WO2019179513A1 - 显示基板、显示面板及显示方法 - Google Patents

显示基板、显示面板及显示方法 Download PDF

Info

Publication number
WO2019179513A1
WO2019179513A1 PCT/CN2019/079200 CN2019079200W WO2019179513A1 WO 2019179513 A1 WO2019179513 A1 WO 2019179513A1 CN 2019079200 W CN2019079200 W CN 2019079200W WO 2019179513 A1 WO2019179513 A1 WO 2019179513A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
display
film layer
organic material
solvent
Prior art date
Application number
PCT/CN2019/079200
Other languages
English (en)
French (fr)
Inventor
张希颖
刘子君
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/623,000 priority Critical patent/US20210146718A1/en
Publication of WO2019179513A1 publication Critical patent/WO2019179513A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F11/00Designs imitating artistic work
    • B44F11/02Imitation of pictures, e.g. oil paintings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a display substrate, a display panel, and a display method.
  • the picture can be displayed with high definition, but due to the display mode of the liquid crystal display, the original material of the picture cannot be displayed, that is, the texture of the picture cannot be expressed.
  • the texture of the picture cannot be expressed.
  • you are an oil painting you can only display two-dimensional paintings using electronic frames, but the layering and solidification of oil paint stacks cannot be expressed; or, paintings created with ink can't show ink on paper. The unevenness after drying.
  • the existing 3D technology still cannot accurately express the texture at the detail.
  • At least one embodiment of the present disclosure provides a display substrate including: a display layer, a plurality of optical film layer forming units, and a spacer layer.
  • the display layer includes a plurality of pixel regions, each of the plurality of pixel regions including a plurality of color sub-pixel openings emitting different colored lights; a plurality of optical film layer forming units are stacked with the display layer; a spacer layer is located at the a display layer and the plurality of optical film layer forming units to space the display layer from the plurality of optical film layer forming units; the plurality of optical film layer forming units being configured as the spacer layer A transparent optical film layer is formed on a side remote from the display layer, the transparent optical film layer being configured to provide a display image with visual roughness.
  • the display substrate provided by at least one embodiment of the present disclosure further includes a substrate configured as the spacer layer and including first and second surfaces opposite to each other, wherein the display layer is disposed on the first surface And comprising a plurality of color filters respectively disposed in the plurality of color sub-pixel openings; the plurality of optical film layer forming units being spaced apart on the second surface.
  • the display substrate provided by at least one embodiment of the present disclosure further includes a substrate, wherein the display layer is located on the substrate; the display layer includes: a plurality of color light emitting devices emitting different colored lights, respectively located at the The plurality of color sub-pixel openings are disposed; the spacer layer is located on a side of the plurality of color light-emitting devices remote from the substrate and covers the plurality of color light-emitting devices.
  • the plurality of optical film layer forming units are disposed in one-to-one correspondence with the plurality of pixel regions, and the plurality of optical film layer forming units are configured to form a plurality of In the transparent optical film layer, a plurality of the transparent optical film layers are in one-to-one correspondence with the plurality of pixel regions.
  • an orthographic projection of each of the plurality of transparent optical film layers on the display layer at least partially overlaps with a corresponding one of the plurality of pixel regions And at least two of the plurality of transparent optical film layers have different thicknesses.
  • each of the plurality of pixel regions further includes a black matrix defining the plurality of color sub-pixel openings; the plurality of optical film layer forming units Each orthographic projection on the display layer is within the range of the black matrix.
  • each of the plurality of pixel regions further includes a white sub-pixel opening that emits white light, wherein each of the plurality of optical film layer forming units is An orthographic projection on the display layer at least partially overlaps the white sub-pixel opening.
  • each of the plurality of optical film layer forming units includes a storage microcavity, a valve, and a driving structure.
  • the storage microcavity stores a transparent organic material and a first solvent;
  • the valve is disposed on the storage microcavity; and the drive structure is configured to drive the valve to open to release the transparent organic material and the A first solvent forms the transparent optical film layer and drives the valve closed to stop releasing the transparent organic material and the first solvent.
  • the storage microcavity includes a solute cavity and a solvent cavity, and the transparent organic material is disposed in the solute cavity, and the solvent cavity is provided with the first A solvent.
  • the storage microcavity further includes a mixing cavity, the mixing cavity is in communication with the solute cavity and the solvent cavity, and is configured to mix the solute cavity to be released.
  • the transparent organic material and the first solvent released by the solvent chamber are configured to mix the solute cavity to be released.
  • the drive structure includes a first micropump or a piston.
  • the display substrate provided by at least one embodiment of the present disclosure further includes a second solvent release unit disposed at one end of the spacer layer, configured to release a second solvent to dissolve the transparent optical film layer .
  • the display substrate provided by at least one embodiment of the present disclosure further includes an organic material recovery unit disposed at an end of the spacer layer opposite to the recovery solvent release unit, and configured to recover the transparent optical film layer dissolved in the The organic material produced after the second solvent is described.
  • the display substrate provided in at least one embodiment of the present disclosure further includes a connection tube communicating the organic material recovery unit and the storage microcavity, configured to transport the organic material recovered into the organic material recovery unit To the storage microcavity.
  • each of the plurality of optical film layer forming units further includes a recovery chamber, a communication tube, and a second micro pump.
  • a recycling chamber connected to the connecting tube to receive the organic material from the organic material recovery unit; a communication tube communicating with the recovery chamber and the storage microcavity; and a second micropump configured to receive the recovery chamber The organic material is transported into the storage microcavity through the communication tube.
  • the display substrate provided in at least one embodiment of the present disclosure further includes a cleaning unit disposed at at least one end of the spacer layer and configured to clean a surface of the spacer layer on which the transparent optical film layer is formed.
  • the display substrate provided in at least one embodiment of the present disclosure further includes a controller connected to the driving structure signal of each of the plurality of optical film layer forming units, and configured to provide a control signal for the driving structure. To control the drive of the drive structure to the valve.
  • An embodiment of the present disclosure further provides a display panel including any of the display substrates provided by the embodiments of the present disclosure.
  • An embodiment of the present disclosure further provides a display method comprising: forming the transparent optical film layer having a predetermined thickness in a region where a surface roughness of an image displayed by the display panel exceeds a predetermined threshold.
  • the display method provided by at least one embodiment of the present disclosure further includes forming the transparent optical film layer in a region where a visual roughness of an image displayed by the display panel exceeds a predetermined threshold.
  • FIG. 1A is a schematic structural view of a display substrate in an embodiment of the present disclosure
  • FIG. 1B is a schematic structural view of a display substrate in another embodiment of the present disclosure.
  • FIG. 2A is a schematic structural view of a display substrate in an embodiment of the present disclosure.
  • 2B is a schematic structural view of a display substrate in another embodiment of the present disclosure.
  • FIG. 3 is a schematic plan view of a display substrate in an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural view of an optical film layer forming unit in still another embodiment of the present disclosure.
  • FIG. 5 is a schematic structural view of an optical film layer forming unit in still another embodiment of the present disclosure.
  • 6A is a schematic structural view of an optical film layer forming unit in still another embodiment of the present disclosure.
  • 6B is a schematic structural view of an optical film layer forming unit in still another embodiment of the present disclosure.
  • FIG. 7 is a schematic structural view of a display substrate in still another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural view of a display substrate in still another embodiment of the present disclosure.
  • FIG. 9 is a schematic structural view of a display substrate in still another embodiment of the present disclosure.
  • FIG. 10 is a schematic structural view of a display substrate in still another embodiment of the present disclosure.
  • FIG. 11 is a schematic structural view of a display substrate in still another embodiment of the present disclosure.
  • FIG. 12 is a schematic structural view of a display substrate in still another embodiment of the present disclosure.
  • FIG. 13 is a schematic structural view of a display substrate in still another embodiment of the present disclosure.
  • Embodiments of the present disclosure are described in detail below.
  • the embodiments described below are illustrative only and are not to be construed as limiting the disclosure. Where specific techniques or conditions are not indicated in the examples, they are carried out according to the techniques or conditions described in the literature in the art or in accordance with the product specifications. The reagents or instruments used are not indicated by the manufacturer, and are conventional products that can be obtained commercially.
  • color light in this embodiment does not include white light, and the color light includes, for example, red light, green light, blue light, and the like.
  • the "thickness of the transparent optical film layer” in the embodiment of the present disclosure means the thickness of the transparent optical film layer in the direction perpendicular to the substrate.
  • visual roughness refers to the degree of fluctuation of the surface of an image (for example, a painting) that is perceived by the human eye, which is representative of the paper-drawn image simulated by the image displayed by the display panel provided by the embodiment of the present disclosure. The effect of surface roughness.
  • the display substrate includes a display layer, a plurality of optical film layer forming units, and a spacer layer.
  • the display layer includes a plurality of pixel regions, each of the plurality of pixel regions including a plurality of color sub-pixel openings emitting different colored lights; a plurality of optical film layer forming units are stacked with the display layer; a spacer layer is located at the a display layer and the plurality of optical film layer forming units to space the display layer from the plurality of optical film layer forming units; the plurality of optical film layer forming units being configured as the spacer layer A transparent optical film layer is formed on a side remote from the display layer, the transparent optical film layer being configured to provide a display image with visual roughness.
  • the display substrate includes a substrate 10, a display layer 22, and a plurality of optical film layer forming units 30.
  • the substrate 10 has a first surface 11 and a second surface 12 that are disposed opposite each other.
  • the display layer 22 is disposed on the first surface 11 and is divided into a plurality of pixel regions 21 (only one pixel region is shown in the drawing), each of the plurality of pixel regions 21 including a plurality of color sub-pixels emitting different colored lights Opening.
  • each of the plurality of pixel regions further includes a black matrix 211 defining a plurality of sub-pixel openings.
  • the display layer 22 includes a plurality of color filters 212, and the plurality of color filters 212 are respectively disposed in the plurality of color sub-pixel openings; for example, the color filters 212 of the plurality of color sub-pixel openings are respectively red. Filters, green filters, and blue filters, the different colored lights are red, green, and blue.
  • a plurality of optical film layer forming units 30 are disposed in a stacked manner with the display layer 22. For example, a plurality of optical film layer forming units 30 are spaced apart from one side of the second surface 12 of the substrate 10 remote from the display layer 22, and are configured to form a transparent optical film layer on a side of the second surface 12 remote from the display layer 22. 40.
  • the transparent optical film layer 40 is configured to provide a visual roughness to the displayed image.
  • the substrate 10 is configured as the spacer layer, and the substrate 10 is located between the display layer 22 and the plurality of optical film layer forming units 30 to space the display layer 22 from the plurality of optical film layer forming units 30.
  • the display layer 22 is protected by the substrate 10.
  • the image is a painting
  • the optical film layer forming unit can be controlled when the painting has a layer of pigment stacking, solidification, or unevenness of the ink on the paper after drying.
  • the optical film layer forming unit forms the transparent optical film layer using a transparent organic material or a transparent organic material and a solvent.
  • an orthographic projection of transparent optical film layer 40 on substrate 10 can cover an orthographic projection of a portion of a color sub-pixel opening on substrate 10; an orthographic projection of transparent optical film layer 40 on substrate 10. It is also possible to cover the orthographic projection of all sub-pixel openings on the substrate 10, controlling according to the paintings desired to be displayed.
