WO2019181057A1 - 不具合要因探索装置 - Google Patents
不具合要因探索装置 Download PDFInfo
- Publication number
- WO2019181057A1 WO2019181057A1 PCT/JP2018/041606 JP2018041606W WO2019181057A1 WO 2019181057 A1 WO2019181057 A1 WO 2019181057A1 JP 2018041606 W JP2018041606 W JP 2018041606W WO 2019181057 A1 WO2019181057 A1 WO 2019181057A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- defect
- priority
- unit
- failure
- search device
- Prior art date
Links
- 230000007547 defect Effects 0.000 title claims abstract description 81
- 238000013461 design Methods 0.000 claims abstract description 75
- 230000035945 sensitivity Effects 0.000 claims abstract description 32
- 238000010206 sensitivity analysis Methods 0.000 claims abstract description 12
- 238000004458 analytical method Methods 0.000 claims description 23
- 238000000605 extraction Methods 0.000 claims description 20
- 239000000284 extract Substances 0.000 claims description 12
- 230000003993 interaction Effects 0.000 claims description 12
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000003860 storage Methods 0.000 claims description 6
- 238000012482 interaction analysis Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 abstract description 2
- 238000007405 data analysis Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- 238000007689 inspection Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 230000007257 malfunction Effects 0.000 description 6
- 238000010894 electron beam technology Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000000540 analysis of variance Methods 0.000 description 2
- 230000001364 causal effect Effects 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000551 statistical hypothesis test Methods 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/04—Manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Definitions
- the present invention relates to a defect factor search device that searches for a factor of a product defect.
- a SEM Sccanning Electron Microscope
- a SEM scanning Electron Microscope
- the required resolution is increasing year by year.
- biochemical analyzers which are a type of medical analyzer, are devices that analyze the concentration of components such as cholesterol and ions in blood and urine at the medical site, and there is a need for improved analytical accuracy in order to improve diagnostic accuracy. It is growing.
- pre-shipment inspection identifies the factors that may cause the problem and takes countermeasures. Measures are taken on a trial and error basis, especially in the case of new products, since there is no track record. For this reason, it is required to efficiently extract defect factors in a short period of time.
- Patent Document 1 discloses a technique for quickly extracting a factor causing a failure from a product inspection result, design of parts constituting the product, and production information.
- Patent Document 2 discloses a technique for quickly identifying the cause of a defect by comparing a defective part of a product and an inspection part with a development view and calculating a correlation rate.
- Patent Document 1 the contribution of each lot to the defect is calculated and displayed from the difference between the actual measured value and the design value of the product using parts of different lots.
- this method it is possible to determine the respective contributions regarding defects caused by parts lots and assembly personnel, but it is difficult to set performance values in advance, such as deviations in product assembly dimensions. It is difficult to apply to various parameters.
- the correlation rate is calculated from the coordinate data of the product defective part and the coordinate data of the part that has been inspected, and the inspection part having a high correlation rate is displayed as the cause of the defect.
- the determination is made based only on the coordinates, if the cause of the problem is not near the position where the problem occurs, the cause may be overlooked. Furthermore, even if a factor that solves an individual defect may worsen another defect, it cannot be determined only by the correlation rate obtained from the coordinates.
- a failure factor search apparatus includes a design parameter that configures a product, an acquisition unit that acquires the performance of the product corresponding to the design parameter, and the sensitivity of the design parameter to the acquired performance.
- a priority analysis output unit that gives priority to the acquired design parameter based on the analysis result, and outputs a priority assignment output unit that outputs the design parameter.
- the configuration is such that the priority is changed depending on whether only a single defect is resolved, a plurality of defects are resolved, or other performance is not deteriorated when it is changed.
- a failure factor search device that can identify failure factor candidates from causal relations, presents failure factor candidates in consideration of trade-offs for failures, and quickly extracts failure factors. it can.
- Example 1 shows the structural example of Example 1 of the malfunction factor search apparatus which concerns on this invention. It is a figure which shows the priority provision output part of Example 1.
- FIG. It is a figure which shows the malfunction factor extraction part of Example 1.
- FIG. It is a figure which shows an example of a structure of the scanning electron microscope containing the malfunction factor search apparatus which concerns on this invention.
- 6 is a diagram illustrating an example of a display screen according to Embodiment 1.
- FIG. It is a figure which shows the flow at the time of utilization of the malfunction factor search apparatus which concerns on this invention.
- FIG. 3 is an example of design parameters and performance data according to the first embodiment.
- FIG. 3 is an example of a component failure DB according to the first embodiment.
- 3 is an example of an assembly failure DB according to the first embodiment. It is a figure which shows the structural example of Example 2 of the malfunction factor search apparatus which concerns on this invention.
- a data analysis device that is a failure factor search device that calculates the sensitivity of design parameters with respect to performance, analyzes trade-offs for a plurality of performances, and prioritizes and displays countermeasures.
- FIG. 1 shows a data analysis device that is a failure factor search device according to the first embodiment.
- the data analysis apparatus includes an input interface 101, a failure factor extraction unit 102, an output interface 103, a design parameter / performance acquisition unit 104, a sensitivity analysis unit 105, a priority assignment / output unit 106, a component failure DB 107, and an assembly failure DB 108.
