することができる。 Further, according to the fourth aspect, in the second range, a part of the needle is on the tip side from the outlet. In this way, the ability adjustment of the ejector can be easily performed. That is, regardless of whether the ejector operates as a Laval nozzle or as a plug nozzle, the ability of the ejector can be adjusted by adjusting the needle lift amount.
 また、第5の観点によれば、ニードルは、先端側に向かって先細る第1テーパ部と、第1テーパ部の先端側の端に接続すると共に更に先端側に向かって先細る第2テーパ部と、を備え、第1テーパ部と第2テーパ部との境界部における第1テーパ部のテーパ角である第1テーパ角よりも、境界部における第2テーパ部のテーパ角である第2テーパ角の方が大きくなっており、喉部では、ノズルとニードルとの間の空隙の流路断面積が極小になり、巻き込み作用が発揮されるとき、喉部よりも先端側に境界部があり、巻き込み作用が発揮されるとき、壁面のうち喉部よりも先端側の部分は、壁面によって囲まれる領域を先端側に向かって狭める形状を有する。 Further, according to the fifth aspect, the needle is tapered to the tip side of the first taper portion, and the second taper is further tapered toward the tip side while being connected to the tip side end of the first taper portion. And the second taper angle of the second taper portion at the boundary portion is larger than the first taper angle of the taper angle of the first taper portion at the boundary portion between the first taper portion and the second taper portion. The taper angle is larger, and in the throat, the flow path cross-sectional area of the gap between the nozzle and the needle is minimized, and when the entrainment action is exerted, the boundary portion is closer to the tip than the throat. Yes, when the entrainment action is exerted, the portion of the wall surface closer to the tip side than the throat has a shape that narrows the region surrounded by the wall surface toward the tip side.
 このように、巻き込み作用が発揮されるとき、ノズルの境界部よりも先端側で、ノズルの壁面によって囲まれる流路を先端側に向かって狭めることで、境界部における沸騰を抑制することができる。その結果、意図した部分以外で作動流体が沸騰して沸騰遅れが発生してしまうことに起因して発生するエネルギー回収効率の低下を抑制することができる。 Thus, when the entrainment effect is exerted, boiling at the boundary portion can be suppressed by narrowing the flow path surrounded by the wall surface of the nozzle toward the front end side from the boundary portion of the nozzle. . As a result, it is possible to suppress a decrease in energy recovery efficiency that occurs due to boiling of the working fluid at a portion other than the intended portion and a boiling delay.
 また、第6の観点によれば、喉部よりも先端側において壁面が先端側に向かって先細るテーパ角は、第1テーパ角よりも小さい。このようになっていることで、喉部から先端側にかけて、ノズルとニードルの間の流路断面積が広がっていく形状が実現する。 Further, according to the sixth aspect, the taper angle at which the wall surface tapers toward the tip side on the tip side from the throat is smaller than the first taper angle. In this way, a shape is realized in which the cross-sectional area of the flow path between the nozzle and the needle increases from the throat to the tip side.
 また、第7の観点によれば、エジェクタにおいて、巻き込み作用が発揮されるとき、ノズルのニードル側の壁面のうち喉部よりも先端側の部分は、当該壁面によって囲まれる領域を先端側に向かって狭める形状を有する。  Further, according to the seventh aspect, when the entraining action is exerted in the ejector, the portion on the tip side of the throat portion of the wall surface on the needle side of the nozzle faces the region surrounded by the wall surface toward the tip side. And has a narrowing shape.

Claims (7)