  • the display substrate in the embodiment shown in FIG. 1A is a color filter substrate, which can be used for a liquid crystal display device (LCD) or the like.
  • LCD liquid crystal display device
  • the number of optical film layer forming units is not required, and those skilled in the art can provide the optical film layer forming unit in a plurality of pixel regions according to actual needs.
  • the optical film layer forming unit 30 and the pixel region 21 are disposed in one-to-one correspondence.
  • the plurality of optical film layer forming units 30 are configured to form a plurality of the transparent optical film layers 40, and the plurality of transparent optical film layers 40 are in one-to-one correspondence with the plurality of pixel regions 21.
  • the transparent optical film layer 40 has a predetermined thickness. At least two of the plurality of transparent optical film layers 40 have different thicknesses. Thereby, the optical film layer can be formed at any of the different display positions, and the number of the pigments of the image (for example, painting), the gradation of the pigment stack, the solidification, or the unevenness of the ink after the ink is dried on the paper according to each pixel region can be formed.
  • the optical film layer 40 of different predetermined thickness is formed corresponding to the plurality of pixel regions 21 to meet the requirements for setting different optical layers for different paintings and different positions.
  • the enlargement of the cross section of the painting reveals that the pigment on the surface is not completely flat, and there are also high and low undulations, which form the texture of the paint.
  • the texture here refers to the visual feeling that the pigment material gives to the human eye.
  • the stacking of different oil painting materials forms an ups and downs, and these materials and undulations form the texture of the oil painting.
  • the display image does not have visual roughness.
  • a transparent optical film layer having a predetermined thickness is added to the display layer to simulate the texture of the pigment of the paper painting and the undulation of the surface of the drawing to make the display image have visual roughness.
  • each of the plurality of optical film layer forming units 30 on the display layer 22 does not overlap with each of the plurality of color sub-pixel openings, for example, each of the plurality of optical film layer forming units 30 is on the substrate.
  • the orthographic projection on 10 does not overlap with the orthographic projection of each of the plurality of color filters 212 on the substrate. Therefore, the optical film layer forming unit 30 does not affect the transmittance of light in the plurality of color sub-pixel openings, and does not affect the display effect of the display panel using the display substrate.
  • the orthographic projection of each of the plurality of optical film layer forming units 30 on the substrate 10 is within the orthographic projection range of the black matrix 211 on the substrate 10, ie, The orthographic projection of each of the plurality of optical film layer forming units 30 on the display layer 22 is within the range of the black matrix 211.
  • each of the plurality of sub-pixel openings of each of the pixel regions 211 of the display substrate further includes a white sub-pixel opening 23 that emits white light. Referring to FIG. 1B and FIG. 3, the optical film layer is formed.
  • the unit 30 may be disposed at a position corresponding to the white sub-pixel opening 23, that is, the orthographic projection of the white sub-pixel opening 23 on the substrate 10 at least partially overlaps with the orthographic projection of the optical film layer forming unit 30 on the substrate 10, that is, a plurality of Each of the orthographic projections of the optical film layer forming unit 30 on the display layer 22 at least partially overlaps the white sub-pixel opening 23.
  • the optical film layer forming unit 30 may also be disposed at a position corresponding to the black matrix 211, that is, the orthographic projection of the black matrix 211 on the substrate 10 covers the optical film layer forming unit in the lining. An orthographic projection on the bottom 10 (this case is not shown). Thereby, the optical film layer forming unit 30 does not affect the transmittance of light entering the color filter (non-white filter), and does not affect the display effect of the display panel using the display substrate.
  • the display substrate includes a substrate 10, a display layer 22, and a plurality of optical film layer forming units 30.
  • the display layer 22 is disposed on the substrate 10; the display layer 22 includes a plurality of color light-emitting devices 213 capable of emitting different colored lights, respectively located in the plurality of color sub-pixel openings; the spacer layer 100 is located away from the plurality of color light-emitting devices 213
  • One side of the substrate 10 covers a plurality of color light-emitting devices 213 to protect the plurality of color light-emitting devices 213.
  • the spacer layer is located between the display layer 22 and the plurality of optical film layer forming units 30 to space the display layer 22 from the plurality of optical film layer forming units 30.
  • other layers may exist between the spacer layer 100 and the color light-emitting device 213, for example, a sealing layer or the like for sealing the color light-emitting device 213 to prevent water and oxygen from contacting the color light-emitting device 213.
  • the color illuminating device comprises an electroluminescent element, an anode and a cathode that provide an electrical signal to the electroluminescent element, and the like.
  • the display substrate is a light emitting diode (LED) display substrate, such as an organic light emitting diode display substrate (OLED) or an inorganic light emitting diode display substrate, which can be used for a light emitting diode display device.
  • the color light emitting device is another type of device capable of emitting colored light.
  • the display substrate shown in FIG. 2B has the following differences from FIG. 2A.
  • Each of the plurality of sub-pixel openings of each of the pixel regions 211 of the display substrate further includes a white sub-pixel opening 23 that emits white light
  • the optical film layer forming unit 30 may be disposed at a position corresponding to the white sub-pixel opening 23, that is, a plurality of optical
  • the orthographic projection of each of the film forming units 30 on the substrate 10 at least partially overlaps with the orthographic projection of the white sub-pixel opening 23 on the substrate 10, i.e., the orthographic projection of the optical film layer forming unit 30 on the display layer 22
  • the white sub-pixel openings 23 at least partially overlap.
  • the optical film layer forming unit 30 may also be disposed at a position corresponding to the black matrix 211, that is, the orthographic projection of the black matrix 211 on the substrate 10 covers the optical film layer forming unit in the lining. An orthographic projection on the bottom 10 (this case is not shown).
  • the optical film layer forming unit 30 does not affect the transmittance of light entering the color filter (non-white filter), and does not affect the display effect of the display panel using the display substrate.
  • the specific kind of the substrate includes, but is not limited to, a metal substrate, a polymer substrate, or a glass substrate; in other aspects of the present disclosure
  • the substrate may be a transparent protective layer formed of a material such as silicon nitride or silicon oxide.
  • the display substrate has a wide range of applications.
  • the spacer layer is chemically stable and resistant to corrosion.
  • the material of the spacer layer includes at least one of silicon nitride, silicon oxide, and silicon oxynitride.
  • the embodiment of the present disclosure does not limit the material of the spacer layer, and those skilled in the art can flexibly select materials suitable for the field according to actual needs.
  • there is no limitation on the material forming the black matrix and those skilled in the art can flexibly select a black matrix material applicable in the art according to actual needs.
  • materials forming the black matrix include, but are not limited to, materials such as chrome black, carbon black, mixed metal oxides, and the like.
  • the predetermined thickness of the optical film layer is not limited, and those skilled in the art can flexibly design according to the actual types of pigments used in the painting and the three-dimensional texture of the painting, and no limitation is imposed herein.
  • the transparent organic material is polyisobutylene and the solvent is cheap. In this case, it is also possible to prevent excessive moisture from appearing on the display substrate, thereby improving moisture vapor entering the display layer, thereby facilitating protection of the display layer.
  • the transparent organic material is cellulose and the solvent is aqueous copper ammonium hydroxide.
  • the specific kind of the transparent organic material and the solvent is not limited as long as the organic material is transparent.
  • the solidification time may vary with the concentration of the liquid in the liquid phase. For example, as the concentration of the transparent organic material increases, the solidification time is shorter.
  • the concentration of the desired organic material can be determined according to the distance between the formation position of the transparent optical film layer and the optical film layer forming unit, thereby forming a transparent optical film layer of a predetermined thickness at different positions, specifically, when When the concentration of the transparent organic material is increased, the shorter the solidification time is, the farther the distance between the formation position of the transparent optical film layer and the optical film layer forming unit is, and the smaller the concentration of the transparent organic material is, the longer the solidification time is. It has sufficient time to flow from the optical film layer forming unit to the formation position of the transparent optical film layer; the closer the distance between the formation position of the transparent optical film layer and the optical film layer forming unit, the greater the concentration of the transparent organic material, The setting time is shorter.
  • the organic material is a degradable plastic or a biodegradable material, such as lactic acid, etc., thereby forming a transparent form of degradable plastic or biodegradable material when the display panel of the display substrate is replaced with a painting.
  • the optical film layer is decomposed, and then the optical film layer forming unit reforms the transparent optical film layer having a predetermined refractive index according to the new painting.
  • the organic material may be polyvinyl butyral (PVB), and the solvent may be dissolved in PVB, such as ethanol or the like.
  • PVB polyvinyl butyral
  • the solidification time of different concentrations of PVB will be different, and the solidification time will be shorter as the concentration increases.
  • PVB since PVB is not easily decomposed, when the display panel of the display substrate is replaced with a painting, it can be recovered by providing an organic material recovery device.
  • a transparent optical film layer of a predetermined thickness has a predetermined refractive index.
  • Different refractive index transparent organic materials have different refractive indices of the transparent optical film layer formed after solidification. Specifically, the higher the concentration, the larger the refractive index.
  • the transparent optical film layers of different refractive indices formed at different positions cooperate with each other to further enhance the three-dimensional texture embodied by the transparent optical film layer, and the difference in refractive index can also express the optimization of paints of different pigments such as ink and crayon.
  • the specific kind of the color filter has no limitation, and those skilled in the art can flexibly select according to actual needs.
  • the plurality of sub-pixel openings may be a red sub-pixel opening provided with a red color filter, a green sub-pixel opening provided with a green color filter, and a blue color filter provided Blue subpixel opening.
  • FIG. 1A the plurality of sub-pixel openings may be a red sub-pixel opening provided with a red color filter, a green sub-pixel opening provided with a green color filter, and a blue color filter provided Blue subpixel opening.
  • the plurality of sub-pixel openings may be a red sub-pixel opening provided with a red color filter, a green sub-pixel opening provided with a green color filter, and a blue color filter provided The blue sub-pixel opening of the sheet and the white sub-pixel opening provided with a transparent material.
  • the plurality of sub-pixel openings may be a red sub-pixel opening provided with a red color filter, a green sub-pixel opening provided with a green color filter, and a blue color provided with a blue color filter.
  • the arrangement position of the optical film layer forming unit is not greatly limited as long as the orthographic projection of the plurality of optical film layer forming units on the display layer does not overlap with the plurality of sub-pixel openings.
  • each of the plurality of optical film layer forming units 30 includes a storage microcavity 31, a valve 32, and a driving structure 33.
  • a transparent organic material is disposed in the storage microcavity 31 and a first solvent valve 32 is disposed on the storage microcavity 31, the valve 32 is configured to release the organic material and the first solvent to form a transparent optical film layer; and the driving structure 33 is configured to drive the valve 32.
  • the optical film layer forming unit of the structure can flexibly control the release of the transparent organic material and the solvent and the release amount thereof.
  • the driving structure 33 can drive the release of the transparent organic material and the first solvent, so that It forms a transparent organic material of a certain thickness at a desired position, and after it is solidified, an optical film layer of a predetermined thickness is obtained.
  • the setting position of the driving structure is not limited, and may be disposed inside the storage microcavity (as shown in FIG. 5), or may be disposed outside the storage microcavity (as shown in FIG. 4, FIG. 6A-6B).
