WO2019181243A1 - Ultrasonic wave inspection method, ultrasonic wave inspection device, and high-pressure fuel supply pump manufacturing method using ultrasonic wave inspection method - Google Patents

Ultrasonic wave inspection method, ultrasonic wave inspection device, and high-pressure fuel supply pump manufacturing method using ultrasonic wave inspection method Download PDF

Info

Publication number
WO2019181243A1
WO2019181243A1 PCT/JP2019/003951 JP2019003951W WO2019181243A1 WO 2019181243 A1 WO2019181243 A1 WO 2019181243A1 JP 2019003951 W JP2019003951 W JP 2019003951W WO 2019181243 A1 WO2019181243 A1 WO 2019181243A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
wave
ultrasonic
transverse
longitudinal
Prior art date
Application number
PCT/JP2019/003951
Other languages
French (fr)
Japanese (ja)
Inventor
聡 北澤
菅波 正幸
伸也 中谷
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019181243A1 publication Critical patent/WO2019181243A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor

Definitions

  • the present invention relates to an ultrasonic inspection method and ultrasonic inspection apparatus for detecting defects in a laser weld with ultrasonic waves by laser irradiation, and a high-pressure fuel supply pump for manufacturing a high-pressure fuel supply pump using the ultrasonic inspection method. And methods.
  • Patent Document 1 Japanese Patent Laid-Open No. 2012-006078
  • Patent Document 2 Japanese Patent Laid-Open No. 2017-161441
  • Patent Document 1 discloses a welding system that detects a welding failure by a laser ultrasonic method. This welding system irradiates the surface of a welding target after welding with a welding mechanism, a transmission laser light source, and a transmission laser light generated by the transmission laser light source while moving with the welding mechanism with respect to the welding target.
  • an interferometer for interferometric measurement of the scattered / reflected laser beam (see summary).
  • the ultrasonic flaw detection method for welded joints in Patent Document 2 is an ultrasonic flaw detection method for flaws in welded joints using ultrasonic waves, including a creeping wave method, a longitudinal wave oblique angle method, a round trip method, The flaw detection is performed by a combination of at least two of the shear wave oblique angle methods (see summary).
  • Patent Document 2 describes that the following (a) to (f) are assumed as the types of defects, and whether or not detection is possible was verified.
  • Patent Document 1 shows welding in a butt joint, and does not consider welding in a lap joint in which two members are overlapped and welded from one side to two members.
  • Patent Document 2 considers welding of lap joints.
  • Patent Document 2 enables detection of different types of defects (above (a) to (f)) using longitudinal waves and transverse waves.
  • the defects (a) to (f) in Patent Document 2 exist above the boundary surface between the two members (the side on which welding is performed). That is, in Patent Document 1 and Patent Document 2, sufficient consideration is given to detecting a defect existing below the boundary surface between two members in a lap joint (on the side opposite to the side on which welding is performed). Absent.
  • Longitudinal and transverse waves used in the ultrasonic method are directional, and longitudinal and transverse waves are reflected at the interface between the two members, so that defects that occur inside narrow welds due to laser welding are eliminated. It is not easy to detect.
  • An object of the present invention is to make it possible to detect defects existing above and below the boundary surface of two members in a laser welded portion of a lap joint.
  • the present invention provides a laser beam for detecting defects in a laser welded portion in which laser welding is performed by irradiating a laser beam on the first member and the second member constituting the lap joint from the first member side. Detect with ultrasound by irradiation. Generate a transverse wave generation laser at a transverse laser generation laser irradiation position located on one side across the weld line, and generate a longitudinal wave located on the one side farther from the welding line than the transverse laser generation laser irradiation position. A laser for longitudinal wave is irradiated to the laser irradiation position.
  • the transverse wave receiving laser is irradiated to the transverse wave receiving laser irradiation position located on the other side across the welding line, and the longitudinal wave receiving is located on the other side farther from the welding line than the transverse wave receiving laser irradiation position.
  • a longitudinal wave receiving laser is irradiated to the laser irradiation position.
  • the transverse wave ultrasonic wave generated by the thermoelastic mode generated by the irradiation of the generation laser for the transverse wave is detected by the receiving laser for the transverse wave, and the ultrasonic wave generated by the thermoelastic mode generated by the irradiation of the generation laser for the longitudinal wave is detected by the reception laser for the longitudinal wave.
  • a defect at a position shallower than the boundary surface between the first member and the second member is detected by longitudinal wave ultrasonic waves, and a defect at a position deeper than the boundary surface is detected by transverse wave ultrasonic waves.
  • FIG. 1 is a conceptual diagram showing a process of detecting a defect De by a laser ultrasonic method.
  • the inspection target A is irradiated with the laser LaT to generate ultrasonic waves in the inspection target A.
  • the ultrasonic wave UT generated in the inspection object A is reflected by the defect De, and a displacement (surface displacement) Di is generated on the surface of the inspection object A.
  • the laser LaR is irradiated to the surface where the surface displacement Di is generated, the surface displacement Di is detected by the detector Det, and the defect De is detected.
  • the laser LaT that generates the ultrasonic UT in the inspection target A is referred to as a generation laser or a transmission laser.
  • the laser LaR that detects the surface displacement Di is called a reception laser or a detection laser.
  • a method for performing defect detection using a laser ultrasonic method is referred to as an ultrasonic inspection method
  • an apparatus for performing defect detection using a laser ultrasonic method is referred to as an ultrasonic inspection device.
  • the ultrasonic inspection method and the ultrasonic inspection apparatus detect the defect De of the welded portion We in laser welding. Examples of the defect (scratch) De of the welded portion We include a crack and a blow hole.
  • the welded portion We is a portion where the molten metal is solidified by welding.
  • a swell (weld bead) is formed on the surface side of the welded portion We. This weld bead may be removed.
  • FIG. 2 is a diagram showing a concept of an in-process inspection apparatus 1000 using the ultrasonic inspection apparatus 1 according to the present invention.
  • the ultrasonic inspection apparatus 1 of this embodiment constitutes an in-process inspection apparatus 1000 that works in conjunction with the laser welding apparatus 2. That is, the ultrasonic inspection apparatus 1 of this embodiment is applied to a manufacturing apparatus for the high-pressure fuel supply pump 100, and laser welding is performed on the high-pressure fuel supply pump 100 by the laser welding apparatus 2 while simultaneously performing laser welding by the ultrasonic inspection apparatus 1. A defect De generated in the portion We is detected. For this purpose, the ultrasonic inspection apparatus 1 and the laser welding apparatus 2 are arranged around the high-pressure fuel supply pump 100.
  • the laser welding device 2 is controlled by a control device 3 in the laser welding process.
  • the defect detection process (flaw detection process) is controlled by the control device 3.
  • the laser welding apparatus 2 and the ultrasonic inspection apparatus 1 are rotationally driven in the Ar direction around the rotation axis AR by the driving device 4.
  • the inspection target A is a welding target.
  • the object A to be welded is rotated around the rotation axis, and in accordance with this rotation, the laser welding apparatus 2 performs laser welding, and the ultrasonic inspection apparatus 1 performs non-contact inspection (flaw detection) using a laser ultrasonic method.
  • the laser welding part We is comprised as a welding line which comprises a linear form.
  • the high-pressure fuel supply pump 100 is described as an object to be welded (inspected object) A, but it may be a fuel injection valve or the like. Further, it is not always necessary to configure the in-process inspection apparatus, and welding and inspection may be performed separately, or the ultrasonic inspection apparatus 1 that performs only inspection may be configured. However, an in-process inspection apparatus is configured using the ultrasonic inspection apparatus 1 and inspection is performed while welding is performed. By re-welding when a defect is found, the occurrence of a defective product can be prevented in advance. Productivity can be improved.
  • FIG. 3 is a block diagram showing the configuration of an in-process inspection apparatus 1000 that combines the ultrasonic inspection apparatus 1 and the laser welding apparatus 2 according to the present invention.
  • the in-process inspection apparatus 1000 includes an ultrasonic inspection apparatus 1, a laser welding apparatus 2, and a control apparatus 3.
  • the laser welding apparatus 2 is a welding apparatus that performs laser welding on the high-pressure fuel supply pump 100 that is the workpiece (workpiece) A.
  • the laser welding apparatus 2 shows an example in which the pump body 101 and the damper cover 111 are welded.
  • the pump main body 101 and the damper cover 111 constitute a lap joint, and the laser LaW is irradiated from the damper cover 111 side.
  • the object A to be welded is rotated about the rotation axis AR. Therefore, the welded portion constitutes a weld line extending in the circumferential direction around the rotation axis AR.
  • the object A to be welded is rotated, but the laser welding apparatus 2 may be rotated around the rotation axis AR.
  • the ultrasonic inspection apparatus 1 is also rotated around the rotation axis AR. That is, the drive device 4 is configured to relatively displace (relatively move) the ultrasonic inspection device 1, the laser welding device 2, and the welding target A in the direction along the welding line We.
  • the ultrasonic inspection apparatus 1 As the welding apparatus, an apparatus using a welding method other than laser welding can be used.
  • the ultrasonic inspection apparatus 1 according to the present embodiment exhibits excellent flaw detection performance with respect to a welding method in which the welding depth is deeper than the line width of the welding line We, such as laser welding. It works more effectively as the welding depth becomes deeper than the width.
  • the ultrasonic inspection apparatus 1 includes a generation laser irradiation unit (first laser irradiation unit) 11 for irradiating a welding target (inspected target) A with a generation laser (first laser) LaT that generates ultrasonic waves, a surface A receiving laser irradiation unit (second laser irradiation unit) 12 for irradiating a receiving laser (second laser) LaR for detecting displacement Di, interferometer side units 13B and 13C, and a data recording / analyzing device 14 Prepare.
  • a generation laser irradiation unit (first laser irradiation unit) 11 for irradiating a welding target (inspected target) A with a generation laser (first laser) LaT that generates ultrasonic waves
  • second laser irradiation unit 12 for irradiating a receiving laser (second laser) LaR for detecting displacement Di
  • interferometer side units 13B and 13C for detecting displacement Di
  • data recording / analyzing device 14 Prepare.
  • the generation laser irradiation unit 11 includes a generation laser light source (first laser light source) 11A, a generation laser optical system for longitudinal waves (first laser optical system for longitudinal waves) 11B, and a generation laser optical system for transverse waves (first laser optical for transverse waves).
  • System 11C.
  • the reception laser irradiation unit 12 includes a reception laser light source (second laser light source) 12A, a reception laser optical system for longitudinal waves (second laser optical system for longitudinal waves) 12B, and a reception laser optical system for transverse waves (second laser optics for transverse waves). System) 12C.
  • the generation laser light source 11A generates a generation laser LaT.
  • the generation laser optical system 11B for longitudinal waves and the generation laser optical system 11C for transverse waves are optical systems for irradiating the welding target A with the generation laser LaT, and are composed of optical components such as a lens, a reflecting mirror, and an optical fiber.
  • the generation laser optical system 11B for longitudinal waves and the generation laser optical system 11C for transverse waves irradiate the welding target A with the generated laser LaT generated by the generated laser light source 11A which is a common laser light source.
  • a configuration may be adopted in which individual generation laser light sources 11A are provided in each of the longitudinal wave generation laser optical system 11B and the transverse wave generation laser optical system 11C.
  • the reception laser light source 12A generates a reception laser LaR.
  • the longitudinal wave receiving laser optical system 12B and the transverse wave receiving laser optical system 12C are optical systems for irradiating the welding target A with the receiving laser LaR, and collect reflected light and scattered light from the irradiation point of the receiving laser LaR. It is an optical system that emits light.
  • the longitudinal wave receiving laser optical system 12B and the transverse wave receiving laser optical system 12C are configured by optical components such as a lens, a reflecting mirror, and an optical fiber.
  • the longitudinal wave receiving laser optical system 12B and the transverse wave receiving laser optical system 12C irradiate the welding target A with the receiving laser LaT generated by the receiving laser light source 12A which is a common laser light source.
  • a configuration may be adopted in which individual reception laser light sources 12A are provided in each of the longitudinal wave reception laser optical system 12B and the transverse wave reception laser optical system 12C.
  • the generation laser light source 11A and the reception laser light source 12A various known laser light sources as described in Patent Document 1 can be used.
  • Interferometer side portions 13B and 13C include an interferometer, and perform interference measurement using reflected light and scattered light from the irradiation point of the reception laser LaR.
  • the reflected light and scattered light are affected by the surface displacement Di of the workpiece A to be welded by the ultrasonic wave UT.
  • the ultrasonic signals 13Bs and 13Cs including the information on the defect De can be detected by detecting the surface displacement Di of the workpiece A by interference measurement.
  • Interferometer side parts 13B and 13C output ultrasonic signals 13Bs and 13Cs obtained by the interference measurement as electric signals.
  • the ultrasonic signals 13Bs and 13Cs output from the interferometer side portions 13B and 13C are recorded as ultrasonic signal data in the data recording / analyzing device 14, and information on the defect De is analyzed based on the ultrasonic signal data.
  • the interferometer side unit 13B constitutes a first interference measurement unit (longitudinal wave interference measurement unit) that performs interference measurement of the longitudinal wave WL and outputs the ultrasonic signal 13Bs.
  • the interferometer side unit 13C constitutes a second interference measurement unit (a transverse wave interference measurement unit) that performs interference measurement of the transverse wave WT and outputs the ultrasonic signal 13Cs.
  • the position of the defect De is specified based on the irradiation positions of the generation laser LaT and the reception laser LaR corresponding to the ultrasonic signals 13Bs and 1Cs.
  • the position of the defect De is specified as a circumferential position along the weld line We.
  • a circumferential reference position is set for the welding target A. This reference position may be set to an arbitrary structure provided on the welding target A, or may be set regardless of the structure of the welding target A.
  • the intake valve mechanism 114, the discharge joint 116, etc. can be used as an arbitrary structure for setting the reference position.
  • a defect De at a shallow position in the welding depth direction is detected by a longitudinal wave
  • a defect De at a deep position is detected by a transverse wave. For this reason, it is possible to relatively distinguish the defect De at the shallow position from the defect De at the deep position.
  • the depth information of the defect De may be recorded in the data recording / analyzing device 14.
  • Patent Document 1 can be applied to the detection principle of the defect De using laser ultrasonic waves.
  • Patent Document 2 is different from the present embodiment in that no laser is used, the content described in Patent Document 2 can be applied to the detection principle of the defect De using ultrasonic waves.
  • FIG. 4A is a diagram showing the directivity of ultrasonic waves generated by laser irradiation, and is a diagram showing the directivity in the thermoelastic mode.
  • FIG. 4B is a diagram showing the directivity of ultrasonic waves generated by laser irradiation, and is a diagram showing the directivity in the ablation mode.
  • thermoelastic mode is a mode that occurs when the laser irradiation energy is low
  • ablation mode is a mode that occurs when the laser irradiation energy is high. Even when a contact type sensor that is not a laser ultrasonic type is used, the directivity of the ultrasonic wave has the same directivity as in FIG. 4B.
  • thermoelastic mode is used.
  • the ultrasonic transverse wave WT generated when laser irradiation is performed has a directivity DR1 in a direction inclined by 30 ° with respect to an axis line (0 ° axis) along the irradiation direction.
  • the longitudinal wave WL has directivity DR2 in a direction inclined by 65 ° with respect to an axis line (0 ° axis) along the irradiation direction.
  • the directivity DR1 of the transverse wave WT is different from the directivity DR2 of the longitudinal wave WL.
  • the transmission path of the transverse wave WT and the transmission path of the longitudinal wave WL are different.
  • the defect De existing at different depths of the welded portion We is detected by using the difference between the directivities DR1 and DR2 of the transverse wave WT and the longitudinal wave WL (difference in propagation path).
  • the directivity DR1 ′ and DR2 ′ are expanded with respect to the thermoelastic mode, and the defect De using the difference between the directivity DR1 ′ and DR2 ′ of the transverse wave WT and the longitudinal wave WL (difference in propagation path). Is difficult to detect.
  • FIG. 5 is a conceptual diagram for explaining the ultrasonic inspection method according to the present embodiment, and is a view showing the characteristics of the ultrasonic inspection method using the transverse wave WT.
  • FIG. 5 shows a state in which the first member 201 and the second member 202 are joined by a welded portion We by laser welding in a state where a lap joint is formed.
  • the first member 201 and the second member 202 are laser welded in a state where the surface 201A of the first member 201 and the surface 202A of the second member 202 are pressure-bonded, and the first member 201 and the second member 202 are bonded.
  • a boundary surface SB is formed between the two.
  • FIG. 5 shows a cross section perpendicular to the weld line We.
  • the weld depth D_We is formed larger than the line width ⁇ We of the weld line We.
  • the line width ⁇ We of the welding line We is a line width that appears on the surface of the first member 201.
  • the thickness dimension of the first member 201 is 1.2 mm
  • the line width ⁇ We of the welding line We is formed to be 1.0 mm or less, which is smaller than the thickness dimension of the first member 201.
  • the width ⁇ We_SB of the melted portion We in the boundary surface SB is not more than half (1 ⁇ 2 or less) of the line width ⁇ We, and is formed to be 0.5 mm or less.
  • the generated laser LaTT for generating the transverse wave WT is irradiated to the irradiated laser irradiation position PTT for the transverse wave positioned on one side of the welding line We with the weld line We interposed therebetween.
  • the transverse wave generation laser LaTT irradiated to the transverse wave generation laser irradiation position PTT generates a transverse wave WT of the ultrasonic wave UT.
  • the transverse wave WT propagates in a direction inclined by 30 ° with respect to the laser irradiation axis Ax_LaTT, is reflected by the defect De2, and propagates to the detection position (lateral laser receiving laser irradiation position) PRT located on the other side of the welding line We. To do.
  • the detection position PRT is irradiated with the transverse wave receiving laser LaRT, and a minute displacement Di (see FIG. 1) generated at the detection position PRT is detected.
  • the transverse wave generation laser LaTT is irradiated to the transverse wave generation laser irradiation position PTT that is separated from the center (center line) C_We in the width direction of the welding line We by a distance ltt in a direction orthogonal to the welding line We.
  • the transverse wave receiving laser LaRT is irradiated to the transverse wave receiving laser irradiation position separated from the center (center line) C_We in the width direction of the welding line We by a distance lrt in a direction orthogonal to the welding line We.
  • FIG. 6 is a diagram showing a range in which the defect De can be detected by the transverse wave WT and a range in which the detection is difficult.
  • FIG. 7 is a diagram illustrating a time change of the ultrasonic signal due to the transverse wave WT.
  • the transverse wave WT it is possible to detect the defect De2 at the depth of the boundary surface SB and the defect De1 at a position deeper than the boundary surface SB. This is because a difference appears in the time domain II of the ultrasonic signal (from 0.9 ⁇ s, more specifically from 0.9 to 1.2 ⁇ s) depending on whether the defects De1 and De2 are present or not. .
