WO2019181432A1 - 手術支援システム、情報処理装置、及びプログラム - Google Patents

手術支援システム、情報処理装置、及びプログラム Download PDF

Info

Publication number
WO2019181432A1
WO2019181432A1 PCT/JP2019/008027 JP2019008027W WO2019181432A1 WO 2019181432 A1 WO2019181432 A1 WO 2019181432A1 JP 2019008027 W JP2019008027 W JP 2019008027W WO 2019181432 A1 WO2019181432 A1 WO 2019181432A1
Authority
WO
WIPO (PCT)
Prior art keywords
surgical
dangerous state
unit
support system
information
Prior art date
Application number
PCT/JP2019/008027
Other languages
English (en)
French (fr)
Inventor
上知郎 今野
中村 直人
雅貴 内田
伊藤 俊樹
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/979,886 priority Critical patent/US20210015432A1/en
Priority to CN201980018513.6A priority patent/CN111837195A/zh
Priority to EP19771206.0A priority patent/EP3770913A4/en
Priority to JP2020507482A priority patent/JPWO2019181432A1/ja
Publication of WO2019181432A1 publication Critical patent/WO2019181432A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02042Determining blood loss or bleeding, e.g. during a surgical procedure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/20ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H70/00ICT specially adapted for the handling or processing of medical references
    • G16H70/20ICT specially adapted for the handling or processing of medical references relating to practices or guidelines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1402Probes for open surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1412Blade
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • A61B2034/256User interfaces for surgical systems having a database of accessory information, e.g. including context sensitive help or scientific articles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/371Surgical systems with images on a monitor during operation with simultaneous use of two cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/05Surgical care
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present disclosure relates to a surgery support system, an information processing apparatus, and a program.
  • various cameras such as an endoscopic camera, an operative field camera, and a surgical field camera are used, and the surgical images obtained by these cameras are displayed and recorded during the operation.
  • the recorded surgical image is used, for example, for verification and confirmation of a post-surgery procedure for the purpose of improving the procedure, or used when a doctor makes a presentation or lecture at a conference.
  • Patent Document 1 also discloses a technique for automatically adding metadata and recording a surgical image at the time of imaging during surgery in order to improve the efficiency when editing the recorded surgical image later. It is disclosed.
  • a storage unit that stores a determiner obtained by learning a surgical image group, and an operation image as an input
  • the determiner A surgical operation support system is provided that includes a predicting unit that predicts the occurrence of a dangerous state using.
  • an information processing apparatus including a prediction unit that predicts occurrence of a dangerous state using a determiner.
  • the function of storing the determination device obtained by learning the surgical image group using the label information indicating the dangerous state during the operation as teacher data in the computer, and the surgical image as input is provided.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a surgery support system 1000 according to an embodiment of the present disclosure.
  • production of a dangerous state is estimated is shown.
  • It is a figure which shows the example of a display of an operation screen.
  • It is a block diagram which shows the structural example of the server 10 concerning the embodiment.
  • It is a flowchart figure which shows an example of the operation
  • a plurality of constituent elements having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numeral.
  • it is not necessary to particularly distinguish each of a plurality of constituent elements having substantially the same functional configuration only the same reference numerals are given.
  • Such surgical images cannot be said to be sufficiently utilized at present. Therefore, in the present disclosure, in order to effectively use the surgical image, a plurality of surgical images (also referred to as a surgical image group) are learned, and the occurrence of a dangerous state that can occur during the surgery using the determination device obtained by the learning is performed.
  • the dangerous state that may occur during surgery may include, for example, accidents and events that cause accidents.
  • various symptoms caused by bleeding, perforation, medical accidents, a state in which a large change in vital information occurs before and after medical treatment (treatment), a state in which a change in surgical procedure is required, and other medical practices Inconvenient symptoms that accompany this are collectively referred to as accidents.
  • teacher data for example, it is conceivable to use label information obtained by labeling each frame of a still image or each frame in a moving image.
  • label information is desirably prepared according to the required performance of the determiner.
  • the surgery support system according to the present embodiment automatically generates label information indicating a dangerous state during surgery that can be used as teacher data. Furthermore, the surgery support system according to the present embodiment obtains a determiner by learning a surgical image group using the generated label information as teacher data. The surgical operation support system according to the present embodiment can predict the occurrence of a dangerous state in real time from the surgical image input during the operation, using the determination device obtained in this way.
  • a configuration and an operation for realizing the above-described effects will be sequentially described.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a surgery support system 1000 according to an embodiment of the present disclosure.
  • the surgical operation support system 1000 according to the present embodiment includes surgical devices that exist in the communication network 5, the server 10, and the operating rooms 20A to 20C and can be used during the operation.
  • devices that can be used during surgery are collectively referred to as surgical devices, and not only medical devices but also devices that are not limited to medical applications (for example, general-purpose devices) are also referred to as surgical devices.
  • the communication network 5 is a wired or wireless transmission path for information transmitted from a device connected to the communication network 5.
  • the communication network 5 may include a public line network such as the Internet, a telephone line network, a satellite communication network, various LANs including the Ethernet (registered trademark), a WAN (Wide Area Network), and the like.
  • the communication network 5 may include a dedicated line network such as an IP-VPN (Internet Protocol-Virtual Private Network).
  • the server 10 is connected to each surgical device existing in the operating rooms 20A to 20C via the communication network 5.
  • the server 10 may exist in the operating rooms 20A to 20C, the hospital in which the operating rooms 20A to 20C exist, or may exist outside the hospital.
  • the server 10 receives and accumulates (records) surgical images (still images or moving images) from surgical devices existing in the operating rooms 20A to 20C. In addition, the server 10 obtains a determination device by learning the accumulated surgical image group. Furthermore, the server 10 uses the operation image received in real time as an input, and predicts the occurrence of a dangerous state using a determination unit obtained in advance. In addition, when the occurrence of a dangerous state is predicted, the server 10 outputs an alert to a surgical device that exists in the operating room from which the surgical image is acquired and functions as an output unit among the operating rooms 20A to 20C. . The detailed configuration of the server 10 will be described later with reference to FIG.
  • a surgical instrument existing in the operating rooms 20A to 20C includes a camera 201, a vital monitor 202, an encoder 203, a monitor 204, a speaker 205, a decoder 206, a lighting device 207, and an electric knife (energy device). 208 etc. are included.
  • the monitor 204, the speaker 205, the lighting device 207, and the electric knife 208 output an alert that warns that the occurrence of a dangerous state is predicted using image display, sound, light, and vibration. It can function as an output unit.
  • alerts through visual, auditory or tactile sensations can be issued to medical personnel such as surgeons and staff members in the operating room.
  • the surgical operation support system 1000 may include a surgical device such as a projector (an example of an output unit), a bipolar device, and a surgical robot. Further, in FIG. 1, only the surgical equipment existing in the operating room 20A is shown, but surgical equipment is also present in the operating room 20B and the operating room 20C.
  • the camera 201 outputs a surgical image obtained by imaging to the encoder 203.
  • the camera 201 can include, for example, an endoscopic camera, a surgical field camera, and a surgical field camera.
  • An endoscopic camera is inserted into a body cavity of a patient, for example, and acquires an image of a surgical site.
  • the surgical field camera acquires an image of the surgical site from the outside of the patient.
  • the operating field camera is provided on the ceiling of the operating room, for example, and acquires an image of the entire operating room.
  • the camera 201 may include other cameras, for example, an electronic microscope.
  • the vital monitor 202 displays an image (an example of a surgical image) in which vital information (for example, heart rate, respiration (number), blood pressure, body temperature) of a patient measured during surgery is visualized by a vital information measuring device (not shown). And output to the encoder 203.
  • vital information for example, heart rate, respiration (number), blood pressure, body temperature
  • the encoder 203 (live encoder) transmits a surgical image output during surgery from the camera 201 and the vital monitor 202 to the server 10 in real time.
  • the monitor 204 functions as an output unit, and displays (outputs) an image received by the decoder 206 from the server 10.
  • the image displayed on the monitor 204 may include a surgical image acquired by the camera 201 in the same operating room.
  • the image displayed on the monitor 204 may include an alert, for example, an image in which an alert is superimposed on a surgical image.
  • FIG. 2 shows an example of an image including an alert displayed on the monitor 204 when the occurrence of a dangerous state is predicted by the server 10.
  • An image V10 shown in FIG. 2 is an image displayed on the monitor 204, and includes an alert A10 that warns that the occurrence of bleeding (an example of a dangerous state) is predicted and the position where the occurrence is predicted. For example, it may be possible for a doctor to avoid the occurrence of bleeding by confirming the alert A10 shown in FIG. 2 and performing an operation after recognizing a place where bleeding is likely to occur.
  • the monitor 204 may display an operation screen for giving an instruction about image display or giving an instruction about the operation of the surgical instrument.
  • a touch panel may be provided on the display surface of the monitor 204 and may be operated by the user.
  • FIG. 3 is a diagram illustrating an example of an operation screen displayed on the monitor 204.
  • FIG. 3 shows, as an example, an operation screen displayed on the monitor 204 when the operating room 20A is provided with at least two monitors 204 as output destination devices.
  • the operation screen 5193 is provided with a transmission source selection area 5195, a preview area 5197, and a control area 5201.
  • a transmission source device provided in the surgery support system 1000 and a thumbnail screen representing display information of the transmission source device are displayed in association with each other.
  • the user can select display information to be displayed on the monitor 204 from any of the transmission source devices displayed in the transmission source selection area 5195.
  • a preview of the screen displayed on the two monitors 204 (Monitor 1 and Monitor 2), which are output destination devices, is displayed.
  • four images are displayed in PinP on one monitor 204.
  • the four images correspond to display information transmitted from the transmission source device selected in the transmission source selection area 5195.
  • the four images one is displayed as a relatively large main image, and the remaining three are displayed as a relatively small sub image.
  • the user can switch the main image and the sub image by appropriately selecting an area in which four images are displayed.
  • a status display area 5199 is provided below the area where the four images are displayed, and the status relating to the surgery (for example, the elapsed time of the surgery, the patient's physical information, etc.) is appropriately displayed in the area. obtain.
  • a GUI (Graphical User Interface) part for displaying a GUI (Graphical User Interface) part for operating the source apparatus and a GUI part for operating the output destination apparatus are displayed.
  • the transmission source operation area 5203 is provided with GUI parts for performing various operations (panning, tilting, and zooming) on the camera in the transmission source device having an imaging function. The user can operate the operation of the camera in the transmission source device by appropriately selecting these GUI components.
  • the transmission source device selected in the transmission source selection area 5195 is a recorder (that is, in the preview area 5197, images recorded in the past are displayed on the recorder).
  • a GUI component for performing operations such as playback, stop playback, rewind, and fast forward of the image can be provided in the transmission source operation area 5203.
  • GUI parts for performing various operations are provided. Is provided. The user can operate the display on the monitor 204 by appropriately selecting these GUI components.
  • the operation screen displayed on the monitor 204 is not limited to the illustrated example, and the user may be able to input an operation to each device provided in the surgery support system 1000 via the monitor 204.
  • the speaker 205 functions as an output unit, and outputs the audio received by the decoder 206 from the server 10. For example, when the occurrence of a dangerous state is predicted by the server 10, the speaker 205 outputs a sound (an example of an alert) that warns that the occurrence of the dangerous state is predicted.
  • the decoder 206 receives the image and the sound from the server 10 and outputs them to the monitor 204 and the speaker 205, respectively.
  • the lighting device 207 is a lighting device used in an operating room such as a surgical light.
  • the lighting device 207 according to the present embodiment is connected to the server 10 via the communication network 5 as shown in FIG.
  • the lighting device 207 according to the present embodiment functions as an output unit, and outputs an alert that warns that the occurrence of a dangerous state is predicted according to the control signal received from the server 10.
  • the lighting device 207 may output an alert by outputting light of a predetermined color or changing the lighting pattern from normal.
  • the electric knife 208 is a surgical tool used for surgery, and can stop hemostasis at the same time as the separation by passing a high-frequency current through the human body, for example.
  • the electric knife 208 according to the present embodiment is connected to the server 10 via the communication network 5 as shown in FIG.
  • the electric knife 208 according to the present embodiment functions as an output unit, and outputs an alert that warns that the occurrence of a dangerous state is predicted according to the control signal received from the server 10.
  • the electric knife 208 may output an alert by vibrating the handle portion.
