WO2019181498A1 - Polishing agent recycle processing system and polishing agent recovery/regeneration method - Google Patents

Polishing agent recycle processing system and polishing agent recovery/regeneration method Download PDF

Info

Publication number
WO2019181498A1
WO2019181498A1 PCT/JP2019/008807 JP2019008807W WO2019181498A1 WO 2019181498 A1 WO2019181498 A1 WO 2019181498A1 JP 2019008807 W JP2019008807 W JP 2019008807W WO 2019181498 A1 WO2019181498 A1 WO 2019181498A1
Authority
WO
WIPO (PCT)
Prior art keywords
abrasive
polishing
concentration
slurry
constituents
Prior art date
Application number
PCT/JP2019/008807
Other languages
French (fr)
Japanese (ja)
Inventor
扶美子 月形
前澤 明弘
崇 南條
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201980020537.5A priority Critical patent/CN112272600B/en
Priority to JP2020508163A priority patent/JP7192851B2/en
Publication of WO2019181498A1 publication Critical patent/WO2019181498A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to an abrasive recycling system and an abrasive recovery / regeneration method, and more specifically, polishing for efficiently recovering an abrasive from a processed abrasive slurry and reusing it as a recycled abrasive slurry.
  • Agent recycling system
  • abrasives also called abrasives
  • diamond, boron nitride, silicon carbide, alumina, alumina zirconia, zirconium oxide, cerium oxide and the like have been conventionally represented. Fine particles having high hardness are used.
  • the polishing agent for optical polishing is mainly composed of the above-described compounds, and may contain transition metal elements such as sodium salts and chromium salts, and fine particles of rare earth elements such as yttrium and decyprosium, and is simple. Disposal is strongly prohibited by the environment. For this reason, development of a processing technique for making the waste liquid used for polishing pollution-free is strongly desired. Therefore, regarding the optical abrasive waste liquid containing the processed abrasive, it is an important problem to recycle resources or to deal with pollution-free.
  • wastewater containing suspended fine particles generated in various industrial fields is treated by aggregating and separating suspended fine particles using a neutralizing agent, inorganic flocculant, polymer flocculant, etc., and then the treated water is discharged.
  • a neutralizing agent inorganic flocculant, polymer flocculant, etc.
  • the coagulated and separated sludge is disposed of by incineration or other means.
  • these abrasives are usually used in a large amount in the polishing process, and the constituents of the object to be polished, such as optical glass scraps, coexist in the waste liquid. Since it is difficult to efficiently separate the product from the waste, as described above, the abrasive waste liquid is often discarded after use, in terms of environmental burden and disposal cost. Also has a problem.
  • an electrolyte substance is added to the processed abrasive, the abrasive is coagulated, and the constituents derived from the polished object (the constituent to be polished) are dissolved.
  • a method for solid-liquid separation is disclosed (for example, see Patent Document 1).
  • alkali metal hydroxide, alkali metal carbonate, alkali metal salt, and ammonium salt are used as the electrolyte substance.
  • a method of regenerating a fine abrasive by mixing sodium hydroxide and potassium hydroxide solution with a processed abrasive and sieving solids by solid-liquid separation is disclosed (for example, , See Patent Document 2).
  • a method is disclosed in which a rare earth and a rare metal are dissolved by adding sulfuric acid to a processed abrasive and heat-treated to separate and remove it from aggregates such as silica in the abrasive slurry (for example, , See Patent Document 3).
  • Non-Patent Document 1 provides a review on the above-described metal recovery technology.
  • abrasive regeneration amount abrasive use amount ⁇ recovery rate ⁇ regeneration rate
  • improvement of the recovery rate and the regeneration rate is important.
  • the above-described technique mainly focuses on the improvement of the recovery rate of the recovered processed abrasive, and the study on the improvement of the recovery rate has not been sufficient in the past. If the recovery rate is not improved, the abrasive cannot be regenerated efficiently.
  • the silicon oxide concentration of the object to be polished in the abrasive slurry increases.
  • silicon oxide concentration is increased, silicon oxide is precipitated and solidified to become foreign matters in the abrasive slurry. Since this foreign matter causes defects such as scratches, the abrasive slurry cannot be used.
  • the increase in the viscosity of the abrasive slurry causes scattering, adhesion, etc. to the periphery of the polishing apparatus, resulting in a decrease in the amount of recovered abrasive components.
  • the present invention has been made in view of the above problems and situations, and a solution to the problem is to efficiently recover the abrasive from the processed abrasive slurry and reuse it as a regenerated abrasive slurry.
  • An abrasive recycling system and an abrasive recovery / regeneration method are provided.
  • the present inventor performs the abrasive recycling process in the course of examining the cause of the above-mentioned problems, and the concentration of the abrasive in the abrasive slurry being processed is equal to or less than the initial concentration at the start of polishing. It has been found that by suppressing the amount to be reduced, precipitation and solidification of the object to be polished can be suppressed, and efficient recovery becomes possible.
  • An abrasive recycling system for recovering and recycling the abrasive A polishing process unit for polishing using a polishing machine, and an abrasive slurry recovery process unit having a slurry supply tank for storing the abrasive slurry used for polishing supplied to the polishing machine, Polishing characterized in that the recycled abrasive slurry is supplied into the slurry supply tank while controlling the concentration of the constituents of the abrasive in the slurry supply tank to be equal to or lower than the initial concentration at the start of the polishing process.
  • Agent recycling system Agent recycling system.
  • the concentration of the constituents of the abrasive in the slurry supply tank is in the range of 20 to 90% at the end point concentration at the end of the polishing step relative to the concentration at the start of the polishing step, and during the polishing step
  • the concentration of the constituent component of the abrasive is always equal to or higher than the end point concentration, and the variation range of the concentration of the constituent of the abrasive in the next processing batch relative to the previous processing batch is controlled within ⁇ 1.0 mass%.
  • the concentration of the constituents of the abrasive in the slurry supply tank is within the range of 30 to 80% at the end point concentration at the end of the polishing step relative to the concentration at the start of the polishing step, and during the polishing step
  • the concentration of the constituent component of the abrasive is always equal to or higher than the end point concentration, and the variation range of the concentration of the constituent of the abrasive in the next processing batch relative to the previous processing batch is controlled within ⁇ 1.0 mass%.
  • any one of the items 1 to 3, further comprising a separation / concentration process unit and a regenerated abrasive slurry preparation process unit in addition to the polishing process unit and the abrasive slurry recovery process unit The abrasive recycling system according to one item.
  • the slurry supply tank that stores the abrasive slurry supplied to the polishing process section, and a recovery liquid mixture tank that stores a mixed liquid of the processed abrasive slurry and cleaning water
  • the separation / concentration process section includes a separation / concentration tank that separates the mixed solution into a permeate and an abrasive concentrate
  • the regenerated abrasive slurry preparation process section includes a regenerated abrasive slurry storage tank for storing a liquid containing the regenerated abrasive from which the constituents of the object to be polished have been removed, and the abrasive slurry is placed between the process sections. 5.
  • the abrasive recycling system according to item 4 further comprising a circulation line for supplying and a control unit for adjusting the supply amount.
  • An abrasive recovery / regeneration method for recovering / regenerating the abrasive, Control the concentration of the constituents of the abrasive in the slurry supply tank for storing the abrasive slurry used for polishing supplied to the polishing machine to be equal to or lower than the initial concentration of the constituents of the abrasive at the start of the polishing process.
  • An abrasive recovery / regeneration method comprising: supplying a recycled abrasive slurry to the polishing process section and recovering the processed abrasive slurry.
  • the concentration of the constituents of the abrasive in the slurry supply tank is in the range of 20 to 90% at the end point concentration at the end of the polishing step relative to the concentration at the start of the polishing step, and during the polishing step
  • the concentration of the constituent component of the abrasive is always equal to or higher than the end point concentration, and the variation range of the concentration of the constituent of the abrasive in the next processing batch relative to the previous processing batch is controlled within ⁇ 1.0 mass%.
  • the concentration of the constituents of the abrasive in the slurry supply tank is within the range of 30 to 80% at the end point concentration at the end of the polishing step relative to the concentration at the start of the polishing step, and during the polishing step
  • the concentration of the constituent component of the abrasive is always equal to or higher than the end point concentration, and the variation range of the concentration of the constituent of the abrasive in the next processing batch relative to the previous processing batch is controlled within ⁇ 1.0 mass%.
  • an abrasive recycling system and an abrasive recovery / regeneration method for efficiently recovering an abrasive from a processed abrasive slurry and reusing it as a recycled abrasive slurry are provided. be able to.
  • the aim was to keep the abrasive concentration in the abrasive slurry constant during the polishing process. For this reason, as the polishing progresses, the concentration of the object to be polished increases, the viscosity increases or locally becomes high temperature, and the recovery rate decreases due to the precipitation of the object to be polished, and the polishing process quality is adversely affected.
  • the concentration of the object to be polished also decreases, reducing the adhesion of the abrasive slurry to the polishing machine, and increasing the recovery rate of the processed abrasive slurry. It seems that it can be improved.
  • the abrasive recycling processing system of the present invention continues the polishing process while controlling the concentration of the constituents of the abrasive and the constituents of the object to be polished in the abrasive slurry used for polishing, from the processed abrasive slurry,
  • a polishing agent recycling system that removes constituents of an object to be polished and collects and regenerates the polishing agent, and is used for the polishing process unit for polishing using a polishing machine and the polishing supplied to the polishing machine.
  • An abrasive slurry recovery process unit having a slurry supply tank for storing the abrasive slurry, and the concentration of the constituents of the abrasive in the slurry supply tank is controlled to be equal to or lower than the initial concentration at the start of the polishing process. Meanwhile, the recycled abrasive slurry is supplied into the slurry supply tank.
  • the concentration of the constituents of the abrasive in the slurry supply tank is such that the end point concentration at the end of the polishing process is within the range of 20 to 90%, more preferably 30 to 80% with respect to the concentration at the start of the polishing process. Within the range, the concentration of the constituent component of the abrasive during the polishing process is always equal to or higher than the end point concentration, and the variation width of the change in the concentration of the constituent component of the abrasive in the next processing batch relative to the previous processing batch Is preferably controlled within ⁇ 1.0% by mass.
  • the separation / concentration process section and the regenerated abrasive slurry preparation process section have the effect of improving the efficiency of the abrasive recycling system. Since it is obtained, it is preferable.
  • the abrasive slurry recovery process section includes a slurry supply tank for storing the regenerated abrasive slurry supplied to the polishing process section, and a mixed liquid of the processed abrasive slurry and the washing water.
  • the separation / concentration process unit includes a separation / concentration tank that separates the mixture into a permeate and an abrasive concentrate, and the regenerated abrasive slurry preparation step.
  • the part includes a recycle abrasive slurry storage tank for storing a liquid containing the regenerated abrasive from which the constituents of the object to be polished are removed, and a circulation line for supplying the abrasive slurry between the process parts. It is preferable to provide a control unit for adjusting the supply amount from the viewpoint of improving the recovery / regeneration rate.
  • an abrasive particle size adjusting step for adjusting the particle size of the abrasive obtained in the separation / concentration step from the viewpoint of manifesting the effects of the present invention.
  • the recycled abrasive slurry contains a maleic acid-acrylic acid copolymer in the range of 0.04 to 1.5 g / L.
  • the abrasive contains a metal oxide and the object to be polished contains silicon (Si) because the effects of the present invention can be easily obtained.
  • the abrasive contains cerium oxide from the viewpoint of polishing rate.
  • an alkaline earth metal salt as the aggregating agent of the abrasive, and that the alkaline earth metal salt is a magnesium salt from the viewpoint of the efficiency of recovery and regeneration of the abrasive. preferable.
  • the polishing process is continued while controlling the concentration of the constituents of the abrasive and the constituents of the object to be polished in the abrasive slurry used for polishing.
  • the abrasive recovery / regeneration method of removing the constituents and recovering / regenerating the abrasive Control the concentration of the constituents of the abrasive in the slurry supply tank for storing the abrasive slurry used for polishing supplied to the polishing machine to be equal to or lower than the initial concentration of the constituents of the abrasive at the start of the polishing process.
  • the present invention can be applied to an abrasive recovery / regeneration method that includes supplying an abrasive slurry to the polishing process section and recovering the processed abrasive slurry.
  • the concentration of the constituents of the abrasive in the slurry supply tank is within the range of the end point concentration at the end of the polishing step of 20 to 90% with respect to the concentration at the start of the polishing step, more preferably 30 to 80 %, And the concentration of the constituent component of the abrasive during the polishing process is always equal to or higher than the end point concentration, and the change in the concentration of the constituent component of the abrasive in the next processing batch relative to the previous processing batch It is preferable that the fluctuation range is controlled within ⁇ 1.0% by mass in the abrasive recovery / regeneration method.
  • the recycled abrasive slurry is an abrasive recovery / regeneration method in which a maleic acid-acrylic acid copolymer is contained in the range of 0.04 to 1.5 g / L.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the abrasive slurry refers to a slurry that is generically expressed including the following various abrasive slurries according to the polishing process.
  • the “initial abrasive slurry” refers to a processing liquid at the initial stage of polishing, which contains an abrasive component and water and does not substantially contain an object component to be polished.
  • “Abrasive slurry that is being processed or has been processed” refers to an abrasive slurry that contains a constituent of an object to be polished or an abrasive slurry that has finished its life.
  • the “regenerated abrasive slurry” refers to an abrasive slurry from which the constituents to be polished have been removed or an abrasive slurry that has been concentrated after the constituents to be polished have been removed.
  • the abrasive recycling processing system of the present invention continues the polishing process while controlling the concentration of the constituents of the abrasive and the constituents of the object to be polished in the abrasive slurry used for polishing, from the processed abrasive slurry,
  • a polishing agent recycling system that removes constituents of an object to be polished and collects and regenerates the polishing agent, and is used for the polishing process unit for polishing using a polishing machine and the polishing supplied to the polishing machine.
  • An abrasive slurry recovery process unit having a slurry supply tank for storing the abrasive slurry, and the concentration of the constituents of the abrasive in the slurry supply tank is controlled to be equal to or lower than the initial concentration at the start of the polishing process. Meanwhile, the recycled abrasive slurry is supplied into the slurry supply tank.
  • the aim was to keep the concentration of the abrasive in the abrasive slurry constant during polishing. For this reason, as the polishing progresses, the concentration of the object to be polished increases, the viscosity rises and the temperature locally increases, and the recovery rate decreases due to precipitation of the object to be polished.
  • the temperature of the abrasive slurry in the polishing process section may rise to about 40 to 60 ° C. due to the polishing process.
  • the concentration of silicon oxide is increased by polishing, the viscosity of the abrasive slurry being processed increases and adheres to the processed part.
  • the temperature of the polished portion increases due to processing, precipitation of silicon oxide and solidification are accelerated.
  • the abrasive component adhering to the polished portion by polishing is washed with washing water and recovered as a rinse slurry containing the abrasive component.
  • the initial abrasive slurry prepared in advance is repeatedly circulated between the slurry supply tank and the polishing machine while being replenished with the regenerated abrasive slurry.
  • the silicon component of the object to be polished is in a state dissolved in the abrasive slurry.
  • silicon concentration in the abrasive slurry is increased, silicon oxide is precipitated and solidified to become foreign matter in the abrasive slurry. Since the foreign matter causes a defect such as a scratch, the abrasive slurry cannot be used.
  • the present invention regenerates while controlling the concentration of the constituents of the abrasive contained in the abrasive slurry being processed to be equal to or less than the initial concentration of the abrasive at the start of the polishing process. This can be solved by supplying the abrasive slurry to the polishing machine.
  • FIG. 1A and FIG. 1B are conceptual diagrams showing the relationship between the polishing time, the concentration of the abrasive in the abrasive slurry being processed, and the concentration of the components of the object to be polished.
  • FIG. 1A shows the abrasive concentration in the abrasive slurry with respect to the polishing time.
  • the polishing agent concentration is kept constant as shown by the dotted line even if polishing progresses. Therefore, as shown by the relationship between the polishing time and the concentration of the constituents of the object to be polished in FIG. 1B, the concentration of the constituents of the object to be polished in the abrasive slurry increases as the polishing time increases. And when this density
  • the abrasive concentration in the abrasive slurry is kept below the initial concentration of the polishing process as the polishing time progresses.
  • the increase in the concentration of the constituents of the object to be polished in the abrasive slurry can be suppressed as indicated by the solid line in FIG. 1B, and the abrasive slurry life can be extended.
  • the viscosity of the abrasive slurry is hardly increased, the recovery rate of the abrasive can be increased.
  • the abrasive recycling system of the present invention includes at least a polishing process unit that performs polishing using a polishing machine and an abrasive slurry recovery process unit that includes a slurry supply tank that stores an abrasive slurry supplied to the polishing process unit.
  • the abrasive slurry recovery process unit further includes a recovery mixed liquid tank that stores a mixed liquid of the processed abrasive slurry and cleaning water.
  • a separation / concentration process section that separates the abrasive from the processed abrasive slurry
  • an abrasive particle diameter adjustment process section that adjusts the particle diameter of the recovered processed abrasive particles
  • a regeneration that stores the regenerated abrasive slurry. It is preferable to have an abrasive slurry preparation step.
  • the abrasive recovery / regeneration method of the present invention continues the polishing process while controlling the concentrations of the constituents of the abrasive and the constituents of the object to be polished in the abrasive slurry used for polishing.
  • An abrasive recovery / regeneration method for removing constituents of an object to be polished from a slurry and recovering / regenerating the abrasive Control the concentration of the constituents of the abrasive in the slurry supply tank for storing the abrasive slurry used for polishing supplied to the polishing machine to be equal to or lower than the initial concentration of the constituents of the abrasive at the start of the polishing process.
  • it is characterized by having a step of supplying the abrasive slurry to the polishing step and recovering the processed abrasive slurry.
  • the abrasive recovery / regeneration method of the present invention includes a polishing process for polishing using a polishing machine, an abrasive slurry recovery process having a slurry supply tank for storing an abrasive slurry supplied to the polishing process section, Separation / concentration step for separating the abrasive from the finished abrasive slurry, abrasive particle size adjusting step for adjusting the particle size of the recovered processed abrasive particles, and regenerated abrasive slurry preparation step for storing the regenerated abrasive slurry It is preferable to have.
  • FIG. 2 is a schematic view showing an example of the abrasive recycling system of the present invention.
  • the abrasive recycling system shown in FIG. 2 includes a polishing process section 1, an abrasive slurry collection process section 2, a separation / concentration process section 3, an abrasive particle diameter adjustment process section 4, and a recycled abrasive slurry preparation process section 5. It is shown.
  • each process part will be described in detail.
  • polishing process section 1 the polishing machine 12 has a polishing surface plate to which a polishing cloth composed of a nonwoven fabric, a synthetic resin foam, a synthetic leather and the like is attached.
  • the board is rotatable.
  • the polishing surface plate is rotated while pressing an object to be polished (for example, optical glass or the like) against the polishing surface plate with a predetermined pressing force N using a holder.
  • cleaning water for cleaning the polishing machine 12 is stored in the cleaning water tank 11, and cleaning is performed by spraying the polishing unit from the cleaning water spray nozzle.
  • the polishing process is a process performed in the polishing process unit 1.
  • abrasives such as optical glass and semiconductor substrates
  • fine particles such as bengara ( ⁇ Fe 2 O 3 ), cerium oxide, aluminum oxide, manganese oxide, zirconium oxide, colloidal silica are dispersed in water or oil.
  • the polishing agent recovery / regeneration method of the present invention provides a sufficient processing speed while maintaining flatness with high accuracy in the polishing process of the surface of a semiconductor substrate and glass.
  • Examples of the constituents of the abrasive according to the present invention include diamonds such as synthetic diamond (for example, manufactured by Nippon Micro Coating Co., Ltd.), natural diamonds, and boron nitrides such as cubic boron nitride BN. (For example, manufactured by Showa Denko KK).
  • the boron nitride system has hardness next to diamond.
  • group a silicon carbide, green silicon carbide, black silicon carbide (For example, the product made by Mipox etc.), etc. can be mentioned.
  • examples of the alumina system include brown alumina, white alumina, light red alumina, pulverized alumina, and alumina zirconia (for example, manufactured by Saint-Gobain).
  • examples of zirconium oxide include BR series zirconium oxide for abrasives manufactured by 1st Rare Element Chemical Industry Co., Ltd., and zirconium oxide manufactured by China HZ Company.
  • cerium oxide for example, manufactured by C-I Kasei Co., Ltd., manufactured by Technolize Co., Ltd., manufactured by Wako Pure Chemical Industries, Ltd.
  • bust nesite which is called bust necite, rather than pure cerium oxide.
  • Many pulverized products are used.
  • cerium oxide is the main component, it contains rare earth elements such as lanthanum, neodymium, and praseodymium as other components, and may contain fluorides in addition to oxides.
  • the abrasive used in the present invention is preferable because the effect is large when the content of the constituents of the above-described abrasive is 50% by mass or more. More preferably, it is in the range of 95 to 100% by mass, and still more preferably 100% by mass.
  • Polishing can be performed with the polishing machine 12 of the polishing process section 1 as shown in FIG.
  • it is an abrasive
  • the polishing process section 1 the polishing process and the cleaning of the polishing section constitute one polishing process section.
  • polishing pad polishing cloth
  • an object to be polished for example, a glass substrate
  • an abrasive slurry is supplied to the contact surface while the pad and the glass substrate are relatively moved under pressure. Exercise.
  • the polishing pad can be subjected to pad dressing or pad brushing after continuous polishing.
  • the pad dressing is a process of keeping the pad state constant by roughening the surface while physically cutting the pad.
  • pad brushing is a process performed to remove polishing debris contained in the irregularities of the pad without cutting the pad.
  • polishing may be performed using a plurality of polishing machines in one batch of processing.
  • the change width of the processing time per batch of the next batch with respect to the previous batch is preferably within 10%. Within this range, it is possible to suppress variations in polishing processing time among a plurality of polishing machines.
  • one batch means a unit of polishing process, and for example, six glass substrates can be polished in one batch.
  • the concentration adjustment of the abrasive in the slurry supply tank 21 is performed for each batch from the viewpoint of reducing the concentration change of the constituents of the abrasive in the abrasive slurry of the next processing batch relative to the previous processing batch. It is preferable to carry out.
  • This cleaning operation discharges a certain amount of abrasive out of the system, reducing the amount of abrasive in the system.
  • a new recycled abrasive slurry is added to the slurry supply tank 21 from the recycled abrasive slurry storage tank 51.
  • the addition method may be performed for each batch or may be performed for several batches, but it is desirable to supply an abrasive that is sufficiently dispersed in the solvent.
  • the abrasive slurry recovery process part has a slurry supply tank 21 for storing the abrasive slurry used for polishing, and the polishing machine 12 and the cleaning in the abrasive slurry recovery process part.
  • the processed abrasive slurry discharged from the system comprising the water tank 11 is recovered.
  • the abrasive slurry recovery process unit 2 preferably has a recovery mixed liquid tank 22 in addition to the slurry supply tank 21.
  • the slurry supply tank 21 uses the processed abrasive slurry discharged from the polishing machine and the regenerated abrasive slurry and water supplied from the regenerated abrasive slurry storage tank 51 to initialize the abrasive at the start of the polishing process. Controlled below concentration. Then, the abrasive slurry in the slurry supply tank 21 is supplied to the polishing machine 12 via a pump.
  • the processed abrasive slurry refers to an abrasive slurry discharged out of the system of the polishing process section 1 composed of the polishing machine 12 and the washing water tank 11.
  • the processed abrasive slurry to be recovered includes two types of abrasive slurry 1 including the cleaning water and abrasive slurry 2 including the processed abrasive slurry.
  • the recovered abrasive slurry generally contains an abrasive in the range of 0.1 to 40% by mass.
  • each abrasive slurry After each abrasive slurry is recovered, it may be transferred immediately to the separation step or stored until a certain amount is recovered. In any case, the recovered abrasive slurry is always stirred. It is preferable to prevent aggregation and sedimentation of particles and maintain a stable dispersion state.
  • the abrasive slurry 1 and the abrasive slurry 2 recovered in the abrasive slurry recovery process unit 2 are mixed and prepared as a mother liquor in the recovered mixed liquid tank 22, and then processed in the subsequent separation / concentration process unit 3. Is preferred.
  • the regenerated abrasive slurry is supplied to the slurry supply tank 21 while controlling the concentration of the constituents of the abrasive in the slurry supply tank 21 to be equal to or lower than the initial concentration at the start of the polishing process.
  • the concentration is adjusted by controlling the flow rate of water, the regenerated abrasive slurry, and the processed abrasive slurry discharged from the polishing process through the pipe, which are put into the slurry supply tank 21. it can.
  • Supply to the polishing machine 12 is performed from a slurry supply tank 21 by a pump (not shown) provided in the piping of the polishing machine 12.
  • the control unit has a flow meter and a pump, and the flow rate is controlled by a circulation line for supplying abrasive slurry between the process units and piping for supplying other additives.
  • the end point concentration of the constituents of the abrasive in the slurry supply tank at the end of the polishing process is 20 to 90% of the concentration of the constituents of the abrasive in the slurry supply tank at the start of the polishing process. Within the range, more preferably within the range of 30 to 80%.
  • the end point concentration of the constituents of the abrasive in the slurry supply tank at the end of the polishing process is 20% or more with respect to the initial concentration of the polishing process, the influence of the decrease in the polishing lubricant is small and the polishing rate is also low. There is no significant decrease. Moreover, if it is 90% or less, it is preferable at the point which can make a collection rate high.
  • the concentration of the abrasive in the slurry supply tank 21 varies when a new regenerated abrasive slurry is added.
  • the fluctuation range of the abrasive concentration in the abrasive supply tank 21 is controlled within ⁇ 1.0 mass% of the fluctuation range of the concentration change of the constituents of the abrasive in the abrasive slurry of the next processing batch relative to the previous processing batch. It is preferable that the concentration of the abrasive at the start of the polishing process is not exceeded.
  • the abrasive concentration in the slurry supply tank 21 can be measured using, for example, a UCUF-04K small-diameter ultrasonic flowmeter detector (manufactured by Tokyo Keiki Co., Ltd.). Specifically, a calibration curve between the abrasive concentration and the flow rate is prepared, and the target abrasive concentration is measured by measuring the flow rate of the abrasive slurry in the slurry supply tank 21, and the recycled abrasive slurry storage tank. Feedback is provided to the control unit 51.
  • a UCUF-04K small-diameter ultrasonic flowmeter detector manufactured by Tokyo Keiki Co., Ltd.
  • the above UCUF-04K small-diameter ultrasonic flowmeter detector (manufactured by Tokyo Keiki Co., Ltd.) should be measured under the condition that the temperature of the target abrasive slurry is 30 ° C. and the flow pressure is 0.2 MPa. Can do.
  • the measurement of the abrasive slurry concentration in the slurry supply tank 21 may be performed online, or the abrasive slurry may be sampled and measured as appropriate.
  • the concentration range of 1 to 40% by mass of the abrasive powder with respect to a solvent such as water The initial abrasive slurry can be prepared by adding and dispersing so that.
  • This initial abrasive slurry is stored in the slurry supply tank shown in FIG.
  • the fine particles used as the abrasive are preferably particles having an average particle size of several tens of nm to several ⁇ m.
  • a tank for abrasive slurry should be installed next to the polishing machine, a dispersion state should always be maintained using a stirrer, etc., and a method of circulating supply to the polishing machine using a supply pump should be adopted. Is preferred.
  • the separation / concentration process unit 3 separates and concentrates only the abrasive with respect to the mixed slurry of processed abrasive slurry and washing water collected in the slurry collection process unit.
  • the separation / concentration process unit 3 in the present invention separates and concentrates the abrasive from the mother liquor.
  • a known method may be used.
  • an alkaline earth metal salt is added as an inorganic salt to the abrasive slurry recovered in the abrasive slurry recovery step 2, and an abrasive is added. It is preferable that the abrasive is separated from the mother liquor and concentrated in a state where only the agglomerates are aggregated and the components to be polished are not aggregated.
  • a known method can be used as the separation and concentration method.
  • a membrane separation method or a sedimentation method can be employed.
  • solid-liquid separation by natural sedimentation may be performed without applying forced separation means.
  • the mother liquor is separated into a supernatant liquid containing an object to be polished and a concentrate containing a recovered abrasive that has settled at the bottom, and then the decantation method, for example, tilting the kettle to drain the supernatant liquid.
  • the drainage hype is inserted to near the interface between the supernatant and concentrate in the separated kettle, and only the supernatant is discharged out of the kettle to recover the abrasive.
  • the recovered processed abrasive slurry is in a state where glass components derived from the object to be polished are mixed.
  • the concentration decreases due to the mixing of cleaning water, and in order to use the recovered abrasive again for polishing, it is necessary to separate the glass component that is the object to be polished and concentrate the abrasive. is there.
  • the inorganic salt used for agglomeration of the abrasive is an alkaline earth metal salt.
  • alkaline earth metal salt examples include calcium salts, strontium salts, and barium salts. Furthermore, in the present invention, elements belonging to Group 2 of the periodic table are also broadly defined. , Defined as an alkaline earth metal. Therefore, beryllium salts and magnesium salts also belong to the alkaline earth metal salts referred to in the present invention.
  • the alkaline earth metal salt according to the present invention is preferably in the form of a halide, sulfate, carbonate, acetate or the like.
  • the inorganic salt according to the present invention is preferably an alkaline earth metal salt, more preferably a magnesium salt.
  • the magnesium salt applicable to the present invention is not limited as long as it functions as an electrolyte, but from the viewpoint of high solubility in water, magnesium chloride, magnesium bromide, magnesium iodide, magnesium sulfate, Magnesium acetate and the like are preferred, and magnesium chloride and magnesium sulfate are particularly preferred from the viewpoint that the pH change of the solution is small and the settled abrasive and waste liquid can be easily treated.
  • the inorganic salt to be added may be directly supplied to the abrasive slurry (mother liquor) or may be dissolved in a solvent such as water and then added to the abrasive slurry (mother liquor). Although it is good, it is preferable to add in the state dissolved in the solvent so that it may become a uniform state after adding to an abrasive
  • a preferable concentration of the inorganic salt is an aqueous solution having a concentration range of 0.5 to 50% by mass.
  • the concentration is in the range of 10 to 40% by mass.
  • the temperature at which the inorganic salt is added is not less than the temperature at which the recovered abrasive slurry is frozen and can be appropriately selected as long as it is in the range up to 90 ° C. From the viewpoint of efficiently performing the separation, it is preferably in the range of 10 to 40 ° C, more preferably in the range of 15 to 35 ° C.
  • Addition rate of inorganic salt The addition rate of the inorganic salt to the abrasive slurry (mother liquor) is uniform without causing a high concentration region locally as the concentration of the inorganic salt in the recovered abrasive slurry. It is preferable to add such that.
  • the addition amount per minute is preferably 20% by mass or less of the total addition amount, and more preferably 10% by mass or less.
  • the pH value of the previously recovered abrasive slurry may not be adjusted.
  • the pH value of the recovered abrasive slurry is somewhat alkaline because it contains a glass component, and is in the range of less than 8 to 10, and it is not necessary to adjust the pH value of the recovered abrasive slurry in advance. Therefore, in the present invention, it is preferable to perform separation and concentration under the condition that the pH value of the mother liquor in terms of 25 ° C. is less than 10.0.
  • the pH value can be a value measured at 25 ° C. using a Lacom Tester desktop pH meter (pH 1500, manufactured by As One Co., Ltd.).
  • the pH value at the time of inorganic salt addition means the pH value immediately after the addition of the inorganic salt is completed.
  • PH Maintain the pH value or less at the time of adding inorganic salt until the precipitated aggregates are separated.
  • less than 10 is maintained as a pH value at 25 ° C.
  • the lower limit of the pH value at the time of adding the inorganic salt is preferably 6.5 or more from the viewpoint of purity reduction and operability due to the pH adjusting agent.
  • stirring is preferably continued for at least 10 minutes, more preferably 30 minutes or more. Aggregation of the abrasive particles starts simultaneously with the addition of the inorganic salt, but maintaining the stirring state makes the aggregation state uniform throughout the system, narrowing the particle size distribution of the concentrate, and facilitating subsequent separation.
  • the separation / concentration process unit 3 separates the concentrate containing the glass component and the concentrate containing the recovered abrasive particles, and then recovers the concentrate.
  • the concentrate Since the recovered abrasive particles aggregate due to the addition of the inorganic salt and are separated from the supernatant in this state, the concentrate has a higher specific gravity than the recovered slurry and is concentrated. The concentrate contains the recovered abrasive at a concentration higher than the recovered slurry.
  • the abrasive particle size adjustment step 4 redisperses the aggregated abrasive to obtain a desired particle size distribution.
  • the particle size distribution level is adjusted to a level close to that of an unused (before polishing) abrasive.
  • abrasive slurry concentrated and separated by the above method, since the abrasive particles form aggregates (secondary particles) via inorganic salts, water and a dispersing agent are used to unravel the state close to independent primary particles. And is dispersed to a desired particle size using a dispersion apparatus.
  • a method of redispersing the aggregated abrasive particles for example, a) a method of adding water to reduce the concentration of inorganic ions having an aggregating action on the abrasive in the treatment liquid, and b) a dispersant (also referred to as a metal separating agent) And a method of forcibly flocculating aggregated abrasive particles using a disperser or the like.
  • the amount added is appropriately selected depending on the volume of the concentrated abrasive slurry, and is generally 5 to 50% by volume, preferably 10 to 40% by volume of the concentrated slurry.
  • Dispersant A known dispersant can be used as the dispersant.
  • the amount added can be in the range of 0.01 to 5.0 g / L with respect to the recycled abrasive slurry.
  • a polycarboxylic acid polymer dispersant having a carboxy group is preferably exemplified, and an acrylic acid-maleic acid copolymer is particularly preferable.
  • the pH of the abrasive slurry being processed increases with the dissolution of the object to be polished such as polysilicic acid and shifts to the alkali side.
  • the pH is adjusted by adding an acid to prevent this defect, the dissolved polysilicic acid is likely to solidify, which may cause a reduction in the yield rate of the object to be polished.
  • Such a phenomenon can be reduced by using a copolymer of acrylic acid-maleic acid as a dispersant.
  • the buffering effect against pH fluctuation of the abrasive slurry during processing acts due to the equilibrium state of maleic acid hydrolysis, and the dissolved polysilicic acid is stably dissolved without solidifying. It is thought that it is because it can keep.
  • the maleic acid-acrylic acid copolymer has a buffering effect against pH fluctuation and is useful as an additive having a dispersing function. It is not only used as a dispersant in the abrasive particle size adjusting step 4 but also added as a dispersant. As an agent, it may be added separately to the slurry supply tank 21 or the recycled abrasive storage tank 51.
  • the regenerated abrasive slurry in the regenerated abrasive storage tank 51 in the regenerated abrasive-containing liquid preparation process unit 5 contains 0 maleic acid-acrylic acid copolymer. It is preferably contained within the range of 0.04 to 1.50 g / L.
  • An acrylic acid-maleic acid copolymer consisting of a salt and having a molecular weight distribution (Mw / Mn) of 3.5 to 10 is preferred.
  • the molecular weight distribution (Mw / Mn) of the copolymer is preferably 3.5-7.
  • the number average molecular weight of the copolymer is in the range of 1000 to 20000, preferably 1000 to 10,000. If necessary, other copolymerization monomers may be copolymerized.
  • a combination of a persulfate such as ammonium persulfate, potassium persulfate, or sodium persulfate and a reducing agent such as phosphorous acid, hypophosphorous acid, or a salt thereof is preferable.
  • a reducing agent such as phosphorous acid, hypophosphorous acid, or a salt thereof.
  • sodium hypophosphite is particularly preferred.
  • Both persulfate and reducing agent are preferably used in an amount of 1 to 6 mol% based on the monomer, and the total amount of persulfate and reducing agent is preferably less than 10 mol% based on the monomer.
  • a specific synthesis method is described in JP-A-7-316999.
  • acrylic acid-maleic acid copolymer examples include Polyty A-550 (manufactured by Lion Corporation), Mighty 21HP (manufactured by Kao Corporation), and the like.
  • a combination of an acrylic acid-maleic acid copolymer and a known dispersant can also be used.
  • an ultrasonic disperser a medium stirring mill such as a sand mill or a bead mill can be applied, and it is particularly preferable to use an ultrasonic disperser.
  • the ultrasonic disperser various devices are commercially available from, for example, SMT Co., Ltd., Ginsen Co., Ltd., Taitec Co., Ltd., BRANSON, Kinematica Co., Ltd., Nippon Seiki Seisakusho Co., Ltd. ) SMT UDU-1, UH-600MC, Ginsen GSD600CVP, Nippon Seiki Seisakusho RUS-600TCVP, etc. can be used.
  • the frequency of the ultrasonic wave is not particularly limited.
  • a dispersant for example, a polymer dispersant
  • a dispersion treatment is performed with an ultrasonic disperser 44 by a pump, and the agglomerated abrasive particles are unraveled.
  • the particle size distribution of the abrasive particles after dispersion is monitored by a particle size measuring device 45 provided on the downstream side thereof, and the particle size distribution of the abrasive dispersion can be made into a desired particle size distribution profile. .
  • the particle size distribution obtained in this step it is desirable that the particle size distribution has little variation with time and the average particle size variation after one day has little.
  • the final regenerated abrasive slurry obtained in the regenerated abrasive slurry preparation step 5 contains a high-purity abrasive of 98% by mass or more, has a small variation with time in the particle size distribution, and is recovered.
  • the content of the inorganic salt is preferably in the range of 0.0005 to 0.08 mass%.
  • a high-quality and high-purity recycled abrasive can be obtained as a recycled abrasive slurry by a simple method.
  • Example 1 Preparation of Recycled Abrasive >> First, a regenerated abrasive slurry was prepared using the abrasive recycling system shown in FIG.
  • Abrasive slurry recovery process part 2 After polishing the glass substrate in the polishing process section 1 shown in FIG. 2, 210 l of the abrasive slurry 1 containing the cleaning water is collected into the recovered mixed liquid tank 22 and polished after being processed from the slurry supply tank 21. 30 liters of the abrasive slurry 2 containing the agent was recovered to 240 liters as a recovered slurry liquid.
  • the recovered slurry liquid in the recovered mixed liquid tank 22 has a specific gravity of 1.03 and contains 8.5 kg of cerium oxide.
  • the recovered slurry liquid is transferred to the separation / concentration tank 32, and the liquid temperature of the recovered slurry liquid is controlled within a range of 20 ⁇ 1 ° C. While stirring to such an extent that cerium oxide does not settle, 10% by mass of magnesium chloride 2.5 liters of aqueous solution was added over 10 minutes. Immediately after the magnesium chloride was added, the pH value in terms of 25 ° C. was 8.60, and this condition was maintained.
  • the mixture was allowed to stand for 1.5 hours, and the supernatant liquid and the aggregate were settled and separated by a natural sedimentation method. After 1.5 hours, the supernatant was discharged using a drain pump, and the aggregate was separated and recovered. The collected aggregate was 60 liters.
  • Recycled abrasive slurry preparation process part 5 The regenerated abrasive was transferred to the regenerated abrasive slurry storage tank 51, the concentration was adjusted, and 80 liters of regenerated abrasive slurry containing regenerated cerium oxide was obtained.
  • the cerium oxide concentration was 10% by mass, the particle size (D90 ⁇ 2.0 ⁇ m), and the magnesium content was 0.01% by mass.
  • the concentration of Polyty A-550 which is an additive having a dispersing function in the regenerated abrasive slurry, was 0.50 g / L with respect to the regenerated abrasive slurry.
  • the slurry supply tank 21 was filled with a regenerated abrasive slurry containing cerium oxide having an initial concentration of 10.0% by mass, and 200 batches of glass substrates were polished in the polishing step as follows.
  • the abrasive slurry collecting step 2 the abrasive slurry remaining in the polishing step is washed away with cleaning water every time the glass substrate is polished.
  • the abrasive slurry 1 containing the washing water was recovered in the recovery liquid mixture tank 22. Further, the processed abrasive slurry was recovered from the abrasive slurry supply tank 21 to the recovery mixture tank 22 after the 200 batch processing was completed.
  • a regenerated abrasive was prepared as a regenerated abrasive slurry in the same manner as the regenerated abrasive preparation. .
  • polishing process section During polishing, the concentration of the polishing agent in the slurry supply tank 21 for storing the polishing agent slurry used for polishing is controlled to be equal to or less than the initial concentration (10.0% by mass) at the start of the polishing process, and polishing is performed.
  • One batch one process while controlling the concentration of cerium oxide in the slurry supply tank 21 so that the concentration in the slurry supply tank at the end of the processing step is 50% (5.0 mass%) of the initial concentration.
  • the regenerated abrasive slurry and water as needed were supplied into the slurry supply tank.
  • the slurry supply tank 21 was first supplemented with a regenerated abrasive slurry containing an initial concentration of 10.0 mass% abrasive.
  • the polishing process is performed, and the polishing slurry 2 containing the processed polishing agent is returned to the slurry supply tank 21 at the end of each batch of polishing processing, the polishing machine is washed with water, and a predetermined thickness is obtained. 200 batches of polishing were repeated.
  • the concentration of the abrasive (cerium oxide) in the abrasive slurry supply tank 21 is 10.0% by mass or less, and the concentration of the abrasive in the slurry supply tank 21 at the end of the polishing process is the initial concentration.
  • the concentration of the abrasive in the slurry supply tank 21 at the end of the polishing process is within ⁇ 1.0% by mass so as to be 50% (5% by mass).
  • the concentration of the abrasive in the slurry supply tank 21 supplied to the polishing machine 12 during polishing was measured using the UCUF-04K small-diameter ultrasonic flowmeter detector (manufactured by Tokyo Keiki Co., Ltd.) under the following usage conditions. It was measured.
  • the abrasive recycling system was evaluated based on four items: the recovery rate of the abrasive after polishing, the non-defective rate of the glass substrate, the life of the polishing pad, and the change width of the polishing time between batches.
  • the life of the polishing pad was evaluated by continuing polishing after 200 batches of polishing were completed.
  • the recovery rate was calculated by the following formula and evaluated according to the following evaluation criteria.
  • the recovery rate should be at least 50%.
  • Recovery rate (total mass of abrasive recovered from abrasive slurry contained in processing slurry and cleaning water after 200 batch polishing / mass of abrasive used for polishing) ⁇ 100 (%) ⁇ : Recovery rate of 90% or more ⁇ : Recovery rate of 70% or more, less than 90% ⁇ : Recovery rate of 50% or more, less than 70% ⁇ : Recovery rate of less than 50% The glass substrate was visually observed, and a non-scratched product was evaluated as a non-defective product according to the following evaluation criteria. An evaluation rank ⁇ or higher was considered acceptable.
  • Good product rate of 80% or more ⁇ : Good product rate of 60% or more and less than 80% ⁇ : Good product rate of 50% or more and less than 60% ⁇ : Good product rate of less than 50% [life of polishing pad]
  • the polishing pad was removed and SEM (scanning electron microscope) photograph observation was performed.
  • silicon oxide is deposited during polishing, silicon oxide is deposited on the foamed portion of the polishing pad and is observed white by SEM observation. For example, although no precipitation is observed in FIG. 3A, white silicon oxide is observed to fill the foamed portion of the polishing pad in FIG. 3B.
  • the evaluation was based on the method of removing precipitates remaining on the polishing pad in 200 processing batches and the degree of recovery of the surface physical properties of the polishing pad. An evaluation rank ⁇ or higher was considered acceptable.
  • A When the polishing pad is brushed, the physical properties of the polishing pad surface are recovered. In addition, precipitation was observed when the number of processing was 300 batches or more. (Precipitates can be removed without grinding the polishing pad.) ⁇ When the polishing pad is brushed, the physical properties of the polishing pad surface are restored. Precipitation was observed when the number of processing was 250 batches or more. (Precipitates can be removed without grinding the polishing pad.) ⁇ : Dressing the polishing pad recovers the physical properties of the polishing pad surface, but does not recover by brushing. (The polishing pad is cut out to remove the precipitate.) X: Even if the polishing pad is dressed, the physical properties of the polishing pad surface are not recovered.
  • Change width of processing time per batch of the next batch relative to the previous batch is less than ⁇ 5%
  • Change width of processing time per batch of the next batch relative to the previous batch is ⁇ 5% or more, less than ⁇ 10%
  • Previous The change width of the processing time per batch of the next batch with respect to the batch is ⁇ 10% or more and less than ⁇ 15%
  • X The change width of the processing time per batch of the next batch with respect to the previous batch is ⁇ 15% or more [Abrasive recycling system 2 ⁇ 5 and 7-13]
  • the abrasive cycle systems 2 to 5 and 7 to 13 are the abrasive concentration of the end point in the slurry supply tank 21 in the abrasive slurry recovery process unit 2 in the abrasive recycle system 1, the abrasive in the next processing batch relative to the previous processing batch.
  • Polishing was carried out by changing the fluctuation range of the concentration change, the maximum concentration, the dispersant in the regenerated abrasive slurry and the amount thereof as shown in Table I. Adjustment of the dispersing agent and its amount in the regenerated abrasive slurry was performed by adjusting the dispersing agent and its amount to be added to the abrasive particle size adjusting step 4.
  • the regenerated abrasive slurry is filled in the slurry supply tank 21.
  • 200 batch polishing was performed with the initial concentration of 10% by mass or less in the slurry supply tank 21 at the polishing end point.
  • the abrasive recycling system 12 did not control the fluctuation range of the change in the abrasive concentration of the next processing batch relative to the previous processing batch.
  • the maximum concentration of the abrasive in the slurry supply tank exceeded 10.0% by mass.
  • Abrasive recycling system 6 Abrasive slurry was similarly applied to the abrasive recycling system 1 except that the separation / concentration process unit 3 was changed from the sedimentation separation method to the membrane separation method. That is, it was carried out in the same manner as the abrasive recycling system 1 except that it was changed to a micro-zalab module using an MF membrane (micro-za: manufactured by Asahi Kasei Co., Ltd.) having an abrasive slurry pore size of about 0.5 ⁇ m.
  • MF membrane micro-za: manufactured by Asahi Kasei Co., Ltd.
  • A Polyty A-550 (maleic acid-acrylic acid copolymer: manufactured by Lion Corporation)
  • B Mighty 21HP (maleic acid-acrylic acid copolymer: manufactured by Kao Corporation)
  • C Nop Cosperth 5600 (manufactured by San Nopco)
  • Table I shows that the abrasive recycling system of the present invention has an excellent recovery rate, a high yield rate, and a long polishing pad life.
  • the abrasive recycling system of the present invention can efficiently recover an abrasive from a processed abrasive slurry and reuse it as a recycled abrasive slurry. For this reason, it can contribute to resource saving of elements with a high rare value such as cerium used as an abrasive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

The present invention addresses the problem of providing a polishing agent recycle processing system and a polishing agent recovery/regeneration method for efficiently recovering a polishing agent from a used polishing agent slurry and reusing the polishing agent as a regenerated polishing agent slurry. This polishing agent recycle processing system continuously performs a polishing process while controlling the concentration of the constituent components of a polishing agent in a polishing agent slurry used for polishing and the constituent components of an object being polished, and removes the constituent components of the object being polished from the used polishing agent slurry to recover/regenerate the polishing agent. The polishing agent recycle processing system is characterized by: comprising a polishing process step section and a polishing agent slurry recovery step section which has a slurry supply tank that stores the polishing agent used for polishing; and supplying the regenerated polishing agent slurry to the slurry supply tank while controlling the concentration of the constituent components of the polishing agent in the slurry supply tank to be equal to or less than the initial concentration at the time of starting the polishing process step.

