WO2019179444A1 - 用于混合组网的入网方法、代理协调设备和站点设备 - Google Patents

用于混合组网的入网方法、代理协调设备和站点设备 Download PDF

Info

Publication number
WO2019179444A1
WO2019179444A1 PCT/CN2019/078752 CN2019078752W WO2019179444A1 WO 2019179444 A1 WO2019179444 A1 WO 2019179444A1 CN 2019078752 W CN2019078752 W CN 2019078752W WO 2019179444 A1 WO2019179444 A1 WO 2019179444A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordination device
proxy
link
agent
network
Prior art date
Application number
PCT/CN2019/078752
Other languages
English (en)
French (fr)
Inventor
侯建强
吴悦峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19771369.6A priority Critical patent/EP3764593B1/en
Priority to CA3094555A priority patent/CA3094555C/en
Priority to AU2019236841A priority patent/AU2019236841B2/en
Priority to BR112020019155-8A priority patent/BR112020019155A2/pt
Publication of WO2019179444A1 publication Critical patent/WO2019179444A1/zh
Priority to US17/028,399 priority patent/US11432368B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/123Evaluation of link metrics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/544Setting up communications; Call and signalling arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • H04L12/2878Access multiplexer, e.g. DSLAM
    • H04L12/2879Access multiplexer, e.g. DSLAM characterised by the network type on the uplink side, i.e. towards the service provider network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • the present application relates to the field of communications, and in particular, to a network access method, a proxy coordination device, and a site device for a hybrid networking.
  • Power Line Communication (PLC) technology is a power system communication technology that uses transmission lines as a transmission medium for carrier signals.
  • China's PLC technology is based on the Institute of Electrical and Electronics Engineers (IEEE) 1901.1 standard, also known as the Power Line Communication-Internet of Things (PLC-IoT) technology. Forwarded communication technology.
  • IEEE Institute of Electrical and Electronics Engineers
  • PLC-IoT Power Line Communication-Internet of Things
  • Radio Frequency (RF) communication technology is one of the most influential Internet of Things technologies, and is widely used in smart grids and smart home networks.
  • the industry usually adopts Internet Protocol Version 6, IPv6, and IPv6 over Low Wireless Personal Area Network Communication Technologies (6LoWPAN), and Low-Rate Wireless Personal Area Network (Low-Rate Wireless Personal Area). Networks, LR-WPANs) specification of the technical framework to build RF networks.
  • the RF network is a communication technology that uses three layers of forwarding.
  • the PLC network has high bandwidth and is not subject to physical obstacles. It can realize communication through walls, underground and tunnels. However, there are still technical obstacles in the PLC network across the transformer.
  • the RF network has high flexibility in device deployment, and is not restricted by transformers in smart meter scenarios, but the wireless signal strength is easily affected by physical obstacles, especially in underground and tunnels.
  • the combination of PLC network and RF network network can just make up for each other's shortcomings and highlight the advantages of both parties. There are great differences between the PLC network and the RF network in both the physical layer and the link layer.
  • the two networks have different packet formats, device access procedures, and routing methods, which makes a hybrid group of PLC networks and RF networks. The network is very difficult to implement.
  • the present invention provides a network access method, a proxy coordination device, and a site device for a hybrid network, which enables a site device to select a better network access path based on link cost, which is beneficial to improving the working efficiency of the hybrid network.
  • a network access method for a hybrid network includes: the agent coordination device calculates a network access parameter according to a link quality parameter of the agent coordination device in a PLC network, where the network access parameter includes a chain.
  • the overhead of the link is used to indicate that the site device coordinates the access of the device through the proxy based on the RF communication.
  • the proxy coordination device sends a DIO packet, and the DIO packet includes the link overhead.
  • the agent coordination device calculates, according to the link quality parameter in the PLC network, a link overhead for indicating that the site device accesses the network through the proxy coordination device based on the RF communication, and The link cost is sent to the site device through the DIO packet, so that the site device can select a better network access path based on the link cost, which is beneficial to improving the working efficiency of the hybrid network.
  • the proxy coordination device calculates the network access parameter according to the link quality parameter of the proxy coordination device in the PLC network, and may include: the proxy coordination device according to the link quality parameter Calculating a wireless quality parameter, where the wireless quality parameter includes any one or more of: ETX, LQL, and hop count, wherein the ETX is calculated according to a proxy communication rate, and the LQL is calculated according to a proxy channel quality, and the hop count is based on The number of stages is calculated; the agent coordination device calculates the link overhead according to the wireless quality parameter.
  • the wireless quality parameter includes any one or more of: ETX, LQL, and hop count, wherein the ETX is calculated according to a proxy communication rate, and the LQL is calculated according to a proxy channel quality, and the hop count is based on The number of stages is calculated
  • the agent coordination device calculates the link overhead according to the wireless quality parameter.
  • the possible implementation method first calculates the radio quality parameter of the RF network from the link quality parameter of the PLC network, and then calculates the link cost by the radio quality parameter, so that the calculated link cost is more accurate, which is beneficial to the site device according to the chain.
  • the path cost selects the network path, find the best path.
  • the network access parameter further includes a constraint parameter, where the constraint parameter may include any one or more of the following: ETX, LQL, and hop count, wherein the ETX is calculated according to a proxy communication rate.
  • the LQL is calculated according to the quality of the proxy channel, and the hop count is calculated according to the number of stages.