- the data analysis apparatus includes an input interface 101, a failure factor extraction unit 102, an output interface 103, a design parameter / performance acquisition unit 104, a sensitivity analysis unit 105, a priority assignment / output unit 106, a component failure DB 107, and an assembly failure DB 108.
- the input interface 101 is a screen for the user to input a defect item, a target product name, and a part name constituting the product.
- the part name the part name associated with the product name in advance may be automatically input without being input by the user.
- the defect factor extraction unit 102 extracts defect factor candidates and ranks from the defect item, product name, part name, sensitivity, priority, component defect rate, and assembly defect rate. Details of the defect factor extraction unit 102 will be described later.
- the output interface 103 is a display unit or a screen for displaying defect factor candidates to the user in consideration of the priority of defect countermeasures. It also includes outputting to a storage unit such as a database (DB) without displaying.
- DB database
- the design parameter / performance acquisition unit 104 as an acquisition unit acquires a plurality of combinations of product design parameters and performance.
- the sensitivity analysis unit 105 calculates the sensitivity of the design parameter with respect to performance by analysis of variance or machine learning.
- the priority assignment / output unit 106 will be described later.
- the component failure DB 107 is a DB that stores an initial failure rate of components (component failure rate) for each component.
- the assembly failure DB 108 is a DB that stores the probability (assembly failure rate) that a failure occurs during assembly for each assembly site.
- FIG. 2 shows a detailed configuration of the failure factor extraction unit 102.
- the failure factor extraction unit 102 includes a sensitivity reading unit 201, a component failure rate extraction unit 202, an assembly failure rate extraction unit 203, and a failure factor candidate calculation unit 204.
- the sensitivity reading unit 201 reads the sensitivity / priority of the design parameter from the priority assignment / output unit 106.
- the component failure rate extraction unit 202 extracts an initial failure rate (component failure information) of a target component from the component failure rate DB 107 for the input component name.
- the assembly failure rate extraction unit 203 extracts the assembly failure rate (assembly failure information) of the target product from the assembly failure rate DB 108 for the assembly part having the input part name.
- the failure factor candidate calculation unit 204 calculates sensitivity, priority, component failure rate, and assembly failure rate for each design parameter, ranks failure factor candidates according to the calculated results, and outputs the failure factor candidates and their ranks. To do.
- FIG. 3 shows a detailed configuration of the priority assignment / output unit 106.
- the priority assignment / output unit 106 includes a trade-off analysis unit 301, an interaction analysis unit 302, and a priority calculation unit 303. Based on the result analyzed by the sensitivity analysis result 105, priority is given to the acquired design parameters. Is output. At that time, the priority is whether a single defect is solved when a certain design parameter is changed, multiple defects are solved, other performance is not deteriorated in each case, or the interaction is The priority can be changed depending on whether it exists.
- the trade-off analysis unit 301 determines whether the change in the design parameter solves the problem and at the same time other performance is improved or other performance is deteriorated. evaluate. If other performance improves at the same time as the defect is resolved, the priority is raised. When other performance deteriorates due to the resolution of the defect, it is determined that there is a trade-off, and the priority is lowered. This evaluation is performed even when a plurality of problems are resolved, and whether or not there is a trade-off is confirmed.
- Interaction refers to an effect that affects the performance by changing at the same time as other parameters, even if there is no effect on the performance of a single design parameter.
- the interaction analysis unit 302 Based on the sensitivity analyzed by the sensitivity analysis unit 105, the interaction analysis unit 302 compares the sensitivity by changing the combination of design parameters to determine whether there is an interaction in the design parameter, and outputs a priority reflecting the interaction. To do. When the effect of performance improvement is great due to interaction, raise the priority.
- the priority calculation unit 303 calculates the priority of countermeasures for each design parameter based on the priority reflecting trade-off and interaction, and outputs the sensitivity of the design parameters and the priority of countermeasures for the design parameters.
- the data analysis device which is the failure factor search device according to the present embodiment, is sensitive to the performance of the design parameter, the trade-off and the alternation for the performance for the input failure item, product name, and part name.
- the failure factor candidates can be ranked and output. As a result, defect factor candidates can be extracted quickly, and the time required for defect countermeasures can be reduced.
- FIG. 4 is a cross-sectional view showing an example of the configuration of a scanning electron microscope.
- the scanning electron microscope includes a column 401 whose inside is kept in a vacuum, and an electron source 402 and a first capacitor that focuses an electron beam that is a primary electron 410 irradiated from the electron source 402 inside the column 401.
- a detector 409 for detecting the secondary electrons 411 is provided.
- the primary electrons 410 irradiated from the electron source 402 are focused on the image planes C1 and C2 by the first condenser lens 403 and the second condenser lens 404, and the current value and the like are controlled. Focused on.
- the secondary electrons 411 reflected from the sample 407 are detected by the detector 409 and displayed as an image.
- a user's usage procedure when the data analysis device which is the failure factor search device according to the first embodiment is applied to a scanning electron microscope will be described.
- the data analyzer will be used to search for factors when defects are revealed during pre-shipment inspection.
- a screen 501 of a data analysis device that is a product failure factor search device includes an input unit 502, an output unit 503, and an analysis button 504.