  • FIG. 5 the storage microcavity
  • FIG. 6A-6B the storage microcavity
  • the drive structure 33 includes a first micropump 332, such as a micro air pump (such as a fan blade), a hydraulic pump, etc., when the transparent organic material and solvent need to be released,
  • the first micro air pump presses air into the storage microcavity 31, and the transparent organic material and the first solvent are released under the extrusion of air; for example, in other embodiments of the present disclosure, referring to FIG.
  • the driving structure 33 includes a piston 331 that pushes out the transparent organic material and the first solvent as the transparent organic material and solvent need to be released, such as by the movement of the piston 331 toward the valve 32.
  • the structure is simple and easy to control, and, when the transparent organic material and the first solvent are refilled, the piston 331 can be moved to the end of the storage microcavity 31 remote from the valve to accommodate the maximum amount of transparent organic material or solvent.
  • the driving structure 33 further includes a motor and the rotation of the blade.
  • the movement of the piston can be driven by a motor.
  • the opening and closing of the valve is controlled by the operation of the electrode driving the first micropump 332.
  • valve 32 can be a mechanical valve that controls the movement of valve 32 by the mechanical force applied to valve 32 by the drive structure to effect its opening and closing.
  • the valve can also be a solenoid valve that controls the opening and closing of the solenoid valve by electrical signals from the drive structure 33 to control the release of organic materials and solvent.
  • the specific structure of the valve can be designed by those skilled in the art according to conventional techniques in the art. According to the embodiment of the present disclosure, the specific position of the valve is not limited, and those skilled in the art can flexibly design the position of the valve on the storage microcavity according to actual conditions. According to the embodiment of the present disclosure, there is no limitation on the control of opening and closing of the valve, and those skilled in the art can flexibly set according to actual needs.
  • the display substrate further includes a controller 34 that is in signal connection with a drive structure 33 of each of the plurality of optical film layer forming units 30, the controller 34 being configured to provide a control signal to the drive structure 33.
  • the valve 32 is opened and closed by the control drive structure 33.
  • the signal connection is an electrical connection
  • the controller 34 is electrically coupled to the drive structure 33 in each of the plurality of optical film layer forming units 30, and the drive structure 33 completes the movement of the valve 32 under the control of the controller 34 ( For example, the rotation of the blade and the movement of the piston). Since the driving structures 33 of each of the plurality of optical film layer forming units 30 are respectively connected to one output terminal of the controller 34, the controller 34 can output different controls to the corresponding driving structures 33 through different output terminals. The signals thereby achieve independent control of the operation of each of the optical film layer forming units 30, so that the respective positions can be independently controlled according to the different needs of the respective positions of the drawing.
  • controller 34 is implemented by hardware or a combination of hardware and software, for example, the controller 34 includes a drive circuit.
  • controller 34 can be a digital processor (DSP), a programmable logic controller (PLC), etc., or can be a general purpose computing device such as a central processing unit (CPU) or the like.
  • DSP digital processor
  • PLC programmable logic controller
  • CPU central processing unit
  • the required data of each pixel area of the painting to be displayed is recorded in the controller 34, and when the display panel is in operation, the plurality of optical film layers corresponding to the respective pixel areas are given by the controller 34 according to the demand data of the respective pixel areas.
  • the forming unit 30 transmits a control signal to form an optical film layer of a predetermined thickness and a predetermined refractive index corresponding to each of the pixel regions.
  • the driving structure is exemplified by a fan blade.
  • the storage microcavity 31 includes a solute cavity 311 and a solvent cavity 312.
  • the solute cavity 311 is provided with a transparent organic material
  • the solvent cavity 312 is provided with a first solvent.
  • the concentration of the desired organic material is determined according to the distance between the desired transparent optical film layer and the optical film layer forming unit, and then the transparent organic material and the solvent are respectively released, so that various organic materials of various concentrations can be obtained.
  • an optical film layer of a predetermined thickness is obtained to express the three-dimensional texture of the paint, such as the layering of the pigment stack in the painting, the feeling of solidification or the unevenness of the ink on the paper, and restore the original style of the painting.
  • the storage microcavity 31 further includes a mixing chamber 313, a mixing chamber 313 and a solute chamber 311 and a solvent chamber.
  • 312 is in communication for mixing the transparent organic material released by the solute chamber 311 and the first solvent released by the solvent chamber 312.
  • the transparent organic material released by the solute cavity 311 and the first solvent released by the solvent chamber 312 can be uniformly mixed to obtain a transparent optical film layer having a uniform refractive index.
  • the solvent and the release of the organic material after being uniformly mixed may be respectively provided with a valve and a driving structure (not all shown in the figure) in the solute chamber 311, the solvent chamber 312, and the mixing chamber 313, thereby achieving independence of different chambers.
  • a valve and a driving structure not all shown in the figure
  • different concentrations of organic materials are obtained, and a transparent optical film layer of a predetermined thickness can be obtained at different positions, thereby reflecting different three-dimensional textures of different paintings.
  • the transparent organic material is PVB
  • the display substrate may further include a second solvent release unit that releases the second solvent to dissolve the transparent optical film layer, so that the organic material obtained by dissolving the transparent optical film layer may be recovered to reuse the organic material.
  • a second solvent release unit 50 is disposed at one end of the spacer layer, such as at one end of the substrate 10, configured to release a second solvent to dissolve the transparent optical film layer.
  • the solvent release unit releases the solvent under the control of the controller, dissolves the transparent optical film layer, and the dissolved transparent optical film layer changes back to the organic material having fluidity, and the organic material can be renewed according to the demand of the updated painting.
  • the storage microcavity includes a solute cavity and a solvent cavity, for example, the organic material is drained to the solute cavity, thereby maximizing the utilization of the organic material.
  • the solvent contained in the solvent release unit is identical to the solvent in the storage microcavity, thereby ensuring the purity of the transparent organic material and facilitating the control of its concentration and the refractive index of the transparent optical film layer formed after solidification thereof. .
  • the number of the second solvent release unit is not limited, and a person skilled in the art can flexibly select according to actual needs.
  • the second solvent release unit may be a second solvent release unit having a larger volume, and the solvent that is released therefrom may flow to the corresponding second surface of all the pixel regions.
  • FIG. 8 only four second solvent release units are exemplarily shown in FIG.
  • the second solvent release unit may be a plurality of The second solvent release unit is independently controlled and has a small volume, so that the second solvent release unit for releasing the solvent can be selectively selected according to the distribution of the transparent optical film layer, thereby saving raw materials and shortening the recovery time, and Reduce the amount of recycling.
  • the display substrate may further include an organic material recovery unit 60 disposed at an end of the spacer layer opposite to the second solvent release unit 50 (for example, at In one embodiment, the organic material recovery unit 60 is disposed at an end of the substrate 10 opposite to the second solvent release unit 50, and is configured to recover an organic material produced after the transparent optical film layer is dissolved in the second solvent. Thereby, the recovery of the organic material produced by the dissolution of the transparent optical film layer is facilitated.
  • an organic material recovery unit 60 disposed at an end of the spacer layer opposite to the second solvent release unit 50 (for example, at In one embodiment, the organic material recovery unit 60 is disposed at an end of the substrate 10 opposite to the second solvent release unit 50, and is configured to recover an organic material produced after the transparent optical film layer is dissolved in the second solvent. Thereby, the recovery of the organic material produced by the dissolution of the transparent optical film layer is facilitated.
  • the organic material recovery unit when the user uses the color filter substrate, the organic material recovery unit may be disposed under the substrate 10 (the side of the substrate 10 opposite to the side on which the optical film layer forming unit is disposed) Therefore, the organic material in which the solvent dissolves the transparent optical film layer can flow into the organic material recovery unit by gravity.
  • the number of organic material recovery units is also not limited, and those skilled in the art can flexibly select according to actual needs.
  • the organic material recovery unit is a larger volume unit, such as a larger volume chamber, and ensures that dissolved organic material from all of the pixel regions can be recovered.
  • the organic material recovery unit may include a plurality of independently controllable units.
  • the unit with a small volume, the plurality of independently controlled, small-volume units are, for example, a plurality of cavities, so that the dissolved organic material can be selectively selected according to the distribution of the transparent optical film layer.
  • the organic material recovery unit may further include a connection pipe 61 that communicates with the organic material recovery unit 60 and the storage microcavity 31.
  • the organic material recovered into the organic material recovery unit 60 is configured to be delivered to the storage microcavity 31.
  • the display substrate further includes a recovery tube 36 that connects the connection tube 61 and the storage microcavity 31, and transports the recovered organic material to the storage microcavity 31 through the connection tube 36. Thereby, recycling of the organic material can be achieved.
  • each of the plurality of optical film layer forming units further includes a recovery cavity 35, a communication tube 37, and a second micropump.
  • the recovery chamber 35 is connected to the connection pipe 61 to receive the organic material from the organic material recovery unit 60.
  • the recovery chamber 35 is connected to the connection tube 61 through the recovery tube 36 to receive the organic material from the organic material recovery unit 60; or, the recovery chamber 35 is directly connected to the connection tube 61 to receive the from the organic material recovery unit 60.
  • the communication tube 3 communicates with the recovery chamber 35 and the storage microcavity 31.
  • the second micropump is configured to transport the organic material received in the recovery chamber 35 to the storage microcavity 31 through the communication tube 37.
  • the communication tube 37 communicates with the recovery chamber 35 and the solute chamber 311, and the second micropump is configured to transport the organic material received in the recovery chamber 35 to the solute chamber 311 through the communication tube 37 (
  • the communication tube 37 communicates with the recovery chamber 35 and the solvent chamber 312, and the second micro pump is configured to transport the organic material received in the recovery chamber 35 to the solvent chamber 312 through the communication tube 37).
  • the second micropump is disposed in the recovery chamber 35 or disposed in the recovery tube 36.
  • the second micropump is an air pump or a hydraulic pump.
  • the dissolved organic material is recovered into the recovery chamber 35 through the recovery pipe 36 by the action of the second micropump, and is reused again.
  • the dissolved organic material may be directly introduced into the recovery tube 36, and then recovered into the solute chamber via the recovery chamber 35 and the communication tube 37, and reused again.
  • the specific structure and arrangement manner of the organic material recovery unit, the recovery chamber, the recovery tube, and the like are not limited as long as the above effects can be achieved, and those skilled in the art can design according to requirements.
  • the display substrate in order to more completely recover the dissolved organic material, referring to FIG. 12, the display substrate may further include a cleaning unit 70 disposed at at least one end of the spacer layer, configured to be cleaned to form There is a surface of the transparent optical film layer.
  • a cleaning unit 70 disposed at at least one end of the spacer layer, configured to be cleaned to form There is a surface of the transparent optical film layer.
  • a cleaning unit 70 is disposed at at least one end of the substrate 10 and configured to sweep the second surface of the substrate 10. Therefore, when the transparent optical film layer is dissolved and recovered, the cleaning unit can clean the second surface of the substrate 10 under the control of the controller to increase the fluidity of the dissolved organic material, so that the transparent optical film layer It is better dissolved in the solvent, thereby ensuring more thorough recovery of the organic material, reducing waste of organic materials, and improving the display quality of the display panel using the display substrate.
  • the specific type of the cleaning unit has no limitation, and those skilled in the art can flexibly select according to actual needs.
  • the cleaning unit may be a sequentially arranged brush, and at least disposed on the substrate. At one end, again for example, in one embodiment, the cleaning unit can be disposed at opposite ends of the substrate. As a result, the cleaning of the organic material is cleaner and more thorough, and the cleaning efficiency is higher.