  • the ultrasonic signal 13Cs1 when the defect De1 located deeper than the boundary surface SB and the defect De3 located shallower than the boundary surface SB exist, and the ultrasonic signal 13Cs2 when no defect De exists. Is expressed conceptually.
  • the ultrasonic signal 13Cs1 has a peak PkWS caused by the surface wave WS, a peak PkDe1 caused by the defect De1, and a peak PkDe3 caused by the defect De3.
  • the peak PkWS generated by the surface wave WS and the peak PkDe3 generated by the defect De3 exist in the time domain I (before 0.9 ⁇ s), and the peak PkWS and the peak PkDe3 are difficult to distinguish from each other.
  • the peak PkDe1 generated by the defect De1 exists in the time domain II (0.9 ⁇ s or later), and the peak PkWS and the peak PkDe1 can be distinguished. Even when there is a defect De2 at the depth of the boundary surface SB, a peak occurs in the time domain II (0.9 ⁇ s or later), and the peak due to the defect De2 can be distinguished from the peak PkWS.
  • the defect De2 at the depth of the boundary surface SB and the defect De1 at a position deeper than the boundary surface SB can be detected by the transverse wave WT.
  • the transverse wave generation laser irradiation position PTT and the transverse wave reception laser irradiation position PRT may be changed in a direction perpendicular to the welding line We.
  • FIG. 8 is a conceptual diagram for explaining the ultrasonic inspection method according to the present embodiment, and shows the characteristics of the ultrasonic inspection method using the longitudinal wave WL.
  • the longitudinal wave generation laser LaTL for generating the longitudinal wave WL is irradiated to the longitudinal wave generation laser irradiation position PTL located on one side of the welding line We across the welding line We.
  • the longitudinal wave generation laser LaTL irradiated to the longitudinal wave generation laser irradiation position PTL generates a longitudinal wave WL of the ultrasonic wave UT.
  • the longitudinal wave WL propagates in a direction inclined by 65 ° with respect to the laser irradiation axis Ax_LaTL, is reflected by the defect De2, and is detected at the detection position (vertical wave receiving laser irradiation position) PRL located on the other side of the welding line We. Propagate.
  • the detection position PRL is irradiated with a longitudinal wave reception laser LaRL, and a minute displacement Di (see FIG. 1) generated at the detection position PRL is detected.
  • Longitudinal wave generation laser LaTL is irradiated to a longitudinal wave generation laser irradiation position PTL separated from the center (center line) C_We of the welding line We in the direction orthogonal to the welding line We by an interval of ltl.
  • the longitudinal wave reception laser LaRL is irradiated to the longitudinal wave reception laser irradiation position PRL which is separated from the center (center line) C_We in the width direction of the welding line We by a distance lrl in a direction orthogonal to the welding line We.
  • the interval ltl is larger than the interval ltt
  • the interval lrl is larger than the interval lrt.
  • the longitudinal wave generating laser LaTL is irradiated to a position away from the center (center line) C_We of the welding line We with respect to the transverse wave generating laser LaTT
  • the longitudinal wave receiving laser LaRL is irradiated with respect to the transverse wave receiving laser LaRT. Irradiated to a position away from the center (center line) C_We of the welding line We.
  • the longitudinal wave generation laser LaTL and the longitudinal wave reception laser LaRL are irradiated from the outside of the transverse wave generation laser LaTT and the transverse wave reception laser LaRT.
  • FIG. 9 is a diagram showing a range in which the defect De can be detected by the longitudinal wave WL and a range in which the detection is difficult.
  • FIG. 10 is a diagram illustrating a time change of the ultrasonic signal due to the longitudinal wave WL.
  • the longitudinal wave WL it is possible to detect the defect De2 at the depth of the boundary surface SB and the defect De3 at a position shallower than the boundary surface SB. This is because a difference appears in the time domain I of the ultrasonic signal (before 0.9 ⁇ s, more specifically 0.6 to 0.9 ⁇ s) depending on whether there is a defect De2 or De3 and no defect De. .
  • the ultrasonic signal 13Bs1 when the defect De1 located deeper than the boundary surface SB and the defect De3 located shallower than the boundary surface SB exist, and the ultrasonic signal 13Bs2 when no defect De exists. Is expressed conceptually.
  • the ultrasonic signal 13Bs1 has a peak PkWS caused by the surface wave WS and a peak PkDe3 caused by the defect De3. Since the longitudinal wave WL propagates in a direction inclined by 65 ° with respect to the laser irradiation axis Ax_LaTL, it is reflected by the boundary surface SB and it is difficult to enter a position deeper than the depth of the boundary surface SB. For this reason, the longitudinal wave WL cannot detect the defect De1 distributed at a position deeper than the depth of the boundary surface SB.
  • the peak PkWS generated by the surface wave WS appears in the time domain II (from 0.9 ⁇ s, more specifically from 0.9 to 1.2 ⁇ s).
  • the peak PkDe3 caused by the defect De3 appears in the time domain I, and the peak PkWS and the peak PkDe1 can be distinguished.
  • a peak is generated in the time domain II (after 0.9 ⁇ s), but is shifted from the peak PkWS at a time earlier than the peak PkWS, so the peak due to the defect De2 is the peak PkWS. And can be distinguished.
  • the defect De2 at the depth of the boundary surface SB and the defect De3 at a position shallower than the boundary surface SB can be detected by the longitudinal wave WL.
  • the longitudinal wave generation laser irradiation position PTL and the longitudinal wave reception laser irradiation position PRL are changed in a direction orthogonal to the welding line We. Good.
  • FIG. 11 is a conceptual diagram showing a laser ultrasonic inspection method according to the present invention using both a transverse wave WT and a longitudinal wave WL.
  • the cross-sectional shape of the welded portion We of the present embodiment has a narrow cross-sectional shape with a small width ⁇ We and a large length D_We in the depth direction.
  • the ultrasonic detection method of the present embodiment detects the defect De3 at a position shallower than the boundary surface SB by the longitudinal wave WL and detects the defect De1 at a position deeper than the boundary surface SB. Detect with transverse wave ultrasonic WT.
  • the defect De2 at the depth of the boundary surface SB may be detected by either the longitudinal wave ultrasonic wave WL or the transverse wave ultrasonic wave WT, or by both the longitudinal wave ultrasonic wave WL and the transverse wave ultrasonic wave WT.
  • the longitudinal wave generation laser LaTL and the longitudinal wave reception laser LaRL are irradiated from the outside of the transverse wave generation laser LaTT and the transverse wave reception laser LaRT. That is, the transverse wave generation laser irradiation position PTT and the transverse wave reception laser irradiation position PRT are located on the inner side (closer to the welding line We) than the longitudinal wave generation laser irradiation position PTL and the longitudinal wave reception laser irradiation position PRL.
  • the longitudinal-wave generating laser irradiation position PTL and the longitudinal-wave receiving laser irradiation position PRL are located on the outer side (side away from the welding line We) with respect to the transverse-wave generating laser irradiation position PTT and the transverse-wave receiving laser irradiation position PRT. To be provided.
  • the longitudinal wave generating laser LaTL and the longitudinal wave receiving laser LaRL are irradiated at different positions in the direction orthogonal to the welding line We. Thereby, the defect De can be detected without receiving the influence (noise) of the surface wave.
  • both longitudinal wave WL and transverse wave (not shown) ultrasonic waves are generated at the irradiation position PTL of the longitudinal wave generation laser LaTL (see FIG. 8) by the longitudinal wave generation laser optical system 11B.
  • the longitudinal wave and the transverse wave generated by the irradiation of the longitudinal wave generating laser LaTL from the longitudinal wave generating laser optical system 11B are used to detect the defect De using the longitudinal wave WL. Detection is performed.
  • ultrasonic waves of both a longitudinal wave (not shown) and a transverse wave WT are generated at the irradiation position PTT of the transverse wave generation laser LaTT (see FIG.
  • the defect De is detected by using the transverse wave WT among the longitudinal wave and the transverse wave generated by the irradiation of the transverse laser generating laser LaTT from the transverse wave generating laser optical system 11C. .
  • the longitudinal wave WL is used in addition to the transverse wave WT by utilizing the directivity characteristic of the laser ultrasonic wave.
  • the transverse wave WT of the laser ultrasonic wave has directivity in a direction of about 30 degrees, and the transverse wave generation laser LaTT and the transverse wave reception laser LaRT are arranged at transmission / reception positions determined by the directivity (directivity angle 30 °) and the plate thickness of the first member 201. Irradiate.
  • the longitudinal wave WL of the laser ultrasonic wave has directivity in a direction of about 65 degrees, and the longitudinal wave generation laser LaTL and the longitudinal wave are at the transmission / reception position determined by the directivity (directivity angle 65 °) and the plate thickness of the first member 201.
  • the receiving laser LaRL is irradiated.
  • the position of the defect De3 shallower than the boundary surface SB can be detected based on the directivity angle (65 °) of the longitudinal wave WL. Further, the position of the defect De1 at a position deeper than the boundary surface SB can be detected based on the directivity angle (30 °) of the transverse ultrasonic wave WT.
  • the welded portion We that forms the weld bead constitutes a linear weld line, and the line width ⁇ We of the weld line We has a narrow cross-sectional shape that is smaller than the thickness dimension of the first member 201. We are formed.
  • the defect De existing in the upper and lower regions including the boundary surface SB can be reliably inspected.
  • the longitudinal wave ultrasonic wave WL propagates from the longitudinal wave generation laser irradiation position PTL to the defect De3 at a position shallower than the boundary surface SB without being reflected by the boundary surface SB.
  • the transverse wave ultrasonic wave WT propagates from the transverse wave generation laser irradiation position PTT to the defect De1 at a position deeper than the boundary surface SB without being reflected by the boundary surface SB. For this reason, it is not necessary to consider a complicated propagation path related to reflection, and the positions of the defects De1, De2, and De3 can be easily calculated.
  • FIG. 12 is a conceptual diagram showing an irradiation state of the longitudinal wave generating laser LaTL, the longitudinal wave receiving laser LaRL, the transverse wave generating laser LaTT, and the transverse wave receiving laser LaRT.
  • the longitudinal wave generation laser LaTL and the transverse wave generation laser LaTT are irradiated so as to form a linear focal point having a longitudinal direction in the direction along the welding line We, and the longitudinal wave reception laser LaRL and the transverse wave reception are obtained.
  • the laser LaRT is irradiated so as to form a point-like focus.
  • the longitudinal wave ultrasonic wave WL and the transverse wave ultrasonic wave WT propagate in a narrowed range with respect to the length of the line-shaped focal point in the direction along the welding line We.
  • the focal point arrangement described above allows the point-like focal point of the longitudinal wave receiving laser LaRL and the point-like focal point of the transverse wave receiving laser LaRT to be arranged close to each other, thereby making the apparatus compact. it can.
  • FIG. 13 is a diagram showing a manufacturing process of the high-pressure fuel supply pump 100 according to the present invention.
  • FIG. 13 only the process part which concerns on laser welding and ultrasonic inspection is shown, and the manufacturing method by the in-process inspection which performs ultrasonic inspection by the ultrasonic inspection apparatus 1 while performing laser welding by the laser welding apparatus 2 is shown. Yes.
  • the laser welding apparatus 2 performs laser welding on the high-pressure fuel supply pump 100, and at the same time, the ultrasonic inspection apparatus 1 detects a defect De generated in the laser welded portion We.
  • welding data is set based on the welding specification data.
  • the welding specification data data such as a welding position and laser power of laser welding are set in the control device 3.
  • the control device 3 controls the laser welding device 2 on the basis of the welding data to perform laser welding on the welding target A, and executes an inspection of the welded portion We by the ultrasonic inspection device 1. That is, the ultrasonic inspection process S3 is performed while performing the laser welding process S2. With the execution of the ultrasonic inspection step S3, the presence or absence of a defect De in the welded portion We is determined in step S4. When the presence of the defect De is determined, the welding data is corrected and the laser welding process S2 is repeated. The ultrasonic inspection process S3 is also executed when the laser welding process S2 is re-executed.
  • the determination of the presence or absence of the defect De in step S4 may be performed when the laser welding process S2 is completed, or may be performed during the execution of the laser welding process S2.
  • laser welding by the laser welding apparatus 2 and ultrasonic inspection by the ultrasonic inspection apparatus 1 can be performed at the same time. If there is a defect in laser welding, the defect is detected by the ultrasonic inspection apparatus 1. Immediate detection and re-welding can improve the yield of the high-pressure fuel supply pump 100 in the manufacturing process.
  • FIG. 14 is a cross-sectional view showing an embodiment of the high-pressure fuel pump 100 according to the present invention.
  • the high-pressure fuel supply pump 100 is a pump that supplies high pressure fuel pumped from a fuel tank by a feed pump (not shown) to the fuel injection valve.
  • the high-pressure fuel supply pump 100 is used for an internal combustion engine (engine) mounted on a vehicle.
  • engine the high-pressure fuel supply pump 100 will be referred to as a pump 100 and will be described.
  • a pressurizing chamber 107 is formed in the pump main body 101, and an upper end portion (tip portion) of the plunger 104 is inserted into the pressurizing chamber 107.
  • the plunger 104 reciprocates in the pressurizing chamber 107 to pressurize the fuel.
  • the pump body (pump housing) 101 has a mounting flange 102 for fixing to the engine.
  • the mounting flange 102 is welded to the pump body 101 by laser welding on the entire circumference.
  • a welding portion 301 between the mounting flange 102 and the pump main body 101 is referred to as a first welded portion.
  • the pump body 101 is provided with a suction valve mechanism 114 and a discharge valve mechanism 115.
  • the body 114c of the suction valve mechanism 114 is fixed to the pump body 101 by laser welding.
  • This weld location 302 is referred to as a second weld.
  • the outer periphery of the body 114c of the suction valve mechanism 114 is welded over the entire periphery.
  • a discharge joint 116 is provided on the downstream side of the discharge valve mechanism 115.
  • the discharge joint 116 is fixed to the pump body 101 by laser welding 303.
  • This weld location 303 is referred to as a third weld.
  • the outer periphery of the discharge joint 116 is welded over the entire circumference.
  • a damper cover 111 is attached to the top of the pump body 101.
  • the damper cover 111 is fixed to the pump body 101 by laser welding.
  • This weld location 304 is referred to as a fourth weld.
  • the fourth welded portion 304 is welded over the entire circumference.
  • a suction joint 112 is fixed to the damper cover 111 by laser welding.
  • This weld location 305 is referred to as a fifth weld.
  • the outer periphery of the suction joint 112 is welded over the perimeter.
  • the weld joints of the first welded portion 301, the second welded portion 302, and the third welded portion 303 have a butt weld structure. It is also possible to apply the in-process inspection process of this embodiment to these welds.
  • the laser 400 (LaW) is irradiated to the welding object surface perpendicularly.
  • the laser 400 (LaW) is irradiated with an inclination of ⁇ ° from the direction perpendicular to the surface of the welding object.
  • the weld joint of the fourth welded part 304 and the fifth welded part 305 has a lap weld structure, and the fourth welded part 304 and the fifth welded part 305 are welded by applying the in-process inspection process of this embodiment.
  • a laser 400 (LaW) is irradiated perpendicularly to the surface of the welding object.
  • the fuel leakage is not allowed in the pump 100.
  • the pump body 101, the body 114c of the suction valve mechanism 114, the discharge joint 116, the damper cover 111, and the suction joint 112 are components that constitute a fuel passage through which fuel flows.
  • the second welded portion 302 to the fifth welded portion 305 also serve as a fuel seal. For this reason, it is desirable to ensure a sufficient effective weld length for welding of the parts in which the fuel flow path is formed.
  • the pump 100 is used in a severe environment. By using a welding process having excellent robustness, the reliability of the pump 100 can be increased.
  • laser welding is performed by irradiating the laser LaW from the first member 201 side to the first member 201 and the second member 202 constituting the lap joint.
  • the ultrasonic inspection method for detecting the defect De in the welded part We with the ultrasonic wave UT by laser irradiation it operates with the following steps. (1) A step of irradiating the transverse wave generation laser LaTT to the transverse wave generation laser irradiation position PTT located on one side of the weld bead.
  • (1) and (3) are executed in conjunction with each other, and (2) and (4) are executed in conjunction with each other.
  • (5) is executed after (1) and (3), and (6) is executed after (2) and (4).
  • (7) is executed after (5), and (8) is executed after (6).
  • the ultrasonic inspection apparatus includes a laser welding part We in which laser welding is performed by irradiating a laser from the first member 201 side to the first member 201 and the second member 202 constituting the lap joint.
  • the defect De is detected by ultrasonic UT by laser irradiation.
  • the following configuration is provided. (1)
  • the transverse wave generation laser LaTT is irradiated to the transverse wave generation laser irradiation position PTT located on one side of the welding bead, and the one side away from the welding bead than the transverse wave generation laser irradiation position PTT.
  • the transverse wave receiving laser LaRT is irradiated to the transverse wave receiving laser irradiation position PRT located on the other side across the welding bead, and the other side away from the welding bead from the transverse wave receiving laser irradiation position PRT.
  • the receiving laser irradiation unit 12 that irradiates the longitudinal wave receiving laser LaRL to the longitudinal wave receiving laser irradiation position PRL positioned at (3)
  • a longitudinal wave interference measurement unit 13B that detects longitudinal wave ultrasonic waves WL generated by the thermoelastic mode by irradiation of the longitudinal wave generation laser LaTL with the longitudinal wave reception laser LaRL.
  • a transverse wave interference measurement unit 13C that detects a transverse wave ultrasonic wave WT generated by a thermoelastic mode by irradiation of the transverse wave generation laser LaTT with the transverse wave reception laser LaRT.
  • the defect De3 at a position shallower than the boundary surface SB between the first member 201 and the second member 202 is detected by the longitudinal wave WL and the defect De1 at a position deeper than the boundary surface SB. Is detected by a transverse ultrasonic WT.
  • the laser welding process S2 in which laser welding is performed by irradiating the first member 201 and the second member 202 constituting the lap joint from the first member 201 side.
  • an ultrasonic inspection step S3 for detecting a defect De in the laser welded portion We with an ultrasonic wave UT by laser irradiation.
  • the ultrasonic inspection step S3 includes the following steps. (1) A step of irradiating the transverse wave generating laser LaTT to the transverse wave generating laser irradiation position PTT located on one side of the weld bead. (2) A step of irradiating the longitudinal wave generation laser LaTL to the longitudinal wave generation laser irradiation position PTL located on the one side away from the welding bead than the transverse wave generation laser irradiation position PTT. (3) A step of irradiating the transverse wave receiving laser LaRT to the transverse wave receiving laser irradiation position PRT located on the other side with the weld bead interposed therebetween.
  • the manufacturing method of the high-pressure fuel supply pump which concerns on this invention performs the defect detection in the laser welding part We by ultrasonic inspection process S3, performing laser welding by laser welding process S2.
  • (1) and (3) are executed in conjunction with each other, and (2) and (4) are executed in conjunction with each other.
  • (5) is executed after (1) and (3), and (6) is executed after (2) and (4).
  • (7) is executed after (5), and (8) is executed after (6).
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations.
  • 201 First member constituting lap joint
  • 202 Second member constituting lap joint
  • De1 Defect at position deeper than boundary surface SB
  • De3 Defect at position shallower than boundary surface SB
  • LaRL Reception for longitudinal wave Laser, LaRT ... Laser wave receiving laser, LaTL ... Longitudinal wave generating laser, LaTT ... Lateral wave generating laser, PRL ... Vertical wave receiving laser irradiation position, PRT ... Lateral wave receiving laser irradiation position, PTL ... Longitudinal wave generating laser Irradiation position, PTT ... Laser wave generation laser irradiation position, SB ... Boundary surface between the first member 201 and the second member 202, WL ... longitudinal wave ultrasonic wave, WT ... transverse wave ultrasonic wave.