- the input unit 502 receives a defect item, a product name, and a part name used in the product. Note that the product name and the part name may be input in advance. Further, the part name may be associated with the product name in advance and automatically input.
- defect factor candidates are extracted, and the extracted result is output to the output unit 503.
- the output unit 503 ranks and displays design parameters as candidate factors for each defect item such as resolution.
- FIG. 6 shows an example of a processing flow when using the data analysis device that is the failure factor search device according to the first embodiment.
- the user inputs a defect item that has been clarified in the pre-shipment inspection into the input unit 502 shown in FIG. 5 (step 601).
- the name of the product to be inspected and the part name are input to the input unit 502 (step 602).
- the analysis button 504 provided on the screen 501 is pressed (step 603).
- the data analysis apparatus extracts defect factor candidates, and the defect factor candidates are displayed for each defect item (step 604).
- FIG. 7 shows an extraction flow of defect factor candidates in the data analysis apparatus that is the defect factor search apparatus according to the first embodiment.
- the design parameter / performance acquisition unit 104 acquires design parameters and performance data (step 701).
- FIG. 8 shows performance data that is also a design parameter and an inspection item in a scanning electron microscope.
- design parameter s1 is the electron source position
- s2 is the image plane C1 position
- s3 is the image plane C2 position
- s4 is the objective lens position
- s5 is the deflector position
- performance p1 is resolution
- p2 is the distance between the objective lens and the sample.
- WD working distance
- the sensitivity analysis unit 105 performs a design parameter variance analysis for each performance (step 702).
- Analysis of variance is a type of statistical hypothesis test that breaks down data fluctuations into fluctuations due to errors, the influence of each factor (main effect), and the fluctuation caused by the combination of multiple factors (interaction). In this method, the main effect and the effect of the interaction are determined.
- the priority assignment / output unit 106 examines the trade-off and interaction with respect to the performance for each design parameter, and assigns a priority for each design parameter (step 703).
- FIG. 9 shows an example of the concept of trade-off examination. This is a bar graph representing the sensitivity fs1 of the design parameter s1 with respect to n performances p1 to pn. When the sensitivity is positive, the performance is improved. When the sensitivity is negative, the performance is deteriorated. The total sensitivity for the design parameter s1 is calculated by the following equation.
- Fs1 Total sensitivity of design parameter s1 (priority)
- fs1i The sensitivity of the design parameter s1 to the i-th performance.
- the value of Fs1 is set as the priority. When the value is large, the priority is high, and when the value is small, the priority is low.
- the sensitivity to each performance is treated equally here, the sensitivity may be weighted according to the importance of the performance.
- the failure factor extraction unit 102 extracts the component failure rate and assembly failure rate related to the design parameters from the DB (step 704).
- the component defect rate is obtained by searching and extracting a component defect DB for a target component from the component names described in the input unit 502 of the input / output screen.
- FIG. 10 shows an example of the component failure DB 107.
- defect rates calculated as history information are stored in association with component names such as an electron gun, a lens, and a deflector. As long as the parts used in the product are not completely new parts, the DB can be configured based on past performance.
- the assembly failure DB 108 is searched and extracted from the product name input on the input / output screen. FIG.
- FIG. 11 shows an example of the assembly failure DB 108.
- the assembly failure DB 108 for example, failure rates calculated as history information are stored in association with assembly locations such as an electron gun attachment position, a lens attachment position, and a deflector attachment position. From the past results, the probability of occurrence of defects in the assembly work of the scanning electron microscope is calculated and used as a database, and it is possible to extract the assembly locations and the probabilities of occurrence of assembly defects for new products.
- the failure factor extraction unit 102 calculates sensitivity, priority, component failure rate, and assembly failure rate for each design parameter, and calculates the rank of failure factor candidates (step 705).
- the sensitivity, priority, component defect rate, and assembly defect rate are calculated for each design parameter. These can be expressed as vectors as follows.
- ha Defect rate of component a related to design parameter s1
- ma Defect rate of assembly location a related to design parameter s1.
- thresholds are set for sensitivity, priority, component failure rate, and assembly failure rate, and the higher the numerical value is, the higher the candidate candidate rank is set.
- the method described so far is an example of calculation of the ranks of defect factor candidates, and the present invention is not limited to these methods.
- FIG. 12 shows a data analysis device that is a failure factor search device according to the second embodiment.
- the data analysis apparatus of the first embodiment is the same, and the difference is the method of acquiring data (design parameters, performance) input to the sensitivity analysis unit 105.
- the data analysis apparatus according to the second embodiment acquires design parameters and performance through analysis, and includes a simulator 1201 and an analysis result DB 1202.
- the simulator 1201 is a simulator that analyzes performance from design parameters of a target product.
- the simulator 1201 can analyze the performance of many design patterns by changing numerical values and combinations of design parameters.
- the analysis result DB 1202 that is a storage unit is a DB that accumulates these analysis results.
- the analysis result may be combined with the actual measurement data to analyze the sensitivity.