  • the proxy coordination device sends the DIO packet, and the method includes: after the proxy coordination device determines that the constraint parameter meets the threshold requirement, the DIO packet is sent.
  • the possible implementation manner sets the constraint parameter, so that the agent coordination device can not accept the site device to access the network when the constraint parameter does not meet the threshold requirement, and protect the working efficiency of the agent coordination device, so that the working efficiency of the hybrid networking is overall. high.
  • the DIO message may further include first information, where the first information is used to indicate a constraint parameter type as a constraint parameter, where the constraint parameter type includes any one or more of the following : ETX, LQL, and hop count.
  • the proxy coordination device informs the site device through the DIO message which parameter types are used as constraint parameters, so that the site device can measure the parameter value as the constraint parameter by itself, and determine which proxy coordination to access according to the parameter value measured by itself. device.
  • the method may further include: the proxy coordination device receives second information sent by the central coordination device, where the second information is used to indicate a first chain used to determine the constraint parameter
  • the road quality parameter type, the first link quality parameter type includes any one or more of the following: a proxy communication rate, a proxy channel quality, and a level.
  • the method may further include: the proxy coordination device receiving the second information sent by the central coordination device, the second information being used to indicate a first radio quality parameter type as the constraint parameter, where the first radio quality parameter type includes Any one or more of the following: ETX, LQL, and hop count.
  • the link quality parameter type of the PLC network required for calculating the constraint parameter is determined by the central coordination device, and the central coordination device notifies the agent coordination device of the link quality parameter type.
  • the ETX can be negatively correlated with the proxy communication rate.
  • the LQL may be negatively correlated with the proxy channel quality.
  • the number of stages may be positively correlated with the number of hops.
  • the proxy coordination device calculates the network access parameter according to the link quality parameter of the proxy coordination device in the PLC network, and may include: the proxy coordination device according to the proxy communication rate, the proxy The link overhead is calculated by at least one of channel quality and number of stages. In this possible implementation manner, the proxy coordination device directly calculates the link cost according to the link quality parameter.
  • the method may further include: the proxy coordination device sends a function advertisement message to the central coordination device, where the function notification message is used to indicate that the agent coordination device has a PLC and an RF dual The modulo function; the agent coordinating device receives the function acknowledgment message sent by the central coordinating device, and the function acknowledgment message is used to indicate that the agent coordinating device enables the RF function.
  • the central coordination device interacts with the agent coordination device through the function notification message and the function confirmation message, so that the agent coordination device enables the RF function, thereby implementing the PLC network as the backbone and the RF network as the peripheral hybrid network.
  • the method may further include: receiving, by the proxy coordination device, third information sent by the central coordination device, where the third information is used to indicate a
  • the second link quality parameter type includes any one or more of the following: a proxy communication rate, a proxy channel quality, and a level.
  • the method may further include: the proxy coordinating device receiving the third information sent by the central coordinating device, the third information being used to indicate a second radio quality parameter type for determining the link cost, the second radio quality
  • the parameter type includes any one or more of the following: ETX, LQL, and hop count.
  • the link quality parameter type of the PLC network required for calculating the link overhead is determined by the central coordination device, and the central coordination device notifies the agent coordination device of the link quality parameter type.
  • a second aspect provides a network access method for a hybrid network, where the network access method includes: the site device receives a DIO packet sent by the proxy coordination device, where the DIO packet includes a link cost, where the link cost is The proxy coordination device determines, according to the link quality parameter of the proxy coordination device in the PLC network, the link overhead is used to indicate that the site device coordinates the access of the device through the proxy based on the RF communication; the site device according to the link overhead And determining whether to coordinate the device access through the agent based on RF communication.
  • the site device receives the DIO packet, which includes the link cost, which is calculated by the proxy coordination device according to the link quality parameter in the PLC network.
  • the site device can select a better network access path based on the link cost, which is beneficial to improving the working efficiency of the hybrid network.
  • the link overhead may be determined by the proxy coordination device according to the radio quality parameter, where the radio quality parameter may include any one or more of the following: ETX, LQL, and hop count
  • ETX is calculated according to the proxy communication rate of the proxy coordination device
  • LQL is calculated according to the proxy channel quality of the proxy coordination device
  • hop count is calculated according to the number of stages of the proxy coordination device.
  • the DIO message may further include first information, where the first information is used to indicate a constraint parameter type as a constraint parameter, where the constraint parameter type includes any one or more of the following : ETX, LQL, and hop count.
  • the determining, by the station device, whether the device is to be connected to the network by using the proxy communication device according to the link cost may include: determining, by the site device, the constraint parameter according to the first information. The value of the link device determines whether to access the network through the proxy coordination device based on the value of the constraint parameter and the value of the link overhead.
  • the link overhead is calculated by the proxy coordination device according to at least one of a proxy communication rate, a proxy channel quality, and a level.
  • the third aspect provides a network access method for a hybrid network.
  • the network access method may include: the central coordination device receives a function advertisement message sent by the agent coordination device, where the function notification message is used to indicate that the agent coordination device has The power line communication PLC and the RF RF dual mode function; the central coordination device sends a function confirmation message to the agent coordination device, the function confirmation message is used to indicate that the agent coordination device enables the RF function.
