WO2019181448A1 - Radar device - Google Patents

Radar device Download PDF

Info

Publication number
WO2019181448A1
WO2019181448A1 PCT/JP2019/008270 JP2019008270W WO2019181448A1 WO 2019181448 A1 WO2019181448 A1 WO 2019181448A1 JP 2019008270 W JP2019008270 W JP 2019008270W WO 2019181448 A1 WO2019181448 A1 WO 2019181448A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
processing unit
velocity
wheel
distance
Prior art date
Application number
PCT/JP2019/008270
Other languages
French (fr)
Japanese (ja)
Inventor
広介 西尾
叡 佐々木
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112019000357.7T priority Critical patent/DE112019000357T5/en
Priority to JP2020508133A priority patent/JP7203822B2/en
Publication of WO2019181448A1 publication Critical patent/WO2019181448A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/589Velocity or trajectory determination systems; Sense-of-movement determination systems measuring the velocity vector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/581Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/582Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/588Velocity or trajectory determination systems; Sense-of-movement determination systems deriving the velocity value from the range measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • G01S7/2923Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna
    • G01S2013/0263Passive array antenna
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4021Means for monitoring or calibrating of parts of a radar system of receivers

Definitions

  • the present invention relates to a radar apparatus.
  • a radar using radio waves as a surrounding state recognition sensor that is used to improve safety in automobiles and infrastructure. Since in-vehicle radar equipment is mainly applicable to radar technology using millimeter wave band, various existing radar systems (FM-CW system, pulse system, 2 frequency CW system) are used as the principle for obtaining information on obstacles. And the like using a spread spectrum system). As an example, a radar apparatus using a spread spectrum system is disclosed (for example, see Patent Document 1). This radar apparatus calculates the distance to an obstacle existing ahead of the moving body in the traveling direction and the information on the relative speed from the delay time between the transmission wave and the reception wave and the Doppler shift of the transmission wave.
  • FM-CW system FM-CW system
  • pulse system pulse system
  • 2 frequency CW system 2 frequency CW system
  • a radar apparatus using a spread spectrum system is disclosed (for example, see Patent Document 1). This radar apparatus calculates the distance to an obstacle existing ahead of the moving body in the traveling direction and the information on the relative speed from the delay time between the transmission wave and the reception wave
  • a method for correcting the accuracy deterioration of the detection speed in the radar is known (for example, see Patent Document 2).
  • This correction means calculates and corrects the speed from the time derivative of the distance to the object in parallel with the speed detection.
  • the velocity component orthogonal to the transmission wave radiated from the radar that is, the movement that moves a fixed distance in the polar coordinates centered on the radar.
  • the speed of an object taking a route cannot be detected.
  • the detection vehicle crosses the front of the host vehicle as a typical scene in which the speed of the detection target cannot be detected by the in-vehicle radar, that is, the detection speed of the detection target that is actually moving becomes zero.
  • An object of the present invention is to provide a radar apparatus that can improve the accuracy of detecting the speed of an object that crosses the front.
  • the present invention relates to a transmission antenna that transmits a transmission wave, a reception antenna that receives a reflected wave from an object that reflects the transmission wave, a signal of the transmission wave, and a signal of the reflected wave.
  • a distance, an angle, and a first speed to the object are calculated based on the time, a second speed is calculated by time-differentiating a position represented by the distance to the object and the angle, and the first speed is
  • a signal processing unit that outputs a first speed as the speed of the object when the threshold is exceeded, and outputs a second speed as the speed of the object when the first speed is equal to or less than the threshold.
  • FIG. 1 It is a block diagram of the structure of the vehicle-mounted radar apparatus of Example 1 of this invention. It is a figure showing the speed detection system of Example 1 of this invention. It is a figure of the example which applied the speed detection system of Example 1 of this invention to the vehicle-mounted radar apparatus. It is an operation
  • FIG. 9 is a diagram for explaining a conventional speed detection method and a problem.
  • FIG. 9 shows a case where the vehicle 201 as a detection target is traveling across the front of the vehicle 204 in front of the traveling direction of the vehicle 204 on which the conventional in-vehicle radar device 210 is mounted.
  • the vehicle 201 to be detected is traveling at a constant speed
  • the information that should be detected by the in-vehicle radar device 210 is the relative speed and distance from the vehicle 201 to be detected, and the vehicle itself. This is the angle from the front of the car.
  • the speed Vd of the target vehicle 201 detected by the in-vehicle radar device 210 is V, which is the magnitude of the speed vector v of the target vehicle 201.
  • the actual speed V (the magnitude of the speed vector v) is equal to the speed Vd of the target vehicle 201 detected by the radar.
  • the detection speed Vd decreases as the angle difference approaches 90 ° ( ⁇ / 2 approximately equal to 1.57), and when the angle difference reaches 90 °, that is, when the target vehicle 201 crosses the front of the vehicle 204.
  • the speed Vd is detected as 0 km / h.
  • FIG. 1 is a diagram showing functional blocks of an in-vehicle radar device 504 according to an embodiment of the present invention.
  • the on-vehicle radar device 504 of the present embodiment shown in FIG. 1 is a radar device that obtains information such as the distance to an object, the angle from the front, and the speed using a method called FCM (Fast Chirp Modulation) as an example.
  • FCM Frest Chirp Modulation
  • a chirp wave whose frequency continuously increases or decreases is used as a radar wave, and the distance and speed are measured by applying a two-dimensional FFT to the beat signal generated from the transmitted and received signal.
  • the distance to the object is obtained from the frequency of the beat signal generated from the transmission / reception signal, and the relative speed of the object is obtained from the phase rotation of the frequency component continuously detected for the same object.
  • the in-vehicle radar device 504 receives a reflected wave from a transmission circuit 102 that generates a transmission radio wave, a transmission unit including a transmission antenna 101 that transmits the transmission radio wave (transmission wave), and an object that reflects the transmission radio wave (transmission wave).
  • a receiving unit comprising a receiving antenna 104 and a receiving circuit 105 for receiving a received signal (a reflected wave signal), an AD converter 106 for digitally converting the received signal, a distance from the digitized received signal to a radar detection target,
  • the signal processing unit 103 calculates a relative speed, an angle, and the like.
  • the signal processing unit 103 includes an FFT calculation unit 107, a peak detection unit 108, a distance / angle calculation unit 109, a speed matching unit 110, a differentiation processing unit 111, a speed reliability determination unit 112, and the like. .
  • the FFT calculation unit 107 converts the received digital signal from the time domain to the frequency domain.
  • the peak detection unit 108 detects a peak representing reflection from the detection target in the reception signal converted into the frequency domain.
  • the distance / angle calculation unit 109 calculates the angle ⁇ from the front of the radar of the target object from the distance R to the target object from the time difference between the transmission signal and the received signal and the phase difference of the received signal between a plurality of receiving antennas. That is, the distance / angle calculation unit 109 (signal processing unit 103), based on the transmission signal (transmission wave signal) and the reception signal (reflection wave signal), the distance R to the detection target (object), the angle ⁇ Calculate In other words, the distance / angle calculation unit 109 calculates the distance R and the angle ⁇ to the detection target (object) in the polar coordinate system with the position of the radar device as the origin.
  • the speed matching unit 110 obtains the speed Vd of the detection target based on the detected phase rotation information of the peak. That is, the speed matching unit 110 (signal processing unit 103) calculates the speed Vd (first speed) of the detection target (object). In other words, the speed matching unit 110 calculates the speed Vd (first speed) by performing speed calculation by phase rotation. The speed matching unit 110 may calculate the speed Vd (first speed) by performing speed calculation by Doppler shift.
  • the differentiation processing unit 111 obtains the velocity Vr of the object that cannot be accurately detected by the velocity matching unit 110 from the time differentiation of the position P of the object. That is, the differential processing unit 111 (signal processing unit 103) calculates the speed Vr (second speed) by time-differentiating the position P represented by the distance R to the detection target (object) and the angle ⁇ . .
  • the speed reliability judgment unit 112 judges whether to use the speed Vd obtained by the speed matching unit 110 or the speed Vr obtained by the differentiation processing unit 111. As will be described later, when the speed Vd (first speed) exceeds the threshold, the speed reliability determination unit 112 (signal processing unit 103) outputs the speed Vd as the speed of the detection object (object), and the speed Vd Is equal to or less than the threshold, the speed Vr (second speed) is output as the speed of the detection target.
  • the signal processing unit 103 is a microcomputer as an example, and includes a processor such as a CPU (Central Processing Unit), a storage device such as a memory, an input / output circuit, and the like. Functions of the FFT calculation unit 107, peak detection unit 108, distance / angle calculation unit 109, speed matching unit 110, differentiation processing unit 111, speed reliability determination unit 112, and the like are realized by the processor executing a predetermined program. However, it may be realized by a circuit such as an FPGA (Field-Programmable Gate Array). It is assumed that the detection result calculated in the signal processing unit 103 (signal processing circuit) is stored in a memory 113 (storage device) inside the signal processing unit 103.
  • a processor such as a CPU (Central Processing Unit)
  • a storage device such as a memory
  • an input / output circuit and the like.
  • FIG. 3 shows a case where a vehicle 506 as a detection target is traveling from the right to the left in front of the own vehicle 505 equipped with the on-vehicle radar device 504 according to the embodiment of the present invention.
  • the vehicle 506 to be detected is traveling at a constant speed
  • the information detected by the on-vehicle radar device 504 includes the speed of the vehicle 506 to be detected, the linear distance 508 in polar coordinates, and the front of the host vehicle 505.
  • the detected timing Ti and the current position Pi of the target vehicle 506 calculated with the linear distance 508 and the angle 507.
  • the position Pi-1 of the target vehicle before the detection is updated and the timing ti-1 at which Pi-1 is detected are stored in the memory 113 of the signal processing unit 103.
  • the signal processing unit 103 detects the timing Ti where the current location Pi and Pi are recorded, and has previously been stored in the memory 113.
  • the position Pi-1 and timing Ti-1 are transferred to the differentiation processing unit 111.
  • the differential processing unit 111 sequentially obtains the change in position of the previous detection position Pi-1 and the current detection position Pi, that is, the linear distance (Pi ⁇ Pi-1), and updates the time required for the change in position, that is, the position detection update.
  • the speed Vr of the target vehicle 506 is calculated by dividing the amount of change in position (Pi-Pi-1) by the time (ti-ti-1) required for.