- the simulator 1201 it is possible to efficiently search for the cause of defects even for new products that have not been manufactured so far.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Business, Economics & Management (AREA)
- Automation & Control Theory (AREA)
- General Health & Medical Sciences (AREA)
- Economics (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Human Resources & Organizations (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- General Factory Administration (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
製品を構成する設計パラメータとその設計パラメータに対応する製品の性能を取得する取得部と、取得された性能に対する設計パラメータの感度を解析する感度解析部と、解析した結果に基づいて、取得した設計パラメータに優先度を付与し、出力する優先度付与出力部と、を有し、優先度付与出力部は、ある設計パラメータを変動させた場合に単一の不具合のみが解消されるか、複数の不具合が解消されるか、他の性能が悪化しないかによって、優先度を変える構成とする。
Description
本発明は、製品不具合の要因を探索する不具合要因探索装置に関する。
電子顕微鏡や医用分析機器などの精密機器には、高い分解能や分析精度が求められる。例えば、電子顕微鏡の一種である測長SEM(Scanning Electron Microscope:走査型電子顕微鏡)は、半導体の形状寸法を製造ラインにて高速に検査する装置であり、検査対象である半導体の微細化に伴い、要求される分解能が年々高まっている。
また、医用分析機器の一種である生化学分析装置は、血液や尿中のコレステロールやイオンなどの成分濃度を医療現場で分析する装置であり、診断の精度を上げるために分析精度向上の要求が高まっている。
このような性能を実現するには、部品の信頼性、及び装置の組立精度を十分高く確保する必要がある。しかしながら、同一機種の装置であっても、部品の形状寸法のばらつきや部品機能のばらつき、組み付けのわずかなずれなどにより、装置の性能にばらつきが生じることがある。
一般には、製品の出荷前検査にて、性能のばらつきが規定の範囲を超え、不具合が発生していることが明らかな場合、その要因となりうる因子を洗い出し、対策が行われる。対策は、特に新製品の場合は、実績がないため試行錯誤的に行われ時間を要する。このため、不具合要因を効率よく短期間で抽出することが求められている。
特許文献1には、製品の検査結果と製品を構成する部品の設計、及び生産情報から、不具合の発生した要因を迅速に抽出する技術が開示されている。
また、特許文献2には製品の不具合部位と、検査部位を展開図によって対比し、相関率を算出することにより、不具合の原因特定を迅速に行う技術が開示されている。
特許文献1では、異なるロットの部品を使った製品の、性能の実測値と設計値の差分から、不具合に対するロットごとの寄与度を算出し表示する。しかしながら、この手法では部品のロットや組立員により生じる不具合に関して、それぞれの寄与度を求めることはできるが、製品の組み付け寸法のずれなど、あらかじめ任意の値を設定し、性能を測定することが困難なパラメータには適用が難しい。
特許文献2では、製品不具合部位の座標データと、検査を行った部位の座標データから相関率を算出し、相関率の高い検査部位を不具合の要因とし表示する。しかしながら、座標だけで判断する場合、不具合の要因が、不具合の発生位置近傍でない場合は、その要因を見逃す恐れがある。さらに、個別の不具合を解消する要因が、他の不具合を悪化させる恐れがあっても、座標から求めた相関率だけでは、その判断ができない。
このような課題に対応し、不具合の要因として任意のパラメータを対象とするには、性能に影響を及ぼすと考えられるパラメータ全てを検討対象とする必要がある。また、座標に関係なく、不具合の要因を抽出し、さらに不具合の解消と悪化のトレードオフを考慮するためには、設計パラメータの性能に及ぼす影響を、複数の性能に関して網羅的に分析する必要がある。
本発明は、不具合の要因候補を因果関係より洗い出すとともに、不具合へのトレードオフを考慮し、不具合要因候補を提示して、迅速に不具合要因を抽出する不具合要因探索装置を提供することを目的とする。
上記課題を解決するために、本発明に係る不具合要因探索装置は、製品を構成する設計パラメータとその設計パラメータに対応する製品の性能を取得する取得部と、取得された性能に対する設計パラメータの感度を解析する感度解析部と、解析した結果に基づいて、取得した設計パラメータに優先度を付与し、出力する優先度付与出力部と、を有し、優先度付与出力部は、ある設計パラメータを変動させた場合に単一の不具合のみが解消されるか、複数の不具合が解消されるか、他の性能が悪化しないかによって、優先度を変える構成とする。
本発明によれば、不具合の要因候補を因果関係より洗い出すことができるとともに、不具合へのトレードオフを考慮し、不具合要因候補を提示して、迅速に不具合要因を抽出する不具合要因探索装置を提供できる。
出荷前検査における不具合対策時間を短縮するには、不具合要因を効率的に抽出する必要がある。そこで、性能に対する設計パラメータの感度を算出するとともに、複数の性能に対するトレードオフを分析し、対策の優先度をつけ表示する不具合要因探索装置であるデータ分析装置を見出した。
以下、本発明の実施例について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。