Abstract

The purpose of the present invention is to detect a defect that is present above or under an interface of two members in a laser welding portion of a lap joint. To achieve this, a transverse wave generation laser (LaTT) and a longitudinal wave generation laser (LaTL) are irradiated to different locations of one side of a welding line (We). A transverse wave reception laser (LaRT) and a longitudinal wave reception laser (LaRL) are irradiated to different locations of another side of the welding line (We). A defect (De1) at a location that is deeper than an interface (SB) between a first member (201) and a second member (202) is detected by detecting a transverse ultrasonic wave (WT) with the transverse wave reception laser (LaRT). A defect (De3) at a location that is shallower than the interface (SB) is detected by detecting a longitudinal ultrasonic wave (WL) with the longitudinal wave reception laser (LaRL).

Description

超音波検査方法、超音波検査装置及び超音波検査方法を用いた高圧燃料供給ポンプの製造方法Ultrasonic inspection method, ultrasonic inspection apparatus, and method for manufacturing high-pressure fuel supply pump using ultrasonic inspection method
 本発明は、レーザ溶接部の欠陥をレーザ照射による超音波で検出する超音波検査方法及び超音波検査装置と、この超音波検査方法を用いて高圧燃料供給ポンプを製造する高圧燃料供給ポンプの製造方法と、に関する。 The present invention relates to an ultrasonic inspection method and ultrasonic inspection apparatus for detecting defects in a laser weld with ultrasonic waves by laser irradiation, and a high-pressure fuel supply pump for manufacturing a high-pressure fuel supply pump using the ultrasonic inspection method. And methods.
 本発明の背景技術として、特開2012-006078号公報(特許文献1)の溶接システム及び特開2017-161441号公報(特許文献2)の溶接継手の超音波探傷方法が知られている。 As a background art of the present invention, there are known a welding system disclosed in Japanese Patent Laid-Open No. 2012-006078 (Patent Document 1) and an ultrasonic flaw detection method for a welded joint disclosed in Japanese Patent Laid-Open No. 2017-161441 (Patent Document 2).
 特許文献1は、レーザ超音波法により溶接不良を検出する溶接システムを開示している。この溶接システムは、溶接機構と、送信用レーザ光源と、溶接機構と共に被溶接対象に対して移動しながら送信用レーザ光源で発生した送信用レーザ光を溶接後の被溶接対象の表面に照射して送信用超音波を発生させる送信用光学機構と、受信用レーザ光を発生して被溶接対象に照射し送信用超音波の反射によって得られる反射超音波を検出するための受信用レーザ光源と、溶接機構と共に被溶接対象に対して移動しながら受信用レーザ光を溶接後の被溶接対象の表面に照射し被溶接対象表面で散乱・反射したレーザ光を集光させる受信用光学機構と、散乱・反射したレーザ光を干渉計測するための干渉計と、を有している(要約参照)。 Patent Document 1 discloses a welding system that detects a welding failure by a laser ultrasonic method. This welding system irradiates the surface of a welding target after welding with a welding mechanism, a transmission laser light source, and a transmission laser light generated by the transmission laser light source while moving with the welding mechanism with respect to the welding target. A transmission optical mechanism for generating a transmission ultrasonic wave, a reception laser light source for generating a reception laser beam and irradiating the welding target to detect a reflected ultrasonic wave obtained by reflection of the transmission ultrasonic wave; A receiving optical mechanism for condensing the laser beam scattered and reflected on the surface of the welding target by irradiating the surface of the welding target with welding laser light while moving with respect to the welding target together with the welding mechanism; And an interferometer for interferometric measurement of the scattered / reflected laser beam (see summary).
 また、特許文献2の溶接継手の超音波探傷方法は、超音波を用いて溶接継手の欠陥を探傷する超音波探傷法であって、クリーピング波法、縦波斜角法、ラウンドトリップ法、横波斜角法のうち、少なくとも2種の組合せによって探傷を行う(要約参照)。特許文献2には、欠陥の種類として、下記の(a)~(f)を想定し、検出の可否の検証を行ったことが記載されている。
(a)溶接部内の割れなどの面状欠陥を模したもの
(b)開先面の融合不良を模したもの
(c)裏当金との隙間から発生するウォームホール、及びブローホールを模したもの
(d)溶接表面近傍の割れなどの面状欠陥を模したもの
(e)開先ルート面の溶け込み不足欠陥を模したもの
(f)2層目溶接で発生するウォームホール、及びブローホールを模したものその結果、クリーピング波法では表面近傍の(a)、(c)、(d)及び(f)を検出でき、縦波斜角法及びラウンドトリップ法ではクリーピング波法で検出できる深さよりも深い領域での(a)、(c)を検出でき、横波斜角法では(b)及び(e)を検出できたことが説明されている。
In addition, the ultrasonic flaw detection method for welded joints in Patent Document 2 is an ultrasonic flaw detection method for flaws in welded joints using ultrasonic waves, including a creeping wave method, a longitudinal wave oblique angle method, a round trip method, The flaw detection is performed by a combination of at least two of the shear wave oblique angle methods (see summary). Patent Document 2 describes that the following (a) to (f) are assumed as the types of defects, and whether or not detection is possible was verified.
(A) imitating a surface defect such as a crack in the welded portion (b) imitating a poor fusion of the groove surface (c) imitating a worm hole and a blow hole generated from a gap with the backing metal (D) imitating a surface defect such as a crack near the weld surface (e) imitating a lack of penetration defect on the groove root surface (f) a wormhole and blowhole generated in the second layer welding As a result, (a), (c), (d) and (f) near the surface can be detected by the creeping wave method, and by the creeping wave method by the longitudinal wave oblique angle method and the round trip method. It is described that (a) and (c) can be detected in a region deeper than the depth, and (b) and (e) can be detected by the transverse wave oblique angle method.
特開2012-006078号公報JP 2012-006078 A 特開2017-161441号公報JP 2017-161441
 特許文献1は突合せ継手における溶接が示されており、2つの部材を重ねて2つの部材に対して一方の側から溶接を行う重ね継手における溶接については配慮されていない。一方特許文献2では、重ね継手の溶接に配慮している。さらに特許文献2では、縦波と横波とを用いて異なる種類(上記(a)~(f))の欠陥の検出を可能にしている。しかし、特許文献2の上記(a)~(f)の欠陥は2つの部材の境界面よりも上側(溶接を行う側)に存在している。つまり特許文献1及び特許文献2では、重ね継手における2つの部材の境界面よりも下側(溶接を行う側とは反対側)に存在する欠陥を検出することについて、十分な配慮が成されていない。 Patent Document 1 shows welding in a butt joint, and does not consider welding in a lap joint in which two members are overlapped and welded from one side to two members. On the other hand, Patent Document 2 considers welding of lap joints. Further, Patent Document 2 enables detection of different types of defects (above (a) to (f)) using longitudinal waves and transverse waves. However, the defects (a) to (f) in Patent Document 2 exist above the boundary surface between the two members (the side on which welding is performed). That is, in Patent Document 1 and Patent Document 2, sufficient consideration is given to detecting a defect existing below the boundary surface between two members in a lap joint (on the side opposite to the side on which welding is performed). Absent.
 超音波法で使用される縦波及び横波には指向性があり、また縦波及び横波は2つの部材の境界面で反射されるため、レーザ溶接による狭隘な溶接部の内部に生じた欠陥を検出することは容易でない。 Longitudinal and transverse waves used in the ultrasonic method are directional, and longitudinal and transverse waves are reflected at the interface between the two members, so that defects that occur inside narrow welds due to laser welding are eliminated. It is not easy to detect.
 本発明の目的は、重ね継手のレーザ溶接部において、2部材の境界面の上側及び下側に存在する欠陥を検出可能にすることにある。 An object of the present invention is to make it possible to detect defects existing above and below the boundary surface of two members in a laser welded portion of a lap joint.
 上記目的を達成するために、本発明は、重ね継手を構成する第1部材及び第2部材に対して前記第1部材側からレーザを照射してレーザ溶接を行ったレーザ溶接部内の欠陥をレーザ照射による超音波で検出する。溶接線を挟んで一方の側に位置する横波用発生レーザ照射位置に横波用発生レーザを照射し、横波用発生レーザ照射位置よりも溶接線から離れて前記一方の側に位置する縦波用発生レーザ照射位置に縦波用発生レーザを照射する。溶接線を挟んで他方の側に位置する横波用受信レーザ照射位置に横波用受信レーザを照射し、横波用受信レーザ照射位置よりも溶接線から離れて前記他方の側に位置する縦波用受信レーザ照射位置に縦波用受信レーザを照射する。横波用発生レーザの照射による熱弾性モードにより生じる横波超音波を横波用受信レーザで検出し、縦波用発生レーザの照射による熱弾性モードにより生じる縦波超音波を縦波用受信レーザで検出する。第1部材と第2部材との境界面より浅い位置の欠陥は縦波超音波で検出し、境界面より深い位置の欠陥は横波超音波で検出する。 In order to achieve the above-mentioned object, the present invention provides a laser beam for detecting defects in a laser welded portion in which laser welding is performed by irradiating a laser beam on the first member and the second member constituting the lap joint from the first member side. Detect with ultrasound by irradiation. Generate a transverse wave generation laser at a transverse laser generation laser irradiation position located on one side across the weld line, and generate a longitudinal wave located on the one side farther from the welding line than the transverse laser generation laser irradiation position. A laser for longitudinal wave is irradiated to the laser irradiation position. The transverse wave receiving laser is irradiated to the transverse wave receiving laser irradiation position located on the other side across the welding line, and the longitudinal wave receiving is located on the other side farther from the welding line than the transverse wave receiving laser irradiation position. A longitudinal wave receiving laser is irradiated to the laser irradiation position. The transverse wave ultrasonic wave generated by the thermoelastic mode generated by the irradiation of the generation laser for the transverse wave is detected by the receiving laser for the transverse wave, and the ultrasonic wave generated by the thermoelastic mode generated by the irradiation of the generation laser for the longitudinal wave is detected by the reception laser for the longitudinal wave. . A defect at a position shallower than the boundary surface between the first member and the second member is detected by longitudinal wave ultrasonic waves, and a defect at a position deeper than the boundary surface is detected by transverse wave ultrasonic waves.
 本発明によれば、重ね継手のレーザ溶接部において、2部材の境界面の上側及び下側に存在する欠陥を検出可能にすることができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to detect a defect present on the upper side and the lower side of the boundary surface of the two members in the laser welded portion of the lap joint. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
レーザ超音波法による欠陥Deの検出過程を示す概念図である。It is a conceptual diagram which shows the detection process of the defect De by a laser ultrasonic method. 本発明に係る超音波検査装置1を用いたインプロセス検査装置の概念を示す図である。It is a figure which shows the concept of the in-process inspection apparatus using the ultrasonic inspection apparatus 1 which concerns on this invention. 本発明に係る超音波検査装置1及びレーザ溶接装置2を組み合わせたインプロセス検査装置1000の構成を示すブロック図である。It is a block diagram which shows the structure of the in-process inspection apparatus 1000 which combined the ultrasonic inspection apparatus 1 and laser welding apparatus 2 which concern on this invention. レーザ照射で発生する超音波の指向性を示す図であり、熱弾性モードにおける指向性を示す図である。It is a figure which shows the directivity of the ultrasonic wave which generate | occur | produces by laser irradiation, and is a figure which shows the directivity in a thermoelastic mode. レーザ照射で発生する超音波の指向性を示す図であり、アブレーションモードにおける指向性を示す図である。It is a figure which shows the directivity of the ultrasonic wave which generate | occur | produces by laser irradiation, and is a figure which shows the directivity in ablation mode. 本実施例に係る超音波検査方法を説明する概念図であり、横波WTによる超音波検査方法の特徴を示す図である。It is a conceptual diagram explaining the ultrasonic inspection method which concerns on a present Example, and is a figure which shows the characteristic of the ultrasonic inspection method by a transverse wave WT. 横波WTによる欠陥Deの検出が可能な範囲と検出が困難な範囲を示す図である。It is a figure which shows the range which can detect the defect De by transverse wave WT, and the range where detection is difficult. 横波WTによる超音波信号の時間変化を示す図である。It is a figure which shows the time change of the ultrasonic signal by the transverse wave WT. 本実施例に係る超音波検査方法を説明する概念図であり、縦波WLによる超音波検査方法の特徴を示す図である。It is a conceptual diagram explaining the ultrasonic inspection method which concerns on a present Example, and is a figure which shows the characteristic of the ultrasonic inspection method by the longitudinal wave WL. 縦波WLによる欠陥Deの検出が可能な範囲と検出が困難な範囲を示す図である。It is a figure which shows the range which can detect the defect De by the longitudinal wave WL, and the range where detection is difficult. 縦波WLによる超音波信号の時間変化を示す図である。It is a figure which shows the time change of the ultrasonic signal by the longitudinal wave WL. 横波WTと縦波WLを併用した本発明に係るレーザ超音波検査方法を示す概念図である。It is a conceptual diagram which shows the laser ultrasonic inspection method which concerns on this invention which used transverse wave WT and longitudinal wave WL together. 縦波用発生レーザLaTL、縦波用受信レーザLaRL、横波用発生レーザLaTT、及び横波用受信レーザLaRTの照射状態を示す概念図である。It is a conceptual diagram which shows the irradiation state of the generation laser LaTL for longitudinal waves, the reception laser LaRL for longitudinal waves, the generation laser LaTT for transverse waves, and the reception laser LaRT for transverse waves. 本発明に係る高圧燃料供給ポンプ100の製造工程を示す図である。It is a figure which shows the manufacturing process of the high pressure fuel supply pump 100 which concerns on this invention. 本発明に係る高圧燃料ポンプ100の一実施例を示す断面図である。It is sectional drawing which shows one Example of the high pressure fuel pump 100 which concerns on this invention.
 以下、本発明に係る実施例を、図面を用いて説明する。 Embodiments according to the present invention will be described below with reference to the drawings.
 図1はレーザ超音波法による欠陥Deの検出過程を示す概念図である。レーザ超音波法は、レーザLaTを被検査対象Aに照射して被検査対象Aに超音波を発生させる。被検査対象Aに生じた超音波UTは欠陥Deで反射され、被検査対象Aの表面に変位(表面変位)Diを生じさせる。そして、表面変位Diが生じている表面にレーザLaRを照射し、表面変位Diを検出器Detで検出し、欠陥Deを検出する。 FIG. 1 is a conceptual diagram showing a process of detecting a defect De by a laser ultrasonic method. In the laser ultrasonic method, the inspection target A is irradiated with the laser LaT to generate ultrasonic waves in the inspection target A. The ultrasonic wave UT generated in the inspection object A is reflected by the defect De, and a displacement (surface displacement) Di is generated on the surface of the inspection object A. Then, the laser LaR is irradiated to the surface where the surface displacement Di is generated, the surface displacement Di is detected by the detector Det, and the defect De is detected.
 被検査対象Aに超音波UTを発生させるレーザLaTを発生レーザ又は送信レーザと呼ぶ。また表面変位Diを検出するレーザLaRを、受信レーザ又は検出レーザと呼ぶ。以下、レーザ超音波法を用いて欠陥検出を行う方法を超音波検査方法と呼び、レーザ超音波法を用いて欠陥検出を行う装置を超音波検査装置と呼ぶ。また本実施例では、超音波検査方法及び超音波検査装置はレーザ溶接における溶接部Weの欠陥Deを検出する。溶接部Weの欠陥(傷)Deとしては、例えばクラックやブローホールがある。 The laser LaT that generates the ultrasonic UT in the inspection target A is referred to as a generation laser or a transmission laser. The laser LaR that detects the surface displacement Di is called a reception laser or a detection laser. Hereinafter, a method for performing defect detection using a laser ultrasonic method is referred to as an ultrasonic inspection method, and an apparatus for performing defect detection using a laser ultrasonic method is referred to as an ultrasonic inspection device. In the present embodiment, the ultrasonic inspection method and the ultrasonic inspection apparatus detect the defect De of the welded portion We in laser welding. Examples of the defect (scratch) De of the welded portion We include a crack and a blow hole.
 なお本実施例では、溶接部Weは溶接により溶融した金属が固まった部分である。溶接部Weの表面側には盛り上がり(溶接ビード)が形成される。この溶接ビードは除去されてもよい。 In this embodiment, the welded portion We is a portion where the molten metal is solidified by welding. A swell (weld bead) is formed on the surface side of the welded portion We. This weld bead may be removed.
 図2は、本発明に係る超音波検査装置1を用いたインプロセス検査装置1000の概念を示す図である。 FIG. 2 is a diagram showing a concept of an in-process inspection apparatus 1000 using the ultrasonic inspection apparatus 1 according to the present invention.
 本実施例の超音波検査装置1は、レーザ溶接装置2と連動するインプロセス検査装置1000を構成する。すなわち本実施例の超音波検査装置1は、高圧燃料供給ポンプ100の製造装置に適用され、レーザ溶接装置2で高圧燃料供給ポンプ100にレーザ溶接を行いながら、同時に超音波検査装置1でレーザ溶接部Weに発生する欠陥Deを検出する。
このために、超音波検査装置1及びレーザ溶接装置2は、高圧燃料供給ポンプ100の周囲に配置される。
The ultrasonic inspection apparatus 1 of this embodiment constitutes an in-process inspection apparatus 1000 that works in conjunction with the laser welding apparatus 2. That is, the ultrasonic inspection apparatus 1 of this embodiment is applied to a manufacturing apparatus for the high-pressure fuel supply pump 100, and laser welding is performed on the high-pressure fuel supply pump 100 by the laser welding apparatus 2 while simultaneously performing laser welding by the ultrasonic inspection apparatus 1. A defect De generated in the portion We is detected.
For this purpose, the ultrasonic inspection apparatus 1 and the laser welding apparatus 2 are arranged around the high-pressure fuel supply pump 100.
 レーザ溶接装置2はレーザ溶接工程を制御装置3により制御される。超音波検査装置1は欠陥Deの検出工程(探傷工程)を制御装置3により制御される。レーザ溶接装置2及び超音波検査装置1は駆動装置4により回転軸線AR回りにAr方向に回転駆動される。 The laser welding device 2 is controlled by a control device 3 in the laser welding process. In the ultrasonic inspection apparatus 1, the defect detection process (flaw detection process) is controlled by the control device 3. The laser welding apparatus 2 and the ultrasonic inspection apparatus 1 are rotationally driven in the Ar direction around the rotation axis AR by the driving device 4.
 本実施例では、被検査対象Aは被溶接対象である。被溶接対象Aは回転軸周りに回転され、この回転に合わせて、レーザ溶接装置2はレーザ溶接を行い、超音波検査装置1はレーザ超音波法を用いた非接触検査(探傷)を行う。このため、レーザ溶接部Weは線状を成す溶接線として構成される。 In this embodiment, the inspection target A is a welding target. The object A to be welded is rotated around the rotation axis, and in accordance with this rotation, the laser welding apparatus 2 performs laser welding, and the ultrasonic inspection apparatus 1 performs non-contact inspection (flaw detection) using a laser ultrasonic method. For this reason, the laser welding part We is comprised as a welding line which comprises a linear form.
 本実施例では、被溶接対象(被検査対象)Aとして、高圧燃料供給ポンプ100について説明しているが、燃料噴射弁やその他のものであってもよい。また、必ずしもインプロセス検査装置を構成する必要はなく、溶接と検査を別々に行ってもよいし、検査のみを行う超音波検査装置1として構成してもよい。しかし、超音波検査装置1を用いてインプロセス検査装置を構成し、溶接を行いながら検査を行い、欠陥が見つかった場合に再溶接することで、不良品の発生を未然に防ぐことができ、生産性を向上することができる。 In this embodiment, the high-pressure fuel supply pump 100 is described as an object to be welded (inspected object) A, but it may be a fuel injection valve or the like. Further, it is not always necessary to configure the in-process inspection apparatus, and welding and inspection may be performed separately, or the ultrasonic inspection apparatus 1 that performs only inspection may be configured. However, an in-process inspection apparatus is configured using the ultrasonic inspection apparatus 1 and inspection is performed while welding is performed. By re-welding when a defect is found, the occurrence of a defective product can be prevented in advance. Productivity can be improved.
 図3は、本発明に係る超音波検査装置1及びレーザ溶接装置2を組み合わせたインプロセス検査装置1000の構成を示すブロック図である。 FIG. 3 is a block diagram showing the configuration of an in-process inspection apparatus 1000 that combines the ultrasonic inspection apparatus 1 and the laser welding apparatus 2 according to the present invention.
 インプロセス検査装置1000は、超音波検査装置1とレーザ溶接装置2と制御装置3とを備えて構成される。 The in-process inspection apparatus 1000 includes an ultrasonic inspection apparatus 1, a laser welding apparatus 2, and a control apparatus 3.