  • the symbol in the first parenthesis indicates the polar coordinate position determined by the distance R2 and the angle ⁇ 2
  • the symbol in the second parenthesis indicates the polar coordinate position determined by the distance R1 and the angle ⁇ 1.
  • the speed Vr obtained by the equation (1) is transmitted to the speed reliability determination unit 112 and compared with the speed Vd calculated from the phase rotation, and the speed reliability determination unit 112 is the most of the two detected speeds.
  • the one judged to be correct is transmitted to the signal processing unit 103.
  • the signal processing unit 103 completes initial setting of the application (S603). At that time, the signal processing unit 103 initializes (clears) the previous detection position Pi-1 stored in the memory 113.
  • the transmission circuit 102 In the modulation operation (S604), the transmission circuit 102 generates a modulated wave of the transmission wave, the transmission antenna 101 radiates a radio wave, the radio wave (reflected wave) is received by the reception antenna 104, and the reception circuit 105 modulates the reception wave. I do.
  • the AD converter 106 transmits the signal information in the data format to the signal processing unit 103.
  • the operations from S606 to S612 are performed by the signal processing unit 103.
  • the signal processing unit 103 performs a two-dimensional FFT (Fast Transform) process on the digitized reception signal, and converts the signal into the frequency domain (S606).
  • the signal processing unit 103 peak detection unit 108) detects a peak in the frequency domain (S607).
  • the peak information on the left is the reflection point from the detection target.
  • the signal processing unit 103 calculates the information on the distance R to the peak point, the angle ⁇ , and the speed Vd using the conventional method in the operations of S608 and S609.
  • the signal processing unit 103 performs grouping by collecting a plurality of detected peak points from the same object (S610). Up to this point, the operation flow of the in-vehicle radar using the FCM method has been described.
  • the signal processing unit 103 performs a speed correction routine of this embodiment (S611) and outputs it as CAN information (S612).
  • the signal processing unit 103 (differential processing unit 111) becomes NO in S613 and updates the position detection using the change (distance d) of the position P obtained by using the expression (2) after the second loop.
  • the differential speed Vr is calculated by dividing by the time required for.
  • a threshold is set based on the target differential velocity (velocity Vr) calculated in S702, and the detected velocity (velocity Vd) calculated from the phase rotation information in S608 in FIG. 4 is compared with the threshold.
  • the signal processing unit 103 speed reliability determination unit 112 determines which one of the differential speed (speed Vr) and the detected speed (speed Vd) is more accurate.
  • the detected speed (speed Vd) calculated from the phase rotation is based on the error range of the differential speed (speed Vr) obtained in S702. If low, it is determined that the differential speed (speed Vr) obtained in S702 is correct.
  • the speed Vd obtained by the conventional speed detection method is equal to or lower than the speed of the detection target. Therefore, if the error range of the velocity Vr obtained by the differentiation of Equation (2) is ⁇ 10%, 0.9Vr is set as a threshold, and if the velocity Vd obtained from the phase rotation is less than the threshold 0.9Vr, the differentiation The signal processing unit 103 (speed reliability determination unit 112) determines that the speed (speed Vr) is correct. Depending on the comparison result of S703, the output speed of S704 or S705 is set and output as CAN information in S612 of FIG.
  • the velocity Vr is obtained from the time derivative of the change in the target position, and the movement of the range in which the conventional velocity calculation technique cannot detect the velocity is obtained.
  • the speed of the body can be calculated, and the accuracy of the detection speed can be improved. Therefore, it is possible to realize a radar apparatus that has a higher speed detection performance than a conventional in-vehicle radar. Further, for example, when performing vehicle control in automatic driving, it is possible to improve vehicle control performance by providing more reliable information to the vehicle control system.
  • the present invention has been described with reference to an in-vehicle radar that calculates the speed by phase rotation using the FCM technology for the sake of simplicity.
  • the present invention is not limited to the above, and the speed calculation is performed using, for example, a Doppler shift. It can be applied to other systems such as an infrastructure radar device using the FMCW system.
  • the time differential calculation of speed has been described as being realized by a computer such as a microcomputer executing software, but it may be realized by dedicated hardware, It is possible to flexibly incorporate a system structure according to requirements.
  • the position of the detection target that can be calculated from the distance and the angle, the previous position, The time derivative of the change in position is calculated from the time required for updating the position detection.
  • Example 2 A second embodiment of the present invention will be described with reference to the drawings of FIGS.
  • accuracy of calculation speed using wheel information is improved. That is, the accuracy of the speed Vr of the target vehicle obtained by time differentiation described in the first embodiment is improved by using the wheel information that the target vehicle rotates.
  • Grouping process As shown in FIG. 6, when the own vehicle 812 equipped with the in-vehicle radar 804 detects the target vehicle 801 with the in-vehicle radar 804, it is necessary to perform a grouping process to combine a plurality of reflection points received from the target vehicle 801 as one vehicle. is there.
  • the grouping processing method As an example of the grouping processing method, as shown in FIG. 7, a range of a basket 901 having a predetermined area is set, and reflection points existing in the range of the basket 901 are recognized as being from the same target vehicle. There is a way.
  • the reflection points to be grouped are reflected by the conventional grouping technology, the distribution state of the reflection points to be grouped, that is, from the front of the target vehicle.
  • a change in the ratio of the reflection point to the reflection point from the side surface has an effect of lowering the recognition accuracy of the position of the target vehicle.
  • the accuracy of the speed Vr described in the first embodiment is directly proportional to the recognition accuracy of the position of the detection target, the improvement of the position detection accuracy of the target leads to an improvement of the calculation speed accuracy.
  • the detection position accuracy of the target vehicle is detected from the speed 903 detected from the reflection point 902 on the vehicle body of the target vehicle 906 and the reflection point 907 on the rotating front wheel of the target vehicle 906.
  • the detection speed 904 and the detection speed 905 detected from the reflection point 908 on the rear wheel can be improved.
  • Fig. 6 shows an enlarged view 807 of the rotating wheel.
  • the detected speed from the wheel of the moving vehicle is obtained by adding the rotational speed of the tire to the moving speed 803 of the target vehicle 801. That is, the detected speed from the rotating wheel is equal to the vehicle speed (speed 809 at the center of the wheel) or higher 808 (the sum of the rotational speed between the wheel center and the edge and the speed of the vehicle) become.
  • the front wheel position 815 shown in FIG. 7 The rear wheel position 813, the wheel base 816, and the center 814 between the wheels are calculated.
  • the length of the target vehicle 801 can be estimated using the wheel base information, and the approximate center of the target vehicle 801 is known from the wheel base center 814. It becomes possible.
  • the signal processing unit 103 detects a reflection point on the wheel from a plurality of reflection points of the target vehicle (object) in the basket indicating a range having a predetermined area, and sets the position of the reflection point on the wheel. Based on this, the distance to the target vehicle is calculated.
  • the signal processing unit 103 detects the reflection point on the wheel when the speed Vd (first speed) of the reflection point of the vehicle 906 (object) in the basket deviates from the average speed (representative value). judge.
  • the distance between the wheels, that is, the wheel base is calculated in S1003.
  • the signal processing unit 103 calculates the wheel base from the position of the reflection point on the front wheel and the position of the reflection point on the rear wheel.
  • the length of the target vehicle is estimated based on the wheelbase calculated in S1003.
  • S1005 divide the wheelbase by 2 and calculate the center.
  • the target position is calculated and output based on the vehicle length estimated in 1004 and the vehicle center information calculated in 1005. That is, the signal processing unit 103 calculates the position of the vehicle as an object from the wheel base.
  • the second embodiment among the plurality of reflection points grouped in one basket, attention is paid to the fact that the reflection point from the wheel is faster than the reflection point from the vehicle body, and the target vehicle is based on the information.
  • the position detection accuracy of the target vehicle can be improved.
  • the accuracy of the calculation speed at the time of calculating the differential speed described in the first embodiment can be improved.
  • the distance resolution ⁇ R and the maximum detection distance Rmax are in a trade-off relationship. Since a long detection distance is not required when the detection target crosses the front, the resolution ⁇ R may be increased by increasing the modulation band Fm of the transmission wave, and the grouping accuracy may be improved by increasing the detection points of the detection target.
  • the signal processing unit 103 may increase the distance resolution ⁇ R when detecting the reflection point on the wheel. By increasing the resolution ⁇ R, it is possible to improve the certainty of distinguishing between the wheel base of one vehicle and the two vehicles traveling at close distances.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above-described configurations, functions, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by a processor (microcomputer).
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • a radar device includes a transmission antenna that transmits radar, a reception antenna that receives the radar, a transmission circuit that transmits a transmission signal to the transmission antenna, a reception circuit that receives a signal from the reception antenna, And a signal processing circuit for processing a signal from the receiving circuit.
  • the signal processing circuit includes a speed matching unit that performs speed calculation by Doppler shift or phase rotation when the detection speed of the measurement target is higher than a threshold value, and a radar when the detection speed of the measurement target is lower than the threshold value.
  • a differential speed processing unit that obtains a differential speed from the detected distance and angle on the polar coordinates at the center.
  • the differential speed processing unit groups the received radar signals in a predetermined range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Provided is a radar device with which it is possible to enhance the accuracy with which the velocity of an object crossing in front of the radar device is detected. A transmission antenna 101 transmits a transmitted radio wave (transmitted wave). A reception antenna 104 receives a reflected wave from an object which reflects the transmitted radio wave. A distance and angle calculating unit 109 calculates a distance R to a detection target (object) and an angle Θ on the basis of a transmission signal (signal of the transmitted wave) and a reception signal (signal of the reflected wave). A velocity matching unit 110 calculates a velocity Vd (first velocity) of the detection target. A differentiation processing unit 111 calculates a velocity Vr (second velocity) by differentiating a position P, expressed by the distance R to the detection target and the angle Θ, with respect to time. A velocity reliability determining unit 112 outputs the velocity Vd as the velocity of the detection target (object) if the velocity Vd exceeds a threshold, and outputs the velocity Vr as the velocity of the target object if the velocity Vd is equal to or less than the threshold.

