WO2019180898A1 - Solid-state imaging element - Google Patents

Solid-state imaging element Download PDF

Info

Publication number
WO2019180898A1
WO2019180898A1 PCT/JP2018/011599 JP2018011599W WO2019180898A1 WO 2019180898 A1 WO2019180898 A1 WO 2019180898A1 JP 2018011599 W JP2018011599 W JP 2018011599W WO 2019180898 A1 WO2019180898 A1 WO 2019180898A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
solid
state imaging
imaging device
region
Prior art date
Application number
PCT/JP2018/011599
Other languages
French (fr)
Japanese (ja)
Inventor
大貴 國京
祐輔 坂田
三佳 森
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to PCT/JP2018/011599 priority Critical patent/WO2019180898A1/en
Priority to JP2020507231A priority patent/JPWO2019180898A1/en
Publication of WO2019180898A1 publication Critical patent/WO2019180898A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes

Definitions

  • the present disclosure relates to a solid-state imaging device, and particularly to a solid-state imaging device capable of detecting weak light.
  • An avalanche photodiode (APD: Avalanche Photodiode) is known as one of highly sensitive photodetectors.
  • the APD is a photodiode whose light detection sensitivity is increased by multiplying signal charges generated by photoelectric conversion using avalanche breakdown (breakdown).
  • Patent Document 1 discloses a photodiode array having a high aperture ratio with respect to detected light.
  • Patent Document 2 discloses a semiconductor photodetector that can detect weak light including random light.
  • the present disclosure provides a solid-state imaging device capable of detecting light having a short wavelength (for example, visible light) with high resolution and detecting light having a long wavelength (for example, near infrared light) with high sensitivity. .
  • a solid-state imaging device includes a semiconductor substrate on which light is incident on an upper surface, a first semiconductor disposed in the semiconductor substrate, and a lower portion than the first semiconductor in the semiconductor substrate.
  • the first semiconductor, and a first portion of the semiconductor substrate that joins the first semiconductor constitutes a first photoelectric conversion unit, and the second semiconductor and the semiconductor substrate.
  • the second part joined to the second semiconductor constitutes a second photoelectric conversion unit, and the second photoelectric conversion unit includes a multiplication region where charges are multiplied by avalanche multiplication.
  • a solid-state imaging device capable of detecting short wavelength light with high resolution and detecting long wavelength light with high sensitivity is realized.
  • FIG. 1 is a plan view of the solid-state imaging device according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the solid-state imaging device according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a configuration of a pixel circuit.
  • FIG. 4 is a flowchart of the method for manufacturing the solid-state imaging device according to the first embodiment.
  • FIG. 5 is a plan view of the solid-state imaging device according to the second embodiment.
  • FIG. 6 is a cross-sectional view of the solid-state imaging device according to the second embodiment.
  • FIG. 7 is a plan view of the solid-state imaging device according to the third embodiment.
  • FIG. 8 is a first cross-sectional view of the solid-state imaging device according to the second embodiment.
  • FIG. 9 is a first cross-sectional view of the solid-state imaging device according to the second embodiment.
  • a solid-state imaging device that has an APD array and can detect weak light by performing signal amplification using avalanche multiplication has been proposed.
  • a solid-state imaging device used for night vision imaging and a ToF (Time of Flight) sensor is required to have high sensitivity to near-infrared light.
  • ToF Time of Flight
  • a solid-state imaging device having an APD array if the cell size of the APD is increased in order to increase the sensitivity to near infrared light, the problem is that the resolution deteriorates.
  • the Z-axis direction in the coordinate axes is, for example, the vertical direction, the Z-axis + side is expressed as an upper side (upper), and the Z-axis-side is expressed as a lower side (lower).
  • the Z-axis direction is a direction perpendicular to the upper surface or the lower surface of the semiconductor substrate.
  • the X-axis direction and the Y-axis direction are directions orthogonal to each other on a plane (horizontal plane) perpendicular to the Z-axis direction.
  • “plan view” means viewing from the Z-axis direction. Further, the present disclosure does not exclude a structure in which the P-type and the N-type are reversed in the following embodiments.
  • FIG. 1 is a plan view of the solid-state imaging device according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the solid-state imaging device according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the solid-state imaging device 100 taken along the line II-II in FIG.
  • the first semiconductor 11 is actually located in the semiconductor substrate 10, but is illustrated by a solid line for clarifying the arrangement.
  • the solid-state imaging device 100 includes a semiconductor substrate 10, a first semiconductor 11, a second semiconductor 12, a separation region 13, and a transfer region 14.
  • the isolation region 13 is an example of a third semiconductor
  • the transfer region 14 is an example of a fourth semiconductor.
  • the solid-state imaging device 100 is an image sensor including both an avalanche photodiode (APD: Avalanche Photodiode) and a photodiode (PD: Photodiode). Light enters the solid-state imaging device 100 from the upper surface side (Z-axis plus side). 1 and 2, only one APD and one PD are shown, but the solid-state imaging device 100 is arranged in a plurality of APDs arranged in an array in a plan view and in an array in a plan view. A plurality of PDs. In other words, the array shape is a matrix shape. In the solid-state imaging device 100, one pixel includes one APD and one PD.
  • the semiconductor substrate 10 is a substrate formed of a P-type semiconductor, and light is incident on the upper surface.
  • the P type is an example of the first conductivity type.
  • the semiconductor substrate 10 includes a junction region 10a, a photoelectric conversion region 10b, and a well region 10c.
  • the bonding region 10 a is located on the upper surface side of the semiconductor substrate 10 with respect to the second semiconductor 12 and is bonded to the lower surface of the first semiconductor 11.
  • the photoelectric conversion region 10 b is located on the lower surface side of the semiconductor substrate 10 with respect to the second semiconductor 12 and is bonded to the lower surface of the second semiconductor 12.
  • the well region 10 c is located on the upper surface side of the semiconductor substrate 10 relative to the second semiconductor 12 and is located around the first semiconductor 11.
  • the junction region 10 a is an example of a first portion of the semiconductor substrate 10
  • the photoelectric conversion region 10 b is an example of a second portion of the semiconductor substrate 10.
  • the first semiconductor 11 is formed of an N-type semiconductor.
  • the N type is an example of the second conductivity type.
  • the first semiconductor 11 and the bonding region 10a of the semiconductor substrate 10 constitute a PD.
  • PD is an example of a first photoelectric conversion unit.
  • the impurity concentration of the first semiconductor 11 is, for example, 10 18 cm ⁇ 3 or less.
  • the PD is an embedded type. Thus, if a P-type semiconductor layer having a relatively high impurity concentration is formed on the upper surface of the PD, noise and leakage current are suppressed.
  • the PD may not be a buried type, and the PD may be exposed to the outside from the upper surface of the semiconductor substrate 10.
  • the second semiconductor 12 is formed of an N-type semiconductor.
  • the second semiconductor 12 and the photoelectric conversion region 10b of the semiconductor substrate 10 constitute an APD.
  • APD is an example of a second photoelectric conversion unit.
  • the light incident on the upper surface of the semiconductor substrate 10 is photoelectrically converted in the photoelectric conversion region 10b that is electrically separated from the well region 10c.
  • electron-hole pairs that are signal charges are generated.
  • electrons of the generated signal charge flow to the upper surface side along the potential gradient, and move to the transfer region 14 via the second semiconductor 12.
  • the transfer region 14 is formed of an N-type semiconductor similar to the second semiconductor 12 and stores signal charges generated in the APD.
  • the transfer region 14 has a columnar shape extending in the vertical direction, and has one end connected to the second semiconductor 12 and the other end exposed to the outside from the upper surface of the semiconductor substrate 10.
  • the transfer region 14 is not necessarily exposed from the upper surface of the semiconductor substrate 10, and the transfer region 14 may be embedded in the semiconductor substrate 10.
  • the impurity concentration gradient between the well region 10c and the transfer region 14 is designed such that no tunnel current is generated.
  • a transfer transistor TRN2 is arranged at the other end of the transfer region 14.
  • the APD includes a multiplication area 15.
  • the multiplication region 15 is formed in the vicinity of the boundary between the photoelectric conversion region 10 b and the second semiconductor 12.
  • a reverse bias voltage equal to or higher than the breakdown voltage is applied to the semiconductor substrate 10
  • an avalanche multiplication phenomenon occurs in the multiplication region 15.
  • the signal charge generated in the photoelectric conversion region 10 b is avalanche multiplied in the multiplication region 15.
  • the solid-state imaging device 100 can detect weak light that is normally buried in noise and cannot be detected.
  • region 10b is formed thickly, the probability which can photoelectrically convert the light which injected from the upper surface side will increase. If the photoelectric conversion region 10b has a thickness of 2 ⁇ m or more, it is possible to ensure sensitivity to light in a relatively long wavelength band.
  • the impurity concentration of the photoelectric conversion region 10b and the second semiconductor 12 is, for example, 5 ⁇ 10 16 cm ⁇ 3 or more and 10 18 cm ⁇ 3 or less. Thereby, avalanche multiplication can be generated. If the distance between the peak position of the impurity concentration of the photoelectric conversion region 10b and the peak position of the impurity concentration of the second semiconductor 12 is 0.5 ⁇ m or more, the offset of the impurity concentration due to impurity diffusion is suppressed. Therefore, it is possible to ensure a sufficient impurity concentration for generating avalanche multiplication.
  • the isolation region 13 is a region for electrically isolating the adjacent second semiconductors 12.
  • the separation region 13 is located between the plurality of second semiconductors 12 arranged in an array and separates the plurality of second semiconductors 12 arranged in an array.
  • the separation region 13 is located at a pixel boundary and has a lattice shape in plan view. According to the separation region, it is possible to suppress color mixture of adjacent pixels and leakage of signal charges in one pixel to other pixels.
  • the isolation region 13 is formed of, for example, an N-type semiconductor having an impurity concentration lower than that of the second semiconductor 12.
  • the isolation region 13 is formed of an N-type semiconductor having an impurity concentration lower than that of the second semiconductor 12, in addition to electrically isolating the plurality of second semiconductors 12, the photoelectric conversion region 10b and the well region 10c needs to be electrically separated. As the width of the isolation region 13 is increased, it is assumed that the electrical isolation between the photoelectric conversion region 10b and the well region 10c becomes more difficult, and the problem of a narrow design margin arises.
  • the width of the isolation region 13 is 0.5 ⁇ m or more and 1 ⁇ m or less
  • the impurity concentration of the isolation region 13 is 10 16 cm ⁇ 3 or more and 5 ⁇ 10 17 cm ⁇ 3 or less
  • the photoelectric conversion region 10b and the well region 10c can be electrically separated.
  • the impurity concentration of the isolation region 13 may be adjusted as appropriate according to the width of the isolation region 13.
  • the impurity concentration of the well region 10c is, for example, not less than 10 16 cm ⁇ 3 and not more than 10 18 cm ⁇ 3 .
  • the first semiconductor 11 is arranged on the upper surface side of the second semiconductor 12 in the semiconductor substrate 10.
  • the second semiconductor 12 is disposed below the first semiconductor 11 in the semiconductor substrate 10. That is, the distance from the light incident surface (that is, the upper surface) of the semiconductor substrate 10 to the second semiconductor 12 is longer than the distance from the light incident surface of the semiconductor substrate 10 to the first semiconductor 11.
  • the long wavelength component of light easily reaches the lower part (in other words, the deep part) in the semiconductor substrate 10, and the short wavelength component of light It is difficult to reach down.
  • the solid-state imaging device 100 can selectively avalanche-multiply light having a relatively long wavelength such as near infrared light. .
  • the solid-state imaging device 100 can generate a luminance image by a signal output based on visible light reaching the PD. Further, the solid-state imaging device 100 can be used not only for generating a luminance image but also as a ToF (Time of Flight) sensor. The solid-state imaging device 100 can generate a distance image by using a signal obtained when pulsed near-infrared reflected light emitted from a light source reaches the APD.
  • ToF Time of Flight
  • the solid-state imaging device 100 it is also possible to realize a ToF sensor with improved distance resolution.
  • the solid-state imaging device 100 detects reflected light of visible light from a visible light source by a PD for a distance to an object located at a short distance, and near red for a distance to an object located at a long distance.
  • the reflected light of the near infrared light from the external light source is detected by APD.
  • PD and APD need to be electrically separated.
  • the separation barrier when both PD and APD are in the reset state is, for example, at least 1 V or more.
  • the PD and the transfer area 14 need to be electrically separated.
  • a P-type semiconductor or STI (Shallow Trench Isolation) or the like may be formed between the PD and the transfer region 14.
  • FIG. 3 is a diagram illustrating an example of a configuration of a pixel circuit.
  • FIG. 3 shows the PD pixel circuit, but the APD pixel circuit has the same configuration.
  • the solid-state imaging device 100 includes a pixel array 102 including a plurality of pixels 101, a vertical scanning circuit 103, a horizontal scanning circuit 104, a readout circuit 105, and a buffer amplifier (amplifying circuit) 111.
  • the pixel 101 has a pixel circuit including a PD, a transfer transistor TRN1, a reset transistor RST1, a floating diffusion region FD1, an amplification transistor SF1, and a selection transistor SEL1.
  • the pixel 101 includes a pixel circuit including an APD, a transfer transistor TRN2, a reset transistor RST2, a floating diffusion region FD2, an amplification transistor SF2, and a selection transistor SEL2.
  • transistor when “transistor” is simply described, it means a MOS transistor (MOSFET).
  • MOSFET MOS transistor
  • the transistor constituting the pixel circuit of the solid-state imaging device is not limited to a MOS transistor, and may be a junction transistor (JFET), a bipolar transistor, or a mixture thereof.
  • the signal charge detected by the PD is transferred to the floating diffusion region FD1 through the transfer transistor TRN1, and a signal corresponding to the amount of signal charge detected by the pixels sequentially selected by the vertical scanning circuit 103 and the horizontal scanning circuit 104 is amplified.
  • the data is transmitted to the reading circuit 105 via SF1.
  • a signal obtained from the pixel 101 is output from the readout circuit 105 to the signal processing circuit (not shown) through the buffer amplifier 111, and after being subjected to signal processing such as white balance in the signal processing circuit (not shown), the display is performed. (Not shown) or a memory (not shown) to be imaged.
  • peripheral circuits (vertical scanning circuit 103, horizontal scanning circuit 104, readout circuit 105, and buffer amplifier 111) are added to the pixel array 102.
  • the peripheral circuit is not necessarily included.
  • the pixel circuit constituting the pixel 101 includes four transistors (transfer transistor TRN1, reset transistor RST1, amplification transistor SF1, selection transistor SEL1) and one floating diffusion region FD1, but the pixel circuit is