  • At least one embodiment of the present disclosure also provides a display panel.
  • the display panel includes the display substrate described above.
  • the display displayed on the display panel can directly reflect the paintings of different pigments such as oil painting, ink or crayon, and can also express the layering of the pigment stack in the painting, the feeling of solidification or the unevenness of the ink after drying on the paper.
  • the three-dimensional texture of the painting restores the original style of the painting.
  • the display panel has the structure or components necessary for the conventional display panel in addition to the display substrate described above.
  • the display panel may be a liquid crystal display panel.
  • the liquid crystal display panel includes the color filter substrate shown in FIG. 1A or FIG. 1B.
  • the liquid crystal display panel further includes a conventional necessary structure such as a backlight, an array substrate, and a liquid crystal layer.
  • a filter is located on a side of the substrate close to the liquid crystal layer, and a plurality of optical film layer forming units are located on a side of the substrate remote from the liquid crystal layer.
  • the display panel can be an electroluminescent display panel.
  • the electroluminescent display panel includes the display substrate shown in FIG. 2A or 2B.
  • the electroluminescent display panel further includes a sealing layer between the spacer layer 100 and the color light emitting device 213 for sealing the color light emitting device 213, and an encapsulation layer or the like.
  • the display panel can be used in various display devices, and those skilled in the art can flexibly select according to actual conditions.
  • the display panel can be used to display an electronic frame of a painting, whereby the electronic frame can directly display a painting of different pigments such as oil painting, ink, or crayon when displaying the painting, and can also express the painting.
  • the embodiment of the present disclosure further provides a display method of the foregoing display panel.
  • the method includes forming a transparent optical film layer in a region where a visual roughness of an image displayed on the display substrate exceeds a predetermined threshold.
  • the transparent optical film layer has a predetermined thickness.
  • the thickness of the transparent optical film layer formed in different pixel regions is different.
  • a transparent optical film layer having a predetermined thickness is formed in a region where the visual roughness of the image displayed on the display substrate exceeds a predetermined threshold.
  • the image is a painting.
  • the concentration of the desired transparent organic material is determined according to the distance between the above region and the optical film layer forming unit in the pixel region to which the above region belongs, for example, the further the distance, the smaller the concentration, and the longer the solidification time.
  • the optical film layer forming unit releases a transparent organic material of a desired concentration under the control of the controller, then flows to the above region, and solidifies into a transparent optical film layer having a predetermined thickness in the above region, and the transparent optical film layer can be well
  • It can also express the paintings of different pigments such as oil painting, ink painting or crayons. It can also better express the three-dimensional texture of different paintings such as the layering of the pigment stack in the painting, the feeling of solidification or the unevenness of the ink on the paper. Original style.
  • the above display method is simple in control and easy to operate.
  • the required data for each pixel region of the artwork to be displayed is recorded in controller 34, such as including the visual roughness of each pixel region, such as may be characterized by the thickness of the transparent optical film layer.
  • the roughness of different regions of the surface of the paper is first obtained, and the visual roughness of each pixel region is calculated according to the roughness, thereby obtaining the thickness of each desired transparent optical film layer of the plurality of pixel regions.
  • the controller 34 sends a control signal to the plurality of optical film layer forming units 30 corresponding to the respective pixel regions according to the required data of the respective pixel regions to form a transparent optical film layer having a predetermined thickness corresponding to each of the pixel regions.
  • the texture of the pigment of the paper painting and the undulation of the surface of the painting are simulated by a transparent optical film layer having a predetermined thickness to form a visual roughness of the painting, thereby expressing the paper.
  • the thickness of the transparent optical film layer is not limited, and the person skilled in the art may differently according to the layering feeling of the pigment stack, the feeling of solidification, or the unevenness of the ink on the paper after drying according to the painting to be expressed. Just set the texture.
  • the greater the surface roughness of the region of the painting the greater the thickness of the transparent optical film layer. If the thickness of the transparent optical film layer required is thick, and the thickness of the transparent optical film layer formed at one time cannot reach the required thickness, a transparent optical film layer can be formed again on the basis of the transparent optical film layer formed last time. The thickness, in turn, increases the thickness of the transparent optical film layer to the thickness of the final desired transparent optical film layer.
  • the specific value of the predetermined threshold is also not limited, and those skilled in the art can flexibly select according to actual needs such as drawing surface roughness.