Description

レーダ装置Radar equipment
 本発明は、レーダ装置に関する。 The present invention relates to a radar apparatus.
 自動車やインフラなどで安全性を向上するために用いられる周辺状況認知センサとして、電波を用いたレーダがある。車載レーダ装置では、主にミリ波帯を利用したレーダ技術の適用範囲であることから、障害物に関する情報を得る原理として、既存の各種レーダ方式(FM-CW方式、パルス方式、2周波CW方式、スペクトラム拡散方式等)を用いたものが知られている。例としてスペクトラム拡散方式を用いたレーダ装置が開示されている(例えば、特許文献1参照)。このレーダ装置は、移動体の進行方向前方に存在する障害物までの距離、及び相対速度の情報を、送信波と受信波との遅延時間及び送信波のドップラーシフトより算出している。 There is a radar using radio waves as a surrounding state recognition sensor that is used to improve safety in automobiles and infrastructure. Since in-vehicle radar equipment is mainly applicable to radar technology using millimeter wave band, various existing radar systems (FM-CW system, pulse system, 2 frequency CW system) are used as the principle for obtaining information on obstacles. And the like using a spread spectrum system). As an example, a radar apparatus using a spread spectrum system is disclosed (for example, see Patent Document 1). This radar apparatus calculates the distance to an obstacle existing ahead of the moving body in the traveling direction and the information on the relative speed from the delay time between the transmission wave and the reception wave and the Doppler shift of the transmission wave.
 しかし、従来の各レーダ方式では検知対象物の速度のうち、送信波のドップラー効果を加えない速度成分、すなわちレーダから放射される送信波と直交する速度成分は原理上検出できないため、結果としてレーダで検知した対象物の速度情報の精度が低下するという課題がある。 However, in each conventional radar system, the velocity component that does not add the Doppler effect of the transmitted wave, that is, the velocity component orthogonal to the transmitted wave radiated from the radar, cannot be detected in principle. There is a problem that the accuracy of the speed information of the object detected by the method decreases.
 レーダでの検出速度の精度劣化に対し、補正を行う方法が知られている(例えば、特許文献2参照)。この補正手段は速度検知と並行して対象までの距離の時間微分から速度を計算し、補正をするというものである。 A method for correcting the accuracy deterioration of the detection speed in the radar is known (for example, see Patent Document 2). This correction means calculates and corrects the speed from the time derivative of the distance to the object in parallel with the speed detection.
特開平4-286981号公報JP-A-4-286811
特開平7-146358号公報JP-A-7-146358
 特許文献2に開示されるような技術では、レーダの特性上、対象までの距離はレーダを中心とした極座標で検知されるため、対象がレーダを中心とした円を描くルートを辿る場合、例えばレーダの正面を横切る場合においては、対象までの距離は変化しないため補正できない課題がある。加えて、上記の速度補正手段の適応できない範囲とは、すなわちレーダの送信波と直交するルートであり、すなわち速度検知できない範囲でもある。そのため、従来のレーダ装置において速度の検出不可能範囲が存在する課題がある。 In the technique disclosed in Patent Document 2, because the distance to the target is detected by polar coordinates centered on the radar due to the characteristics of the radar, when the target follows a route that draws a circle centered on the radar, for example, When crossing the front of the radar, there is a problem that cannot be corrected because the distance to the target does not change. In addition, the range in which the speed correction means cannot be applied is a route orthogonal to the radar transmission wave, that is, a range in which the speed cannot be detected. Therefore, there is a problem that there is a speed undetectable range in the conventional radar apparatus.
 このように、検知対象物に関する情報を得る手段として用いられる既存のレーダ方式では、レーダから放射される送信波と直交する速度成分、すなわちレーダを中心とした極座標において固定された距離を移動する移動ルートをとる物体の速度を検出できない課題がある。車載レーダにおいて検知対象物の速度を検知できない、すなわち実際は移動している検知対象物の検出速度がゼロになる、典型的なシーンとして検知車両が自車の正面を横切るシーンがある。 As described above, in the existing radar system used as a means for obtaining information about the detection target, the velocity component orthogonal to the transmission wave radiated from the radar, that is, the movement that moves a fixed distance in the polar coordinates centered on the radar. There is a problem that the speed of an object taking a route cannot be detected. There is a scene where the detection vehicle crosses the front of the host vehicle as a typical scene in which the speed of the detection target cannot be detected by the in-vehicle radar, that is, the detection speed of the detection target that is actually moving becomes zero.
 自車正面を横切る車両の速度が検出できない場合、自動運転や車両制御を行う際に、必要のないブレーキングなど制御の質を低下させる結果となる。そのため、従来の方式では速度検出が不可能な範囲においても速度を検出できるレーダが求められている。 If the speed of the vehicle crossing the front of the vehicle cannot be detected, the quality of control, such as unnecessary braking, is reduced when performing automatic driving or vehicle control. Therefore, there is a demand for a radar that can detect the speed even in a range where the conventional method cannot detect the speed.
 本発明の目的は、正面を横切る物体の速度を検出する精度を向上することができるレーダ装置を提供することにある。 An object of the present invention is to provide a radar apparatus that can improve the accuracy of detecting the speed of an object that crosses the front.
 上記目的を達成するために、本発明は、送信波を送信する送信アンテナと、前記送信波を反射する物体から反射波を受信する受信アンテナと、前記送信波の信号と前記反射波の信号に基づいて前記物体までの距離、角度及び第1の速度を計算し、前記物体までの距離と角度で表される位置を時間微分することより第2の速度を計算し、前記第1の速度が閾値を超える場合、第1の速度を前記物体の速度として出力し、前記第1の速度が閾値以下の場合、第2の速度を前記物体の速度として出力する信号処理部と、を備える。 To achieve the above object, the present invention relates to a transmission antenna that transmits a transmission wave, a reception antenna that receives a reflected wave from an object that reflects the transmission wave, a signal of the transmission wave, and a signal of the reflected wave. A distance, an angle, and a first speed to the object are calculated based on the time, a second speed is calculated by time-differentiating a position represented by the distance to the object and the angle, and the first speed is A signal processing unit that outputs a first speed as the speed of the object when the threshold is exceeded, and outputs a second speed as the speed of the object when the first speed is equal to or less than the threshold.
 本発明によれば、正面を横切る物体の速度を検出する精度を向上することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to improve the accuracy of detecting the speed of an object that crosses the front. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の実施例1の車載レーダ装置の構造のブロック図である。It is a block diagram of the structure of the vehicle-mounted radar apparatus of Example 1 of this invention. 本発明の実施例1の速度検出方式を表す図である。It is a figure showing the speed detection system of Example 1 of this invention. 本発明の実施例1の速度検出方式を車載レーダ装置に応用した例の図である。It is a figure of the example which applied the speed detection system of Example 1 of this invention to the vehicle-mounted radar apparatus. 本発明の実施例1の速度検出方式を持った車載レーダ装置の動作フロー図である。It is an operation | movement flowchart of the vehicle-mounted radar apparatus with the speed detection system of Example 1 of this invention. 本発明の実施例1の速度検出ロジックの動作フロー図である。It is an operation | movement flowchart of the speed detection logic of Example 1 of this invention. 本発明の実施例2の車両の反射とホイールの反射の違いを表す図である。It is a figure showing the difference of the reflection of the vehicle of Example 2 of this invention, and the reflection of a wheel. 本発明の実施例2を使ったグルーピングのイメージを表す図である。It is a figure showing the image of grouping using Example 2 of this invention. 本発明の実施例2の動作フローを表す図である。It is a figure showing the operation | movement flow of Example 2 of this invention. 従来の速度検出方式と課題を説明するための図である。It is a figure for demonstrating the conventional speed detection system and a subject.
 以下、図面を用いて、本発明の第1~第2の実施例によるレーダ装置の構成及び動作を説明する。 Hereinafter, the configuration and operation of the radar apparatus according to the first and second embodiments of the present invention will be described with reference to the drawings.
 (従来の速度検出方式)
 初めに、従来の速度検出方式を説明する。図9は、従来の速度検出方式と課題を説明するための図である。
(Conventional speed detection method)
First, a conventional speed detection method will be described. FIG. 9 is a diagram for explaining a conventional speed detection method and a problem.
 図9には、従来の車載レーダ装置210を搭載した車両204の進行方向前方に、検知対象として車両201が車両204の前方を横切る形で進行している場合が示されている。この場合、検知対象の車両201は、一定の速度を保って走行しているものとし、上記の車載レーダ装置210が本来検知すべき情報は検知対象の車両201との相対速度と距離、ならびに自車正面からの角度である。 FIG. 9 shows a case where the vehicle 201 as a detection target is traveling across the front of the vehicle 204 in front of the traveling direction of the vehicle 204 on which the conventional in-vehicle radar device 210 is mounted. In this case, it is assumed that the vehicle 201 to be detected is traveling at a constant speed, and the information that should be detected by the in-vehicle radar device 210 is the relative speed and distance from the vehicle 201 to be detected, and the vehicle itself. This is the angle from the front of the car.
 しかし、従来の速度検出方式では図9中の数式208に示すように、車載レーダ装置210が検知する対象の車両201の速度Vdは、対象の車両201の速度ベクトルvの大きさであるVと、対象の車両201と車載レーダ装置210を結ぶ直線と速度ベクトルvとの角度差φのコサインとの積(V*cosφ)となる。 However, in the conventional speed detection method, as shown in Formula 208 in FIG. 9, the speed Vd of the target vehicle 201 detected by the in-vehicle radar device 210 is V, which is the magnitude of the speed vector v of the target vehicle 201. The product of the straight line connecting the target vehicle 201 and the on-vehicle radar device 210 and the cosine of the angle difference φ between the velocity vector v (V * cosφ).
 すなわち、グラフ205で示されるように、対象の車両201の速度ベクトルvと、対象の車両201と車載レーダ装置210を結ぶ直線の角度差が0°あるいは180°である場合、対象の車両201の実速度V(速度ベクトルvの大きさ)と、レーダの検知する対象の車両201の速度Vdは等しくなる。しかし、上記角度差が90°(π/2 approximately equal to 1.57)に近づくほど検知速度Vdは小さくなり、角度差が90°に達した時、すなわち対象の車両201が車両204の正面を横切る時に速度Vdは0km/hと検知されてしまう課題がある。 That is, as shown in the graph 205, when the angle difference between the speed vector v of the target vehicle 201 and the straight line connecting the target vehicle 201 and the in-vehicle radar device 210 is 0 ° or 180 °, The actual speed V (the magnitude of the speed vector v) is equal to the speed Vd of the target vehicle 201 detected by the radar. However, the detection speed Vd decreases as the angle difference approaches 90 ° (π / 2 approximately equal to 1.57), and when the angle difference reaches 90 °, that is, when the target vehicle 201 crosses the front of the vehicle 204. There is a problem that the speed Vd is detected as 0 km / h.
 [実施例1]
 本発明の実施例1を図1~図5の図面に基づいて説明する。図1は本発明の一実施例に関わる車載レーダ装置504の機能ブロックを示す図である。
[Example 1]
A first embodiment of the present invention will be described with reference to the drawings of FIGS. FIG. 1 is a diagram showing functional blocks of an in-vehicle radar device 504 according to an embodiment of the present invention.
 (構成)
 図1に示す本実施例の車載レーダ装置504は、一例としてFCM(Fast Chirp Modulation)という方式を用いて対象物までの距離、正面からの角度、及び速度等の情報を求めるレーダ装置である。なお、FCM方式では、周波数が連続的に増加または減少するチャープ波をレーダ波として使用し、その送受信信号から生成されたビート信号に対して2次元FFTを施すことにより、距離・速度を計測する。FCM方式では、送受信信号から生成されるビート信号の周波数から対象物までの距離を求め、同一の対象物について連続的に検出される周波数成分の位相回転から対象物の相対速度を求める。
(Constitution)