 レーザ溶接装置2は被溶接対象(ワーク)Aである高圧燃料供給ポンプ100にレーザ溶接を行う溶接装置である。本実施例では、レーザ溶接装置2は、ポンプ本体101とダンパカバー111とを溶接する例を示している。ポンプ本体101及びダンパカバー111は重ね継手を構成し、ダンパカバー111の側からレーザLaWが照射される。被溶接対象Aは回転軸線ARを中心として回転される。従って、溶接部は回転軸線ARを中心とする周方向に伸びる溶接線を構成する。 The laser welding apparatus 2 is a welding apparatus that performs laser welding on the high-pressure fuel supply pump 100 that is the workpiece (workpiece) A. In this embodiment, the laser welding apparatus 2 shows an example in which the pump body 101 and the damper cover 111 are welded. The pump main body 101 and the damper cover 111 constitute a lap joint, and the laser LaW is irradiated from the damper cover 111 side. The object A to be welded is rotated about the rotation axis AR. Therefore, the welded portion constitutes a weld line extending in the circumferential direction around the rotation axis AR.
 本実施例では、被溶接対象Aを回転させる構成としているが、レーザ溶接装置2を回転軸線AR回りに回転させる構成であってもよい。レーザ溶接装置2を回転軸線AR回りに回転させる場合は、超音波検査装置1も回転軸線AR回りに回転させる構成とする。すなわち駆動装置4は、超音波検査装置1及びレーザ溶接装置2と被溶接対象Aとを溶接線Weに沿う方向に相対変位(相対移動)させるに構成される。 In the present embodiment, the object A to be welded is rotated, but the laser welding apparatus 2 may be rotated around the rotation axis AR. When the laser welding apparatus 2 is rotated around the rotation axis AR, the ultrasonic inspection apparatus 1 is also rotated around the rotation axis AR. That is, the drive device 4 is configured to relatively displace (relatively move) the ultrasonic inspection device 1, the laser welding device 2, and the welding target A in the direction along the welding line We.
 溶接装置としては、レーザ溶接以外の溶接方法による装置を用いることもできる。しかし本実施例の超音波検査装置1は、レーザ溶接のように溶接線Weの線幅に対して溶接深さが深くなる溶接方法に対して優れた探傷性能を発揮し、溶接線Weの線幅に対して溶接深さが深くなるほど有効に機能する。 As the welding apparatus, an apparatus using a welding method other than laser welding can be used. However, the ultrasonic inspection apparatus 1 according to the present embodiment exhibits excellent flaw detection performance with respect to a welding method in which the welding depth is deeper than the line width of the welding line We, such as laser welding. It works more effectively as the welding depth becomes deeper than the width.
 超音波検査装置1は、被溶接対象(被検査対象)Aに超音波を発生させる発生レーザ(第1レーザ)LaTを照射するための発生レーザ照射部(第1レーザ照射部)11と、表面変位Diを検出する受信レーザ(第2レーザ)LaRを照射するための受信レーザ照射部(第2レーザ照射部)12と、干渉計側部13B,13Cと、データ記録/解析装置14と、を備える。 The ultrasonic inspection apparatus 1 includes a generation laser irradiation unit (first laser irradiation unit) 11 for irradiating a welding target (inspected target) A with a generation laser (first laser) LaT that generates ultrasonic waves, a surface A receiving laser irradiation unit (second laser irradiation unit) 12 for irradiating a receiving laser (second laser) LaR for detecting displacement Di, interferometer side units 13B and 13C, and a data recording / analyzing device 14 Prepare.
 発生レーザ照射部11は、発生レーザ光源(第1レーザ光源)11A、縦波用発生レーザ光学系(縦波用第1レーザ光学系)11B及び横波用発生レーザ光学系(横波用第1レーザ光学系)11Cを備える。受信レーザ照射部12は、受信レーザ光源(第2レーザ光源)12A、縦波用受信レーザ光学系(縦波用第2レーザ光学系)12B及び横波用受信レーザ光学系(横波用第2レーザ光学系)12Cを備える。 The generation laser irradiation unit 11 includes a generation laser light source (first laser light source) 11A, a generation laser optical system for longitudinal waves (first laser optical system for longitudinal waves) 11B, and a generation laser optical system for transverse waves (first laser optical for transverse waves). System) 11C. The reception laser irradiation unit 12 includes a reception laser light source (second laser light source) 12A, a reception laser optical system for longitudinal waves (second laser optical system for longitudinal waves) 12B, and a reception laser optical system for transverse waves (second laser optics for transverse waves). System) 12C.
 発生レーザ光源11Aは発生レーザLaTを発生する。縦波用発生レーザ光学系11B及び横波用発生レーザ光学系11Cは発生レーザLaTを被溶接対象Aに照射するための光学系であり、レンズ、反射鏡、及び光ファイバ等の光学部品により構成される。本実施例では、縦波用発生レーザ光学系11B及び横波用発生レーザ光学系11Cは共通のレーザ光源である発生レーザ光源11Aで発生された発生レーザLaTを被溶接対象Aに照射する。縦波用発生レーザ光学系11B及び横波用発生レーザ光学系11Cのそれぞれに個別の発生レーザ光源11Aが設けられる構成であってもよい。 The generation laser light source 11A generates a generation laser LaT. The generation laser optical system 11B for longitudinal waves and the generation laser optical system 11C for transverse waves are optical systems for irradiating the welding target A with the generation laser LaT, and are composed of optical components such as a lens, a reflecting mirror, and an optical fiber. The In this embodiment, the generation laser optical system 11B for longitudinal waves and the generation laser optical system 11C for transverse waves irradiate the welding target A with the generated laser LaT generated by the generated laser light source 11A which is a common laser light source. A configuration may be adopted in which individual generation laser light sources 11A are provided in each of the longitudinal wave generation laser optical system 11B and the transverse wave generation laser optical system 11C.
 受信レーザ光源12Aは受信レーザLaRを発生する。縦波用受信レーザ光学系12B及び横波用受信レーザ光学系12Cは受信レーザLaRを被溶接対象Aに照射するための光学系であり、受信レーザLaRの照射点からの反射光及び散乱光を集光する光学系である。縦波用受信レーザ光学系12B及び横波用受信レーザ光学系12Cは、レンズ、反射鏡、及び光ファイバ等の光学部品により構成される。本実施例では、縦波用受信レーザ光学系12B及び横波用受信レーザ光学系12Cは共通のレーザ光源である受信レーザ光源12Aで発生された受信レーザLaTを被溶接対象Aに照射する。縦波用受信レーザ光学系12B及び横波用受信レーザ光学系12Cのそれぞれに個別の受信レーザ光源12Aが設けられる構成であってもよい。 The reception laser light source 12A generates a reception laser LaR. The longitudinal wave receiving laser optical system 12B and the transverse wave receiving laser optical system 12C are optical systems for irradiating the welding target A with the receiving laser LaR, and collect reflected light and scattered light from the irradiation point of the receiving laser LaR. It is an optical system that emits light. The longitudinal wave receiving laser optical system 12B and the transverse wave receiving laser optical system 12C are configured by optical components such as a lens, a reflecting mirror, and an optical fiber. In this embodiment, the longitudinal wave receiving laser optical system 12B and the transverse wave receiving laser optical system 12C irradiate the welding target A with the receiving laser LaT generated by the receiving laser light source 12A which is a common laser light source. A configuration may be adopted in which individual reception laser light sources 12A are provided in each of the longitudinal wave reception laser optical system 12B and the transverse wave reception laser optical system 12C.
 発生レーザ光源11A及び受信レーザ光源12Aは、特許文献1に記載されているような種々の公知のレーザ光源を利用することができる。 As the generation laser light source 11A and the reception laser light source 12A, various known laser light sources as described in Patent Document 1 can be used.
 干渉計側部13B,13Cは、干渉計を備え、受信レーザLaRの照射点からの反射光及び散乱光を用いて干渉計測を行う。反射光及び散乱光は超音波UTによる被溶接対象Aの表面変位Diの影響を受けている。このため、干渉計測によって被溶接対象Aの表面変位Diを検出することで、欠陥Deの情報を含む超音波信号13Bs,13Csを検出することができる。干渉計側部13B,13Cは干渉計測によって得られた超音波信号13Bs,13Csを電気信号として出力する。干渉計側部13B,13Cから出力される超音波信号13Bs,13Csは、超音波信号データとしてデータ記録/解析装置14に記録され、超音波信号データに基づいて欠陥Deの情報が解析される。 Interferometer side portions 13B and 13C include an interferometer, and perform interference measurement using reflected light and scattered light from the irradiation point of the reception laser LaR. The reflected light and scattered light are affected by the surface displacement Di of the workpiece A to be welded by the ultrasonic wave UT. For this reason, the ultrasonic signals 13Bs and 13Cs including the information on the defect De can be detected by detecting the surface displacement Di of the workpiece A by interference measurement. Interferometer side parts 13B and 13C output ultrasonic signals 13Bs and 13Cs obtained by the interference measurement as electric signals. The ultrasonic signals 13Bs and 13Cs output from the interferometer side portions 13B and 13C are recorded as ultrasonic signal data in the data recording / analyzing device 14, and information on the defect De is analyzed based on the ultrasonic signal data.
 干渉計側部13Bは縦波WLの干渉計測を行い、超音波信号13Bsを出力する第1干渉計測部(縦波用干渉計測部)を構成する。干渉計側部13Cは横波WTの干渉計測を行い、超音波信号13Csを出力する第2干渉計測部(横波用干渉計測部)を構成する。 The interferometer side unit 13B constitutes a first interference measurement unit (longitudinal wave interference measurement unit) that performs interference measurement of the longitudinal wave WL and outputs the ultrasonic signal 13Bs. The interferometer side unit 13C constitutes a second interference measurement unit (a transverse wave interference measurement unit) that performs interference measurement of the transverse wave WT and outputs the ultrasonic signal 13Cs.
 欠陥Deの情報解析においては、超音波信号13Bs,1Csに対応する発生レーザLaT及び受信レーザLaRの照射位置に基づいて、欠陥Deの位置の特定が行われる。欠陥Deの位置は溶接線Weに沿う周方向の位置として特定される。溶接線Weに沿う周方向の位置を特定するために、被溶接対象Aには周方向の基準位置が設定される。この基準位置は、被溶接対象Aに設けられる任意の構造に設定されてもよいし、被溶接対象Aの構造とは無関係に設定されてもよい。例えば、高圧燃料供給ポンプの場合、基準位置を設定する任意の構造として、吸入弁機構114や吐出ジョイント116等(図13)参照を用いることができる。 In the information analysis of the defect De, the position of the defect De is specified based on the irradiation positions of the generation laser LaT and the reception laser LaR corresponding to the ultrasonic signals 13Bs and 1Cs. The position of the defect De is specified as a circumferential position along the weld line We. In order to specify the circumferential position along the weld line We, a circumferential reference position is set for the welding target A. This reference position may be set to an arbitrary structure provided on the welding target A, or may be set regardless of the structure of the welding target A. For example, in the case of a high-pressure fuel supply pump, as an arbitrary structure for setting the reference position, the intake valve mechanism 114, the discharge joint 116, etc. (see FIG. 13) can be used.
 さらに本実施例では、詳細は後で説明するが、溶接深さ方向において浅い位置の欠陥Deを縦波で検出し、深い位置の欠陥Deを横波で検出する。このため、浅い位置の欠陥Deと深い位置の欠陥Deとを相対的に区別することができる。この欠陥Deの深さ情報をデータ記録/解析装置14に記録してもよい。 Further, in this embodiment, details will be described later, but a defect De at a shallow position in the welding depth direction is detected by a longitudinal wave, and a defect De at a deep position is detected by a transverse wave. For this reason, it is possible to relatively distinguish the defect De at the shallow position from the defect De at the deep position. The depth information of the defect De may be recorded in the data recording / analyzing device 14.
 レーザ超音波を用いた欠陥Deの検出原理は特許文献1に記載された内容を適用することができる。また特許文献2はレーザを用いていない点で本実施例とは異なるが、超音波を用いた欠陥Deの検出原理は特許文献2に記載された内容を適用することができる。 The content described in Patent Document 1 can be applied to the detection principle of the defect De using laser ultrasonic waves. Although Patent Document 2 is different from the present embodiment in that no laser is used, the content described in Patent Document 2 can be applied to the detection principle of the defect De using ultrasonic waves.
 次に、図4A,4B,5~11を参照して、本発明に係るレーザを用いた超音波検査方法について、具体的に説明する。 Next, an ultrasonic inspection method using a laser according to the present invention will be specifically described with reference to FIGS. 4A, 4B, and 5 to 11. FIG.
 図4Aは、レーザ照射で発生する超音波の指向性を示す図であり、熱弾性モードにおける指向性を示す図である。図4Bは、レーザ照射で発生する超音波の指向性を示す図であり、アブレーションモードにおける指向性を示す図である。 FIG. 4A is a diagram showing the directivity of ultrasonic waves generated by laser irradiation, and is a diagram showing the directivity in the thermoelastic mode. FIG. 4B is a diagram showing the directivity of ultrasonic waves generated by laser irradiation, and is a diagram showing the directivity in the ablation mode.
 熱弾性モードはレーザの照射エネルギが小さい場合に生じるモードであり、アブレーションモードはレーザの照射エネルギが大きい場合に生じるモードである。なおレーザ超音波式でない接触式のセンサを用いた場合も、超音波の指向性は図4Bと同様な指向性を持つ。 The thermoelastic mode is a mode that occurs when the laser irradiation energy is low, and the ablation mode is a mode that occurs when the laser irradiation energy is high. Even when a contact type sensor that is not a laser ultrasonic type is used, the directivity of the ultrasonic wave has the same directivity as in FIG. 4B.
 本実施例では、熱弾性モードを使用する。熱弾性モードでは、レーザを照射した場合に発生する超音波の横波WTは、照射方向に沿う軸線(0°の軸)に対して30°傾いた方向に指向性DR1を有し、超音波の縦波WLは、照射方向に沿う軸線(0°の軸)に対して65°傾いた方向に指向性DR2を有する。横波WTの指向性DR1と縦波WLの指向性DR2とは異なっている。この指向性DR1,DR2の違いにより、横波WTの伝達経路と縦波WLの伝達経路とは異なったものになる。本実施例では、横波WTと縦波WLの指向性DR1,DR2の違い(伝搬経路の違い)を利用して、溶接部Weの異なる深さに存在する欠陥Deを検出する。 In this embodiment, the thermoelastic mode is used. In the thermoelastic mode, the ultrasonic transverse wave WT generated when laser irradiation is performed has a directivity DR1 in a direction inclined by 30 ° with respect to an axis line (0 ° axis) along the irradiation direction. The longitudinal wave WL has directivity DR2 in a direction inclined by 65 ° with respect to an axis line (0 ° axis) along the irradiation direction. The directivity DR1 of the transverse wave WT is different from the directivity DR2 of the longitudinal wave WL. Due to the difference between the directivities DR1 and DR2, the transmission path of the transverse wave WT and the transmission path of the longitudinal wave WL are different. In the present embodiment, the defect De existing at different depths of the welded portion We is detected by using the difference between the directivities DR1 and DR2 of the transverse wave WT and the longitudinal wave WL (difference in propagation path).
 一方、アブレーションモードは、熱弾性モードに対して指向性DR1’,DR2’が拡大し、横波WT及び縦波WLの指向性DR1’,DR2’の違い(伝搬経路の違い)を利用した欠陥Deの検出が難しくなる。 On the other hand, in the ablation mode, the directivity DR1 ′ and DR2 ′ are expanded with respect to the thermoelastic mode, and the defect De using the difference between the directivity DR1 ′ and DR2 ′ of the transverse wave WT and the longitudinal wave WL (difference in propagation path). Is difficult to detect.
 図5は、本実施例に係る超音波検査方法を説明する概念図であり、横波WTによる超音波検査方法の特徴を示す図である。 FIG. 5 is a conceptual diagram for explaining the ultrasonic inspection method according to the present embodiment, and is a view showing the characteristics of the ultrasonic inspection method using the transverse wave WT.
 図5は、第1部材201と第2部材202とが重ね継手を構成した状態で、レーザ溶接による溶接部Weにより接合された状態を示している。第1部材201と第2部材202とは、第1部材201の面201Aと第2部材202の面202Aとが圧着された状態で、レーザ溶接されており、第1部材201と第2部材202との間に境界面SBが構成されている。 FIG. 5 shows a state in which the first member 201 and the second member 202 are joined by a welded portion We by laser welding in a state where a lap joint is formed. The first member 201 and the second member 202 are laser welded in a state where the surface 201A of the first member 201 and the surface 202A of the second member 202 are pressure-bonded, and the first member 201 and the second member 202 are bonded. A boundary surface SB is formed between the two.
 レーザ溶接は第1部材201側からレーザが照射されて行われる。溶接部Weは線状の溶接線を形成する。図5は溶接線Weに垂直な断面を示している。本実施例の溶接部Weは、溶接線Weの線幅ΔWeに対して溶接深さD_Weが大きく形成される。この場合、溶接線Weの線幅ΔWeは第1部材201の表面に現れる線幅である。なお本実施例では第1部材201の厚さ寸法は1.2mmであり、溶接線Weの線幅ΔWeは第1部材201の厚さ寸法よりも小さい1.0mm以下に形成される。また境界面SBにおける溶融部Weの幅ΔWe_SBは線幅ΔWeの半分以下(1/2以下)であり、0.5mm以下に形成される。 Laser welding is performed by irradiating laser from the first member 201 side. The welded portion We forms a linear weld line. FIG. 5 shows a cross section perpendicular to the weld line We. In the welded portion We of the present embodiment, the weld depth D_We is formed larger than the line width ΔWe of the weld line We. In this case, the line width ΔWe of the welding line We is a line width that appears on the surface of the first member 201. In this embodiment, the thickness dimension of the first member 201 is 1.2 mm, and the line width ΔWe of the welding line We is formed to be 1.0 mm or less, which is smaller than the thickness dimension of the first member 201. Further, the width ΔWe_SB of the melted portion We in the boundary surface SB is not more than half (½ or less) of the line width ΔWe, and is formed to be 0.5 mm or less.
 溶接線Weを挟んで溶接線Weの一方の側方に位置する横波用発生レーザ照射位置PTTに、横波WTを発生させる横波用発生レーザLaTTが照射される。横波用発生レーザ照射位置PTTに照射された横波用発生レーザLaTTは超音波UTの横波WTを発生させる。横波WTはレーザの照射軸線Ax_LaTTに対して30°傾いた方向に伝搬し、欠陥De2で反射されて溶接線Weの他方の側方に位置する検出位置(横波用受信レーザ照射位置)PRTに伝搬する。検出位置PRTには横波用受信レーザLaRTが照射され、検出位置PRTに生じる微小変位Di(図1参照)が検出される。 The generated laser LaTT for generating the transverse wave WT is irradiated to the irradiated laser irradiation position PTT for the transverse wave positioned on one side of the welding line We with the weld line We interposed therebetween. The transverse wave generation laser LaTT irradiated to the transverse wave generation laser irradiation position PTT generates a transverse wave WT of the ultrasonic wave UT. The transverse wave WT propagates in a direction inclined by 30 ° with respect to the laser irradiation axis Ax_LaTT, is reflected by the defect De2, and propagates to the detection position (lateral laser receiving laser irradiation position) PRT located on the other side of the welding line We. To do. The detection position PRT is irradiated with the transverse wave receiving laser LaRT, and a minute displacement Di (see FIG. 1) generated at the detection position PRT is detected.
 横波用発生レーザLaTTは溶接線Weの幅方向の中心(中心線)C_Weから溶接線Weに直交する方向に、間隔lttだけ離れた横波用発生レーザ照射位置PTTに照射される。横波用受信レーザLaRTは溶接線Weの幅方向の中心(中心線)C_Weから溶接線Weに直交する方向に、間隔lrtだけ離れた横波用受信レーザ照射位置に照射される。 The transverse wave generation laser LaTT is irradiated to the transverse wave generation laser irradiation position PTT that is separated from the center (center line) C_We in the width direction of the welding line We by a distance ltt in a direction orthogonal to the welding line We. The transverse wave receiving laser LaRT is irradiated to the transverse wave receiving laser irradiation position separated from the center (center line) C_We in the width direction of the welding line We by a distance lrt in a direction orthogonal to the welding line We.
 図6は、横波WTによる欠陥Deの検出が可能な範囲と検出が困難な範囲を示す図である。図7は、横波WTによる超音波信号の時間変化を示す図である。 FIG. 6 is a diagram showing a range in which the defect De can be detected by the transverse wave WT and a range in which the detection is difficult. FIG. 7 is a diagram illustrating a time change of the ultrasonic signal due to the transverse wave WT.
 横波WTによる検出では、境界面SBの深さにある欠陥De2及び境界面SBよりも深い位置にある欠陥De1を検出することができる。これは、欠陥De1,De2がある場合と欠陥Deが無い場合とで、超音波信号の時間領域II(0.9μs以降、より詳しくは0.9~1.2μs)に差が表れるためである。 In the detection by the transverse wave WT, it is possible to detect the defect De2 at the depth of the boundary surface SB and the defect De1 at a position deeper than the boundary surface SB. This is because a difference appears in the time domain II of the ultrasonic signal (from 0.9 μs, more specifically from 0.9 to 1.2 μs) depending on whether the defects De1 and De2 are present or not. .
 図7では、境界面SBよりも深い位置にある欠陥De1及び境界面SBよりも浅い位置にある欠陥De3が存在する場合の超音波信号13Cs1と、欠陥Deが存在しない場合の超音波信号13Cs2と、を概念的に表現している。 In FIG. 7, the ultrasonic signal 13Cs1 when the defect De1 located deeper than the boundary surface SB and the defect De3 located shallower than the boundary surface SB exist, and the ultrasonic signal 13Cs2 when no defect De exists. Is expressed conceptually.