  • the predetermined threshold may be 0.1 mm, 0.05 mm, 0.02 mm, or the like.
  • the present disclosure provides a display device.
  • the display device includes the display panel described above. Therefore, the painting displayed by the display device can directly reflect the paintings of different pigments such as oil painting, ink painting or crayon, and can also express the layering feeling of the paint stack in the painting, the feeling of solidification or the unevenness of the ink on the paper after drying. The three-dimensional texture of the painting restores the original style of the painting.
  • the specific type of the display device is not particularly limited, and may be any device or device having a display function in the art, such as, but not limited to, a mobile phone, a tablet computer, a computer display, a game machine, a television, a display. Screens, electronic picture frames for displaying paintings, wearable devices, and other living appliances or household appliances with display functions.
  • the display device of the present disclosure may further include the necessary structures and components of the conventional display device, and the mobile phone is taken as an example for description, except for having the present disclosure.
  • the display panel it can also have the structure and components of a conventional mobile phone such as a touch screen, a casing, a CPU, a camera module, a fingerprint recognition module, a sound processing system, and the like, and will not be described in detail herein.
  • a conventional mobile phone such as a touch screen, a casing, a CPU, a camera module, a fingerprint recognition module, a sound processing system, and the like, and will not be described in detail herein.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板、显示面板及显示方法,显示基板包括:显示层(22)、多个光学膜层形成单元(30)和间隔层(100)。显示层(22)包括多个像素区(21),多个像素区(21)的每个包括发出不同彩色光的多个彩色子像素开口;多个光学膜层形成单元(30)与显示层(22)堆叠设置;间隔层(100)位于显示层(22)与多个光学膜层形成单元(30)之间以将显示层(22)与多个光学膜层形成单元(30)间隔开;多个光学膜层形成单元(30)构造为在间隔层(100)的远离显示层(22)的一侧形成透明光学膜层(40),透明光学膜层(40)配置为使显示图像具有视觉粗糙度。由此,预定厚度的透明光学膜层(40)可以表达出画作中不同的画作立体质感,还原画作原始质感。

Description

显示基板、显示面板及显示方法
本申请要求于2018年3月23日递交的中国专利申请第201810246468.7号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及显示技术领域,具体的涉及显示基板和显示面板及显示方法。
背景技术
现有电子画框技术中,能够使用很高的清晰度展现画作,但是由于液晶显示的显示方式,不能展示出画作的原始材料,即不能表达出画作的质感。例如,如果原作为油画作品,使用电子画框只能展示出二维的画作,但是油画颜料堆叠的层次感和凝固感无法表达出来;或者,使用水墨创作的画作,无法展示出墨迹在纸张上干涸后的凹凸感。上述缺陷虽可以使用3D显示技术来进行弥补,但是现有3D技术仍无法做到对于细节处的质感进行较好地表达。
发明内容
本公开至少一实施例提供一种显示基板,该显示基板包括:显示层、多个光学膜层形成单元和间隔层。显示层包括多个像素区,所述多个像素区的每个包括发出不同彩色光的多个彩色子像素开口;多个光学膜层形成单元与所述显示层堆叠设置;间隔层位于所述显示层与所述多个光学膜层形成单元之间以将所述显示层与所述多个光学膜层形成单元间隔开;所述多个光学膜层形成单元构造为在所述间隔层的远离所述显示层的一侧形成透明光学膜层,所述透明光学膜层配置为使显示图像具有视觉粗糙度。
例如,本公开至少一实施例提供的显示基板还包括衬底,配置为所述间隔层并包括彼此相对的第一表面和第二表面,其中,所述显示层设置在所述 第一表面上并包括多个彩色滤光片,所述多个彩色滤光片分别设置在所述多个彩色子像素开口中;所述多个光学膜层形成单元间隔设置在所述第二表面上。
例如,本公开至少一实施例提供的显示基板还包括衬底,其中,所述显示层位于所述衬底上;所述显示层包括:发射不同彩色光的多个彩色发光器件,分别位于所述多个彩色子像素开口中;所述间隔层位于所述多个彩色发光器件的远离所述衬底的一侧且覆盖所述多个彩色发光器件。
例如,在本公开至少一实施例提供的显示基板中,所述多个光学膜层形成单元和所述多个像素区一一对应设置,所述多个光学膜层形成单元配置为形成多个所述透明光学膜层,多个所述透明光学膜层与所述多个像素区一一对应。
例如,在本公开至少一实施例提供的显示基板中,多个所述透明光学膜层的每个在所述显示层上的正投影与所述多个像素区中与其对应的一个至少部分重叠,且多个所述透明光学膜层中的至少两个的厚度不同。
例如,在本公开至少一实施例提供的显示基板中,所述多个像素区的每个还包括限定出所述多个彩色子像素开口的黑矩阵;所述多个光学膜层形成单元的每个在所述显示层上的正投影位于所述黑矩阵的范围内。
例如,在本公开至少一实施例提供的显示基板中,所述多个像素区中的每个还包括发出白光的白色子像素开口,其中,所述多个光学膜层形成单元的每个在所述显示层上的正投影与所述白色子像素开口至少部分重叠。
例如,在本公开至少一实施例提供的显示基板中,所述多个光学膜层形成单元的每个包括存储微腔、阀门和驱动结构。所述存储微腔存储有透明有机材料和第一溶剂;所述阀门设置在所述存储微腔上;并且,所述驱动结构配置为驱动所述阀门打开以释放所述透明有机材料和所述第一溶剂以形成所述透明光学膜层以及驱动所述阀门关闭以停止释放所述透明有机材料和所述第一溶剂。
例如,在本公开至少一实施例提供的显示基板中,所述存储微腔包括溶质腔和溶剂腔,所述溶质腔中设置有所述透明有机材料,所述溶剂腔中设置有所述第一溶剂。
例如,在本公开至少一实施例提供的显示基板中,所述存储微腔还包括混合腔,所述混合腔与所述溶质腔和所述溶剂腔相通,配置为混合所述溶质腔释放的所述透明有机材料和所述溶剂腔释放的所述第一溶剂。
例如,在本公开至少一实施例提供的显示基板中,所述驱动结构包括第一微型泵或活塞。
例如,本公开至少一实施例提供的显示基板还包括第二溶剂释放单元,所述第二溶剂释放单元设置在所述间隔层的一端,配置为释放第二溶剂以溶解所述透明光学膜层。
例如,本公开至少一实施例提供的显示基板还包括有机材料回收单元,设置在所述间隔层的与所述回收溶剂释放单元相对的一端,且配置为回收所述透明光学膜层溶解于所述第二溶剂后产生的有机材料。
例如,在本公开至少一实施例提供的显示基板还包括连接管,连通所述有机材料回收单元和所述存储微腔,配置为将回收至所述有机材料回收单元中的所述有机材料输送至所述存储微腔。
例如,在本公开至少一实施例提供的显示基板中,所述多个光学膜层形成单元的每个还包括回收腔、连通管和第二微型泵。回收腔与所述连接管连接以接收来自所述有机材料回收单元的所述有机材料;连通管连通所述回收腔与所述存储微腔;第二微型泵配置为将所述回收腔中接收的所述有机材料通过所述连通管运输至所述存储微腔中。
例如,在本公开至少一实施例提供的显示基板还包括清扫单元,设置在所述间隔层的至少一端,配置为清扫所述间隔层的形成有所述透明光学膜层的表面。
例如,在本公开至少一实施例提供的显示基板还包括控制器,与所述多个光学膜层形成单元的每个的所述驱动结构信号连接,且配置为为所述驱动结构提供控制信号以控制所述驱动结构对所述阀门的驱动。
本公开一实施例还提供一种显示面板,包括本公开实施例提供的任意一种显示基板。
本公开一实施例还提供一种显示方法,包括:在所述显示面板所显示的图像的表面粗糙度超过预定阈值的区域形成所述具有预定厚度的透明光学膜 层。
例如,本公开至少一实施例提供的显示方法还包括:在所述显示面板所显示的图像的视觉粗糙度超过预定阈值的区域形成所述透明光学膜层。
例如,在本公开至少一实施例提供的显示方法中,所述图像的所述区域的视觉粗糙度越大,所述透明光学膜层的厚度越大。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A是本公开一个实施例中显示基板的结构示意图;
图1B是本公开另一个实施例中显示基板的结构示意图;
图2A是本公开一个实施例中显示基板的结构示意图;
图2B是本公开另一个实施例中显示基板的结构示意图;
图3是本公开一个实施例中显示基板的平面示意图;
图4是本公开又一个实施例中光学膜层形成单元的结构示意图;
图5是本公开又一个实施例中光学膜层形成单元的结构示意图;
图6A是本公开又一个实施例中光学膜层形成单元的结构示意图;
图6B是本公开又一个实施例中光学膜层形成单元的结构示意图;
图7是本公开又一个实施例中显示基板的结构示意图;
图8是本公开又一个实施例中显示基板的结构示意图;
图9是本公开又一个实施例中显示基板的结构示意图;
图10是本公开又一个实施例中显示基板的结构示意图;
图11是本公开又一个实施例中显示基板的结构示意图;
图12是本公开又一个实施例中显示基板的结构示意图;
图13是本公开又一个实施例中显示基板的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公 开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。以下所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现在该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
下面详细描述本公开的实施例。下面描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
需要说明的是,本实施例中的“彩色光”不包括白光,彩色光例如包括红光、绿光和蓝光等。
需要说明的是,本公开实施例中“透明光学膜层的厚度”是指透明光学膜层在垂直于衬底的方向上的厚度。
需要说明的是,“视觉粗糙度”是指人眼感受到的图像(例如画作)表面的高低起伏的程度,其表征本公开实施例提供的显示面板所显示的图像模拟出的纸质画作的表面的粗糙度的效果。
本公开至少一实施例提供了一种显示基板。该显示基板包括:显示层、多个光学膜层形成单元和间隔层。显示层包括多个像素区,所述多个像素区的每个包括发出不同彩色光的多个彩色子像素开口;多个光学膜层形成单元与所述显示层堆叠设置;间隔层位于所述显示层与所述多个光学膜层形成单元之间以将所述显示层与所述多个光学膜层形成单元间隔开;所述多个光学 膜层形成单元构造为在所述间隔层的远离所述显示层的一侧形成透明光学膜层,所述透明光学膜层配置为使显示图像具有视觉粗糙度。