  1.  エジェクタであって、
     ノズル(41)と、
     前記ノズルの内部の流体流路に配置され、前記ノズルに対して軸線方向に移動すると共に当該エジェクタの先端側に向かって先細るニードル(44)と、を備え、
     前記ノズルの内部の流体流路を通って前記ノズルにおける当該エジェクタの先端側から噴射される作動流体の巻き込み作用によって、前記ノズルの外部の流体が吸引され、
     前記ノズルの前記ニードル側の壁面は、前記流体流路における前記先端側の端部に位置する出口(41z)と、前記出口よりも前記先端側とは反対側に位置して前記ニードルに向かって突出する喉部(41x)と、を有し、
     喉部流路断面積(200)は、前記喉部を通り前記軸線方向に直交する断面における前記ノズルと前記ニードルとの間の空隙の面積であり、
     出口流路断面積(201)は、前記出口を通り前記軸線方向に直交する断面における前記ノズルと前記ニードルとの間の空隙の面積であり、
     前記軸線方向における前記ニードルの前記ノズルに対する離れ度合いを示すニードルリフト量(R)が第1範囲にある場合、前記喉部流路断面積は前記出口流路断面積よりも小さく、かつ、前記流体流路内において前記軸線方向に直交するすべての断面における前記ノズルと前記ニードルとの間の空隙の面積のうち、前記喉部流路断面積が最小であり、
     前記ニードルリフト量が前記第1範囲よりも大きい第2範囲にある場合、前記喉部流路断面積は前記出口流路断面積よりも大きく、かつ、前記流体流路内において前記軸線方向に直交するすべての断面における前記ノズルと前記ニードルとの間の空隙の面積のうち、前記出口流路断面積が最小である、エジェクタ。
    An ejector,
    A nozzle (41);
    A needle (44) disposed in the fluid flow path inside the nozzle, moving in the axial direction relative to the nozzle and tapering toward the tip end side of the ejector,
    Through the entraining action of the working fluid ejected from the tip end side of the ejector in the nozzle through the fluid flow path inside the nozzle, the fluid outside the nozzle is sucked,
    The wall surface of the nozzle on the needle side is located at the end (41z) located at the end on the tip side of the fluid flow path, and is located on the side opposite to the tip side from the outlet toward the needle. Projecting throat (41x),
    Throat channel cross-sectional area (200) is the area of the gap between the nozzle and the needle in a cross section passing through the throat and orthogonal to the axial direction,
    The outlet channel cross-sectional area (201) is the area of the gap between the nozzle and the needle in a cross section passing through the outlet and orthogonal to the axial direction,
    When the needle lift amount (R) indicating the degree of separation of the needle with respect to the nozzle in the axial direction is in the first range, the throat channel cross-sectional area is smaller than the outlet channel cross-sectional area, and the fluid Of the area of the gap between the nozzle and the needle in all cross sections orthogonal to the axial direction in the flow channel, the throat flow channel cross-sectional area is the smallest,
    When the needle lift amount is in a second range that is larger than the first range, the throat channel cross-sectional area is larger than the outlet channel cross-sectional area and is orthogonal to the axial direction in the fluid channel. An ejector in which the outlet channel cross-sectional area is the smallest among the areas of the gaps between the nozzle and the needle in all cross sections.
  2.  前記壁面は、前記出口において、前記先端側に向かって先細っている請求項1に記載のエジェクタ。 The ejector according to claim 1, wherein the wall surface is tapered toward the tip side at the outlet.
  3.  閉弁状態において、前記ノズルの前記壁面と前記ニードルとが接触し、
     前記ニードルのうち、閉弁状態において前記ノズルの前記壁面と接触する部分および前記部分よりも前記先端側にある部分のテーパ角は、前記ノズルの前記壁面の前記出口におけるテーパ角よりも大きい請求項2に記載のエジェクタ。
    In the valve closed state, the wall surface of the nozzle and the needle are in contact with each other,
    The taper angle of a portion of the needle that is in contact with the wall surface of the nozzle in a valve-closed state and a portion that is closer to the tip than the portion is larger than a taper angle at the outlet of the wall surface of the nozzle. 2. The ejector according to 2.
  4.  前記第2範囲において、前記ニードルの一部が前記出口よりも前記先端側にある請求項1ないし3のいずれか1つに記載のエジェクタ。 The ejector according to any one of claims 1 to 3, wherein in the second range, a part of the needle is located on the tip side from the outlet.
  5.  前記ニードルは、前記先端側に向かって先細る第1テーパ部(441)と、前記第1テーパ部の前記先端側の端に接続すると共に更に前記先端側に向かって先細る第2テーパ部(442)と、を備え、
     前記第1テーパ部と前記第2テーパ部との境界部(44x)における前記第1テーパ部のテーパ角である第1テーパ角(θE1)よりも、前記境界部における前記第2テーパ部のテーパ角である第2テーパ角(θE2)の方が大きくなっており、
     前記喉部では、前記ノズルと前記ニードルとの間の空隙の流路断面積が極小になり、
     前記巻き込み作用が発揮されるとき、前記喉部よりも前記先端側に前記境界部があり、
     前記巻き込み作用が発揮されるとき、前記壁面のうち前記喉部よりも前記先端側の部分は、前記壁面によって囲まれる領域を前記先端側に向かって狭める形状を有する請求項1ないし4のいずれか1つに記載のエジェクタ。
    The needle has a first taper portion (441) that tapers toward the tip end side, and a second taper portion that connects to the tip end side end of the first taper portion and tapers further toward the tip end side ( 442), and
    The taper of the second taper portion at the boundary is greater than the first taper angle (θE1) that is the taper angle of the first taper at the boundary (44x) between the first taper and the second taper. The second taper angle (θE2) that is an angle is larger,
    In the throat, the flow passage cross-sectional area of the gap between the nozzle and the needle is minimized,
    When the entrainment effect is exerted, the boundary portion is on the tip side than the throat portion,
    5. The device according to claim 1, wherein when the entrainment action is exerted, a portion of the wall surface closer to the distal end than the throat portion has a shape that narrows a region surrounded by the wall surface toward the distal end side. The ejector as described in one.
  6.  前記喉部よりも前記先端側において前記壁面が前記先端側に向かって先細るテーパ角(θZ2)は、前記第1テーパ角よりも小さい請求項5に記載のエジェクタ。 6. The ejector according to claim 5, wherein a taper angle (θZ <b> 2) at which the wall surface tapers toward the tip side on the tip side of the throat is smaller than the first taper angle.
  7.  エジェクタであって、
     ノズル(41)と、
     前記ノズルの内部の流体流路に配置されるニードル(44)と、を備え、
     前記ノズルの内部の流体流路を通って前記ノズルにおける当該エジェクタの先端側から噴射される作動流体の巻き込み作用によって、前記ノズルの外部の流体が吸引され、
     前記ニードルは、前記先端側に向かって先細る第1テーパ部(441)と、前記第1テーパ部の前記先端側の端に接続すると共に更に前記先端側に向かって先細る第2テーパ部(442)と、を備え、
     前記第1テーパ部と前記第2テーパ部との境界部(44x)における前記第1テーパ部のテーパ角である第1テーパ角(θE1)よりも、前記境界部における前記第2テーパ部のテーパ角である第2テーパ角(θE2)の方が大きくなっており、
     前記ノズルの前記ニードル側の壁面には、前記ノズルと前記ニードルとの間の空隙の流路断面積を極小にする喉部(41x)が形成され、
     前記巻き込み作用が発揮されるとき、前記喉部よりも前記先端側に前記境界部があり、
     前記巻き込み作用が発揮されるとき、前記壁面のうち前記喉部よりも前記先端側の部分は、前記壁面によって囲まれる領域を前記先端側に向かって狭める形状を有するエジェクタ。
    An ejector,
    A nozzle (41);
    A needle (44) disposed in a fluid flow path inside the nozzle,
    Through the entraining action of the working fluid ejected from the tip end side of the ejector in the nozzle through the fluid flow path inside the nozzle, the fluid outside the nozzle is sucked,
    The needle has a first taper portion (441) that tapers toward the tip end side, and a second taper portion that connects to the tip end side end of the first taper portion and tapers further toward the tip end side ( 442), and
    The taper of the second taper portion at the boundary is greater than the first taper angle (θE1) that is the taper angle of the first taper at the boundary (44x) between the first taper and the second taper. The second taper angle (θE2) that is an angle is larger,
    A wall surface on the needle side of the nozzle is formed with a throat portion (41x) that minimizes a flow passage cross-sectional area of the gap between the nozzle and the needle,
    When the entrainment effect is exerted, the boundary portion is on the tip side than the throat portion,
    The ejector having a shape in which, when the entraining action is exerted, a portion of the wall surface closer to the distal end than the throat portion narrows a region surrounded by the wall surface toward the distal end side.
PCT/JP2019/010600 2018-03-22 2019-03-14 Ejector WO2019181736A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112019001467.6T DE112019001467B4 (en) 2018-03-22 2019-03-14 ejector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-054863 2018-03-22
JP2018054863 2018-03-22
JP2018160630A JP6891864B2 (en) 2018-03-22 2018-08-29 Ejector
JP2018-160630 2018-08-29