 超音波信号13Cs1は、表面波WSによって生じるピークPkWSと、欠陥De1によって生じるピークPkDe1と、欠陥De3によって生じるピークPkDe3と、有する。表面波WSによって生じるピークPkWS及び欠陥De3によって生じるピークPkDe3は時間領域I(0.9μs以前)に存在し、ピークPkWSとピークPkDe3とは重なるため区別することが困難である。一方、欠陥De1によって生じるピークPkDe1は時間領域II(0.9μs以降)に存在し、ピークPkWSとピークPkDe1とは区別することができる。境界面SBの深さに欠陥De2がある場合も時間領域II(0.9μs以降)にピークが生じ、欠陥De2によるピークはピークPkWSと区別することができる。 The ultrasonic signal 13Cs1 has a peak PkWS caused by the surface wave WS, a peak PkDe1 caused by the defect De1, and a peak PkDe3 caused by the defect De3. The peak PkWS generated by the surface wave WS and the peak PkDe3 generated by the defect De3 exist in the time domain I (before 0.9 μs), and the peak PkWS and the peak PkDe3 are difficult to distinguish from each other. On the other hand, the peak PkDe1 generated by the defect De1 exists in the time domain II (0.9 μs or later), and the peak PkWS and the peak PkDe1 can be distinguished. Even when there is a defect De2 at the depth of the boundary surface SB, a peak occurs in the time domain II (0.9 μs or later), and the peak due to the defect De2 can be distinguished from the peak PkWS.
 従って、境界面SBの深さにある欠陥De2及び境界面SBよりも深い位置にある欠陥De1は横波WTによって検出することができる。一方、境界面SBよりも浅い位置にある欠陥De3については、横波WTによって検出することは困難である。 Therefore, the defect De2 at the depth of the boundary surface SB and the defect De1 at a position deeper than the boundary surface SB can be detected by the transverse wave WT. On the other hand, it is difficult to detect the defect De3 located at a position shallower than the boundary surface SB by the transverse wave WT.
 境界面SBから深い位置に分布する欠陥De1,De2を検出するために、横波用発生レーザ照射位置PTT及び横波用受信レーザ照射位置PRTを、溶接線Weに直交する方向に変化させるとよい。 In order to detect the defects De1 and De2 distributed deep from the boundary surface SB, the transverse wave generation laser irradiation position PTT and the transverse wave reception laser irradiation position PRT may be changed in a direction perpendicular to the welding line We.
 図8は、本実施例に係る超音波検査方法を説明する概念図であり、縦波WLによる超音波検査方法の特徴を示している。 FIG. 8 is a conceptual diagram for explaining the ultrasonic inspection method according to the present embodiment, and shows the characteristics of the ultrasonic inspection method using the longitudinal wave WL.
 図8の被溶接対象Aは図5と同様に溶接されている。 8 to be welded A is welded in the same manner as in FIG.
 溶接線Weを挟んで溶接線Weの一方の側方に位置する縦波用発生レーザ照射位置PTLに、縦波WLを発生させる縦波用発生レーザLaTLが照射される。縦波用発生レーザ照射位置PTLに照射された縦波用発生レーザLaTLは超音波UTの縦波WLを発生させる。縦波WLはレーザの照射軸線Ax_LaTL対して65°傾いた方向に伝搬し、欠陥De2で反射されて溶接線Weの他方の側方に位置する検出位置(縦波用受信レーザ照射位置)PRLに伝搬する。検出位置PRLには縦波用受信レーザLaRLが照射され、検出位置PRLに生じる微小変位Di(図1参照)が検出される。 The longitudinal wave generation laser LaTL for generating the longitudinal wave WL is irradiated to the longitudinal wave generation laser irradiation position PTL located on one side of the welding line We across the welding line We. The longitudinal wave generation laser LaTL irradiated to the longitudinal wave generation laser irradiation position PTL generates a longitudinal wave WL of the ultrasonic wave UT. The longitudinal wave WL propagates in a direction inclined by 65 ° with respect to the laser irradiation axis Ax_LaTL, is reflected by the defect De2, and is detected at the detection position (vertical wave receiving laser irradiation position) PRL located on the other side of the welding line We. Propagate. The detection position PRL is irradiated with a longitudinal wave reception laser LaRL, and a minute displacement Di (see FIG. 1) generated at the detection position PRL is detected.
 縦波用発生レーザLaTLは溶接線Weの幅方向の中心(中心線)C_Weから溶接線Weに直交する方向に、間隔ltlだけ離れた縦波用発生レーザ照射位置PTLに照射される。縦波用受信レーザLaRLは溶接線Weの幅方向の中心(中心線)C_Weから溶接線Weに直交する方向に、間隔lrlだけ離れた縦波用受信レーザ照射位置PRLに照射される。この場合、間隔ltlは間隔lttよりも大きく、間隔lrlは間隔lrtよりも大きい。すなわち、縦波用発生レーザLaTLは横波用発生レーザLaTTに対して溶接線Weの中心(中心線)C_Weから離れた位置に照射され、縦波用受信レーザLaRLは横波用受信レーザLaRTに対して溶接線Weの中心(中心線)C_Weから離れた位置に照射される。このため、縦波用発生レーザLaTL及び縦波用受信レーザLaRLは横波用発生レーザLaTT及び横波用受信レーザLaRTの外側から照射される。 Longitudinal wave generation laser LaTL is irradiated to a longitudinal wave generation laser irradiation position PTL separated from the center (center line) C_We of the welding line We in the direction orthogonal to the welding line We by an interval of ltl. The longitudinal wave reception laser LaRL is irradiated to the longitudinal wave reception laser irradiation position PRL which is separated from the center (center line) C_We in the width direction of the welding line We by a distance lrl in a direction orthogonal to the welding line We. In this case, the interval ltl is larger than the interval ltt, and the interval lrl is larger than the interval lrt. That is, the longitudinal wave generating laser LaTL is irradiated to a position away from the center (center line) C_We of the welding line We with respect to the transverse wave generating laser LaTT, and the longitudinal wave receiving laser LaRL is irradiated with respect to the transverse wave receiving laser LaRT. Irradiated to a position away from the center (center line) C_We of the welding line We. For this reason, the longitudinal wave generation laser LaTL and the longitudinal wave reception laser LaRL are irradiated from the outside of the transverse wave generation laser LaTT and the transverse wave reception laser LaRT.
 図9は、縦波WLによる欠陥Deの検出が可能な範囲と検出が困難な範囲を示す図である。図10は、縦波WLによる超音波信号の時間変化を示す図である。 FIG. 9 is a diagram showing a range in which the defect De can be detected by the longitudinal wave WL and a range in which the detection is difficult. FIG. 10 is a diagram illustrating a time change of the ultrasonic signal due to the longitudinal wave WL.
 縦波WLによる検出では、境界面SBの深さにある欠陥De2及び境界面SBよりも浅い位置にある欠陥De3を検出することができる。これは、欠陥De2,De3がある場合と欠陥Deが無い場合とで、超音波信号の時間領域I(0.9μs以前、より詳しくは0.6~0.9μs)に差が表れるためである。 In the detection by the longitudinal wave WL, it is possible to detect the defect De2 at the depth of the boundary surface SB and the defect De3 at a position shallower than the boundary surface SB. This is because a difference appears in the time domain I of the ultrasonic signal (before 0.9 μs, more specifically 0.6 to 0.9 μs) depending on whether there is a defect De2 or De3 and no defect De. .
 図10では、境界面SBよりも深い位置にある欠陥De1及び境界面SBよりも浅い位置にある欠陥De3が存在する場合の超音波信号13Bs1と、欠陥Deが存在しない場合の超音波信号13Bs2と、を概念的に表現している。 In FIG. 10, the ultrasonic signal 13Bs1 when the defect De1 located deeper than the boundary surface SB and the defect De3 located shallower than the boundary surface SB exist, and the ultrasonic signal 13Bs2 when no defect De exists. Is expressed conceptually.
 超音波信号13Bs1は、表面波WSによって生じるピークPkWSと、欠陥De3によって生じるピークPkDe3と、有する。縦波WLは、レーザの照射軸線Ax_LaTLに対して65°傾いた方向に伝搬するため、境界面SBで反射され、境界面SBの深さよりも深い位置に入り込むことが困難である。このため縦波WLは、境界面SBの深さよりも深い位置に分布する欠陥De1を検出することができない。 The ultrasonic signal 13Bs1 has a peak PkWS caused by the surface wave WS and a peak PkDe3 caused by the defect De3. Since the longitudinal wave WL propagates in a direction inclined by 65 ° with respect to the laser irradiation axis Ax_LaTL, it is reflected by the boundary surface SB and it is difficult to enter a position deeper than the depth of the boundary surface SB. For this reason, the longitudinal wave WL cannot detect the defect De1 distributed at a position deeper than the depth of the boundary surface SB.
 表面波WSによって生じるピークPkWSは時間領域II(0.9μs以降、より詳しくは0.9~1.2μs)に現れる。一方、欠陥De3によって生じるピークPkDe3は時間領域Iに現れ、ピークPkWSとピークPkDe1とを区別することができる。境界面SBの深さに欠陥De2がある場合、時間領域II(0.9μs以降)にピークが生じるものの、ピークPkWSよりも早い時間にピークPkWSからずれて生じるため、欠陥De2によるピークはピークPkWSと区別することができる。 The peak PkWS generated by the surface wave WS appears in the time domain II (from 0.9 μs, more specifically from 0.9 to 1.2 μs). On the other hand, the peak PkDe3 caused by the defect De3 appears in the time domain I, and the peak PkWS and the peak PkDe1 can be distinguished. When there is a defect De2 at the depth of the boundary surface SB, a peak is generated in the time domain II (after 0.9 μs), but is shifted from the peak PkWS at a time earlier than the peak PkWS, so the peak due to the defect De2 is the peak PkWS. And can be distinguished.
 従って、境界面SBの深さにある欠陥De2及び境界面SBよりも浅い位置にある欠陥De3は縦波WLによって検出することができる。一方、境界面SBよりも深い位置にある欠陥De1については、縦波WLによって検出することは困難である。 Therefore, the defect De2 at the depth of the boundary surface SB and the defect De3 at a position shallower than the boundary surface SB can be detected by the longitudinal wave WL. On the other hand, it is difficult to detect the defect De1 located deeper than the boundary surface SB by the longitudinal wave WL.
 なお、境界面SBから浅い位置に分布する欠陥De2,De3を検出するために、縦波用発生レーザ照射位置PTL及び縦波用受信レーザ照射位置PRLを、溶接線Weに直交する方向に変化させるとよい。 In addition, in order to detect the defects De2 and De3 distributed in shallow positions from the boundary surface SB, the longitudinal wave generation laser irradiation position PTL and the longitudinal wave reception laser irradiation position PRL are changed in a direction orthogonal to the welding line We. Good.
 図11は、横波WTと縦波WLを併用した本発明に係るレーザ超音波検査方法を示す概念図である。 FIG. 11 is a conceptual diagram showing a laser ultrasonic inspection method according to the present invention using both a transverse wave WT and a longitudinal wave WL.
 本実施例の溶接部Weの断面形状は、幅ΔWeが小さく、深さ方向の長さD_Weが大きい、狭隘な断面形状を有する。この狭隘な断面形状に対して、本実施例の超音波検出方法は、境界面SBよりも浅い位置の欠陥De3を縦波超音波WLで検出し、境界面SBよりも深い位置の欠陥De1を横波超音波WTで検出する。境界面SBの深さにある欠陥De2は、縦波超音波WL又は横波超音波WTのいずれか、或いは縦波超音波WL及び横波超音波WTの両方で検出するとよい。 The cross-sectional shape of the welded portion We of the present embodiment has a narrow cross-sectional shape with a small width ΔWe and a large length D_We in the depth direction. For this narrow cross-sectional shape, the ultrasonic detection method of the present embodiment detects the defect De3 at a position shallower than the boundary surface SB by the longitudinal wave WL and detects the defect De1 at a position deeper than the boundary surface SB. Detect with transverse wave ultrasonic WT. The defect De2 at the depth of the boundary surface SB may be detected by either the longitudinal wave ultrasonic wave WL or the transverse wave ultrasonic wave WT, or by both the longitudinal wave ultrasonic wave WL and the transverse wave ultrasonic wave WT.
 このために、縦波用発生レーザLaTL及び縦波用受信レーザLaRLは横波用発生レーザLaTT及び横波用受信レーザLaRTの外側から照射される。すなわち、横波用発生レーザ照射位置PTT及び横波用受信レーザ照射位置PRTは縦波用発生レーザ照射位置PTL及び縦波用受信レーザ照射位置PRLに対して内側(溶接線We寄り)に位置するように設けられ、縦波用発生レーザ照射位置PTL及び縦波用受信レーザ照射位置PRLは横波用発生レーザ照射位置PTT及び横波用受信レーザ照射位置PRTに対して外側(溶接線Weから離れる側)に位置するように設けられる。 Therefore, the longitudinal wave generation laser LaTL and the longitudinal wave reception laser LaRL are irradiated from the outside of the transverse wave generation laser LaTT and the transverse wave reception laser LaRT. That is, the transverse wave generation laser irradiation position PTT and the transverse wave reception laser irradiation position PRT are located on the inner side (closer to the welding line We) than the longitudinal wave generation laser irradiation position PTL and the longitudinal wave reception laser irradiation position PRL. The longitudinal-wave generating laser irradiation position PTL and the longitudinal-wave receiving laser irradiation position PRL are located on the outer side (side away from the welding line We) with respect to the transverse-wave generating laser irradiation position PTT and the transverse-wave receiving laser irradiation position PRT. To be provided.
 本実施例では、縦波用発生レーザLaTL及び縦波用受信レーザLaRLは、溶接線Weと直交する方向に異なった位置にそれぞれ照射される。これにより、表面波の影響(ノイズ)を受けることなく、欠陥Deを検出することができる。 In this embodiment, the longitudinal wave generating laser LaTL and the longitudinal wave receiving laser LaRL are irradiated at different positions in the direction orthogonal to the welding line We. Thereby, the defect De can be detected without receiving the influence (noise) of the surface wave.
 なお、縦波用発生レーザ光学系11Bによる縦波用発生レーザLaTL(図8参照)の照射位置PTLには、縦波WLと横波(図示せず)の両方の超音波が発生する。縦波用受信レーザ光学系12B及び干渉計13Bでは、縦波用発生レーザ光学系11Bからの縦波用発生レーザLaTLの照射により発生した縦波及び横波のうち、縦波WLを用いて欠陥Deの検出を行う。また、横波用発生レーザ光学系11Cによる横波用発生レーザLaTT(図5参照)の照射位置PTTには縦波(図示せず)と横波WTの両方の超音波が発生する。横波用受信レーザ光学系12C及び干渉計13Cでは、横波用発生レーザ光学系11Cからの横波用発生レーザLaTTの照射により発生した縦波及び横波のうち、横波WTを用いて欠陥Deの検出を行う。 It should be noted that both longitudinal wave WL and transverse wave (not shown) ultrasonic waves are generated at the irradiation position PTL of the longitudinal wave generation laser LaTL (see FIG. 8) by the longitudinal wave generation laser optical system 11B. In the longitudinal wave receiving laser optical system 12B and the interferometer 13B, the longitudinal wave and the transverse wave generated by the irradiation of the longitudinal wave generating laser LaTL from the longitudinal wave generating laser optical system 11B are used to detect the defect De using the longitudinal wave WL. Detection is performed. In addition, ultrasonic waves of both a longitudinal wave (not shown) and a transverse wave WT are generated at the irradiation position PTT of the transverse wave generation laser LaTT (see FIG. 5) by the transverse wave generation laser optical system 11C. In the transverse wave receiving laser optical system 12C and the interferometer 13C, the defect De is detected by using the transverse wave WT among the longitudinal wave and the transverse wave generated by the irradiation of the transverse laser generating laser LaTT from the transverse wave generating laser optical system 11C. .
 本実施例では、レーザ超音波の指向性の特性を利用して、横波WTに加えて縦波WLを併用する。横波WTと縦波WLとを併用することで、境界面SBを含む上下の領域を確実に検査することが可能になる。レーザ超音波の横波WTは約30度方向に指向性を持ち、その指向性(指向角30°)と第1部材201の板厚で決まる送受信位置に横波用発生レーザLaTT及び横波用受信レーザLaRTを照射する。レーザ超音波の縦波WLは約65度方向に指向性を持ち、その指向性(指向角65°)と第1部材201の板厚で決まる送受信位置に縦波用発生レーザLaTL及び縦波用受信レーザLaRLを照射する。 In this embodiment, the longitudinal wave WL is used in addition to the transverse wave WT by utilizing the directivity characteristic of the laser ultrasonic wave. By using the transverse wave WT and the longitudinal wave WL in combination, it is possible to reliably inspect the upper and lower regions including the boundary surface SB. The transverse wave WT of the laser ultrasonic wave has directivity in a direction of about 30 degrees, and the transverse wave generation laser LaTT and the transverse wave reception laser LaRT are arranged at transmission / reception positions determined by the directivity (directivity angle 30 °) and the plate thickness of the first member 201. Irradiate. The longitudinal wave WL of the laser ultrasonic wave has directivity in a direction of about 65 degrees, and the longitudinal wave generation laser LaTL and the longitudinal wave are at the transmission / reception position determined by the directivity (directivity angle 65 °) and the plate thickness of the first member 201. The receiving laser LaRL is irradiated.
 すなわち、境界面SBより浅い位置の欠陥De3の位置は、縦波超音波WLの指向角(65°)に基づいて検出することができる。また、境界面SBより深い位置の欠陥De1の位置は、横波超音波WTの指向角(30°)に基づいて検出することができる。 That is, the position of the defect De3 shallower than the boundary surface SB can be detected based on the directivity angle (65 °) of the longitudinal wave WL. Further, the position of the defect De1 at a position deeper than the boundary surface SB can be detected based on the directivity angle (30 °) of the transverse ultrasonic wave WT.
 本実施例では、溶接ビードを形成する溶接部Weは線状の溶接線を構成し、溶接線Weの線幅ΔWeは第1部材201の厚さ寸法よりも小さい狭隘な断面形状を有する溶接部Weが形成される。本実施例では、横波WTと縦波WLとを併用することで、境界面SBを含む上下の領域に存在する欠陥Deを確実に検査することができる。 In this embodiment, the welded portion We that forms the weld bead constitutes a linear weld line, and the line width ΔWe of the weld line We has a narrow cross-sectional shape that is smaller than the thickness dimension of the first member 201. We are formed. In the present embodiment, by using the transverse wave WT and the longitudinal wave WL in combination, the defect De existing in the upper and lower regions including the boundary surface SB can be reliably inspected.
 また本実施例では、縦波超音波WLは縦波用発生レーザ照射位置PTLから境界面SBで反射されることなく境界面SBより浅い位置の欠陥De3に伝搬する。また横波超音波WTは横波用発生レーザ照射位置PTTから境界面SBで反射されることなく境界面SBより深い位置の欠陥De1に伝搬する。このため、反射に係る複雑な伝搬経路に配慮する必要がなく、欠陥De1,De2,De3の位置を簡単に計算することができる。 Also, in this embodiment, the longitudinal wave ultrasonic wave WL propagates from the longitudinal wave generation laser irradiation position PTL to the defect De3 at a position shallower than the boundary surface SB without being reflected by the boundary surface SB. The transverse wave ultrasonic wave WT propagates from the transverse wave generation laser irradiation position PTT to the defect De1 at a position deeper than the boundary surface SB without being reflected by the boundary surface SB. For this reason, it is not necessary to consider a complicated propagation path related to reflection, and the positions of the defects De1, De2, and De3 can be easily calculated.
 図12は、縦波用発生レーザLaTL、縦波用受信レーザLaRL、横波用発生レーザLaTT、及び横波用受信レーザLaRTの照射状態を示す概念図である。 FIG. 12 is a conceptual diagram showing an irradiation state of the longitudinal wave generating laser LaTL, the longitudinal wave receiving laser LaRL, the transverse wave generating laser LaTT, and the transverse wave receiving laser LaRT.
 本実施例では、縦波用発生レーザLaTL及び横波用発生レーザLaTTは溶接線Weに沿う方向に長手方向を有するライン状焦点を形成するように照射され、縦波用受信レーザLaRL及び横波用受信レーザLaRTは点状焦点を形成するように照射される。この場合、図12に示すように、縦波超音波WL及び横波超音波WTは、溶接線Weに沿う方向におけるライン状焦点の長さに対して絞られた範囲を伝搬する。 In the present embodiment, the longitudinal wave generation laser LaTL and the transverse wave generation laser LaTT are irradiated so as to form a linear focal point having a longitudinal direction in the direction along the welding line We, and the longitudinal wave reception laser LaRL and the transverse wave reception are obtained. The laser LaRT is irradiated so as to form a point-like focus. In this case, as shown in FIG. 12, the longitudinal wave ultrasonic wave WL and the transverse wave ultrasonic wave WT propagate in a narrowed range with respect to the length of the line-shaped focal point in the direction along the welding line We.
 本実施例では、上述した焦点配置により、縦波用受信レーザLaRLの点状焦点と横波用受信レーザLaRTの点状焦点とを近接させて配置することができ、装置をコンパクトに構成することができる。 In this embodiment, the focal point arrangement described above allows the point-like focal point of the longitudinal wave receiving laser LaRL and the point-like focal point of the transverse wave receiving laser LaRT to be arranged close to each other, thereby making the apparatus compact. it can.
 図13は、本発明に係る高圧燃料供給ポンプ100の製造工程を示す図である。 FIG. 13 is a diagram showing a manufacturing process of the high-pressure fuel supply pump 100 according to the present invention.
 図13では、レーザ溶接及び超音波検査に係る工程部分のみを示しており、レーザ溶接装置2によるレーザ溶接を行いながら超音波検査装置1による超音波検査を行うインプロセス検査による製造方法を示している。 In FIG. 13, only the process part which concerns on laser welding and ultrasonic inspection is shown, and the manufacturing method by the in-process inspection which performs ultrasonic inspection by the ultrasonic inspection apparatus 1 while performing laser welding by the laser welding apparatus 2 is shown. Yes.