The on-vehicle radar device 504 of the present embodiment shown in FIG. 1 is a radar device that obtains information such as the distance to an object, the angle from the front, and the speed using a method called FCM (Fast Chirp Modulation) as an example. In the FCM method, a chirp wave whose frequency continuously increases or decreases is used as a radar wave, and the distance and speed are measured by applying a two-dimensional FFT to the beat signal generated from the transmitted and received signal. . In the FCM method, the distance to the object is obtained from the frequency of the beat signal generated from the transmission / reception signal, and the relative speed of the object is obtained from the phase rotation of the frequency component continuously detected for the same object.
 車載レーダ装置504は、送信電波の生成を行う送信回路102と送信電波(送信波)を送信する送信アンテナ101からなる送信部と、送信電波(送信波)を反射する物体から反射波を受信する受信アンテナ104と受信信号(反射波の信号)を受け取る受信回路105からなる受信部と、受信した信号をデジタル変換するADコンバータ106と、デジタル化された受信信号からレーダの検知対象までの距離、相対速度、角度などを計算する信号処理部103から構成されている。 The in-vehicle radar device 504 receives a reflected wave from a transmission circuit 102 that generates a transmission radio wave, a transmission unit including a transmission antenna 101 that transmits the transmission radio wave (transmission wave), and an object that reflects the transmission radio wave (transmission wave). A receiving unit comprising a receiving antenna 104 and a receiving circuit 105 for receiving a received signal (a reflected wave signal), an AD converter 106 for digitally converting the received signal, a distance from the digitized received signal to a radar detection target, The signal processing unit 103 calculates a relative speed, an angle, and the like.
 信号処理部103は、FFT計算部107と、ピーク検出部108と、距離・角度計算部109と、速度マッチング部110と、微分処理部111と、速度信頼度判断部112等から構成されている。 The signal processing unit 103 includes an FFT calculation unit 107, a peak detection unit 108, a distance / angle calculation unit 109, a speed matching unit 110, a differentiation processing unit 111, a speed reliability determination unit 112, and the like. .
 FFT計算部107は、受信したデジタル信号を時間領域から周波数領域に変換する。ピーク検出部108は、周波数領域に変換された受信信号の中で検知対象物からの反射を表すピークを検出する。 The FFT calculation unit 107 converts the received digital signal from the time domain to the frequency domain. The peak detection unit 108 detects a peak representing reflection from the detection target in the reception signal converted into the frequency domain.
 距離・角度計算部109は、送信信号と受信信号の時間差から対象物までの距離Rと、複数ある受信アンテナ間での受信信号の位相差から対象物のレーダ正面からの角度θを算出する。すなわち、距離・角度計算部109(信号処理部103)は、送信信号(送信波の信号)と受信信号(反射波の信号)に基づいて、検知対象物(物体)までの距離R、角度θを計算する。換言すれば、距離・角度計算部109は、レーダ装置の位置を原点とする極座標系において検知対象物(物体)までの距離R及び角度θを計算する。 The distance / angle calculation unit 109 calculates the angle θ from the front of the radar of the target object from the distance R to the target object from the time difference between the transmission signal and the received signal and the phase difference of the received signal between a plurality of receiving antennas. That is, the distance / angle calculation unit 109 (signal processing unit 103), based on the transmission signal (transmission wave signal) and the reception signal (reflection wave signal), the distance R to the detection target (object), the angle θ Calculate In other words, the distance / angle calculation unit 109 calculates the distance R and the angle θ to the detection target (object) in the polar coordinate system with the position of the radar device as the origin.
 速度マッチング部110は、検出されたピークの位相回転情報に基づき検知対象物の速度Vdを求める。すなわち、速度マッチング部110(信号処理部103)は、検知対象物(物体)の速度Vd(第1の速度)を計算する。換言すれば、速度マッチング部110は、位相回転による速度計算を行うことで速度Vd(第1の速度)を計算する。なお、速度マッチング部110は、ドップラーシフトによる速度計算を行うことで速度Vd(第1の速度)を計算してもよい。 The speed matching unit 110 obtains the speed Vd of the detection target based on the detected phase rotation information of the peak. That is, the speed matching unit 110 (signal processing unit 103) calculates the speed Vd (first speed) of the detection target (object). In other words, the speed matching unit 110 calculates the speed Vd (first speed) by performing speed calculation by phase rotation. The speed matching unit 110 may calculate the speed Vd (first speed) by performing speed calculation by Doppler shift.
 微分処理部111は、速度マッチング部110によって正確な速度検知が不能な物体の速度Vrを対象物の位置Pの時間微分から求める。すなわち、微分処理部111(信号処理部103)は、検知対象物(物体)までの距離Rと角度θで表される位置Pを時間微分することより速度Vr(第2の速度)を計算する。 The differentiation processing unit 111 obtains the velocity Vr of the object that cannot be accurately detected by the velocity matching unit 110 from the time differentiation of the position P of the object. That is, the differential processing unit 111 (signal processing unit 103) calculates the speed Vr (second speed) by time-differentiating the position P represented by the distance R to the detection target (object) and the angle θ. .
 速度信頼度判断部112は、速度マッチング部110で求められた速度Vdと微分処理部111で求められた速度Vrのどちらを使うかを判断する。後述するように、速度信頼度判断部112(信号処理部103)は、速度Vd(第1の速度)が閾値を超える場合、速度Vdを検知対象物(物体)の速度として出力し、速度Vdが閾値以下の場合、速度Vr(第2の速度)を検知対象物の速度として出力する。 The speed reliability judgment unit 112 judges whether to use the speed Vd obtained by the speed matching unit 110 or the speed Vr obtained by the differentiation processing unit 111. As will be described later, when the speed Vd (first speed) exceeds the threshold, the speed reliability determination unit 112 (signal processing unit 103) outputs the speed Vd as the speed of the detection object (object), and the speed Vd Is equal to or less than the threshold, the speed Vr (second speed) is output as the speed of the detection target.
 なお、信号処理部103は、一例としてマイコンであり、CPU(Central Processing Unit)等のプロセッサ、メモリ等の記憶装置、入出力回路等から構成される。プロセッサが所定のプログラムを実行することにより、FFT計算部107、ピーク検出部108、距離・角度計算部109、速度マッチング部110、微分処理部111、速度信頼度判断部112等の機能が実現されるが、FPGA(Field-Programmable Gate Array)等の回路で実現されてもよい。信号処理部103(信号処理回路)において算出される検知結果は信号処理部103の内部のメモリ113(記憶装置)に記憶されるものとする。 The signal processing unit 103 is a microcomputer as an example, and includes a processor such as a CPU (Central Processing Unit), a storage device such as a memory, an input / output circuit, and the like. Functions of the FFT calculation unit 107, peak detection unit 108, distance / angle calculation unit 109, speed matching unit 110, differentiation processing unit 111, speed reliability determination unit 112, and the like are realized by the processor executing a predetermined program. However, it may be realized by a circuit such as an FPGA (Field-Programmable Gate Array). It is assumed that the detection result calculated in the signal processing unit 103 (signal processing circuit) is stored in a memory 113 (storage device) inside the signal processing unit 103.
 (本実施例の速度検出方式)
 次に本実施例で解決する課題の代表的な一例である、対象車両が自車両の正面を横切る際の検知速度精度の低下と、検知速度精度が低下した際の速度の算出方法を、図1~図5までの図面に基づき説明する。
(Speed detection method of this embodiment)
Next, a representative example of the problem to be solved in the present embodiment, a method for calculating the speed when the target vehicle crosses the front of the host vehicle, and the speed calculation method when the detection speed accuracy decreases are shown in FIG. This will be described based on the drawings from 1 to 5.
 図3には、本発明の実施例に関わる車載レーダ装置504を搭載した自車両505の前方を、検知対象としての車両506が右から左へ横切る形で進行している場合が示されている。この場合、検知対象の車両506は一定の速度で走行しているものとし、車載レーダ装置504が検知する情報は、検知対象の車両506の速度と極座標における直線距離508と、自車両505の正面からの角度507に加えて、検知のなされたタイミングTiと、直線距離508と角度507を以て算出される対象の車両506の現在位置Piである。また、検知が更新される前の対象車両の位置Pi-1と、Pi-1の検知されたタイミングti-1は信号処理部103のメモリ113に記憶してあるものとする。 FIG. 3 shows a case where a vehicle 506 as a detection target is traveling from the right to the left in front of the own vehicle 505 equipped with the on-vehicle radar device 504 according to the embodiment of the present invention. . In this case, it is assumed that the vehicle 506 to be detected is traveling at a constant speed, and the information detected by the on-vehicle radar device 504 includes the speed of the vehicle 506 to be detected, the linear distance 508 in polar coordinates, and the front of the host vehicle 505. In addition to the angle 507, the detected timing Ti and the current position Pi of the target vehicle 506 calculated with the linear distance 508 and the angle 507. Further, it is assumed that the position Pi-1 of the target vehicle before the detection is updated and the timing ti-1 at which Pi-1 is detected are stored in the memory 113 of the signal processing unit 103.
 検知対象の車両506の現在地Piが信号処理部103によって検知されると、上記信号処理部103は、現在地PiとPiの記録されたタイミングTiを、すでに検知されてメモリ113に記憶されている前回位置Pi-1とタイミングTi-1とともに微分処理部111に渡す。微分処理部111は、前回の検知位置Pi-1と、現在の検知位置Piの位置の変化すなわち直線距離(Pi - Pi-1)を順次求め、位置の変化に要した時間すなわち位置検知の更新に要した時間(ti - ti-1)で上記の位置の変化量(Pi - Pi-1)を割ることで、対象の車両506の速度Vrを計算する。車載レーダ装置504の算出する速度をVr、車両506の速度をVとすると、上記の計算は次の式(1)で表される(図2も参照)。 When the current location Pi of the vehicle 506 to be detected is detected by the signal processing unit 103, the signal processing unit 103 detects the timing Ti where the current location Pi and Pi are recorded, and has previously been stored in the memory 113. The position Pi-1 and timing Ti-1 are transferred to the differentiation processing unit 111. The differential processing unit 111 sequentially obtains the change in position of the previous detection position Pi-1 and the current detection position Pi, that is, the linear distance (Pi − Pi-1), and updates the time required for the change in position, that is, the position detection update. The speed Vr of the target vehicle 506 is calculated by dividing the amount of change in position (Pi-Pi-1) by the time (ti-ti-1) required for. When the speed calculated by the in-vehicle radar device 504 is Vr and the speed of the vehicle 506 is V, the above calculation is expressed by the following equation (1) (see also FIG. 2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)の中の第1の括弧内の記号は、距離R2と角度θ2で決まる極座標位置を示し、第2の括弧内の記号は、距離R1と角度θ1で決まる極座標位置を示す。 In the equation (1), the symbol in the first parenthesis indicates the polar coordinate position determined by the distance R2 and the angle θ2, and the symbol in the second parenthesis indicates the polar coordinate position determined by the distance R1 and the angle θ1. .
 式(1)で求められた速度Vrは、速度信頼度判断部112へ送信され、位相回転から算出された速度Vdと比較され、速度信頼度判断部112は上記2つの検出速度のうち、最も正しいと判断された方を信号処理部103へ送信する。 The speed Vr obtained by the equation (1) is transmitted to the speed reliability determination unit 112 and compared with the speed Vd calculated from the phase rotation, and the speed reliability determination unit 112 is the most of the two detected speeds. The one judged to be correct is transmitted to the signal processing unit 103.
 (動作)
 ここまでの動作をフローとして、図1と図4と図5を用いて説明する。
(Operation)
The operation so far will be described as a flow with reference to FIGS. 1, 4 and 5. FIG.