示意性地,参照图1A,该显示基板包括:衬底10、显示层22和多个光学膜层形成单元30。衬底10具有相对设置的第一表面11和第二表面12。显示层22设置在第一表面11上,且划分为多个像素区21(图中仅示出了一个像素区),多个像素区21的每个包括发出不同彩色光的多个彩色子像素开口。例如,多个像素区的每个还包括黑矩阵211,黑矩阵211限定出多个子像素开口。例如,显示层22包括多个彩色滤光片212,多个彩色滤光片212分别设置在多个彩色子像素开口中;例如,多个彩色子像素开口中的彩色滤光片212分别为红色滤光片、绿色滤光片和蓝色滤光片,不同彩色光分别为红光、绿光和蓝光。多个光学膜层形成单元30与显示层22堆叠设置。例如,多个光学膜层形成单元30间隔设置在衬底10的第二表面12的远离显示层22的一侧,配置为在第二表面12的远离显示层22的一侧形成透明光学膜层40,透明光学膜层40配置为使显示图像具有视觉粗糙度。在本实施例中,衬底10配置为所述间隔层,衬底10位于显示层22与多个光学膜层形成单元30之间以将显示层22与多个光学膜层形成单元30间隔开,以使显示层22受到衬底10的保护。使采用该显示基板的显示面板用于显示图像时,例如该图像为画作,当画作的某处具有颜料堆叠的层次、凝固或者墨迹在纸张上干涸后的凹凸时,可控制光学膜层形成单元在第二表面上对应该位置处形成具有预定厚度的透明光学膜层,该预定厚度的透明光学膜层便可表现出画作中颜料堆叠的层次感、凝固感或者墨迹在纸张上干涸后的凹凸感等不同的画作立体质感,还原画作原始风格。例如,光学膜层形成单元利用透明有机材料或透明有机材料和溶剂形成该透明光学膜层。
例如,如图1A所示,透明光学膜层40在衬底10上的正投影可以覆盖一部分彩色子像素开口在衬底10上的正投影;透明光学膜层40在衬底10上的正投影也可以覆盖所有子像素开口在衬底10上的正投影,根据所需显示的画作进行控制。
例如,图1A所示的实施例中的显示基板为彩膜基板,可用于液晶显示装置(LCD)等。
根据本公开的实施例,光学膜层形成单元的数量没有要求,本领域技术人员可根据实际需求在多个像素区设置光学膜层形成单元。例如,在本公开至少一实施例中,光学膜层形成单元30和像素区21一一对应设置。当显示基板处于显示工作状态时,多个光学膜层形成单元30配置为形成多个所述透明光学膜层40,多个透明光学膜层40与多个像素区21一一对应。例如,多个透明光学膜层40的每个在显示层22上的正投影与多个像素区21中与其对应的一个至少部分重叠。例如,透明光学膜层40具有预定厚度。多个透明光学膜层40中的至少两个的厚度不同。由此,可以在任何不同的显示位置处形成光学膜层,根据每个像素区显示图像(例如画作)的颜料的数量、颜料堆叠的层次、凝固或者墨迹在纸张上干涸后的凹凸的具体情况,对应于多个像素区21形成不同预定厚度的光学膜层40,以满足对不同画作,以及不同位置设置光学膜层的需求。实体画作中,对画作的截面进行放大会发现,其表面的颜料不是完全平整的,而且还存在高低起伏,这些起伏形成了画作颜料的质感。这里的质感是指颜料材质带给人眼的视觉感受。以油画为例,不同的油画原料的堆叠形成起伏,这些材料及起伏形成油画的质感。在呈现该油画的电子画作中,通常,画面是用平整的像素显示的,每个像素间的高低起伏几乎不可被人眼察觉,即显示图像不具有视觉粗糙度。在本公开实施例提供的显示基板中,在显示层上增加具有预设厚度的透明的光学膜层来模拟纸质画作的颜料的质感和画作表面的起伏,以使显示图像具有视觉粗糙度。
例如,多个光学膜层形成单元30的每个在显示层22上的正投影与多个彩色子像素开口的每个不重叠,例如,多个光学膜层形成单元30的每个在衬底10上的正投影与多个彩色滤光片212的每个在衬底上的正投影不重叠。从而,光学膜层形成单元30不会影响多个彩色子像素开口中光的透过率,也就不会影响使用该显示基板的显示面板的显示效果。
例如,在本公开的一些实施例中,参照图1A,多个光学膜层形成单元30的每个在衬底10上的正投影在黑矩阵211在衬底10上的正投影范围内,即多个光学膜层形成单元30的每个在显示层22上的正投影位于黑矩阵211的范围内。在本公开的另一些实施例中,例如,显示基板的每个像素区211的多个子像素开口的每个还包括发出白光的白色子像素开口23,参照图1B 和图3,光学膜层形成单元30可设置在白色子像素开口23对应的位置,即白色子像素开口23在衬底10上的正投影与光学膜层形成单元30在衬底10上的正投影至少部分重叠,即多个光学膜层形成单元30的每个在显示层22上的正投影与白色子像素开口23至少部分重叠。当然,在存在白色子像素开口23的情况下,光学膜层形成单元30也可设置在黑矩阵211对应的位置,即黑矩阵211在衬底10上的正投影覆盖光学膜层形成单元在衬底10上的正投影(这种情况图未示出)。由此,光学膜层形成单元30不会影响进入彩色滤光片(非白色滤光片)的光的透过率,从而不会影响使用该显示基板的显示面板的显示效果。
例如,在另一个实施例中,如图2A所示,显示基板包括:衬底10、显示层22和多个光学膜层形成单元30。显示层22位于衬底10上;显示层22包括多个能够发射不同彩色光的多个彩色发光器件213,分别位于多个彩色子像素开口中;间隔层100位于多个彩色发光器件213的远离衬底10的一侧且覆盖多个彩色发光器件213,以保护多个彩色发光器件213。即间隔层位于显示层22与多个光学膜层形成单元30之间以将显示层22与多个光学膜层形成单元30间隔开。当然,在间隔层100与彩色发光器件213之间也可以存在其他的层,例如,用于密封彩色发光器件213的密封层等,以防止水氧接触彩色发光器件213。
例如,图2A所示的实施例中,彩色发光器件包括电致发光元件、给电致发光元件提供电信号的阳极和阴极等。例如,该显示基板为发光二极管(LED)显示基板,例如有机发光二极管显示基板(OLED)或无机发光二极管显示基板,可用于发光二极管显示装置。或者,彩色发光器件为其他类型的能够发出彩色光的器件。
例如,在本公开的一些实施例中,参照图2B,图2B所示的显示基板与图2A具有以下区别。该显示基板的每个像素区211的多个子像素开口的每个还包括发出白光的白色子像素开口23,光学膜层形成单元30可设置在白色子像素开口23对应的位置,即多个光学膜层形成单元30的每个在衬底10上的正投影与白色子像素开口23在衬底10上的正投影至少部分重叠,即光学膜层形成单元30在显示层22上的正投影与白色子像素开口23至少部分重 叠。当然,在存在白色子像素开口23的情况下,光学膜层形成单元30也可设置在黑矩阵211对应的位置,即黑矩阵211在衬底10上的正投影覆盖光学膜层形成单元在衬底10上的正投影(这种情况图未示出)。由此,光学膜层形成单元30不会影响进入彩色滤光片(非白色滤光片)的光的透过率,从而不会影响使用该显示基板的显示面板的显示效果。
根据本公开的实施例,衬底的具体种类没有限制要求,本领域技术人员可以根据实际情况灵活选择。在本公开的一些实施例中,当上述显示基板用于LCD、OLED等显示器时,衬底的具体种类包括但不限于金属衬底、聚合物衬底或玻璃衬底;在本公开的另一些实施中,当上述显示基板用于LED屏时,该衬底可为由氮化硅、氧化硅等材料形成的透明保护层。由此,该显示基板应用范围广泛。
例如,在本公开的实施例中,间隔层的材料化学性质稳定、耐腐蚀。例如,间隔层的材料包括氮化硅、氧化硅、氮氧化硅中的至少之一。但本公开的实施例对间隔层的材料不作限定,本领域技术人员可根据实际需求灵活选择本领域中可适用的材料。根据本公开的实施例,形成黑矩阵的材料也没有限制要求,本领域技术人员可根据实际需求灵活选择本领域中可适用的黑矩阵材料。在本公开的实施例中,形成黑矩阵的材料包括但不限于铬黑、炭黑、混合型金属氧化物等材料。
根据本公开的实施例,光学膜层的预定厚度没有限制要求,本领域技术人员可根据画作所用颜料的种类以及不同的画作立体质感等实际需求灵活设计,在此不作限制要求。
例如,在一个实施例中,透明有机材料为聚异丁烯,溶剂为笨,这种情况下,还能够防止显示基板上存在过多水汽,从而可以改善水汽进入显示层,从而有利于保护显示层。例如,在另一个实施例中,透明有机材料为纤维素,溶剂为含水氢氧化铜铵。根据本公开的实施例,透明有机材料和溶剂的具体种类没有限制要求,只要有机材料是透明的。其凝固时间随着其液态时浓度的变化而变化即可,比如随着透明有机材料浓度的增大,其凝固时间越短。所以,可根据透明光学膜层的形成位置与光学膜层形成单元之间的距离来确定所需有机材料的浓度,以此在不同位置形成预定厚度的透明光学膜层,具 体的,当随着透明有机材料浓度的增大,其凝固时间越短时,透明光学膜层的形成位置与光学膜层形成单元之间的距离越远,透明有机材料的浓度越小,其凝固时间较长,使其具有充分的时间从光学膜层形成单元流到透明光学膜层的形成位置;透明光学膜层的形成位置与光学膜层形成单元之间的距离越近,透明有机材料的浓度越大,其凝固时间就较短。
在本公开的一些实施例中,该有机材料为可降解塑料或生物降解材料,比如乳酸等,由此,当采用该显示基板的显示面板更换画作时,可降解塑料或生物降解材料形成的透明光学膜层便会被分解,然后光学膜层形成单元根据新的画作重新形成具有预定折射率的透明光学膜层。
在本公开的另一些实施例中,该有机材料可为聚乙烯醇缩丁醛(PVB),溶剂只要能将PVB溶解即可,比如为乙醇等。由此,不同浓度的PVB其凝固时间会有所不同,随着浓度的增大,其凝固时间越短。但是由于PVB不易分解,所以采用该显示基板的显示面板更换画作时,可通过设置有机材料回收装置将其回收。
根据本公开的实施例,例如,预定厚度的透明光学膜层具有预定折射率。不同浓度的透明有机材料在其凝固后形成的透明光学膜层的折射率不同,具体的,浓度越大,折射率越大。不同位置形成的不同折射率的透明光学膜层相互配合,可进一步加强透明光学膜层体现的立体质感,而且折射率的不同还可以表达出优化、水墨、蜡笔等不同颜料的画作。
根据本公开的实施例,彩色滤光片的具体种类没有限制要求,本领域技术人员可根据实际需求灵活选择。在本公开的一些实施例中,参照图1A,多个子像素开口可以为设置有红色滤光片的红色子像素开口、设置有绿色滤光片的绿色子像素开口和设置有蓝色滤光片的蓝色子像素开口。在本公开的另一些实施例中,参照图1B,多个子像素开口可以为设置有红色滤光片的红色子像素开口、设置有绿色滤光片的绿色子像素开口、设置有蓝色滤光片的蓝色子像素开口和设置有透明材料的白色子像素开口。在本公开的又一些实施例中,多个子像素开口可以为设置有红色滤光片的红色子像素开口、设置有绿色滤光片的绿色子像素开口、设置有蓝色滤光片的蓝色子像素开口、设置有黄色滤光片的黄色子像素开口和设置有透明材料的白色子像素开口。
根据本公开的实施例,光学膜层形成单元的设置位置没有很大的限制要求,只要保证多个光学膜层形成单元在显示层上的正投影与多个子像素开口不重叠即可。
根据本公开的实施例,光学膜层形成单元的具体结构没有限制要求,只要能实现在所需位置形成具有预定折射率的光学膜层即可。在本公开的实施例中,参照图4-5和图6A-6B,例如,多个光学膜层形成单元30中每个包括:存储微腔31、阀门32和驱动结构33。存储微腔31内设置有透明有机材料和第一溶剂阀门32设置在存储微腔31上,阀门32配置为释放有机材料和第一溶剂以形成透明光学膜层;驱动结构33配置为驱动阀门32打开以释放透明有机材料和第一溶剂以形成所述透明光学膜层以及驱动阀门32关闭以停止释放透明有机材料和第一溶剂。由此,该结构的光学膜层形成单元可以灵活控制透明有机材料和溶剂的释放以及其释放量,具体的,当阀门打开后,驱动结构33可驱动透明有机材料和第一溶剂的释放,使其在所需位置处形成一定厚度的透明有机材料,待其凝固后便得到预定厚度的光学膜层。
根据本公开的实施例,驱动结构的设置位置没有限制要求,可以设置在存储微腔的内部(如图5),也可以设置在存储微腔的外部(如图4、图6A-6B),本领域技术人员可以根据实际情况灵活选择,在此不作限制要求。
根据本公开的实施例,对驱动结构的具体结构没有限制要求,只要可以达到驱动阀门32打开以释放透明有机材料和溶剂、提供流动动力以及可以驱动阀门32关闭以停止释放透明有机材料和溶剂即可。例如,在本公开的一些实施例中,参照图4,驱动结构33包括第一微型泵332,例如微型空气泵(比如扇叶)、液压泵等,当透明有机材料和溶剂需要释放时,通过第一微型空气泵将空气压入存储微腔31中,透明有机材料和第一溶剂在空气的挤压下被释放出;例如,在本公开的另一些实施例中,参照图5,驱动结构33包括活塞331,当透明有机材料和溶剂需要释放时,例如通过活塞331朝向阀门32的方向移动,将透明有机材料和第一溶剂推出。由此,结构简单,易控制,而且,当再次填充透明有机材料和第一溶剂时,可将活塞331移动到存储微腔31的远离阀门的一端,以容纳最大量的透明有机材料或溶剂。
例如,在本公开至少一实施例中,控制扇叶的旋转和活塞的移动的方式 没有限制要求,本领域技术人员可根据实际情况灵活选择,比如,驱动结构33还包括电机,扇叶的旋转和活塞的移动可以通过电机来驱动。或者,通过电极驱动第一微型泵332的工作来控制阀门的打开与关闭。例如,阀门32可以为机械阀门,通过驱动结构施加给阀门32的机械力控制阀门32的移动以实现其打开和关闭。又例如,阀门也可以为电磁阀,通过来自驱动结构33的电信号控制电磁阀的打开和关闭以控制有机材料和溶剂的释放。阀门的具体结构本领域技术人员可根据本领域常规技术进行设计。根据本公开的实施例,阀门的设置具体位置没有限制要求,本领域技术人员可根据实际情况在存储微腔上灵活设计阀门的位置。根据本公开的实施例,阀门开启与闭合的控制没有限制要求,本领域技术人员可根据实际需求灵活设置。例如,如图13所示,显示基板还包括控制器34,控制器34与多个光学膜层形成单元30的每个的驱动结构33信号连接,控制器34配置为为驱动结构33提供控制信号以控制驱动结构33驱动阀门32打开和关闭。例如,该信号连接为电连接,控制器34与多个光学膜层形成单元30中的每个中的驱动结构33电连接,驱动结构33在控制器34的控制下完成对阀门32的移动(例如扇叶的旋转和活塞的移动)的驱动。由于多个光学膜层形成单元30中的每个的驱动结构33都分别与控制器34的一个输出端相连,因此,控制器34可通过不同的输出端向对应的驱动结构33输出不同的控制信号,从而实现对各光学膜层形成单元30的工作的独立控制,从而可以根据画作的各个位置的不同需求对各个位置独立进行控制。
例如,控制器34通过硬件或硬件与软件相结合的方式实现,例如控制器34包括驱动电路。例如,控制器34可以是数字处理器(DSP)、可编程逻辑控制器(PLC)等,也可以是通用计算设备例如中央处理单元(CPU)等。例如,将需要显示的画作的各个像素区的需求数据记录于控制器34中,当显示面板工作时,通过控制器34根据各个像素区的需求数据给与各个像素区对应的多个光学膜层形成单元30发送控制信号,以对应各个像素区形成预定厚度、预定折射率的光学膜层。