  • the present invention is not limited to such a configuration, and the transistor may be configured with a larger or smaller number of transistors within a range in which the solid-state imaging device 100 can operate.
  • the configuration and arrangement of the transistors (shown in FIG. 1) may be changed within a range in which the solid-state imaging device 100 operates.
  • the pixel circuit may have a circuit configuration for acquiring a distance image by the ToF method.
  • the pixel circuit may be shared by PD and APD.
  • FIG. 4 is a flowchart of a method for manufacturing the solid-state imaging device 100.
  • the solid-state image sensor 100 is basically manufactured from the lower layer to the upper layer.
  • a substrate on which the photoelectric conversion region 10b (P-type semiconductor) is formed is prepared (S11).
  • an N-type semiconductor is formed on the entire upper surface of the photoelectric conversion region 10b by ion implantation (S12).
  • the second semiconductor 12 and the isolation region 13 are formed by performing patterning by photolithography, ion implantation using P-type impurities, and the like on the N-type semiconductor formed in step S12 (S13).
  • the transfer region 14 and the first semiconductor 11 are formed by performing patterning by photolithography, ion implantation, and the like (S14).
  • the well region 10c is formed (S15), and patterning and ion implantation by photolithography are performed in the well region 10c, thereby forming the source and drain of the transistor included in the pixel circuit (S16).
  • a wiring layer (not shown) is as follows. For example, an insulating layer is formed on the semiconductor substrate 10 that has been subjected to the processing from step S11 to step S16, and patterning, etching, sputtering, and the like by photolithography are performed on the insulating layer, so that the insulating layer, gate Electrodes, contact plugs, and wirings are formed.
  • At least one of the photoelectric conversion region 10b and the second semiconductor 12 may be produced by changing the impurity concentration during the formation of the semiconductor substrate 10 by epitaxial growth. With this method, crystal defects in the multiplication region 15 are less than in the multiplication region 15 when the photoelectric conversion region 10b and the second semiconductor 12 are formed by the ion implantation method, and noise can be reduced. is there.
  • the solid-state imaging device 100 includes a semiconductor substrate 10 on which light is incident on an upper surface, a first semiconductor 11 disposed in the semiconductor substrate 10, and a second semiconductor disposed below the first semiconductor 11 in the semiconductor substrate 10. 12.
  • the first semiconductor 11 and the junction region 10 a that joins the first semiconductor 11 in the semiconductor substrate 10 constitute a PD.
  • the junction region 10a is an example of a first portion, and the PD is an example of a first photoelectric conversion unit.
  • the second semiconductor 12 and the photoelectric conversion region 10b bonded to the second semiconductor 12 in the semiconductor substrate 10 constitute an APD.
  • the photoelectric conversion region 10b is an example of a second part, and the APD is an example of a second photoelectric conversion unit.
  • the APD includes a multiplication region 15 where charges are multiplied by avalanche multiplication.
  • an APD is disposed on the lower surface side in the semiconductor substrate 10 in which short-wavelength light is difficult to reach and long-wavelength light is likely to reach. For this reason, if APD is used for detection of light having a long wavelength, the solid-state imaging device 100 can detect light having a long wavelength with relatively high sensitivity.
  • the positions of the PD and APD are different in the vertical direction. Therefore, in the solid-state imaging device 100, the number of PDs can be increased, and light with a short wavelength can be detected with high resolution by increasing the number of PDs.
  • the solid-state imaging device 100 can detect light having a short wavelength with high resolution and can detect light having a long wavelength with high sensitivity.
  • the solid-state imaging device 100 includes a plurality of first semiconductors 11 arranged in an array in the semiconductor substrate 10 and a plurality of first semiconductors 11 arranged in an array below the plurality of first semiconductors 11 in the semiconductor substrate 10.
  • the solid-state imaging device 100 can output a luminance image or a distance image with a plurality of PDs, and can output a luminance image or a distance image with a plurality of APDs.
  • the solid-state imaging device 100 is further a transfer region 14 where charges generated in the APD are accumulated, one end of which is connected to the second semiconductor 12 and the other end from the upper surface of the semiconductor substrate 10.
  • a transfer region 14 exposed to the outside and a transfer transistor TRN2 disposed at the other end of the transfer region 14 are provided.
  • the transfer area is an example of a fourth semiconductor.
  • the solid-state imaging device 100 can transfer charges generated in the APD.
  • FIG. 5 is a plan view of the solid-state imaging device according to the second embodiment.
  • FIG. 6 is a cross-sectional view of the solid-state imaging device according to the second embodiment. 6 is a cross-sectional view of the solid-state imaging device 200 taken along the line VI-VI in FIG.
  • the first semiconductor 21 is actually located in the semiconductor substrate 20, but is shown by a solid line in order to clarify the arrangement.
  • the solid-state imaging device 200 includes a semiconductor substrate 20, a first semiconductor 21, a second semiconductor 22, a separation region 23, and a transfer region 24.
  • the isolation region 23 is an example of a third semiconductor
  • the transfer region 24 is an example of a fourth semiconductor.
  • the semiconductor substrate 20 includes a plurality of junction regions 20a, a photoelectric conversion region 20b, and a well region 20c.
  • one pixel includes one APD and two PDs. That is, the solid-state imaging device 200 includes a plurality of PDs for one APD. Therefore, in the solid-state imaging device 200, the total number of the plurality of APDs (that is, the plurality of first semiconductors 21) is larger than the total number of the plurality of PDs (that is, the plurality of second semiconductors 22). Further, in plan view, one second semiconductor 22 overlaps the plurality of first semiconductors 21. Note that the number of PDs included in one pixel, the arrangement of PDs in one pixel, the shape of the PD, and the like are not particularly limited.
  • the plurality of PDs are arranged in the well region 20c of the semiconductor substrate 20 and are electrically separated. Also in the solid-state imaging device 200, the second semiconductor 22 is disposed below the first semiconductor 21 in the semiconductor substrate 20.
  • the photoelectric conversion region 20b is formed of silicon
  • the PD is used for detection of visible light
  • the APD is used for detection of near-infrared light
  • silicon has a low absorption rate of near infrared light. Therefore, a configuration in which near-infrared light is avalanche multiplied in the APD multiplication region 25 is useful.
  • the second semiconductor 22 is larger than the first semiconductor 21 in plan view.
  • all of the first semiconductors 21 overlap with the second semiconductor in a plan view, and the light receiving area of the APD is relatively larger than the light receiving area of the PD. Therefore, improvement in sensitivity to near infrared light is expected.
  • the photoelectric conversion region 20b is located on the side opposite to the upper surface (light incident surface) of the semiconductor substrate 20, it can be made relatively thick. Thereby, APD can detect near-infrared light by improving quantum efficiency.
  • the pixel circuit for PD includes a transfer transistor TRN1, a reset transistor RST1, a floating diffusion region FD1, an amplification transistor SF1, and a selection transistor SEL1.
  • the APD pixel circuit includes a transfer transistor TRN2, a reset transistor RST2, a floating diffusion region FD2, an amplification transistor SF2, and a selection transistor SEL2.
  • the pixel circuit for PD and the pixel circuit for APD are independent.
  • the pixel circuits of the two PDs are made common, thereby reducing the mounting area of the PD pixel circuit.
  • the pixel circuit can be shared even when there are three or more PDs.
  • the PD pixel circuit and the APD pixel circuit may be shared.
  • the second semiconductor 22 is larger than the first semiconductor 21 in plan view.
  • the light receiving area of the APD configured by the second semiconductor 22 is large in the solid-state imaging device 200, the sensitivity of near-infrared light can be increased.
  • the total number of the plurality of first semiconductors 21 is larger than the total number of the plurality of second semiconductors 22.
  • an image luminance image or distance image based on light detected by the PD is increased in resolution.
  • one second semiconductor 22 overlaps the plurality of first semiconductors 21 in plan view.
  • FIG. 7 is a plan view of the solid-state imaging device according to the third embodiment.
  • 8 and 9 are cross-sectional views of the solid-state imaging device according to the second embodiment.
  • FIG. 8 is a cross-sectional view of the solid-state imaging device 300 taken along the line VIII-VIII in FIG.
  • FIG. 9 is a cross-sectional view of the solid-state imaging device 300 taken along the line IX-IX in FIG.
  • the first semiconductor 31 is actually located in the semiconductor substrate 30, but is illustrated by a solid line for clarity of arrangement.
  • the solid-state imaging device 300 includes a semiconductor substrate 30, a plurality of first semiconductors 31, a plurality of second semiconductors 32, a separation region 33, and a transfer. Region 34.
  • the isolation region 33 is an example of a third semiconductor
  • the transfer region 34 is an example of a fourth semiconductor.
  • the semiconductor substrate 30 includes a plurality of junction regions 30a, a photoelectric conversion region 30b, and a well region 30c.
  • one pixel includes one APD and four PDs. That is, the solid-state imaging device 200 includes four PDs for one APD. Note that the number of PDs included in one pixel, the arrangement of PDs in one pixel, the shape of the PD, and the like are not particularly limited.
  • ⁇ A Bayer color filter is applied to the four PDs.
  • an APD for detecting near-infrared light with high sensitivity is added while corresponding to such an existing Bayer color filter.
  • the PD (that is, the first semiconductor 31) is also disposed above the isolation region 33.
  • a negative bias voltage also called a breakdown voltage
  • it is necessary to electrically separate a plurality of APDs that is, a plurality of second semiconductors 32) so that outputs for each pixel are not mixed.
  • the isolation region 33 is reset to form a constant potential barrier between the pixels. It is necessary to maintain a depleted state in which the potential is lower than the APD in the state and is higher than the well region 30c.
  • the range of the impurity concentration of the isolation region 33 that satisfies this condition is limited, and it is difficult to manufacture the solid-state imaging device 300 including the isolation region 33 that satisfies this condition.
  • a PD to which a positive bias voltage is applied in the reset state is arranged above the separation region 33. Is done. For this reason, the electrical isolation
  • a region P shown in FIG. 7 adjacent to the corner of the APD in plan view in the separation region 33 is formed to have a relatively wide width so that an electrical connection between the well region 30c and the photoelectric conversion region 30b is achieved. There is a high concern that the separation capacity will decrease. Therefore, it is useful to arrange the PD above the region P.
  • the impurity concentration of the junction region 30a is lower than the impurity concentration of the well region 30c.
  • the impurity concentrations of the second semiconductor 32, the transfer region 34, and the first semiconductor 31 that are N-type semiconductors are different. Specifically, the impurity concentration of the second semiconductor 32 and the impurity concentration of the transfer region 34 are higher than the impurity concentration of the first semiconductor 31.
  • the negative bias voltage applied to the photoelectric conversion region 30b can be reduced. If the negative bias voltage applied to the photoelectric conversion region 30b is reduced, the risk of conduction between the photoelectric conversion region 30b and the well region 30c (in other words, punch-through) can be reduced.
  • the pixel circuit for PD includes a transfer transistor TRN1, a reset transistor RST1, a floating diffusion region FD1, an amplification transistor SF1, and a selection transistor SEL1.
  • the APD pixel circuit includes a transfer transistor TRN2, a reset transistor RST2, a floating diffusion region FD2, an amplification transistor SF2, and a selection transistor SEL2.
  • the pixel circuit for PD and the pixel circuit for APD are independent.
  • the pixel circuits of the two PDs are shared, and one pixel has two sets of pixel circuits corresponding to the four PDs. Thereby, the mounting area of the pixel circuit for PD is reduced.
  • the pixel circuit can be shared even when there are three or more PDs. Further, the pixel circuit for PD and the pixel circuit for APD may be shared.
  • the solid-state imaging device 300 includes a separation region 33 that is located between the plurality of second semiconductors 32 in the semiconductor substrate 30 and separates the plurality of second semiconductors 32.
  • the isolation region 33 is an example of a third semiconductor. In plan view, the separation region 33 overlaps at least one of the plurality of first semiconductors 31.
  • the solid-state imaging device 300 includes four first semiconductors 31 with respect to one second semiconductor 32, and the four second semiconductors 32 form a 2 ⁇ 2 array.
  • the APD is added while maintaining the PD Bayer arrangement. That is, the Bayer arrangement can be applied to the color filter of the second semiconductor 32 corresponding to the detection of visible light.
  • the semiconductor substrate 30 is formed of a first conductivity type (for example, P-type) semiconductor, and the first semiconductor 31, the second semiconductor 32, and the transfer region 34 are the first conductivity type. It is formed of a second conductivity type (for example, N type) semiconductor different from the type.
  • the impurity concentration of the second semiconductor 32 and the impurity concentration of the transfer region 34 are higher than the impurity concentration of the first semiconductor 31.
  • the negative bias voltage applied to the photoelectric conversion region 30b can be reduced. If the negative bias voltage applied to the photoelectric conversion region 30b is reduced, conduction between the photoelectric conversion region 30b and the well region 30c can be suppressed.
  • the semiconductor substrate 30 includes a well region 30c located around the first semiconductor 31, and the impurity concentration of the junction region 30a of the semiconductor substrate 30 is lower than the impurity concentration of the well region 30c. .
  • the depletion layer extends on the lower surface side of the PD, the sensitivity of the PD can be improved.
  • the first photoelectric conversion unit does not include the multiplication region, but may include the multiplication region. That is, the first photoelectric conversion unit may be an APD instead of a PD.
  • the circuit configuration described in the above embodiment is an example, and the present disclosure is not limited to the above circuit configuration. That is, similar to the circuit configuration described above, a circuit that can realize the characteristic function of the present disclosure is also included in the present disclosure.
  • a device in which an element such as a switching element (transistor), a resistance element, or a capacitor element is connected in series or in parallel to a certain element within a range in which a function similar to the circuit configuration described above can be realized is also disclosed in the present disclosure. included.
  • each layer of the stacked structure of the solid-state image sensor has the same structure as the stacked structure of the above embodiment.
  • Other materials may be included as long as these functions can be realized.
  • the corners and sides of each component are linearly described, but the present disclosure also includes those in which the corners and sides are rounded due to manufacturing reasons.
  • the embodiment can be realized by variously conceiving various modifications to those embodiments, or by arbitrarily combining the components and functions in the embodiments without departing from the gist of the present disclosure.
  • This form is also included in the present disclosure.
  • this indication may be realized as a manufacturing method of a solid-state image sensing device.
  • the solid-state imaging device of the present disclosure can be used for a camera, a ToF sensor, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