  • the central coordination device interacts with the agent coordination device through the function notification message and the function confirmation message, so that the agent coordination device enables the RF function, thereby implementing the PLC network as the backbone, RF
  • the network is doing a hybrid networking of the ends.
  • the method may further include: the central coordination device sending, to the proxy coordination device, third information, where the third information is used to indicate a second used to determine the link overhead
  • the link quality parameter type, the second link quality parameter type includes any one or more of the following: a proxy communication rate, a proxy channel quality, and a level.
  • the method may further include: the central coordination device sending, to the proxy coordination device, third information, where the third information is used to indicate a second used to determine the link overhead A wireless quality parameter type, the second wireless quality parameter type including any one or more of the following: ETX, LQL, and hop count.
  • the method may further include: the central coordination device sending, to the proxy coordination device, second information, where the second information is used to indicate a first link used to determine a constraint parameter
  • the quality parameter type, the first link quality parameter type includes any one or more of the following: proxy communication rate, proxy channel quality, and number of stages.
  • the method may further include: the central coordination device sending, to the proxy coordination device, second information, where the second information is used to indicate a first wireless quality parameter type as a constraint parameter
  • the first wireless quality parameter type includes any one or more of the following: ETX, LQL, and hop count.
  • the present application provides a proxy coordination device for performing the method in the above first aspect or any possible implementation thereof.
  • the agent coordination device may comprise means for performing the method of the first aspect or any of its possible implementations.
  • the present application provides a proxy coordination device, the processor coordination device including a processor, a memory, and a communication interface, the memory being configured to store instructions for executing the memory stored instructions, such that the agent coordinates the device Perform the method of the first aspect or any of its possible implementations.
  • the application provides a site device for performing the method in the second aspect or any of the possible implementation manners described above.
  • the site device may comprise means for performing the method of the second aspect or any of its possible implementations.
  • the application provides a site device, the site device including a processor, a memory, and a communication interface, the memory is configured to store an instruction, and the processor is configured to execute the memory stored instruction, so that the site device performs the second Aspect or method in any of its possible implementations.
  • the present application provides a central coordination device for performing the method of the third aspect or any of its possible implementations.
  • the central coordination device may comprise means for performing the method of the third aspect or any of its possible implementations.
  • the present application provides a central coordination device including a processor, a memory, and a communication interface, the memory for storing instructions for executing instructions stored by the memory, such that the central coordination device Perform the method of the third aspect or any of its possible implementations.
  • the present application provides a computer readable storage medium having stored thereon instructions that, when executed on a computer, cause the computer to perform the method of the first aspect and any of its possible implementations.
  • the present application provides a computer program product comprising instructions, wherein when the computer runs the finger of the computer program product, the computer performs the method of the first aspect and any possible implementation thereof .
  • the present application provides a computer chip that causes a computer to perform the method of the first aspect and any of its possible implementations.
  • the present application provides a computer readable storage medium having stored thereon instructions that, when executed on a computer, cause the computer to perform the method of the second aspect and any of its possible implementations.
  • the present application provides a computer program product comprising instructions, wherein when the computer runs the finger of the computer program product, the computer performs the second aspect and any possible implementation thereof .
  • the present application provides a computer chip that causes a computer to perform the method of the second aspect and any of its possible implementations.
  • the present application provides a computer readable storage medium having stored thereon instructions that, when executed on a computer, cause the computer to perform the method of the third aspect and any of its possible implementations.
  • the present application provides a computer program product comprising instructions, wherein when the computer runs the finger of the computer program product, the computer performs the third aspect and any possible implementation thereof .
  • the application provides a computer chip that causes a computer to perform the method of the third aspect and any possible implementation thereof.
  • the radio quality parameter in this application is a parameter used in the RF network to measure the quality of communication.
  • FIG. 1 is a schematic diagram of a topology structure of a typical PLC-IoT network provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a topological structure of a typical RF network provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a hybrid networking of a PLC-IoT network and an RF network according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a network access method for hybrid networking provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another network access method for hybrid networking provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another network access method for hybrid networking provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another network access method for hybrid networking provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a proxy coordination device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a proxy coordination device according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a site device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a site device according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a central coordination device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a central coordination device according to an embodiment of the present application.
  • PLC technology is widely deployed in areas such as smart grids and smart home networks.
  • PLC technology is based on existing grid infrastructure and has low deployment costs.
  • the PLC network implements intelligent home network coverage by modulating and demodulating high-frequency low-voltage (generally less than 10V) analog/digital signals on a 220 volt (V)/50 Hz (Hz) home low-voltage power line.
  • Power cats are an example based on PLC technology.
  • PLC technology enables utility companies and home users to easily communicate in both directions to monitor and control plug-in devices such as electricity meters and street lights.
  • PLC network communication frequency range is large, PLC network is usually divided into narrowband PLC (Narrow Band PLC, NBPLC) network and broadband PLC (Broad Band PLC, BBPLC) two types, of which traditional broadband PLC work at 12 megahertz (MHz) the above.
  • NBPLC narrow Band PLC
  • BBPLC Broad Band PLC
  • IEEE 1901.1 PLC is standardizing for the frequency band of 2MHz to 12MHz.
  • the PLC-IoT technology adopts the 2-12MHz frequency band, and its bandwidth and transmission distance are between the narrowband PLC and the traditional broadband PLC. It has been applied in the deployment of smart meters.