図1に実施例1に係る不具合要因探索装置であるデータ分析装置を示す。データ分析装置は、入力インターフェース101、不具合要因抽出部102、出力インターフェース103、設計パラメータ・性能取得部104、感度解析部105、優先度付与・出力部106、部品不具合DB107、組立不具合DB108により構成される。
入力インターフェース101は、ユーザが不具合項目と、対象となる製品名、及び製品を構成する部品名、を入力する画面である。なお、部品名については、ユーザが入力せずに、予め製品名と関連付けた部品名を自動入力しても良い。
不具合要因抽出部102は、不具合項目、製品名、部品名、感度、優先度、部品不具合率、組立不具合率から、不具合要因候補と順位を抽出する。不具合要因抽出部102の詳細については、後ほど説明する。
出力インターフェース103は、不具合対策の優先度などを考慮して、不具合要因候補をユーザに表示する表示部、又はその画面である。なお、表示をせずにデータベース(DB)などの記憶部に出力することも含む。
取得部である設計パラメータ・性能取得部104は、製品の設計パラメータと性能の複数の組み合わせを取得する。感度解析部105は、性能に対する設計パラメータの感度を分散分析や機械学習などにより算出する。優先度付与・出力部106については、後ほど説明する。部品不具合DB107は、部品の初期不具合率(部品不具合率)を部品ごとに格納しているDBである。組立不具合DB108は、組立時に不具合が生じる確率(組立不具合率)を、組立部位ごとに格納しているDBである。
図2に不具合要因抽出部102の詳細構成を示す。不具合要因抽出部102は、感度読み込み部201、部品不具合率抽出部202、組立不具合率抽出部203、不具合要因候補の演算部204にて構成される。
感度読み込み部201は、設計パラメータの感度・優先度を優先度付与・出力部106から読み込む。部品不具合率抽出部202は、入力された部品名に対して、対象となる部品の初期不具合率(部品不具合情報)を、部品不具合率DB107から抽出する。組立不具合率抽出部203は、入力された部品名の組立個所に対して、対象となる製品の組立不具合率(組立不具合情報)を、組立不具合率DB108から抽出する。不具合要因候補の演算部204は、設計パラメータごとに感度、優先度、部品不具合率、組立不具合率を演算し、その演算した結果により不具合要因候補の順位を付け、不具合要因候補及びその順位を出力する。
図3に優先度付与・出力部106の詳細構成を示す。優先度付与・出力部106は、トレードオフ分析部301、交互作用分析部302、優先度演算部303により構成され、感度解析結果105で解析された結果に基づいて、取得した設計パラメータに優先度を付与し、出力する。その際、優先度は、ある設計パラメータを変動させた場合に単一の不具合が解消されるか、複数の不具合が解消されるか、それぞれの場合において他の性能が悪化しないか、交互作用はあるかによって、優先度を変えることができる。
トレードオフ分析部301は、感度解析部105で解析された感度に基づいて、設計パラメータの変動が、不具合を解消すると同時に、他の性能が改善されるか、もしくは他の性能が悪化するかを評価する。不具合の解消と同時に他の性能が改善する場合は、優先度が上がる。不具合の解消により他の性能が悪化する場合、トレードオフがあると判断し、優先度を下げる。この評価を複数の不具合が解消される場合においても行い、トレードオフの有無を確認する。
交互作用とは、ある設計パラメータ単独の変動では性能に影響がなくても、他のパラメータと同時に変動することで性能に影響を及ぼす作用のことである。交互作用分析部302は、感度解析部105で解析された感度に基づいて、設計パラメータに交互作用がないか、設計パラメータの組み合わせを変えて感度を比較し、交互作用を反映した優先度を出力する。交互作用により性能の改善の効果が大きい場合は優先度を上げる。
優先度演算部303は、トレードオフと交互作用を反映した優先度に基づいて、各設計パラメータの対策の優先度を演算し、設計パラメータの感度及びその設計パラメータの対策の優先度を出力する。
以上のように、本実施例に係る不具合要因探索装置であるデータ分析装置は、入力された不具合項目、製品名、部品名に対して、設計パラメータの性能に対する感度と、性能に対するトレードオフ及び交互作用を考慮したときの優先度と、部品不具合率と、組立不具合率と、を用いて、不具合要因の候補の順位付けを行い、出力することができる。その結果、不具合要因候補を迅速に抽出し、不具合対策の時間を短縮することができる。
以下は、走査型電子顕微鏡を例として、実施例1に係る不具合要因探索装置であるデータ分析装置の処理方法を具体的に説明する。
図4は、走査型電子顕微鏡の構成の一例を示す断面図である。走査型電子顕微鏡は、内部が真空に保たれたカラム401を備え、カラム401内部には、電子源402と、電子源402から照射される1次電子410である電子線を集束させる第1コンデンサーレンズ403と、第2コンデンサーレンズ404と、電子線を偏向する偏向器405と、電子線を試料407に集束させる対物レンズ406と、試料407を固定するステージ408と、試料407から反射された2次電子411を検出する検出器409を備える。電子源402から照射された1次電子410は、第1コンデンサーレンズ403と第2コンデンサーレンズ404にて像面C1、C2に集束しながら電流値などが制御され、対物レンズ406にて試料407上に集束される。試料407から反射した2次電子411は、検出器409にて検出され画像となって表示される。
実施例1に係る不具合要因探索装置であるデータ分析装置を、走査型電子顕微鏡に適用したときの、ユーザの利用手順を説明する。データ分析装置は出荷前検査にて、不具合が明らかとなったときの要因探索に活用する。
ユーザは、図5に示す入出力画面を操作する。製品の不具合要因探索装置であるデータ分析装置の画面501は、入力部502と、出力部503、分析ボタン504にて構成される。入力部502には、不具合項目と、製品名と、製品で使われている部品名と、が入力される。なお、製品名、及び部品名は予め入力しておいてもよい。また、部品名は、予め製品名と関連付けておき、自動的に入力してもよい。入力部502に入力された後、分析ボタン504が押されたことが検知された場合、不具合要因候補が抽出され、その抽出した結果が出力部503に出力される。出力部503には、例えば分解能などの不具合項目ごとに、その要因候補となる設計パラメータが順位付けされ、表示される。