This solid-state imaging element (100) is provided with a semiconductor substrate (10) in which light enters an upper surface; a first semiconductor (11) disposed within the semiconductor substrate (10); and a second semiconductor (12) which is disposed beneath the first semiconductor (11) within the semiconductor substrate (10). The first semiconductor (11) and a bonding region (10a), of the semiconductor substrate (10), where bonding is formed with the first semiconductor (11), constitute a photodiode (PD). The second semiconductor (12) and a photoelectric conversion region (10b), of the semiconductor substrate (10), where bonding is formed with the second semiconductor (12), constitute an avalanche photodiode (APD). The APD includes a multiplication region (15) where an electric charge is intensified by avalanche multiplication.

Description

固体撮像素子Solid-state image sensor
 本開示は、固体撮像素子に関し、特に微弱な光を検出することが可能な固体撮像素子に関する。 The present disclosure relates to a solid-state imaging device, and particularly to a solid-state imaging device capable of detecting weak light.
 近年、医療、通信、バイオ、化学、監視、車載、及び、放射線検出など多岐に渡る分野において、高感度な光検出器が利用されている。高感度な光検出器の一つとして、アバランシェフォトダイオード(APD:Avalanche Photodiode)が知られている。APDは、光電変換によって発生した信号電荷を、アバランシェ降伏(ブレークダウン)を用いて増倍することで光の検出感度が高められたフォトダイオードである。APDが用いられたデバイスとして、特許文献1には、被検出光に対する開口率の高いフォトダイオードアレイが開示されている。また、特許文献2には、ランダム光を含む微弱光を検出できる半導体光検出器が開示されている。 In recent years, high-sensitivity photodetectors are used in various fields such as medical treatment, communication, biotechnology, chemistry, monitoring, in-vehicle use, and radiation detection. An avalanche photodiode (APD: Avalanche Photodiode) is known as one of highly sensitive photodetectors. The APD is a photodiode whose light detection sensitivity is increased by multiplying signal charges generated by photoelectric conversion using avalanche breakdown (breakdown). As a device using an APD, Patent Document 1 discloses a photodiode array having a high aperture ratio with respect to detected light. Patent Document 2 discloses a semiconductor photodetector that can detect weak light including random light.
国際公開第2008/004547号International Publication No. 2008/004547 国際公開第2014/097519号International Publication No. 2014/097519 特開2015-5752号公報Japanese Patent Laying-Open No. 2015-5752 米国特許第5965875明細書US Pat. No. 5,965,875
 本開示は、短波長の光(例えば、可視光)を高い解像度で検出し、かつ、長波長の光(例えば、近赤外光)を高い感度で検出することができる固体撮像素子を提供する。 The present disclosure provides a solid-state imaging device capable of detecting light having a short wavelength (for example, visible light) with high resolution and detecting light having a long wavelength (for example, near infrared light) with high sensitivity. .
 本開示の一態様に係る固体撮像素子は、上面に光が入射する半導体基板と、前記半導体基板内に配置された第一半導体と、前記半導体基板内の前記第一半導体よりも下方に配置された第二半導体とを備え、前記第一半導体、及び、前記半導体基板のうち前記第一半導体に接合する第一部分は、第一光電変換部を構成し、前記第二半導体、及び、前記半導体基板のうち前記第二半導体に接合する第二部分は、第二光電変換部を構成し、前記第二光電変換部は、アバランシェ増倍によって電荷が増倍される増倍領域を含む。 A solid-state imaging device according to an aspect of the present disclosure includes a semiconductor substrate on which light is incident on an upper surface, a first semiconductor disposed in the semiconductor substrate, and a lower portion than the first semiconductor in the semiconductor substrate. The first semiconductor, and a first portion of the semiconductor substrate that joins the first semiconductor constitutes a first photoelectric conversion unit, and the second semiconductor and the semiconductor substrate. Among these, the second part joined to the second semiconductor constitutes a second photoelectric conversion unit, and the second photoelectric conversion unit includes a multiplication region where charges are multiplied by avalanche multiplication.
 本開示によれば、短波長の光を高い解像度で検出し、かつ、長波長の光を高い感度で検出することができる固体撮像素子が実現される。 According to the present disclosure, a solid-state imaging device capable of detecting short wavelength light with high resolution and detecting long wavelength light with high sensitivity is realized.
図1は、実施の形態1に係る固体撮像素子の平面図である。FIG. 1 is a plan view of the solid-state imaging device according to the first embodiment. 図2は、実施の形態1に係る固体撮像素子の断面図である。FIG. 2 is a cross-sectional view of the solid-state imaging device according to the first embodiment. 図3は、画素回路の構成の一例を示す図である。FIG. 3 is a diagram illustrating an example of a configuration of a pixel circuit. 図4は、実施の形態1に係る固体撮像素子の製造方法のフローチャートである。FIG. 4 is a flowchart of the method for manufacturing the solid-state imaging device according to the first embodiment. 図5は、実施の形態2に係る固体撮像素子の平面図である。FIG. 5 is a plan view of the solid-state imaging device according to the second embodiment. 図6は、実施の形態2に係る固体撮像素子の断面図である。FIG. 6 is a cross-sectional view of the solid-state imaging device according to the second embodiment. 図7は、実施の形態3に係る固体撮像素子の平面図である。FIG. 7 is a plan view of the solid-state imaging device according to the third embodiment. 図8は、実施の形態2に係る固体撮像素子の第一の断面図である。FIG. 8 is a first cross-sectional view of the solid-state imaging device according to the second embodiment. 図9は、実施の形態2に係る固体撮像素子の第一の断面図である。FIG. 9 is a first cross-sectional view of the solid-state imaging device according to the second embodiment.
 (本開示の基礎となった知見)
 APDアレイを有し、アバランシェ増倍を用いて信号増幅を行うことで、微弱光を検出することができる固体撮像素子が提案されている。暗視撮像、及び、ToF(Time of Flight)センサなどに用いられる固体撮像素子には、近赤外光に対して高い感度を有することが求められる。APDアレイを有する固体撮像素子において、近赤外光に対する感度を高めるためにAPDのセルサイズを大きくすると解像度が劣化してしまうことが課題である。
(Knowledge that became the basis of this disclosure)
A solid-state imaging device that has an APD array and can detect weak light by performing signal amplification using avalanche multiplication has been proposed. A solid-state imaging device used for night vision imaging and a ToF (Time of Flight) sensor is required to have high sensitivity to near-infrared light. In a solid-state imaging device having an APD array, if the cell size of the APD is increased in order to increase the sensitivity to near infrared light, the problem is that the resolution deteriorates.
 そこで、以下の実施の形態では、近赤外光の高感度化を実現しながらも、高い解像度で可視光検出が可能な固体撮像素子について説明する。 Therefore, in the following embodiment, a solid-state imaging device capable of detecting visible light with high resolution while realizing high sensitivity of near-infrared light will be described.
 以下、実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments will be described with reference to the drawings. It should be noted that each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of the constituent elements, and the like shown in the following embodiments are merely examples, and are not intended to limit the present disclosure. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept are described as optional constituent elements.
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化される場合がある。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected to the substantially same structure, and the overlapping description may be abbreviate | omitted or simplified.
 また、以下の実施の形態で説明に用いられる図面においては座標軸が示される場合がある。座標軸におけるZ軸方向は、例えば、鉛直方向であり、Z軸+側は、上側(上方)と表現され、Z軸-側は、下側(下方)と表現される。Z軸方向は、言い換えれば、半導体基板の上面または下面に垂直な方向である。また、X軸方向及びY軸方向は、Z軸方向に垂直な平面(水平面)上において、互いに直交する方向である。以下の実施の形態において、「平面視」とは、Z軸方向から見ることを意味する。また、本開示は、以下の実施の形態において、P型とN型とを逆転させた構造を排除するものではない。 In the drawings used for explanation in the following embodiments, coordinate axes may be shown. The Z-axis direction in the coordinate axes is, for example, the vertical direction, the Z-axis + side is expressed as an upper side (upper), and the Z-axis-side is expressed as a lower side (lower). In other words, the Z-axis direction is a direction perpendicular to the upper surface or the lower surface of the semiconductor substrate. The X-axis direction and the Y-axis direction are directions orthogonal to each other on a plane (horizontal plane) perpendicular to the Z-axis direction. In the following embodiments, “plan view” means viewing from the Z-axis direction. Further, the present disclosure does not exclude a structure in which the P-type and the N-type are reversed in the following embodiments.
 (実施の形態1)
 [構造]
 以下、実施の形態1に係る固体撮像素子の構造について説明する。図1は、実施の形態1に係る固体撮像素子の平面図である。図2は、実施の形態1に係る固体撮像素子の断面図である。図2は、図1のII-II線で固体撮像素子100を切断した場合の断面図である。なお、図1において、第一半導体11は、実際には半導体基板10内に位置するが、配置を明確化するために実線で図示されている。
(Embodiment 1)
[Construction]
Hereinafter, the structure of the solid-state imaging device according to the first embodiment will be described. FIG. 1 is a plan view of the solid-state imaging device according to the first embodiment. FIG. 2 is a cross-sectional view of the solid-state imaging device according to the first embodiment. FIG. 2 is a cross-sectional view of the solid-state imaging device 100 taken along the line II-II in FIG. In FIG. 1, the first semiconductor 11 is actually located in the semiconductor substrate 10, but is illustrated by a solid line for clarifying the arrangement.
 図1及び図2に示されるように、実施の形態1に係る固体撮像素子100は、半導体基板10と、第一半導体11と、第二半導体12と、分離領域13と、転送領域14とを備える。分離領域13は、第三半導体の一例であり、転送領域14は、第四半導体の一例である。 As shown in FIGS. 1 and 2, the solid-state imaging device 100 according to the first embodiment includes a semiconductor substrate 10, a first semiconductor 11, a second semiconductor 12, a separation region 13, and a transfer region 14. Prepare. The isolation region 13 is an example of a third semiconductor, and the transfer region 14 is an example of a fourth semiconductor.
 固体撮像素子100は、アバランシェフォトダイオード(APD:Avalanche Photodiode)、及び、フォトダイオード(PD:Photodiode)の両方を備えるイメージセンサである。固体撮像素子100には、上面側(Z軸プラス側)から光が入射する。図1及び図2では、APD及びPDがそれぞれ1つのみ図示されているが、固体撮像素子100は、平面視においてアレイ状に配置された複数のAPDと、平面視においてアレイ状に配置された複数のPDとを備える。アレイ状は、言い換えれば、マトリクス状である。固体撮像素子100においては、1つの画素は、1つのAPD及び1つのPDを含む。 The solid-state imaging device 100 is an image sensor including both an avalanche photodiode (APD: Avalanche Photodiode) and a photodiode (PD: Photodiode). Light enters the solid-state imaging device 100 from the upper surface side (Z-axis plus side). 1 and 2, only one APD and one PD are shown, but the solid-state imaging device 100 is arranged in a plurality of APDs arranged in an array in a plan view and in an array in a plan view. A plurality of PDs. In other words, the array shape is a matrix shape. In the solid-state imaging device 100, one pixel includes one APD and one PD.
 半導体基板10は、P型の半導体によって形成される基板であり、上面に光が入射する。P型は、第一導電型の一例である。半導体基板10は、接合領域10aと、光電変換領域10bと、ウェル領域10cとを含む。接合領域10aは、第二半導体12よりも半導体基板10の上面側に位置し、第一半導体11の下面に接合する。光電変換領域10bは、第二半導体12よりも半導体基板10の下面側に位置し、第二半導体12の下面に接合する。ウェル領域10cは、第二半導体12よりも半導体基板10の上面側に位置し、第一半導体11の周囲に位置する。接合領域10aは、半導体基板10の第一部分の一例であり、光電変換領域10bは、半導体基板10の第二部分の一例である。 The semiconductor substrate 10 is a substrate formed of a P-type semiconductor, and light is incident on the upper surface. The P type is an example of the first conductivity type. The semiconductor substrate 10 includes a junction region 10a, a photoelectric conversion region 10b, and a well region 10c. The bonding region 10 a is located on the upper surface side of the semiconductor substrate 10 with respect to the second semiconductor 12 and is bonded to the lower surface of the first semiconductor 11. The photoelectric conversion region 10 b is located on the lower surface side of the semiconductor substrate 10 with respect to the second semiconductor 12 and is bonded to the lower surface of the second semiconductor 12. The well region 10 c is located on the upper surface side of the semiconductor substrate 10 relative to the second semiconductor 12 and is located around the first semiconductor 11. The junction region 10 a is an example of a first portion of the semiconductor substrate 10, and the photoelectric conversion region 10 b is an example of a second portion of the semiconductor substrate 10.
 第一半導体11は、N型の半導体によって形成される。N型は、第二導電型の一例である。第一半導体11、及び、半導体基板10の接合領域10aは、PDを構成する。PDは、第一光電変換部の一例である。また、第一半導体11の不純物濃度は、例えば、1018cm-3以下である。 The first semiconductor 11 is formed of an N-type semiconductor. The N type is an example of the second conductivity type. The first semiconductor 11 and the bonding region 10a of the semiconductor substrate 10 constitute a PD. PD is an example of a first photoelectric conversion unit. Further, the impurity concentration of the first semiconductor 11 is, for example, 10 18 cm −3 or less.
 固体撮像素子100において、PDは、埋め込み型である。このようにPDの上面にP型で比較的不純物濃度が高い半導体層が形成されていれば、ノイズ及びリーク電流が抑制される。なお、PDは埋め込み型でなくてもよく、PDは半導体基板10の上面から外部に露出していてもよい。 In the solid-state imaging device 100, the PD is an embedded type. Thus, if a P-type semiconductor layer having a relatively high impurity concentration is formed on the upper surface of the PD, noise and leakage current are suppressed. The PD may not be a buried type, and the PD may be exposed to the outside from the upper surface of the semiconductor substrate 10.
 第二半導体12は、N型の半導体によって形成される。第二半導体12、及び、半導体基板10の光電変換領域10bは、APDを構成する。APDは、第二光電変換部の一例である。 The second semiconductor 12 is formed of an N-type semiconductor. The second semiconductor 12 and the photoelectric conversion region 10b of the semiconductor substrate 10 constitute an APD. APD is an example of a second photoelectric conversion unit.
 半導体基板10の上面に入射した光は、ウェル領域10cとは電気的に分離された光電変換領域10bにおいて光電変換される。この結果、信号電荷である電子正孔対が発生する。一般に、発生した信号電荷のうちの電子は電位勾配に沿って上面側に流れ、第二半導体12を経由して転送領域14に移動する。 The light incident on the upper surface of the semiconductor substrate 10 is photoelectrically converted in the photoelectric conversion region 10b that is electrically separated from the well region 10c. As a result, electron-hole pairs that are signal charges are generated. In general, electrons of the generated signal charge flow to the upper surface side along the potential gradient, and move to the transfer region 14 via the second semiconductor 12.
 転送領域14は、第二半導体12と同様のN型の半導体によって形成され、APDにおいて発生した信号電荷が蓄積される。転送領域14は、上下方向に延びる柱状であり、一方の端部が第二半導体12に接続され、他方の端部が半導体基板10の上面から外部に露出している。なお、転送領域14は、必ずしも半導体基板10の上面から露出している必要はなく、転送領域14は、半導体基板10内に埋め込まれていてもよい。この場合、ウェル領域10c及び転送領域14の間の不純物濃度勾配は、トンネル電流が発生しない程度に設計される。転送領域14の他方の端部には、転送トランジスタTRN2が配置される。 The transfer region 14 is formed of an N-type semiconductor similar to the second semiconductor 12 and stores signal charges generated in the APD. The transfer region 14 has a columnar shape extending in the vertical direction, and has one end connected to the second semiconductor 12 and the other end exposed to the outside from the upper surface of the semiconductor substrate 10. The transfer region 14 is not necessarily exposed from the upper surface of the semiconductor substrate 10, and the transfer region 14 may be embedded in the semiconductor substrate 10. In this case, the impurity concentration gradient between the well region 10c and the transfer region 14 is designed such that no tunnel current is generated. At the other end of the transfer region 14, a transfer transistor TRN2 is arranged.