  • an alert for warning that the occurrence of the dangerous state is predicted is output.
  • the occurrence of a dangerous state can be avoided, for example, when the surgeon cancels an action that leads to a medical accident or performs an operation after recognizing a place that is likely to bleed.
  • FIG. 4 is a block diagram illustrating a configuration example of the server 10 according to the present embodiment.
  • the server 10 is an information processing apparatus that includes a control unit 110, a communication unit 130, and a storage unit 150.
  • the control unit 110 functions as an arithmetic processing unit and a control unit, and controls the overall operation in the server 10 according to various programs. Further, the control unit 110 functions as a communication control unit 111, an information acquisition unit 112, a classification unit 113, a teacher data generation unit 114, a learning unit 115, a prediction unit 116, and an alert control unit 117 as shown in FIG.
  • the communication control unit 111 controls communication with other devices by the communication unit 130. For example, the communication control unit 111 controls the communication unit 130 to receive a surgical image from the encoder 203 illustrated in FIG. In addition, the communication control unit 111 controls the communication unit 130 in accordance with an instruction from the information acquisition unit 112 to be described later to receive surgical attribute information. Further, the communication control unit 111 controls the communication unit 130 in accordance with an instruction from the alert control unit 117 described later, and displays an image, sound, control signal, and the like for outputting the above-described alert in the operating room 20A shown in FIG. It is transmitted to the surgical equipment existing at ⁇ 20C.
  • the information acquisition unit 112 acquires (collects) surgical attribute information (meta information) corresponding to the surgical image received from the encoder 203.
  • the information acquisition unit 112 outputs an instruction for acquiring the surgical attribute information to the communication control unit 111, and the communication control unit 111 controls the communication unit 130 according to the instruction to receive the surgical attribute information received from the communication control unit 111. You can get from.
  • the information acquisition unit 112 acquires, for example, surgical attribute information from not only the surgical equipment included in the operating rooms 20A to 20C shown in FIG. Is associated. Below, the example of the surgery attribute information which the information acquisition part 112 acquires is demonstrated.
  • the surgical attribute information may include patient information such as the age, sex, race, and condition of the patient, for example.
  • Patient information can be acquired from, for example, HIS (Hospital Information System), EMR (Electronic Medical Record, also referred to as electronic medical record), and the like.
  • HIS Hospital Information System
  • EMR Electronic Medical Record, also referred to as electronic medical record
  • the surgical attribute information may include doctor identification information, a doctor name, a doctor's department, a doctor's home university, and other doctor information.
  • the doctor information can be acquired from, for example, a RIS (Radiology Information System), a surgery planning system, an anesthesia system, or a doctor information site on the Internet.
  • RIS Radiology Information System
  • surgical attribute information includes surgical procedure name (eg, esophagectomy, total gastrectomy, small intestine malignant tumor surgery, partial hepatic resection, pancreatic tail resection, lobectomy, TAPVR fistula operation, craniotomy hematoma removal procedure), procedure procedure
  • surgical procedure name eg, esophagectomy, total gastrectomy, small intestine malignant tumor surgery, partial hepatic resection, pancreatic tail resection, lobectomy, TAPVR fistula operation, craniotomy hematoma removal procedure
  • procedure procedure may include technique information related to techniques such as time allocation of procedure procedures.
  • the surgical procedure information can be acquired from, for example, an RIS, a surgical procedure database in a hospital, or a surgical procedure information site on the Internet.
  • the surgical attribute information may include surgical equipment information indicating the state of the surgical equipment such as the electric knife 208 and the surgical robot (for example, usage status and status).
  • surgical equipment information indicating the state of the surgical equipment such as the electric knife 208 and the surgical robot (for example, usage status and status).
  • the state of the joints of the arms constituting the robot and the posture of the arms may be included in the surgical equipment information.
  • the status of the ON / OFF operation may be included in the surgical instrument information.
  • the surgical instrument information can be acquired from each surgical instrument existing in the operating rooms 20A to 20C.
  • the surgery attribute information acquired by the information acquisition unit 112 is associated with the surgery image and output to the classification unit 113 and the teacher data generation unit 114.
  • the classification unit 113 classifies surgical images based on the surgical attribute information. For example, the classification unit 113 may classify the surgical image for each surgical procedure based on the surgical procedure information included in the surgical attribute information.
  • the operation image classification method by the classification unit 113 is not limited to such an example, and more various classifications can be performed based on various information included in the operation attribute information.
  • the classification unit 113 outputs the classified surgical image and information related to the classification of the surgical image to the teacher data generation unit 114 described later.
  • the teacher data generation unit 114 can more efficiently generate label information serving as teacher data for each surgical image classified by the classification unit 113.
  • the classification unit 113 also stores a plurality of surgical image groups obtained by classifying a plurality of surgical images (still images or moving images) and information on the classification of the plurality of surgical image groups, which will be described later. Output to.
  • the learning unit 115 can perform learning for each surgical image group classified by the classification unit 113, and the performance of the determination device obtained by improving the learning efficiency is improved.
  • a plurality of surgical image groups classified by the classification unit 113 may be stored in the storage unit 150.
  • the classification unit 113 outputs the classified surgical image and information regarding the classification of the surgical image to the prediction unit 116 described later.
  • the prediction unit 116 can select a determination device based on the classification of the surgical image and perform prediction, and the prediction accuracy is improved.
  • the teacher data generation unit 114 generates label information indicating a dangerous state during the operation based on the surgical image classified by the classification unit 113 and the surgical attribute information acquired by the information acquisition unit 112.
  • the label information generated by the teacher data generation unit 114 is used as teacher data by the learning unit 115 described later.
  • the teacher data generation unit 114 may generate the label information by performing bleeding detection for detecting bleeding, detection of rework for detecting a return due to a medical accident, detection of hemostasis for detecting the execution of hemostasis, and the like.
  • label information indicating bleeding an example of a dangerous state
  • label information indicating a medical accident an example of a dangerous state
  • a frame corresponding to the medical accident that caused the rework is detected. It may be added.
  • label information indicating bleeding an example of a dangerous state
  • the frame in which the execution of hemostasis is detected (or the frame during the bleeding, if detectable) ).
  • the teacher data generation unit 114 may detect bleeding by detecting feature quantities such as red and liquid from an operation image by image recognition.
  • the teacher data generation unit 114 may perform return detection by detecting a scene change, for example. Detection of a scene change can be performed by a method of detecting a change in a pattern from a surgical image, a method of detecting insertion / removal of an endoscope from a surgical image, or a method of detecting from a change in a surgical instrument recognized in the surgical image.
  • the surgical equipment information acquired by the information acquisition unit 112 may be used for scene change detection.
  • the surgical instrument information the usage status and status change of the electric knife 208 and bipolar, the status of the surgical robot, the change of the forceps in use, and the like can be used.
  • the technique information acquired by the information acquisition unit 112 may be used for detecting a scene change.
  • the time distribution information of the procedure procedure for each surgical procedure can be used as the surgical procedure information.
  • the information may differ depending on whether the patient is an adult or a child, or the degree of obesity, etc., using the patient information acquired by the information acquisition unit 112, the time distribution of the surgical procedure can be used properly, It may be corrected.
  • the teacher data generation unit 114 determines that a manual return has occurred when the difference between the time distribution of the procedure included in the surgical procedure information and the time distribution of the procedure estimated from the surgical equipment information is large. May be. In addition, the teacher data generation unit 114 determines a frame in which a difference has started to occur between the time distribution of the procedure included in the surgical procedure information and the time distribution of the procedure estimated from the surgical equipment information. You may detect as a flame
  • the teacher data generation unit 114 detects that hemostasis is performed by detecting the characteristics of a surgical instrument for hemostasis that has been learned in advance (for example, a needle and thread for ligation, an electric knife 208, and the like). May be. For example, when the electric knife 208 is in the coagulation mode, it can be detected that hemostasis is being performed.
  • a surgical instrument for hemostasis for example, a needle and thread for ligation, an electric knife 208, and the like.
  • the method by which the teacher data generation unit 114 generates label information indicating a dangerous state during surgery is not limited to the above-described example.
  • the teacher data generation unit 114 determines that a medical accident has occurred and detects a medical accident when it is detected that more doctors are included (collected) than usual in the surgical image. Label information may be generated.
  • the learning unit 115 learns the surgical image group classified by the classification unit 113 using the label information generated by the teacher data generation unit 114 as teacher data, and generates (obtains) a determiner (learned model). .
  • the learning method by the learning unit 115 is not particularly limited. For example, learning data in which label information and a surgical image group are linked is prepared, and the learning data is input to a calculation model based on a multilayer neural network to learn. May be. Further, for example, a technique based on DNN (Deep Neural Network) such as CNN (Convolutional Neural Network), 3D-CNN, RNN (Recurrent Neural Network), or the like may be used.
  • DNN Deep Neural Network
  • CNN Convolutional Neural Network
  • 3D-CNN 3D-CNN
  • RNN Recurrent Neural Network
  • the determinator generated by the learning unit 115 is used by the prediction unit 116 described later in order to predict the occurrence of a dangerous state. Therefore, the learning unit 115 learns the surgical image of the frame before the frame to which the label information indicating the dangerous state is added in the surgical image group as the surgical image that leads to the occurrence of the dangerous state. With this configuration, the determiner generated by the learning unit 115 can be used to predict the occurrence of a dangerous state before the dangerous state occurs.
  • the learning unit 115 may generate a plurality of determiners. As described above, since the classification unit 113 can classify a plurality of surgical images into a plurality of surgical image groups, the learning unit 115 may generate a determiner for each classified surgical image group. That is, the same number of determiners as the number of surgical image groups classified by the classification unit 113 may be generated.
  • the plurality of determiners generated by the learning unit 115 are stored in the storage unit 150 in association with information related to the classification of the surgical image group used to generate each determiner.
  • the prediction unit 116 receives the surgical image (still image or moving image) classified by the classification unit 113 and predicts the occurrence of a dangerous state using the determination device stored in the storage unit 150.
  • the storage unit 150 stores a plurality of determiners. Therefore, the prediction unit 116 may select a determination device used for prediction based on the classification of the surgical image by the classification unit 113 from the plurality of determination devices stored in the storage unit 150.
  • a determination device more suitable for the current operation can be selected, and the prediction accuracy of the dangerous state can be improved.
  • the selection of such a determiner may be performed for each frame, or may be performed only at the start of surgery and the same determiner may be used during the surgery.
  • the prediction unit 116 determines the type of the dangerous state (bleeding, perforation, medical accident, etc.), the risk level of the dangerous state, the position where the occurrence of the dangerous state is predicted, and the like.
  • the information related to prediction (hereinafter referred to as prediction information) is generated. Further, the prediction unit 116 provides the generated prediction information to the alert control unit 117 when the occurrence of a dangerous state is predicted.
  • the alert control unit 117 outputs an alert based on the prediction information provided from the prediction unit 116 when the prediction unit 116 predicts the occurrence of a dangerous state. As described above, the alert exists in the operating room where a dangerous state is predicted to occur, and operates as an output unit (in the example illustrated in FIG. 1, the monitor 204, the speaker 205, the lighting device 207, and the electrical device). Output by knife 20). The alert control unit 117 may output an alert by generating an image, sound, and a control signal for the output of these output units to be output to the communication control unit 111.
  • the alert control unit 117 may output different alerts according to the prediction information. Further, the alert control unit 117 may cause the output unit (surgical device) corresponding to the prediction information to output an alert.
  • the alert control unit 117 may output an alert including the risk type information.
  • the alert control unit 117 may generate an image obtained by combining an alert indicating information on the type of dangerous state with a surgical image and display the generated image on the monitor 204.
  • the alert control unit 117 may cause the speaker 205 to output a sound including information on the type of dangerous state.
  • the alert control part 117 may change the color of the light output to the illuminating device 207 according to the classification of a dangerous state. Further, the alert control unit 117 may change the vibration pattern of the electric knife 208 in accordance with the type of dangerous state.