図6に、実施例1に係る不具合要因探索装置であるデータ分析装置を利用したときの処理フローの一例を示す。まず、ユーザは出荷前検査にて明らかとなった不具合項目を図5に示した入力部502に入力する(ステップ601)。次に、検査対象となった製品名、部品名を入力部502に入力する(ステップ602)。そして、画面501上に設けられた分析ボタン504を押下する(ステップ603)。分析ボタン504の押下により、データ分析装置が不具合要因候補を抽出し、不具合項目ごとに不具合要因候補が表示される(ステップ604)。
図7に、実施例1に係る不具合要因探索装置であるデータ分析装置における不具合要因候補の抽出フローを示す。
まず、設計パラメータ・性能取得部104において、設計パラメータと性能のデータを取得する(ステップ701)。図8にその一例として、走査型電子顕微鏡における設計パラメータと検査項目でもある性能のデータを示す。ここでは、設計パラメータs1を電子源位置、s2を像面C1位置、s3を像面C2位置、s4を対物レンズ位置、s5を偏向器位置とし、性能p1を分解能、p2を対物レンズと試料間の作動距離であるWD(ワーキングディスタンス)とした。
次に、これらのデータを用いて、感度解析部105において、各性能に対する設計パラメータの分散分析を行う(ステップ702)。分散分析とは、統計的仮説検定の一種で、データの変動を誤差による変動と、各要因の影響(主効果)、及び複数の要因が組み合わさったときの影響(交互作用)による変動に分解し、主効果と交互作用による効果を判定する手法である。
次に、優先度付与・出力部106において、各設計パラメータに関して、性能に対するトレードオフや交互作用を検討し、設計パラメータごとに優先度をつける(ステップ703)。図9にトレードオフ検討の考え方の一例を示す。これは、n個ある性能p1からpnに対する設計パラメータs1の感度fs1を棒グラフで表したものである。感度が正の場合は性能が改善し、負の場合は性能が悪化する。設計パラメータs1に関する感度の合計を次式により演算する。
ここで、
Fs1:設計パラメータs1の感度の合計(優先度)
fs1i:i番目の性能に対する設計パラメータs1の感度
である。この例では、Fs1の値を優先度とし、値が大きい場合は優先度が高く、小さい場合は優先度が低くなる。なお、ここでは各性能に対する感度を同等に扱ったが、性能の重要度に応じて、感度に重みをつけてもよい。
Fs1:設計パラメータs1の感度の合計(優先度)
fs1i:i番目の性能に対する設計パラメータs1の感度
である。この例では、Fs1の値を優先度とし、値が大きい場合は優先度が高く、小さい場合は優先度が低くなる。なお、ここでは各性能に対する感度を同等に扱ったが、性能の重要度に応じて、感度に重みをつけてもよい。
次に、不具合要因抽出部102において、設計パラメータに関連する部品不具合率、組立不具合率をDBから抽出する(ステップ704)。部品不具合率は、入出力画面の入力部502に記載した部品名から、対象となる部品に関して部品不具合DBを検索し抽出する。図10に部品不具合DB107の一例を示す。部品不具合DB107には、例えば電子銃、レンズ、偏向器などの部品名に対して履歴情報として算出された不具合率が対応付けて記憶されている。製品に使われている部品が、全くの新規部品でない限り、過去の実績によりDBを構成することができる。組立不具合率についても同様に入出力画面に入力した製品名から、組立不具合DB108を検索し抽出する。図11に組立不具合DB108の一例を示す。組立不具合DB108には、例えば電子銃の取り付け位置、レンズ取り付け位置、偏向器取り付け位置などの組立個所に対して履歴情報として算出された不具合率が対応付けて記憶されている。過去の実績から、走査型電子顕微鏡の組立作業で不具合が生じる確率を算出しDBとしており、新規製品についても組立不具合が発生する可能性が高い組立箇所とその確率を抽出することができる。
次に、不具合要因抽出部102において、設計パラメータごとに、感度、優先度、部品不具合率、組立不具合率を演算し、不具合要因候補の順位を算出する(ステップ705)。
不具合要因候補の順位付け方法の一例を説明する。
ステップ704の処理が完了した時点で、設計パラメータごとに、感度、優先度、部品不具合率、組立不具合率が算出されている。これらは、次のようにベクトルで表現することができる。
ここで、
ha:設計パラメータs1が関連する部品aの不具合率
ma:設計パラメータs1が関連する組立箇所aの不具合率
である。これらの数値を用いることで、n個の設計パラメータs1~snのベクトルの大きさを求める。そして、数値が大きいほど不具合要因候補の順位を高く設定する。
ha:設計パラメータs1が関連する部品aの不具合率
ma:設計パラメータs1が関連する組立箇所aの不具合率
である。これらの数値を用いることで、n個の設計パラメータs1~snのベクトルの大きさを求める。そして、数値が大きいほど不具合要因候補の順位を高く設定する。
また、例えば、感度、優先度、部品不具合率、組立不具合率に閾値を設けて、数値が上位にあるものほど、要因候補の順位を高く設定する方法でもよい。
他には、設計パラメータごとに各パラメータの値が近いものをk平均法などによりクラスタリングし、ユーザには順位の高いグループとして表示し、そこから対策可能な要因を選択する方法でもよい。
ここまで示した方法は、不具合要因候補の順位の算出の一例であり、本発明はこれらの手法に限定されるものではない。
図12に実施例2に係る不具合要因探索装置であるデータ分析装置を示す。
基本的には実施例1のデータ分析装置を同じであり、異なるのは感度解析部105に入力されるデータ(設計パラメータ、性能)の取得方法が異なる。実施例2のデータ分析装置は、解析により設計パラメータと性能を取得するもので、シミュレータ1201と解析結果DB1202を備える。
シミュレータ1201は、対象とする製品の設計パラメータから性能を解析するシミュレータである。シミュレータ1201では、設計パラメータの数値や組み合わせを変えて、多くの設計パターンの性能を解析することができる。