 まず車載レーダ装置504の電源を入れると(S602)、信号処理部103は、アプリの初期設定などを完了する(S603)。その際、信号処理部103は、メモリ113に記憶されている前回の検知位置Pi-1を初期化(クリア)する。変調動作(S604)では、送信回路102が送信波の変調波を生成し、送信アンテナ101が電波を放射し、電波(反射波)を受信アンテナ104が受信し、受信回路105が受信波の変調を行う。 First, when the on-vehicle radar device 504 is turned on (S602), the signal processing unit 103 completes initial setting of the application (S603). At that time, the signal processing unit 103 initializes (clears) the previous detection position Pi-1 stored in the memory 113. In the modulation operation (S604), the transmission circuit 102 generates a modulated wave of the transmission wave, the transmission antenna 101 radiates a radio wave, the radio wave (reflected wave) is received by the reception antenna 104, and the reception circuit 105 modulates the reception wave. I do.
 A/Dデータ送信動作(S605)では、ADコンバータ106がデータ形式にした信号情報を信号処理部103へ送信する。S606からS612の動作は、信号処理部103で行われる。 In the A / D data transmission operation (S605), the AD converter 106 transmits the signal information in the data format to the signal processing unit 103. The operations from S606 to S612 are performed by the signal processing unit 103.
 信号処理部103(FFT計算部107)は、デジタル化された受信信号に2次元FFT(Fast Fourier Transform)処理を施し、信号を周波数領域に変換する(S606)。信号処理部103(ピーク検出部108)は、周波数領域のピークを検出する(S607)。左記ピーク情報が検知対象物からの反射点ということになる。信号処理部103(距離・角度計算部109、速度マッチング部110)は、S608とS609の動作でピーク点までの距離R、角度θ、速度Vdの情報を従来の手法で算出する。信号処理部103は、複数検知されるピーク点を同一の対象物からのもの同士で纏めるグルーピングを行う(S610)。ここまではFCM方式の車載用レーダの動作フローである。最後に、信号処理部103は、本実施例の速度補正ルーチンを行い(S611)、CAN情報として出力する(S612)。 The signal processing unit 103 (FFT calculation unit 107) performs a two-dimensional FFT (Fast Transform) process on the digitized reception signal, and converts the signal into the frequency domain (S606). The signal processing unit 103 (peak detection unit 108) detects a peak in the frequency domain (S607). The peak information on the left is the reflection point from the detection target. The signal processing unit 103 (the distance / angle calculation unit 109 and the speed matching unit 110) calculates the information on the distance R to the peak point, the angle θ, and the speed Vd using the conventional method in the operations of S608 and S609. The signal processing unit 103 performs grouping by collecting a plurality of detected peak points from the same object (S610). Up to this point, the operation flow of the in-vehicle radar using the FCM method has been described. Finally, the signal processing unit 103 performs a speed correction routine of this embodiment (S611) and outputs it as CAN information (S612).
 S611の内容を、図5を用いて説明する。図4のS610でグルーピング処理まで終えた時点で、対象物の速度Vdと位置Pは検知されているが、図5のS702で、信号処理部103(微分処理部111)は、式(1)による速度算出を行う。車載レーダ装置504が起動されて最初のルーチンでは、対象物の前回位置Pi-1は図4のS603で初期化されているため使用しない。ここで、式(1)の分数の分子は2点(R1sinθ1, R1cosθ1)、(- R2sinθ2, R2cosθ2)の距離dに等しい。従って、信号処理部103(微分処理部111)は、S613でNOとなりループしての2回目以降に式(2)を用いて求められた位置Pの変化(距離d)を、位置検知の更新に要した時間で割って、微分速度Vrを算出する。 The contents of S611 will be described with reference to FIG. At the time when the grouping process is completed in S610 in FIG. 4, the speed Vd and the position P of the object are detected, but in S702 in FIG. 5, the signal processing unit 103 (differential processing unit 111) Calculate the speed by. In the first routine after the on-vehicle radar device 504 is activated, the previous position Pi-1 of the target is not used because it has been initialized in S603 of FIG. Here, the fractional numerator of the equation (1) is equal to the distance d between two points (R1sinθ1, R1cosθ1) and (− R2sinθ2, R2cosθ2). Therefore, the signal processing unit 103 (differential processing unit 111) becomes NO in S613 and updates the position detection using the change (distance d) of the position P obtained by using the expression (2) after the second loop. The differential speed Vr is calculated by dividing by the time required for.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 S703では、S702で計算された対象の微分速度(速度Vr)を基に閾値を設定し、図4のS608で位相回転情報から算出された検知速度(速度Vd)を閾値と比較することで、信号処理部103(速度信頼度判断部112)は、微分速度(速度Vr)と検知速度(速度Vd)のうち、どちらがより正確であるかを判断する。 In S703, a threshold is set based on the target differential velocity (velocity Vr) calculated in S702, and the detected velocity (velocity Vd) calculated from the phase rotation information in S608 in FIG. 4 is compared with the threshold. The signal processing unit 103 (speed reliability determination unit 112) determines which one of the differential speed (speed Vr) and the detected speed (speed Vd) is more accurate.
 S703の比較によって、2つの速度情報のうち、より正しいほうを判断する基準の一例として、位相回転から算出した検知速度(速度Vd)がS702で求められた微分速度(速度Vr)の誤差範囲より低い場合、S702で求められた微分速度(速度Vr)が正しいと判断する。 As an example of a criterion for judging the correct one of the two speed information by comparing S703, the detected speed (speed Vd) calculated from the phase rotation is based on the error range of the differential speed (speed Vr) obtained in S702. If low, it is determined that the differential speed (speed Vr) obtained in S702 is correct.
 従来の速度検出手法で求められる速度Vdは、検知対象の速度と同じかそれ以下の速度を算出する。そのため、式(2)の微分で求められる速度Vrの誤差範囲が±10%だとした場合、0.9Vrを閾値として設置し、位相回転から求めた速度Vdが閾値0.9Vr以下であれば、微分速度(速度Vr)の方が正しいと信号処理部103(速度信頼度判断部112)は判断する。S703の比較結果に応じて、S704又はS705の出力速度が設定され、図4のS612でCAN情報として出力される。 The speed Vd obtained by the conventional speed detection method is equal to or lower than the speed of the detection target. Therefore, if the error range of the velocity Vr obtained by the differentiation of Equation (2) is ± 10%, 0.9Vr is set as a threshold, and if the velocity Vd obtained from the phase rotation is less than the threshold 0.9Vr, the differentiation The signal processing unit 103 (speed reliability determination unit 112) determines that the speed (speed Vr) is correct. Depending on the comparison result of S703, the output speed of S704 or S705 is set and output as CAN information in S612 of FIG.
 これにより実施例1では、位相回転から算出した対象の速度Vdに加えて、対象の位置の変化の時間微分からも速度Vrを求め、従来の速度算出技術では速度を検知できなかった範囲の移動体の速度算出が可能となり、検出速度の正確性を向上できる。そのため、従来の車載レーダよりも高い速度検知性能をもつレーダ装置を実現できる。また、例えば自動運転における車両制御の際、より信頼度の高い情報を車両制御システムに提供することで車両制御性能の向上が可能となる。 As a result, in the first embodiment, in addition to the target velocity Vd calculated from the phase rotation, the velocity Vr is obtained from the time derivative of the change in the target position, and the movement of the range in which the conventional velocity calculation technique cannot detect the velocity is obtained. The speed of the body can be calculated, and the accuracy of the detection speed can be improved. Therefore, it is possible to realize a radar apparatus that has a higher speed detection performance than a conventional in-vehicle radar. Further, for example, when performing vehicle control in automatic driving, it is possible to improve vehicle control performance by providing more reliable information to the vehicle control system.
 なお、上記実施例では説明の簡略化のためFCM技術を使った位相回転により速度の算出を行う車載レーダを引き合いに本発明を説明したが、上記に限らず、例えばドップラーシフトを用いて速度算出をするFMCW方式を用いるインフラ用のレーダ装置など、他方式への応用も可能である。また、上記実施例では、速度の時間微分計算などは、マイコンなどの計算機がソフトウェアを実行することにより実現されるものとして説明を行ったが、専用のハードウェアによって実現してもよく、用途や要求に応じたシステム構造をフレキシブルに取り入れることが可能である。 In the above embodiment, the present invention has been described with reference to an in-vehicle radar that calculates the speed by phase rotation using the FCM technology for the sake of simplicity. However, the present invention is not limited to the above, and the speed calculation is performed using, for example, a Doppler shift. It can be applied to other systems such as an infrastructure radar device using the FMCW system. Further, in the above embodiment, the time differential calculation of speed has been described as being realized by a computer such as a microcomputer executing software, but it may be realized by dedicated hardware, It is possible to flexibly incorporate a system structure according to requirements.
 以上のように、実施例1では従来の技術により極座標上で検知対象物の速度、距離、角度を算出する車載レーダにおいて、距離と角度から計算できる検知対象物の位置と、前回の位置と、位置検知の更新に要した時間から、位置の変化の時間微分を計算する。これにより、従来の手法では速度検出できなかった軌道を走る対象物の速度検出を可能にできることから、レーダの検知情報をより信頼性の高いものにできる。 As described above, in the vehicle-mounted radar that calculates the speed, distance, and angle of the detection target on the polar coordinates according to the conventional technique in the first embodiment, the position of the detection target that can be calculated from the distance and the angle, the previous position, The time derivative of the change in position is calculated from the time required for updating the position detection. As a result, it is possible to detect the speed of an object traveling on a trajectory that could not be detected by the conventional method, so that the radar detection information can be made more reliable.
 具体的には、例えば、正面を横切る物体の速度を検出する精度を向上することができる。 Specifically, for example, it is possible to improve the accuracy of detecting the speed of an object crossing the front.
 [実施例2]
 本発明の実施例2を図6~図7の図面に基づいて説明する。実施例2では、ホイール情報を用いての算出速度精度を向上する。すなわち、実施例1で述べた、時間微分で求められる対象車両の速度Vrの正確性を、対象車両の回転するホイール情報を用いることで向上する。
[Example 2]
A second embodiment of the present invention will be described with reference to the drawings of FIGS. In the second embodiment, accuracy of calculation speed using wheel information is improved. That is, the accuracy of the speed Vr of the target vehicle obtained by time differentiation described in the first embodiment is improved by using the wheel information that the target vehicle rotates.
 (グルーピング処理)
 図6に示すように、車載レーダ804を搭載した自車812が対象車両801を車載レーダ804で検知する場合、対象車両801から受ける複数の反射点を一つの車両として纏めるグルーピング処理をおこなう必要がある。グルーピング処理の方法の一例として、図7に示すように、所定の面積をもつバスケット901という範囲を設定し、バスケット901の範囲の中に存在する反射点を同一の対象車両からのものとして認識する方法がある。
(Grouping process)
As shown in FIG. 6, when the own vehicle 812 equipped with the in-vehicle radar 804 detects the target vehicle 801 with the in-vehicle radar 804, it is necessary to perform a grouping process to combine a plurality of reflection points received from the target vehicle 801 as one vehicle. is there. As an example of the grouping processing method, as shown in FIG. 7, a range of a basket 901 having a predetermined area is set, and reflection points existing in the range of the basket 901 are recognized as being from the same target vehicle. There is a way.
 しかし、従来のグルーピング技術ではグルーピングされる反射点が対象車両のどの部分から反射されているかを判断することが不可能であるため、グルーピングされる反射点の分布状態、すなわち対象車両の前面からの反射点と側面からの反射点の比率の変化が、対象車両の位置の認識精度を低下させる影響を持つという課題があった。 However, since it is impossible to determine from which part of the target vehicle the reflection points to be grouped are reflected by the conventional grouping technology, the distribution state of the reflection points to be grouped, that is, from the front of the target vehicle. There has been a problem that a change in the ratio of the reflection point to the reflection point from the side surface has an effect of lowering the recognition accuracy of the position of the target vehicle.