  • the PLC-IoT network provides two-way, real-time, high-speed and secure communication channels, and point-to-point communication reaches a megabit per second (Mbps) rate, far higher than the effective rate that a narrowband PLC network can provide ( ⁇ 10). Kilbit per second (kbps).
  • FIG. 1 is a schematic diagram of a topology structure of a typical PLC-IoT network provided by an embodiment of the present application.
  • the PLC-IoT network generally forms a multi-level tree network centered on the CCO, the PCO (for example, PCO1 to PCO3) is connected to the CCO as a relay agent, and the STA (for example, STA1 to STA9) is connected to the PCO.
  • the CCO is responsible for completing network control and network maintenance management functions, which can serve as a gateway.
  • the STA can implement both PCO and STA role functions.
  • the device entity of the STA may be a communication unit installed in a power meter or a collector.
  • the RF network is also known as a low-speed RF mesh network, which typically uses the technical framework of IPv6+6LoWPAN+IEEE802.15.4.
  • IEEE 802.15.4 defines specifications for the physical layer and the data link layer, enabling IPv6 to operate seamlessly over IEEE 802.15.4 low-speed networks.
  • the RF network supports the establishment of a mesh network and implements route forwarding of IPv6 packets.
  • the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) is a common routing protocol for RF networks.
  • the topology of the RF network is a Destination Oriented Directed Acyclic Graph (DODAG).
  • DODAG Destination Oriented Directed Acyclic Graph
  • Node 1 is a central node and can be a gateway.
  • Nodes 2, 3, 4, 5, and 6 are proxy nodes.
  • Nodes 7, 8, and 9 are stub nodes.
  • DIO directed information message
  • the DIO message may include the RANK value of the proxy node itself, and the RANK value reflects the overhead of accessing the network through the proxy node. In other words, the smaller the RANK value, the least cost to the proxy node to communicate with the gateway.
  • RPL defines various calculation methods for RANK values, such as using Expected Transmission Count (ETX), HopCount (where hop count refers to the number of hops from the gateway), and Link Quality Level (Link Quality Level). , LQL), etc.
  • the new node in the RF network requests to enter the network by sending a Destination Advertisement Object (DAO) message to the proxy node or gateway when accessing the network. If the proxy node or gateway agrees to the new node entering the network, the proxy node or gateway replies to the new node with a DAO Acknowledgement (DAO ACK) message.
  • DAO Destination Advertisement Object
  • the hybrid network of PLC network and RF network can realize the complementary advantages of the two IoT communication technologies.
  • the two networks are different in packet format, device access process and routing mode, which makes the PLC network and The hybrid networking of RF networks is very difficult to implement.
  • the embodiment of the present application provides a hybrid networking method in which the PLC-IoT network is used as the backbone and the RF network is used as the terminal.
  • the technical difficulty to be solved by this hybrid networking method is how the link metrics of the agent coordination equipment with PLC and RF dual mode functions are unified in the two networks.
  • the agent coordination device with PLC and RF dual-mode functions to the central coordination device (gateway) is connected through the PLC link.
  • the agents coordinate the RANK values that the device currently sees from the RF network (RF network). The important parameters are all 0. If there are multiple proxy coordination devices in the network, they can receive new site devices (RF nodes) to access the network. Since the RANK values are all 0, the new site device randomly selects a proxy to coordinate device associations. The result is probably not the most. Excellent connection scheme.
  • FIG. 3 is a schematic diagram of a hybrid networking of a PLC-IoT network and an RF network according to an embodiment of the present application.
  • the agent coordination device 320 and the agent coordination device 330 are connected to the central coordination device 310 via a PLC link.
  • the agent coordination device 340 is connected to the agent coordination device 320 via a PLC link.
  • the site device 350 is coupled to the agent coordination device 340 via a PLC link.
  • the agent coordination device 360 is connected to the agent coordination device 340 via an RF link.
  • the site 370 device and the site 380 device are connected to the agent coordination device 360 via an RF link.
  • the agent coordination device 320, the agent coordination device 330, and the agent coordination device 340 have PLC and RF dual mode functions, which have a RANK value of 0 from the perspective of the RF network. Since the agent coordination device 360 has connected more site devices through the RF link, the newly accessed site device (RF node) 390 can select from the three devices: the agent coordination device 320, the agent coordination device 330, and the agent coordination device 340. Any connection to the network may not be the optimal connection solution.
  • the embodiment of the present application redefines a calculation method of a RANK-like parameter of the agent coordination device with the PLC and the RF dual-mode function, so as to distinguish the agent coordination devices in the hybrid network from receiving the new site.
  • the overhead of the device is defined.
  • the method for hybrid networking in the embodiments of the present application can be applied to a hybrid networking solution of a PLC-IoT network and an RF network, and can also be applied to a hybrid networking solution of an IEEE 1901 PLC network and an RF network.
  • the PLC network herein may refer to an IEEE 1901.1 PLC network, or may refer to an IEEE 1901 PLC network.
  • the central coordination device 310 of FIG. 3 may correspond to the CCO of the PLC network
  • the agent coordination device 320, the agent coordination device 330, and the agent coordination device 340 may correspond to the PCO of the PLC network
  • the site device 350 may correspond to a PLC network.
  • STAs, site devices 360 may correspond to proxy nodes of the RF network
  • site devices 370 and site devices 380 may correspond to stub nodes of the RF network.