  • the alert control unit 117 may output an alert corresponding to the risk level of the dangerous state. For example, when the degree of risk is high, the alert control unit 117 may generate an image obtained by synthesizing a more conspicuous alert with the surgical image and display the image on the monitor 204 as compared with the case where the degree of risk is low. The alert control unit 117 may change the display size and color of the alert. Further, the alert control unit 117 may increase the volume of the alert output from the speaker 205 when the degree of danger is high, compared to when the degree of danger is low.
  • the alert control unit 117 may increase the light intensity output to the lighting device 207 when the danger level of the dangerous state is high compared to when the danger level is low. Further, the alert control unit 117 may increase the vibration intensity of the electric knife 208 when the danger level of the dangerous state is high compared to when the danger level is low.
  • the alert control unit 117 when the predicted information includes information on a position where the occurrence of the dangerous state is predicted, the alert control unit 117 generates an image including an alert indicating the position where the occurrence of the dangerous state is predicted, and the monitor 204 May be displayed. Further, the alert control unit 117 may control a projector (not shown) so that the alert is projected to a position where occurrence of a dangerous state is predicted.
  • the communication unit 130 is a communication module for transmitting and receiving data to and from other devices by wire / wireless under the control of the communication control unit 111.
  • the communication unit 130 can be an external device such as a wired LAN (Local Area Network), wireless LAN, Wi-Fi (Wireless Fidelity, registered trademark), infrared communication, Bluetooth (registered trademark), short-range / non-contact communication, etc. Wirelessly or directly with a network access point.
  • the storage unit 150 stores a program and parameters for each component of the server 10 to function. For example, the storage unit 150 stores information regarding a plurality of surgical image groups classified by the classification unit 113 and classification of the plurality of surgical image groups. The storage unit 150 also stores a plurality of determiners generated by the learning unit 115. As described above, since the determiner is generated for each classified surgical image group, the storage unit 150 associates the determiner with information related to the classification of the surgical image group of the determiner. Remembered.
  • FIG. 5 is a flowchart showing an example of the operation of the surgery support system 1000 for learning. Note that the process shown in FIG. 5 may be performed in advance before the process related to the prediction of the dangerous state described later with reference to FIG.
  • the information acquisition unit 112 acquires operation attribute information (S101).
  • the communication unit 130 receives (acquires) a surgical image from the encoder 203 (S103). Note that the processing in step S101 and step S103 may be performed in parallel.
  • the classification unit 113 classifies the surgical image acquired in step S103 based on the surgical attribute information acquired in step S101 (S105).
  • the teacher data generation unit 114 generates label information serving as teacher data based on the surgical attribute information acquired in step S101 and the surgical image classified in step S105 (S107).
  • the learning unit 115 uses the label information generated in step S107 as teacher data, performs learning for each surgical image group classified in step S105, generates a determiner (S109), and the storage unit 150. (S110).
  • FIG. 6 is a flowchart showing an example of the operation of the surgery support system 1000 according to the prediction of the dangerous state. The process illustrated in FIG. 6 is performed after the process described with reference to FIG. 5 is performed and the determiner is stored in the storage unit 150, for example.
  • the information acquisition unit 112 acquires operation attribute information (S201). Further, the communication unit 130 receives (acquires) a surgical image from the encoder 203 (S203). Note that the processing of step S201 and step S203 may be performed in parallel.
  • the classification unit 113 classifies the surgical image acquired in step S203 based on the surgical attribute information acquired in step S201 (S205). Subsequently, based on the classification performed in step S207, the prediction unit 116 selects a determiner to be used for prediction from the plurality of determiners stored in the storage unit 150 (S207).
  • the predicting unit 116 uses the determiner selected in step S207 to predict the occurrence of a dangerous state using the surgical image acquired in step S203 as an input (S209).
  • step S209 if the occurrence of the dangerous state is not predicted (NO in S211), the communication unit 130 receives (acquires) the surgical image from the encoder 203 again (S213). Then, the process returns to step S209, and the occurrence of the dangerous state is predicted using the operation image acquired in step S213 as an input.
  • an output unit such as the monitor 204, the speaker 205, the lighting device 207, or the electric knife 208 is controlled according to the control of the alert control unit 117. Outputs an alert (S211).
  • a function related to learning such as the teacher data generation unit 114 and the learning unit 115 and a function related to prediction of occurrence of a dangerous state such as the prediction unit 116 and the alert control unit 117 are provided in different devices. Also good. And the determination device obtained by learning may be provided from the device that performs learning to the device that performs prediction.
  • the above-described prediction function is performed by the camera 201, the vital monitor 202, the encoder 203, the monitor 204, the speaker 205, the decoder 206, the lighting device 207, or the electric knife 208 that exist in the operating rooms 20A to 20C shown in FIG. It may be provided in a surgical instrument such as.
  • the server 10 may not generate an image displayed on the monitor 204 as an alert.
  • the monitor 204 directly receives and displays a surgical image acquired by the camera 201 in the same surgery, and further synthesizes the alert and the surgical image when a control signal related to the alert is received from the server 10.
  • the generated image may be generated and displayed.
  • FIG. 7 is a block diagram illustrating an example of a hardware configuration of the server 10 according to the embodiment of the present disclosure. Information processing by the server 10 according to the embodiment of the present disclosure is realized by cooperation between software and hardware described below.
  • the server 10 includes a CPU (Central Processing Unit) 901, a ROM (Read Only Memory) 902, a RAM (Random Access Memory) 903, and a host bus 904a. Further, the server 10 includes a bridge 904, an external bus 904 b, an interface 905, an input device 906, an output device 907, a storage device 908, a drive 909, a connection port 911, and a communication device 913.
  • the server 10 may have a processing circuit such as a DSP or an ASIC in place of or in addition to the CPU 901.
  • the CPU 901 functions as an arithmetic processing unit and a control unit, and controls the overall operation in the server 10 according to various programs. Further, the CPU 901 may be a microprocessor.
  • the ROM 902 stores programs used by the CPU 901, calculation parameters, and the like.
  • the RAM 903 temporarily stores programs used in the execution of the CPU 901, parameters that change as appropriate during the execution, and the like.
  • the CPU 901 may form the control unit 110, for example.
  • the CPU 901, ROM 902, and RAM 903 are connected to each other by a host bus 904a including a CPU bus.
  • the host bus 904 a is connected to an external bus 904 b such as a PCI (Peripheral Component Interconnect / Interface) bus via a bridge 904.
  • an external bus 904 b such as a PCI (Peripheral Component Interconnect / Interface) bus
  • PCI Peripheral Component Interconnect / Interface
  • the host bus 904a, the bridge 904, and the external bus 904b do not necessarily have to be configured separately, and these functions may be mounted on one bus.
  • the input device 906 is realized by a device in which information is input by the user, such as a mouse, a keyboard, a touch panel, a button, a microphone, a switch, and a lever.
  • the input device 906 may be, for example, a remote control device using infrared rays or other radio waves, or may be an external connection device such as a mobile phone or a PDA that supports the operation of the server 10.
  • the input device 906 may include, for example, an input control circuit that generates an input signal based on information input by the user using the above-described input means and outputs the input signal to the CPU 901.
  • the user of the server 10 can input various data and instruct processing operations to the server 10 by operating the input device 906.
  • the output device 907 is formed of a device that can notify the user of the acquired information visually or audibly. Examples of such devices include CRT display devices, liquid crystal display devices, plasma display devices, EL display devices, display devices such as lamps, audio output devices such as speakers and headphones, printer devices, and the like.
  • the output device 907 outputs results obtained by various processes performed by the server 10. Specifically, the display device visually displays the results obtained by various processes performed by the server 10 in various formats such as text, images, tables, and graphs.
  • the audio output device converts an audio signal composed of reproduced audio data, acoustic data, and the like into an analog signal and outputs it aurally.
  • the storage device 908 is a data storage device formed as an example of a storage unit of the server 10.
  • the storage apparatus 908 is realized by, for example, a magnetic storage device such as an HDD, a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
  • the storage device 908 may include a storage medium, a recording device that records data on the storage medium, a reading device that reads data from the storage medium, a deletion device that deletes data recorded on the storage medium, and the like.
  • the storage device 908 stores programs executed by the CPU 901, various data, various data acquired from the outside, and the like.
  • the storage apparatus 908 can form the storage unit 150, for example.
  • the drive 909 is a reader / writer for the storage medium, and is built in or externally attached to the server 10.
  • the drive 909 reads information recorded on a removable storage medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, and outputs the information to the RAM 903.
  • the drive 909 can also write information to a removable storage medium.
  • connection port 911 is an interface connected to an external device, and is a connection port with an external device capable of transmitting data by USB (Universal Serial Bus), for example.
  • USB Universal Serial Bus
  • the communication device 913 is a communication interface formed by a communication device or the like for connecting to the network 920, for example.
  • the communication device 913 is, for example, a communication card for wired or wireless LAN (Local Area Network), LTE (Long Term Evolution), Bluetooth (registered trademark), or WUSB (Wireless USB).
  • the communication device 913 may be a router for optical communication, a router for ADSL (Asymmetric Digital Subscriber Line), a modem for various communication, or the like.
  • the communication device 913 can transmit and receive signals and the like according to a predetermined protocol such as TCP / IP, for example, with the Internet and other communication devices.
  • the communication device 913 can form the communication unit 130, for example.
  • the network 920 is a wired or wireless transmission path for information transmitted from a device connected to the network 920.
  • the network 920 may include a public line network such as the Internet, a telephone line network, and a satellite communication network, various LANs including the Ethernet (registered trademark), a wide area network (WAN), and the like.
  • the network 920 may include a dedicated line network such as an IP-VPN (Internet Protocol-Virtual Private Network).
  • IP-VPN Internet Protocol-Virtual Private Network
  • each of the above components may be realized using a general-purpose member, or may be realized by hardware specialized for the function of each component. Therefore, it is possible to appropriately change the hardware configuration to be used according to the technical level at the time of implementing the embodiment of the present disclosure.
  • a computer program for realizing each function of the server 10 according to the embodiment of the present disclosure as described above can be produced and mounted on a PC or the like.
  • a computer-readable recording medium storing such a computer program can be provided.
  • the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like.
  • the above computer program may be distributed via a network, for example, without using a recording medium.
  • the degree of invasiveness to the patient is reduced and the operation time is shortened.
  • the patient's QoL will improve and the patient's satisfaction will improve, leading to increased customer attraction as a hospital.
  • the profitability of the hospital will be improved by improving the use efficiency of the operating room.
  • the risk of accidents will be reduced and the tension of the doctor will be eased, the satisfaction of the doctor at the workplace will be further improved, the employee will be prevented from leaving work, and the labor cost will be reduced.
  • each step in the above embodiment does not necessarily have to be processed in time series in the order described as a flowchart.
  • each step in the processing of the above embodiment may be processed in an order different from the order described as the flowchart diagram or may be processed in parallel.
  • a storage unit for storing a determination device obtained by learning a surgical image group, using label information indicating a dangerous state during surgery as teacher data, With a surgical image as an input, using the determination device, a prediction unit that predicts the occurrence of a dangerous state, Surgery support system comprising (2) The storage unit stores a plurality of the determiners, The said support part is a surgery assistance system as described in said (1) which performs the said prediction using the said determination device according to the said surgery image among the said several determination devices. (3) The operation support system according to (2), wherein the determination unit used for the prediction is selected based on a classification of the operation image.
  • the surgical operation system according to (3) wherein the surgical image is classified based on surgical procedure information related to a surgical procedure.
  • the teacher data generation unit generates the label information by performing at least one of bleeding detection for detecting bleeding, hand return detection for detecting hand return, and hemostasis detection for detecting execution of hemostasis.
  • the operation support system according to one item.
  • the prediction unit generates prediction information for prediction when the occurrence of the dangerous state is predicted, The operation support system according to (8), wherein the output unit outputs the alert according to the prediction information.
  • the surgery support system includes a plurality of the output units, The surgery support system according to (9), wherein the alert is output by the output unit corresponding to the prediction information among the plurality of output units.
  • the prediction information includes at least one of the following information: (9) or The surgery support system according to (10).
  • An information processing apparatus comprising: (15) On the computer, A function for storing a discriminator obtained by learning a surgical image group, using label information indicating a dangerous state during surgery as teacher data, A function for predicting the occurrence of a dangerous state using the operation image as an input, A program to realize