 実施例1で説明した速度Vrの精度は、検知対象物の位置の認識精度と直接比例するため、対象物の位置検知精度の向上は算出速度精度の向上につながる。 Since the accuracy of the speed Vr described in the first embodiment is directly proportional to the recognition accuracy of the position of the detection target, the improvement of the position detection accuracy of the target leads to an improvement of the calculation speed accuracy.
 図7に示すように、対象車両の検知位置精度は、対象の車両906の車体上の反射点902から検知される速度903と、対象の車両906の回転する前輪上の反射点907から検知される検知速度904と後輪上の反射点908から検知される検知速度905、を用いることで向上できる。 As shown in FIG. 7, the detection position accuracy of the target vehicle is detected from the speed 903 detected from the reflection point 902 on the vehicle body of the target vehicle 906 and the reflection point 907 on the rotating front wheel of the target vehicle 906. The detection speed 904 and the detection speed 905 detected from the reflection point 908 on the rear wheel can be improved.
 図6に回転するホイールの拡大図807を示す。拡大図807で見られるように、動く車両のホイールからの検知速度は、対象車両801の移動速度803にタイヤの回転速度を加算したものとなる。すなわち、回転するホイールからの検知速度は、車両の速度と等速(ホイールの中心の速度809)かそれ以上の速度808(ホイールの中心と縁の間の回転速度と車両の速度との和)になる。 Fig. 6 shows an enlarged view 807 of the rotating wheel. As can be seen in the enlarged view 807, the detected speed from the wheel of the moving vehicle is obtained by adding the rotational speed of the tire to the moving speed 803 of the target vehicle 801. That is, the detected speed from the rotating wheel is equal to the vehicle speed (speed 809 at the center of the wheel) or higher 808 (the sum of the rotational speed between the wheel center and the edge and the speed of the vehicle) become.
 図7に示すバスケット901に含まれる反射点のうち、車両906の車体上の反射点902と、回転するホイール上の反射点907、908を識別することで、図6に示す前輪の位置815と後輪の位置813、ホイールベース816と、ホイール間の中心814を算出する。 By identifying the reflection point 902 on the vehicle body of the vehicle 906 and the reflection points 907 and 908 on the rotating wheel among the reflection points included in the basket 901 shown in FIG. 7, the front wheel position 815 shown in FIG. The rear wheel position 813, the wheel base 816, and the center 814 between the wheels are calculated.
 ホイールベース816は車両の長さと比例して長くなることから、ホイールベース情報を利用した対象車両801の長さの推定が可能になり、ホイールベースの中心814から対象車両801のおおよその中心を知ることが可能となる。 Since the wheel base 816 becomes longer in proportion to the length of the vehicle, the length of the target vehicle 801 can be estimated using the wheel base information, and the approximate center of the target vehicle 801 is known from the wheel base center 814. It becomes possible.
 後述するように、信号処理部103は、所定の面積を有する範囲を示すバスケット内の対象車両(物体)の複数の反射点からホイール上の反射点を検出し、ホイール上の反射点の位置に基づいて対象車両までの距離を計算する。 As will be described later, the signal processing unit 103 detects a reflection point on the wheel from a plurality of reflection points of the target vehicle (object) in the basket indicating a range having a predetermined area, and sets the position of the reflection point on the wheel. Based on this, the distance to the target vehicle is calculated.
 これにより、車載レーダ804の検知する対象車両801の位置の検知精度を向上させることが可能となり、実施例1に記した算出速度の精度を向上できる。 This makes it possible to improve the detection accuracy of the position of the target vehicle 801 detected by the in-vehicle radar 804, and improve the accuracy of the calculation speed described in the first embodiment.
 (動作)
 ここまでの動作をフローとして、図7~図8を用いて説明する。図8に示すように、S1002で、対象の車両906のバスケット901内において、複数ある反射点の中で際立って大きな速度を持っている反射点907や908をホイールとして認識する。その際、ホイールの回転によりどれだけの速度が車速に加算されるかは、ホイールの直径と、反射点がホイールの中心からどれだけ離れたものかに関係するが、本実施例ではホイールだと認識される際の閾値をバスケット901内の反射点の速度平均の1.5倍とする。
(Operation)
The operation up to this point will be described as a flow with reference to FIGS. As shown in FIG. 8, in S1002, in the basket 901 of the target vehicle 906, reflection points 907 and 908 having a remarkably large speed among the plurality of reflection points are recognized as wheels. At that time, how much speed is added to the vehicle speed by the rotation of the wheel depends on the diameter of the wheel and how far the reflection point is from the center of the wheel. The threshold for recognition is set to 1.5 times the average velocity of the reflection points in the basket 901.
 すなわち、信号処理部103は、バスケット内の車両906(物体)の反射点の速度Vd(第1の速度)がその速度平均(代表値)を逸脱する場合、ホイール上の反射点を検出したと判定する。 That is, the signal processing unit 103 detects the reflection point on the wheel when the speed Vd (first speed) of the reflection point of the vehicle 906 (object) in the basket deviates from the average speed (representative value). judge.
 S1002で認識されたホイールに対し、ホイール間の距離、すなわちホイールベースをS1003で計算する。換言すれば、信号処理部103は、前輪のホイール上の反射点の位置と後輪のホイール上の反射点の位置とから、ホイールベースを計算する。 ∙ For the wheel recognized in S1002, the distance between the wheels, that is, the wheel base is calculated in S1003. In other words, the signal processing unit 103 calculates the wheel base from the position of the reflection point on the front wheel and the position of the reflection point on the rear wheel.
 S1004では、S1003で算出したホイールベースに基づき、対象車両の長さを推定する。S1005でホイールベースを2で割って中心を計算する。最後にS1006で、1004で推定した車長と1005で算出した車両の中心の情報を基に対象の位置を計算し出力する。すなわち、信号処理部103は、ホイールベースから物体としての車両の位置を計算する。 In S1004, the length of the target vehicle is estimated based on the wheelbase calculated in S1003. In S1005, divide the wheelbase by 2 and calculate the center. Finally, in S1006, the target position is calculated and output based on the vehicle length estimated in 1004 and the vehicle center information calculated in 1005. That is, the signal processing unit 103 calculates the position of the vehicle as an object from the wheel base.
 以上のように、実施例2では一つのバスケットにグルーピングされる複数の反射点のうち、ホイールからの反射点は車体からの反射点より速度が大きいことに着目し、その情報を基に対象車両の長さと中心を算出することで、対象車両の位置検知精度を向上できる。それにより、実施例1で説明した微分速度算出の際の算出速度の精度を向上できる。 As described above, in the second embodiment, among the plurality of reflection points grouped in one basket, attention is paid to the fact that the reflection point from the wheel is faster than the reflection point from the vehicle body, and the target vehicle is based on the information. By calculating the length and the center, the position detection accuracy of the target vehicle can be improved. Thereby, the accuracy of the calculation speed at the time of calculating the differential speed described in the first embodiment can be improved.
 (変形例)
 距離の分解能ΔRと最大検知距離Rmaxはトレードオフの関係にある。検知対象が前方を横切る際、長い検知距離は必要ないので、送信波の変調帯域Fmを上げることで分解能ΔRを上げ、検知対象の検知点を増やすことでグルーピングの精度を向上してもよい。
(Modification)
The distance resolution ΔR and the maximum detection distance Rmax are in a trade-off relationship. Since a long detection distance is not required when the detection target crosses the front, the resolution ΔR may be increased by increasing the modulation band Fm of the transmission wave, and the grouping accuracy may be improved by increasing the detection points of the detection target.
 すなわち、信号処理部103は、ホイール上の反射点を検出する場合、距離の分解能ΔRを上げてもよい。分解能ΔRを上げることで、1台の車両のホイールベースなのか、近い距離を保って走行する2台の車両なのかの区別の確実性を向上できる。 That is, the signal processing unit 103 may increase the distance resolution ΔR when detecting the reflection point on the wheel. By increasing the resolution ΔR, it is possible to improve the certainty of distinguishing between the wheel base of one vehicle and the two vehicles traveling at close distances.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成、機能等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサ(マイコン)がそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 In addition, each of the above-described configurations, functions, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by a processor (microcomputer). Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
 なお、本発明の実施例は、以下の態様であってもよい。 In addition, the following aspects may be sufficient as the Example of this invention.
 (1).レーダ装置(速度検知装置)は、レーダを送信する送信アンテナと、前記レーダを受信する受信アンテナと、前記送信アンテナに送信信号を送る送信回路と、前記受信アンテナから信号を受け取る受信回路と、前記受信回路からの信号を処理する信号処理回路と、を備える。前記信号処理回路は、測定対象の検知速度が閾値より高い場合にはドップラーシフトによる速度計算又は位相回転による速度計算を行う速度マッチング部と、測定対象の検知速度が閾値より低い場合にはレーダを中心とした極座標上での検知された距離と角度から微分速度を求める微分速度処理部と、を備える。 (1). A radar device (speed detection device) includes a transmission antenna that transmits radar, a reception antenna that receives the radar, a transmission circuit that transmits a transmission signal to the transmission antenna, a reception circuit that receives a signal from the reception antenna, And a signal processing circuit for processing a signal from the receiving circuit. The signal processing circuit includes a speed matching unit that performs speed calculation by Doppler shift or phase rotation when the detection speed of the measurement target is higher than a threshold value, and a radar when the detection speed of the measurement target is lower than the threshold value. A differential speed processing unit that obtains a differential speed from the detected distance and angle on the polar coordinates at the center.
 (2).(1)における速度検知装置において、前記微分速度処理部は受信したレーダの信号を所定の範囲でグルーピングする。 (2). In the speed detection apparatus in (1), the differential speed processing unit groups the received radar signals in a predetermined range.
 (3).(2)における速度検知装置において、前記グルーピングの際にホイールからの反射信号を基にグルーピングする。 (3). In the speed detection device in (2), grouping is performed based on a reflected signal from the wheel during the grouping.
101…送信アンテナ
102…送信回路
103…信号処理部
104…受信アンテナ
105…受信回路
106…ADコンバータ
107…FFT計算部
108…ピーク検出部
109…距離・角度計算部
110…速度マッチング部
111…微分処理部
112…速度信頼度判断部
113…メモリ
201…車両
204…車両
210…車載レーダ装置
504…車載レーダ装置
505…自車両
506…車両
507…角度
508…直線距離
801…対象車両
803…移動速度
804…車載レーダ
807…拡大図
808…速度
809…速度
812…自車
813…後輪の位置
814…中心
815…前輪の位置
816…ホイールベース
901…バスケット
902…反射点
903…速度
904…検知速度
905…検知速度
906…車両
907…反射点
908…反射点
DESCRIPTION OF SYMBOLS 101 ... Transmission antenna 102 ... Transmission circuit 103 ... Signal processing part 104 ... Reception antenna 105 ... Reception circuit 106 ... AD converter 107 ... FFT calculation part 108 ... Peak detection part 109 ... Distance and angle calculation part 110 ... Speed matching part 111 ... Differentiation Processing unit 112 ... Speed reliability determination unit 113 ... Memory 201 ... Vehicle 204 ... Vehicle 210 ... In-vehicle radar device 504 ... In-vehicle radar device 505 ... Own vehicle 506 ... Vehicle 507 ... Angle 508 ... Linear distance 801 ... Target vehicle 803 ... Movement speed 804 ... Car-mounted radar 807 ... Enlarged view 808 ... Speed 809 ... Speed 812 ... Own vehicle 813 ... Rear wheel position 814 ... Center 815 ... Front wheel position 816 ... Wheel base 901 ... Basket 902 ... Reflection point 903 ... Speed 904 ... Detection speed 905 ... Detection speed 906 ... Vehicle 907 ... Reflection point 908 ... Reflection point