 APDは、増倍領域15を含む。増倍領域15は、光電変換領域10bと第二半導体12との境界近傍に形成される。半導体基板10にブレークダウン電圧以上の逆バイアス電圧が印加されると、増倍領域15にてアバランシェ増倍現象が起こる。APDでは、光電変換領域10bにおいて発生した信号電荷は、増倍領域15にてアバランシェ増倍される。これにより、電子が転送領域14に到達する前に多数の信号電荷を発生させることができる。したがって、固体撮像素子100は、通常はノイズに埋もれて検出できないような微弱な光を検出することが可能となる。 The APD includes a multiplication area 15. The multiplication region 15 is formed in the vicinity of the boundary between the photoelectric conversion region 10 b and the second semiconductor 12. When a reverse bias voltage equal to or higher than the breakdown voltage is applied to the semiconductor substrate 10, an avalanche multiplication phenomenon occurs in the multiplication region 15. In APD, the signal charge generated in the photoelectric conversion region 10 b is avalanche multiplied in the multiplication region 15. Thereby, a large number of signal charges can be generated before the electrons reach the transfer region 14. Therefore, the solid-state imaging device 100 can detect weak light that is normally buried in noise and cannot be detected.
 なお、光電変換領域10bが厚く形成されれば、上面側から入射した光を光電変換できる確率が増加する。光電変換領域10bが2μm以上の厚さであれば、比較的長い波長帯域の光に対する感度を確保することができる。 In addition, if the photoelectric conversion area | region 10b is formed thickly, the probability which can photoelectrically convert the light which injected from the upper surface side will increase. If the photoelectric conversion region 10b has a thickness of 2 μm or more, it is possible to ensure sensitivity to light in a relatively long wavelength band.
 光電変換領域10b及び第二半導体12の不純物濃度は、例えば、5×1016cm-3以上1018cm-3以下である。これにより、アバランシェ増倍を発生させることができる。光電変換領域10bの不純物濃度のピーク位置と第二半導体12の不純物濃度のピーク位置との間の距離が0.5μm以上離れていれば、不純物の拡散による不純物濃度の相殺が抑制される。したがって、アバランシェ増倍を発生させるのに十分な不純物濃度を確保することが可能である。 The impurity concentration of the photoelectric conversion region 10b and the second semiconductor 12 is, for example, 5 × 10 16 cm −3 or more and 10 18 cm −3 or less. Thereby, avalanche multiplication can be generated. If the distance between the peak position of the impurity concentration of the photoelectric conversion region 10b and the peak position of the impurity concentration of the second semiconductor 12 is 0.5 μm or more, the offset of the impurity concentration due to impurity diffusion is suppressed. Therefore, it is possible to ensure a sufficient impurity concentration for generating avalanche multiplication.
 分離領域13は、隣り合う第二半導体12を電気的に分離するための領域である。分離領域13は、アレイ状に配置された複数の第二半導体12の間に位置し、アレイ状に配置された複数の第二半導体12を分離する。分離領域13は、画素の境界に位置し、平面視において格子状である。分離領域によれば、隣り合う画素の混色、及び、一つの画素における信号電荷が他の画素に漏れ出すことを抑制することができる。 The isolation region 13 is a region for electrically isolating the adjacent second semiconductors 12. The separation region 13 is located between the plurality of second semiconductors 12 arranged in an array and separates the plurality of second semiconductors 12 arranged in an array. The separation region 13 is located at a pixel boundary and has a lattice shape in plan view. According to the separation region, it is possible to suppress color mixture of adjacent pixels and leakage of signal charges in one pixel to other pixels.
 分離領域13は、例えば、第二半導体12よりも不純物濃度が低いN型の半導体によって形成される。これにより、半導体基板10に電圧が印加されると、分離領域13にポテンシャル障壁が形成され、隣り合う第二半導体12が電気的に分離される。また、第二半導体12と分離領域13との間の電界強度が、第二半導体12と増倍領域15における電界強度よりも低くなるため、画素境界での光電変換で生じる混色成分の信号増倍を抑制することができる。 The isolation region 13 is formed of, for example, an N-type semiconductor having an impurity concentration lower than that of the second semiconductor 12. Thereby, when a voltage is applied to the semiconductor substrate 10, a potential barrier is formed in the isolation region 13 and the adjacent second semiconductors 12 are electrically isolated. In addition, since the electric field strength between the second semiconductor 12 and the separation region 13 is lower than the electric field strength in the second semiconductor 12 and the multiplication region 15, the signal multiplication of the mixed color component generated by photoelectric conversion at the pixel boundary is performed. Can be suppressed.
 なお、分離領域13が第二半導体12よりも不純物濃度が低いN型の半導体によって形成される場合、複数の第二半導体12を電気的に分離することに加えて、光電変換領域10bとウェル領域10cとを電気的に分離する必要がある。分離領域13の幅を広くするほど、光電変換領域10bとウェル領域10cの電気的分離が困難となり、設計マージンが狭いという課題が生じることが想定される。 When the isolation region 13 is formed of an N-type semiconductor having an impurity concentration lower than that of the second semiconductor 12, in addition to electrically isolating the plurality of second semiconductors 12, the photoelectric conversion region 10b and the well region 10c needs to be electrically separated. As the width of the isolation region 13 is increased, it is assumed that the electrical isolation between the photoelectric conversion region 10b and the well region 10c becomes more difficult, and the problem of a narrow design margin arises.
 例えば、分離領域13の幅が0.5μm以上1μm以下である場合、分離領域13の不純物濃度が1016cm-3以上5×1017cm-3以下であれば、光電変換領域10bとウェル領域10cとを電気的に分離することができる。このように、分離領域13の不純物濃度は、分離領域13の幅に応じて、適宜調整されるとよい。なお、ウェル領域10cの不純物濃度は、例えば、1016cm-3以上1018cm-3以下である。 For example, when the width of the isolation region 13 is 0.5 μm or more and 1 μm or less, if the impurity concentration of the isolation region 13 is 10 16 cm −3 or more and 5 × 10 17 cm −3 or less, the photoelectric conversion region 10b and the well region 10c can be electrically separated. As described above, the impurity concentration of the isolation region 13 may be adjusted as appropriate according to the width of the isolation region 13. The impurity concentration of the well region 10c is, for example, not less than 10 16 cm −3 and not more than 10 18 cm −3 .
 [第一半導体及び第二半導体の配置]
 第一半導体11は、半導体基板10内で第二半導体12よりも上面側に配置される。言い換えれば、第二半導体12は、半導体基板10内の第一半導体11よりも下方に配置されている。つまり、半導体基板10の光の入射面(つまり、上面)から第二半導体12までの距離は、半導体基板10の光の入射面から第一半導体11までの距離よりも長い。
[Arrangement of first semiconductor and second semiconductor]
The first semiconductor 11 is arranged on the upper surface side of the second semiconductor 12 in the semiconductor substrate 10. In other words, the second semiconductor 12 is disposed below the first semiconductor 11 in the semiconductor substrate 10. That is, the distance from the light incident surface (that is, the upper surface) of the semiconductor substrate 10 to the second semiconductor 12 is longer than the distance from the light incident surface of the semiconductor substrate 10 to the first semiconductor 11.
 一般に、シリコンなどの半導体材料が有する波長依存性により、光の長波長成分は、半導体基板10内の下方(言い換えれば、深部)まで到達しやすく、光の短波長成分は、半導体基板10内の下方まで到達しにくい。 In general, due to the wavelength dependency of a semiconductor material such as silicon, the long wavelength component of light easily reaches the lower part (in other words, the deep part) in the semiconductor substrate 10, and the short wavelength component of light It is difficult to reach down.
 そうすると、固体撮像素子100に入射する光のうち比較的波長が短い可視光は、第一半導体11及び接合領域10aによって構成されるPDには到達するが、第二半導体12及び光電変換領域10bによって構成されるAPDには到達しにくくなる。一方で、固体撮像素子100に入射する光のうち比較的波長が長い近赤外光は、APDに到達しやすい。つまり、半導体基板10内でAPDがPDよりも下方に位置する構成によれば、固体撮像素子100は、近赤外光などの比較的長波長の光を選択的にアバランシェ増倍させることができる。 Then, visible light having a relatively short wavelength out of the light incident on the solid-state imaging device 100 reaches the PD configured by the first semiconductor 11 and the junction region 10a, but by the second semiconductor 12 and the photoelectric conversion region 10b. It becomes difficult to reach the configured APD. On the other hand, near-infrared light having a relatively long wavelength out of light incident on the solid-state imaging device 100 easily reaches the APD. That is, according to the configuration in which the APD is positioned below the PD in the semiconductor substrate 10, the solid-state imaging device 100 can selectively avalanche-multiply light having a relatively long wavelength such as near infrared light. .
 例えば、固体撮像素子100は、PDに到達した可視光に基づいて出力される信号によって輝度画像を生成することができる。また、固体撮像素子100は、輝度画像を生成するだけでなく、ToF(Time of Flight)センサとしても使用できる。固体撮像素子100は、光源から出射されるパルス状の近赤外光の反射光がAPDに到達することで得られる信号によって距離画像を生成することができる。 For example, the solid-state imaging device 100 can generate a luminance image by a signal output based on visible light reaching the PD. Further, the solid-state imaging device 100 can be used not only for generating a luminance image but also as a ToF (Time of Flight) sensor. The solid-state imaging device 100 can generate a distance image by using a signal obtained when pulsed near-infrared reflected light emitted from a light source reaches the APD.
 また、固体撮像素子100によれば、距離分解能が高められたToFセンサを実現することも可能である。例えば、固体撮像素子100は、近距離に位置する対象物までの距離については可視光光源からの可視光の反射光をPDにより検出し、遠距離に位置する対象物までの距離については近赤外光源からの近赤外光の反射光をAPDによって検出する。これにより、距離分解能が高められた距離画像を得ることができる。 Further, according to the solid-state imaging device 100, it is also possible to realize a ToF sensor with improved distance resolution. For example, the solid-state imaging device 100 detects reflected light of visible light from a visible light source by a PD for a distance to an object located at a short distance, and near red for a distance to an object located at a long distance. The reflected light of the near infrared light from the external light source is detected by APD. Thereby, a distance image with improved distance resolution can be obtained.
 なお、PDとAPDとは電気的に分離される必要がある。PD及びAPDが共にリセット状態であるときの分離障壁は、例えば、少なくとも1V以上である。また、PDと転送領域14とは電気的に分離される必要がある。PDと転送領域14との間にはP型の半導体またはSTI(Shallow Trench Isolation)等が形成されてもよい。 Note that PD and APD need to be electrically separated. The separation barrier when both PD and APD are in the reset state is, for example, at least 1 V or more. Further, the PD and the transfer area 14 need to be electrically separated. A P-type semiconductor or STI (Shallow Trench Isolation) or the like may be formed between the PD and the transfer region 14.
 [画素回路]
 図1に示されるように、半導体基板10の上面には、画素回路を構成する複数のトランジスタが配置される。以下、画素回路について説明する。図3は、画素回路の構成の一例を示す図である。なお、図3は、PDの画素回路を示しているが、APDの画素回路についても同様の構成となる。
[Pixel circuit]
As shown in FIG. 1, a plurality of transistors constituting the pixel circuit are arranged on the upper surface of the semiconductor substrate 10. Hereinafter, the pixel circuit will be described. FIG. 3 is a diagram illustrating an example of a configuration of a pixel circuit. FIG. 3 shows the PD pixel circuit, but the APD pixel circuit has the same configuration.
 固体撮像素子100は、複数の画素101を含む画素アレイ102、垂直走査回路103、水平走査回路104、読み出し回路105、及び、バッファアンプ(増幅回路)111を備える。 The solid-state imaging device 100 includes a pixel array 102 including a plurality of pixels 101, a vertical scanning circuit 103, a horizontal scanning circuit 104, a readout circuit 105, and a buffer amplifier (amplifying circuit) 111.
 画素101は、PD、転送トランジスタTRN1、リセットトランジスタRST1、浮遊拡散領域FD1、増幅トランジスタSF1、及び、選択トランジスタSEL1を含む画素回路を有する。なお、図3では図示されないが、画素101は、APD、転送トランジスタTRN2、リセットトランジスタRST2、浮遊拡散領域FD2、増幅トランジスタSF2、及び、選択トランジスタSEL2を含む画素回路を有する。 The pixel 101 has a pixel circuit including a PD, a transfer transistor TRN1, a reset transistor RST1, a floating diffusion region FD1, an amplification transistor SF1, and a selection transistor SEL1. Although not shown in FIG. 3, the pixel 101 includes a pixel circuit including an APD, a transfer transistor TRN2, a reset transistor RST2, a floating diffusion region FD2, an amplification transistor SF2, and a selection transistor SEL2.
 なお、実施の形態1~3において、単に「トランジスタ」と記載した場合は、MOS型トランジスタ(MOSFET)を意味する。ただし、固体撮像素子の画素回路を構成するトランジスタは、MOS型トランジスタに限られず、ジャンクション型トランジスタ(JFET)、バイポーラトランジスタ、又は、これらの混在であってもよい。 In the first to third embodiments, when “transistor” is simply described, it means a MOS transistor (MOSFET). However, the transistor constituting the pixel circuit of the solid-state imaging device is not limited to a MOS transistor, and may be a junction transistor (JFET), a bipolar transistor, or a mixture thereof.
 PDによって検出された信号電荷は転送トランジスタTRN1を通じて浮遊拡散領域FD1に転送され、垂直走査回路103および水平走査回路104で順次選択された画素で検出された信号電荷の量に対応する信号が増幅トランジスタSF1を介して読み出し回路105に伝送される。画素101で得られた信号は読み出し回路105からバッファアンプ111を経て信号処理回路(図示せず)に出力され、信号処理回路(図示せず)でホワイトバランス等の信号処理が施された後にディスプレイ(図示せず)やメモリ(図示せず)に転送され、画像化することが可能となる。 The signal charge detected by the PD is transferred to the floating diffusion region FD1 through the transfer transistor TRN1, and a signal corresponding to the amount of signal charge detected by the pixels sequentially selected by the vertical scanning circuit 103 and the horizontal scanning circuit 104 is amplified. The data is transmitted to the reading circuit 105 via SF1. A signal obtained from the pixel 101 is output from the readout circuit 105 to the signal processing circuit (not shown) through the buffer amplifier 111, and after being subjected to signal processing such as white balance in the signal processing circuit (not shown), the display is performed. (Not shown) or a memory (not shown) to be imaged.
 なお、図3に示される画素回路では、画素アレイ102に、周辺回路(垂直走査回路103、水平走査回路104、読み出し回路105、バッファアンプ111)が付加されていたが、固体撮像素子100には、必ずしも周辺回路が含まれなくてもよい。また、画素101を構成する画素回路は、4個のトランジスタ(転送トランジスタTRN1、リセットトランジスタRST1、増幅トランジスタSF1、選択トランジスタSEL1)と1個の浮遊拡散領域FD1とで構成されたが、画素回路は、このような構成に限られず、固体撮像素子100が動作可能な範囲でもっと多い個数または少ない個数のトランジスタで構成されてもよい。トランジスタの構成及び配置(図1に図示)は、固体撮像素子100が動作する範囲内において変更されてもよい。 In the pixel circuit shown in FIG. 3, peripheral circuits (vertical scanning circuit 103, horizontal scanning circuit 104, readout circuit 105, and buffer amplifier 111) are added to the pixel array 102. However, the peripheral circuit is not necessarily included. The pixel circuit constituting the pixel 101 includes four transistors (transfer transistor TRN1, reset transistor RST1, amplification transistor SF1, selection transistor SEL1) and one floating diffusion region FD1, but the pixel circuit is However, the present invention is not limited to such a configuration, and the transistor may be configured with a larger or smaller number of transistors within a range in which the solid-state imaging device 100 can operate. The configuration and arrangement of the transistors (shown in FIG. 1) may be changed within a range in which the solid-state imaging device 100 operates.
 また、画素回路は、ToF方式で距離画像を取得するための回路構成を有していてもよい。また、画素回路は、PD及びAPDによって共有されてもよい。 Further, the pixel circuit may have a circuit configuration for acquiring a distance image by the ToF method. The pixel circuit may be shared by PD and APD.
 [製造方法]
 次に、固体撮像素子100の製造方法について説明する。図4は、固体撮像素子100の製造方法のフローチャートである。
[Production method]
Next, a method for manufacturing the solid-state imaging device 100 will be described. FIG. 4 is a flowchart of a method for manufacturing the solid-state imaging device 100.