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Artificial Intelligence (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Business, Economics & Management (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Robotics (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Business, Economics & Management (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Evolutionary Computation (AREA)
  • Databases & Information Systems (AREA)
  • Optics & Photonics (AREA)
  • Strategic Management (AREA)
  • Data Mining & Analysis (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Cardiology (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Bioethics (AREA)

Abstract

【課題】手術支援システム、情報処理装置、及びプログラムを提供する。 【解決手段】手術中の危険状態を示すラベル情報を教師データとして用いて、手術画像群を学習して得られた判定器を記憶する記憶部と、手術画像を入力とし、前記判定器を用いて、危険状態の発生の予測を行う予測部と、を備える手術支援システム。

Description

手術支援システム、情報処理装置、及びプログラム
 本開示は、手術支援システム、情報処理装置、及びプログラムに関する。
 手術室では、内視鏡カメラや術野カメラ、術場カメラ等の様々なカメラが用いられており、これらのカメラの撮像により得られた手術画像は、手術中に表示されるとともに、記録されることもある。記録された手術画像は、例えば手技の向上等を目的として手術後の手技の検証・確認に用いられたり、医師が学会発表や講義を行う際に用いられたりしている。
 また、下記特許文献1には、記録された手術画像を後から編集する際の効率を向上させるため、手術中の撮像時に、メタデータを自動的に付加して、手術画像を記録する技術も開示されている。
特開2016-42982号公報
 しかし、このような手術画像は、現状では十分に有効活用されているとは言えず、手術画像のさらなる活用が望まれていた。
 本開示によれば、手術中の危険状態を示すラベル情報を教師データとして用いて、手術画像群を学習して得られた判定器を記憶する記憶部と、手術画像を入力とし、前記判定器を用いて、危険状態の発生の予測を行う予測部と、を備える手術支援システムが提供される。
 また、本開示によれば、手術中の危険状態を示すラベル情報を教師データとして用いて、手術画像群を学習して得られた判定器を記憶する記憶部と、手術画像を入力とし、前記判定器を用いて、危険状態の発生の予測を行う予測部と、を備える情報処理装置が提供される。
 また、本開示によれば、コンピュータに、手術中の危険状態を示すラベル情報を教師データとして用いて、手術画像群を学習して得られた判定器を記憶する機能と、手術画像を入力とし、前記判定器を用いて、危険状態の発生の予測を行う機能と、を実現させるためのプログラムが提供される。
 以上説明したように本開示によれば、手術画像を活用して、危険状態の発生を予測することが可能となる。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の一実施形態による手術支援システム1000の概略構成を示すブロック図である。 危険状態の発生が予測された場合に表示されるアラートを含む画像の例を示す。 操作画面の表示例を示す図である。 同実施形態にかかるサーバ10の構成例を示すブロック図である。 学習にかかる動作の一例を示すフローチャート図である。 危険状態の予測にかかる動作の一例を示すフローチャート図である。 ハードウェア構成例を示す説明図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。
 なお、説明は以下の順序で行うものとする。
 <<1.背景>>
 <<2.構成>>
  <2-1.手術支援システム全体の構成>
  <2-2.サーバの構成>
 <<3.動作>>
 <<4.変形例>>
  <4-1.変形例1>
  <4-2.変形例2>
  <4-3.変形例3>
 <<5.ハードウェア構成例>>
 <<6.むすび>>
 <<1.背景>>
 本開示の一実施形態について説明する前に、まず、本開示の一実施形態の創作に至った背景について説明する。手術室では、内視鏡カメラや術野カメラ、術場カメラ等の様々なカメラが用いられている。このようなカメラの撮像により手術中に得られた手術画像は、手術中に表示されるとともに、記録されることもある。なお、本明細書において、静止画像と動画像とを区別する必要がない場合には単に画像と呼ぶことがある。また、本明細書において手術画像という表現は、手術中に得られた静止画像、あるいは手術中に得られた動画像を含む表現として用いられる。
 このような手術画像は、現状では十分に有効活用されているとは言えない。そこで、本開示では、手術画像を有効活用するため、複数の手術画像(手術画像群とも呼ぶ)を学習し、かかる学習により得られた判定器を用いて手術中に発生し得る危険状態の発生を自動的に予測する仕組みを提案する。手術中に発生し得る危険状態とは、例えば偶発症、及び偶発症を生じさせる事象を含んでもよい。なお、本明細書において、出血、穿孔、医療事故により生じる様々な症状、医療行為(処置)の前後で大きなバイタル情報の変化が発生した状態、手術手順の変更を要求される状態、その他医療行為に伴って生じる不都合な症状を総称して偶発症と呼ぶ。
 ところで、このような学習を行う機械学習技術において、より高精度な判定器を得るためには、適切な教師データを用いて学習を行うことが望ましい。このような教師データとして、例えば静止画像の各々、あるいは動画像における各フレームに対してラベル付けを行って得られたラベル情報を用いることが考えられる。このようなラベル情報は、求める判定器の性能に応じて用意されることが望ましい。
 しかし、このようなラベル付けを人手で行うことは人的コストが大きく、特に手術画像群に含まれる手術画像が動画像である場合や、多数である場合には、非常に困難であった。また、人手、あるいは自動的な手法により、手術画像の分類やメタ情報の付加が行われている場合もあるが、上述したような判定器を学習により得るための教師データとして利用可能な、適切なラベル情報が用意されているわけではなかった。
 そこで、上記事情を一着眼点にして本実施形態を創作するに至った。本実施形態による手術支援システムは、教師データとして利用可能な、手術中の危険状態を示すラベル情報を自動的に生成する。さらに、本実施形態による手術支援システムは、生成されたラベル情報は教師データとして用いて手術画像群を学習することにより、判定器を得る。そして、本実施形態による手術支援システムは、このようにして得られた判定器を用いて、手術中に入力される手術画像から、危険状態の発生をリアルタイムに予測することが可能である。以下、本実施形態において、上記の効果を実現するための構成、及び動作を順次説明する。
 <<2.構成>>
  <2-1.手術支援システム全体の構成>
 図1は、本開示の一実施形態による手術支援システム1000の概略構成を示すブロック図である。本実施形態による手術支援システム1000は、通信網5、サーバ10、及び手術室20A~20Cに存在し、手術中に用いられ得る手術機器を含む。なお、本明細書では、手術中に用いられ得る機器を総称して手術機器と呼び、医療用途の機器だけでなく、医療用途に限定されない(例えば汎用の)機器も手術機器と呼ばれる。
 通信網5は、通信網5に接続されている装置から送信される情報の有線、または無線の伝送路である。例えば、通信網5は、インターネット、電話回線網、衛星通信網などの公衆回線網や、Ethernet(登録商標)を含む各種のLAN(Local Area Network)、WAN(Wide Area Network)などを含んでもよい。また、通信網5は、IP-VPN(Internet Protocol-Virtual Private Network)などの専用回線網を含んでもよい。
 サーバ10は、通信網5を介して手術室20A~20Cに存在する各手術機器と接続されている。サーバ10は、手術室20A~20C内や手術室20A~20Cが存在する病院内に存在してもよいし、病院外に存在してもよい。
 サーバ10は、手術室20A~20Cに存在する手術機器から手術画像(静止画像、あるいは動画像)を受信し、蓄積(記録)する。また、サーバ10は、蓄積された手術画像群を学習することで判定器を得る。さらに、サーバ10は、リアルタイムに受信した手術画像を入力として、事前に得られた判定器を用いて、危険状態の発生を予測する。また、サーバ10は、危険状態の発生が予測された場合、手術室20A~20Cのうち、当該手術画像が取得された手術室に存在し、出力部として機能する手術機器に、アラートを出力させる。なお、サーバ10の詳細な構成については、図4を参照して後述する。
 手術室20A~20Cに存在する手術機器は、例えば図1に示すように、カメラ201、バイタルモニタ202、エンコーダ203、モニタ204、スピーカ205、デコーダ206、照明機器207、及び電気メス(エナジーデバイス)208等を含む。これらの手術機器の内、モニタ204、スピーカ205、照明機器207、及び電気メス208は、危険状態の発生が予測されたことを警告するアラートを画像表示や音、光や振動を用いて出力する出力部として機能し得る。これにより、執刀医や手術室内のスタッフメンバーなど医療従事者に対して視覚、聴覚または触覚を通じたアラートを出すことができる。なお、図1に示した手術機器は一例であって、他の手術機器が手術支援システム1000に含まれてもよい。例えば、プロジェクタ(出力部の一例)、バイポーラ、手術ロボット等の手術機器が手術支援システム1000に含まれてもよい。また、図1では、手術室20Aに存在する手術機器のみが示されているが、手術室20B、及び手術室20Cにも、同様に手術機器が存在する。
 カメラ201は、撮像により得られた手術画像をエンコーダ203へ出力する。カメラ201は、例えば内視鏡カメラ、術野カメラ、術場カメラを含み得る。内視鏡カメラは、例えば患者の体腔内に挿入され術部の画像を取得する。また、術野カメラは、患者の外部から術部の画像を取得する。また、術場カメラは、例えば手術室の天井に設けられ、手術室全体の画像を取得する。なお、カメラ201は他のカメラを含んでもよく、例えば、電子顕微鏡等を含んでもよい。
 バイタルモニタ202は、不図示のバイタル情報計測機器等により、手術中に計測された患者のバイタル情報(例えば心拍数・呼吸(数)・血圧・体温)を可視化した画像(手術画像の一例)を、エンコーダ203へ出力する。
 エンコーダ203(ライブエンコーダ)は、カメラ201、及びバイタルモニタ202から手術中に出力された手術画像をサーバ10へリアルタイムに送信する。
 モニタ204は、出力部として機能し、デコーダ206がサーバ10から受信した画像を表示(出力)する。モニタ204が表示する画像は、同一手術室内のカメラ201により取得された手術画像を含んでもよい。また、サーバ10により危険状態の発生が予測された場合、モニタ204が表示する画像は、アラートを含んでよく、例えば手術画像にアラートが重畳された画像であってもよい。
 図2は、サーバ10により危険状態の発生が予測された場合にモニタ204に表示されるアラートを含む画像の例を示す。図2に示す画像V10はモニタ204に表示される画像であり、出血(危険状態の一例)の発生が予測されたこと及びその発生が予測される位置を警告するアラートA10を含んでいる。例えば医師が図2に示すアラートA10を確認し、出血しそうな箇所を認識した上で手術を行うことにより、出血の発生を回避することが可能となり得る。
 また、モニタ204は、画像表示についての指示を与えたり、手術機器の動作についての指示を与えたりするための操作画面を表示してもよい。かかる場合、モニタ204の表示面上にタッチパネルが設けられてユーザによる操作が可能であってもよい。