Description

研磨剤リサイクル処理システム及び研磨剤回収・再生方法Abrasive recycling system and abrasive recovery / regeneration method
 本発明は研磨剤リサイクル処理システム及び研磨剤回収・再生方法に関し、より詳しくは、加工済みの研磨剤スラリーから研磨剤を効率的に回収し、これを再生研磨剤スラリーとして再利用するための研磨剤リサイクル処理システム等に関する。 The present invention relates to an abrasive recycling system and an abrasive recovery / regeneration method, and more specifically, polishing for efficiently recovering an abrasive from a processed abrasive slurry and reusing it as a recycled abrasive slurry. Agent recycling system.
 光学ガラスや水晶発振子を仕上工程で精密研磨する研磨剤(研磨材ともいう。)としては、従来、ダイヤモンド、窒化ホウ素、炭化ケイ素、アルミナ、アルミナジルコニア、酸化ジルコニウム、酸化セリウム等に代表される高い硬度を有する微粒子が使用されている。 As abrasives (also called abrasives) for precisely polishing optical glass and quartz oscillators in the finishing process, diamond, boron nitride, silicon carbide, alumina, alumina zirconia, zirconium oxide, cerium oxide and the like have been conventionally represented. Fine particles having high hardness are used.
 一般に、研磨剤の主構成元素の中には、日本国内では産出しない鉱物から得られるものもあり、一部では輸入に頼っている資源であり、かつ材料価格としても高価なものが多い。 Generally, some of the main constituent elements of abrasives are obtained from minerals that are not produced in Japan, and some of them are resources that depend on imports and are expensive in terms of material prices.
 これらの研磨剤は、硬度が高い微粒子であるため、光学レンズや半導体シリコン基板及び液晶画面のガラス板など、電子部品関係の光学研磨剤として多量に使用されている重要な資源であり、その再利用を強く望まれている資源の一つである。また、光学研磨用の研磨剤は、上述のような各化合物を主成分として、ナトリウム塩やクロム塩などの遷移金属元素、イットリウムやデシプロシウムなど希土類元素の微粒子を含んでいる場合もあり、単純な廃棄は環境上強く禁止されている。そのため、研磨に使用した後の廃液を無公害化する処理技術の開発が強く望まれている。したがって、加工済みの研磨剤を含有する光学研磨剤廃液については、資源の再利用化、又は無公害化への技術的対応が重要な問題となっている。 Since these abrasives are fine particles with high hardness, they are important resources that are used in large quantities as optical abrasives related to electronic parts such as optical lenses, semiconductor silicon substrates, and glass plates for liquid crystal screens. It is one of the resources that are strongly desired to use. In addition, the polishing agent for optical polishing is mainly composed of the above-described compounds, and may contain transition metal elements such as sodium salts and chromium salts, and fine particles of rare earth elements such as yttrium and decyprosium, and is simple. Disposal is strongly prohibited by the environment. For this reason, development of a processing technique for making the waste liquid used for polishing pollution-free is strongly desired. Therefore, regarding the optical abrasive waste liquid containing the processed abrasive, it is an important problem to recycle resources or to deal with pollution-free.
 一般的に各種工業分野において発生する懸濁微粒子を含む廃水の処理方法としては、中和剤や無機凝集剤、高分子凝集剤等を用いて懸濁微粒子を凝集分離した後、処理水は放流し、凝集分離した汚泥は焼却等の手段により廃棄処理されているのが現状である。 Generally, wastewater containing suspended fine particles generated in various industrial fields is treated by aggregating and separating suspended fine particles using a neutralizing agent, inorganic flocculant, polymer flocculant, etc., and then the treated water is discharged. However, at present, the coagulated and separated sludge is disposed of by incineration or other means.
 また、これらの研磨剤は、通常、研磨工程で多量に使用する上、廃液中には被研磨物の構成成分、例えば、光学ガラス屑等も共存しているが、通常では研磨剤と被研磨物とを効率的に分離することが困難であるため、上記のように、研磨剤廃液は、多くの場合、使用後に廃棄されているのが現状であり、環境負荷の面や廃棄コストの面からも問題を抱えている。 In addition, these abrasives are usually used in a large amount in the polishing process, and the constituents of the object to be polished, such as optical glass scraps, coexist in the waste liquid. Since it is difficult to efficiently separate the product from the waste, as described above, the abrasive waste liquid is often discarded after use, in terms of environmental burden and disposal cost. Also has a problem.
 したがって、近年、研磨剤の主構成元素を効率よく再利用して、希少価値の高い元素の省資源化を図ることが重要な問題となっている。 Therefore, in recent years, it has become an important issue to efficiently reuse the main constituent elements of abrasives to save resources of elements with high rare values.
 研磨剤の構成成分の再生方法に関しては、例えば、加工済みの研磨剤に電解質物質を添加して、研磨剤を凝集沈殿させ、研磨された被研磨物由来の構成成分(被研磨成分)を溶解し、固液分離する方法が開示されている(例えば、特許文献1参照。)。特許文献1に記載の方法では、電解質物質として、水酸化アルカリ金属、炭酸アルカリ金属、アルカリ金属塩、及びアンモニウム塩を使用している。 Regarding the method for regenerating the constituents of the abrasive, for example, an electrolyte substance is added to the processed abrasive, the abrasive is coagulated, and the constituents derived from the polished object (the constituent to be polished) are dissolved. However, a method for solid-liquid separation is disclosed (for example, see Patent Document 1). In the method described in Patent Document 1, alkali metal hydroxide, alkali metal carbonate, alkali metal salt, and ammonium salt are used as the electrolyte substance.
 また、加工済みの研磨剤に対して、水酸化ナトリウム、水酸化カリウム溶液を混合し、固液分離により固形物をふるい分けすることにより、微細な研磨剤を再生する方法が開示されている(例えば、特許文献2参照。)。さらに、加工済みの研磨剤に対して、硫酸を加えて加熱処理することにより、レアアースやレアメタルを溶解し、研磨剤スラリー中のシリカ等の凝集体と分離除去する方法が開示されている(例えば、特許文献3参照。)。 In addition, a method of regenerating a fine abrasive by mixing sodium hydroxide and potassium hydroxide solution with a processed abrasive and sieving solids by solid-liquid separation is disclosed (for example, , See Patent Document 2). Further, a method is disclosed in which a rare earth and a rare metal are dissolved by adding sulfuric acid to a processed abrasive and heat-treated to separate and remove it from aggregates such as silica in the abrasive slurry (for example, , See Patent Document 3).
 また、コロイダルシリカ系の研磨剤を回収する方法として、CMP(Chemical Mechanical Polishing)廃液に対し、マグネシウムイオンの存在下で、アルカリ添加してpH値を10以上に調整することにより凝集処理を行うことで再生する方法が開示されている(例えば、特許文献4参照。)。さらに、非特許文献1には、上記説明した金属の回収技術に関する総説がなされている。 Further, as a method of recovering the colloidal silica-based abrasive, agglomeration treatment is performed by adding an alkali to the CMP (Chemical Mechanical Polishing) waste liquid in the presence of magnesium ions and adjusting the pH value to 10 or more. Is disclosed (for example, see Patent Document 4). Further, Non-Patent Document 1 provides a review on the above-described metal recovery technology.
 一般に、「研磨剤再生量=研磨剤使用量×回収率×再生率」であり、回収率と再生率の向上が重要となる。しかしながら、上述した技術は、回収した加工済みの研磨剤の再生率の向上を主眼にしたものであって、回収率の向上に対しての検討は従来十分ではなかった。回収率も向上しなければ、研磨剤を効率的に再生することはできない。 Generally, “abrasive regeneration amount = abrasive use amount × recovery rate × regeneration rate”, and improvement of the recovery rate and the regeneration rate is important. However, the above-described technique mainly focuses on the improvement of the recovery rate of the recovered processed abrasive, and the study on the improvement of the recovery rate has not been sufficient in the past. If the recovery rate is not improved, the abrasive cannot be regenerated efficiently.
 例えば、一定濃度の研磨剤を含有する研磨剤スラリーでガラス研磨を続けると、研磨剤スラリー中の被研磨物の酸化ケイ素濃度が上昇する。酸化ケイ素濃度が上昇すると、酸化ケイ素が析出、固形物化し、研磨剤スラリー中の異物となる。この異物は、スクラッチ等の欠陥の発生原因となるため、研磨剤スラリーは利用できなくなる。さらに、研磨剤スラリーの粘度が増加することにより、研磨装置周辺への飛散、付着等が発生し、研磨剤成分の回収量が低下するなどの問題があった。 For example, when glass polishing is continued with an abrasive slurry containing a constant concentration of abrasive, the silicon oxide concentration of the object to be polished in the abrasive slurry increases. When the silicon oxide concentration is increased, silicon oxide is precipitated and solidified to become foreign matters in the abrasive slurry. Since this foreign matter causes defects such as scratches, the abrasive slurry cannot be used. Further, the increase in the viscosity of the abrasive slurry causes scattering, adhesion, etc. to the periphery of the polishing apparatus, resulting in a decrease in the amount of recovered abrasive components.
特開平06-254764号公報Japanese Patent Laid-Open No. 06-254664 特開平11-90825号公報JP-A-11-90825 特開平11-50168号公報Japanese Patent Laid-Open No. 11-50168 特開2000-254659号公報JP 2000-254659 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、加工済みの研磨剤スラリーから研磨剤を効率的に回収し、これを再生研磨剤スラリーとして再利用するための研磨剤リサイクル処理システム及び研磨剤回収・再生方法を提供することである。 The present invention has been made in view of the above problems and situations, and a solution to the problem is to efficiently recover the abrasive from the processed abrasive slurry and reuse it as a regenerated abrasive slurry. An abrasive recycling system and an abrasive recovery / regeneration method are provided.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において研磨剤リサイクル処理を行う中で、加工中の研磨剤スラリーの研磨剤の濃度を研磨開始時の初期濃度以下に抑えることにより、被研磨物の析出・固形物化を抑制することができ、効率的な回収が可能となることを見出した。 In order to solve the above-mentioned problems, the present inventor performs the abrasive recycling process in the course of examining the cause of the above-mentioned problems, and the concentration of the abrasive in the abrasive slurry being processed is equal to or less than the initial concentration at the start of polishing. It has been found that by suppressing the amount to be reduced, precipitation and solidification of the object to be polished can be suppressed, and efficient recovery becomes possible.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.研磨に用いる研磨剤スラリー中の研磨剤の構成成分と被研磨物の構成成分の濃度を制御しつつ研磨加工を継続し、加工済みの研磨剤スラリーから、被研磨物の構成成分を除去し、前記研磨剤を回収・再生する研磨剤リサイクル処理システムであって、
研磨機を用いて研磨加工する研磨加工工程部と前記研磨機に供給する前記研磨に用いる研磨剤スラリーを貯蔵するスラリー供給タンクを有する研磨剤スラリー回収工程部とを有し、
前記スラリー供給タンク中の研磨剤の構成成分の濃度が、研磨加工工程開始時の初期濃度以下になるよう制御しながら、前記スラリー供給タンク中に再生研磨剤スラリーを供給することを特徴とする研磨剤リサイクル処理システム。
1. While continuing the polishing process while controlling the concentration of the constituents of the abrasive and the constituents of the object to be polished in the abrasive slurry used for polishing, the constituents of the object to be polished are removed from the processed abrasive slurry, An abrasive recycling system for recovering and recycling the abrasive,
A polishing process unit for polishing using a polishing machine, and an abrasive slurry recovery process unit having a slurry supply tank for storing the abrasive slurry used for polishing supplied to the polishing machine,
Polishing characterized in that the recycled abrasive slurry is supplied into the slurry supply tank while controlling the concentration of the constituents of the abrasive in the slurry supply tank to be equal to or lower than the initial concentration at the start of the polishing process. Agent recycling system.
 2.前記スラリー供給タンク中の研磨剤の構成成分の濃度が、研磨加工工程開始時の濃度に対して研磨加工工程終了時の終点濃度が20~90%の範囲内であり、かつ研磨加工工程中の前記研磨剤の構成成分の濃度が常に前記終点濃度以上であり、さらに前加工バッチに対する次加工バッチの前記研磨剤の構成成分の濃度の変化の変動幅を±1.0質量%以内に制御することを特徴とする第1項に記載の研磨剤リサイクル処理システム。 2. The concentration of the constituents of the abrasive in the slurry supply tank is in the range of 20 to 90% at the end point concentration at the end of the polishing step relative to the concentration at the start of the polishing step, and during the polishing step The concentration of the constituent component of the abrasive is always equal to or higher than the end point concentration, and the variation range of the concentration of the constituent of the abrasive in the next processing batch relative to the previous processing batch is controlled within ± 1.0 mass%. The abrasive recycling system according to item 1, characterized in that:
 3.前記スラリー供給タンク中の研磨剤の構成成分の濃度が、研磨加工工程開始時の濃度に対して研磨加工工程終了時の終点濃度が30~80%の範囲内であり、かつ研磨加工工程中の前記研磨剤の構成成分の濃度が常に前記終点濃度以上であり、さらに前加工バッチに対する次加工バッチの前記研磨剤の構成成分の濃度の変化の変動幅を±1.0質量%以内に制御することを特徴とする第1項に記載の研磨剤リサイクル処理システム。 3. The concentration of the constituents of the abrasive in the slurry supply tank is within the range of 30 to 80% at the end point concentration at the end of the polishing step relative to the concentration at the start of the polishing step, and during the polishing step The concentration of the constituent component of the abrasive is always equal to or higher than the end point concentration, and the variation range of the concentration of the constituent of the abrasive in the next processing batch relative to the previous processing batch is controlled within ± 1.0 mass%. The abrasive recycling system according to item 1, characterized in that:
 4.前記研磨加工工程部及び前記研磨剤スラリー回収工程部に加えて、分離・濃縮工程部と、再生研磨剤スラリー調製工程部とを有することを特徴とする第1項から第3項までのいずれか一項に記載の研磨剤リサイクル処理システム。 4. Any one of the items 1 to 3, further comprising a separation / concentration process unit and a regenerated abrasive slurry preparation process unit in addition to the polishing process unit and the abrasive slurry recovery process unit The abrasive recycling system according to one item.
 5.前記研磨剤スラリー回収工程部には、研磨加工工程部に供給する前記研磨剤スラリーを貯蔵する前記スラリー供給タンクと、加工済みの研磨剤スラリーと洗浄水との混合液を貯蔵する回収混合液タンクとを備え、
前記分離・濃縮工程部には、前記混合液を透過液と研磨剤の濃縮液とに分離する分離・濃縮タンクを備え、
前記再生研磨剤スラリー調製工程部には、前記被研磨物の構成成分が除去された再生研磨剤を含有する液を貯蔵する再生研磨剤スラリー貯蔵タンクを備え、かつ工程部間に研磨剤スラリーを供給するための循環ラインと、供給量を調整するための制御部を備えることを特徴とする第4項に記載の研磨剤リサイクル処理システム。
5). In the abrasive slurry recovery process section, the slurry supply tank that stores the abrasive slurry supplied to the polishing process section, and a recovery liquid mixture tank that stores a mixed liquid of the processed abrasive slurry and cleaning water And
The separation / concentration process section includes a separation / concentration tank that separates the mixed solution into a permeate and an abrasive concentrate,
The regenerated abrasive slurry preparation process section includes a regenerated abrasive slurry storage tank for storing a liquid containing the regenerated abrasive from which the constituents of the object to be polished have been removed, and the abrasive slurry is placed between the process sections. 5. The abrasive recycling system according to item 4, further comprising a circulation line for supplying and a control unit for adjusting the supply amount.
 6.前記分離・濃縮工程部で得られた研磨剤の粒子径を調整する研磨剤粒子径調整工程部を有することを特徴とする第4項又は第5項に記載の研磨剤リサイクル処理システム。 6. 6. The abrasive recycling system according to item 4 or 5, further comprising an abrasive particle size adjusting step for adjusting the particle size of the abrasive obtained in the separation / concentration step.
 7.前記再生研磨剤スラリーが、マレイン酸-アクリル酸共重合体を0.04~1.5g/Lの範囲内で含有していることを特徴とする第1項から第6項までのいずれか一項に記載の研磨剤リサイクル処理システム。 7. Any one of Items 1 to 6, wherein the regenerated abrasive slurry contains a maleic acid-acrylic acid copolymer in a range of 0.04 to 1.5 g / L. The abrasive | polishing agent recycling processing system of clause.
 8.前記研磨剤が金属酸化物を含有し、かつ前記被研磨物がケイ素(Si)を含有することを特徴とする第1項から第7項までのいずれか一項に記載の研磨剤リサイクル処理システム。 8. The abrasive recycling system according to any one of claims 1 to 7, wherein the abrasive contains a metal oxide, and the object to be polished contains silicon (Si). .
 9.前記研磨剤が、酸化セリウムを含有することを特徴とする第1項から第8項までのいずれか一項に記載の研磨剤リサイクル処理システム。 9. The abrasive recycling system according to any one of items 1 to 8, wherein the abrasive contains cerium oxide.
 10.前記分離・濃縮工程部において、研磨剤の凝集剤としてアルカリ土類金属塩を用いることを特徴とする第4項から第9項までのいずれか一項に記載の研磨剤リサイクル処理システム。 10. The abrasive recycling system according to any one of Items 4 to 9, wherein an alkaline earth metal salt is used as an aggregating agent for the abrasive in the separation / concentration process section.
 11.前記アルカリ土類金属塩が、マグネシウム塩であることを特徴とする第10項に記載の研磨剤リサイクル処理システム。 11. The abrasive recycling system according to item 10, wherein the alkaline earth metal salt is a magnesium salt.
 12.研磨に用いる研磨剤スラリー中の研磨剤の構成成分と被研磨物の構成成分の濃度を制御しつつ研磨加工を継続し、加工済みの研磨剤スラリーから、被研磨物の構成成分を除去し、前記研磨剤を回収・再生する研磨剤回収・再生方法であって、
研磨機に供給する前記研磨に用いる研磨剤スラリーを貯蔵するスラリー供給タンク中の前記研磨剤の構成成分の濃度を、研磨加工工程開始時における当該研磨剤の構成成分の初期濃度以下になるよう制御しながら、研磨加工工程部に再生研磨剤スラリーを供給し、かつ加工済みの研磨剤スラリーを回収する工程を有することを特徴とする研磨剤回収・再生方法。
12 While continuing the polishing process while controlling the concentration of the constituents of the abrasive and the constituents of the object to be polished in the abrasive slurry used for polishing, the constituents of the object to be polished are removed from the processed abrasive slurry, An abrasive recovery / regeneration method for recovering / regenerating the abrasive,
Control the concentration of the constituents of the abrasive in the slurry supply tank for storing the abrasive slurry used for polishing supplied to the polishing machine to be equal to or lower than the initial concentration of the constituents of the abrasive at the start of the polishing process. An abrasive recovery / regeneration method comprising: supplying a recycled abrasive slurry to the polishing process section and recovering the processed abrasive slurry.
 13.前記スラリー供給タンク中の研磨剤の構成成分の濃度が、研磨加工工程開始時の濃度に対して研磨加工工程終了時の終点濃度が20~90%の範囲内であり、かつ研磨加工工程中の前記研磨剤の構成成分の濃度が常に前記終点濃度以上であり、さらに前加工バッチに対する次加工バッチの前記研磨剤の構成成分の濃度の変化の変動幅を±1.0質量%以内に制御することを特徴とする第12項に記載の研磨剤回収・再生方法。 13. The concentration of the constituents of the abrasive in the slurry supply tank is in the range of 20 to 90% at the end point concentration at the end of the polishing step relative to the concentration at the start of the polishing step, and during the polishing step The concentration of the constituent component of the abrasive is always equal to or higher than the end point concentration, and the variation range of the concentration of the constituent of the abrasive in the next processing batch relative to the previous processing batch is controlled within ± 1.0 mass%. 13. The method for recovering and regenerating an abrasive according to item 12.
 14.前記スラリー供給タンク中の研磨剤の構成成分の濃度が、研磨加工工程開始時の濃度に対して研磨加工工程終了時の終点濃度が30~80%の範囲内であり、かつ研磨加工工程中の前記研磨剤の構成成分の濃度が常に前記終点濃度以上であり、さらに前加工バッチに対する次加工バッチの前記研磨剤の構成成分の濃度の変化の変動幅を±1.0質量%以内に制御することを特徴とする第12項に記載の研磨剤回収・再生方法。 14. The concentration of the constituents of the abrasive in the slurry supply tank is within the range of 30 to 80% at the end point concentration at the end of the polishing step relative to the concentration at the start of the polishing step, and during the polishing step The concentration of the constituent component of the abrasive is always equal to or higher than the end point concentration, and the variation range of the concentration of the constituent of the abrasive in the next processing batch relative to the previous processing batch is controlled within ± 1.0 mass%. 13. The method for recovering and regenerating an abrasive according to item 12.
 15.前記再生研磨剤スラリーが、マレイン酸-アクリル酸共重合体を0.04~1.5g/Lの範囲内で含有していることを特徴とする第12項から第14項までのいずれか一項に記載の研磨剤回収・再生方法。 15. Any one of Items 12 to 14, wherein the recycled abrasive slurry contains a maleic acid-acrylic acid copolymer in a range of 0.04 to 1.5 g / L. The method for recovering and recycling the abrasive according to the item.
 本発明の上記手段により、加工済みの研磨剤スラリーから研磨剤を効率的に回収し、これを再生研磨剤スラリーとして再利用するための研磨剤リサイクル処理システム及び研磨剤回収・再生方法を提供することができる。 By the above means of the present invention, an abrasive recycling system and an abrasive recovery / regeneration method for efficiently recovering an abrasive from a processed abrasive slurry and reusing it as a recycled abrasive slurry are provided. be able to.
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 従来の研磨剤リサイクルシステムでは、研磨加工中、研磨剤スラリー中の研磨剤濃度を一定に保持することを狙いとしていた。このため研磨が進むにつれ、被研磨物の濃度が高くなり、粘度上昇や局所的に高温となり、被研磨物の析出により、回収率が低くなったり研磨加工品質への悪影響があった。これを加工中の研磨剤スラリー中の研磨剤濃度を低くすることにより、被研磨物濃度も下がり研磨加工機への研磨剤スラリーの付着等を低減し、加工済みの研磨剤スラリーの回収率を向上することができるものと思われる。 In the conventional abrasive recycling system, the aim was to keep the abrasive concentration in the abrasive slurry constant during the polishing process. For this reason, as the polishing progresses, the concentration of the object to be polished increases, the viscosity increases or locally becomes high temperature, and the recovery rate decreases due to the precipitation of the object to be polished, and the polishing process quality is adversely affected. By reducing the abrasive concentration in the abrasive slurry during processing, the concentration of the object to be polished also decreases, reducing the adhesion of the abrasive slurry to the polishing machine, and increasing the recovery rate of the processed abrasive slurry. It seems that it can be improved.
研磨加工時間と加工中の研磨剤スラリー中の研磨剤濃度及び被研磨物の構成成分の濃度の関係を示す概念図Conceptual diagram showing the relationship between the polishing time, the concentration of the abrasive in the abrasive slurry being processed, and the concentration of the components of the object to be polished 研磨加工時間と加工中の研磨剤スラリー中の研磨剤濃度及び被研磨物の構成成分の濃度の関係を示す概念図Conceptual diagram showing the relationship between the polishing time, the concentration of the abrasive in the abrasive slurry being processed, and the concentration of the components of the object to be polished 本発明の研磨剤リサイクル処理システムの一例を示す概略図Schematic showing an example of the abrasive recycling system of the present invention 研磨後の研磨パッドのSEM写真SEM photo of polishing pad after polishing 研磨後の研磨パッドのSEM写真SEM photo of polishing pad after polishing