  • Site device 390 may correspond to a stub node of the RF network that is to be networked.
  • FIG. 4 is a schematic flowchart of a network access method 400 for hybrid networking provided by an embodiment of the present application. As shown in FIG. 4, the network access method 400 can include the following steps:
  • the agent coordination device calculates the network access parameter according to the link quality parameter of the agent coordination device in the PLC network.
  • the network access parameter includes a link cost, and the link cost is used to indicate that the site device coordinates the network access cost of the device through the proxy based on the RF communication.
  • the proxy coordination device sends a DIO message.
  • Link overhead is included in DIO packets.
  • the site device receives the DIO message sent by the proxy coordination device.
  • the link overhead may be determined by the agent coordination device based on the link quality parameters of the agent coordination device in the PLC network.
  • the site device determines, according to the link overhead, whether to coordinate the device to access the network by using the proxy based on the RF communication.
  • the agent coordination device calculates, according to the link quality parameter in the PLC network, a link cost for indicating that the site device accesses the network through the proxy coordination device based on the RF communication, and The link cost is sent to the site device through the DIO packet.
  • the site device can determine whether to access the network through the proxy communication device based on the link cost, so that the site device can select a better network access path based on the link cost, which is beneficial to improve. Hybrid network productivity.
  • the link overhead may be similar to the parameter RANK of the RF network, which indicates that the site device coordinates the access of the device through the proxy based on the RF communication.
  • the site device can coordinate the device to access the network through the proxy based on the RF link.
  • the agent coordination device can calculate the network access parameters, including the link cost, through its link quality parameters at the bottom of the PLC network.
  • the proxy coordination device can broadcast or multicast DIO packets in a single hop and carry the value of its link cost in the DIO packet. In this way, the station device waiting for the network access can compare the value of the link overhead of the different agent coordination devices, and select the optimal agent coordination device (ie, the parent node) to access the hybrid network according to the value of the link cost of the different agent coordination device.
  • the IP packet sent to the central coordination device is sent to the proxy coordination device through the RF link.
  • the proxy coordination device then carries the data in the IP packet in the data packet to the central coordination through the PLC link. device.
  • the link quality parameter may include any one or more of the following: a proxy communication rate, a proxy channel quality, and a level.
  • These link quality parameters may be obtained or measured by the agent coordination device in the PLC network during communication with the devices of the network.
  • the agent coordination device in the PLC network
  • the three parameters listed above appear in the discovery list (MMeDiscoverNodeList) message periodically sent by the proxy coordination device (ie PCO) on the PLC link. It should be understood that there are multiple link quality parameters in the PLC network to measure the quality of the PLC link.
  • the three parameters listed above are merely exemplary and are not intended to limit the embodiments of the present application.
  • the Proxy Communication Rate field has a length of 1 byte and a value range of 0-100.
  • the Proxy Communication Rate field is used to indicate the product of the uplink and downlink communication success rates between the STA transmitting the MMeDiscoverNodeList packet and its PCO.
  • the Proxy Channel Quality field is used to indicate the channel quality of the STA to its PCO, which is evaluated by the STA that sent the MMeDiscoverNodeList packet.
  • the Proxy Channel Quality field is mapped by the physical layer's Signal-to-Noise Ratio (SNR), which represents the signal-to-noise ratio of the carrier channel used for communication.
  • SNR Signal-to-Noise Ratio
  • the Proxy Channel Quality field is 2 bytes long and has a value range of 0-255.
  • the Level field is used to indicate the number of levels required for the STA to send the MMeDiscoverNodeList packet to the CCO.
  • the network access parameter may further include a constraint parameter.
  • the value of the constraint parameter is used to measure whether the agent coordination device can receive the site device into the network.
  • the value of the constraint parameter can also be used to constrain the proxy coordination device to send DIO messages.
  • the S420 proxy coordination device sends the DIO packet, which may include: after the proxy coordination device determines that the constraint parameter meets the threshold requirement, the DIO packet is sent.
  • the DIO message may further include first information, where the first information is used to indicate a parameter type as a constraint parameter, and the parameter type as the constraint parameter may include any one or more of the following: ETX, LQL, and hop count.
  • the proxy coordination device can inform the site device which parameter type is used as the constraint parameter through the DIO message, so that the site device itself measures the parameter value as the constraint parameter, and determines which proxy coordination device to access according to the parameter value measured by itself.
  • the S430 site device determines, according to the link cost, whether to access the network by using the proxy to coordinate the device based on the RF communication, and the method includes: determining, by the site device, the value of the constraint parameter according to the first information; and determining, by the site device, the value of the constraint parameter and the link cost. The value determines whether the device is coordinated to the network via the proxy based on the RF communication.
  • link overhead and constraint parameters are determined by which types of link quality parameters of the PLC network, or by which types of radio quality parameters of the corresponding RF network, may be specified by the protocol, or may be centrally Coordinating equipment to determine.
  • the network access method 400 may further include: the proxy coordination device receives the second information sent by the central coordination device.
  • the second information is used to indicate a first link quality parameter type for determining a constraint parameter, and the first link quality parameter type includes any one or more of the following: a proxy communication rate, a proxy channel quality, and a level.
  • the network access method 400 may further include: the agent coordination device receives the central coordination device to send The second information is used to indicate a first link quality parameter type as a constraint parameter, and the first link quality parameter type includes any one or more of the following: ETX, LQL, and hop count.