 図3は、モニタ204に表示される操作画面の例を示す図である。図3では、一例として、手術室20Aに、出力先の装置として、少なくとも2つのモニタ204が設けられている場合に、モニタ204に表示される操作画面を示している。図3を参照すると、操作画面5193には、発信元選択領域5195と、プレビュー領域5197と、コントロール領域5201と、が設けられる。
 発信元選択領域5195には、手術支援システム1000に備えられる発信元装置と、当該発信元装置が有する表示情報を表すサムネイル画面と、が紐付けられて表示される。ユーザは、モニタ204に表示させたい表示情報を、発信元選択領域5195に表示されているいずれかの発信元装置から選択することができる。
 プレビュー領域5197には、出力先の装置である2つのモニタ204(Monitor1、Monitor2)に表示される画面のプレビューが表示される。図示する例では、1つのモニタ204において4つの画像がPinP表示されている。当該4つの画像は、発信元選択領域5195において選択された発信元装置から発信された表示情報に対応するものである。4つの画像のうち、1つはメイン画像として比較的大きく表示され、残りの3つはサブ画像として比較的小さく表示される。ユーザは、4つの画像が表示された領域を適宜選択することにより、メイン画像とサブ画像を入れ替えることができる。また、4つの画像が表示される領域の下部には、ステータス表示領域5199が設けられており、当該領域に手術に関するステータス(例えば、手術の経過時間や、患者の身体情報等)が適宜表示され得る。
 コントロール領域5201には、発信元の装置に対して操作を行うためのGUI(Graphical User Interface)部品が表示される発信元操作領域5203と、出力先の装置に対して操作を行うためのGUI部品が表示される出力先操作領域5205と、が設けられる。図示する例では、発信元操作領域5203には、撮像機能を有する発信元の装置におけるカメラに対して各種の操作(パン、チルト及びズーム)を行うためのGUI部品が設けられている。ユーザは、これらのGUI部品を適宜選択することにより、発信元の装置におけるカメラの動作を操作することができる。なお、図示は省略しているが、発信元選択領域5195において選択されている発信元の装置がレコーダである場合(すなわち、プレビュー領域5197において、レコーダに過去に記録された画像が表示されている場合)には、発信元操作領域5203には、当該画像の再生、再生停止、巻き戻し、早送り等の操作を行うためのGUI部品が設けられ得る。
 また、出力先操作領域5205には、出力先の装置であるモニタ204における表示に対する各種の操作(スワップ、フリップ、色調整、コントラスト調整、2D表示と3D表示の切り替え)を行うためのGUI部品が設けられている。ユーザは、これらのGUI部品を適宜選択することにより、モニタ204における表示を操作することができる。
 なお、モニタ204に表示される操作画面は図示する例に限定されず、ユーザは、モニタ204を介して、手術支援システム1000に備えられる各装置に対する操作入力が可能であってよい。
 スピーカ205は、出力部として機能し、デコーダ206がサーバ10から受信した音声を出力する。例えば、サーバ10により危険状態の発生が予測された場合、スピーカ205は、危険状態の発生が予測されたことを警告する音声(アラートの一例)を出力する。
 デコーダ206は、サーバ10から画像、及び音声を受信し、それぞれモニタ204、及びスピーカ205へ出力する。
 照明機器207は、例えば無影灯等の手術室内で用いられる照明機器である。本実施形態にかかる照明機器207は、図1に示すように通信網5を介してサーバ10と接続される。また、本実施形態にかかる照明機器207は、出力部として機能し、サーバ10から受信した制御信号に従って、危険状態の発生が予測されたことを警告するアラートを出力する。例えば、照明機器207は、所定の色の光を出力したり、点灯パターンを通常とは異ならせることで、アラートを出力してもよい。
 電気メス208は、手術に使用される手術道具であり、例えば人体に高周波電流を流すことで、切離と同時に止血することが可能である。また、本実施形態にかかる電気メス208は、図1に示すように通信網5を介してサーバ10と接続される。そして、本実施形態にかかる電気メス208は、出力部として機能し、サーバ10から受信した制御信号に従って、危険状態の発生が予測されたことを警告するアラートを出力する。例えば、電気メス208は、ハンドル部を振動させることにより、アラートを出力してもよい。
 以上説明したように、サーバ10により危険状態の発生が予測された場合、危険状態の発生が予測されたことを警告するアラートが出力される。その結果、例えば執刀医が医療事故につながるアクションを取りやめたり、出血しそうな箇所を認識した上で手術を行うことにより、危険状態の発生が回避され得る。
  <2-2.サーバの構成>
 以上、本実施形態による手術支援システム1000の構成について説明した。続いて、図1に示したサーバ10のより詳細な構成について、図4を参照して説明を行う。図4は、本実施形態にかかるサーバ10の構成例を示すブロック図である。図4に示すように、サーバ10は、制御部110、通信部130、及び記憶部150を備える情報処理装置である。
 制御部110は、演算処理装置および制御装置として機能し、各種プログラムに従ってサーバ10内の動作全般を制御する。また、制御部110は、図4に示すように通信制御部111、情報取得部112、分類部113、教師データ生成部114、学習部115、予測部116、及びアラート制御部117として機能する。
 通信制御部111は、通信部130による他の装置との通信を制御する。例えば、通信制御部111は、通信部130を制御して、図1に示したエンコーダ203から手術画像を受信させる。また、通信制御部111は、後述する情報取得部112の指示に従い、通信部130を制御して、手術属性情報を受信させる。また、通信制御部111は、後述するアラート制御部117の指示に従い、通信部130を制御して、上述したアラートを出力させるための画像、音声、制御信号等を図1に示した手術室20A~20Cに存在する手術機器へ送信させる。
 情報取得部112は、エンコーダ203から受信した手術画像に対応する手術属性情報(メタ情報)を取得(収集)する。情報取得部112は、手術属性情報を取得するための指示を通信制御部111へ出力し、通信制御部111が当該指示に従って通信部130を制御することで受信した手術属性情報を通信制御部111から取得し得る。
 情報取得部112は、例えば、図1に示した手術室20A~20Cに含まれる手術機器だけでなく、不図示の病院内外のデータベースやシステム等から、手術属性情報を取得し、各手術画像との対応付けを行う。以下では、情報取得部112が取得する手術属性情報の例について説明する。
 手術属性情報は、例えば患者の年齢、性別、人種、容体等の患者情報を含んでもよい。患者情報は、例えばHIS(Hospital Information System)、やEMR (Electronic Medical Record、電子カルテともいう)等から取得され得る。
 また、手術属性情報は、医師の識別情報、医師名、医師の所属医局、医師の出身大学等の医師情報を含んでもよい。医師情報は、例えばRIS(Radiology Information System、オーダーシステムともいう)、手術計画システム、麻酔器システム、またはインターネット上の医師情報サイト等から取得され得る。
 また、手術属性情報は、術式名(例えば食道切除術・胃全摘術・小腸悪性腫瘍手術・肝部分切除・膵体尾部切除・肺葉切除術・TAPVR 手術・開頭血腫除去術等)、手技手順、手技手順の時間配分等の術式に関する術式情報を含んでもよい。術式情報は、例えばRIS、病院内の術式データベース、またはインターネット上の術式情報サイト等から取得され得る。
 また、手術属性情報は、電気メス208や手術ロボット等の手術機器の状態(例えば、利用状況やステータス等)を示す手術機器情報を含んでもよい。例えば、手術ロボットであれば、ロボットを構成するアームの関節部の状態やアームの姿勢なども手術機器情報に含んでもよい。電気メスの場合は、ON/OFF操作の状況などが手術機器情報に含まれてもよい。手術機器情報は、手術室20A~20Cに存在する各手術機器から取得され得る。
 情報取得部112により取得された手術属性情報は、手術画像に対応付けられ、分類部113、教師データ生成部114へ出力される。
 分類部113は、手術属性情報に基づいて、手術画像を分類する。分類部113は、例えば手術属性情報に含まれる術式情報に基づいて、術式ごとに手術画像を分類してもよい。ただし、分類部113による手術画像の分類方法はかかる例に限定されず、手術属性情報に含まれる様々な情報に基づいて、より多様な分類を行うことが可能である。
 分類部113は、分類した手術画像と、当該手術画像の分類に関する情報を、後述する教師データ生成部114へ出力する。かかる構成により、教師データ生成部114は、分類部113により分類された手術画像ごとに教師データとなるラベル情報をより効率的に生成することが可能となる。
 また、分類部113は、複数の手術画像(静止画像、あるいは動画像)を分類して得られた複数の手術画像群、及び当該複数の手術画像群の分類に関する情報を、後述する学習部115へ出力する。かかる構成により、学習部115は、分類部113により分類された手術画像群ごとに学習を行うことが可能であり、学習の効率が向上して得られる判定器の性能が向上する。なお、分類部113により分類された複数の手術画像群は記憶部150に記憶されてもよい。
 また、分類部113は、分類した手術画像と、当該手術画像の分類に関する情報を、後述する予測部116へ出力する。かかる構成により、予測部116は手術画像の分類に基づく判定器を選択して予測を行うことが可能であり、予測精度が向上する。
 教師データ生成部114は、分類部113により分類された手術画像と、情報取得部112により取得された手術属性情報とに基づいて、手術中の危険状態を示すラベル情報を生成する。教師データ生成部114により生成されるラベル情報は、後述する学習部115により教師データとして用いられる。
 例えば教師データ生成部114は、出血を検出する出血検出、医療事故による手戻りを検出する手戻り検出、止血の実施を検出する止血検出等を行うことで、ラベル情報を生成してもよい。例えば、出血が検出された場合、出血(危険状態の一例)を示すラベル情報が生成され、出血が検出されたフレームに対して付加されてもよい。また、手戻りが検出された場合、医療事故(危険状態の一例)を示すラベル情報が生成され、手戻りが検出されたフレーム、あるいは手戻りの原因となる医療事故に対応するフレームに対して付加されてもよい。また、止血の実施が検出された場合、出血(危険状態の一例)を示すラベル情報が生成され、止血の実施が検出されたフレーム(あるいは検出可能な場合には、出血している間のフレーム)に対して付加されてもよい。
 例えば、教師データ生成部114は、赤色、液体等の特徴量を手術画像から画像認識により検出することで、出血検出を行ってもよい。
 また、教師データ生成部114は、例えばシーンチェンジを検出することで、手戻り検出を行ってもよい。シーンチェンジの検出は絵柄の変化を手術画像から検出する方法や、内視鏡の抜き差しを手術画像から検出する方法、手術画像内で認識された手術器具の変化から検出する方法により行われ得る。
 また、情報取得部112が取得した手術機器情報がシーンチェンジの検出に用いられてもよい。例えば、手術機器情報として、電気メス208やバイポーラの利用状況やステータス変化、手術ロボットのステータスや使用中の鉗子の変化等が用いられ得る。
 また、情報取得部112が取得した術式情報がシーンチェンジの検出に用いられてもよい。例えば、術式情報として、術式ごとの手技手順の時間配分の情報が用いられ得る。なお、それらの情報は、患者が成人であるか子供であるか、あるいは肥満度等によって異なり得るため、情報取得部112が取得した患者情報を用いて、手術手順の時間配分が使い分けられたり、補正されてもよい。
 例えば教師データ生成部114は、術式情報に含まれる手技手順の時間配分と、手術機器情報から推定される手技手順の時間配分との差分が大きい場合に、手戻りが発生していると判定してもよい。また、教師データ生成部114は、術式情報に含まれる手技手順の時間配分と、手術機器情報から推定される手技手順の時間配分との間で差が発生し始めたフレームを、手戻りの原因となる医療事故に対応するフレームとして検出してもよい。