 固体撮像素子100は、基本的に下層から上層に向けて製造される。まず、光電変換領域10b(P型の半導体)が形成された基板が準備される(S11)。そして、光電変換領域10bの上面の全面に、イオン注入法によってN型の半導体が形成される(S12)。ステップS12において形成されたN型の半導体に、フォトリソグラフィによるパターンニング、及び、P型不純物を用いたイオン注入等が行われることによって第二半導体12及び分離領域13が形成される(S13)。続いて、フォトリソグラフィによるパターンニング、及び、イオン注入等が行われることによって転送領域14及び第一半導体11が形成される(S14)。その後、ウェル領域10cが形成され(S15)、ウェル領域10cに、フォトリソグラフィによるパターンニング及びイオン注入等が行われることによって、画素回路に含まれるトランジスタのソース及びドレインが形成される(S16)。 The solid-state image sensor 100 is basically manufactured from the lower layer to the upper layer. First, a substrate on which the photoelectric conversion region 10b (P-type semiconductor) is formed is prepared (S11). Then, an N-type semiconductor is formed on the entire upper surface of the photoelectric conversion region 10b by ion implantation (S12). The second semiconductor 12 and the isolation region 13 are formed by performing patterning by photolithography, ion implantation using P-type impurities, and the like on the N-type semiconductor formed in step S12 (S13). Subsequently, the transfer region 14 and the first semiconductor 11 are formed by performing patterning by photolithography, ion implantation, and the like (S14). Thereafter, the well region 10c is formed (S15), and patterning and ion implantation by photolithography are performed in the well region 10c, thereby forming the source and drain of the transistor included in the pixel circuit (S16).
 なお、配線層(図示せず)の形成方法は、以下の通りである。例えば、ステップS11~ステップS16までの処理を終えた半導体基板10の上に絶縁層が形成され、当該絶縁層にフォトリソグラフィによるパターンニング、エッチング、及びスパッタリング等が行われることによって、絶縁層、ゲート電極、コンタクトプラグ、及び、配線が形成される。 In addition, the formation method of a wiring layer (not shown) is as follows. For example, an insulating layer is formed on the semiconductor substrate 10 that has been subjected to the processing from step S11 to step S16, and patterning, etching, sputtering, and the like by photolithography are performed on the insulating layer, so that the insulating layer, gate Electrodes, contact plugs, and wirings are formed.
 また、光電変換領域10b、及び、第二半導体12の少なくとも一方は、半導体基板10をエピタキシャル成長で形成する途中で不純物濃度を変更することにより作製されてもよい。この方法であれば、増倍領域15における結晶欠陥が光電変換領域10b及び第二半導体12がイオン注入法で作成された場合の増倍領域15よりも少なくなり、ノイズを低減することが可能である。 Further, at least one of the photoelectric conversion region 10b and the second semiconductor 12 may be produced by changing the impurity concentration during the formation of the semiconductor substrate 10 by epitaxial growth. With this method, crystal defects in the multiplication region 15 are less than in the multiplication region 15 when the photoelectric conversion region 10b and the second semiconductor 12 are formed by the ion implantation method, and noise can be reduced. is there.
 [効果等]
 固体撮像素子100は、上面に光が入射する半導体基板10と、半導体基板10内に配置された第一半導体11と、半導体基板10内の第一半導体11よりも下方に配置された第二半導体12とを備える。第一半導体11、及び、半導体基板10のうち第一半導体11に接合する接合領域10aは、PDを構成する。接合領域10aは、第一部分の一例であり、PDは、第一光電変換部の一例である。第二半導体12、及び、半導体基板10のうち第二半導体12に接合する光電変換領域10bは、APDを構成する。光電変換領域10bは、第二部分の一例であり、APDは、第二光電変換部の一例である。APDは、アバランシェ増倍によって電荷が増倍される増倍領域15を含む。
[Effects]
The solid-state imaging device 100 includes a semiconductor substrate 10 on which light is incident on an upper surface, a first semiconductor 11 disposed in the semiconductor substrate 10, and a second semiconductor disposed below the first semiconductor 11 in the semiconductor substrate 10. 12. The first semiconductor 11 and the junction region 10 a that joins the first semiconductor 11 in the semiconductor substrate 10 constitute a PD. The junction region 10a is an example of a first portion, and the PD is an example of a first photoelectric conversion unit. The second semiconductor 12 and the photoelectric conversion region 10b bonded to the second semiconductor 12 in the semiconductor substrate 10 constitute an APD. The photoelectric conversion region 10b is an example of a second part, and the APD is an example of a second photoelectric conversion unit. The APD includes a multiplication region 15 where charges are multiplied by avalanche multiplication.
 このような固体撮像素子100においては、短波長の光が到達しにくく、かつ、長波長の光が到達しやすい半導体基板10内の下面側にAPDが配置される。このため、APDが長波長の光の検出に用いられれば、固体撮像素子100は、長波長の光を比較的高い感度で検出することができる。 In such a solid-state imaging device 100, an APD is disposed on the lower surface side in the semiconductor substrate 10 in which short-wavelength light is difficult to reach and long-wavelength light is likely to reach. For this reason, if APD is used for detection of light having a long wavelength, the solid-state imaging device 100 can detect light having a long wavelength with relatively high sensitivity.
 また、固体撮像素子100において、PD及びAPDは上下方向の位置が異なる。したがって、固体撮像素子100においてはPDの数を増やすことができ、PDの数が増えることで短波長の光を高い解像度で検出できる。 In the solid-state imaging device 100, the positions of the PD and APD are different in the vertical direction. Therefore, in the solid-state imaging device 100, the number of PDs can be increased, and light with a short wavelength can be detected with high resolution by increasing the number of PDs.
 このように、固体撮像素子100は、短波長の光を高い解像度で検出し、かつ、長波長の光を高い感度で検出することができる。 As described above, the solid-state imaging device 100 can detect light having a short wavelength with high resolution and can detect light having a long wavelength with high sensitivity.
 また、固体撮像素子100は、半導体基板10内にアレイ状に配置された複数の第一半導体11と、半導体基板10内の複数の第一半導体11よりも下方にアレイ状に配置された複数の第二半導体12とを備える。 The solid-state imaging device 100 includes a plurality of first semiconductors 11 arranged in an array in the semiconductor substrate 10 and a plurality of first semiconductors 11 arranged in an array below the plurality of first semiconductors 11 in the semiconductor substrate 10. A second semiconductor 12.
 このように、固体撮像素子100は、複数のPDによって輝度画像または距離画像を出力することができ、かつ、複数のAPDによって輝度画像または距離画像を出力することができる。 Thus, the solid-state imaging device 100 can output a luminance image or a distance image with a plurality of PDs, and can output a luminance image or a distance image with a plurality of APDs.
 また、固体撮像素子100は、さらに、APDにおいて発生した電荷が蓄積される転送領域14であって、一方の端部が第二半導体12に接続され、他方の端部が半導体基板10の上面から外部に露出した転送領域14と、転送領域14の他方の端部に配置された転送トランジスタTRN2とを備える。転送領域は、第四半導体の一例である。 The solid-state imaging device 100 is further a transfer region 14 where charges generated in the APD are accumulated, one end of which is connected to the second semiconductor 12 and the other end from the upper surface of the semiconductor substrate 10. A transfer region 14 exposed to the outside and a transfer transistor TRN2 disposed at the other end of the transfer region 14 are provided. The transfer area is an example of a fourth semiconductor.
 このように、固体撮像素子100は、APDにおいて発生した電荷を転送することができる。 As described above, the solid-state imaging device 100 can transfer charges generated in the APD.
 (実施の形態2)
 [構造]
 以下、実施の形態2に係る固体撮像素子の構造について説明する。図5は、実施の形態2に係る固体撮像素子の平面図である。図6は、実施の形態2に係る固体撮像素子の断面図である。図6は、図5のVI-VI線で固体撮像素子200を切断した場合の断面図である。なお、図5において、第一半導体21は、実際には半導体基板20内に位置するが、配置を明確化するために実線で図示されている。
(Embodiment 2)
[Construction]
Hereinafter, the structure of the solid-state imaging device according to the second embodiment will be described. FIG. 5 is a plan view of the solid-state imaging device according to the second embodiment. FIG. 6 is a cross-sectional view of the solid-state imaging device according to the second embodiment. 6 is a cross-sectional view of the solid-state imaging device 200 taken along the line VI-VI in FIG. In FIG. 5, the first semiconductor 21 is actually located in the semiconductor substrate 20, but is shown by a solid line in order to clarify the arrangement.
 図5及び図6に示されるように、実施の形態2に係る固体撮像素子200は、半導体基板20と、第一半導体21と、第二半導体22と、分離領域23と、転送領域24とを備える。分離領域23は、第三半導体の一例であり、転送領域24は、第四半導体の一例である。半導体基板20は、複数の接合領域20aと、光電変換領域20bと、ウェル領域20cとを含む。以下、実施の形態2では、固体撮像素子200の、固体撮像素子100との相違点を中心に説明が行われ、既出事項の説明は省略または簡略化される。 As shown in FIGS. 5 and 6, the solid-state imaging device 200 according to the second embodiment includes a semiconductor substrate 20, a first semiconductor 21, a second semiconductor 22, a separation region 23, and a transfer region 24. Prepare. The isolation region 23 is an example of a third semiconductor, and the transfer region 24 is an example of a fourth semiconductor. The semiconductor substrate 20 includes a plurality of junction regions 20a, a photoelectric conversion region 20b, and a well region 20c. Hereinafter, in the second embodiment, description will be made centering on differences between the solid-state imaging device 200 and the solid-state imaging device 100, and description of the matters already described will be omitted or simplified.
 固体撮像素子200においては、1つの画素は、1つのAPD及び2つのPDを含む。つまり、固体撮像素子200は、1つのAPDに対して複数のPDを備える。したがって、固体撮像素子200において、複数のAPD(つまり、複数の第一半導体21)の総数は、複数のPD(つまり、複数の第二半導体22)の総数よりも多い。また、平面視において、1つの第二半導体22は、複数の第一半導体21と重なる。なお、1つの画素に含まれるPDの数、1つの画素におけるPDの配置、及び、PDの形状などは特に限定されない。 In the solid-state imaging device 200, one pixel includes one APD and two PDs. That is, the solid-state imaging device 200 includes a plurality of PDs for one APD. Therefore, in the solid-state imaging device 200, the total number of the plurality of APDs (that is, the plurality of first semiconductors 21) is larger than the total number of the plurality of PDs (that is, the plurality of second semiconductors 22). Further, in plan view, one second semiconductor 22 overlaps the plurality of first semiconductors 21. Note that the number of PDs included in one pixel, the arrangement of PDs in one pixel, the shape of the PD, and the like are not particularly limited.
 複数のPDは、半導体基板20のウェル領域20c内に配置され、電気的に分離されている。固体撮像素子200においても、第二半導体22は、半導体基板20内の第一半導体21よりも下方に配置されている。 The plurality of PDs are arranged in the well region 20c of the semiconductor substrate 20 and are electrically separated. Also in the solid-state imaging device 200, the second semiconductor 22 is disposed below the first semiconductor 21 in the semiconductor substrate 20.
 例えば、光電変換領域20bがシリコンによって形成され、PDが可視光の検出に用いられ、かつ、APDが近赤外光の検出に用いられる場合、PDによって得られる輝度画像を高解像度化することができる。また、シリコンは近赤外光の吸収率が低い。このため、近赤外光がAPDの増倍領域25においてアバランシェ増倍される構成が有用である。 For example, when the photoelectric conversion region 20b is formed of silicon, the PD is used for detection of visible light, and the APD is used for detection of near-infrared light, it is possible to increase the resolution of a luminance image obtained by the PD. it can. In addition, silicon has a low absorption rate of near infrared light. Therefore, a configuration in which near-infrared light is avalanche multiplied in the APD multiplication region 25 is useful.
 また、固体撮像素子200では、平面視において、第二半導体22は、第一半導体21よりも大きい。固体撮像素子200では、平面視において、各第一半導体21の全部が第二半導体に重なり、APDの受光面積は、PDの受光面積よりも相対的に大きくなる。したがって、近赤外光に対する感度の向上が期待される。 In the solid-state imaging device 200, the second semiconductor 22 is larger than the first semiconductor 21 in plan view. In the solid-state imaging device 200, all of the first semiconductors 21 overlap with the second semiconductor in a plan view, and the light receiving area of the APD is relatively larger than the light receiving area of the PD. Therefore, improvement in sensitivity to near infrared light is expected.
 また、光電変換領域20bは、半導体基板20の上面(光の入射面)と反対側に位置しているため比較的自由に厚膜化できる。これにより、APDは、量子効率を高めて近赤外光を検出することができる。 Further, since the photoelectric conversion region 20b is located on the side opposite to the upper surface (light incident surface) of the semiconductor substrate 20, it can be made relatively thick. Thereby, APD can detect near-infrared light by improving quantum efficiency.
 ところで、図5に示されるように、半導体基板20の上面には、画素回路を構成する複数のトランジスタが配置される。PD用の画素回路には、転送トランジスタTRN1、リセットトランジスタRST1、浮遊拡散領域FD1、増幅トランジスタSF1、及び、選択トランジスタSEL1が含まれる。APD用の画素回路には、転送トランジスタTRN2、リセットトランジスタRST2、浮遊拡散領域FD2、増幅トランジスタSF2、及び、選択トランジスタSEL2が含まれる。 Incidentally, as shown in FIG. 5, a plurality of transistors constituting the pixel circuit are arranged on the upper surface of the semiconductor substrate 20. The pixel circuit for PD includes a transfer transistor TRN1, a reset transistor RST1, a floating diffusion region FD1, an amplification transistor SF1, and a selection transistor SEL1. The APD pixel circuit includes a transfer transistor TRN2, a reset transistor RST2, a floating diffusion region FD2, an amplification transistor SF2, and a selection transistor SEL2.
 固体撮像素子200においては、PD用の画素回路、及び、APD用の画素回路が独立している。一方、2つのPDの画素回路は、共通化されており、これにより、PD用の画素回路の実装面積の縮小が図られている。なお、PDが3つ以上の場合も画素回路の共通化は可能である。なお、PD用の画素回路及びAPD用の画素回路が共通化されてもよい。 In the solid-state imaging device 200, the pixel circuit for PD and the pixel circuit for APD are independent. On the other hand, the pixel circuits of the two PDs are made common, thereby reducing the mounting area of the PD pixel circuit. The pixel circuit can be shared even when there are three or more PDs. The PD pixel circuit and the APD pixel circuit may be shared.
 [効果等]
 固体撮像素子200においては、平面視において、第二半導体22は、第一半導体21よりも大きい。
[Effects]
In the solid-state imaging device 200, the second semiconductor 22 is larger than the first semiconductor 21 in plan view.
 このように、固体撮像素子200においては第二半導体22によって構成されるAPDの受光面積が大きいため、近赤外光の感度を高めることができる。 Thus, since the light receiving area of the APD configured by the second semiconductor 22 is large in the solid-state imaging device 200, the sensitivity of near-infrared light can be increased.
 また、固体撮像素子200においては、複数の第一半導体21の総数は、複数の第二半導体22の総数よりも多い。 In the solid-state imaging device 200, the total number of the plurality of first semiconductors 21 is larger than the total number of the plurality of second semiconductors 22.
 このように、固体撮像素子200においては第一半導体21によって構成されるPDの数が多いため、PDによって検出される光に基づく画像(輝度画像または距離画像)が高解像度化される。 As described above, in the solid-state imaging device 200, since the number of PDs configured by the first semiconductor 21 is large, an image (luminance image or distance image) based on light detected by the PD is increased in resolution.
 また、固体撮像素子200においては、平面視において、1つの第二半導体22は、複数の第一半導体21と重なる。 In the solid-state imaging device 200, one second semiconductor 22 overlaps the plurality of first semiconductors 21 in plan view.
 これにより、複数の第一半導体21を密集させて固体撮像素子200の小型化を実現することができる。 Thereby, it is possible to reduce the size of the solid-state imaging device 200 by concentrating the plurality of first semiconductors 21.
 (実施の形態3)
 [構造]
 以下、実施の形態3に係る固体撮像素子の構造について説明する。図7は、実施の形態3に係る固体撮像素子の平面図である。図8及び図9は、実施の形態2に係る固体撮像素子の断面図である。図8は、図7のVIII-VIII線で固体撮像素子300を切断した場合の断面図である。図9は、図7のIX-IX線で固体撮像素子300を切断した場合の断面図である。なお、図7において、第一半導体31は、実際には半導体基板30内に位置するが、配置を明確化するために実線で図示されている。
(Embodiment 3)
[Construction]
Hereinafter, the structure of the solid-state imaging device according to the third embodiment will be described. FIG. 7 is a plan view of the solid-state imaging device according to the third embodiment. 8 and 9 are cross-sectional views of the solid-state imaging device according to the second embodiment. FIG. 8 is a cross-sectional view of the solid-state imaging device 300 taken along the line VIII-VIII in FIG. FIG. 9 is a cross-sectional view of the solid-state imaging device 300 taken along the line IX-IX in FIG. In FIG. 7, the first semiconductor 31 is actually located in the semiconductor substrate 30, but is illustrated by a solid line for clarity of arrangement.