Publications (1)

Publication Number Publication Date
WO2019181736A1 true WO2019181736A1 (en) 2019-09-26

Family

ID=67987698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010600 WO2019181736A1 (en) 2018-03-22 2019-03-14 Ejector

Country Status (1)

Country Link
WO (1) WO2019181736A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019133A (en) * 2008-07-09 2010-01-28 Denso Corp Ejector and heat pump cycle device
US20150240955A1 (en) * 2013-04-27 2015-08-27 Guangzhou Seagull Kitchen And Bath Products Co., Ltd. A jet valve spool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019133A (en) * 2008-07-09 2010-01-28 Denso Corp Ejector and heat pump cycle device
US20150240955A1 (en) * 2013-04-27 2015-08-27 Guangzhou Seagull Kitchen And Bath Products Co., Ltd. A jet valve spool

Similar Documents

Publication Publication Date Title
JP4232484B2 (en) Ejector and vapor compression refrigerator
JP6119489B2 (en) Ejector
JP6299495B2 (en) Ejector refrigeration cycle
JP4929936B2 (en) Ejector and ejector refrigeration cycle
WO2013114856A1 (en) Ejector
JP4069880B2 (en) Ejector
JP6048339B2 (en) Ejector
US10378795B2 (en) Ejector and ejector refrigeration cycle
WO2014156075A1 (en) Ejector
JP4367168B2 (en) Variable flow nozzle
JP4120605B2 (en) Ejector
JP4134931B2 (en) Ejector
EP2439469A2 (en) Jet pump and air conditioner
US20190338790A1 (en) Ejector
WO2014162688A1 (en) Ejector
WO2019181736A1 (en) Ejector
JP3941495B2 (en) Ejector type decompression device
JP6891864B2 (en) Ejector
JP2015137566A (en) Ejector
WO2017135093A1 (en) Ejector
US20040206111A1 (en) Ejector for vapor-compression refrigerant cycle
WO2017135092A1 (en) Ejector
JP4120610B2 (en) Ejector
JP6511873B2 (en) Ejector and ejector-type refrigeration cycle
JP6481679B2 (en) Ejector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772064

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19772064

Country of ref document: EP

Kind code of ref document: A1