 また、教師データ生成部114は、事前に学習済みの止血用の手術器具(例えば結紮用の針と糸や電気メス208等)の特徴を検出することにより、止血が実施されていることを検出してもよい。例えば、電気メス208が凝固モードである場合には、止血が実施されていると検出することが可能である。
 なお、教師データ生成部114が、手術中の危険状態を示すラベル情報を生成する方法は上述した例に限定されない。例えば、教師データ生成部114は、手術画像中に、通常よりも多くの医師が含まれる(集まっている)ことが検出された場合に、医療事故が発生したと判定して、医療事故を示すラベル情報を生成してもよい。
 学習部115は、教師データ生成部114により生成されたラベル情報を教師データとして用いて、分類部113により分類された手術画像群を学習し、判定器(学習済モデル)を生成する(得る)。学習部115による学習の手法は特に限定されないが、例えば、ラベル情報と手術画像群とを紐づけた学習データを用意し、その学習データを多層ニューラルネットワークに基づいた計算モデルに入力して学習してもよい。また、例えばCNN(Convolutional Neural Network)、3D-CNN、RNN(Recurrent Neural Network)等のDNN(Deep Neural Network)に基づく手法が用いられてもよい。
 学習部115により生成される判定器は、危険状態の発生の予測を行うために後述する予測部116により用いられる。そのため、学習部115は、手術画像群のうち、危険状態を示すラベル情報が付加されているフレームよりも前のフレームの手術画像を、危険状態の発生につながる手術画像として学習する。かかる構成により、学習部115により生成される判定器は、危険状態が発生する前に危険状態の発生を予測するために用いることが可能となる。
 学習部115は、複数の判定器を生成してもよい。上述したように、分類部113は、複数の手術画像を複数の手術画像群に分類し得るため、学習部115は、分類された手術画像群ごとに、判定器を生成してもよい。つまり、分類部113により分類された手術画像群の数と同一数の判定器が生成されてもよい。
 学習部115により生成された複数の判定器は、各判定器の生成に用いられた手術画像群の分類に関する情報と対応付けられて記憶部150に記憶される。
 予測部116は、分類部113により分類された手術画像(静止画像、あるいは動画像)を入力とし、記憶部150に記憶された判定器を用いて、危険状態の発生の予測を行う。
 上述したように、記憶部150には、複数の判定器が記憶されている。そこで、予測部116は、記憶部150に記憶された複数の判定器の中から、分類部113による手術画像の分類に基づいて、予測に用いる判定器を選択してもよい。
 かかる構成により、現在の手術により適した判定器が選択され、危険状態の予測精度が向上し得る。なお、かかる判定器の選択は、フレームごとに行われてもよいし、手術の開始時にのみ行われて当該手術の間は同一の判定器が用いられてもよい。
 また、予測部116は、危険状態の発生が予測された場合、当該危険状態の種別(出血、穿孔、医療事故等)、当該危険状態の危険度、当該危険状態の発生が予測される位置等の、予測にかかる情報(以下、予測情報と呼ぶ)を生成する。また、予測部116は、危険状態の発生が予測された場合に、生成した予測情報を、アラート制御部117へ提供する。
 アラート制御部117は、予測部116により危険状態の発生が予測された場合に、予測部116から提供される予測情報に基づいて、アラートを出力させる。上述したように、アラートは、危険状態が発生すると予測された手術室に存在し、出力部として機能する手術機器(図1に示した例では、モニタ204、スピーカ205、照明機器207、及び電気メス20)により出力される。アラート制御部117は、これらの出力部がアラートを出力するための画像や音声、制御信号を生成し、通信制御部111に提供することにより、アラートを出力させてもよい。
 アラート制御部117は、予測情報に応じて異なるアラートを出力させてもよい。また、アラート制御部117は、予測情報に応じた出力部(手術機器)にアラートを出力させてもよい。
 例えば、予測情報に、危険状態の種別の情報が含まれる場合、アラート制御部117は、危険状態の種別の情報を含むアラートを出力させてもよい。例えば、アラート制御部117は、危険状態の種別の情報を示すアラートを、手術画像に合成した画像を生成して、モニタ204に表示させてもよい。また、アラート制御部117は、スピーカ205から危険状態の種別の情報を含む音声を出力させてもよい。また、アラート制御部117は、危険状態の種別に応じて、照明機器207に出力させる光の色を異ならせてもよい。また、アラート制御部117は、危険状態の種別に応じて、電気メス208の振動パターンを異ならせてもよい。
 かかる構成により、執刀医は、発生が予測された危険状態の種別を把握することが可能となり、より危険状態を回避し易くなる。
 また、予測情報に、危険状態の危険度の情報が含まれる場合、アラート制御部117は、危険状態の危険度に応じたアラートを出力させてもよい。例えば、アラート制御部117は、危険度が高い場合に、危険度が低い場合と比べて、より目立つアラートを、手術画像に合成した画像を生成して、モニタ204に表示させてもよい。また、アラート制御部117は、アラートの表示サイズや色を変更してもよい。また、アラート制御部117は、危険度が高い場合に、危険度が低い場合と比べて、スピーカ205から出力されるアラートの音量を大きくしてもよい。また、アラート制御部117は、危険状態の危険度が高い場合に、危険度が低い場合と比べて、照明機器207に出力される光強度を大きくしてもよい。また、アラート制御部117は、危険状態の危険度が高い場合に、危険度が低い場合と比べて、電気メス208の振動強度を大きくしてもよい。
 かかる構成により、例えば発生が予測された危険状態の危険度がより高い場合に執刀医へより強く注意を促すことが可能となる。
 また、予測情報に、危険状態の発生が予測される位置の情報が含まれる場合、アラート制御部117は、危険状態の発生が予測される位置を示すアラートを含む画像を生成して、モニタ204に表示させてもよい。また、アラート制御部117は、危険状態の発生が予測される位置へアラートがプロジェクションされるように、プロジェクタ(不図示)を制御してもよい。
 かかる構成により、執刀医は、危険状態の発生が予測される位置を把握することが可能となり、より危険状態を回避し易くなる。
 以上、アラート制御部117が出力させるアラートの例について説明したが、本技術はかかる例に限定されるものではなく、上記以外のアラートの出力が行われてもよい。
 通信部130は、通信制御部111の制御に従い、有線/無線により他の装置との間でデータの送受信を行うための通信モジュールである。通信部130は、例えば有線LAN(Local Area Network)、無線LAN、Wi-Fi(Wireless Fidelity、登録商標)、赤外線通信、Bluetooth(登録商標)、近距離/非接触通信等の方式で、外部機器と直接またはネットワークアクセスポイントを介して無線通信する。
 記憶部150は、サーバ10の各構成が機能するためのプログラムやパラメータを記憶する。例えば、記憶部150は、分類部113により分類された複数の手術画像群、及び当該複数の手術画像群の分類に関する情報を記憶する。また、記憶部150は、学習部115により生成された複数の判定器を記憶する。上述したように、判定器は、分類された手術画像群ごとに、生成されるため、記憶部150には、判定器と、当該判定器の手術画像群の分類に関する情報とが対応付けられて記憶される。
 <<3.動作>>
 以上、本実施形態にかかる手術支援システム1000、及びサーバ10の構成について説明した。続いて、本実施形態にかかる手術支援システム1000の動作例について説明する。なお、以下では、まず図5を参照して学習にかかる動作を説明した後、図6を参照して手術中に行われる危険状態の予測にかかる動作を説明する。
 図5は、学習にかかる手術支援システム1000の動作の一例を示すフローチャート図である。なお、図5に示す処理は、例えば図6を参照して後述する危険状態の予測にかかる処理よりも前に予め行われていてもよい。
 まず、情報取得部112が、手術属性情報を取得する(S101)。また、通信部130が、エンコーダ203から手術画像を受信(取得)する(S103)。なお、ステップS101とステップS103の処理は並列的に行われてもよい。
 続いて、分類部113が、ステップS101で取得された手術属性情報に基づいて、ステップS103で取得された手術画像を分類する(S105)。続いて、教師データ生成部114が、ステップS101で取得された手術属性情報とステップS105で分類された手術画像とに基づいて、教師データとなるラベル情報を生成する(S107)。
 続いて、学習部115が、ステップS107で生成されたラベル情報を教師データとして用い、ステップS105で分類された手術画像群ごとに学習を行って、判定器を生成し(S109)、記憶部150に記憶させる(S110)。
 以上、学習にかかる動作について説明した。続いて、手術中に行われる危険状態の予測にかかる動作を説明する。図6は、危険状態の予測にかかる手術支援システム1000の動作の一例を示すフローチャート図である。なお、図6に示す処理は、例えば図5を参照して説明した処理が行われて、判定器が記憶部150に記憶された後に行われる。
 まず、情報取得部112が、手術属性情報を取得する(S201)。また、通信部130が、エンコーダ203から手術画像を受信(取得)する(S203)。なお、ステップS201とステップS203の処理は並列的に行われてもよい。
 続いて、分類部113が、ステップS201で取得された手術属性情報に基づいて、ステップS203で取得された手術画像を分類する(S205)。続いて、予測部116が、ステップS207で行われた分類に基づいて、記憶部150に記憶された複数の判定器の中から、予測に用いる判定器を選択する(S207)。
 さらに、予測部116は、ステップS207で選択された判定器を用い、ステップS203で取得された手術画像を入力として危険状態の発生の予測を行う(S209)。
 ステップS209の予測の結果、危険状態の発生が予測されなかった場合(S211においてNO)、通信部130が、再度エンコーダ203から手術画像を受信(取得)する(S213)。そして、処理はステップS209に戻り、ステップS213で取得された手術画像を入力として危険状態の発生の予測が行われる。
 一方、ステップS209の予測の結果、危険状態の発生が予測された場合(S211においてYES)、アラート制御部117の制御に従って、モニタ204、スピーカ205、照明機器207、あるいは電気メス208等の出力部がアラートを出力する(S211)。
 <<4.変形例>>
 以上、本実施形態に係る構成例、及び動作例について説明した。以下では、本実施形態の変形例を説明する。なお、以下に説明する変形例は、単独で本実施形態に適用されてもよいし、組み合わせで本実施形態に適用されてもよい。また、本変形例は、本実施形態で説明した構成に代えて適用されてもよいし、本実施形態で説明した構成に対して追加的に適用されてもよい。
  <4-1.変形例1>
 上記実施形態で説明した図1、及び図4の構成は一例であって、本技術はかかる例に限定されない。例えば、上記実施形態で説明したサーバ10の機能のうち、一部、または全部の機能は、他の装置に備えられていてもよい。例えば、教師データ生成部114や学習部115等の学習にかかる機能と、予測部116、アラート制御部117等の危険状態の発生の予測にかかる機能とは、それぞれ別の装置に備えられていてもよい。そして、学習により得られた判定器が、学習を行う装置から、予測を行う装置へ提供されてもよい。
 また、上述した予測にかかる機能は、図1に示した手術室20A~20Cに存在するカメラ201、バイタルモニタ202、エンコーダ203、モニタ204、スピーカ205、デコーダ206、照明機器207、あるいは電気メス208等の手術機器に備えられていてもよい。
 また、アラートとしてモニタ204に表示される画像の生成は、サーバ10により行われなくてもよい。例えば、モニタ204は、同一手術内のカメラ201により取得された手術画像を直接的に受信して表示し、さらにサーバ10からアラートに関する制御信号等を受信した場合に、アラートと手術画像とを合成した画像を生成して表示してもよい。
  <4-2.変形例2>
 また、上記実施形態では、手術室に存在する手術機器から提供された手術画像から構成される手術画像群を学習に用いる例を説明したが、本技術はかかる例に限定されない。例えば、外部のデータベース等に記録された手術画像群や、対応する手術属性情報がサーバ10へ提供されて、学習に用いられてもよい。