 本実施例では、レーザ溶接装置2で高圧燃料供給ポンプ100にレーザ溶接を行いながら、同時に超音波検査装置1でレーザ溶接部Weに発生する欠陥Deを検出する。このために、ステップS1で、溶接仕様データに基づいて溶接データが設定される。溶接仕様データは、溶接位置やレーザ溶接のレーザパワー等のデータが制御装置3に設定される。 In this embodiment, the laser welding apparatus 2 performs laser welding on the high-pressure fuel supply pump 100, and at the same time, the ultrasonic inspection apparatus 1 detects a defect De generated in the laser welded portion We. For this purpose, in step S1, welding data is set based on the welding specification data. As the welding specification data, data such as a welding position and laser power of laser welding are set in the control device 3.
 制御装置3は、溶接データに基づいてレーザ溶接装置2を制御して被溶接対象Aにレーザ溶接を行うと共に、溶接された溶接部Weの検査を超音波検査装置1によって実行する。すなわちレーザ溶接工程S2を実行しながら、超音波検査工程S3を実行する。超音波検査工程S3の実行に伴って、溶接部Weにおける欠陥Deの有無をステップS4において判定する。欠陥Deの存在が判定された場合は、溶接データの修正を行い、レーザ溶接工程S2を繰り返す。レーザ溶接工程S2の再実行時にも超音波検査工程S3は実行される。 The control device 3 controls the laser welding device 2 on the basis of the welding data to perform laser welding on the welding target A, and executes an inspection of the welded portion We by the ultrasonic inspection device 1. That is, the ultrasonic inspection process S3 is performed while performing the laser welding process S2. With the execution of the ultrasonic inspection step S3, the presence or absence of a defect De in the welded portion We is determined in step S4. When the presence of the defect De is determined, the welding data is corrected and the laser welding process S2 is repeated. The ultrasonic inspection process S3 is also executed when the laser welding process S2 is re-executed.
 ステップS4における欠陥Deの有無の判定は、レーザ溶接工程S2が完了した時点で行ってもよいし、レーザ溶接工程S2の実行中に行われてもよい。 The determination of the presence or absence of the defect De in step S4 may be performed when the laser welding process S2 is completed, or may be performed during the execution of the laser welding process S2.
 本実施例では、レーザ溶接装置2によるレーザ溶接と超音波検査装置1による超音波検査とを同時実施することができ、レーザ溶接で不具合があった場合に、その不具合を超音波検査装置1で即検出し、再溶接することで、製造工程における高圧燃料供給ポンプ100の歩留まりを向上することができる。 In this embodiment, laser welding by the laser welding apparatus 2 and ultrasonic inspection by the ultrasonic inspection apparatus 1 can be performed at the same time. If there is a defect in laser welding, the defect is detected by the ultrasonic inspection apparatus 1. Immediate detection and re-welding can improve the yield of the high-pressure fuel supply pump 100 in the manufacturing process.
 図14を参照して、本発明を高圧燃料供給ポンプ100に適用した例を説明する。図14は、本発明に係る高圧燃料ポンプ100の一実施例を示す断面図である。 An example in which the present invention is applied to the high-pressure fuel supply pump 100 will be described with reference to FIG. FIG. 14 is a cross-sectional view showing an embodiment of the high-pressure fuel pump 100 according to the present invention.
 高圧燃料供給ポンプ100は、燃料タンクからフィードポンプ(図示せず)によって汲み上げられた燃料を高圧にして燃料噴射弁に供給するポンプである。高圧燃料供給ポンプ100は、車両に搭載される内燃機関(エンジン)に用いられる。以下、高圧燃料供給ポンプ100をポンプ100と呼んで説明する。 The high-pressure fuel supply pump 100 is a pump that supplies high pressure fuel pumped from a fuel tank by a feed pump (not shown) to the fuel injection valve. The high-pressure fuel supply pump 100 is used for an internal combustion engine (engine) mounted on a vehicle. Hereinafter, the high-pressure fuel supply pump 100 will be referred to as a pump 100 and will be described.
 ポンプ本体101には、加圧室107が形成され、加圧室107の内部にプランジャ104の上端部(先端部)が挿入される。プランジャ104は、加圧室107内で往復運動し、燃料を加圧する。 A pressurizing chamber 107 is formed in the pump main body 101, and an upper end portion (tip portion) of the plunger 104 is inserted into the pressurizing chamber 107. The plunger 104 reciprocates in the pressurizing chamber 107 to pressurize the fuel.
 ポンプ本体(ポンプハウジング)101はエンジンに固定するための取付けフランジ102を有する。取付けフランジ102はポンプ本体101にレーザ溶接により全周を溶接結合されている。取付けフランジ102とポンプ本体101との溶接個所301を第一溶接部という。 The pump body (pump housing) 101 has a mounting flange 102 for fixing to the engine. The mounting flange 102 is welded to the pump body 101 by laser welding on the entire circumference. A welding portion 301 between the mounting flange 102 and the pump main body 101 is referred to as a first welded portion.
 ポンプ本体101には、吸入弁機構114と吐出弁機構115とが設けられる。吸入弁機構114のボディ114cは、ポンプ本体101にレーザ溶接により固定される。この溶接個所302を第二溶接部という。第二溶接部302では、吸入弁機構114のボディ114cの外周が全周に亘って溶接されている。吐出弁機構115の下流側には吐出ジョイント116が設けられる。吐出ジョイント116はポンプ本体101にレーザ溶接303により固定される。この溶接個所303を第三溶接部という。第三溶接部303では、吐出ジョイント116の外周が全周に亘って溶接されている。 The pump body 101 is provided with a suction valve mechanism 114 and a discharge valve mechanism 115. The body 114c of the suction valve mechanism 114 is fixed to the pump body 101 by laser welding. This weld location 302 is referred to as a second weld. In the second welded portion 302, the outer periphery of the body 114c of the suction valve mechanism 114 is welded over the entire periphery. A discharge joint 116 is provided on the downstream side of the discharge valve mechanism 115. The discharge joint 116 is fixed to the pump body 101 by laser welding 303. This weld location 303 is referred to as a third weld. In the third welded portion 303, the outer periphery of the discharge joint 116 is welded over the entire circumference.
 ポンプ本体101の上部には、ダンパカバー111が取り付けられる。ダンパカバー111はポンプ本体101にレーザ溶接により固定されている。この溶接個所304を第四溶接部という。第四溶接部304は全周に亘って溶接されている。 A damper cover 111 is attached to the top of the pump body 101. The damper cover 111 is fixed to the pump body 101 by laser welding. This weld location 304 is referred to as a fourth weld. The fourth welded portion 304 is welded over the entire circumference.
 ダンパカバー111には、吸入ジョイント112がレーザ溶接により固定されている。
この溶接個所305を第五溶接部という。第五溶接部305は、吸入ジョイント112の外周が全周に亘って溶接されている。
A suction joint 112 is fixed to the damper cover 111 by laser welding.
This weld location 305 is referred to as a fifth weld. As for the 5th welding part 305, the outer periphery of the suction joint 112 is welded over the perimeter.
 第一溶接部301、第二溶接部302及び第三溶接部303の溶接継ぎ手は突合せ溶接構造である。これらの溶接部に本実施例のインプロセス検査工程を適用することも可能である。第一溶接部301では、レーザ400(LaW)を溶接対象物表面に垂直に照射する。第二溶接部302及び第三溶接部303では、溶接対象物表面に垂直な方向からθ°傾斜させて、レーザ400(LaW)を照射する。 The weld joints of the first welded portion 301, the second welded portion 302, and the third welded portion 303 have a butt weld structure. It is also possible to apply the in-process inspection process of this embodiment to these welds. In the 1st welding part 301, the laser 400 (LaW) is irradiated to the welding object surface perpendicularly. In the second welded portion 302 and the third welded portion 303, the laser 400 (LaW) is irradiated with an inclination of θ ° from the direction perpendicular to the surface of the welding object.
 第四溶接部304及び第五溶接部305の溶接継ぎ手は重ね溶接構造であり、第四溶接部304及び第五溶接部305は本実施例のインプロセス検査工程を適用して溶接される。第四溶接部304及び第五溶接部305では、レーザ400(LaW)を溶接対象物表面に垂直に照射する。 The weld joint of the fourth welded part 304 and the fifth welded part 305 has a lap weld structure, and the fourth welded part 304 and the fifth welded part 305 are welded by applying the in-process inspection process of this embodiment. In the fourth welded portion 304 and the fifth welded portion 305, a laser 400 (LaW) is irradiated perpendicularly to the surface of the welding object.
 ポンプ100では燃料漏れは許されない。ポンプ本体101、吸入弁機構114のボディ114c、吐出ジョイント116、ダンパカバー111及び吸入ジョイント112は、燃料が流れる燃料通路を構成する部品である。そして第二溶接部302~第五溶接部305は燃料のシールを兼ねる。このため、燃料流路が形成される部品の溶接には、有効溶接長を十分に確保することが望ましい。また、ポンプ100は厳しい環境下で使用されることが想定される。ロバスト性に優れた溶接プロセスを用いることにより、ポンプ100の信頼性を高めることができる。 The fuel leakage is not allowed in the pump 100. The pump body 101, the body 114c of the suction valve mechanism 114, the discharge joint 116, the damper cover 111, and the suction joint 112 are components that constitute a fuel passage through which fuel flows. The second welded portion 302 to the fifth welded portion 305 also serve as a fuel seal. For this reason, it is desirable to ensure a sufficient effective weld length for welding of the parts in which the fuel flow path is formed. Moreover, it is assumed that the pump 100 is used in a severe environment. By using a welding process having excellent robustness, the reliability of the pump 100 can be increased.
 上述したように、本発明に係る超音波検査方法は、重ね継手を構成する第1部材201及び第2部材202に対して第1部材201側からレーザLaWを照射してレーザ溶接を行ったレーザ溶接部We内の欠陥Deをレーザ照射による超音波UTで検出する超音波検査方法において、以下の工程を有して動作する。
(1)溶接ビードを挟んで一方の側に位置する横波用発生レーザ照射位置PTTに、横波用発生レーザLaTTを照射する工程。
(2)横波用発生レーザ照射位置PTTよりも溶接ビードから離れて前記一方の側に位置する縦波用発生レーザ照射位置PTLに、縦波用発生レーザLaTLを照射する工程。
(3)溶接ビードを挟んで他方の側に位置する横波用受信レーザ照射位置PRTに、横波用受信レーザLaRTを照射する工程。
(4)横波用受信レーザ照射位置PRTよりも溶接ビードから離れて前記他方の側に位置する縦波用受信レーザ照射位置PRLに、縦波用受信レーザLaRLを照射する工程。
(5)横波用発生レーザLaTTの照射による熱弾性モードにより生じる横波超音波WTを横波用受信レーザLaRTで検出する工程。
(6)縦波用発生レーザLaTLの照射による熱弾性モードにより生じる縦波超音波WLを縦波用受信レーザLaRLで検出する工程。
(7)第1部材201と第2部材202との境界面SBより浅い位置の欠陥De3を縦波超音波WLで検出する工程。
(8)境界面SBより深い位置の欠陥De1を横波超音波WTで検出する工程。
As described above, in the ultrasonic inspection method according to the present invention, laser welding is performed by irradiating the laser LaW from the first member 201 side to the first member 201 and the second member 202 constituting the lap joint. In the ultrasonic inspection method for detecting the defect De in the welded part We with the ultrasonic wave UT by laser irradiation, it operates with the following steps.
(1) A step of irradiating the transverse wave generation laser LaTT to the transverse wave generation laser irradiation position PTT located on one side of the weld bead.
(2) A step of irradiating the longitudinal wave generation laser LaTL to the longitudinal wave generation laser irradiation position PTL located on the one side away from the welding bead than the transverse wave generation laser irradiation position PTT.
(3) A step of irradiating the transverse wave receiving laser LaRT to the transverse wave receiving laser irradiation position PRT located on the other side across the weld bead.
(4) A step of irradiating the longitudinal wave receiving laser LaRL to the longitudinal wave receiving laser irradiation position PRL located on the other side away from the welding bead than the transverse wave receiving laser irradiation position PRT.
(5) A step of detecting the transverse wave ultrasonic wave WT generated by the thermoelastic mode by the irradiation of the transverse wave generation laser LaTT with the transverse wave reception laser LaRT.
(6) A step of detecting the longitudinal wave ultrasonic wave WL generated by the thermoelastic mode by the irradiation of the longitudinal wave generation laser LaTL with the longitudinal wave reception laser LaRL.
(7) A step of detecting the defect De3 at a position shallower than the boundary surface SB between the first member 201 and the second member 202 with the longitudinal wave WL.
(8) A step of detecting the defect De1 at a position deeper than the boundary surface SB with the transverse ultrasonic wave WT.
 上述した超音波検査方法において、(1)と(3)とは連動するように実行され、(2)と(4)とは連動するように実行される。(1)及び(3)の後に(5)が実行され、(2)及び(4)の後に(6)が実行される。さらに(5)の後に(7)が実行され、(6)の後に(8)が実行される。 In the ultrasonic inspection method described above, (1) and (3) are executed in conjunction with each other, and (2) and (4) are executed in conjunction with each other. (5) is executed after (1) and (3), and (6) is executed after (2) and (4). Further, (7) is executed after (5), and (8) is executed after (6).
 また本発明に係る超音波検査装置は、重ね継手を構成する第1部材201及び第2部材202に対して第1部材201側からレーザを照射してレーザ溶接を行ったレーザ溶接部We内の欠陥Deをレーザ照射による超音波UTで検出する。このために以下の構成を備える。
(1)溶接ビードを挟んで一方の側に位置する横波用発生レーザ照射位置PTTに横波用発生レーザLaTTを照射すると共に、横波用発生レーザ照射位置PTTよりも溶接ビードから離れて前記一方の側に位置する縦波用発生レーザ照射位置PTLに縦波用発生レーザLaTLを照射する発生レーザ照射部11。
(2)溶接ビードを挟んで他方の側に位置する横波用受信レーザ照射位置PRTに横波用受信レーザLaRTを照射すると共に、横波用受信レーザ照射位置PRTよりも溶接ビードから離れて前記他方の側に位置する縦波用受信レーザ照射位置PRLに縦波用受信レーザLaRLを照射する受信レーザ照射部12。
(3)縦波用発生レーザLaTLの照射による熱弾性モードにより生じる縦波超音波WLを縦波用受信レーザLaRLで検出する縦波用干渉計測部13B。
(4)横波用発生レーザLaTTの照射による熱弾性モードにより生じる横波超音波WTを横波用受信レーザLaRTで検出する横波用干渉計測部13C。
  そして本発明に係る超音波検査装置は、第1部材201と第2部材202との境界面SBより浅い位置の欠陥De3は縦波超音波WLで検出し、境界面SBより深い位置の欠陥De1は横波超音波WTで検出する。
Moreover, the ultrasonic inspection apparatus according to the present invention includes a laser welding part We in which laser welding is performed by irradiating a laser from the first member 201 side to the first member 201 and the second member 202 constituting the lap joint. The defect De is detected by ultrasonic UT by laser irradiation. For this purpose, the following configuration is provided.
(1) The transverse wave generation laser LaTT is irradiated to the transverse wave generation laser irradiation position PTT located on one side of the welding bead, and the one side away from the welding bead than the transverse wave generation laser irradiation position PTT. Generation laser irradiation unit 11 that irradiates the generation laser LaTL for the longitudinal wave to the generation laser irradiation position PTL for the longitudinal wave that is positioned at
(2) The transverse wave receiving laser LaRT is irradiated to the transverse wave receiving laser irradiation position PRT located on the other side across the welding bead, and the other side away from the welding bead from the transverse wave receiving laser irradiation position PRT. The receiving laser irradiation unit 12 that irradiates the longitudinal wave receiving laser LaRL to the longitudinal wave receiving laser irradiation position PRL positioned at
(3) A longitudinal wave interference measurement unit 13B that detects longitudinal wave ultrasonic waves WL generated by the thermoelastic mode by irradiation of the longitudinal wave generation laser LaTL with the longitudinal wave reception laser LaRL.
(4) A transverse wave interference measurement unit 13C that detects a transverse wave ultrasonic wave WT generated by a thermoelastic mode by irradiation of the transverse wave generation laser LaTT with the transverse wave reception laser LaRT.
In the ultrasonic inspection apparatus according to the present invention, the defect De3 at a position shallower than the boundary surface SB between the first member 201 and the second member 202 is detected by the longitudinal wave WL and the defect De1 at a position deeper than the boundary surface SB. Is detected by a transverse ultrasonic WT.
 また本発明に係る高圧燃料供給ポンプの製造方法は、重ね継手を構成する第1部材201及び第2部材202に対して第1部材201側からレーザを照射してレーザ溶接を行うレーザ溶接工程S2と、レーザー溶接部We内の欠陥Deをレーザー照射による超音波UTで検出する超音波検査工程S3と、を有する。 Further, in the manufacturing method of the high-pressure fuel supply pump according to the present invention, the laser welding process S2 in which laser welding is performed by irradiating the first member 201 and the second member 202 constituting the lap joint from the first member 201 side. And an ultrasonic inspection step S3 for detecting a defect De in the laser welded portion We with an ultrasonic wave UT by laser irradiation.
 さらに超音波検査工程S3は、以下の工程を有する。
(1)溶接ビードを挟んで一方の側に位置する横波用発生レーザ照射位置PTTに横波用発生レーザLaTTを照射する工程。
(2)横波用発生レーザ照射位置PTTよりも溶接ビードから離れて前記一方の側に位置する縦波用発生レーザ照射位置PTLに縦波用発生レーザLaTLを照射する工程。
(3)溶接ビードを挟んで他方の側に位置する横波用受信レーザ照射位置PRTに横波用受信レーザLaRTを照射する工程。
(4)横波用受信レーザ照射位置PRTよりも溶接ビードから離れて前記他方の側に位置する縦波用受信レーザ照射位置PRLに縦波用受信レーザLaRLを照射する工程。
(5)縦波用発生レーザLaTLの照射による熱弾性モードにより生じる縦波超音波WLを縦波用受信レーザLaRLで検出する工程。
(6)横波用発生レーザLaTTの照射による熱弾性モードにより生じる横波超音波WTを横波用受信レーザLaRTで検出する工程。
(7)第1部材201と第2部材202との境界面SBより浅い位置の欠陥De3を縦波超音波WLで検出する工程。
(8)境界面SBより深い位置の欠陥De1を横波超音波WTで検出する工程。
  そして本発明に係る高圧燃料供給ポンプの製造方法は、レーザ溶接工程S2によるレーザ溶接を実行しながら、超音波検査工程S3によるレーザー溶接部We内の欠陥検出を実行する。
Further, the ultrasonic inspection step S3 includes the following steps.
(1) A step of irradiating the transverse wave generating laser LaTT to the transverse wave generating laser irradiation position PTT located on one side of the weld bead.
(2) A step of irradiating the longitudinal wave generation laser LaTL to the longitudinal wave generation laser irradiation position PTL located on the one side away from the welding bead than the transverse wave generation laser irradiation position PTT.
(3) A step of irradiating the transverse wave receiving laser LaRT to the transverse wave receiving laser irradiation position PRT located on the other side with the weld bead interposed therebetween.
(4) A step of irradiating the longitudinal wave receiving laser LaRL to the longitudinal wave receiving laser irradiation position PRL located on the other side away from the welding bead than the transverse wave receiving laser irradiation position PRT.
(5) A step of detecting the longitudinal wave ultrasonic wave WL generated by the thermoelastic mode by irradiation of the longitudinal wave generation laser LaTL with the longitudinal wave reception laser LaRL.
(6) A step of detecting the transverse wave ultrasonic wave WT generated by the thermoelastic mode by the irradiation of the transverse wave generation laser LaTT with the transverse wave reception laser LaRT.
(7) A step of detecting the defect De3 at a position shallower than the boundary surface SB between the first member 201 and the second member 202 with the longitudinal wave WL.
(8) A step of detecting the defect De1 at a position deeper than the boundary surface SB with the transverse ultrasonic wave WT.
And the manufacturing method of the high-pressure fuel supply pump which concerns on this invention performs the defect detection in the laser welding part We by ultrasonic inspection process S3, performing laser welding by laser welding process S2.
 上述した高圧燃料供給ポンプの製造方法の超音波検査工程において、(1)と(3)とは連動するように実行され、(2)と(4)とは連動するように実行される。(1)及び(3)の後に(5)が実行され、(2)及び(4)の後に(6)が実行される。さらに(5)の後に(7)が実行され、(6)の後に(8)が実行される。 In the ultrasonic inspection process of the manufacturing method of the high-pressure fuel supply pump described above, (1) and (3) are executed in conjunction with each other, and (2) and (4) are executed in conjunction with each other. (5) is executed after (1) and (3), and (6) is executed after (2) and (4). Further, (7) is executed after (5), and (8) is executed after (6).
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
In addition, this invention is not limited to an above-described Example, Various modifications are included.
For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of the embodiment.
 201…重ね継手を構成する第1部材、202…重ね継手を構成する第2部材、De1…境界面SBより深い位置の欠陥、De3…境界面SBより浅い位置の欠陥、LaRL…縦波用受信レーザ、LaRT…横波用受信レーザ、LaTL…縦波用発生レーザ、LaTT…横波用発生レーザ、PRL…縦波用受信レーザ照射位置、PRT…横波用受信レーザ照射位置、PTL…縦波用発生レーザ照射位置、PTT…横波用発生レーザ照射位置、SB…第1部材201と第2部材202との境界面、WL…縦波超音波、WT…横波超音波。 201: First member constituting lap joint, 202: Second member constituting lap joint, De1: Defect at position deeper than boundary surface SB, De3: Defect at position shallower than boundary surface SB, LaRL: Reception for longitudinal wave Laser, LaRT ... Laser wave receiving laser, LaTL ... Longitudinal wave generating laser, LaTT ... Lateral wave generating laser, PRL ... Vertical wave receiving laser irradiation position, PRT ... Lateral wave receiving laser irradiation position, PTL ... Longitudinal wave generating laser Irradiation position, PTT ... Laser wave generation laser irradiation position, SB ... Boundary surface between the first member 201 and the second member 202, WL ... longitudinal wave ultrasonic wave, WT ... transverse wave ultrasonic wave.