 本発明の研磨剤リサイクル処理システムは、研磨に用いる研磨剤スラリー中の研磨剤の構成成分と被研磨物の構成成分の濃度を制御しつつ研磨加工を継続し、加工済みの研磨剤スラリーから、被研磨物の構成成分を除去し、前記研磨剤を回収・再生する研磨剤リサイクル処理システムであって、研磨機を用いて研磨加工する研磨加工工程部と前記研磨機に供給する前記研磨に用いる研磨剤スラリーを貯蔵するスラリー供給タンクを有する研磨剤スラリー回収工程部とを有し、前記スラリー供給タンク中の研磨剤の構成成分の濃度が、研磨加工工程開始時の初期濃度以下になるよう制御しながら、前記スラリー供給タンク中に再生研磨剤スラリーを供給することを特徴とする。この特徴は、下記各実施態様に共通する又は対応する技術的特徴である。 The abrasive recycling processing system of the present invention continues the polishing process while controlling the concentration of the constituents of the abrasive and the constituents of the object to be polished in the abrasive slurry used for polishing, from the processed abrasive slurry, A polishing agent recycling system that removes constituents of an object to be polished and collects and regenerates the polishing agent, and is used for the polishing process unit for polishing using a polishing machine and the polishing supplied to the polishing machine. An abrasive slurry recovery process unit having a slurry supply tank for storing the abrasive slurry, and the concentration of the constituents of the abrasive in the slurry supply tank is controlled to be equal to or lower than the initial concentration at the start of the polishing process. Meanwhile, the recycled abrasive slurry is supplied into the slurry supply tank. This feature is a technical feature common to or corresponding to each of the following embodiments.
 前記スラリー供給タンク中の研磨剤の構成成分の濃度が、研磨加工工程開始時の濃度に対して研磨加工工程終了時の終点濃度が20~90%の範囲内、より好ましくは30~80%の範囲内であり、かつ研磨加工工程中の前記研磨剤の構成成分の濃度が常に前記終点濃度以上であり、さらに前加工バッチに対する次加工バッチの前記研磨剤の構成成分の濃度の変化の変動幅を±1.0質量%以内に制御することが好ましい。 The concentration of the constituents of the abrasive in the slurry supply tank is such that the end point concentration at the end of the polishing process is within the range of 20 to 90%, more preferably 30 to 80% with respect to the concentration at the start of the polishing process. Within the range, the concentration of the constituent component of the abrasive during the polishing process is always equal to or higher than the end point concentration, and the variation width of the change in the concentration of the constituent component of the abrasive in the next processing batch relative to the previous processing batch Is preferably controlled within ± 1.0% by mass.
 また、前記研磨加工工程部及び前記研磨剤スラリー回収工程部に加えて、分離・濃縮工程部と、再生研磨剤スラリー調製工程部とを有することが、研磨剤リサイクル処理システムの効率向上の効果が得られることから好ましい。 In addition to the polishing process section and the abrasive slurry recovery process section, the separation / concentration process section and the regenerated abrasive slurry preparation process section have the effect of improving the efficiency of the abrasive recycling system. Since it is obtained, it is preferable.
 さらに、本発明においては、前記研磨剤スラリー回収工程部には、研磨加工工程部に供給する再生研磨剤スラリーを貯蔵する前記スラリー供給タンクと、加工済みの研磨剤スラリーと洗浄水との混合液を貯蔵する回収混合液タンクとを備え、前記分離・濃縮工程部には、前記混合液を透過液と研磨剤の濃縮液とに分離する分離・濃縮タンクを備え、前記再生研磨剤スラリー調製工程部には、前記被研磨物の構成成分が除去された再生研磨剤を含有する液を貯蔵する再生研磨剤スラリー貯蔵タンクを備え、かつ工程部間に研磨剤スラリーを供給するための循環ラインと、供給量を調整するための制御部を備えることが、回収・再生率の向上の観点から好ましい。 Further, in the present invention, the abrasive slurry recovery process section includes a slurry supply tank for storing the regenerated abrasive slurry supplied to the polishing process section, and a mixed liquid of the processed abrasive slurry and the washing water. And the separation / concentration process unit includes a separation / concentration tank that separates the mixture into a permeate and an abrasive concentrate, and the regenerated abrasive slurry preparation step. The part includes a recycle abrasive slurry storage tank for storing a liquid containing the regenerated abrasive from which the constituents of the object to be polished are removed, and a circulation line for supplying the abrasive slurry between the process parts. It is preferable to provide a control unit for adjusting the supply amount from the viewpoint of improving the recovery / regeneration rate.
 本発明の実施態様としては、本発明の効果発現の観点から、前記分離・濃縮工程部で得られた研磨剤の粒子径を調整する研磨剤粒子径調整工程部を有することが好ましい。 As an embodiment of the present invention, it is preferable to have an abrasive particle size adjusting step for adjusting the particle size of the abrasive obtained in the separation / concentration step from the viewpoint of manifesting the effects of the present invention.
 さらに、前記再生研磨剤スラリーが、マレイン酸-アクリル酸共重合体を0.04~1.5g/Lの範囲内で含有していることが好ましい。 Furthermore, it is preferable that the recycled abrasive slurry contains a maleic acid-acrylic acid copolymer in the range of 0.04 to 1.5 g / L.
 また、前記研磨剤が金属酸化物を含有し、かつ前記被研磨物がケイ素(Si)を含有することが、本発明の効果が得られるやすいことから好ましい。 In addition, it is preferable that the abrasive contains a metal oxide and the object to be polished contains silicon (Si) because the effects of the present invention can be easily obtained.
 本発明の実施態様としては、研磨速度の観点から、研磨剤が、酸化セリウムを含有することが好ましい。 As an embodiment of the present invention, it is preferable that the abrasive contains cerium oxide from the viewpoint of polishing rate.
 また、分離・濃縮工程部において、研磨剤の凝集剤としてアルカリ土類金属塩を用いることが好ましく、アルカリ土類金属塩が、マグネシウム塩であることが研磨剤の回収及び再生の効率の観点から好ましい。 Further, in the separation / concentration process section, it is preferable to use an alkaline earth metal salt as the aggregating agent of the abrasive, and that the alkaline earth metal salt is a magnesium salt from the viewpoint of the efficiency of recovery and regeneration of the abrasive. preferable.
 さらに、本発明においては、研磨に用いる研磨剤スラリー中の研磨剤の構成成分と被研磨物の構成成分の濃度を制御しつつ研磨加工を継続し、加工済みの研磨剤スラリーから、被研磨物の構成成分を除去し、前記研磨剤を回収・再生する研磨剤回収・再生方法であって、
研磨機に供給する前記研磨に用いる研磨剤スラリーを貯蔵するスラリー供給タンク中の前記研磨剤の構成成分の濃度を、研磨加工工程開始時における当該研磨剤の構成成分の初期濃度以下になるよう制御しながら、研磨加工工程部に研磨剤スラリーを供給し、かつ加工済みの研磨剤スラリーを回収する工程を有する研磨剤回収・再生方法に適用することができる。
Further, in the present invention, the polishing process is continued while controlling the concentration of the constituents of the abrasive and the constituents of the object to be polished in the abrasive slurry used for polishing. The abrasive recovery / regeneration method of removing the constituents and recovering / regenerating the abrasive,
Control the concentration of the constituents of the abrasive in the slurry supply tank for storing the abrasive slurry used for polishing supplied to the polishing machine to be equal to or lower than the initial concentration of the constituents of the abrasive at the start of the polishing process. On the other hand, the present invention can be applied to an abrasive recovery / regeneration method that includes supplying an abrasive slurry to the polishing process section and recovering the processed abrasive slurry.
 さらに、前記スラリー供給タンク中の研磨剤の構成成分の濃度が、研磨加工工程開始時の濃度に対して研磨加工工程終了時の終点濃度が20~90%の範囲内、より好ましくは30~80%の範囲内であり、かつ研磨加工工程中の前記研磨剤の構成成分の濃度が常に前記終点濃度以上であり、さらに前加工バッチに対する次加工バッチの前記研磨剤の構成成分の濃度の変化の変動幅を±1.0質量%以内に制御すること研磨剤回収・再生方法であることが好ましい。 Further, the concentration of the constituents of the abrasive in the slurry supply tank is within the range of the end point concentration at the end of the polishing step of 20 to 90% with respect to the concentration at the start of the polishing step, more preferably 30 to 80 %, And the concentration of the constituent component of the abrasive during the polishing process is always equal to or higher than the end point concentration, and the change in the concentration of the constituent component of the abrasive in the next processing batch relative to the previous processing batch It is preferable that the fluctuation range is controlled within ± 1.0% by mass in the abrasive recovery / regeneration method.
 また、前記再生研磨剤スラリーが、マレイン酸-アクリル酸共重合体を0.04~1.5g/Lの範囲内で含有している研磨剤回収・再生方法であることが好ましい。 Further, it is preferable that the recycled abrasive slurry is an abrasive recovery / regeneration method in which a maleic acid-acrylic acid copolymer is contained in the range of 0.04 to 1.5 g / L.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 また、本発明において、研磨剤スラリーとは、研磨加工工程に応じた下記各種研磨剤スラリーを含めて総称的に表現されたスラリーをいう。研磨加工工程の観点から、「初期研磨剤スラリー」とは、研磨初期の加工液をいい、研磨剤構成成分と水を含有し被研磨物構成成分を実質的には含有しないものをいう。「加工中の又は加工済みの研磨剤スラリー」とは、被研磨物構成成分を含有する研磨剤スラリー又は研磨剤スラリー寿命が終了した研磨剤スラリーをいう。「再生研磨剤スラリー」とは、被研磨物構成成分を除去した研磨剤スラリー又は被研磨物構成成分を除去した後に、濃縮した研磨剤スラリーをいう。 Further, in the present invention, the abrasive slurry refers to a slurry that is generically expressed including the following various abrasive slurries according to the polishing process. From the viewpoint of the polishing process, the “initial abrasive slurry” refers to a processing liquid at the initial stage of polishing, which contains an abrasive component and water and does not substantially contain an object component to be polished. “Abrasive slurry that is being processed or has been processed” refers to an abrasive slurry that contains a constituent of an object to be polished or an abrasive slurry that has finished its life. The “regenerated abrasive slurry” refers to an abrasive slurry from which the constituents to be polished have been removed or an abrasive slurry that has been concentrated after the constituents to be polished have been removed.
 1 《研磨剤リサイクル処理システムの基本的構成の概要》
 本発明の研磨剤リサイクル処理システムは、研磨に用いる研磨剤スラリー中の研磨剤の構成成分と被研磨物の構成成分の濃度を制御しつつ研磨加工を継続し、加工済みの研磨剤スラリーから、被研磨物の構成成分を除去し、前記研磨剤を回収・再生する研磨剤リサイクル処理システムであって、研磨機を用いて研磨加工する研磨加工工程部と前記研磨機に供給する前記研磨に用いる研磨剤スラリーを貯蔵するスラリー供給タンクを有する研磨剤スラリー回収工程部とを有し、前記スラリー供給タンク中の研磨剤の構成成分の濃度が、研磨加工工程開始時の初期濃度以下になるよう制御しながら、前記スラリー供給タンク中に再生研磨剤スラリーを供給することを特徴とする。
1 << Overview of basic configuration of abrasive recycling system >>
The abrasive recycling processing system of the present invention continues the polishing process while controlling the concentration of the constituents of the abrasive and the constituents of the object to be polished in the abrasive slurry used for polishing, from the processed abrasive slurry, A polishing agent recycling system that removes constituents of an object to be polished and collects and regenerates the polishing agent, and is used for the polishing process unit for polishing using a polishing machine and the polishing supplied to the polishing machine. An abrasive slurry recovery process unit having a slurry supply tank for storing the abrasive slurry, and the concentration of the constituents of the abrasive in the slurry supply tank is controlled to be equal to or lower than the initial concentration at the start of the polishing process. Meanwhile, the recycled abrasive slurry is supplied into the slurry supply tank.
 従来の研磨剤リサイクルシステムでは、研磨加工中の研磨剤スラリー中の研磨剤濃度を一定に保持することを狙いとしていた。このため研磨が進むにつれ、被研磨物の濃度が高くなり、粘度上昇や局所的に高温となり、被研磨物の析出により、回収率が低くなっていた。 In the conventional abrasive recycling system, the aim was to keep the concentration of the abrasive in the abrasive slurry constant during polishing. For this reason, as the polishing progresses, the concentration of the object to be polished increases, the viscosity rises and the temperature locally increases, and the recovery rate decreases due to precipitation of the object to be polished.
 例えば、従来の被研磨物を研磨加工する研磨加工工程部においては、研磨加工により、研磨加工部の研磨剤スラリーの温度は約40~60℃に上昇することがある。被研磨物としてガラスを用いた場合、研磨加工により酸化ケイ素の濃度が上昇すると、加工中の研磨剤スラリーの粘度が上昇し、加工部に付着する。更に、加工により研磨加工部の温度が上昇するため、酸化ケイ素の析出、固形物化が加速する。研磨により研磨加工部に付着する研磨剤成分は、洗浄水により洗浄され、研磨剤成分を含むリンススラリーとして回収する。 For example, in a conventional polishing process section that polishes an object to be polished, the temperature of the abrasive slurry in the polishing process section may rise to about 40 to 60 ° C. due to the polishing process. When glass is used as an object to be polished, when the concentration of silicon oxide is increased by polishing, the viscosity of the abrasive slurry being processed increases and adheres to the processed part. Furthermore, since the temperature of the polished portion increases due to processing, precipitation of silicon oxide and solidification are accelerated. The abrasive component adhering to the polished portion by polishing is washed with washing water and recovered as a rinse slurry containing the abrasive component.
 酸化ケイ素の析出固形物は、リンススラリーとして回収されるものと、研磨加工部に残留するものがある。研磨加工部の残留物は、研磨パッド内外にも存在し、加工品質に影響を与える。 There are silicon oxide precipitated solids that are collected as a rinse slurry and those that remain in the polished portion. Residues in the polished portion are present both inside and outside the polishing pad and affect the processing quality.
 したがって、研磨パッドの交換頻度が高まるため、研磨加工回数が低下することとなる。また、リンススラリーとして回収されるものは、再利用及び再生利用するためには、異物となる酸化ケイ素の析出固形物を除去する必要が生じる。酸化ケイ素の析出固形物の除去プロセスを組み入れると、研磨剤回収率は低下する。 Therefore, since the frequency of replacing the polishing pad increases, the number of polishing processes decreases. Moreover, what is recovered as the rinse slurry needs to remove the precipitated solid substance of silicon oxide which becomes a foreign substance in order to reuse and recycle. Incorporating a silicon oxide deposited solids removal process reduces the abrasive recovery.
 また、スラリー供給タンクにおいては、あらかじめ調製した初期研磨剤スラリーは、再生研磨剤スラリーが補充されつつ、スラリー供給タンクと研磨機の間を繰り返し循環する。研磨により、被研磨物のケイ素成分は研磨剤スラリー中に溶解した状態にある。研磨剤スラリー中のケイ素濃度が上昇すると、酸化ケイ素が析出、固形物化し、研磨剤スラリー中の異物となる。上記の異物は、スクラッチ等の欠陥の発生原因となるため、研磨剤スラリーは利用できなくなる。上記の加工済みの研磨剤スラリーを再利用するためには、異物となる酸化ケイ素の析出固形物を除去する必要が生じる。酸化ケイ素の析出固形物の除去プロセスを組み入れると、研磨剤回収率は低下する。 In the slurry supply tank, the initial abrasive slurry prepared in advance is repeatedly circulated between the slurry supply tank and the polishing machine while being replenished with the regenerated abrasive slurry. By polishing, the silicon component of the object to be polished is in a state dissolved in the abrasive slurry. When the silicon concentration in the abrasive slurry is increased, silicon oxide is precipitated and solidified to become foreign matter in the abrasive slurry. Since the foreign matter causes a defect such as a scratch, the abrasive slurry cannot be used. In order to reuse the processed abrasive slurry, it is necessary to remove precipitated silicon oxide solids that are foreign matters. Incorporating a silicon oxide deposited solids removal process reduces the abrasive recovery.
 この問題に対し、本発明では、加工中の研磨剤スラリーに含有されている研磨剤の構成成分の濃度を、研磨加工工程開始時における当該研磨剤の初期濃度以下になるよう制御しながら、再生研磨剤スラリーを研磨機に供給することで解決することができる。 In order to solve this problem, the present invention regenerates while controlling the concentration of the constituents of the abrasive contained in the abrasive slurry being processed to be equal to or less than the initial concentration of the abrasive at the start of the polishing process. This can be solved by supplying the abrasive slurry to the polishing machine.
 図1A及び図1Bは研磨加工時間と加工中の研磨剤スラリー中の研磨剤濃度及び被研磨物の構成成分の濃度の関係を示す概念図である。図1Aは研磨加工時間に対する研磨剤スラリー中の研磨剤濃度を示している。従来の研磨加工では、研磨が進行しても点線で示したように研磨剤濃度は一定になるように保っていた。このため図1Bの研磨加工時間と被研磨物の構成成分の濃度の関係で示したように、研磨加工時間が進むにつれ研磨剤スラリー中の被研磨物の構成成分の濃度が高くなる。そしてこの濃度がaに達すると、被研磨物の析出が起こり、研磨剤スラリーは使用できなくなっていた。 FIG. 1A and FIG. 1B are conceptual diagrams showing the relationship between the polishing time, the concentration of the abrasive in the abrasive slurry being processed, and the concentration of the components of the object to be polished. FIG. 1A shows the abrasive concentration in the abrasive slurry with respect to the polishing time. In the conventional polishing process, the polishing agent concentration is kept constant as shown by the dotted line even if polishing progresses. Therefore, as shown by the relationship between the polishing time and the concentration of the constituents of the object to be polished in FIG. 1B, the concentration of the constituents of the object to be polished in the abrasive slurry increases as the polishing time increases. And when this density | concentration reached a, precipitation of the to-be-polished object occurred and the abrasive slurry could not be used.
 これに対し、本発明では、図1Aの実線で示したように、研磨加工時間の進行に対して、研磨剤スラリー中の研磨剤濃度を、研磨加工初期の濃度以下に保つ。このことにより、研磨剤スラリー中の被研磨物の構成成分の濃度の上昇を、図1Bの実線で示したように抑えることができ、研磨剤スラリー寿命を伸ばすことができる。また、研磨剤スラリーの粘度上昇も起こりにくいので、研磨剤の回収率を上げることができる。 On the other hand, in the present invention, as shown by the solid line in FIG. 1A, the abrasive concentration in the abrasive slurry is kept below the initial concentration of the polishing process as the polishing time progresses. As a result, the increase in the concentration of the constituents of the object to be polished in the abrasive slurry can be suppressed as indicated by the solid line in FIG. 1B, and the abrasive slurry life can be extended. Moreover, since the viscosity of the abrasive slurry is hardly increased, the recovery rate of the abrasive can be increased.
 2 《研磨剤リサイクル処理システムの実施形態の構成例》
 本発明の研磨剤リサイクル処理システムは、研磨機を用いて研磨加工する研磨加工工程部と研磨加工工程部に供給する研磨剤スラリーを貯蔵するスラリー供給タンクを有する研磨剤スラリー回収工程部とを少なくとも有している。研磨剤スラリー回収工程部はさらに加工済みの研磨剤スラリーと洗浄水との混合液を貯蔵する回収混合液タンクを有していることが好ましい。
2 << Configuration Example of Embodiment of Abrasive Recycling System >>
The abrasive recycling system of the present invention includes at least a polishing process unit that performs polishing using a polishing machine and an abrasive slurry recovery process unit that includes a slurry supply tank that stores an abrasive slurry supplied to the polishing process unit. Have. It is preferable that the abrasive slurry recovery process unit further includes a recovery mixed liquid tank that stores a mixed liquid of the processed abrasive slurry and cleaning water.
 さらに、加工済みの研磨剤スラリーから研磨剤を分離する分離・濃縮工程部、回収した加工済みの研磨剤粒子の粒子径を調整する研磨剤粒子径調整工程部及び再生研磨剤スラリーを貯蔵する再生研磨剤スラリー調製工程部を有することが好ましい。 In addition, a separation / concentration process section that separates the abrasive from the processed abrasive slurry, an abrasive particle diameter adjustment process section that adjusts the particle diameter of the recovered processed abrasive particles, and a regeneration that stores the regenerated abrasive slurry. It is preferable to have an abrasive slurry preparation step.
 また、本発明の研磨剤回収・再生方法は、研磨に用いる研磨剤スラリー中の研磨剤の構成成分と被研磨物の構成成分の濃度を制御しつつ研磨加工を継続し、加工済みの研磨剤スラリーから、被研磨物の構成成分を除去し、前記研磨剤を回収・再生する研磨剤回収・再生方法であって、
研磨機に供給する前記研磨に用いる研磨剤スラリーを貯蔵するスラリー供給タンク中の前記研磨剤の構成成分の濃度を、研磨加工工程開始時における当該研磨剤の構成成分の初期濃度以下になるよう制御しながら、研磨加工工程部に研磨剤スラリーを供給し、かつ加工済みの研磨剤スラリーを回収する工程を有することを特徴とする。
In addition, the abrasive recovery / regeneration method of the present invention continues the polishing process while controlling the concentrations of the constituents of the abrasive and the constituents of the object to be polished in the abrasive slurry used for polishing. An abrasive recovery / regeneration method for removing constituents of an object to be polished from a slurry and recovering / regenerating the abrasive,
Control the concentration of the constituents of the abrasive in the slurry supply tank for storing the abrasive slurry used for polishing supplied to the polishing machine to be equal to or lower than the initial concentration of the constituents of the abrasive at the start of the polishing process. On the other hand, it is characterized by having a step of supplying the abrasive slurry to the polishing step and recovering the processed abrasive slurry.
 本発明の研磨剤回収・再生方法は、研磨機を用いて研磨加工する研磨加工工程、研磨加工工程部に供給する研磨剤スラリーを貯蔵するスラリー供給タンクを有する研磨剤スラリー回収工程に加え、加工済みの研磨剤スラリーから研磨剤を分離する分離・濃縮工程、回収した加工済みの研磨剤粒子の粒子径を調整する研磨剤粒子径調整工程及び再生研磨剤スラリーを貯蔵する再生研磨剤スラリー調製工程を有することが好ましい。 The abrasive recovery / regeneration method of the present invention includes a polishing process for polishing using a polishing machine, an abrasive slurry recovery process having a slurry supply tank for storing an abrasive slurry supplied to the polishing process section, Separation / concentration step for separating the abrasive from the finished abrasive slurry, abrasive particle size adjusting step for adjusting the particle size of the recovered processed abrasive particles, and regenerated abrasive slurry preparation step for storing the regenerated abrasive slurry It is preferable to have.
 図2は、本発明の研磨剤リサイクル処理システムの一例を示す概略図である。図2で示した研磨剤リサイクル処理システムは、研磨加工工程部1、研磨剤スラリー回収工程部2、分離・濃縮工程部3、研磨剤粒子径調整工程部4、再生研磨剤スラリー調製工程部5が示されている。以下、各工程部について順次詳細な説明をする。 FIG. 2 is a schematic view showing an example of the abrasive recycling system of the present invention. The abrasive recycling system shown in FIG. 2 includes a polishing process section 1, an abrasive slurry collection process section 2, a separation / concentration process section 3, an abrasive particle diameter adjustment process section 4, and a recycled abrasive slurry preparation process section 5. It is shown. Hereinafter, each process part will be described in detail.