 図7~図9に示されるように、実施の形態3に係る固体撮像素子300は、半導体基板30と、複数の第一半導体31と、複数の第二半導体32と、分離領域33と、転送領域34とを備える。分離領域33は、第三半導体の一例であり、転送領域34は、第四半導体の一例である。半導体基板30は、複数の接合領域30aと、光電変換領域30bと、ウェル領域30cとを含む。以下、実施の形態3では、固体撮像素子300の、固体撮像素子100及び固体撮像素子200との相違点を中心に説明が行われ、既出事項の説明は省略または簡略化される。 As shown in FIGS. 7 to 9, the solid-state imaging device 300 according to the third embodiment includes a semiconductor substrate 30, a plurality of first semiconductors 31, a plurality of second semiconductors 32, a separation region 33, and a transfer. Region 34. The isolation region 33 is an example of a third semiconductor, and the transfer region 34 is an example of a fourth semiconductor. The semiconductor substrate 30 includes a plurality of junction regions 30a, a photoelectric conversion region 30b, and a well region 30c. Hereinafter, in the third embodiment, description will be made centering on differences between the solid-state imaging device 300 and the solid-state imaging device 100 and the solid-state imaging device 200, and description of the matters already described will be omitted or simplified.
 固体撮像素子300においては、1つの画素は、1つのAPD及び4つのPDを含む。つまり、固体撮像素子200は、1つのAPDに対して4つのPDを備える。なお、1つの画素に含まれるPDの数、1つの画素におけるPDの配置、及び、PDの形状などは特に限定されない。 In the solid-state imaging device 300, one pixel includes one APD and four PDs. That is, the solid-state imaging device 200 includes four PDs for one APD. Note that the number of PDs included in one pixel, the arrangement of PDs in one pixel, the shape of the PD, and the like are not particularly limited.
 4つのPDには、ベイヤー配列のカラーフィルタが適用される。固体撮像素子300では、このような既存のベイヤー配列のカラーフィルタに対応しつつ、近赤外光を高感度に検出するためのAPDが追加されている。 ¡A Bayer color filter is applied to the four PDs. In the solid-state imaging device 300, an APD for detecting near-infrared light with high sensitivity is added while corresponding to such an existing Bayer color filter.
 また、PD(つまり、第一半導体31)は、分離領域33の上方にも配置されている。APDの増倍領域35においてアバランシェ増倍された信号電荷によって画像を出力する場合、光電変換領域30bの下面側に負バイアスの電圧(ブレークダウン電圧とも呼ばれる)が印加される。このとき、画素毎の出力が混ざらないようにするために、複数のAPD(つまり、複数の第二半導体32)を電気的に分離する必要がある。また、画素回路を構成するトランジスタが配置されるウェル領域30cの電位を安定させるために、ウェル領域30cと光電変換領域30bとを電気的に分離する必要もある。 The PD (that is, the first semiconductor 31) is also disposed above the isolation region 33. When an image is output by the signal charge multiplied by the avalanche in the APD multiplication region 35, a negative bias voltage (also called a breakdown voltage) is applied to the lower surface side of the photoelectric conversion region 30b. At this time, it is necessary to electrically separate a plurality of APDs (that is, a plurality of second semiconductors 32) so that outputs for each pixel are not mixed. In addition, in order to stabilize the potential of the well region 30c where the transistors constituting the pixel circuit are arranged, it is necessary to electrically isolate the well region 30c and the photoelectric conversion region 30b.
 複数のAPDの電気的な分離、及び、ウェル領域30cと光電変換領域30bとの電気的な分離を両立させるためには、分離領域33は、画素間に一定のポテンシャル障壁を形成するためにリセット状態のAPDよりも低い電位でありつつ、かつ、ウェル領域30cよりも高い電位となる、空乏化した状態に保たれる必要がある。しかしながら、この条件を満たす分離領域33の不純物濃度の範囲は限定的なものとなり、この条件を満たす分離領域33を備える固体撮像素子300の製造は困難である。 In order to achieve both electrical isolation of a plurality of APDs and electrical isolation between the well region 30c and the photoelectric conversion region 30b, the isolation region 33 is reset to form a constant potential barrier between the pixels. It is necessary to maintain a depleted state in which the potential is lower than the APD in the state and is higher than the well region 30c. However, the range of the impurity concentration of the isolation region 33 that satisfies this condition is limited, and it is difficult to manufacture the solid-state imaging device 300 including the isolation region 33 that satisfies this condition.
 PDが分離領域33上に配置されれば、光電変換領域30bの下面側に負バイアスの電圧が印加されても、分離領域33の上方にリセット状態で正バイアスの電圧が印加されるPDが配置される。このため、ウェル領域30cと光電変換領域30bとの間の電気的な分離能力(つまり、絶縁能力)が向上する。特に、分離領域33のうち平面視においてAPDの角部に隣接する領域P(図7に図示)は、幅が比較的広く形成されてウェル領域30cと光電変換領域30bとの間の電気的な分離能力が低下する懸念が高い。したがって、領域Pの上方にPDが配置されることは有用である。 If the PD is arranged on the separation region 33, even if a negative bias voltage is applied to the lower surface side of the photoelectric conversion region 30b, a PD to which a positive bias voltage is applied in the reset state is arranged above the separation region 33. Is done. For this reason, the electrical isolation | separation capability (namely, insulation capability) between the well area | region 30c and the photoelectric converting area | region 30b improves. In particular, a region P (shown in FIG. 7) adjacent to the corner of the APD in plan view in the separation region 33 is formed to have a relatively wide width so that an electrical connection between the well region 30c and the photoelectric conversion region 30b is achieved. There is a high concern that the separation capacity will decrease. Therefore, it is useful to arrange the PD above the region P.
 また、図9に示されるように、固体撮像素子300においては、P型半導体である、ウェル領域30c、及び、接合領域30aの不純物濃度に差が付けられている。具体的には、接合領域30aの不純物濃度は、ウェル領域30cの不純物濃度よりも低い。これにより、PDの下面側に空乏層が伸びるためPDの感度を向上することができる。 Further, as shown in FIG. 9, in the solid-state imaging device 300, there is a difference in impurity concentration between the well region 30c and the junction region 30a, which are P-type semiconductors. Specifically, the impurity concentration of the junction region 30a is lower than the impurity concentration of the well region 30c. Thereby, since the depletion layer extends on the lower surface side of the PD, the sensitivity of the PD can be improved.
 また、固体撮像素子300においては、N型半導体である、第二半導体32、転送領域34、及び、第一半導体31の不純物濃度に差がつけられている。具体的には、第二半導体32の不純物濃度、及び、転送領域34の不純物濃度は、第一半導体31の不純物濃度よりも高い。これにより、APDを駆動させてアバランシェ増倍を行う場合に、光電変換領域30bに印加される負バイアスの電圧を小さくできる。光電変換領域30bに印加される負バイアスの電圧が小さくされれば、光電変換領域30bとウェル領域30cとの間が導通する(言い換えれば、パンチスルーする)リスクを低減することができる。 Further, in the solid-state image sensor 300, the impurity concentrations of the second semiconductor 32, the transfer region 34, and the first semiconductor 31 that are N-type semiconductors are different. Specifically, the impurity concentration of the second semiconductor 32 and the impurity concentration of the transfer region 34 are higher than the impurity concentration of the first semiconductor 31. Thus, when avalanche multiplication is performed by driving the APD, the negative bias voltage applied to the photoelectric conversion region 30b can be reduced. If the negative bias voltage applied to the photoelectric conversion region 30b is reduced, the risk of conduction between the photoelectric conversion region 30b and the well region 30c (in other words, punch-through) can be reduced.
 ところで、図7に示されるように、半導体基板30の上面には、画素回路を構成する複数のトランジスタが配置される。PD用の画素回路には、転送トランジスタTRN1、リセットトランジスタRST1、浮遊拡散領域FD1、増幅トランジスタSF1、及び、選択トランジスタSEL1が含まれる。APD用の画素回路には、転送トランジスタTRN2、リセットトランジスタRST2、浮遊拡散領域FD2、増幅トランジスタSF2、及び、選択トランジスタSEL2が含まれる。 Incidentally, as shown in FIG. 7, a plurality of transistors constituting the pixel circuit are arranged on the upper surface of the semiconductor substrate 30. The pixel circuit for PD includes a transfer transistor TRN1, a reset transistor RST1, a floating diffusion region FD1, an amplification transistor SF1, and a selection transistor SEL1. The APD pixel circuit includes a transfer transistor TRN2, a reset transistor RST2, a floating diffusion region FD2, an amplification transistor SF2, and a selection transistor SEL2.
 固体撮像素子300においては、PD用の画素回路、及び、APD用の画素回路が独立している。2つのPDの画素回路は、共通化されており、1つの画素は、4つのPDに対応して2組の画素回路を有する。これにより、PD用の画素回路の実装面積の縮小が図られている。なお、PDが3つ以上の場合も画素回路の共通化は可能である。また、PD用の画素回路及びAPD用の画素回路が共通化されてもよい。 In the solid-state imaging device 300, the pixel circuit for PD and the pixel circuit for APD are independent. The pixel circuits of the two PDs are shared, and one pixel has two sets of pixel circuits corresponding to the four PDs. Thereby, the mounting area of the pixel circuit for PD is reduced. The pixel circuit can be shared even when there are three or more PDs. Further, the pixel circuit for PD and the pixel circuit for APD may be shared.
 [効果等]
 固体撮像素子300は、半導体基板30内の複数の第二半導体32の間に位置し、複数の第二半導体32を分離する分離領域33を備える。分離領域33は、第三半導体の一例である。平面視において、分離領域33は、複数の第一半導体31の少なくとも一つと重なる。
[Effects]
The solid-state imaging device 300 includes a separation region 33 that is located between the plurality of second semiconductors 32 in the semiconductor substrate 30 and separates the plurality of second semiconductors 32. The isolation region 33 is an example of a third semiconductor. In plan view, the separation region 33 overlaps at least one of the plurality of first semiconductors 31.
 これにより、光電変換領域30bとウェル領域30cとの間が導通することが抑制される。 Thereby, electrical conduction between the photoelectric conversion region 30b and the well region 30c is suppressed.
 また、固体撮像素子300は、1つの第二半導体32に対して4つの第一半導体31を有し、4つの第二半導体32は、2×2の配列をなす。 Further, the solid-state imaging device 300 includes four first semiconductors 31 with respect to one second semiconductor 32, and the four second semiconductors 32 form a 2 × 2 array.
 このように、固体撮像素子300においては、PDのベイヤー配列を維持しつつ、APDが追加されている。つまり、可視光の検出に対応する第二半導体32のカラーフィルタにベイヤー配列を適用することができる。 As described above, in the solid-state imaging device 300, the APD is added while maintaining the PD Bayer arrangement. That is, the Bayer arrangement can be applied to the color filter of the second semiconductor 32 corresponding to the detection of visible light.
 また、固体撮像素子300においては、半導体基板30は、第一導電型(例えば、P型)の半導体によって形成され、第一半導体31、第二半導体32、及び、転送領域34は、第一導電型と異なる第二導電型(例えば、N型)の半導体によって形成される。第二半導体32の不純物濃度、及び、転送領域34の不純物濃度は、第一半導体31の不純物濃度よりも高い。 In the solid-state imaging device 300, the semiconductor substrate 30 is formed of a first conductivity type (for example, P-type) semiconductor, and the first semiconductor 31, the second semiconductor 32, and the transfer region 34 are the first conductivity type. It is formed of a second conductivity type (for example, N type) semiconductor different from the type. The impurity concentration of the second semiconductor 32 and the impurity concentration of the transfer region 34 are higher than the impurity concentration of the first semiconductor 31.
 これにより、APDを駆動させてアバランシェ増倍を行う場合に、光電変換領域30bに印加される負バイアスの電圧を小さくできる。光電変換領域30bに印加される負バイアスの電圧が小さくされれば、光電変換領域30bとウェル領域30cとの間が導通することを抑制することができる。 Thus, when avalanche multiplication is performed by driving the APD, the negative bias voltage applied to the photoelectric conversion region 30b can be reduced. If the negative bias voltage applied to the photoelectric conversion region 30b is reduced, conduction between the photoelectric conversion region 30b and the well region 30c can be suppressed.
 また、固体撮像素子300においては、半導体基板30は、第一半導体31の周囲に位置するウェル領域30cを含み、半導体基板30の接合領域30aの不純物濃度は、ウェル領域30cの不純物濃度よりも低い。 In the solid-state imaging device 300, the semiconductor substrate 30 includes a well region 30c located around the first semiconductor 31, and the impurity concentration of the junction region 30a of the semiconductor substrate 30 is lower than the impurity concentration of the well region 30c. .
 これにより、PDの下面側に空乏層が伸びるためPDの感度を向上することができる。 Thereby, since the depletion layer extends on the lower surface side of the PD, the sensitivity of the PD can be improved.
 (その他の実施の形態)
 以上、実施の形態に係る固体撮像素子について説明したが、本開示は、上記実施の形態に限定されるものではない。
(Other embodiments)
The solid-state imaging device according to the embodiment has been described above, but the present disclosure is not limited to the above-described embodiment.
 例えば、上記実施の形態では、第一光電変換部は、増倍領域を含まないが、増倍領域を含んでもよい。つまり、第一光電変換部は、PDではなくAPDであってもよい。 For example, in the above embodiment, the first photoelectric conversion unit does not include the multiplication region, but may include the multiplication region. That is, the first photoelectric conversion unit may be an APD instead of a PD.
 また、上記実施の形態において説明に用いられ数字は、全て本開示を具体的に説明するために例示するものであり、本開示は例示された数字に制限されない。 In addition, all the numbers used in the description in the above-described embodiment are examples for specifically explaining the present disclosure, and the present disclosure is not limited to the illustrated numbers.
 また、上記実施の形態で説明された回路構成は、一例であり、本開示は上記回路構成に限定されない。つまり、上記回路構成と同様に、本開示の特徴的な機能を実現できる回路も本開示に含まれる。例えば、上記回路構成と同様の機能を実現できる範囲で、ある素子に対して、直列又は並列に、スイッチング素子(トランジスタ)、抵抗素子、または容量素子等の素子が接続されたものも本開示に含まれる。 Further, the circuit configuration described in the above embodiment is an example, and the present disclosure is not limited to the above circuit configuration. That is, similar to the circuit configuration described above, a circuit that can realize the characteristic function of the present disclosure is also included in the present disclosure. For example, a device in which an element such as a switching element (transistor), a resistance element, or a capacitor element is connected in series or in parallel to a certain element within a range in which a function similar to the circuit configuration described above can be realized is also disclosed in the present disclosure. included.
 また、上記実施の形態では、固体撮像素子が有する積層構造の各層を構成する主たる材料について例示しているが、固体撮像素子が有する積層構造の各層には、上記実施の形態の積層構造と同様の機能を実現できる範囲で他の材料が含まれてもよい。また、図面においては、各構成要素の角部及び辺は直線的に記載されているが、製造上の理由などにより、角部及び辺が丸みを帯びたものも本開示に含まれる。  In the above embodiment, the main materials constituting each layer of the stacked structure of the solid-state image sensor are illustrated, but each layer of the stacked structure of the solid-state image sensor has the same structure as the stacked structure of the above embodiment. Other materials may be included as long as these functions can be realized. In the drawings, the corners and sides of each component are linearly described, but the present disclosure also includes those in which the corners and sides are rounded due to manufacturing reasons.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。例えば、本開示は、固体撮像素子の製造方法として実現されてもよい。 In addition, the embodiment can be realized by variously conceiving various modifications to those embodiments, or by arbitrarily combining the components and functions in the embodiments without departing from the gist of the present disclosure. This form is also included in the present disclosure. For example, this indication may be realized as a manufacturing method of a solid-state image sensing device.
 本開示の固体撮像素子は、カメラ及びToFセンサ等に利用できる。 The solid-state imaging device of the present disclosure can be used for a camera, a ToF sensor, and the like.
 10、20、30 半導体基板
 10a、20a、30a 接合領域
 10b、20b、30b 光電変換領域
 10c、20c、30c ウェル領域
 11、21、31 第一半導体
 12、22、32 第二半導体
 13、23、33 分離領域(第三半導体)
 14、24、34 転送領域(第四半導体)
 15、25、35 増倍領域
 100、200、300 固体撮像素子
 101 画素
 102 画素アレイ
 103 垂直走査回路
 104 水平走査回路
 105 読み出し回路
 111 バッファアンプ
 FD1、FD2 浮遊拡散領域
 RST1、RST2 リセットトランジスタ
 SEL1、SEL2 選択トランジスタ
 SF1、SF2 増幅トランジスタ
 TRN1、TRN2 転送トランジスタ
10, 20, 30 Semiconductor substrate 10a, 20a, 30a Junction region 10b, 20b, 30b Photoelectric conversion region 10c, 20c, 30c Well region 11, 21, 31 First semiconductor 12, 22, 32 Second semiconductor 13, 23, 33 Isolation region (third semiconductor)
14, 24, 34 Transfer area (fourth semiconductor)
15, 25, 35 Multiplier region 100, 200, 300 Solid-state imaging device 101 Pixel 102 Pixel array 103 Vertical scanning circuit 104 Horizontal scanning circuit 105 Read circuit 111 Buffer amplifier FD1, FD2 Floating diffusion region RST1, RST2 Reset transistor SEL1, SEL2 selection Transistor SF1, SF2 Amplifying transistor TRN1, TRN2 Transfer transistor