Claims (14)

  1.  重ね継手を構成する第1部材及び第2部材に対して前記第1部材側からレーザを照射してレーザ溶接を行ったレーザ溶接部内の欠陥をレーザ照射による超音波で検出する超音波検査方法において、
     溶接部が線状を成す溶接線を挟んで一方の側に位置する横波用発生レーザ照射位置に横波用発生レーザを照射すると共に、前記横波用発生レーザ照射位置よりも前記溶接線から離れて前記一方の側に位置する縦波用発生レーザ照射位置に縦波用発生レーザを照射し、
     前記溶接線を挟んで他方の側に位置する横波用受信レーザ照射位置に横波用受信レーザを照射すると共に、前記横波用受信レーザ照射位置よりも前記溶接線から離れて前記他方の側に位置する縦波用受信レーザ照射位置に縦波用受信レーザを照射し、
     前記横波用発生レーザの照射による熱弾性モードにより生じる横波超音波を前記横波用受信レーザで検出し、
     前記縦波用発生レーザの照射による熱弾性モードにより生じる縦波超音波を前記縦波用受信レーザで検出し、
     前記第1部材と前記第2部材との境界面より浅い位置の欠陥は前記縦波超音波で検出し、
     前記境界面より深い位置の欠陥は前記横波超音波で検出することを特徴とする超音波検査方法。
    In an ultrasonic inspection method for detecting a defect in a laser welded portion by laser irradiation by irradiating a laser beam from the first member side to the first member and the second member constituting a lap joint with an ultrasonic wave by laser irradiation. ,
    Irradiate the generated laser for transverse waves on one side across the welding line in which the weld portion forms a line, and radiate the generated laser for transverse waves on the one side, and further away from the welding line than the generated laser irradiation position for transverse waves Longitudinal wave generation laser irradiation position on one side is irradiated with a longitudinal wave generation laser,
    A transverse wave receiving laser is irradiated to a transverse wave receiving laser irradiation position located on the other side across the welding line, and is located on the other side farther from the welding line than the transverse wave receiving laser irradiation position. Irradiate the longitudinal wave receiving laser to the longitudinal wave receiving laser irradiation position,
    The transverse wave ultrasonic wave generated by the thermoelastic mode by the irradiation of the transverse wave generating laser is detected by the transverse wave receiving laser,
    Longitudinal ultrasonic waves generated by a thermoelastic mode by irradiation of the longitudinal wave generating laser are detected by the longitudinal wave receiving laser;
    A defect at a position shallower than the boundary surface between the first member and the second member is detected by the longitudinal ultrasonic wave,
    An ultrasonic inspection method, wherein a defect at a position deeper than the boundary surface is detected by the transverse wave ultrasonic wave.
  2.  請求項1に記載の超音波検査方法において、
     前記境界面より浅い位置の欠陥の位置は、前記縦波超音波の指向角に基づいて検出することを特徴とする超音波検査方法。
    The ultrasonic inspection method according to claim 1,
    An ultrasonic inspection method, wherein the position of a defect shallower than the boundary surface is detected based on a directivity angle of the longitudinal ultrasonic wave.
  3.  請求項1に記載の超音波検査方法において、
     前記境界面より深い位置の欠陥の位置は、前記横波超音波の指向角に基づいて検出することを特徴とする超音波検査方法。
    The ultrasonic inspection method according to claim 1,
    An ultrasonic inspection method, wherein the position of a defect deeper than the boundary surface is detected based on a directivity angle of the transverse ultrasonic wave.
  4.  請求項1に記載の超音波検査方法において、
     前記溶接線の線幅は前記第1部材の厚さ寸法よりも小さいことを特徴とする超音波検査方法。
    The ultrasonic inspection method according to claim 1,
    The ultrasonic inspection method, wherein a line width of the weld line is smaller than a thickness dimension of the first member.
  5.  請求項1に記載の超音波検査方法において、
     前記横波用発生レーザ及び前記縦波用発生レーザは前記溶接線に沿う方向に長手方向を有するライン状焦点を形成するように照射され、
     前記横波用受信レーザ及び前記縦波用受信レーザは点状焦点を形成するように照射されることを特徴とする超音波検査方法。
    The ultrasonic inspection method according to claim 1,
    The transverse wave generating laser and the longitudinal wave generating laser are irradiated so as to form a linear focal point having a longitudinal direction in a direction along the weld line,
    The ultrasonic inspection method, wherein the transverse wave receiving laser and the longitudinal wave receiving laser are irradiated so as to form a point-like focal point.
  6.  請求項1に記載の超音波検査方法において、
     前記縦波超音波は前記縦波用発生レーザ照射位置から前記境界面で反射されることなく前記境界面より浅い位置の欠陥に伝搬し、
     前記横波超音波は前記横波用発生レーザ照射位置から前記境界面で反射されることなく前記境界面より深い位置の欠陥に伝搬することを特徴とする超音波検査方法。
    The ultrasonic inspection method according to claim 1,
    The longitudinal wave ultrasonic wave propagates to the defect at a position shallower than the boundary surface without being reflected at the boundary surface from the generation laser irradiation position for the longitudinal wave,
    2. The ultrasonic inspection method according to claim 1, wherein the transverse wave ultrasonic wave propagates from the transverse wave generation laser irradiation position to a defect deeper than the boundary surface without being reflected by the boundary surface.
  7.  重ね継手を構成する第1部材及び第2部材に対して前記第1部材側からレーザを照射してレーザ溶接を行ったレーザー溶接部内の欠陥をレーザー照射による超音波で検出する超音波検査装置において、
     溶接部が線状を成す溶接線を挟んで一方の側に位置する横波用発生レーザ照射位置に横波用発生レーザを照射すると共に、前記横波用発生レーザ照射位置よりも前記溶接線から離れて前記一方の側に位置する縦波用発生レーザ照射位置に縦波用発生レーザを照射する発生レーザ照射部と、
     前記溶接線を挟んで他方の側に位置する横波用受信レーザ照射位置に横波用受信レーザを照射すると共に、前記横波用受信レーザ照射位置よりも前記溶接線から離れて前記他方の側に位置する縦波用受信レーザ照射位置に縦波用受信レーザを照射する受信レーザ照射部と、
     前記縦波用発生レーザの照射による熱弾性モードにより生じる縦波超音波を前記縦波用受信レーザで検出する縦波用干渉計測部と、
     前記横波用発生レーザの照射による熱弾性モードにより生じる横波超音波を前記横波用受信レーザで検出する横波用干渉計測部と、を備え、
     前記第1部材と前記第2部材との境界面より浅い位置の欠陥は前記縦波超音波で検出し、前記境界面より深い位置の欠陥は前記横波超音波で検出することを特徴とする超音波検査装置。
    In an ultrasonic inspection apparatus for detecting a defect in a laser welded portion obtained by laser irradiation by irradiating a laser beam from the first member side to a first member and a second member constituting a lap joint with an ultrasonic wave by laser irradiation. ,
    Irradiate the generated laser for transverse waves on one side across the welding line in which the weld portion forms a line, and radiate the generated laser for transverse waves on the one side, and further away from the welding line than the generated laser irradiation position for transverse waves A generation laser irradiation unit that irradiates a generation laser for longitudinal waves on one side with a generation laser for longitudinal waves at a position,
    A transverse wave receiving laser is irradiated to a transverse wave receiving laser irradiation position located on the other side across the welding line, and is located on the other side farther from the welding line than the transverse wave receiving laser irradiation position. A receiving laser irradiation unit for irradiating a longitudinal wave receiving laser to a longitudinal wave receiving laser irradiation position;
    A longitudinal wave interference measuring unit for detecting longitudinal ultrasonic waves generated by a thermoelastic mode by irradiation of the longitudinal wave generating laser with the longitudinal wave receiving laser; and
    A transverse wave interference measuring unit for detecting a transverse wave ultrasonic wave generated by a thermoelastic mode by irradiation of the transverse wave generating laser with the transverse wave receiving laser; and
    The defect at a position shallower than the boundary surface between the first member and the second member is detected by the longitudinal ultrasonic wave, and the defect at a position deeper than the boundary surface is detected by the transverse wave ultrasonic wave. Sonographic equipment.
  8.  請求項7に記載の超音波検査装置において、
     前記境界面より浅い位置の欠陥の位置は、前記縦波超音波の指向角に基づいて検出することを特徴とする超音波検査装置。
    The ultrasonic inspection apparatus according to claim 7,
    The ultrasonic inspection apparatus, wherein a position of a defect shallower than the boundary surface is detected based on a directivity angle of the longitudinal ultrasonic wave.
  9.  請求項7に記載の超音波検査装置において、
     前記境界面より深い位置の欠陥の位置は、前記横波超音波の指向角に基づいて検出することを特徴とする超音波検査装置。
    The ultrasonic inspection apparatus according to claim 7,
    An ultrasonic inspection apparatus, wherein a position of a defect deeper than the boundary surface is detected based on a directivity angle of the transverse ultrasonic wave.
  10.  請求項7に記載の超音波検査装置において、
     前記溶接線の線幅は前記第1部材の厚さ寸法よりも小さいことを特徴とする超音波検査装置。
    The ultrasonic inspection apparatus according to claim 7,
    The ultrasonic inspection apparatus, wherein a line width of the weld line is smaller than a thickness dimension of the first member.
  11.  重ね継手を構成する第1部材及び第2部材に対して前記第1部材側からレーザを照射してレーザ溶接を行うレーザ溶接工程と、レーザー溶接部内の欠陥をレーザー照射による超音波で検出する超音波検査工程と、を有する高圧燃料供給ポンプの製造方法において、
     前記超音波検査工程は、
     溶接部が線状を成す溶接線を挟んで一方の側に位置する横波用発生レーザ照射位置に横波用発生レーザを照射すると共に、前記横波用発生レーザ照射位置よりも前記溶接線から離れて前記一方の側に位置する縦波用発生レーザ照射位置に縦波用発生レーザを照射し、
     前記溶接線を挟んで他方の側に位置する横波用受信レーザ照射位置に横波用受信レーザを照射すると共に、前記横波用受信レーザ照射位置よりも前記溶接線から離れて前記他方の側に位置する縦波用受信レーザ照射位置に縦波用受信レーザを照射し、
     前記縦波用発生レーザの照射による熱弾性モードにより生じる縦波超音波を前記縦波用受信レーザで検出し、
     前記横波用発生レーザの照射による熱弾性モードにより生じる横波超音波を前記横波用受信レーザで検出し、
     前記第1部材と前記第2部材との境界面より浅い位置の欠陥は前記縦波超音波で検出し、
     前記境界面より深い位置の欠陥は前記横波超音波で検出する超音波検査工程であって、
     前記レーザ溶接工程によるレーザ溶接を実行しながら、前記超音波検査工程によるレーザー溶接部内の欠陥検出を実行することを特徴とする高圧燃料供給ポンプの製造方法。
    A laser welding process in which laser welding is performed by irradiating a laser beam from the first member side to the first member and the second member constituting the lap joint, and an ultrasonic wave in which a defect in the laser welded portion is detected by ultrasonic irradiation. A method of manufacturing a high-pressure fuel supply pump having an ultrasonic inspection step,
    The ultrasonic inspection process includes
    Irradiate the generated laser for transverse waves on one side across the welding line in which the weld portion forms a line, and radiate the generated laser for transverse waves on the one side, and further away from the welding line than the generated laser irradiation position for transverse waves Longitudinal wave generation laser irradiation position on one side is irradiated with a longitudinal wave generation laser,
    A transverse wave receiving laser is irradiated to a transverse wave receiving laser irradiation position located on the other side across the welding line, and is located on the other side farther from the welding line than the transverse wave receiving laser irradiation position. Irradiate the longitudinal wave receiving laser to the longitudinal wave receiving laser irradiation position,
    Longitudinal ultrasonic waves generated by a thermoelastic mode by irradiation of the longitudinal wave generating laser are detected by the longitudinal wave receiving laser;
    The transverse wave ultrasonic wave generated by the thermoelastic mode by the irradiation of the transverse wave generating laser is detected by the transverse wave receiving laser,
    A defect at a position shallower than the boundary surface between the first member and the second member is detected by the longitudinal ultrasonic wave,
    A defect at a position deeper than the boundary surface is an ultrasonic inspection step of detecting with the transverse ultrasonic wave,
    A method of manufacturing a high-pressure fuel supply pump, wherein defect detection in a laser welded part is performed by the ultrasonic inspection process while performing laser welding by the laser welding process.
  12.  請求項11に記載の高圧燃料供給ポンプの製造方法において、
     前記境界面より浅い位置の欠陥の位置は、前記縦波超音波の指向角に基づいて検出することを特徴とする高圧燃料供給ポンプの製造方法。
    In the manufacturing method of the high-pressure fuel supply pump according to claim 11,
    The manufacturing method of a high-pressure fuel supply pump, wherein a position of a defect shallower than the boundary surface is detected based on a directivity angle of the longitudinal wave ultrasonic wave.
  13.  請求項11に記載の高圧燃料供給ポンプの製造方法において、
     前記境界面より深い位置の欠陥の位置は、前記横波超音波の指向角に基づいて検出することを特徴とする高圧燃料供給ポンプの製造方法。
    In the manufacturing method of the high-pressure fuel supply pump according to claim 11,
    The method of manufacturing a high-pressure fuel supply pump, wherein the position of the defect deeper than the boundary surface is detected based on a directivity angle of the transverse ultrasonic wave.
  14.  請求項11に記載の高圧燃料供給ポンプの製造方法において、
     前記溶接線の線幅は前記第1部材の厚さ寸法よりも小さいことを特徴とする高圧燃料供給ポンプの製造方法。
    In the manufacturing method of the high-pressure fuel supply pump according to claim 11,
    The method for manufacturing a high-pressure fuel supply pump, wherein a width of the weld line is smaller than a thickness dimension of the first member.
PCT/JP2019/003951 2018-03-20 2019-02-05 Ultrasonic wave inspection method, ultrasonic wave inspection device, and high-pressure fuel supply pump manufacturing method using ultrasonic wave inspection method WO2019181243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018052237A JP6934440B2 (en) 2018-03-20 2018-03-20 Manufacturing method of high-pressure fuel supply pump using ultrasonic inspection method, ultrasonic inspection device and ultrasonic inspection method
JP2018-052237 2018-03-20