 (1)研磨加工工程部
 研磨工程部1においては、研磨機12は、不織布、合成樹脂発泡体、合成皮革などから構成される研磨布を貼付した研磨定盤を有しており、この研磨定盤は回転可能となっている。研磨作業時には、被研磨物(例えば、光学ガラス等)を、保持具を用いて、所定の押圧力Nで上記研磨定盤に押し付けながら、研磨定盤を回転させる。また、研磨機12を洗浄するための洗浄水は、洗浄水タンク11に貯留されており、洗浄水噴射ノズルより、研磨部に吹き付けて洗浄を行う。研磨加工は研磨工程部1で行う工程である。
(1) Polishing process section In the polishing process section 1, the polishing machine 12 has a polishing surface plate to which a polishing cloth composed of a nonwoven fabric, a synthetic resin foam, a synthetic leather and the like is attached. The board is rotatable. During the polishing operation, the polishing surface plate is rotated while pressing an object to be polished (for example, optical glass or the like) against the polishing surface plate with a predetermined pressing force N using a holder. Further, cleaning water for cleaning the polishing machine 12 is stored in the cleaning water tank 11, and cleaning is performed by spraying the polishing unit from the cleaning water spray nozzle. The polishing process is a process performed in the polishing process unit 1.
 (研磨剤)
 一般に、光学ガラスや半導体基板等の研磨剤の構成成分としては、ベンガラ(αFe23)、酸化セリウム、酸化アルミニウム、酸化マンガン、酸化ジルコニウム、コロイダルシリカ等の微粒子を水や油に分散させてスラリー状にしたものが用いられているが、本発明の研磨剤回収・再生方法としては、半導体基板の表面やガラスの研磨加工において、高精度に平坦性を維持しつつ、十分な加工速度を得るために、物理的な作用と化学的な作用の両方で研磨を行う、化学機械研磨(CMP)への適用が可能なダイヤモンド、窒化ホウ素、炭化ケイ素、アルミナ、アルミナジルコニア、酸化ジルコニウム及び酸化セリウムから選ばれる少なくとも1種の回収に適用することが好ましい。
(Abrasive)
Generally, as constituents of abrasives such as optical glass and semiconductor substrates, fine particles such as bengara (αFe 2 O 3 ), cerium oxide, aluminum oxide, manganese oxide, zirconium oxide, colloidal silica are dispersed in water or oil. Although a slurry is used, the polishing agent recovery / regeneration method of the present invention provides a sufficient processing speed while maintaining flatness with high accuracy in the polishing process of the surface of a semiconductor substrate and glass. Diamond, boron nitride, silicon carbide, alumina, alumina zirconia, zirconium oxide and cerium oxide, applicable to chemical mechanical polishing (CMP), polishing with both physical and chemical action to obtain It is preferable to apply to at least one kind of recovery selected from
 本発明に係る研磨剤の構成成分として、ダイヤモンド系としては、例えば、合成ダイヤモンド(例えば、日本ミクロコーティング社製等)、天然ダイヤモンドが挙げられ、窒化ホウ素系としては、例えば、立方晶窒化ホウ素BN(例えば、昭和電工社製)が挙げられる。窒化ホウ素系は、ダイヤモンドに次ぐ硬度を有する。また、炭化ケイ素系としては、炭化ケイ素、緑色炭化ケイ素、黒色炭化ケイ素(例えば、Mipox社製等)等を挙げることができる。また、アルミナ系としては、アルミナのほかに、褐色アルミナ、白色アルミナ、淡紅色アルミナ、解砕型アルミナ、アルミナジルコニア系(例えば、サンゴバン社製)等を挙げることができる。また、酸化ジルコニウムとしては、例えば、第1稀元素化学工業社製の研磨剤用のBRシリーズ酸化ジルコニウム、中国HZ社製酸化ジルコニウムを挙げることができる。 Examples of the constituents of the abrasive according to the present invention include diamonds such as synthetic diamond (for example, manufactured by Nippon Micro Coating Co., Ltd.), natural diamonds, and boron nitrides such as cubic boron nitride BN. (For example, manufactured by Showa Denko KK). The boron nitride system has hardness next to diamond. Moreover, as a silicon carbide type | system | group, a silicon carbide, green silicon carbide, black silicon carbide (For example, the product made by Mipox etc.), etc. can be mentioned. In addition to alumina, examples of the alumina system include brown alumina, white alumina, light red alumina, pulverized alumina, and alumina zirconia (for example, manufactured by Saint-Gobain). Examples of zirconium oxide include BR series zirconium oxide for abrasives manufactured by 1st Rare Element Chemical Industry Co., Ltd., and zirconium oxide manufactured by China HZ Company.
 また、酸化セリウム(例えば、シーアイ化成社製、テクノライズ社製、和光純薬社製等)は、純粋な酸化セリウムよりは、バストネサイトと呼ばれる、希土類元素を多く含んだ鉱石を焼成した後、粉砕したものが多く利用されている。酸化セリウムが主成分ではあるが、その他成分として、ランタンやネオジウム、プラセオジウム等の希土類元素を含有し、酸化物以外にフッ化物等が含まれることもある。 In addition, cerium oxide (for example, manufactured by C-I Kasei Co., Ltd., manufactured by Technolize Co., Ltd., manufactured by Wako Pure Chemical Industries, Ltd.) is called bust nesite, which is called bust necite, rather than pure cerium oxide. Many pulverized products are used. Although cerium oxide is the main component, it contains rare earth elements such as lanthanum, neodymium, and praseodymium as other components, and may contain fluorides in addition to oxides.
 本発明に使用される研磨剤は、上記した研磨剤の構成成分の含有量が50質量%以上である場合に、効果が大きく好ましい。より好ましくは95~100質量%の範囲内であり、さらに好ましくは100質量%であることである。 The abrasive used in the present invention is preferable because the effect is large when the content of the constituents of the above-described abrasive is 50% by mass or more. More preferably, it is in the range of 95 to 100% by mass, and still more preferably 100% by mass.
 研磨剤を用いて、前記図2で示したような研磨加工工程部1の研磨機12で研磨することができる。本発明ではこのような研磨加工工程部1で使用された加工済みの研磨剤スラリーを、再生研磨剤スラリーとして研磨剤を再生する研磨剤リサイクル処理システムである。 Polishing can be performed with the polishing machine 12 of the polishing process section 1 as shown in FIG. In this invention, it is an abrasive | polishing agent recycle processing system which reproduces | regenerates an abrasive | polishing agent by using the processed abrasive | polishing agent slurry used in such a grinding | polishing process part 1 as a reproduction | regeneration abrasive | polishing slurry.
 ガラス基板の研磨を例にとると、研磨加工工程部1では、研磨加工と研磨部の洗浄で一つの研磨加工工程部を構成している。 Taking the polishing of a glass substrate as an example, in the polishing process section 1, the polishing process and the cleaning of the polishing section constitute one polishing process section.
 (1-1)研磨
 研磨パッド(研磨布)と被研磨物(例えば、ガラス基板)を接触させ、接触面に対して研磨剤スラリーを供給しながら、加圧条件下でパッドとガラス基板を相対運動させる。
(1-1) Polishing A polishing pad (polishing cloth) and an object to be polished (for example, a glass substrate) are brought into contact with each other, and an abrasive slurry is supplied to the contact surface while the pad and the glass substrate are relatively moved under pressure. Exercise.
 研磨パッドは、連続研磨を行ったあとでは、パッドドレッシング又はパッドブラッシングを行うことができる。パッドドレッシングとは、パッドを物理的に削りつつ、表面を荒らすことで、パッド状態を一定に保つ処理のことである。それに対して、パッドブラッシングとは、パッドを削ることなく、パッドの凹凸に含まれる研磨屑などを除去するために行う処理のことである。 The polishing pad can be subjected to pad dressing or pad brushing after continuous polishing. The pad dressing is a process of keeping the pad state constant by roughening the surface while physically cutting the pad. On the other hand, pad brushing is a process performed to remove polishing debris contained in the irregularities of the pad without cutting the pad.
 また、1バッチの加工で複数の研磨機を用いて研磨を行っても良い。このような場合、前バッチに対する次バッチのバッチあたりの加工時間の変化幅は10%以内であることが好ましい。この範囲内であると複数の研磨機間における研磨の加工時間のばらつきを抑えることができる。ここで1バッチとは、1回の研磨処理単位のことをいい、例えば6枚のガラス基板を1バッチで研磨処理することができる。 Also, polishing may be performed using a plurality of polishing machines in one batch of processing. In such a case, the change width of the processing time per batch of the next batch with respect to the previous batch is preferably within 10%. Within this range, it is possible to suppress variations in polishing processing time among a plurality of polishing machines. Here, one batch means a unit of polishing process, and for example, six glass substrates can be polished in one batch.
 本発明では、スラリー供給タンク21中の研磨剤の濃度調整は、前加工バッチに対する次加工バッチの研磨剤スラリー中の研磨剤の構成成分の濃度変化を少なくすることができる観点から、1バッチごとに行うことが好ましい。 In the present invention, the concentration adjustment of the abrasive in the slurry supply tank 21 is performed for each batch from the viewpoint of reducing the concentration change of the constituents of the abrasive in the abrasive slurry of the next processing batch relative to the previous processing batch. It is preferable to carry out.
 (1-2)洗浄
 研磨された直後のガラス基板及び、研磨機には大量の研磨剤が付着している。そのため、研磨した後に研磨剤スラリーの代わりに洗浄水タンク11から水等を供給し、ガラス基板及び研磨機に付着した研磨剤の洗浄が行われる。
(1-2) Cleaning A large amount of abrasive is adhered to the glass substrate immediately after being polished and the polishing machine. Therefore, after polishing, water or the like is supplied from the cleaning water tank 11 instead of the abrasive slurry, and the abrasive adhered to the glass substrate and the polishing machine is cleaned.
 この洗浄操作で、一定量の研磨剤が系外に排出されるため、系内の研磨剤量が減少する。この減少分を補うために、スラリー供給タンク21に対して新たな再生研磨剤スラリーを再生研磨剤スラリー貯蔵タンク51から追加する。追加の方法は1バッチ毎に追加を行っても良いし、数バッチに追加を行っても良いが、溶媒に対して十分に分散された状態の研磨剤を供給することが望ましい。 This cleaning operation discharges a certain amount of abrasive out of the system, reducing the amount of abrasive in the system. In order to compensate for this decrease, a new recycled abrasive slurry is added to the slurry supply tank 21 from the recycled abrasive slurry storage tank 51. The addition method may be performed for each batch or may be performed for several batches, but it is desirable to supply an abrasive that is sufficiently dispersed in the solvent.
 (2)研磨剤スラリー回収工程部
 研磨剤スラリー回収工程部は、研磨に用いる研磨剤スラリーを貯蔵するスラリー供給タンク21を有しており、また、研磨剤スラリー回収工程部で研磨機12及び洗浄水タンク11からなる系から排出される加工済みの研磨剤スラリーを回収する。
(2) Abrasive slurry recovery process part The abrasive slurry recovery process part has a slurry supply tank 21 for storing the abrasive slurry used for polishing, and the polishing machine 12 and the cleaning in the abrasive slurry recovery process part. The processed abrasive slurry discharged from the system comprising the water tank 11 is recovered.
 研磨剤スラリー回収工程部2では、スラリー供給タンク21に加えて回収混合液タンク22を有していることが好ましい。スラリー供給タンク21では、研磨機から排出される加工済みの研磨剤スラリーと再生研磨剤スラリー貯蔵タンク51から供給される再生研磨剤スラリー及び水を用いて、研磨加工工程開始時における研磨剤の初期濃度以下に制御される。そして、スラリー供給タンク21中の研磨剤スラリーは、ポンプを介して、研磨機12に供給される。 The abrasive slurry recovery process unit 2 preferably has a recovery mixed liquid tank 22 in addition to the slurry supply tank 21. The slurry supply tank 21 uses the processed abrasive slurry discharged from the polishing machine and the regenerated abrasive slurry and water supplied from the regenerated abrasive slurry storage tank 51 to initialize the abrasive at the start of the polishing process. Controlled below concentration. Then, the abrasive slurry in the slurry supply tank 21 is supplied to the polishing machine 12 via a pump.
 本発明でいう加工済みの研磨剤スラリーとは、研磨機12、洗浄水タンク11から構成される研磨加工工程部1の系外に排出される研磨剤スラリーをいう。 In the present invention, the processed abrasive slurry refers to an abrasive slurry discharged out of the system of the polishing process section 1 composed of the polishing machine 12 and the washing water tank 11.
 なお、回収する加工済みの研磨剤スラリーには、前記洗浄水を含む研磨剤スラリー1と加工済みの研磨剤を含む研磨剤スラリー2の2種類が含まれる。回収した研磨剤スラリーには、おおむね0.1~40質量%の範囲で研磨剤が含まれる。 Note that the processed abrasive slurry to be recovered includes two types of abrasive slurry 1 including the cleaning water and abrasive slurry 2 including the processed abrasive slurry. The recovered abrasive slurry generally contains an abrasive in the range of 0.1 to 40% by mass.
 各研磨剤スラリーは、回収された後、直ちに分離工程に移送してもよいし、一定量を回収するまで貯蔵しても良いが、いずれの場合でも回収された研磨剤スラリーは、常時撹拌し、粒子の凝集や沈降を防止し、安定した分散状態を維持することが好ましい。 After each abrasive slurry is recovered, it may be transferred immediately to the separation step or stored until a certain amount is recovered. In any case, the recovered abrasive slurry is always stirred. It is preferable to prevent aggregation and sedimentation of particles and maintain a stable dispersion state.
 本発明においては、研磨剤スラリー回収工程部2で回収した研磨剤スラリー1と研磨剤スラリー2を混合して母液として回収混合液タンク22で調製した後、以降の分離・濃縮工程部3で処理する方法が好ましい。 In the present invention, the abrasive slurry 1 and the abrasive slurry 2 recovered in the abrasive slurry recovery process unit 2 are mixed and prepared as a mother liquor in the recovered mixed liquid tank 22, and then processed in the subsequent separation / concentration process unit 3. Is preferred.
 本発明では、スラリー供給タンク中21の研磨剤の構成成分の濃度が、研磨加工工程開始時の初期濃度以下になるよう制御しながら、スラリー供給タンク中21に再生研磨剤スラリーを供給する。 In the present invention, the regenerated abrasive slurry is supplied to the slurry supply tank 21 while controlling the concentration of the constituents of the abrasive in the slurry supply tank 21 to be equal to or lower than the initial concentration at the start of the polishing process.
 (研磨剤スラリー濃度の調整)
 濃度の調整は、スラリー供給タンク21に投入される、水、再生研磨剤スラリー、及び研磨加工工程から排出される加工済み研磨剤スラリーの量を配管を通して、その流量を制御することにより行うことができる。研磨機12への供給はスラリー供給タンク21から研磨機12の配管に設けられたポンプ(図示していない)で行う。制御部では、流量計とポンプを有しており、工程部間に研磨剤スラリーを供給するための循環ライン及びその他の添加物等を供給する配管により、その流量を制御する。
(Adjustment of abrasive slurry concentration)
The concentration is adjusted by controlling the flow rate of water, the regenerated abrasive slurry, and the processed abrasive slurry discharged from the polishing process through the pipe, which are put into the slurry supply tank 21. it can. Supply to the polishing machine 12 is performed from a slurry supply tank 21 by a pump (not shown) provided in the piping of the polishing machine 12. The control unit has a flow meter and a pump, and the flow rate is controlled by a circulation line for supplying abrasive slurry between the process units and piping for supplying other additives.
 本発明では、研磨加工工程開始時のスラリー供給タンク中の研磨剤の構成成分の濃度に対して、研磨加工工程終了時のスラリー供給タンク中の研磨剤の構成成分の終点濃度が20~90%の範囲内、より好ましくは30~80%の範囲内であることが好ましい。 In the present invention, the end point concentration of the constituents of the abrasive in the slurry supply tank at the end of the polishing process is 20 to 90% of the concentration of the constituents of the abrasive in the slurry supply tank at the start of the polishing process. Within the range, more preferably within the range of 30 to 80%.
 このように研磨剤濃度を下げることにより、研磨剤スラリーの温度上昇や粘度上昇を抑えることができ、酸化ケイ素の析出を防ぎ、被研磨物の傷の防止及び回収率の向上を図ることができる。 By reducing the abrasive concentration in this way, it is possible to suppress an increase in temperature and viscosity of the abrasive slurry, to prevent precipitation of silicon oxide, to prevent scratches on the object to be polished, and to improve the recovery rate. .
 研磨加工工程終了時のスラリー供給タンク中の研磨剤の構成成分の終点濃度が、研磨加工の初期濃度に対して20%以上であれば、研磨潤滑剤などの減少の影響も少なくまた研磨速度も大きく減少することもない。また、90%以下でれば、回収率を高くすることができる点で好ましい。 If the end point concentration of the constituents of the abrasive in the slurry supply tank at the end of the polishing process is 20% or more with respect to the initial concentration of the polishing process, the influence of the decrease in the polishing lubricant is small and the polishing rate is also low. There is no significant decrease. Moreover, if it is 90% or less, it is preferable at the point which can make a collection rate high.
 また、洗浄操作で、一定量の研磨剤が系外に排出されるため、新たな再生研磨剤スラリーを追加する場合、スラリー供給タンク21中の研磨剤濃度が変動する。この研磨剤供給タンク21中の研磨剤濃度の変動幅は、前加工バッチに対する次加工バッチの研磨剤スラリー中の研磨剤の構成成分の濃度変化の変動幅を±1.0質量%以内に制御することが好ましく、かつ研磨加工工程開始時における研磨剤濃度を超えないことが必要である。 Also, since a certain amount of abrasive is discharged out of the system by the cleaning operation, the concentration of the abrasive in the slurry supply tank 21 varies when a new regenerated abrasive slurry is added. The fluctuation range of the abrasive concentration in the abrasive supply tank 21 is controlled within ± 1.0 mass% of the fluctuation range of the concentration change of the constituents of the abrasive in the abrasive slurry of the next processing batch relative to the previous processing batch. It is preferable that the concentration of the abrasive at the start of the polishing process is not exceeded.
 スラリー供給タンク21中の研磨剤濃度は、例えば、UCUF-04K小口径超音波流量計検出器(東京計装(株)製)を用いて測定できる。具体的には、研磨剤濃度と流量との検量線を作製し、スラリー供給タンク21中の研磨剤スラリーの流量を測定することで対象となる研磨剤濃度を測定し、再生研磨剤スラリー貯蔵タンク51の制御部にフィードバックする。 The abrasive concentration in the slurry supply tank 21 can be measured using, for example, a UCUF-04K small-diameter ultrasonic flowmeter detector (manufactured by Tokyo Keiki Co., Ltd.). Specifically, a calibration curve between the abrasive concentration and the flow rate is prepared, and the target abrasive concentration is measured by measuring the flow rate of the abrasive slurry in the slurry supply tank 21, and the recycled abrasive slurry storage tank. Feedback is provided to the control unit 51.
 なお、上記UCUF-04K 小口径超音波流量計検出器(東京計装(株)製)の測定は、対象研磨剤スラリーの温度を30℃、かつ流量圧力を0.2MPa条件下で実施することができる。スラリー供給タンク21中の研磨剤スラリー濃度の測定は、オンラインで実施してもよく、又は適宜研磨剤スラリーをサンプリング測定してもよい。 The above UCUF-04K small-diameter ultrasonic flowmeter detector (manufactured by Tokyo Keiki Co., Ltd.) should be measured under the condition that the temperature of the target abrasive slurry is 30 ° C. and the flow pressure is 0.2 MPa. Can do. The measurement of the abrasive slurry concentration in the slurry supply tank 21 may be performed online, or the abrasive slurry may be sampled and measured as appropriate.
 最初に研磨を開始するため、スラリー供給タンク21において、研磨開始時の研磨剤溶液を調製する場合は、例えば、研磨剤の粉体を水等の溶媒に対して1~40質量%の濃度範囲となるように添加、分散して初期研磨剤スラリーを調製することができる。この初期研磨剤スラリーを研磨機に対して、図2で示したスラリー供給タンクに貯蔵して循環供給して使用する。研磨剤として使用される微粒子は、平均粒子径が数十nmから数μmの大きさの粒子が使用されることが好ましい。 In order to start polishing first, in the slurry supply tank 21, when preparing an abrasive solution at the start of polishing, for example, the concentration range of 1 to 40% by mass of the abrasive powder with respect to a solvent such as water The initial abrasive slurry can be prepared by adding and dispersing so that. This initial abrasive slurry is stored in the slurry supply tank shown in FIG. The fine particles used as the abrasive are preferably particles having an average particle size of several tens of nm to several μm.
 分散剤等を添加することにより、研磨剤粒子の凝集を防止するとともに、撹拌機等を用いて常時撹拌して分散状態を維持することが好ましい。一般には、研磨機の横に研磨剤スラリー用のタンクを設置し、撹拌機等を使用して常時分散状態を維持し、供給用ポンプを使用して研磨機に循環供給する方法を採用することが好ましい。 It is preferable to prevent the agglomeration of the abrasive particles by adding a dispersing agent or the like and maintain the dispersed state by constantly stirring using a stirrer or the like. In general, a tank for abrasive slurry should be installed next to the polishing machine, a dispersion state should always be maintained using a stirrer, etc., and a method of circulating supply to the polishing machine using a supply pump should be adopted. Is preferred.
 (3)分離・濃縮工程部
 次いで、分離・濃縮工程部3では、スラリー回収工程部で回収された加工済み研磨剤スラリーと洗浄水の混合液に対し、研磨剤のみを分離濃縮する。
(3) Separation / Concentration Process Unit Next, the separation / concentration process unit 3 separates and concentrates only the abrasive with respect to the mixed slurry of processed abrasive slurry and washing water collected in the slurry collection process unit.
 本発明における分離・濃縮工程部3は、研磨剤を母液より分離して濃縮する。分離して濃縮する方法としては公知の方法を用いてよいが、研磨剤スラリー回収工程部2で回収した研磨剤スラリーに対して、特に、無機塩としてアルカリ土類金属塩を添加し、研磨剤のみを凝集させ、被研磨成分を凝集させない状態で、該研磨剤を母液より分離して濃縮することが好ましい。これにより、研磨剤成分のみを凝集沈殿させた後、ガラス成分がほとんど上澄みに存在させて凝集物を分離することで、研磨剤成分とガラス成分との分離と、研磨剤スラリーの濃縮を同時に行うことができる。 The separation / concentration process unit 3 in the present invention separates and concentrates the abrasive from the mother liquor. As a method for separating and concentrating, a known method may be used. In particular, an alkaline earth metal salt is added as an inorganic salt to the abrasive slurry recovered in the abrasive slurry recovery step 2, and an abrasive is added. It is preferable that the abrasive is separated from the mother liquor and concentrated in a state where only the agglomerates are aggregated and the components to be polished are not aggregated. As a result, only the abrasive component is coagulated and precipitated, and then the glass component is almost present in the supernatant to separate the agglomerate, thereby simultaneously separating the abrasive component and the glass component and concentrating the abrasive slurry. be able to.
 分離濃縮する方法は公知の方法を用いることができる。膜分離方法や、沈降方法を採用することができる。 A known method can be used as the separation and concentration method. A membrane separation method or a sedimentation method can be employed.
 (3-1)分離工程
 分離のためには、上記のように無機塩としてアルカリ土類金属塩を添加し、研磨剤のみを凝集させ、被研磨成分を凝集させない状態で、該研磨剤を母液より分離することが好ましい。
(3-1) Separation step For separation, an alkaline earth metal salt is added as an inorganic salt as described above, and only the abrasive is agglomerated, and the abrasive is removed from the mother liquor without aggregating the components to be polished. It is preferable to separate more.