Claims (10)

  1.  上面に光が入射する半導体基板と、
     前記半導体基板内に配置された第一半導体と、
     前記半導体基板内の前記第一半導体よりも下方に配置された第二半導体とを備え、
     前記第一半導体、及び、前記半導体基板のうち前記第一半導体に接合する第一部分は、第一光電変換部を構成し、
     前記第二半導体、及び、前記半導体基板のうち前記第二半導体に接合する第二部分は、第二光電変換部を構成し、
     前記第二光電変換部は、アバランシェ増倍によって電荷が増倍される増倍領域を含む
     固体撮像素子。
    A semiconductor substrate on which light is incident on the upper surface;
    A first semiconductor disposed in the semiconductor substrate;
    A second semiconductor disposed below the first semiconductor in the semiconductor substrate,
    The first portion of the first semiconductor and the semiconductor substrate bonded to the first semiconductor constitutes a first photoelectric conversion unit,
    The second semiconductor and the second portion of the semiconductor substrate that is bonded to the second semiconductor constitutes a second photoelectric conversion unit,
    The second photoelectric conversion unit includes a multiplication region where charges are multiplied by avalanche multiplication.
  2.  平面視において、前記第二半導体は、前記第一半導体よりも大きい
     請求項1に記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein the second semiconductor is larger than the first semiconductor in a plan view.
  3.  前記固体撮像素子は、
     前記半導体基板内にアレイ状に配置された複数の前記第一半導体と
     前記半導体基板内の複数の前記第一半導体よりも下方にアレイ状に配置された複数の前記第二半導体とを備える
     請求項1または2に記載の固体撮像素子。
    The solid-state imaging device is
    A plurality of the first semiconductors arranged in an array in the semiconductor substrate, and a plurality of the second semiconductors arranged in an array below the plurality of first semiconductors in the semiconductor substrate. The solid-state imaging device according to 1 or 2.
  4.  複数の前記第一半導体の総数は、複数の前記第二半導体の総数よりも多い
     請求項3に記載の固体撮像素子。
    The solid-state imaging device according to claim 3, wherein a total number of the plurality of first semiconductors is larger than a total number of the plurality of second semiconductors.
  5.  平面視において、1つの前記第二半導体は、複数の前記第一半導体と重なる
     請求項3または4に記載の固体撮像素子。
    5. The solid-state imaging device according to claim 3, wherein one second semiconductor overlaps the plurality of first semiconductors in plan view.
  6.  さらに、前記半導体基板内の複数の前記第二半導体の間に位置し、複数の前記第二半導体を分離する第三半導体を備え、
     平面視において、前記第三半導体は、複数の前記第一半導体の少なくとも一つと重なる
     請求項3~5のいずれか1項に記載の固体撮像素子。
    And a third semiconductor positioned between the plurality of second semiconductors in the semiconductor substrate and separating the plurality of second semiconductors,
    The solid-state imaging device according to any one of claims 3 to 5, wherein the third semiconductor overlaps at least one of the plurality of first semiconductors in plan view.
  7.  前記固体撮像素子は、1つの前記第二半導体に対して4つの前記第一半導体を有し、4つの前記第二半導体は、2×2の配列をなす
     請求項3~6のいずれか1項に記載の固体撮像素子。
    The solid-state imaging device includes four first semiconductors with respect to one second semiconductor, and the four second semiconductors form a 2 × 2 array. The solid-state image sensor described in 1.
  8.  さらに、
     前記第二光電変換部において発生した電荷が蓄積される第四半導体であって、一方の端部が前記第二半導体に接続され、他方の端部が前記半導体基板の上面から外部に露出した第四半導体と、
     前記第四半導体の前記他方の端部に配置されたトランジスタとを備える
     請求項1~7のいずれか1項に記載の固体撮像素子。
    further,
    A fourth semiconductor in which charges generated in the second photoelectric conversion unit are accumulated, wherein one end is connected to the second semiconductor and the other end is exposed to the outside from the upper surface of the semiconductor substrate; Four semiconductors,
    The solid-state imaging device according to any one of claims 1 to 7, further comprising: a transistor disposed at the other end of the fourth semiconductor.
  9.  前記半導体基板は、第一導電型の半導体によって形成され、
     前記第一半導体、前記第二半導体、及び、前記第四半導体は、前記第一導電型と異なる第二導電型の半導体によって形成され、
     前記第二半導体の不純物濃度、及び、前記第四半導体の不純物濃度は、前記第一半導体の不純物濃度よりも高い
     請求項8に記載の固体撮像素子。
    The semiconductor substrate is formed of a first conductivity type semiconductor,
    The first semiconductor, the second semiconductor, and the fourth semiconductor are formed of a second conductivity type semiconductor different from the first conductivity type,
    The solid-state imaging device according to claim 8, wherein the impurity concentration of the second semiconductor and the impurity concentration of the fourth semiconductor are higher than the impurity concentration of the first semiconductor.
  10.  前記半導体基板は、前記第一半導体の周囲に位置するウェル領域を含み、
     前記半導体基板の前記第一部分の不純物濃度は、前記ウェル領域の不純物濃度よりも低い
     請求項1~9のいずれか1項に記載の固体撮像素子。
    The semiconductor substrate includes a well region located around the first semiconductor;
    The solid-state imaging device according to any one of claims 1 to 9, wherein an impurity concentration of the first portion of the semiconductor substrate is lower than an impurity concentration of the well region.
PCT/JP2018/011599 2018-03-23 2018-03-23 Solid-state imaging element WO2019180898A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/011599 WO2019180898A1 (en) 2018-03-23 2018-03-23 Solid-state imaging element
JP2020507231A JPWO2019180898A1 (en) 2018-03-23 2018-03-23 Solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/011599 WO2019180898A1 (en) 2018-03-23 2018-03-23 Solid-state imaging element