  <4-3.変形例3>
 また、上記実施形態では、予め学習により判定器が生成され、その後に予測を行う例を説明したが、本技術はかかる例に限定されない。例えば、図6を参照して説明した予測の処理において取得される手術属性情報や手術画像が学習に用いられて、判定器が随時更新されてもよい。
 <<5.ハードウェア構成例>>
 以上、本開示の実施形態を説明した。最後に、図7を参照して、本開示の実施形態にかかる情報処理装置のハードウェア構成について説明する。図7は、本開示の実施形態にかかるサーバ10のハードウェア構成の一例を示すブロック図である。本開示の実施形態にかかるサーバ10による情報処理は、ソフトウェアと、以下に説明するハードウェアとの協働により実現される。
 図7に示すように、サーバ10は、CPU(Central Processing Unit)901、ROM(Read Only Memory)902、RAM(Random Access Memory)903及びホストバス904aを備える。また、サーバ10は、ブリッジ904、外部バス904b、インタフェース905、入力装置906、出力装置907、ストレージ装置908、ドライブ909、及び接続ポート911、通信装置913を備える。サーバ10は、CPU901に代えて、又はこれとともに、DSP若しくはASIC等の処理回路を有してもよい。
 CPU901は、演算処理装置および制御装置として機能し、各種プログラムに従ってサーバ10内の動作全般を制御する。また、CPU901は、マイクロプロセッサであってもよい。ROM902は、CPU901が使用するプログラムや演算パラメータ等を記憶する。RAM903は、CPU901の実行において使用するプログラムや、その実行において適宜変化するパラメータ等を一時記憶する。CPU901は、例えば、制御部110を形成し得る。
 CPU901、ROM902及びRAM903は、CPUバスなどを含むホストバス904aにより相互に接続されている。ホストバス904aは、ブリッジ904を介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バス904bに接続されている。なお、必ずしもホストバス904a、ブリッジ904および外部バス904bを分離構成する必要はなく、1つのバスにこれらの機能を実装してもよい。
 入力装置906は、例えば、マウス、キーボード、タッチパネル、ボタン、マイクロフォン、スイッチ及びレバー等、ユーザによって情報が入力される装置によって実現される。また、入力装置906は、例えば、赤外線やその他の電波を利用したリモートコントロール装置であってもよいし、サーバ10の操作に対応した携帯電話やPDA等の外部接続機器であってもよい。さらに、入力装置906は、例えば、上記の入力手段を用いてユーザにより入力された情報に基づいて入力信号を生成し、CPU901に出力する入力制御回路などを含んでいてもよい。サーバ10のユーザは、この入力装置906を操作することにより、サーバ10に対して各種のデータを入力したり処理動作を指示したりすることができる。
 出力装置907は、取得した情報をユーザに対して視覚的又は聴覚的に通知することが可能な装置で形成される。このような装置として、CRTディスプレイ装置、液晶ディスプレイ装置、プラズマディスプレイ装置、ELディスプレイ装置及びランプ等の表示装置や、スピーカ及びヘッドホン等の音声出力装置や、プリンタ装置等がある。出力装置907は、例えば、サーバ10が行った各種処理により得られた結果を出力する。具体的には、表示装置は、サーバ10が行った各種処理により得られた結果を、テキスト、イメージ、表、グラフ等、様々な形式で視覚的に表示する。他方、音声出力装置は、再生された音声データや音響データ等からなるオーディオ信号をアナログ信号に変換して聴覚的に出力する。
 ストレージ装置908は、サーバ10の記憶部の一例として形成されたデータ格納用の装置である。ストレージ装置908は、例えば、HDD等の磁気記憶部デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等により実現される。ストレージ装置908は、記憶媒体、記憶媒体にデータを記録する記録装置、記憶媒体からデータを読み出す読出し装置および記憶媒体に記録されたデータを削除する削除装置などを含んでもよい。このストレージ装置908は、CPU901が実行するプログラムや各種データ及び外部から取得した各種のデータ等を格納する。上記ストレージ装置908は、例えば、記憶部150を形成し得る。
 ドライブ909は、記憶媒体用リーダライタであり、サーバ10に内蔵、あるいは外付けされる。ドライブ909は、装着されている磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリ等のリムーバブル記憶媒体に記録されている情報を読み出して、RAM903に出力する。また、ドライブ909は、リムーバブル記憶媒体に情報を書き込むこともできる。
 接続ポート911は、外部機器と接続されるインタフェースであって、例えばUSB(Universal Serial Bus)などによりデータ伝送可能な外部機器との接続口である。
 通信装置913は、例えば、ネットワーク920に接続するための通信デバイス等で形成された通信インタフェースである。通信装置913は、例えば、有線若しくは無線LAN(Local Area Network)、LTE(Long Term Evolution)、Bluetooth(登録商標)又はWUSB(Wireless USB)用の通信カード等である。また、通信装置913は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ又は各種通信用のモデム等であってもよい。この通信装置913は、例えば、インターネットや他の通信機器との間で、例えばTCP/IP等の所定のプロトコルに則して信号等を送受信することができる。通信装置913は、例えば、通信部130を形成し得る。
 なお、ネットワーク920は、ネットワーク920に接続されている装置から送信される情報の有線、または無線の伝送路である。例えば、ネットワーク920は、インターネット、電話回線網、衛星通信網などの公衆回線網や、Ethernet(登録商標)を含む各種のLAN(Local Area Network)、WAN(Wide Area Network)などを含んでもよい。また、ネットワーク920は、IP-VPN(Internet Protocol-Virtual Private Network)などの専用回線網を含んでもよい。
 以上、本開示の実施形態にかかるサーバ10の機能を実現可能なハードウェア構成の一例を示した。上記の各構成要素は、汎用的な部材を用いて実現されていてもよいし、各構成要素の機能に特化したハードウェアにより実現されていてもよい。従って、本開示の実施形態を実施する時々の技術レベルに応じて、適宜、利用するハードウェア構成を変更することが可能である。
 なお、上述のような本開示の実施形態にかかるサーバ10の各機能を実現するためのコンピュータプログラムを作製し、PC等に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することができる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。
 <<6.むすび>>
 以上説明したように、本開示の実施形態によれば、手術画像を活用して、危険状態の発生を予測することが可能となる。さらに、危険状態の発生が予測された場合に、危険状態の発生前にアラートを出力することが可能であり、例えば執刀医が医療事故につながるアクションを取りやめたり、出血しそうな箇所を認識した上で手術を行ったりすることにより、危険状態の発生が回避され得る。
 その結果、患者に対する侵襲度が軽減され手術時間が短縮される。さらに、患者のQoLが向上するとともに患者の満足度が向上し病院としての集客アップにつながる。また、手術室の利用効率が向上することで病院の収益性がアップすることが期待される。また、偶発症発生のリスクが低減されることで医師の緊張感が緩和されると共に、より医師の職場回満足度がアップし離職が防げるとともに人件費を抑制できることが期待される。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 例えば、上記実施形態における各ステップは、必ずしもフローチャート図として記載された順序に沿って時系列に処理される必要はない。例えば、上記実施形態の処理における各ステップは、フローチャート図として記載した順序と異なる順序で処理されても、並列的に処理されてもよい。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示にかかる技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 手術中の危険状態を示すラベル情報を教師データとして用いて、手術画像群を学習して得られた判定器を記憶する記憶部と、
 手術画像を入力とし、前記判定器を用いて、危険状態の発生の予測を行う予測部と、
 を備える手術支援システム。
(2)
 前記記憶部は、複数の前記判定器を記憶し、
 前記予測部は、前記複数の前記判定器のうち、前記手術画像に応じた前記判定器を用いて、前記予測を行う、前記(1)に記載の手術支援システム。
(3)
 前記予測に用いられる前記判定器は、前記手術画像の分類に基づいて選択される、前記(2)に記載の手術支援システム。
(4)
 前記手術画像は、術式に関する術式情報に基づいて分類される、前記(3)に記載の手術支援システム。
(5)
 分類された前記手術画像群ごとに学習を行って、前記判定器を生成する学習部をさらに備える、前記(2)~(4)のいずれか一項に記載の手術支援システム。
(6)
 前記ラベル情報を生成する教師データ生成部をさらに備える、前記(5)に記載の手術支援システム。
(7)
 前記教師データ生成部は、出血を検出する出血検出、手戻りを検出する手戻り検出、止血の実施を検出する止血検出のうち、少なくともいずれか1つを行うことで、前記ラベル情報を生成する、前記(6)に記載の手術支援システム。
(8)
 前記予測部により前記危険状態の発生が予測された場合に、前記危険状態の発生が予測されたことを警告するアラートを出力する出力部をさらに備える、前記(1)~(7)のいずれか一項に記載の手術支援システム。
(9)
 前記予測部は、前記危険状態の発生が予測された場合に、予測にかかる予測情報を生成し、
 前記出力部は、前記予測情報に応じて前記アラートを出力する、前記(8)に記載の手術支援システム。
(10)
 前記手術支援システムは、複数の前記出力部を備え、
 前記複数の前記出力部のうち、前記予測情報に応じた前記出力部により前記アラートが出力される、前記(9)に記載の手術支援システム。
(11)
 前記予測情報は、発生が予測された前記危険状態の種別、当該危険状態の危険度、当該危険状態の発生が予測される位置のうち、少なくともいずれか一つの情報を含む、前記(9)または(10)に記載の手術支援システム。
(12)
 前記危険状態は、偶発症、または偶発症を生じさせる事象を含む、前記(1)~(11)のいずれか一項に記載の手術支援システム。
(13)
 前記手術画像群には複数の動画像が含まれ、前記手術画像は動画像である、前記(1)~(12)のいずれか一項に記載の手術支援システム。
(14)
 手術中の危険状態を示すラベル情報を教師データとして用いて、手術画像群を学習して得られた判定器を記憶する記憶部と、
 手術画像を入力とし、前記判定器を用いて、危険状態の発生の予測を行う予測部と、
 を備える情報処理装置。
(15)
 コンピュータに、
 手術中の危険状態を示すラベル情報を教師データとして用いて、手術画像群を学習して得られた判定器を記憶する機能と、
 手術画像を入力とし、前記判定器を用いて、危険状態の発生の予測を行う機能と、
 を実現させるためのプログラム。
 10 サーバ
 20A~20C 手術室
 110 制御部
 111 通信制御部
 112 情報取得部
 113 分類部
 114 教師データ生成部
 115 学習部
 116 予測部
 117 アラート制御部
 130 通信部
 150 記憶部
 201 カメラ
 202 バイタルモニタ
 203 エンコーダ
 204 モニタ
 205 スピーカ
 206 デコーダ
 207 照明機器
 208 電気メス
 1000 手術支援システム