 固液分離操作は、強制的な分離手段は適用せずに、自然沈降による固液分離を行っても良い。このようにして母液を、被研磨物等を含む上澄み液と、下部に沈殿した回収研磨剤を含む濃縮物とに分離した後、デカンテーション法、例えば、釜を傾斜させて、上澄み液を排液する、又は、排液ハイプを分離した釜内の上澄み液と濃縮物の界面近くまで挿入し、上澄み液のみを、釜外に排出して、研磨剤を回収する。 In the solid-liquid separation operation, solid-liquid separation by natural sedimentation may be performed without applying forced separation means. In this way, the mother liquor is separated into a supernatant liquid containing an object to be polished and a concentrate containing a recovered abrasive that has settled at the bottom, and then the decantation method, for example, tilting the kettle to drain the supernatant liquid. Or the drainage hype is inserted to near the interface between the supernatant and concentrate in the separated kettle, and only the supernatant is discharged out of the kettle to recover the abrasive.
 回収した加工済み研磨剤スラリーは、被研磨物由来のガラス成分等が混入した状態にある。また、洗浄水の混入により濃度が低下しており、回収した研磨剤を研磨加工に再度使用するためには、被研磨物であるガラス成分等の分離と、研磨剤の濃縮化を行う必要がある。 The recovered processed abrasive slurry is in a state where glass components derived from the object to be polished are mixed. In addition, the concentration decreases due to the mixing of cleaning water, and in order to use the recovered abrasive again for polishing, it is necessary to separate the glass component that is the object to be polished and concentrate the abrasive. is there.
 (アルカリ土類金属塩)
 本発明においては、研磨剤の凝集に用いる無機塩が、アルカリ土類金属塩であることが好ましい態様である。
(Alkaline earth metal salt)
In the present invention, it is a preferred embodiment that the inorganic salt used for agglomeration of the abrasive is an alkaline earth metal salt.
 本発明に係るアルカリ土類金属塩としては、例えば、カルシウム塩、ストロンチウム塩、バリウム塩を挙げることができるが、更には、本発明においては、広義として周期律表の第2族に属する元素も、アルカリ土類金属であると定義する。したがって、ベリリウム塩、マグネシウム塩も本発明でいうアルカリ土類金属塩に属する。 Examples of the alkaline earth metal salt according to the present invention include calcium salts, strontium salts, and barium salts. Furthermore, in the present invention, elements belonging to Group 2 of the periodic table are also broadly defined. , Defined as an alkaline earth metal. Therefore, beryllium salts and magnesium salts also belong to the alkaline earth metal salts referred to in the present invention.
 また、本発明に係るアルカリ土類金属塩としては、ハロゲン化物、硫酸塩、炭酸塩、酢酸塩等の形態であることが好ましい。 The alkaline earth metal salt according to the present invention is preferably in the form of a halide, sulfate, carbonate, acetate or the like.
 本発明に係る無機塩としては、アルカリ土類金属塩であることが好ましく、更に好ましくはマグネシウム塩である。 The inorganic salt according to the present invention is preferably an alkaline earth metal salt, more preferably a magnesium salt.
 また、本発明に適用可能なマグネシウム塩としては、電解質として機能するものであれば限定はないが、水への溶解性が高い点から、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、硫酸マグネシウム、酢酸マグネシウムなどが好ましく、溶液のpH変化が小さく、沈降した研磨剤及び廃液の処理が容易である点から、塩化マグネシウム及び硫酸マグネシウムが特に好ましい。 Further, the magnesium salt applicable to the present invention is not limited as long as it functions as an electrolyte, but from the viewpoint of high solubility in water, magnesium chloride, magnesium bromide, magnesium iodide, magnesium sulfate, Magnesium acetate and the like are preferred, and magnesium chloride and magnesium sulfate are particularly preferred from the viewpoint that the pH change of the solution is small and the settled abrasive and waste liquid can be easily treated.
 (無機塩の添加方法)
 次いで、本発明に係る無機塩の研磨剤スラリー(母液)に対する添加方法を説明する。
(Inorganic salt addition method)
Next, a method for adding the inorganic salt to the abrasive slurry (mother liquor) according to the present invention will be described.
 a)無機塩の濃度
 添加する無機塩は、粉体を研磨剤スラリー(母液)に直接供給しても良いし、水等の溶媒に溶解させてから研磨剤スラリー(母液)に添加してもよいが、研磨剤スラリーに添加した後に均一な状態になるように、溶媒に溶解させた状態で添加することが好ましい。
a) Concentration of inorganic salt The inorganic salt to be added may be directly supplied to the abrasive slurry (mother liquor) or may be dissolved in a solvent such as water and then added to the abrasive slurry (mother liquor). Although it is good, it is preferable to add in the state dissolved in the solvent so that it may become a uniform state after adding to an abrasive | polishing agent slurry.
 好ましい無機塩の濃度は、0.5~50質量%の濃度範囲の水溶液とすることである。系のpH変動を抑え、ガラス成分との分離を効率化するためには、10~40質量%の濃度範囲内であることがより好ましい。 A preferable concentration of the inorganic salt is an aqueous solution having a concentration range of 0.5 to 50% by mass. In order to suppress the pH fluctuation of the system and improve the efficiency of separation from the glass component, it is more preferable that the concentration is in the range of 10 to 40% by mass.
 b)無機塩の添加温度
 無機塩を添加する際の温度は、回収した研磨剤スラリーが凍結する温度以上であって、90℃までの範囲であれば適宜選択することができるが、ガラス成分との分離を効率的に行う観点からは、10~40℃の範囲内であることが好ましく、15~35℃の範囲内であることがより好ましい。
b) Addition temperature of inorganic salt The temperature at which the inorganic salt is added is not less than the temperature at which the recovered abrasive slurry is frozen and can be appropriately selected as long as it is in the range up to 90 ° C. From the viewpoint of efficiently performing the separation, it is preferably in the range of 10 to 40 ° C, more preferably in the range of 15 to 35 ° C.
 c)無機塩の添加速度
 無機塩の研磨剤スラリー(母液)に対する添加速度としては、回収した研磨剤スラリー中での無機塩濃度として、局部的に高濃度領域が発生することなく、均一になるように添加することが好ましい。1分間当たりの添加量が全添加量の20質量%以下であることが好ましく、10質量%以下であることがより好ましい。
c) Addition rate of inorganic salt The addition rate of the inorganic salt to the abrasive slurry (mother liquor) is uniform without causing a high concentration region locally as the concentration of the inorganic salt in the recovered abrasive slurry. It is preferable to add such that. The addition amount per minute is preferably 20% by mass or less of the total addition amount, and more preferably 10% by mass or less.
 d)無機塩添加時のpH値
 本発明の研磨剤回収・再生方法においては、分離・濃縮工程部3で無機塩を添加する際に、あらかじめ回収した研磨剤スラリーのpH値を調整しないことが好ましい態様である。一般に、回収した研磨剤スラリーのpH値は、ガラス成分を含有しているためややアルカリ性を示し、8~10未満の範囲であり、あらかじめ回収した研磨剤スラリーのpH値を調整する必要はない。したがって、本発明においては、母液の25℃換算のpH値が10.0未満の条件で分離濃縮を行うことが好ましい。
d) pH value during addition of inorganic salt In the abrasive recovery / regeneration method of the present invention, when adding an inorganic salt in the separation / concentration process unit 3, the pH value of the previously recovered abrasive slurry may not be adjusted. This is a preferred embodiment. Generally, the pH value of the recovered abrasive slurry is somewhat alkaline because it contains a glass component, and is in the range of less than 8 to 10, and it is not necessary to adjust the pH value of the recovered abrasive slurry in advance. Therefore, in the present invention, it is preferable to perform separation and concentration under the condition that the pH value of the mother liquor in terms of 25 ° C. is less than 10.0.
 本発明において、pH値は、25℃で、ラコムテスター卓上型pHメーター(アズワン(株)製 pH1500)を使用して測定した値を用いることができる。 In the present invention, the pH value can be a value measured at 25 ° C. using a Lacom Tester desktop pH meter (pH 1500, manufactured by As One Co., Ltd.).
 本発明においては、無機塩を添加し、その後該濃縮物を分離するまで無機塩添加時のpH値以下に維持することが好ましい。ここでいう無機塩添加時のpH値とは、無機塩の添加が終了した直後のpH値のことをいう。 In the present invention, it is preferable to add an inorganic salt and then maintain the pH at or below the inorganic salt addition until the concentrate is separated. The pH value at the time of inorganic salt addition here means the pH value immediately after the addition of the inorganic salt is completed.
 沈殿した凝集物を分離するまで、無機塩添加時のpH値以下を維持する。好ましくは25℃換算pH値として10未満を維持する。pH値として10未満とすることで、廃液に含まれるガラス成分の凝集を防ぐことができるため、回収の際の酸化セリウムの純度を高くすることができ好ましい。 PH Maintain the pH value or less at the time of adding inorganic salt until the precipitated aggregates are separated. Preferably, less than 10 is maintained as a pH value at 25 ° C. By setting the pH value to less than 10, it is possible to prevent aggregation of glass components contained in the waste liquid, so that the purity of cerium oxide at the time of recovery can be increased, which is preferable.
 無機塩添加時のpH値の下限は、pH調整剤による純度低下や操作性などから、6.5以上であることが好ましい。 The lower limit of the pH value at the time of adding the inorganic salt is preferably 6.5 or more from the viewpoint of purity reduction and operability due to the pH adjusting agent.
 e)無機塩添加後の撹拌
 無機塩を添加した後、少なくとも10分以上撹拌を継続することが好ましく、より好ましくは30分以上である。無機塩を添加すると同時に研磨剤粒子の凝集が開始されるが、撹拌状態を維持することで凝集状態が系全体で均一となり濃縮物の粒度分布が狭くなり、その後の分離が容易となる。
e) Stirring after addition of inorganic salt After adding the inorganic salt, stirring is preferably continued for at least 10 minutes, more preferably 30 minutes or more. Aggregation of the abrasive particles starts simultaneously with the addition of the inorganic salt, but maintaining the stirring state makes the aggregation state uniform throughout the system, narrowing the particle size distribution of the concentrate, and facilitating subsequent separation.
 分離・濃縮工程部3で、ガラス成分を含む上澄み液と回収した研磨剤粒子を含む濃縮物に分離した後、該濃縮物を回収する。 The separation / concentration process unit 3 separates the concentrate containing the glass component and the concentrate containing the recovered abrasive particles, and then recovers the concentrate.
 (3-2)濃縮工程
 本発明においては、下部に沈降する濃縮物に不純物(例えば、研磨したガラス粗粒子等)を極力混入させることなく、高純度の再生研磨剤を得る観点からからは、一次濃縮方法としては、自然沈降を適用することが好ましい。
(3-2) Concentration step In the present invention, from the viewpoint of obtaining a high-purity recycled abrasive without mixing impurities (for example, polished glass coarse particles) as much as possible into the concentrate that settles at the bottom, As the primary concentration method, it is preferable to apply natural sedimentation.
 無機塩の添加により、回収研磨剤粒子は凝集し、この状態で上澄み液と分離されていることから、濃縮物は、回収スラリーと比較して比重が増加し、濃縮されていることとなる。この濃縮物には、回収されたスラリー以上の濃度で回収研磨剤が含有されている。 Since the recovered abrasive particles aggregate due to the addition of the inorganic salt and are separated from the supernatant in this state, the concentrate has a higher specific gravity than the recovered slurry and is concentrated. The concentrate contains the recovered abrasive at a concentration higher than the recovered slurry.
 凝集した研磨剤の濃縮物と上澄み液とを分離する方法の一例としては、自然沈降により、被研磨物等を含む上澄み液と、下部に沈殿した回収研磨剤を含む濃縮物とに分離した後、上澄み液と濃縮物との界面近くまで挿入し、上澄み液のみを、ポンプを用いて、釜外に排出して、研磨剤を含有する濃縮物を回収することができる。 As an example of a method for separating the condensed abrasive concentrate and the supernatant liquid, after separating into a supernatant liquid containing the object to be polished and a concentrate containing the recovered abrasive precipitated in the lower part by natural sedimentation Then, it is inserted to near the interface between the supernatant and the concentrate, and only the supernatant is discharged out of the kettle using a pump, and the concentrate containing the abrasive can be recovered.
 (4)研磨剤の再生
 (4-1)研磨剤粒子径調整工程部
 研磨剤粒子径調整工程部4は、凝集した研磨剤を再分散させて、所望の粒度分布にする。例えば、未使用(研磨前)の研磨剤と近似の粒度分布レベルに調整する。本発明では、濃縮・分離した研磨剤スラリーに対し、研磨剤粒子の粒子径制御処置を施すことが好ましい。
(4) Regeneration of abrasive (4-1) Abrasive particle size adjustment step The abrasive particle size adjustment step 4 redisperses the aggregated abrasive to obtain a desired particle size distribution. For example, the particle size distribution level is adjusted to a level close to that of an unused (before polishing) abrasive. In the present invention, it is preferable to perform a particle size control treatment of the abrasive particles on the concentrated and separated abrasive slurry.
 上記方法で濃縮・分離した研磨剤スラリーでは、研磨剤粒子が無機塩を介して凝集体(二次粒子)を形成しているため、独立した一次粒子に近い状態まで解きほぐすため、水及び分散剤を添加し、分散装置を用いて、所望の粒子径まで分散する。 In the abrasive slurry concentrated and separated by the above method, since the abrasive particles form aggregates (secondary particles) via inorganic salts, water and a dispersing agent are used to unravel the state close to independent primary particles. And is dispersed to a desired particle size using a dispersion apparatus.
 凝集した研磨剤粒子を再分散させる方法としては、例えば、a)水を添加し、処理液中の研磨剤に対する凝集作用を有する無機イオン濃度を低下させる方法、b)分散剤(金属分離剤ともいう)を添加することで、研磨剤に付着している金属イオン濃度を低下させる方法、c)分散機等を使用して、凝集した研磨剤粒子を強制的に解膠する方法が挙げられる。 As a method of redispersing the aggregated abrasive particles, for example, a) a method of adding water to reduce the concentration of inorganic ions having an aggregating action on the abrasive in the treatment liquid, and b) a dispersant (also referred to as a metal separating agent) And a method of forcibly flocculating aggregated abrasive particles using a disperser or the like.
 これらの方法は、それぞれ単独で使用しても良いし、組み合わせて使用しても良いが、少なくともb)を組み合わせる方法が好ましく、a)、b)及びc)を全て組み合わせて行う方法がより好ましい。 These methods may be used singly or in combination, but a method of combining at least b) is preferable, and a method of combining a), b) and c) is more preferable. .
 水を添加する場合、その添加量は、濃縮した研磨剤スラリーの体積によって適宜選択され、一般的には濃縮したスラリーの5~50体積%であり、好ましくは10~40体積%である。 In the case of adding water, the amount added is appropriately selected depending on the volume of the concentrated abrasive slurry, and is generally 5 to 50% by volume, preferably 10 to 40% by volume of the concentrated slurry.
 (分散剤)
 分散剤としては、公知の分散剤を用いることができる。添加量としては、再生研磨材スラリーに対して0.01~5.0g/Lの範囲内であることができる。
(Dispersant)
A known dispersant can be used as the dispersant. The amount added can be in the range of 0.01 to 5.0 g / L with respect to the recycled abrasive slurry.
 本発明においては、カルボキシ基を有するポリカルボン酸系高分子分散剤が好ましく挙げられ、特に、アクリル酸-マレイン酸の共重合体であることが好ましい。 In the present invention, a polycarboxylic acid polymer dispersant having a carboxy group is preferably exemplified, and an acrylic acid-maleic acid copolymer is particularly preferable.
 ガラス基板の研磨加工を継続すると、ポリケイ酸等、被研磨物の溶解に伴い加工中の研磨材スラリーのpHが高くなりアルカリ側にシフトする。アルカリ側にシフトすると、被研磨物表面のヤケ(ガラスの外観が徐々に白く曇る現象)等の欠陥が生じ易くなる。この欠陥防止のため酸を添加しpHを調整すると、溶解しているポリケイ酸が固化しやすくなり、被研磨物の良品率を低下させる原因になりうる。 When the polishing of the glass substrate is continued, the pH of the abrasive slurry being processed increases with the dissolution of the object to be polished such as polysilicic acid and shifts to the alkali side. When shifting to the alkali side, defects such as burns on the surface of the object to be polished (a phenomenon in which the appearance of the glass gradually turns white) tend to occur. If the pH is adjusted by adding an acid to prevent this defect, the dissolved polysilicic acid is likely to solidify, which may cause a reduction in the yield rate of the object to be polished.
 アクリル酸-マレイン酸の共重合体を分散剤として用いることにより、このような現象を軽減させることができる。分散剤としての機能の他にマレイン酸の加水分解の平衡状態により、加工中の研磨材スラリーのpH変動に対する緩衝効果が作用し、溶解しているポリケイ酸を固化させることなく安定に溶解した状態を保つことができるためであると考えられる。 Such a phenomenon can be reduced by using a copolymer of acrylic acid-maleic acid as a dispersant. In addition to its function as a dispersing agent, the buffering effect against pH fluctuation of the abrasive slurry during processing acts due to the equilibrium state of maleic acid hydrolysis, and the dissolved polysilicic acid is stably dissolved without solidifying. It is thought that it is because it can keep.
 なお、マレイン酸-アクリル酸共重合体は、pH変動に対する緩衝効果を有し、分散機能を有する添加剤として有用であり、研磨材粒子径調整工程部4において分散剤として用いるだけでなく、添加剤として、別途スラリー供給タンク21又は再生研磨材貯蔵タンク51に添加してもよい。 The maleic acid-acrylic acid copolymer has a buffering effect against pH fluctuation and is useful as an additive having a dispersing function. It is not only used as a dispersant in the abrasive particle size adjusting step 4 but also added as a dispersant. As an agent, it may be added separately to the slurry supply tank 21 or the recycled abrasive storage tank 51.
 スラリー供給タンク21中のpH値を安定に保つ観点からは、再生研磨材含有液調製工程部5における再生研磨材貯蔵タンク51中の再生研磨スラリーが、マレイン酸-アクリル酸共重合体を、0.04~1.50g/Lの範囲内で含有していることが好ましい。 From the viewpoint of keeping the pH value in the slurry supply tank 21 stable, the regenerated abrasive slurry in the regenerated abrasive storage tank 51 in the regenerated abrasive-containing liquid preparation process unit 5 contains 0 maleic acid-acrylic acid copolymer. It is preferably contained within the range of 0.04 to 1.50 g / L.
 <アクリル酸-マレイン酸の共重合体>
 分散機能を有する添加剤として、(a)アクリル酸と(b)(無水)マレイン酸とのモル比が(a)/(b)=50/50~95/5である共重合物の水溶性塩からなり、その分子量分布(Mw/Mn)が3.5~10であるアクリル酸-マレイン酸の共重合体が好
ましい。
<Acrylic acid-maleic acid copolymer>
As an additive having a dispersing function, the water solubility of a copolymer in which the molar ratio of (a) acrylic acid to (b) (anhydrous) maleic acid is (a) / (b) = 50/50 to 95/5 An acrylic acid-maleic acid copolymer consisting of a salt and having a molecular weight distribution (Mw / Mn) of 3.5 to 10 is preferred.
 共重合体の分子量分布(Mw/Mn)は、好ましくは3.5~7である。また、共重合
体の数平均分子量は1000~20000、好ましくは1000~10000の範囲内である。必要に応じ他の共重合モノマーを共重合させても良い。
The molecular weight distribution (Mw / Mn) of the copolymer is preferably 3.5-7. The number average molecular weight of the copolymer is in the range of 1000 to 20000, preferably 1000 to 10,000. If necessary, other copolymerization monomers may be copolymerized.
 重合開始剤としては、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の過硫酸塩と、亜リン酸、次亜リン酸、またはそれらの塩等の還元剤との併用が好適であり、還元剤としては特に次亜リン酸ナトリウムが好ましい。過硫酸塩、還元剤ともモノマーに対して1~6モル%使用するのが好ましく、また過硫酸塩と還元剤の合計量がモノマーに対して10モル%未満であるのが好ましい。具体的な合成方法は、特開平7-316999号公報等に記載されている。 As the polymerization initiator, a combination of a persulfate such as ammonium persulfate, potassium persulfate, or sodium persulfate and a reducing agent such as phosphorous acid, hypophosphorous acid, or a salt thereof is preferable. Particularly preferred is sodium hypophosphite. Both persulfate and reducing agent are preferably used in an amount of 1 to 6 mol% based on the monomer, and the total amount of persulfate and reducing agent is preferably less than 10 mol% based on the monomer. A specific synthesis method is described in JP-A-7-316999.
 具体的な、アクリル酸-マレイン酸の共重合体としては、ポリティA-550(ライオン(株)製)、マイティ21HP(花王(株)製)等が挙げられる。アクリル酸-マレイン酸の共重合体と公知の分散剤を組み合わせて用いることもできる。 Specific examples of the acrylic acid-maleic acid copolymer include Polyty A-550 (manufactured by Lion Corporation), Mighty 21HP (manufactured by Kao Corporation), and the like. A combination of an acrylic acid-maleic acid copolymer and a known dispersant can also be used.
 また、分散機としては、超音波分散機、サンドミルやビーズミルなどの媒体撹拌型ミルが適用可能であり、特に、超音波分散機を用いることが好ましい。 Also, as the disperser, an ultrasonic disperser, a medium stirring mill such as a sand mill or a bead mill can be applied, and it is particularly preferable to use an ultrasonic disperser.
 超音波分散機としては、例えば、(株)エスエムテー、(株)ギンセン、タイテック(株)、BRANSON社、Kinematica社、(株)日本精機製作所等から、様々な機器が市販されており、(株)エスエムテー UDU-1、UH-600MC、(株)ギンセン GSD600CVP、(株)日本精機製作所 RUS-600TCVP等を使用することができる。超音波の周波数は、特に限定されない。 As the ultrasonic disperser, various devices are commercially available from, for example, SMT Co., Ltd., Ginsen Co., Ltd., Taitec Co., Ltd., BRANSON, Kinematica Co., Ltd., Nippon Seiki Seisakusho Co., Ltd. ) SMT UDU-1, UH-600MC, Ginsen GSD600CVP, Nippon Seiki Seisakusho RUS-600TCVP, etc. can be used. The frequency of the ultrasonic wave is not particularly limited.
 機械的撹拌及び超音波分散を同時並行的に行う循環方式の装置としては、(株)エスエムテー UDU-1、UH-600MC、(株)ギンセン GSD600RCVP、GSD1200RCVP、(株)日本精機製作所 RUS600-TCVP等を挙げることができるが、これらに限定されるものではない。 As a circulation system device that performs mechanical stirring and ultrasonic dispersion simultaneously, SMT Co., Ltd. UDU-1, UH-600MC, Ginseng Co., Ltd. GSD600RCVP, GSD1200RCVP, Nippon Seiki Seisakusho Co., Ltd. RUS600-TCVP, etc. However, it is not limited to these.
 例えば、水を添加して、無機塩濃度を低下させた研磨剤分散液を貯留した後、撹拌機で撹拌しながら、添加容器より、分散剤(例えば、高分子分散剤。)を添加した後、ポンプにより、超音波分散機44で分散処理を施し、凝集した研磨剤粒子を解きほぐす。次いで、その下流側に設けた粒子径測定機45にて、分散後の研磨剤粒子の粒子径分布をモニターし、研磨剤分散液の粒子径分布が所望の粒子径分布プロファイルにすることができる。 For example, after adding an aqueous dispersion of an abrasive having a reduced inorganic salt concentration by adding water, and then adding a dispersant (for example, a polymer dispersant) from an addition vessel while stirring with a stirrer. Then, a dispersion treatment is performed with an ultrasonic disperser 44 by a pump, and the agglomerated abrasive particles are unraveled. Subsequently, the particle size distribution of the abrasive particles after dispersion is monitored by a particle size measuring device 45 provided on the downstream side thereof, and the particle size distribution of the abrasive dispersion can be made into a desired particle size distribution profile. .
 この工程で得られる粒度分布としては、粒子径分布の経時変動が少なく、1日経過後の平均粒子径変動が少ないものが望ましい。 As the particle size distribution obtained in this step, it is desirable that the particle size distribution has little variation with time and the average particle size variation after one day has little.
 (4-2)再生研磨剤スラリー調製工程部
 再生研磨剤スラリー調製工程部5ではこのようにして必要な添加材を加え、所定の濃度にして再生研磨剤スラリーを、再生研磨剤スラリー貯蔵タンク51に貯蔵する。
(4-2) Recycled Abrasive Slurry Preparation Step Unit In the recycle abrasive slurry preparation step unit 5, the necessary additives are added in this way, and the regenerated abrasive slurry storage tank 51 is made to have a predetermined concentration. Store in.