Publications (1)

Publication Number Publication Date
WO2019181243A1 true WO2019181243A1 (en) 2019-09-26

Family

ID=67986961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003951 WO2019181243A1 (en) 2018-03-20 2019-02-05 Ultrasonic wave inspection method, ultrasonic wave inspection device, and high-pressure fuel supply pump manufacturing method using ultrasonic wave inspection method

Country Status (2)

Country Link
JP (1) JP6934440B2 (en)
WO (1) WO2019181243A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112098517A (en) * 2020-09-30 2020-12-18 吉林大学 Detection device and method for detecting friction stir spot welding by using composite ultrasonic

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111174894B (en) * 2020-01-19 2021-06-04 山东省科学院激光研究所 Laser ultrasonic transverse wave sound velocity measurement method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213936A (en) * 2000-11-16 2002-07-31 Kawasaki Steel Corp Method and device for non-contact measurement of thickness of material
JP2004191088A (en) * 2002-12-09 2004-07-08 Kawasaki Heavy Ind Ltd Ultrasonic flaw detection method and its device
JP2006313115A (en) * 2005-05-09 2006-11-16 Jfe Engineering Kk Ultrasonic flaw detecting method and ultrasonic flaw detector
US20060260403A1 (en) * 2002-12-18 2006-11-23 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for evaluating a weld joint formed during a welding process
JP2008151763A (en) * 2006-11-20 2008-07-03 Toyota Motor Corp Welded part measuring method and welded part measuring instrument
JP2015081858A (en) * 2013-10-23 2015-04-27 株式会社東芝 Laser ultrasonic inspection device and method
WO2016163034A1 (en) * 2015-04-08 2016-10-13 東北特殊鋼株式会社 Ultrasonic flaw detection method for round bar and ultrasonic flaw detection device
JP2017161441A (en) * 2016-03-11 2017-09-14 大阪瓦斯株式会社 Welded joint ultrasonic flaw detecting method and welded joint ultrasonic flaw detector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213936A (en) * 2000-11-16 2002-07-31 Kawasaki Steel Corp Method and device for non-contact measurement of thickness of material
JP2004191088A (en) * 2002-12-09 2004-07-08 Kawasaki Heavy Ind Ltd Ultrasonic flaw detection method and its device
US20060260403A1 (en) * 2002-12-18 2006-11-23 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for evaluating a weld joint formed during a welding process
JP2006313115A (en) * 2005-05-09 2006-11-16 Jfe Engineering Kk Ultrasonic flaw detecting method and ultrasonic flaw detector
JP2008151763A (en) * 2006-11-20 2008-07-03 Toyota Motor Corp Welded part measuring method and welded part measuring instrument
JP2015081858A (en) * 2013-10-23 2015-04-27 株式会社東芝 Laser ultrasonic inspection device and method
WO2016163034A1 (en) * 2015-04-08 2016-10-13 東北特殊鋼株式会社 Ultrasonic flaw detection method for round bar and ultrasonic flaw detection device
JP2017161441A (en) * 2016-03-11 2017-09-14 大阪瓦斯株式会社 Welded joint ultrasonic flaw detecting method and welded joint ultrasonic flaw detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112098517A (en) * 2020-09-30 2020-12-18 吉林大学 Detection device and method for detecting friction stir spot welding by using composite ultrasonic

Also Published As

Publication number Publication date
JP6934440B2 (en) 2021-09-15
JP2019164037A (en) 2019-09-26

Similar Documents

Publication Publication Date Title
JP5651533B2 (en) Welding inspection method and apparatus
JP5743711B2 (en) Welding system and welding method
US9063059B2 (en) Three-dimensional matrix phased array spot weld inspection system
JP5419592B2 (en) Ultrasonic inspection probe and ultrasonic inspection device
WO2019181243A1 (en) Ultrasonic wave inspection method, ultrasonic wave inspection device, and high-pressure fuel supply pump manufacturing method using ultrasonic wave inspection method
US10578586B2 (en) Weld analysis using Lamb waves and a neural network
US20140318250A1 (en) Method for inspecting weld penetration depth
JP2018136159A (en) Weld zone inspection device
JP2014219390A (en) Auto beam optimization for phased array weld inspection
US9354211B2 (en) Method of testing a weld between two plastic parts
AU2004288099A1 (en) Method for checking a weld between two metal pipelines
US9213019B2 (en) Method of determining a size of a defect using an ultrasonic linear phased array
WO2021182032A1 (en) Defect detection method, defect detection device, and shaping device
KR20200097994A (en) Monitoring system for inspection of Laser welding portion
JP5285845B2 (en) Defect detection apparatus and defect detection method
JP4334290B2 (en) Laser irradiation device
JP4067203B2 (en) Spot welding inspection method
JP6591282B2 (en) Laser ultrasonic inspection method, bonding method, laser ultrasonic inspection apparatus, and bonding apparatus
US4173899A (en) Method and device for scanning by means of a focused ultrasonic beam
JP6870980B2 (en) Ultrasonic inspection equipment, ultrasonic inspection method, and manufacturing method of joint block material
JPH08136512A (en) Ultrasonic flaw detection method at seam welded part of steel pipe
JP2018136252A (en) Ultrasonic inspection device, ultrasonic inspection system including the same, and ultrasonic inspection method and program
JP3557553B2 (en) Ultrasonic testing method for welded joints
JP2004340807A (en) Ultrasonic flaw detection method and device
JP3761883B2 (en) Ultrasonic flaw detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772429

Country of ref document: EP

Kind code of ref document: A1