Claims (7)

  1.  送信波を送信する送信アンテナと、
     前記送信波を反射する物体から反射波を受信する受信アンテナと、
     前記送信波の信号と前記反射波の信号に基づいて前記物体までの距離、角度及び第1の速度を計算し、前記物体までの距離と角度で表される位置を時間微分することより第2の速度を計算し、前記第1の速度が閾値を超える場合、第1の速度を前記物体の速度として出力し、前記第1の速度が閾値以下の場合、第2の速度を前記物体の速度として出力する信号処理部と、
     を備えることを特徴とするレーダ装置。
    A transmission antenna for transmitting a transmission wave;
    A receiving antenna that receives a reflected wave from an object that reflects the transmitted wave;
    Based on the signal of the transmitted wave and the signal of the reflected wave, the distance, the angle, and the first velocity to the object are calculated, and the position represented by the distance and the angle to the object is time differentiated by the second. If the first speed exceeds a threshold, the first speed is output as the speed of the object. If the first speed is equal to or lower than the threshold, the second speed is calculated as the speed of the object. A signal processing unit that outputs as
    A radar apparatus comprising:
  2.  請求項1に記載のレーダ装置であって、
     前記信号処理部は、
     所定の面積を有する範囲を示すバスケット内の前記物体の複数の反射点からホイール上の反射点を検出し、前記ホイール上の反射点の位置に基づいて前記物体までの距離を計算する
     ことを特徴とするレーダ装置。
    The radar apparatus according to claim 1,
    The signal processing unit
    A reflection point on the wheel is detected from a plurality of reflection points of the object in the basket showing a range having a predetermined area, and a distance to the object is calculated based on the position of the reflection point on the wheel. Radar equipment.
  3.  請求項2に記載のレーダ装置であって、
     前記信号処理部は、
     前記バスケット内の前記物体の反射点の第1の速度がその代表値を逸脱する場合、ホイール上の反射点を検出したと判定する
     ことを特徴とするレーダ装置。
    The radar apparatus according to claim 2,
    The signal processing unit
    The radar apparatus according to claim 1, wherein when the first velocity of the reflection point of the object in the basket deviates from the representative value, it is determined that the reflection point on the wheel has been detected.
  4.  請求項3に記載のレーダ装置であって、
     前記信号処理部は、
     前輪のホイール上の反射点の位置と後輪のホイール上の反射点の位置とから、ホイールベースを計算する
     ことを特徴とするレーダ装置。
    The radar apparatus according to claim 3,
    The signal processing unit
    A radar apparatus that calculates a wheel base from a position of a reflection point on a wheel of a front wheel and a position of a reflection point on a wheel of a rear wheel.
  5.  請求項4に記載のレーダ装置であって、
     前記信号処理部は、
     前記ホイールベースから前記物体としての車両の位置を計算する
     ことを特徴とするレーダ装置。
    The radar apparatus according to claim 4,
    The signal processing unit
    A radar apparatus that calculates a position of a vehicle as the object from the wheel base.
  6.  請求項2に記載のレーダ装置であって、
     前記信号処理部は、
     前記ホイール上の反射点を検出する場合、距離の分解能を上げる
     ことを特徴とするレーダ装置。
    The radar apparatus according to claim 2,
    The signal processing unit
    A radar apparatus characterized by increasing the resolution of a distance when detecting a reflection point on the wheel.
  7.  請求項1に記載のレーダ装置であって、
     前記信号処理部は、
     前記レーダ装置の位置を原点とする極座標系において前記物体までの前記距離及び前記角度を計算する距離・角度計算部と、
     ドップラーシフトによる速度計算又は位相回転による速度計算を行うことで前記第1の速度を計算する速度マッチング部と、
     前記第2の速度を計算する微分速度処理部と、
     前記第1の速度が閾値を超える場合、第1の速度を前記物体の速度として出力し、前記第1の速度が閾値以下の場合、第2の速度を前記物体の速度として出力する速度信頼度判断部と、
     を備えることを特徴とするレーダ装置。
    The radar apparatus according to claim 1,
    The signal processing unit
    A distance / angle calculation unit for calculating the distance to the object and the angle in a polar coordinate system having the position of the radar device as an origin;
    A speed matching unit that calculates the first speed by performing speed calculation by Doppler shift or speed calculation by phase rotation;
    A differential speed processing unit for calculating the second speed;
    A speed reliability that outputs the first speed as the speed of the object when the first speed exceeds a threshold, and outputs the second speed as the speed of the object when the first speed is equal to or less than the threshold. A determination unit;
    A radar apparatus comprising:
PCT/JP2019/008270 2018-03-19 2019-03-04 Radar device WO2019181448A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112019000357.7T DE112019000357T5 (en) 2018-03-19 2019-03-04 Radar device
JP2020508133A JP7203822B2 (en) 2018-03-19 2019-03-04 radar equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018050868 2018-03-19
JP2018-050868 2018-03-19