 本発明においては、再生研磨剤スラリー調製工程部5で得られる最終的な再生研磨剤スラリーは、98質量%以上の高純度の研磨剤を含有し、粒度分布の経時変動が小さく、回収した時の濃度より高く、無機塩の含有量としては、0.0005~0.08質量%の範囲であることが好ましい。 In the present invention, the final regenerated abrasive slurry obtained in the regenerated abrasive slurry preparation step 5 contains a high-purity abrasive of 98% by mass or more, has a small variation with time in the particle size distribution, and is recovered. The content of the inorganic salt is preferably in the range of 0.0005 to 0.08 mass%.
 以上のようにして、高品位でかつ高純度の再生研磨剤を、再生研磨剤スラリーとして簡易な方法で得ることができる。 As described above, a high-quality and high-purity recycled abrasive can be obtained as a recycled abrasive slurry by a simple method.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
 実施例1
 《再生研磨剤の調製》
 まず、図2で示した研磨剤リサイクル処理システムを用いて再生研磨剤スラリーを調製した。
Example 1
<< Preparation of Recycled Abrasive >>
First, a regenerated abrasive slurry was prepared using the abrasive recycling system shown in FIG.
 1)研磨剤スラリー回収工程部2
 図2に記載の研磨加工工程部1で、ガラス基板の研磨加工を行った後、回収混合液タンク22へ洗浄水を含む研磨剤スラリー1を210リットル、及びスラリー供給タンク21より加工済みの研磨剤を含む研磨剤スラリー2を30リットル回収し、回収スラリー液として240リットルとした。回収混合液タンク22中のこの回収スラリー液は比重1.03であり、8.5kgの酸化セリウムが含まれている。
1) Abrasive slurry recovery process part 2
After polishing the glass substrate in the polishing process section 1 shown in FIG. 2, 210 l of the abrasive slurry 1 containing the cleaning water is collected into the recovered mixed liquid tank 22 and polished after being processed from the slurry supply tank 21. 30 liters of the abrasive slurry 2 containing the agent was recovered to 240 liters as a recovered slurry liquid. The recovered slurry liquid in the recovered mixed liquid tank 22 has a specific gravity of 1.03 and contains 8.5 kg of cerium oxide.
 2)分離・濃縮工程部3
 次いで、この回収スラリー液を分離・濃縮タンク32に移送し、回収スラリー液の液温度を20±1℃の範囲内で制御し、酸化セリウムが沈降しない程度に撹拌しながら、塩化マグネシウム10質量%水溶液2.5リットルを10分間かけて添加した。塩化マグネシウムを添加した直後の25℃換算のpH値は8.60で、この条件を維持した。
2) Separation / concentration process section 3
Next, the recovered slurry liquid is transferred to the separation / concentration tank 32, and the liquid temperature of the recovered slurry liquid is controlled within a range of 20 ± 1 ° C. While stirring to such an extent that cerium oxide does not settle, 10% by mass of magnesium chloride 2.5 liters of aqueous solution was added over 10 minutes. Immediately after the magnesium chloride was added, the pH value in terms of 25 ° C. was 8.60, and this condition was maintained.
 上記の状態で30分撹拌を継続した後、1.5時間静置し、自然沈降法により、上澄み液と凝集物とを沈降・分離した。1.5時間後、排水ポンプを用いて上澄み液を排出し、凝集物を分離回収した。回収した凝集物は60リットルであった。 After stirring for 30 minutes in the above state, the mixture was allowed to stand for 1.5 hours, and the supernatant liquid and the aggregate were settled and separated by a natural sedimentation method. After 1.5 hours, the supernatant was discharged using a drain pump, and the aggregate was separated and recovered. The collected aggregate was 60 liters.
 3)研磨剤粒子径調整工程部4
 分離した凝集物を研磨剤分離液貯蔵タンク42に移し、水22.5リットルを添加した。さらに、分散剤として分散機能を有する添加剤であるポリティA-550(ライオン(株)製)を300g添加し、30分撹拌した後、10ミクロンのメンブレンフィルター43で濾過を行い、さらに超音波分散機44を用いて、凝集物を分散して解きほぐし、所定の粒子径の研磨剤を含有する再生研磨剤を得た。
3) Abrasive particle diameter adjustment process part 4
The separated agglomerates were transferred to the abrasive separation liquid storage tank 42 and 22.5 liters of water were added. Furthermore, 300 g of Polyty A-550 (manufactured by Lion Corporation), an additive having a dispersing function as a dispersing agent, was added, stirred for 30 minutes, filtered through a 10 micron membrane filter 43, and further ultrasonically dispersed. The machine 44 was used to disperse and loosen the agglomerates to obtain a regenerated abrasive containing an abrasive having a predetermined particle size.
 4)再生研磨剤スラリー調製工程部5
 再生研磨剤を、再生研磨剤スラリー貯蔵タンク51に移し、濃度を調整して、再生酸化セリウムを含有する再生研磨剤スラリー80リットルを得た。酸化セリウム濃度は、10質量%で、粒度(D90<2.0μm)、マグネシウム含有量は0.01質量%であった。再生研磨剤スラリー中における分散機能を有する添加剤であるポリティA-550の濃度は、再生研磨剤スラリーに対して0.50g/Lであった。
4) Recycled abrasive slurry preparation process part 5
The regenerated abrasive was transferred to the regenerated abrasive slurry storage tank 51, the concentration was adjusted, and 80 liters of regenerated abrasive slurry containing regenerated cerium oxide was obtained. The cerium oxide concentration was 10% by mass, the particle size (D90 <2.0 μm), and the magnesium content was 0.01% by mass. The concentration of Polyty A-550, which is an additive having a dispersing function in the regenerated abrasive slurry, was 0.50 g / L with respect to the regenerated abrasive slurry.
 〔研磨剤リサイクルシステム1〕
 スラリー供給タンク21に初期濃度10.0質量%の酸化セリウムを含有する再生研磨剤スラリーを充填し、研磨加工工程部において以下のようにしてガラス基板を200バッチ研磨加工を行った。研磨剤スラリー回収工程部2では、ガラス基板の研磨加工を行った都度、洗浄水にて研磨加工工程部に残留する研磨剤スラリーを洗浄除去する。この洗浄水を含む研磨剤スラリー1は、回収混合液タンク22に回収した。また、200バッチ加工終了後に研磨剤スラリー供給タンク21から加工済研磨剤スラリーを回収混合液タンク22に回収した。その後、分離・濃縮工程部3、研磨剤粒子径調整工程部4及び再生研磨剤スラリー調製工程部5で、上記再生研磨剤の調製と同様にして再生研磨剤を、再生研磨剤スラリーとして調製した。
[Abrasive recycling system 1]
The slurry supply tank 21 was filled with a regenerated abrasive slurry containing cerium oxide having an initial concentration of 10.0% by mass, and 200 batches of glass substrates were polished in the polishing step as follows. In the abrasive slurry collecting step 2, the abrasive slurry remaining in the polishing step is washed away with cleaning water every time the glass substrate is polished. The abrasive slurry 1 containing the washing water was recovered in the recovery liquid mixture tank 22. Further, the processed abrasive slurry was recovered from the abrasive slurry supply tank 21 to the recovery mixture tank 22 after the 200 batch processing was completed. Thereafter, in the separation / concentration process unit 3, the abrasive particle size adjustment process unit 4 and the regenerated abrasive slurry preparation process unit 5, a regenerated abrasive was prepared as a regenerated abrasive slurry in the same manner as the regenerated abrasive preparation. .
 〔研磨加工工程部〕
 研磨中は、研磨に用いる研磨剤スラリーを貯蔵するスラリー供給タンク21中の研磨剤の濃度を、研磨加工工程開始時における初期濃度(10.0質量%)以下になるよう制御し、かつ、研磨加工工程終了時点でのスラリー供給タンク中の濃度は、初期濃度の50%(5.0質量%)となるようスラリー供給タンク21中の酸化セリウムの濃度を制御しながら、1バッチ(1加工)の加工を終了ごとに、再生研磨剤スラリー及び必要に応じて水を前記スラリー供給タンク中に供給した。
[Polishing process section]
During polishing, the concentration of the polishing agent in the slurry supply tank 21 for storing the polishing agent slurry used for polishing is controlled to be equal to or less than the initial concentration (10.0% by mass) at the start of the polishing process, and polishing is performed. One batch (one process) while controlling the concentration of cerium oxide in the slurry supply tank 21 so that the concentration in the slurry supply tank at the end of the processing step is 50% (5.0 mass%) of the initial concentration. At the end of this processing, the regenerated abrasive slurry and water as needed were supplied into the slurry supply tank.
 具体的には、まずスラリー供給タンク21に初期濃度10.0質量%の研磨剤を含有する再生研磨剤スラリーを補充した。次に、研磨加工を行い、1バッチの研磨加工終了ごとに加工済みの研磨剤を含む研磨剤スラリー2をスラリー供給タンク21に戻して、研磨機を水洗し、所定の厚さになるよう、200バッチの研磨加工を繰り返した。 Specifically, the slurry supply tank 21 was first supplemented with a regenerated abrasive slurry containing an initial concentration of 10.0 mass% abrasive. Next, the polishing process is performed, and the polishing slurry 2 containing the processed polishing agent is returned to the slurry supply tank 21 at the end of each batch of polishing processing, the polishing machine is washed with water, and a predetermined thickness is obtained. 200 batches of polishing were repeated.
 このとき、研磨剤スラリー供給タンク21の研磨剤(酸化セリウム)の濃度が初期濃度10.0質量%以下、かつ、研磨加工終了時点でのスラリー供給タンク21の研磨剤の濃度が、初期濃度の50%(5質量%)となるよう、さらに前加工バッチに対する次加工バッチの研磨剤スラリー中の研磨剤の濃度変化の変動幅を±1.0質量%以内となるようにスラリー供給タンク21中の酸化セリウムの濃度を制御しながら、1バッチ(1加工)の加工を終了ごとに、再生研磨剤スラリー及び必要に応じて水を前記スラリー供給タンク中に供給した。 At this time, the concentration of the abrasive (cerium oxide) in the abrasive slurry supply tank 21 is 10.0% by mass or less, and the concentration of the abrasive in the slurry supply tank 21 at the end of the polishing process is the initial concentration. In the slurry supply tank 21 so that the fluctuation range of the concentration change of the abrasive in the abrasive slurry of the next processing batch with respect to the previous processing batch is within ± 1.0% by mass so as to be 50% (5% by mass). While controlling the concentration of cerium oxide in each batch, the regenerated abrasive slurry and water as needed were supplied into the slurry supply tank every time one batch (one process) was completed.
 〔加工中及び加工済みの研磨剤スラリー〕
 ガラス基板の研磨加工を行った後、洗浄水にて研磨加工工程部に残留する研磨剤スラリーを洗浄除去する。この洗浄水を含む研磨剤スラリー1は、回収混合液タンク22に回収した。また、200バッチ加工終了後に研磨剤スラリー供給タンク21から加工済研磨剤スラリーを回収混合液タンク22に回収した。
[Abrasive slurry during and after processing]
After the glass substrate is polished, the abrasive slurry remaining in the polishing step is washed away with cleaning water. The abrasive slurry 1 containing the washing water was recovered in the recovery liquid mixture tank 22. Further, the processed abrasive slurry was recovered from the abrasive slurry supply tank 21 to the recovery mixture tank 22 after the 200 batch processing was completed.
 研磨中に研磨機12に供給するスラリー供給タンク21中の研磨剤の濃度は、UCUF-04K小口径超音波流量計検出器(東京計装(株)製)を用いて、以下の使用条件で測定した。 The concentration of the abrasive in the slurry supply tank 21 supplied to the polishing machine 12 during polishing was measured using the UCUF-04K small-diameter ultrasonic flowmeter detector (manufactured by Tokyo Keiki Co., Ltd.) under the following usage conditions. It was measured.
 使用条件:
 スラリー温度:30℃
 スラリー流体圧力:0.2MPa
 酸化セリウム濃度の検出:酸化セリウム含有量と酸化ケイ素含有量を把握している研磨剤スラリーを計測し、検量線を作成し、酸化セリウム含有量が把握できるようにした。
terms of use:
Slurry temperature: 30 ° C
Slurry fluid pressure: 0.2 MPa
Detection of cerium oxide concentration: Abrasive slurry that grasps cerium oxide content and silicon oxide content was measured, and a calibration curve was created so that the cerium oxide content could be grasped.
 《評価》
 研磨後の研磨剤の回収率、ガラス基板の良品率、研磨パッド寿命及びバッチ間の研磨時間の変化幅の4項目で研磨剤リサイクル処理システムを評価した。なお、研磨パッドの寿命については、200バッチの研磨を終了したあと、更に研磨を続けて評価を行った。
<Evaluation>
The abrasive recycling system was evaluated based on four items: the recovery rate of the abrasive after polishing, the non-defective rate of the glass substrate, the life of the polishing pad, and the change width of the polishing time between batches. The life of the polishing pad was evaluated by continuing polishing after 200 batches of polishing were completed.
 〔研磨剤の回収率〕
 回収率は、以下の式によって算出し、以下の評価基準で評価した。回収率は、少なくとも50%以上あることが必要である。
[Abrasive recovery rate]
The recovery rate was calculated by the following formula and evaluated according to the following evaluation criteria. The recovery rate should be at least 50%.
 回収率=(200バッチ研磨後の加工済み研磨剤スラリー及び洗浄水に含まれる研磨剤スラリーからの回収した研磨剤の総質量/研磨に使用した研磨剤の質量)×100(%)
 ◎:回収率90%以上
 ○:回収率70%以上、90%未満
 △:回収率50%以上、70%未満
 ×:回収率50%未満
 〔ガラス基板の良品率〕
 ガラス基板を目視観察して、傷が認められないものを良品として以下の評価基準で評価した。評価ランク△以上を合格とした。
Recovery rate = (total mass of abrasive recovered from abrasive slurry contained in processing slurry and cleaning water after 200 batch polishing / mass of abrasive used for polishing) × 100 (%)
◎: Recovery rate of 90% or more ○: Recovery rate of 70% or more, less than 90% △: Recovery rate of 50% or more, less than 70% ×: Recovery rate of less than 50%
The glass substrate was visually observed, and a non-scratched product was evaluated as a non-defective product according to the following evaluation criteria. An evaluation rank Δ or higher was considered acceptable.
 ◎:良品率80%以上
 ○:良品率60%以上、80%未満
 △:良品率50%以上、60%未満
 ×:良品率50%未満
 〔研磨パッドの寿命〕
 研磨パッドを外してSEM(走査型電子顕微鏡)写真観察を実施した。研磨中に酸化ケイ素が析出すると研磨パッドの発泡部に酸化ケイ素が析出してSEM観察で白く観察される。例えば、図3Aでは析出は観察されないが、図3Bでは研磨パッドの発泡部を満たすように白く酸化ケイ素の析出が観察される。200加工バッチで研磨パッドに残存する析出物を除去する方法及び研磨パッドの表面物性の回復度合いで評価した。評価ランク△以上を合格とした。
◎: Good product rate of 80% or more ○: Good product rate of 60% or more and less than 80% △: Good product rate of 50% or more and less than 60% ×: Good product rate of less than 50% [life of polishing pad]
The polishing pad was removed and SEM (scanning electron microscope) photograph observation was performed. When silicon oxide is deposited during polishing, silicon oxide is deposited on the foamed portion of the polishing pad and is observed white by SEM observation. For example, although no precipitation is observed in FIG. 3A, white silicon oxide is observed to fill the foamed portion of the polishing pad in FIG. 3B. The evaluation was based on the method of removing precipitates remaining on the polishing pad in 200 processing batches and the degree of recovery of the surface physical properties of the polishing pad. An evaluation rank Δ or higher was considered acceptable.
 ◎:研磨パッドをブラッシングすると研磨パッド表面の物性が回復する。なお、加工回数300バッチ以上で析出が観察された。(研磨パッドの削り出しを行わずに析出物が除去できる。)
 ○研磨パッドをブラッシングすると研磨パッド表面の物性が回復する。なお、加工回数250バッチ以上で析出が観察された。(研磨パッドの削り出しを行わずに析出物が除去できる。)
 △:研磨パッドをドレッシングすると研磨パッド表面の物性が回復するが、ブラッシングでは回復しない。(析出物を除去するために研磨パッドの削り出しを行う。)
 ×:研磨パッドをドレッシングしても研磨パッド表面の物性が回復しない。(析出物を除去するための研磨パッドの削り出し量が多く、研磨パッド表面の物性変化が大きい。)
 〔加工時間の変化幅〕
 前バッチに対する次バッチのバッチあたりの加工時間の変化幅を測定して、200バッチ研磨加工を行った時の、前バッチに対する次バッチのバッチあたりの加工時間の最大の変化幅を評価した。評価ランク△以上を合格とした。
A: When the polishing pad is brushed, the physical properties of the polishing pad surface are recovered. In addition, precipitation was observed when the number of processing was 300 batches or more. (Precipitates can be removed without grinding the polishing pad.)
○ When the polishing pad is brushed, the physical properties of the polishing pad surface are restored. Precipitation was observed when the number of processing was 250 batches or more. (Precipitates can be removed without grinding the polishing pad.)
Δ: Dressing the polishing pad recovers the physical properties of the polishing pad surface, but does not recover by brushing. (The polishing pad is cut out to remove the precipitate.)
X: Even if the polishing pad is dressed, the physical properties of the polishing pad surface are not recovered. (A large amount of polishing pad is removed to remove precipitates, and the physical property change on the polishing pad surface is large.)
[Change in machining time]
The change width of the processing time per batch of the next batch with respect to the previous batch was measured, and the maximum change width of the processing time per batch of the next batch with respect to the previous batch when 200 batch polishing was performed was evaluated. An evaluation rank Δ or higher was considered acceptable.
 ◎:前バッチに対する次バッチのバッチあたりの加工時間の変化幅が±5%未満
 ○:前バッチに対する次バッチのバッチあたりの加工時間の変化幅が±5%以上、±10%未満
 △:前バッチに対する次バッチのバッチあたりの加工時間の変化幅が±10%以上、±15%未満
 ×:前バッチに対する次バッチのバッチあたりの加工時間の変化幅が±15%以上
 〔研磨剤リサイクルシステム2~5及び7~13〕
 研磨剤サイクルシステム2~5及び7~13は、研磨剤リサイクルシステム1において、研磨剤スラリー回収工程部2におけるスラリー供給タンク21中の終点の研磨剤濃度、前加工バッチに対する次加工バッチの研磨剤濃度の変化の変動幅、最大濃度及び再生研磨剤スラリー中の分散剤とその量を表Iのように変更して研磨を行った。再生研磨剤スラリー中の分散剤とその量の調整は研磨剤粒子径調整工程部4に添加する分散剤とその量を調整して行った。
◎: Change width of processing time per batch of the next batch relative to the previous batch is less than ± 5% ○: Change width of processing time per batch of the next batch relative to the previous batch is ± 5% or more, less than ± 10% △: Previous The change width of the processing time per batch of the next batch with respect to the batch is ± 10% or more and less than ± 15% X: The change width of the processing time per batch of the next batch with respect to the previous batch is ± 15% or more [Abrasive recycling system 2 ~ 5 and 7-13]
The abrasive cycle systems 2 to 5 and 7 to 13 are the abrasive concentration of the end point in the slurry supply tank 21 in the abrasive slurry recovery process unit 2 in the abrasive recycle system 1, the abrasive in the next processing batch relative to the previous processing batch. Polishing was carried out by changing the fluctuation range of the concentration change, the maximum concentration, the dispersant in the regenerated abrasive slurry and the amount thereof as shown in Table I. Adjustment of the dispersing agent and its amount in the regenerated abrasive slurry was performed by adjusting the dispersing agent and its amount to be added to the abrasive particle size adjusting step 4.
 また、研磨剤リサイクルシステム12では、研磨剤リサイクルシステム1において、スラリー供給タンク21に初期濃度10質量%の酸化セリウムを含有する再生研磨剤スラリーを充填した後、スラリー供給タンク21に再生研磨剤スラリーを供給せずに、酸化セリウムの紛体と水を供給し、研磨加工終点のスラリー供給タンク21中の研磨剤濃度を初期濃度10質量%以下にして200バッチ研磨加工を行った。 In the abrasive recycling system 12, after the slurry supply tank 21 is filled with the regenerated abrasive slurry containing cerium oxide having an initial concentration of 10% by mass in the abrasive recycle system 1, the regenerated abrasive slurry is filled in the slurry supply tank 21. Without supplying cerium oxide powder and water, 200 batch polishing was performed with the initial concentration of 10% by mass or less in the slurry supply tank 21 at the polishing end point.
 さらに、研磨剤リサイクルシステム12では、前加工バッチに対する次加工バッチの研磨剤濃度の変化の変動幅の制御を行わなかった。 Furthermore, the abrasive recycling system 12 did not control the fluctuation range of the change in the abrasive concentration of the next processing batch relative to the previous processing batch.
 このため研磨剤リサイクルシステム12では、スラリー供給タンク中の研磨材の最大濃度が10.0質量%を超えてしましまった。 For this reason, in the abrasive recycling system 12, the maximum concentration of the abrasive in the slurry supply tank exceeded 10.0% by mass.
 〔研磨剤リサイクルシステム6〕
 研磨剤リサイクルシステム1に対し、分離・濃縮工程部3を、沈降分離法から膜分離法に代えた以外は、同様にして研磨剤スラリーを行った。すなわち、研磨剤スラリー孔径が0.5μm程度のMF膜(マイクローザ:旭化成社製)を用いたマイクローザラボモジュールに変更した以外は、研磨剤リサイクルシステム1と同様に実施した。
[Abrasive recycling system 6]
Abrasive slurry was similarly applied to the abrasive recycling system 1 except that the separation / concentration process unit 3 was changed from the sedimentation separation method to the membrane separation method. That is, it was carried out in the same manner as the abrasive recycling system 1 except that it was changed to a micro-zalab module using an MF membrane (micro-za: manufactured by Asahi Kasei Co., Ltd.) having an abrasive slurry pore size of about 0.5 μm.
 ≪研磨剤リサイクルシステム2~13の評価≫
 研磨剤リサイクルシステム1の評価と同様に研磨剤リサイクルシステム2~13の評価を行った。結果を表Iに示す。
≪Evaluation of abrasive recycling system 2-13≫
As with the evaluation of the abrasive recycling system 1, the evaluation of the abrasive recycling systems 2 to 13 was performed. The results are shown in Table I.
 なお、表中分散剤の種の欄は、以下の略号を用いた。 In the table, the following abbreviations were used for the seeds of the dispersant.
 A:ポリティA-550(マレイン酸-アクリル酸共重合体:ライオン(株)製)
 B:マイティ21HP(マレイン酸-アクリル酸共重合体:花王(株)製)
 C:ノプコスパース5600(サンノプコ(株)製)
A: Polyty A-550 (maleic acid-acrylic acid copolymer: manufactured by Lion Corporation)
B: Mighty 21HP (maleic acid-acrylic acid copolymer: manufactured by Kao Corporation)
C: Nop Cosperth 5600 (manufactured by San Nopco)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表Iより、本発明の研磨剤リサイクル処理システムは回収率に優れ、良品率も高く、かつ研磨パッドの寿命も長いことが分かる。 Table I shows that the abrasive recycling system of the present invention has an excellent recovery rate, a high yield rate, and a long polishing pad life.
 本発明の研磨剤リサイクル処理システムは、加工済みの研磨剤スラリーから研磨剤を効率的に回収し、これを再生研磨剤スラリーとして再利用することができる。このため研磨剤として用いられているセリウム等の希少価値の高い元素の省資源化に資することができる。 The abrasive recycling system of the present invention can efficiently recover an abrasive from a processed abrasive slurry and reuse it as a recycled abrasive slurry. For this reason, it can contribute to resource saving of elements with a high rare value such as cerium used as an abrasive.
 1 研磨加工工程部
 2 研磨剤スラリー回収工程部
 3 分離・濃縮工程部
 4 研磨剤粒子径調整工程部
 5 再生研磨剤スラリー調製工程部
 11 洗浄水タンク
 12 研磨機
 21 スラリー供給タンク
 22 回収混合液タンク
 31 添加剤タンク
 32 分離・濃縮タンク
 41 添加剤タンク
 42 研磨剤分離液貯蔵タンク
 43 メンブランフィルター
 44 超音波分散機
 45 粒子径測定器
 51 再生研磨剤スラリー貯蔵タンク
DESCRIPTION OF SYMBOLS 1 Polishing process part 2 Abrasive slurry collection | recovery process part 3 Separation / concentration process part 4 Abrasive particle diameter adjustment process part 5 Recycled abrasive slurry preparation process part 11 Washing water tank 12 Polishing machine 21 Slurry supply tank 22 Recovery liquid mixture tank 31 Additive tank 32 Separation / concentration tank 41 Additive tank 42 Abrasive separation liquid storage tank 43 Membrane filter 44 Ultrasonic disperser 45 Particle size measuring device 51 Recycled abrasive slurry storage tank