記憶部である解析結果DB1202は、これらの解析結果を蓄積するDBである。
また、解析結果に実測データを組み合わせて、感度を解析する構成としてもよい。シミュレータ1201を活用することで、これまで製造の実績がない新規製品についても、不具合要因の探索を効率よく行うことができる。
101 入力インターフェース
102 不具合要因抽出部
103 出力インターフェース
104 設計パラメータ・性能取得部
105 感度解析部
106 優先度付与・出力部
107 部品不具合DB
108 組立不具合DB
201 感度読み込み部
202 部品不具合率抽出部
203 組立不具合率抽出部
301 トレードオフ分析部
302 交互作用分析部
303 優先度演算部
401 カラム
402 電子源
403 第1コンデンサーレンズ
404 第2コンデンサーレンズ
405 偏向器
406 対物レンズ
407 試料
408 ステージ
409 検出器
410 1次電子
411 2次電子
501 画面
502 入力部
503 出力部
504 分析ボタン
1201 シミュレータ
1202 解析結果DB
102 不具合要因抽出部
103 出力インターフェース
104 設計パラメータ・性能取得部
105 感度解析部
106 優先度付与・出力部
107 部品不具合DB
108 組立不具合DB
201 感度読み込み部
202 部品不具合率抽出部
203 組立不具合率抽出部
301 トレードオフ分析部
302 交互作用分析部
303 優先度演算部
401 カラム
402 電子源
403 第1コンデンサーレンズ
404 第2コンデンサーレンズ
405 偏向器
406 対物レンズ
407 試料
408 ステージ
409 検出器
410 1次電子
411 2次電子
501 画面
502 入力部
503 出力部
504 分析ボタン
1201 シミュレータ
1202 解析結果DB
Claims (9)
- 製品を構成する設計パラメータと前記設計パラメータに対応する製品の性能を取得する取得部と、
取得された前記性能に対する設計パラメータの感度を解析する感度解析部と、
解析した結果に基づいて、取得した前記設計パラメータに優先度を付与し、出力する優先度付与出力部と、を有し、
前記優先度付与出力部は、ある設計パラメータを変動させた場合に単一の不具合のみが解消されるか、複数の不具合が解消されるか、他の性能が悪化しないかによって、優先度を変える、ことを特徴とする不具合要因探索装置。 - 請求項1記載の不具合要因探索装置であって、
不具合項目と製品名と部品名を入力する入力部と、
部品名に対する不具合率の部品不具合情報が予め記憶された部品不具合記憶部と、
前記入力部で入力された前記不具合項目と前記製品名と前記部品名に対して、不具合要因候補を抽出する不具合要因抽出部と、
前記不具合要因候補を出力する出力部と、を有し、
前記不具合要因抽出部は、前記優先度付与出力部から出力された設計パラメータの優先度と、前記部品不具合情報に基づいて、不具合要因候補を抽出する不具合要因探索装置。 - 請求項2記載の不具合要因探索装置であって、
組立個所に対する不具合率の組立不具合情報が予め記憶された組立不具合記憶部を有し、
前記不具合要因抽出部は、前記優先度付与出力部から出力された設計パラメータの優先度と、前記部品不具合情報と、前記組立不具合情報と、に基づいて、不具合要因候補を抽出する不具合要因探索装置。 - 請求項3記載の不具合要因探索装置であって、
前記不具合要因抽出部は、前記感度及び優先度と、前記前記部品不具合情報と、前記組立不具合情報と、を設計パラメータごとに算出し、不具合要因候補の順位をつける演算部を有する不具合要因探索装置。 - 請求項1記載の不具合要因探索装置であって、
前記優先度付与出力部は、感度解析部で解析された感度に基づいて、複数の性能を対象に、個別の性能を改善しても他の性能が悪化することがないかを設計パラメータごとに分析し、トレードオフを反映した優先度を出力するトレードオフ分析部(301)を有する、不具合要因探索装置。 - 請求項5記載の不具合要因探索装置であって、
前記優先度付与出力部は、感度解析部で解析された感度に基づいて、設計パラメータに交互作用がないか、設計パラメータの組み合わせを変えて感度を比較し、交互作用を反映した優先度を出力する交互作用分析部を有する、不具合要因探索装置。 - 請求項6記載の不具合要因探索装置であって、
前記優先度付与出力部は、前記トレードオフを反映した前記優先度と、前記交互作用を反映した前記優先度に基づいて、各設計パラメータの対策の優先度を演算し、設計パラメータの感度及びその設計パラメータの対策の優先度を出力する優先度演算部を有する、不具合要因探索装置。 - 請求項2記載の不具合要因探索装置であって、
前記入力部で入力された前記不具合項目と前記製品名と前記部品名が表示された入力領域と、前記出力部で出力された前記不具合要因候補が表示された出力領域と、を含む画面を有する表示部を備えた、不具合要因探索装置。 - 請求項1記載の不具合要因探索装置であって、
対象とする製品の設計パラメータから性能を解析するシミュレータと、
前記シミュレータの解析結果である前記設計パラメータと前記性能を記憶する解析結果記憶部と、を有し、
前記取得部で取得する、前記設計パラメータと前記性能は、前記解析結果記憶部に記憶されたデータである、不具合要因探索装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018051915A JP2019164580A (ja) | 2018-03-20 | 2018-03-20 | 不具合要因探索装置 |
JP2018-051915 | 2018-03-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019181057A1 true WO2019181057A1 (ja) | 2019-09-26 |
Family
ID=67986089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/041606 WO2019181057A1 (ja) | 2018-03-20 | 2018-11-09 | 不具合要因探索装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019164580A (ja) |