根据本公开的实施例,根据前面所述,为了可以在不同位置得到预定厚度的光学膜层,或者得到不同折射率的透明光学膜层,就需得到不同浓度的 透明有机材料,参照图6A(图中驱动结构以扇叶为例),存储微腔31包括溶质腔311和溶剂腔312,溶质腔311中设置有透明有机材料,溶剂腔312中设置有第一溶剂。由此,根据所需形成透明光学膜层与光学膜层形成单元之间的距离来确定所需有机材料的浓度,然后分别释放透明有机材料和溶剂,如此便可得到各种不同浓度的有机材料,待其凝固后便得到预定厚度的光学膜层,以表现出画作中颜料堆叠的层次感、凝固感或者墨迹在纸张上干涸后的凹凸感等不同的画作立体质感,还原画作原始风格。
根据本公开的实施例,为了可以将分别释放出的透明有机材料和第一溶剂混合均匀,参照图6A,例如,存储微腔31还包括混合腔313,混合腔313和溶质腔311和溶剂腔312相通,用于混合溶质腔311释放的透明有机材料和溶剂腔312释放的第一溶剂。由此,可以将溶质腔311释放的透明有机材料和溶剂腔312释放的第一溶剂混合均匀,得到折射率均匀的透明光学膜层,根据本公开的实施例,为了便于分别控制透明有机材料、溶剂以及混合均匀之后的有机材料的释放,可以在溶质腔311、溶剂腔312和混合腔313中分别设有阀门和驱动结构(图中未全部示出),由此可以实现不同腔室的独立控制,得到不同浓度的有机材料,进而可以在不同位置获得预定厚度的透明光学膜层,进而体现出不同画作的不同的立体质感。
根据本公开的实施例,如前所述,若透明有机材料为PVB,当更换画作时,由于PVB不易分解,可通过设置有机材料回收装置将其回收。例如,显示基板还可以包括第二溶剂释放单元,第二溶剂释放单元释放第二溶剂以溶解所述透明光学膜层,从而可将透明光学膜层溶解后得到的有机材料回收,以再次利用该有机材料。
下面根据本公开的一些实施例,详细介绍透明光学膜层的回收。
在本公开的一些实施例中,参照图7,第二溶剂释放单元50设置在间隔层的一端,例如设置于衬底10的一端,配置为释放第二溶剂以溶解透明光学膜层。由此,溶剂释放单元在控制器的控制下释放溶剂,将透明光学膜层溶解,溶解后的透明光学膜层又变回具有流动性的有机材料,该有机材料可根据更新的画作的需求重新利用,或者被引流到存储微腔,若存储微腔包括溶质腔和溶剂腔,例如将该有机材料引流到溶质腔,由此,可以最大程度的提 高有机材料的利用率。例如,溶剂释放单元中所盛纳的溶剂与存储微腔中的溶剂一致,由此,可以保证透明有机材料的纯度,便于对其浓度和其凝固后形成的透明光学膜层的折射率的控制。
根据本公开的实施例,第二溶剂释放单元的数量没有限制要求,本领域技术人员可以根据实际需求灵活选择。在本公开的一些实施例中,参照图7,第二溶剂释放单元可以为一个容积较大的第二溶剂释放单元,且保证其释放的溶剂可以流到所有像素区对应的第二表面上。在本公开的另一些实施例中,参照图8(图8中仅仅是示例性画出了4个第二溶剂释放单元,并非是对数量的限制),第二溶剂释放单元可以为多个可以独立控制、容积较小的第二溶剂释放单元,如此,便可以根据透明光学膜层的分布情况,针对性的选择释放溶剂的第二溶剂释放单元,如此便可以节约原料,缩短回收时间,以及减少回收量。
在本公开的另一些实施例中,参照图9,显示基板还可包括有机材料回收单元60,有机材料回收单元60设置在间隔层的与第二溶剂释放单元50相对的一端,(例如,在一个实施例中,有机材料回收单元60设置在衬底10的与第二溶剂释放单元50相对的一端),且配置为回收透明光学膜层溶解于第二溶剂后产生的有机材料。由此,便于透明光学膜层溶解产生的有机材料的回收。例如,在一个实施例中,在用户使用该彩膜基板时,有机材料回收单元还可以设置于衬底10的下方(衬底10的与设置有光学膜层形成单元的一侧相对的一侧),由此,溶剂将透明光学膜层溶解后的有机材料可以借助重力流入到有机材料回收单元。
根据本公开的实施例,有机材料回收单元的数量也没有限制要求,本领域技术人员可根据实际需求灵活选择。在本公开的一些实施例中,参照图9,有机材料回收单元为一个容积较大的单元,例如一个容积较大的腔体,且保证可以回收到来自所有像素区中被溶解的有机材料。在本公开的另一些实施例中,参照图10(图10中仅仅是示例性画出了4个有机材料回收单元,并非是对数量的限制),有机材料回收单元可以包括多个可以独立控制、容积较小的单元,该多个独立控制、容积较小的单元例如为多个腔体,如此,便可以根据透明光学膜层的分布情况,针对性的选择接收被溶解的有机材料。
根据本公开的实施例,为了将有机材料回收单元回收的透明有机材料重新利用,参照图11,有机材料回收单元可进一步包括连接管61,连接管61连通有机材料回收单元60和存储微腔31,配置为将回收至有机材料回收单元60中的所述有机材料输送至存储微腔31。例如,如图6B所示,显示基板还包括回收管36,回收管36连接连接管61和存储微腔31,将回收的所述有机材料通过连接管36输送至存储微腔31。由此,可实现有机材料的回收利用。
根据本公开的实施例,被溶解后的有机材料被引流到存储微腔的方法没有限制要求,本领域技术人员可根据实际需求灵活选择。例如,参考图6B,在本公开的一些实施例中,多个光学膜层形成单元的每个还包括回收腔35、连通管37和第二微型泵。回收腔35与连接管61连接以接收来自有机材料回收单元60的所述有机材料。例如,回收腔35通过回收管36与连接管61连接以接收来自有机材料回收单元60的所述有机材料;或者,回收腔35直接与连接管61连接以接收来自有机材料回收单元60的所述有机材料。连通管3连通回收腔35与存储微腔31。第二微型泵配置为将回收腔35中接收的有机材料通过连通管37运输至存储微腔31。例如,在图6B所示的实施例中,连通管37连通回收腔35与溶质腔311,第二微型泵配置为将回收腔35中接收的有机材料通过连通管37运输至溶质腔311中(例如,在另一实施例中,连通管37连通回收腔35与溶剂腔312,第二微型泵配置为将回收腔35中接收的有机材料通过连通管37运输至溶剂腔312中)。例如,第二微型泵设置于回收腔35中或设置于回收管36中。例如,第二微型泵为空气泵或液压泵。由此,在第二微型泵的作用下,被溶解的有机材料经过回收管36被回收至回收腔35中,再次重新利用。
在本公开的另一些实施例中,也可以将被溶解的有机材料直接进入回收管36中,再依次经由回收腔35、连通管37回收至溶质腔中,再次被重新利用。本公开实施例对有机材料回收单元、回收腔、回收管等的具体结构和设置方式不作限定,只要能够达到上述效果即可,本领域技术人员可根据需要设计。根据本公开的实施例,为了可以将溶解得到的有机材料更彻底的被回收,参照图12,该显示基板还可包括清扫单元70,清扫单元70设置在间隔 层的至少一端,配置为清扫形成有所述透明光学膜层的表面。例如,在图1A和图1B所示的实施例中,清扫单元70设置在衬底10的至少一端,配置为清扫衬底10的第二表面。由此,在对透明光学膜层进行溶解回收时,清扫单元可以在控制器的控制下对衬底10的第二表面进行清扫,增加溶解后的有机材料的流动性,使的透明光学膜层更好的溶于溶剂中,进而确保有机材料回收的更加彻底,减少有机材料的浪费,提高使用该显示基板的显示面板的画面显示质量。根据本公开的实施例,清扫单元的具体种类没有限制要求,本领域技术人员可根据实际需求灵活选择,在本公开的实施例中,清扫单元可以为顺序排列的刷子,设置在衬底的至少一端,又例如,在一个实施例中,清扫单元可以设置在衬底的相对的两端。由此,对有机材料的清扫更干净彻底,清扫效率更高。
本公开至少一实施例还提供一种显示面板。根据本公开的实施例,该显示面板包括前面所述的显示基板。由此,该显示面板显示的画作可直接体现出油画、水墨或蜡笔等不同颜料的画作,也可表达出画作中颜料堆叠的层次感、凝固感或者墨迹在纸张上干涸后的凹凸感等不同的画作立体质感,还原画作原始风格。
本领域技术人员可以理解,该显示面板除了前面所述的显示基板外,该显示面板还具备常规显示面板所必备的结构或部件。例如,该显示面板可以为液晶显示面板。例如,该液晶显示面板包括图1A或图1B所示的彩膜基板。除了前面所述的显示基板外,该液晶显示面板还包括背光源、阵列基板以及液晶层等常规的必备结构。例如,在该LCD显示面板中,滤光片位于衬底的靠近液晶层的一侧,多个光学膜层形成单元位于衬底的远离液晶层的一侧。
例如,该显示面板可以为电致发光显示面板。例如,该电致发光显示面板包括图2A或图2B所示的显示基板。例如,该电致发光显示面板还包括位于间隔层100与彩色发光器件213之间的密封层,以用于密封彩色发光器件213,以及封装层等。
对于本公开实施例提供显示面板的其他结构,本领域技术人员可参考常规技术。
根据本公开的实施例,该显示面板可用于各种显示装置中,本领域技术 人员可以根据实际情况灵活选择。在本公开的实施例中,该显示面板可用于显示画作的电子画框,由此该电子画框显示画作时,可直接体现出油画、水墨或蜡笔等不同颜料的画作,也可表达出画作中颜料堆叠的层次感、凝固感或者墨迹在纸张上干涸后的凹凸感等不同的画作立体质感,还原画作原始风格,提高用户体验。
本公开实施例还提供一种前面所述显示面板的显示方法。该方法包括:在显示基板所显示的图像的视觉粗糙度超过预定阈值的区域形成透明光学膜层。例如,该透明光学膜层具有预定厚度。例如,在不同的像素区形成的透明光学膜层的厚度不同。由此,在显示基板所显示的图像的视觉粗糙度超过预定阈值的区域形成具有预定厚度的透明光学膜层。例如,该图像为画作。
例如,根据上述区域与上述区域所属于的像素区中的光学膜层形成单元之间的距离来确定所需透明有机材料的浓度,例如,距离越远,浓度越小,凝固时间越长。光学膜层形成单元在控制器的控制下释放所需浓度的透明有机材料,之后流动到上述区域,并在上述区域凝固为具有预定厚度的透明光学膜层,该透明光学膜层便可以很好地体现出油画、水墨或蜡笔等不同颜料的画作,也可较佳的表达出画作中颜料堆叠的层次感、凝固感或者墨迹在纸张上干涸后的凹凸感等不同的画作立体质感,还原画作原始风格。而且,上述显示方法控制简单,易操作。
例如,将需要显示的画作的各个像素区的需求数据记录于控制器34中,这些数据例如包括各个像素区的视觉粗糙度,例如可以用透明光学膜层的厚度来表征。例如,先获取纸质画作表面不同区域的粗糙度,根据该粗糙度计算各个像素区的视觉粗糙度,从而得到个多个像素区的每个所需的透明光学膜层的厚度。当显示面板工作时,通过控制器34根据各个像素区的需求数据给与各个像素区对应的多个光学膜层形成单元30发送控制信号,以对应各个像素区形成具有预定厚度的透明光学膜层。从而,在本公开实施例提供的显示面板中,通过具有预设厚度的透明的光学膜层模拟纸质画作的颜料的质感和画作表面的起伏,以形成画作的视觉粗糙度,从而表达出纸质画作的颜料质感和由于颜料堆积而形成的表面的起伏的视觉感受。根据本公开的实施例,透明光学膜层的厚度没有限制要求,本领域技术人员根据所需表达的画作中 颜料堆叠的层次感、凝固感或者墨迹在纸张上干涸后的凹凸感等画作的不同质感情况而设定即可。例如,画作的所述区域的表面粗糙度越大,透明光学膜层的厚度越大。如果所需的透明光学膜层的厚度较厚,一次形成的透明光学膜层的厚度不能达到所需要的厚度时,可在上次形成的透明光学膜层的基础上再次形成一次透明光学膜层的厚度,进而增加透明光学膜层的厚度,使其达到最终所需要的透明光学膜层的厚度。
根据本公开的实施例,预定阈值的具体值也没有限制要求,本领域技术人员可根据画作表面粗糙度等实际需求灵活选择。在本公开的实施例中,预定阈值可以为0.1毫米、0.05毫米、0.02毫米等等。
在本公开的又一方面,本公开提供了一种显示装置。根据本公开的实施例,该显示装置包括前面所述的显示面板。由此,该显示装置显示的画作可直接体现出油画、水墨或蜡笔等不同颜料的画作,也可表达出画作中颜料堆叠的层次感、凝固感或者墨迹在纸张上干涸后的凹凸感等不同的画作立体质感,还原画作原始风格。
根据本公开的实施例,该显示装置的具体种类没有特别限制,可以为本领域任何具有显示功能的装置、设备,例如包括但不限于手机、平板电脑、计算机显示器、游戏机、电视机、显示屏幕、用于显示画作的电子画框、可穿戴设备及其他具有显示功能的生活电器或家用电器等。
当然,本领域技术人员可以理解,除了前面所述的显示面板,本公开所述的显示装置还可以包括常规显示装置所具有的必要的结构和部件,以手机为例进行说明,除了具有本公开的显示面板外,其还可以具有触控屏、外壳、CPU、照相模组、指纹识别模组、声音处理系统等等常规手机所具有的结构和部件,在此不再过多赘述。为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。以下所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特 征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围根据权利要求书所界定的范围确定。本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (21)

  1. 一种显示基板,包括:
    显示层,包括多个像素区,其中,所述多个像素区的每个包括发出不同彩色光的多个彩色子像素开口;
    多个光学膜层形成单元,与所述显示层堆叠设置;以及
    间隔层,位于所述显示层与所述多个光学膜层形成单元之间以将所述显示层与所述多个光学膜层形成单元间隔开;
    其中,所述多个光学膜层形成单元构造为在所述间隔层的远离所述显示层的一侧形成透明光学膜层,所述透明光学膜层配置为使显示图像具有视觉粗糙度。
  2. 根据权利要求1所述的显示基板,还包括:
    衬底,配置为所述间隔层并包括彼此相对的第一表面和第二表面,其中,所述显示层设置在所述第一表面上并包括多个彩色滤光片,所述多个彩色滤光片分别设置在所述多个彩色子像素开口中;
    所述多个光学膜层形成单元间隔设置在所述第二表面上。
  3. 根据权利要求1所述的显示基板,还包括:
    衬底,其中,所述显示层位于所述衬底上;
    所述显示层包括:发射不同彩色光的多个彩色发光器件,分别位于所述多个彩色子像素开口中;
    所述位于所述多个彩色发光器件的远离所述衬底的一侧且覆盖所述多个彩色发光器件。
  4. 根据权利要求1-3任一所述的显示基板,其中,所述多个光学膜层形成单元和所述多个像素区一一对应设置,所述多个光学膜层形成单元配置为形成多个所述透明光学膜层,多个所述透明光学膜层与所述多个像素区一一对应。
  5. 根据权利要求4所述的显示基板,其中,多个所述透明光学膜层的每个在所述显示层上的正投影与所述多个像素区中与其对应的一个至少部分重叠,且多个所述透明光学膜层中的至少两个的厚度不同。
  6. 根据权利要求1-3任一所述的显示基板,其中,所述多个光学膜层形 成单元的每个在所述显示层上的正投影与所述多个彩色子像素开口的每个不重叠。
  7. 根据权利要求6所述的显示基板,其中,所述多个像素区的每个还包括限定出所述多个彩色子像素开口的黑矩阵;
    所述多个光学膜层形成单元的每个在所述显示层上的正投影位于所述黑矩阵的范围内。
  8. 根据权利要求6所述的显示基板,其中,所述多个像素区中的每个还包括发出白光的白色子像素开口,其中,所述多个光学膜层形成单元的每个在所述显示层上的正投影与所述白色子像素开口至少部分重叠。
  9. 根据权利要求1-3任一所述的显示基板,其中,所述多个光学膜层形成单元的每个包括存储微腔、阀门和驱动结构,其中,
    所述存储微腔存储有透明有机材料和第一溶剂;
    所述阀门设置在所述存储微腔上;并且,
    所述驱动结构配置为驱动所述阀门打开以释放所述透明有机材料和所述第一溶剂以形成所述透明光学膜层以及驱动所述阀门关闭以停止释放所述透明有机材料和所述第一溶剂。
  10. 根据权利要求9所述的显示基板,其中,所述存储微腔包括溶质腔和溶剂腔,所述溶质腔中设置有所述透明有机材料,所述溶剂腔中设置有所述第一溶剂。
  11. 根据权利要求10所述的显示基板,其中,所述存储微腔还包括混合腔,所述混合腔与所述溶质腔和所述溶剂腔相通,配置为混合所述溶质腔释放的所述透明有机材料和所述溶剂腔释放的所述第一溶剂。
  12. 根据权利要求9所述的显示基板,其中,所述驱动结构包括第一微型泵或活塞。
  13. 根据权利要求9所述的显示基板,还包括第二溶剂释放单元,所述第二溶剂释放单元设置在所述间隔层的一端,配置为释放第二溶剂以溶解所述透明光学膜层。
  14. 根据权利要求13所述的显示基板,还包括:
    有机材料回收单元,设置在所述间隔层的与所述回收溶剂释放单元相对 的一端,且配置为回收所述透明光学膜层溶解于所述第二溶剂后产生的有机材料。
  15. 根据权利要求14所述的显示基板,还包括:
    连接管,连通所述有机材料回收单元和所述存储微腔,配置为将回收至所述有机材料回收单元中的所述有机材料输送至所述存储微腔。
  16. 根据权利要求15所述的显示基板,其中,所述多个光学膜层形成单元的每个还包括:
    回收腔,与所述连接管连接以接收来自所述有机材料回收单元的所述有机材料;
    连通管,连通所述回收腔与所述存储微腔;以及
    第二微型泵,配置为将所述回收腔中接收的所述有机材料通过所述连通管运输至所述存储微腔中。
  17. 根据权利要求1-3任一所述的显示基板,还包括:
    清扫单元,设置在所述间隔层的至少一端,配置为清扫所述间隔层的形成有所述透明光学膜层的表面。
  18. 根据权利要求9所述的显示基板,还包括:
    控制器,与所述多个光学膜层形成单元的每个的所述驱动结构信号连接,且配置为为所述驱动结构提供控制信号以控制所述驱动结构对所述阀门的驱动。
  19. 一种显示面板,包括权利要求1-18任一项所述的显示基板。
  20. 一种权利要求19所述显示面板的显示方法,包括:
    在所述显示面板所显示的画作的视觉粗糙度超过预定阈值的区域形成所述透明光学膜层。
  21. 根据权利要求20所述的方法,其中,所述画作的所述区域的视觉粗糙度越大,所述透明光学膜层的厚度越大。
PCT/CN2019/079200 2018-03-23 2019-03-22 显示基板、显示面板及显示方法 WO2019179513A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/623,000 US20210146718A1 (en) 2018-03-23 2019-03-22 Display substrate, display panel, and display method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810246468.7A CN108427223B (zh) 2018-03-23 2018-03-23 彩膜基板和显示面板及其显示方法
CN201810246468.7 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019179513A1 true WO2019179513A1 (zh) 2019-09-26

Family

ID=63159028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079200 WO2019179513A1 (zh) 2018-03-23 2019-03-22 显示基板、显示面板及显示方法

Country Status (3)

Country Link
US (1) US20210146718A1 (zh)
CN (1) CN108427223B (zh)
WO (1) WO2019179513A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108427223B (zh) * 2018-03-23 2020-11-13 京东方科技集团股份有限公司 彩膜基板和显示面板及其显示方法
CN109459892A (zh) * 2018-11-12 2019-03-12 深圳市华星光电半导体显示技术有限公司 显示面板
US11005080B2 (en) 2019-04-29 2021-05-11 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Organic light emitting diode display screen and manufacturing method thereof
CN110098231A (zh) * 2019-04-29 2019-08-06 武汉华星光电半导体显示技术有限公司 有机发光二极管显示屏及其制作方法
CN110889905B (zh) * 2019-11-21 2023-06-06 宁波财经学院 基于裸眼3d的产品展示方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1591047A (zh) * 2003-09-01 2005-03-09 欧姆龙株式会社 配备了具有微凹凸图案的树脂薄膜的光学元件的制造方法
JP2010169913A (ja) * 2009-01-23 2010-08-05 Seiko Epson Corp 電気光学装置及び電子機器
CN102821869A (zh) * 2010-03-26 2012-12-12 夏普株式会社 成膜装置和成膜方法
CN102879948A (zh) * 2012-09-29 2013-01-16 京东方科技集团股份有限公司 彩膜基板、液晶显示装置及制作方法
CN102914863A (zh) * 2011-08-05 2013-02-06 聚合物视象有限公司 电流体彩色显示器
CN108427223A (zh) * 2018-03-23 2018-08-21 京东方科技集团股份有限公司 彩膜基板和显示面板及其显示方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699474B1 (ko) * 2005-10-13 2007-03-26 엘지전자 주식회사 액정 표시 장치 및 이를 구동하는 방법
JP2010224337A (ja) * 2009-03-25 2010-10-07 Toppan Printing Co Ltd カラーフィルタ基板、その製造方法及び液晶表示装置
CN104280807A (zh) * 2010-01-21 2015-01-14 株式会社东芝 带干涉型滤光片层的基板及使用该基板的显示装置
JP5766990B2 (ja) * 2011-03-23 2015-08-19 東レエンジニアリング株式会社 塗布装置
US8755010B2 (en) * 2011-11-17 2014-06-17 Apple Inc. Displays with multilayer masks and color filters
CN203658705U (zh) * 2013-12-31 2014-06-18 京东方科技集团股份有限公司 一种彩膜基板、显示面板及显示装置
CN104898292B (zh) * 2015-06-30 2018-02-13 京东方科技集团股份有限公司 3d显示基板及其制作方法、3d显示装置
KR102584304B1 (ko) * 2016-04-26 2023-10-04 삼성디스플레이 주식회사 색변환 패널 및 이를 포함하는 표시 장치
CN106094322B (zh) * 2016-08-16 2019-09-17 京东方科技集团股份有限公司 一种彩膜基板及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1591047A (zh) * 2003-09-01 2005-03-09 欧姆龙株式会社 配备了具有微凹凸图案的树脂薄膜的光学元件的制造方法
JP2010169913A (ja) * 2009-01-23 2010-08-05 Seiko Epson Corp 電気光学装置及び電子機器
CN102821869A (zh) * 2010-03-26 2012-12-12 夏普株式会社 成膜装置和成膜方法
CN102914863A (zh) * 2011-08-05 2013-02-06 聚合物视象有限公司 电流体彩色显示器
CN102879948A (zh) * 2012-09-29 2013-01-16 京东方科技集团股份有限公司 彩膜基板、液晶显示装置及制作方法
CN108427223A (zh) * 2018-03-23 2018-08-21 京东方科技集团股份有限公司 彩膜基板和显示面板及其显示方法

Also Published As

Publication number Publication date
US20210146718A1 (en) 2021-05-20
CN108427223A (zh) 2018-08-21
CN108427223B (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
WO2019179513A1 (zh) 显示基板、显示面板及显示方法
TWI454756B (zh) 用於反射型顯示器之四色彩色濾光片陣列
WO2016004726A1 (zh) 双面显示面板以及双面显示装置
US9188806B2 (en) Multi-purpose electrical window and methods thereof
US9766494B2 (en) Double-faced display panel and manufacturing method thereof
CN103913889B (zh) 一种内置光源的液晶显示装置
CN103972262A (zh) 一种有机发光显示装置及其制造方法
TWI670549B (zh) 顯示單元結構及使用量子棒之顯示元件
US20130271445A1 (en) Dual mode display device
CN103323970B (zh) 显示面板及其制备方法、显示装置
WO2015010363A1 (zh) 显示面板、显示装置、显示面板制作方法及显示方法
CN106024846B (zh) 显示基板、显示基板的制造方法及显示装置
JP2007234232A5 (zh)
CN109031762A (zh) 显示面板及其驱动方法、显示装置
CN104599604A (zh) 一种显示装置及其驱动方法
JP2014049120A (ja) タッチディスプレイパネル及びディスプレイ装置
WO2013159527A1 (zh) 显示装置、彩色滤光片及其制作方法
CN104600097A (zh) 一种像素单元结构、有机发光显示面板及显示装置
EP3794410B1 (en) Method of producing a piezo electrophoretic display
CN110265451A (zh) 显示基板及制造方法、显示装置
Han et al. Color purifying optical nanothin film for three primary colors in optoelectronics
CN108428722A (zh) 一种有机发光显示面板及其制作方法
CN208077524U (zh) 一种显示装置
JP2012047769A5 (zh)
CN102654710B (zh) 一种电子纸显示器件及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.01.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19772311

Country of ref document: EP

Kind code of ref document: A1