Claims (15)

  1.  研磨に用いる研磨剤スラリー中の研磨剤の構成成分と被研磨物の構成成分の濃度を制御しつつ研磨加工を継続し、加工済みの研磨剤スラリーから、被研磨物の構成成分を除去し、前記研磨剤を回収・再生する研磨剤リサイクル処理システムであって、
    研磨機を用いて研磨加工する研磨加工工程部と
    前記研磨機に供給する前記研磨に用いる研磨剤スラリーを貯蔵するスラリー供給タンクを有する研磨剤スラリー回収工程部とを有し、
    前記スラリー供給タンク中の研磨剤の構成成分の濃度が、研磨加工工程開始時の初期濃度以下になるよう制御しながら、前記スラリー供給タンク中に再生研磨剤スラリーを供給することを特徴とする研磨剤リサイクル処理システム。
    While continuing the polishing process while controlling the concentration of the constituents of the abrasive and the constituents of the object to be polished in the abrasive slurry used for polishing, the constituents of the object to be polished are removed from the processed abrasive slurry, An abrasive recycling system for recovering and recycling the abrasive,
    A polishing process unit for polishing using a polishing machine, and an abrasive slurry recovery process unit having a slurry supply tank for storing the abrasive slurry used for polishing supplied to the polishing machine,
    Polishing characterized in that the recycled abrasive slurry is supplied into the slurry supply tank while controlling the concentration of the constituents of the abrasive in the slurry supply tank to be equal to or lower than the initial concentration at the start of the polishing process. Agent recycling system.
  2.  前記スラリー供給タンク中の研磨剤の構成成分の濃度が、研磨加工工程開始時の濃度に対して研磨加工工程終了時の終点濃度が20~90%の範囲内であり、かつ研磨加工工程中の前記研磨剤の構成成分の濃度が常に前記終点濃度以上であり、さらに前加工バッチに対する次加工バッチの前記研磨剤の構成成分の濃度の変化の変動幅を±1.0質量%以内に制御することを特徴とする請求項1に記載の研磨剤リサイクル処理システム。 The concentration of the constituents of the abrasive in the slurry supply tank is in the range of 20 to 90% at the end point concentration at the end of the polishing step relative to the concentration at the start of the polishing step, and during the polishing step The concentration of the constituent component of the abrasive is always equal to or higher than the end point concentration, and the variation range of the concentration of the constituent of the abrasive in the next processing batch relative to the previous processing batch is controlled within ± 1.0 mass%. The abrasive recycling system according to claim 1.
  3.  前記スラリー供給タンク中の研磨剤の構成成分の濃度が、研磨加工工程開始時の濃度に対して研磨加工工程終了時の終点濃度が30~80%の範囲内であり、かつ研磨加工工程中の前記研磨剤の構成成分の濃度が常に前記終点濃度以上であり、さらに前加工バッチに対する次加工バッチの前記研磨剤の構成成分の濃度の変化の変動幅を±1.0質量%以内に制御することを特徴とする請求項1に記載の研磨剤リサイクル処理システム。 The concentration of the constituents of the abrasive in the slurry supply tank is within the range of 30 to 80% at the end point concentration at the end of the polishing step relative to the concentration at the start of the polishing step, and during the polishing step The concentration of the constituent component of the abrasive is always equal to or higher than the end point concentration, and the variation range of the concentration of the constituent of the abrasive in the next processing batch relative to the previous processing batch is controlled within ± 1.0 mass%. The abrasive recycling system according to claim 1.
  4.  前記研磨加工工程部及び前記研磨剤スラリー回収工程部に加えて、分離・濃縮工程部と、再生研磨剤スラリー調製工程部とを有することを特徴とする請求項1から請求項3までのいずれか一項に記載の研磨剤リサイクル処理システム。 4. In addition to the said grinding | polishing process part and the said abrasive | polishing agent slurry collection | recovery process part, it has a isolation | separation and concentration process part, and a reproduction | regeneration abrasive | polishing agent slurry preparation process part, The any one of Claim 1 to 3 characterized by the above-mentioned. The abrasive recycling system according to one item.
  5.  前記研磨剤スラリー回収工程部には、研磨加工工程部に供給する前記研磨剤スラリーを貯蔵する前記スラリー供給タンクと、加工済みの研磨剤スラリーと洗浄水との混合液を貯蔵する回収混合液タンクとを備え、
    前記分離・濃縮工程部には、前記混合液を透過液と研磨剤の濃縮液とに分離する分離・濃縮タンクを備え、
    前記再生研磨剤スラリー調製工程部には、前記被研磨物の構成成分が除去された再生研磨剤を含有する液を貯蔵する再生研磨剤スラリー貯蔵タンクを備え、かつ工程部間に研磨剤スラリーを供給するための循環ラインと、供給量を調整するための制御部を備えることを特徴とする請求項4に記載の研磨剤リサイクル処理システム。
    In the abrasive slurry recovery process section, the slurry supply tank that stores the abrasive slurry supplied to the polishing process section, and a recovery liquid mixture tank that stores a mixed liquid of the processed abrasive slurry and cleaning water And
    The separation / concentration process section includes a separation / concentration tank that separates the mixed solution into a permeate and an abrasive concentrate,
    The regenerated abrasive slurry preparation process section includes a regenerated abrasive slurry storage tank for storing a liquid containing the regenerated abrasive from which the constituents of the object to be polished have been removed, and the abrasive slurry is placed between the process sections. The abrasive recycling system according to claim 4, further comprising a circulation line for supplying and a control unit for adjusting the supply amount.
  6.  前記分離・濃縮工程部で得られた研磨剤の粒子径を調整する研磨剤粒子径調整工程部を有することを特徴とする請求項4又は請求項5に記載の研磨剤リサイクル処理システム。 6. The abrasive recycling system according to claim 4 or 5, further comprising an abrasive particle size adjusting step for adjusting the particle size of the abrasive obtained in the separation / concentration step.
  7.  前記再生研磨剤スラリーが、マレイン酸-アクリル酸共重合体を0.04~1.5g/Lの範囲内で含有していることを特徴とする請求項1から請求項6までのいずれか一項に記載の研磨剤リサイクル処理システム。 7. The regenerated abrasive slurry contains a maleic acid-acrylic acid copolymer in a range of 0.04 to 1.5 g / L. The abrasive | polishing agent recycling processing system of clause.
  8.  前記研磨剤が金属酸化物を含有し、かつ前記被研磨物がケイ素(Si)を含有することを特徴とする請求項1から請求項7までのいずれか一項に記載の研磨剤リサイクル処理システム。 The abrasive recycling system according to any one of claims 1 to 7, wherein the abrasive contains a metal oxide, and the object to be polished contains silicon (Si). .
  9.  前記研磨剤が、酸化セリウムを含有することを特徴とする請求項1から請求項8までのいずれか一項に記載の研磨剤リサイクル処理システム。 The abrasive recycling system according to any one of claims 1 to 8, wherein the abrasive contains cerium oxide.
  10.  前記分離・濃縮工程部において、研磨剤の凝集剤としてアルカリ土類金属塩を用いることを特徴とする請求項4から請求項9までのいずれか一項に記載の研磨剤リサイクル処理システム。 The abrasive recycling system according to any one of claims 4 to 9, wherein an alkaline earth metal salt is used as a flocculant of the abrasive in the separation / concentration process section.
  11.  前記アルカリ土類金属塩が、マグネシウム塩であることを特徴とする請求項10に記載の研磨剤リサイクル処理システム。 The abrasive recycling system according to claim 10, wherein the alkaline earth metal salt is a magnesium salt.
  12.  研磨に用いる研磨剤スラリー中の研磨剤の構成成分と被研磨物の構成成分の濃度を制御しつつ研磨加工を継続し、加工済みの研磨剤スラリーから、被研磨物の構成成分を除去し、前記研磨剤を回収・再生する研磨剤回収・再生方法であって、
    研磨機に供給する前記研磨に用いる研磨剤スラリーを貯蔵するスラリー供給タンク中の前記研磨剤の構成成分の濃度を、研磨加工工程開始時における当該研磨剤の構成成分の初期濃度以下になるよう制御しながら、研磨加工工程部に再生研磨剤スラリーを供給し、かつ加工済みの研磨剤スラリーを回収する工程を有することを特徴とする研磨剤回収・再生方法。
    While continuing the polishing process while controlling the concentration of the constituents of the abrasive and the constituents of the object to be polished in the abrasive slurry used for polishing, the constituents of the object to be polished are removed from the processed abrasive slurry, An abrasive recovery / regeneration method for recovering / regenerating the abrasive,
    Control the concentration of the constituents of the abrasive in the slurry supply tank for storing the abrasive slurry used for polishing supplied to the polishing machine to be equal to or lower than the initial concentration of the constituents of the abrasive at the start of the polishing process. An abrasive recovery / regeneration method comprising: supplying a recycled abrasive slurry to the polishing process section and recovering the processed abrasive slurry.
  13.  前記スラリー供給タンク中の研磨剤の構成成分の濃度が、研磨加工工程開始時の濃度に対して研磨加工工程終了時の終点濃度が20~90%の範囲内であり、かつ研磨加工工程中の前記研磨剤の構成成分の濃度が常に前記終点濃度以上であり、さらに前加工バッチに対する次加工バッチの前記研磨剤の構成成分の濃度の変化の変動幅を±1.0質量%以内に制御することを特徴とする請求項12に記載の研磨剤回収・再生方法。 The concentration of the constituents of the abrasive in the slurry supply tank is in the range of 20 to 90% at the end point concentration at the end of the polishing step relative to the concentration at the start of the polishing step, and during the polishing step The concentration of the constituent component of the abrasive is always equal to or higher than the end point concentration, and the variation range of the concentration of the constituent of the abrasive in the next processing batch relative to the previous processing batch is controlled within ± 1.0 mass%. The abrasive recovery / regeneration method according to claim 12.
  14.  前記スラリー供給タンク中の研磨剤の構成成分の濃度が、研磨加工工程開始時の濃度に対して研磨加工工程終了時の終点濃度が30~80%の範囲内であり、かつ研磨加工工程中の前記研磨剤の構成成分の濃度が常に前記終点濃度以上であり、さらに前加工バッチに対する次加工バッチの前記研磨剤の構成成分の濃度の変化の変動幅を±1.0質量%以内に制御することを特徴とする請求項12に記載の研磨剤回収・再生方法。 The concentration of the constituents of the abrasive in the slurry supply tank is within the range of 30 to 80% at the end point concentration at the end of the polishing step relative to the concentration at the start of the polishing step, and during the polishing step The concentration of the constituent component of the abrasive is always equal to or higher than the end point concentration, and the variation range of the concentration of the constituent of the abrasive in the next processing batch relative to the previous processing batch is controlled within ± 1.0 mass%. The abrasive recovery / regeneration method according to claim 12.
  15.  前記再生研磨剤スラリーが、マレイン酸-アクリル酸共重合体を0.04~1.5g/Lの範囲内で含有していることを特徴とする請求項12から請求項14までのいずれか一項に記載の研磨剤回収・再生方法。 The regenerated abrasive slurry contains a maleic acid-acrylic acid copolymer in a range of 0.04 to 1.5 g / L. The method for recovering and recycling the abrasive according to the item.
PCT/JP2019/008807 2018-03-23 2019-03-06 Polishing agent recycle processing system and polishing agent recovery/regeneration method WO2019181498A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980020537.5A CN112272600B (en) 2018-03-23 2019-03-06 Abrasive recycling system and abrasive recycling/regenerating method
JP2020508163A JP7192851B2 (en) 2018-03-23 2019-03-06 Abrasive recycling processing system and abrasive recovery/recycling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-055555 2018-03-23
JP2018055555 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019181498A1 true WO2019181498A1 (en) 2019-09-26