WO (1) | WO2019181057A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03224063A (ja) * | 1990-01-30 | 1991-10-03 | Hitachi Ltd | 最適設計システム |
US6253115B1 (en) * | 1998-12-22 | 2001-06-26 | General Electric Company | System for implementing a design for six sigma process |
JP2002358121A (ja) * | 2001-06-01 | 2002-12-13 | Honda Motor Co Ltd | 製造工程品質不具合解析システム |
US20050289380A1 (en) * | 2004-06-23 | 2005-12-29 | Tim Davis | Method of time-in-service reliability concern resolution |
JP2015045942A (ja) * | 2013-08-27 | 2015-03-12 | キヤノン株式会社 | 品質管理装置、品質管理方法、及びプログラム |
JP2017111625A (ja) * | 2015-12-16 | 2017-06-22 | 三菱重工業株式会社 | 品質モニタリングシステムおよび品質モニタリング方法 |
-
2018
- 2018-03-20 JP JP2018051915A patent/JP2019164580A/ja active Pending
- 2018-11-09 WO PCT/JP2018/041606 patent/WO2019181057A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03224063A (ja) * | 1990-01-30 | 1991-10-03 | Hitachi Ltd | 最適設計システム |
US6253115B1 (en) * | 1998-12-22 | 2001-06-26 | General Electric Company | System for implementing a design for six sigma process |
JP2002358121A (ja) * | 2001-06-01 | 2002-12-13 | Honda Motor Co Ltd | 製造工程品質不具合解析システム |
US20050289380A1 (en) * | 2004-06-23 | 2005-12-29 | Tim Davis | Method of time-in-service reliability concern resolution |
JP2015045942A (ja) * | 2013-08-27 | 2015-03-12 | キヤノン株式会社 | 品質管理装置、品質管理方法、及びプログラム |
JP2017111625A (ja) * | 2015-12-16 | 2017-06-22 | 三菱重工業株式会社 | 品質モニタリングシステムおよび品質モニタリング方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2019164580A (ja) | 2019-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI683103B (zh) | 於樣品上判定所關注圖案之一或多個特性 | |
CN108062558B (zh) | 使用位故障和虚拟检查产生一种晶片检查过程 | |
CN111837228B (zh) | 用于检验的模式选择的方法和系统 | |
KR102576881B1 (ko) | 설계 및 잡음 기반 케어 영역들 | |
JP5583766B2 (ja) | 時間的に変化する欠陥分類性能の監視のための方法、システムおよびコンピュータ可読媒体 | |
JP2017523390A (ja) | 検査のための高解像度フルダイイメージデータの使用 | |
JP4982213B2 (ja) | 欠陥検査装置及び欠陥検査方法 | |
JP2001326263A (ja) | ウェーハー表面の構造欠陥を査定する方法 | |
IL265744A (en) | Optimization of useful training systems for the establishment of test-related algorithms | |
TWI822382B (zh) | 診斷系統、診斷方法、及電腦程式 | |
JP7354421B2 (ja) | エラー要因の推定装置及び推定方法 | |
TW202123291A (zh) | 多光束掃描電子顯微鏡工具的自參考健康監測系統 | |
JP2012173017A (ja) | 欠陥分類装置 | |
WO2019181057A1 (ja) | 不具合要因探索装置 | |
TWI679416B (zh) | 用於生產線監控之系統及方法 | |
KR20230068445A (ko) | 인공지능 기반 홀 이미지의 자동 품질 검사 장치및 방법 | |
JP4146655B2 (ja) | 欠陥源候補抽出プログラム | |
US10068323B2 (en) | Aware system, method and computer program product for detecting overlay-related defects in multi-patterned fabricated devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18911126 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18911126 Country of ref document: EP Kind code of ref document: A1 |