Claims (15)

  1.  手術中の危険状態を示すラベル情報を教師データとして用いて、手術画像群を学習して得られた判定器を記憶する記憶部と、
     手術画像を入力とし、前記判定器を用いて、危険状態の発生の予測を行う予測部と、
     を備える手術支援システム。
  2.  前記記憶部は、複数の前記判定器を記憶し、
     前記予測部は、前記複数の前記判定器のうち、前記手術画像に応じた前記判定器を用いて、前記予測を行う、請求項1に記載の手術支援システム。
  3.  前記予測に用いられる前記判定器は、前記手術画像の分類に基づいて選択される、請求項2に記載の手術支援システム。
  4.  前記手術画像は、術式に関する術式情報に基づいて分類される、請求項3に記載の手術支援システム。
  5.  分類された前記手術画像群ごとに学習を行って、前記判定器を生成する学習部をさらに備える、請求項2に記載の手術支援システム。
  6.  前記ラベル情報を生成する教師データ生成部をさらに備える、請求項5に記載の手術支援システム。
  7.  前記教師データ生成部は、出血を検出する出血検出、手戻りを検出する手戻り検出、止血の実施を検出する止血検出のうち、少なくともいずれか1つを行うことで、前記ラベル情報を生成する、請求項6に記載の手術支援システム。
  8.  前記予測部により前記危険状態の発生が予測された場合に、前記危険状態の発生が予測されたことを警告するアラートを出力部に出力させるアラート制御部をさらに備える、請求項1に記載の手術支援システム。
  9.  前記予測部は、前記危険状態の発生が予測された場合に、予測にかかる予測情報を生成し、
     前記アラート制御部は、前記予測情報に応じて前記アラートを出力させる、請求項8に記載の手術支援システム。
  10.  前記手術支援システムは、複数の前記出力部を備え、
     前記複数の前記出力部のうち、前記予測情報に応じた前記出力部により前記アラートが出力される、請求項9に記載の手術支援システム。
  11.  前記予測情報は、発生が予測された前記危険状態の種別、当該危険状態の危険度、当該危険状態の発生が予測される位置のうち、少なくともいずれか一つの情報を含む、請求項9に記載の手術支援システム。
  12.  前記危険状態は、偶発症、または偶発症を生じさせる事象を含む、請求項1に記載の手術支援システム。
  13.  前記手術画像群には複数の動画像が含まれ、前記手術画像は動画像である、請求項1に記載の手術支援システム。
  14.  手術中の危険状態を示すラベル情報を教師データとして用いて、手術画像群を学習して得られた判定器を記憶する記憶部と、
     手術画像を入力とし、前記判定器を用いて、危険状態の発生の予測を行う予測部と、
     を備える情報処理装置。
  15.  コンピュータに、
     手術中の危険状態を示すラベル情報を教師データとして用いて、手術画像群を学習して得られた判定器を記憶する機能と、
     手術画像を入力とし、前記判定器を用いて、危険状態の発生の予測を行う機能と、
     を実現させるためのプログラム。
PCT/JP2019/008027 2018-03-20 2019-03-01 手術支援システム、情報処理装置、及びプログラム WO2019181432A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/979,886 US20210015432A1 (en) 2018-03-20 2019-03-01 Surgery support system, information processing apparatus, and program
CN201980018513.6A CN111837195A (zh) 2018-03-20 2019-03-01 手术支持系统、信息处理设备和程序
EP19771206.0A EP3770913A4 (en) 2018-03-20 2019-03-01 OPERATING ASSISTANCE SYSTEM, INFORMATION PROCESSING SYSTEM AND PROGRAM
JP2020507482A JPWO2019181432A1 (ja) 2018-03-20 2019-03-01 手術支援システム、情報処理装置、及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018052388 2018-03-20
JP2018-052388 2018-03-20

Publications (1)

Publication Number Publication Date
WO2019181432A1 true WO2019181432A1 (ja) 2019-09-26

Family

ID=67987115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008027 WO2019181432A1 (ja) 2018-03-20 2019-03-01 手術支援システム、情報処理装置、及びプログラム

Country Status (5)

Country Link
US (1) US20210015432A1 (ja)
EP (1) EP3770913A4 (ja)
JP (1) JPWO2019181432A1 (ja)
CN (1) CN111837195A (ja)
WO (1) WO2019181432A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021166208A1 (ja) * 2020-02-21 2021-08-26
WO2022030142A1 (ja) * 2020-08-04 2022-02-10 ソニーグループ株式会社 情報処理装置、プログラム、学習モデル及び学習モデルの生成方法
WO2022050227A1 (en) * 2020-09-01 2022-03-10 Sony Group Corporation Medical information control system, signal processing device, and medical information control method
KR20220055457A (ko) * 2020-04-10 2022-05-03 (주)휴톰 사용자 인터페이스 기반의 수술과정 분석 제공 방법 및 서버
JPWO2022250031A1 (ja) * 2021-05-24 2022-12-01
WO2023199923A1 (ja) * 2022-04-11 2023-10-19 アナウト株式会社 手術画像処理プラットフォーム及びコンピュータプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11896195B2 (en) * 2018-07-24 2024-02-13 Sony Corporation Distributed image processing system in operating theater
JP2021191320A (ja) * 2018-09-11 2021-12-16 ソニーグループ株式会社 手術支援システム、表示制御装置、および表示制御方法
CN113009870B (zh) * 2021-02-07 2022-03-08 中国人民解放军总医院第一医学中心 设备监控系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011193885A (ja) * 2010-03-17 2011-10-06 Fujifilm Corp 内視鏡観察を支援するシステムおよび方法、並びに、装置およびプログラム
WO2015020093A1 (ja) * 2013-08-08 2015-02-12 オリンパスメディカルシステムズ株式会社 手術画像観察装置
JP2015529489A (ja) * 2012-07-25 2015-10-08 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 手術用システムにおける効率的且つインタラクティブな出血検出
JP2016042982A (ja) 2014-08-21 2016-04-04 ソニー・オリンパスメディカルソリューションズ株式会社 医療用観察システム
US20160259888A1 (en) * 2015-03-02 2016-09-08 Sony Corporation Method and system for content management of video images of anatomical regions
WO2016195698A1 (en) * 2015-06-05 2016-12-08 Siemens Aktiengesellschaft Method and system for simultaneous scene parsing and model fusion for endoscopic and laparoscopic navigation
JP2017221486A (ja) * 2016-06-16 2017-12-21 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び医療用観察システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3204881B1 (en) * 2014-11-14 2021-05-26 Zoll Medical Corporation Medical premonitory event estimation
US11322248B2 (en) * 2015-03-26 2022-05-03 Surgical Safety Technologies Inc. Operating room black-box device, system, method and computer readable medium for event and error prediction
US11515030B2 (en) * 2016-06-23 2022-11-29 Siemens Healthcare Gmbh System and method for artificial agent based cognitive operating rooms
US9788907B1 (en) * 2017-02-28 2017-10-17 Kinosis Ltd. Automated provision of real-time custom procedural surgical guidance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011193885A (ja) * 2010-03-17 2011-10-06 Fujifilm Corp 内視鏡観察を支援するシステムおよび方法、並びに、装置およびプログラム
JP2015529489A (ja) * 2012-07-25 2015-10-08 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 手術用システムにおける効率的且つインタラクティブな出血検出
WO2015020093A1 (ja) * 2013-08-08 2015-02-12 オリンパスメディカルシステムズ株式会社 手術画像観察装置
JP2016042982A (ja) 2014-08-21 2016-04-04 ソニー・オリンパスメディカルソリューションズ株式会社 医療用観察システム
US20160259888A1 (en) * 2015-03-02 2016-09-08 Sony Corporation Method and system for content management of video images of anatomical regions
WO2016195698A1 (en) * 2015-06-05 2016-12-08 Siemens Aktiengesellschaft Method and system for simultaneous scene parsing and model fusion for endoscopic and laparoscopic navigation
JP2017221486A (ja) * 2016-06-16 2017-12-21 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び医療用観察システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3770913A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021166208A1 (ja) * 2020-02-21 2021-08-26
WO2021166208A1 (ja) * 2020-02-21 2021-08-26 オリンパス株式会社 画像処理システム、内視鏡システム及び画像処理方法
JP7376677B2 (ja) 2020-02-21 2023-11-08 オリンパス株式会社 画像処理システム、内視鏡システム及び内視鏡システムの作動方法
KR20220055457A (ko) * 2020-04-10 2022-05-03 (주)휴톰 사용자 인터페이스 기반의 수술과정 분석 제공 방법 및 서버
KR102628324B1 (ko) * 2020-04-10 2024-01-23 (주)휴톰 인공지능 기반의 사용자 인터페이스를 통한 수술 결과 분석 장치 및 그 방법
WO2022030142A1 (ja) * 2020-08-04 2022-02-10 ソニーグループ株式会社 情報処理装置、プログラム、学習モデル及び学習モデルの生成方法
WO2022050227A1 (en) * 2020-09-01 2022-03-10 Sony Group Corporation Medical information control system, signal processing device, and medical information control method
JPWO2022250031A1 (ja) * 2021-05-24 2022-12-01
JP7368922B2 (ja) 2021-05-24 2023-10-25 アナウト株式会社 情報処理装置、情報処理方法、及びコンピュータプログラム
JP7562193B2 (ja) 2021-05-24 2024-10-07 アナウト株式会社 情報処理装置、情報処理方法、及びコンピュータプログラム
WO2023199923A1 (ja) * 2022-04-11 2023-10-19 アナウト株式会社 手術画像処理プラットフォーム及びコンピュータプログラム

Also Published As

Publication number Publication date
EP3770913A1 (en) 2021-01-27
CN111837195A (zh) 2020-10-27
US20210015432A1 (en) 2021-01-21
JPWO2019181432A1 (ja) 2021-04-01
EP3770913A4 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
WO2019181432A1 (ja) 手術支援システム、情報処理装置、及びプログラム
WO2018163600A1 (ja) 医療情報管理装置、医療情報管理方法、及び医療情報管理システム
US12027250B2 (en) Medical information processing apparatus and information processing method
EP4231314A1 (en) Surgery support system, surgery support method, information processing apparatus, and information processing program
US20210158955A1 (en) Beacon-based systems and methods for managing access to application features associated with a medical session
WO2017187676A1 (ja) 制御装置、制御方法、プログラム及び音出力システム
WO2020054596A1 (ja) 病院システム、サーバ装置、およびスケジュール管理方法
US20060242096A1 (en) Medical operation system
US20220008161A1 (en) Information processing device, presentation method, and surgical system
US11483515B2 (en) Image recording and reproduction apparatus, image recording method, and endoscope system
JP2005135344A (ja) 医療情報システム
JPWO2019176399A1 (ja) 医療用情報処理装置、医療用情報処理方法および手術室ネットワークシステム
KR20190000107A (ko) 이벤트 인덱스를 통한 수술 영상 처리 방법 및 장치
WO2019225231A1 (ja) 手術用情報処理装置、情報処理方法及びプログラム
JP7451707B2 (ja) 制御装置、データログの表示方法及び医療用集中制御システム
KR102200884B1 (ko) 이벤트 인덱스를 통한 수술 영상 처리 방법 및 장치
US12027257B2 (en) Beacon-based systems and methods for generating medical facility metrics
EP4276777A1 (en) Object detection in an operating room
JP2007089759A (ja) 映像表示装置、及び映像表示プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507482

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019771206

Country of ref document: EP

Effective date: 20201020