Family

ID=67987827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008807 WO2019181498A1 (en) 2018-03-23 2019-03-06 Polishing agent recycle processing system and polishing agent recovery/regeneration method

Country Status (3)

Country Link
JP (1) JP7192851B2 (en)
CN (1) CN112272600B (en)
WO (1) WO2019181498A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022172678A (en) * 2021-05-06 2022-11-17 コニカミノルタ株式会社 Method for preparing recycled/regenerated polishing agent slurry and polishing agent slurry

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306210A (en) * 2003-04-08 2004-11-04 Speedfam Co Ltd Processing method and processing equipment for reusing cerium oxide-based polishing agent and water, in drainage in glass polishing
KR20100040056A (en) * 2008-10-09 2010-04-19 주식회사 실트론 Apparatus for polishing wafer
JP2011083845A (en) * 2009-10-14 2011-04-28 Kemitoron:Kk Solid liquid recovery separation apparatus for polishing
JP2015097997A (en) * 2013-11-19 2015-05-28 旭硝子株式会社 Centrifugal machine, management system, and method of manufacturing glass substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090009266A (en) * 2006-08-16 2009-01-22 아사히 가라스 가부시키가이샤 Method of recovering abrasive from abrasive slurry waste liquid and apparatus therefor
JP2012178418A (en) * 2011-02-25 2012-09-13 Nomura Micro Sci Co Ltd Method and apparatus for collecting polishing agent
EP2815846B1 (en) * 2012-02-17 2018-09-26 Konica Minolta, Inc. Abrasive regeneration method
JP5850192B1 (en) * 2015-03-19 2016-02-03 コニカミノルタ株式会社 Abrasive recovery method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306210A (en) * 2003-04-08 2004-11-04 Speedfam Co Ltd Processing method and processing equipment for reusing cerium oxide-based polishing agent and water, in drainage in glass polishing
KR20100040056A (en) * 2008-10-09 2010-04-19 주식회사 실트론 Apparatus for polishing wafer
JP2011083845A (en) * 2009-10-14 2011-04-28 Kemitoron:Kk Solid liquid recovery separation apparatus for polishing
JP2015097997A (en) * 2013-11-19 2015-05-28 旭硝子株式会社 Centrifugal machine, management system, and method of manufacturing glass substrate

Also Published As

Publication number Publication date
CN112272600A (en) 2021-01-26
CN112272600B (en) 2023-06-02
JPWO2019181498A1 (en) 2021-04-08
JP7192851B2 (en) 2022-12-20

Similar Documents

Publication Publication Date Title
JP5858050B2 (en) Abrasive recycling method
JP7367705B2 (en) Abrasive regeneration method and abrasive recycling processing system
JP6107668B2 (en) Abrasive recycling method
JP6406010B2 (en) Abrasive recycling method
JP6107669B2 (en) Abrasive recycling method
JP6292119B2 (en) Abrasive recycling method
WO2019181498A1 (en) Polishing agent recycle processing system and polishing agent recovery/regeneration method
JP6044551B2 (en) Abrasive separation method
US20220356372A1 (en) Preparation method of recycled polishing agent slurry and polishing agent slurry
US20230121813A1 (en) Recycle method of polishing agent slurry and recycle system of polishing agent slurry
JP2023061348A (en) Regeneration method for abrasive slurry, and regeneration system for abrasive slurry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508163

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772130

Country of ref document: EP

Kind code of ref document: A1