  • the network access method 400 may further include: the proxy coordination device receives the third information sent by the central coordination device, and the third information is used to indicate that Determining a second link quality parameter type of the link overhead, the second link quality parameter type including any one or more of the following: a proxy communication rate, a proxy channel quality, and a level.
  • the wireless quality parameter type of the RF network required to calculate the link cost is determined by the central coordination device, and the network access method 400 may further include: the proxy coordination device receives the third information sent by the central coordination device, the third information And indicating a second wireless quality parameter type for determining a link cost, where the second wireless quality parameter type includes any one or more of the following: ETX, LQL, and hop count.
  • the agent coordination device calculates the network access parameter according to the link quality parameter of the agent coordination device in the PLC network, and the method includes: the agent coordination device calculates a wireless quality parameter according to the link quality parameter, where the wireless The quality parameter includes any one or more of the following: ETX, LQL, and hop count, wherein the ETX is calculated according to a proxy communication rate, and the LQL is calculated according to a proxy channel quality, and the hop count is calculated according to a level; the proxy coordination device According to the wireless quality parameter, the link overhead is calculated.
  • the link cost is determined according to the radio quality parameter, which is a parameter used in the RF network to measure the quality of the communication.
  • the wireless quality parameter may include any one or more of the following: ETX, LQL, and hop count.
  • ETX is calculated according to the proxy communication rate
  • LQL is calculated according to the proxy channel quality
  • hop count is calculated according to the number of stages.
  • the proxy coordination device can calculate the radio quality parameter of the corresponding RF network according to the link quality parameter in the PLC network.
  • the ETX can be calculated according to the Proxy Communication Rate of the PLC network.
  • the method of the embodiment of the present application can map the Proxy Communication Rate to the ETX.
  • ETX and Proxy Communication Rate can be negatively correlated.
  • the calculated value of ETX should not exceed the range in which ETX should be.
  • ETX can be calculated by the following formula:
  • n is a positive integer and f1() is a first mapping function, which is a negative correlation function.
  • the LQL can be calculated based on the Proxy Channel Quality of the PLC network.
  • the method of the embodiment of the present application can map the Proxy Channel Quality to the LQL.
  • LQL and Proxy Channel Quality can be negatively correlated.
  • the value of the calculated LQL should not exceed the range in which LQL should be.
  • LQL can be calculated by the following formula:
  • f2() is the second mapping function and f2() causes LQL to be negatively correlated with Proxy Channel Quality.
  • mapping relationship between Proxy Channel Quality and LQL can be given by Table 1.
  • the HopCount can be calculated according to the level of the PLC network.
  • the method of the embodiment of the present application can map the Level to the HopCount.
  • HopCount and Level can be positively correlated.
  • the value of the HopCount calculated should not exceed the range that HopCount should be.
  • HopCount can be calculated by the following formula:
  • a is a positive integer and b is an integer.
  • the manner in which the radio quality parameters are obtained is given above, for example, the Proxy Communication Rate can be mapped to the ETX, the Proxy Channel Quality can be mapped to the LQL, and the Level mapped to the HopCount.
  • the radio quality parameter may include any one or more of the following: expected number of transmissions ETX, link quality level LQL, and hop count. The following is a few specific examples to illustrate how to calculate the link overhead based on the radio quality parameters.
  • the radio quality parameter may include ETX.
  • ETX is the main parameter, and ETX must be considered in path selection.
  • link cost c * ETX, where c is a normal number.
  • HopCount can also be used as one of the options for link cost calculation.
  • the wireless quality parameters may include ETX and HopCount.
  • the link cost d * ETX * HopCount, where d is a normal number, that is, the link overhead is obtained by multiplying ETX and HopCount.
  • the calculation of the link cost value can be combined with the value of the link overhead of the previous hop node.
  • link cost the value of the link overhead of the last hop node + e * ETX, where e is a normal number. That is, the value of the link overhead is obtained by adding the value of the link overhead of the previous hop to the ETX of the previous hop.
  • the agent coordination device calculates the network access parameter according to the link quality parameter of the agent coordination device in the PLC network, and may include: the agent coordination device according to at least one of a proxy communication rate, a proxy channel quality, and a level, Calculated link cost. That is, the proxy coordination device directly calculates the link overhead according to the link quality parameter.
  • the agent coordination device can calculate the link cost directly according to the link quality parameter of the PLC network.
  • the wireless quality parameter of the RF network is calculated by the link quality parameter of the PLC network
  • the link cost is calculated by the wireless quality parameter
  • the link overhead is calculated directly according to the link quality parameter of the PLC network.
  • the result of the program is equivalent.
  • the calculation formulas of the ETX, LQL, and HopCount are brought into the link cost calculation formula, and the operational relationship between the link quality parameter and the link cost can be obtained.
  • the formula for calculating the link cost of the link quality parameter is split, and the calculation relationship between the radio quality parameter and the link cost can also be obtained.
  • the access parameters may also include constraint parameters.
  • the parameter type as the constraint parameter may include any one or more of the following: the expected number of transmissions ETX, the link quality level LQL, and the hop count. The above also shows that you can map Proxy Communication Rate to ETX, Proxy Channel Quality to LQL, and Level to HopCount.
  • the parameter type of the link quality parameter used to determine the constraint parameter may include any one or more of the following: proxy communication rate, proxy channel quality, and number of stages.