Publications (1)

Publication Number Publication Date
WO2019180898A1 true WO2019180898A1 (en) 2019-09-26

Family

ID=67986063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011599 WO2019180898A1 (en) 2018-03-23 2018-03-23 Solid-state imaging element

Country Status (2)

Country Link
JP (1) JPWO2019180898A1 (en)
WO (1) WO2019180898A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007309A (en) * 1999-06-24 2001-01-12 Nec Corp Optoelectronic transducer device and manufacture thereof
JP2003298038A (en) * 2002-04-05 2003-10-17 Canon Inc Photoelectric conversion element and solid-state imaging device using the same
JP2008500726A (en) * 2004-05-27 2008-01-10 フォブオン・インク Vertical color filter sensor group
JP2008147471A (en) * 2006-12-12 2008-06-26 Matsushita Electric Ind Co Ltd Solid-state imaging device
JP2008258430A (en) * 2007-04-05 2008-10-23 Nikon Corp Solid-state image sensing device
JP2010041031A (en) * 2008-07-11 2010-02-18 Panasonic Corp Solid-state imaging device
JP2010272666A (en) * 2009-05-21 2010-12-02 Panasonic Corp Solid-state imaging device
US20160240579A1 (en) * 2015-02-17 2016-08-18 Omnivision Technologies, Inc. Stacked embedded spad image sensor for attached 3d information
WO2017043068A1 (en) * 2015-09-09 2017-03-16 パナソニックIpマネジメント株式会社 Solid-state imaging element
WO2017122436A1 (en) * 2016-01-15 2017-07-20 パナソニック・タワージャズセミコンダクター株式会社 Solid-state image capture device
WO2017203936A1 (en) * 2016-05-25 2017-11-30 パナソニック・タワージャズセミコンダクター株式会社 Solid-state imaging element
JP2018019040A (en) * 2016-07-29 2018-02-01 キヤノン株式会社 Photodetector and photodetection system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101475464B1 (en) * 2008-05-09 2014-12-22 삼성전자 주식회사 Multi-layer image sensor
JP2017208496A (en) * 2016-05-20 2017-11-24 ソニー株式会社 Solid-state image pickup device and electronic apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007309A (en) * 1999-06-24 2001-01-12 Nec Corp Optoelectronic transducer device and manufacture thereof
JP2003298038A (en) * 2002-04-05 2003-10-17 Canon Inc Photoelectric conversion element and solid-state imaging device using the same
JP2008500726A (en) * 2004-05-27 2008-01-10 フォブオン・インク Vertical color filter sensor group
JP2008147471A (en) * 2006-12-12 2008-06-26 Matsushita Electric Ind Co Ltd Solid-state imaging device
JP2008258430A (en) * 2007-04-05 2008-10-23 Nikon Corp Solid-state image sensing device
JP2010041031A (en) * 2008-07-11 2010-02-18 Panasonic Corp Solid-state imaging device
JP2010272666A (en) * 2009-05-21 2010-12-02 Panasonic Corp Solid-state imaging device
US20160240579A1 (en) * 2015-02-17 2016-08-18 Omnivision Technologies, Inc. Stacked embedded spad image sensor for attached 3d information
WO2017043068A1 (en) * 2015-09-09 2017-03-16 パナソニックIpマネジメント株式会社 Solid-state imaging element
WO2017122436A1 (en) * 2016-01-15 2017-07-20 パナソニック・タワージャズセミコンダクター株式会社 Solid-state image capture device
WO2017203936A1 (en) * 2016-05-25 2017-11-30 パナソニック・タワージャズセミコンダクター株式会社 Solid-state imaging element
JP2018019040A (en) * 2016-07-29 2018-02-01 キヤノン株式会社 Photodetector and photodetection system

Also Published As

Publication number Publication date
JPWO2019180898A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
JP6260923B2 (en) Solid-state image sensor
JP6967755B2 (en) Photodetector
CN110050348B (en) Photodetector and method for manufacturing the same
US9813651B2 (en) Solid-state imaging device
US11830960B2 (en) Avalanche photodiode sensor and sensor device
US9806121B2 (en) Solid-state imaging device
JP7174932B2 (en) Solid-state image sensor
JPWO2016013170A1 (en) Photodiode, photodiode array, and solid-state imaging device
CN113614931B (en) Photodetector
TWI483391B (en) Solid state camera device
JPWO2012160802A1 (en) Solid-state imaging device
CN113614932A (en) Light detector
JP6910005B2 (en) Solid-state image sensor
WO2021149650A1 (en) Photosensor and distance measurement system
WO2019180898A1 (en) Solid-state imaging element
US20230011366A1 (en) Semiconductor device and electronic apparatus
JP7199013B2 (en) photodetector
WO2021085484A1 (en) Photodetector
KR20240095209A (en) Light detection devices and electronics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507231

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910363

Country of ref document: EP

Kind code of ref document: A1