Publications (1)

Publication Number Publication Date
WO2019181448A1 true WO2019181448A1 (en) 2019-09-26

Family

ID=67986451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008270 WO2019181448A1 (en) 2018-03-19 2019-03-04 Radar device

Country Status (3)

Country Link
JP (1) JP7203822B2 (en)
DE (1) DE112019000357T5 (en)
WO (1) WO2019181448A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2781159C1 (en) * 2021-04-26 2022-10-06 Федеральное государственное бюджетное учреждение "3 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации Method for determination of radial velocity of object by samples of range squares
US20220357443A1 (en) * 2021-05-07 2022-11-10 Hyundai Mobis Co., Ltd. Vehicle control system for detecting object and method thereof
JP2022550762A (en) * 2019-10-31 2022-12-05 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング A method for tracking a remote target vehicle within a peripheral area of a motor vehicle using collision recognition means

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016445A1 (en) * 2004-08-10 2006-02-16 Murata Manufacturing Co., Ltd. Radar
JP2009168624A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Object speed detector
US20110037641A1 (en) * 2006-12-28 2011-02-17 Wolf Steffens Method for operating a radar and radar
WO2013069253A1 (en) * 2011-11-09 2013-05-16 パナソニック株式会社 Spread spectrum radar device and method for controlling same
JP2013257236A (en) * 2012-06-13 2013-12-26 Panasonic Corp Tracking radar device and tracking method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763843A (en) * 1993-08-30 1995-03-10 Toyota Motor Corp Vehicle mounted radar equipment
JP3764901B2 (en) 1999-11-16 2006-04-12 三菱電機株式会社 Image radar device
JP4376390B2 (en) 1999-12-16 2009-12-02 富士通株式会社 Method and apparatus for measuring frequency modulation characteristics of FM-CW radar
JP2010060465A (en) 2008-09-04 2010-03-18 Toyota Motor Corp Object detecting device
EP2814018A4 (en) 2012-02-10 2015-08-12 Toyota Motor Co Ltd Warning device
EP3176603B1 (en) * 2015-12-01 2020-04-29 Veoneer Sweden AB A vehicle radar system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016445A1 (en) * 2004-08-10 2006-02-16 Murata Manufacturing Co., Ltd. Radar
US20110037641A1 (en) * 2006-12-28 2011-02-17 Wolf Steffens Method for operating a radar and radar
JP2009168624A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Object speed detector
WO2013069253A1 (en) * 2011-11-09 2013-05-16 パナソニック株式会社 Spread spectrum radar device and method for controlling same
JP2013257236A (en) * 2012-06-13 2013-12-26 Panasonic Corp Tracking radar device and tracking method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022550762A (en) * 2019-10-31 2022-12-05 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング A method for tracking a remote target vehicle within a peripheral area of a motor vehicle using collision recognition means
JP7340097B2 (en) 2019-10-31 2023-09-06 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング A method for tracking a remote target vehicle within a peripheral area of a motor vehicle using collision recognition means
RU2781159C1 (en) * 2021-04-26 2022-10-06 Федеральное государственное бюджетное учреждение "3 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации Method for determination of radial velocity of object by samples of range squares
US20220357443A1 (en) * 2021-05-07 2022-11-10 Hyundai Mobis Co., Ltd. Vehicle control system for detecting object and method thereof
US12000927B2 (en) * 2021-05-07 2024-06-04 Hyundai Mobis Co., Ltd. Vehicle control system for detecting object and method thereof

Also Published As

Publication number Publication date
JP7203822B2 (en) 2023-01-13
DE112019000357T5 (en) 2020-10-01
JPWO2019181448A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
KR102099851B1 (en) Method of clustering targets detected by automotive radar system and apparatus for the same
CN111656217B (en) System and method for virtual aperture radar tracking
US11002849B2 (en) Driving lane detection device and driving lane detection method
JP3562408B2 (en) Radar device characteristic detecting device and recording medium
EP3104189B1 (en) Misalignment estimation for a vehicle radar system
US6896082B2 (en) Road surface detection apparatus and apparatus for detecting upward/downward axis displacement of vehicle-mounted radar
US6888494B2 (en) FMCW radar system
JP4992367B2 (en) Object detection apparatus, object detection method, and program executed by computer
CN111352110A (en) Method and apparatus for processing radar data
US10585188B2 (en) Broadside detection system and techniques for use in a vehicular radar
JP6714148B2 (en) Improved detection of target objects using automotive radar
KR20210048548A (en) How to detect an angle measurement error in a radar sensor
US8115668B2 (en) Object detecting apparatus for vehicle
JP6783860B2 (en) Vehicle radar system
US11914046B2 (en) Ego-velocity estimation using radar or LIDAR beam steering
WO2019181448A1 (en) Radar device
CN111796243A (en) Method for determining the detuning of a radar sensor
JP2014115119A (en) Object detector
JP3703756B2 (en) Radar equipment
US20040227662A1 (en) Object-detecting system for vehicle
US20240134035A1 (en) Method for estimating an intrinsic speed of a vehicle
JP3565862B2 (en) Measuring method of ground speed of a vehicle using radar using reflection of electromagnetic wave on road
US11262441B2 (en) Object detection apparatus, object detection method, and computer-readable recording medium
EP4253994A1 (en) Sensor calibration based on strings of detections
CN115144857A (en) Method and device for estimating number of detection targets, electronic equipment and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770637

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508133

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19770637

Country of ref document: EP

Kind code of ref document: A1