  • LQL can be used as a constraint parameter.
  • the protocol or system can specify a threshold, such as a threshold of 5.
  • the agent coordination device determines whether the value of the constraint parameter satisfies the threshold requirement. If the value of the constraint parameter does not meet the threshold requirement, the agent coordination device does not send the DIO message. For example, a proxy coordination device with an LQL higher than the threshold (LQL 6 or 7) does not receive the site device, ie the proxy coordination device does not send DIO messages. If the value of the constraint parameter meets the threshold requirement, the proxy coordination device sends a DIO message.
  • the proxy coordination device with the LQL less than or equal to the threshold sends a DIO packet, and the DIO packet includes the value of the link overhead, and includes the first type of the parameter used to indicate the constraint parameter. information.
  • the parameter type indicated as the constraint parameter by the first information is LQL.
  • the site device determines the value of the constraint parameter based on the first information.
  • the station device determines whether to access the network through the proxy coordination device based on the value of the constraint parameter and the value of the link cost. Specifically, the site device measures or obtains the value of the LQL from the RF network.
  • the site device determines whether the device to access the network through the proxy, but coordinates the device to access the network or not enter the network through other agents.
  • the value of the LQL obtained by the site device is 4, and the threshold requirement is met. After that, the site device compares the value of the link cost, and selects the agent with the smaller link cost to coordinate the device to access the network.
  • the constraint parameter can include not only one parameter, but also multiple parameters, which are not listed here.
  • FIG. 5 is a schematic flowchart of another network access method 500 for hybrid networking provided by an embodiment of the present application. As shown in FIG. 5, the network access method 500 is performed by a proxy coordination device, and may include the following steps:
  • the agent coordinates the device to complete the network access. Specifically, the agent coordination device completes the PLC link access to the central coordination device through the PLC interface and according to the process specified by the protocol of the PLC network when entering the network.
  • the proxy coordination device sends a function notification message to the central coordination device.
  • the central coordination device receives the function notification message sent by the agent coordination device.
  • the function announcement message is used to indicate that the agent coordination device has PLC and RF dual mode functions.
  • the proxy coordination device sends an IP message to the central coordination device to announce that it has PLC and RF dual mode functionality.
  • the agent coordination device receives the function feedback message sent by the central coordination device.
  • the central coordination device sends a function feedback message to the agent coordination device.
  • the function feedback message may be used to indicate that the agent coordination device enables the RF function.
  • the function feedback message may also be referred to as a function confirmation message.
  • the function confirmation message may include the third information mentioned above for indicating the second link quality parameter type for determining the link overhead.
  • the function confirmation message may include the second information mentioned above for indicating the type of the first link quality parameter used to determine the constraint parameter.
  • the function feedback message may also be used to indicate that the agent coordination device is not in the RF function but is in a standby state. When it is determined that the RF function is enabled, S560 is directly executed; when it is determined to be on standby, S540 is performed.
  • the agent coordination device does not enable the RF function temporarily, and waits for the notification to be enabled.
  • the agent coordination device receives the function confirmation message sent by the central coordination device, and enables the RF function.
  • the agent coordination device calculates the network access parameter according to the link quality parameter of the agent coordination device in the PLC network, and then executes S570.
  • Network access parameters include link overhead.
  • the agent coordination device sends a DIO message.
  • the DIO packet includes the value of the link cost.
  • the agent coordinates the device single-hop broadcast or multicast DIO message to prepare to accept the site device.
  • FIG. 6 is a schematic flowchart of another network access method 600 for hybrid networking provided by an embodiment of the present application.
  • the network access method 600 shown in FIG. 6 is for the case where the agent coordination device and the site device are simultaneously connected to the network.
  • the network access method 600 can include the following steps:
  • the agent coordination device and the central coordination device are associated through the PLC interface.
  • the agent coordination device sends a function notification message to the central coordination device.
  • the central coordination device receives the function notification message sent by the agent coordination device.
  • the function feedback message (ie, the function confirmation message) is used to instruct the agent coordination device to enable the RF function.
  • the function confirmation message includes third information indicating a second link quality parameter type for determining a link overhead.
  • the function acknowledgment message in the example shown in FIG. 6 does not include second information indicating the type of the first link quality parameter used to determine the constraint parameters.
  • the second information may be included in the function confirmation message. It should be understood that the second information and the third information may be carried in the function confirmation message or may be sent separately.
  • the agent coordination device calculates the network access parameter. Specifically, the agent coordination device calculates the network access parameter according to the link quality parameter of the agent coordination device in the PLC network, and the network access parameter includes the link cost.
  • the agent coordination device sends a DIO message.
  • the function confirmation message does not include the second information. Therefore, the agent coordination device directly transmits the DIO message without considering the constraint parameter.
  • the DIO packet includes the value of the link cost.
  • the agent coordination device may consider the constraint parameter, does not send a DIO message when the constraint does not meet the threshold requirement, and sends a DIO message when the constraint meets the threshold requirement.
  • the DIO message can be sent as a single-hop broadcast or as a multicast DIO message.
  • S660 The site device sends a DAO packet to the proxy coordination device.
  • the site device selects to coordinate the device into the network through the proxy according to the link overhead.
  • the site device may not coordinate the device to access the network through the proxy, and the site device does not have to send the DAO message to the proxy coordination device.
  • FIG. 7 is a schematic flowchart of another network access method 700 for hybrid networking provided by an embodiment of the present application.
  • the network access method 700 shown in FIG. 7 is for the case where the site device delays the network access than the agent coordination device.
  • the network access method 700 can include the following steps:
  • the agent coordination device and the central coordination device are associated through the PLC interface.
  • the agent coordination device sends a function notification message to the central coordination device.
  • the central coordination device receives the function notification message sent by the agent coordination device.
  • the function feedback message is used to indicate that the agent coordination device is not in the RF function but is in a standby state.
  • the RF interface of the agent coordination device is on standby.
  • the central coordination device sends a function confirmation message to the agent coordination device.
  • the function confirmation message includes third information indicating a second link quality parameter type for determining a link overhead.
  • the function acknowledgment message in the example shown in FIG. 7 does not include second information indicating the type of the first link quality parameter used to determine the constraint parameters.
  • the second information may be included in the function confirmation message. It should be understood that the second information and the third information may be carried in the function confirmation message or may be sent separately.
  • the agent coordination device calculates the network access parameter. Specifically, the agent coordination device calculates the network access parameter according to the link quality parameter of the agent coordination device in the PLC network, and the network access parameter includes the link cost.
  • the agent coordination device sends a DIO message.
  • the function confirmation message does not include the second information. Therefore, the agent coordination device directly transmits the DIO message without considering the constraint parameter.
  • the DIO packet includes the value of the link cost.
  • the agent coordination device may consider the constraint parameter, does not send a DIO message when the constraint does not meet the threshold requirement, and sends a DIO message when the constraint meets the threshold requirement.
  • the DIO message can be sent as a single-hop broadcast or as a multicast DIO message.
  • the site device sends a DAO packet to the proxy coordination device.
  • the site device selects to coordinate the device into the network through the proxy according to the link overhead.
  • the site device may not coordinate the device to access the network through the proxy, and the site device does not have to send the DAO message to the proxy coordination device.
  • the foregoing describes the network access method for the hybrid networking provided by the embodiment of the present application.
  • the agent coordination device, the site device, and the central coordination device provided by the embodiments of the present application are described below.
  • FIG. 8 is a schematic block diagram of a proxy coordination device 800 provided by an embodiment of the present application.
  • the agent coordination device 800 includes a computing module 810 and an RF module 820.
  • the calculation module 810 is configured to calculate the network access parameter according to the link quality parameter of the proxy coordination device 800 in the PLC network, where the network access parameter includes a link cost, and the link cost is used to indicate that the site device accesses the network through the proxy coordination device 800 based on the RF communication. Overhead.
  • the RF module 820 is configured to send a DIO packet, where the DIO packet includes a link overhead.
  • the agent coordination device of the embodiment of the present application calculates a link cost for indicating that the site device accesses the network through the proxy coordination device based on the RF communication according to the link quality parameter in the PLC network, and sends the link cost to the DIO packet through the DIO packet.
  • the site device enables the site device to select a better access path based on the link cost, which is beneficial to improving the working efficiency of the hybrid network.
  • the calculating module 810 is specifically configured to: calculate a radio quality parameter according to the link quality parameter, where the radio quality parameter includes any one or more of the following: ETX, LQL, and hop count, where the ETX is calculated according to the proxy communication rate. It is obtained that the LQL is calculated according to the quality of the proxy channel, and the hop count is calculated according to the number of stages; according to the radio quality parameter, the link overhead is calculated.
  • the network access parameter may further include a constraint parameter, where the constraint parameter may include any one or more of the following: ETX, LQL, and hop count, where the ETX is calculated according to the proxy communication rate, and the LQL is calculated according to the proxy channel quality, and the hop count is obtained.
  • the RF module 820 is specifically configured to: after determining that the constraint parameter meets the threshold requirement, send the DIO message.
  • the DIO message may further include first information, where the first information is used to indicate a constraint parameter type as a constraint parameter, and the constraint parameter type includes any one or more of the following: ETX, LQL, and hop count.
  • the agent coordination device 800 may further include a PLC module 830, where the PLC module 830 may be configured to receive second information sent by the central coordination device, where the second information is used to indicate a first link quality parameter type used to determine the constraint parameter,
  • the first link quality parameter type includes any one or more of the following: proxy communication rate, proxy channel quality, and number of stages.
  • the PLC module 830 may be configured to: receive second information sent by the central coordination device, where the second information is used to indicate a first wireless quality parameter type as a constraint parameter, where the first wireless quality parameter type includes any one of the following or Multiple: ETX, LQL and hop count.
  • the ETX is inversely related to the proxy communication rate.
  • the LQL is inversely related to the proxy channel quality.
  • the number of stages is positively related to the number of hops.
  • the calculating module 810 is specifically configured to: calculate a link cost according to at least one of a proxy communication rate, a proxy channel quality, and a level.
  • the PLC module 830 is further configured to: send a function notification message to the central coordination device, where the function notification message is used to indicate that the agent coordination device 800 has a PLC and an RF dual mode function; and receive a function confirmation message sent by the central coordination device.
  • the function confirmation message is used to instruct the agent coordination device 800 to enable the RF function.
  • the PLC module 830 is further configured to: receive third information sent by the central coordination device, where the third information is used to indicate a second link quality parameter type used to determine a link cost, where the second link quality parameter type includes any one of the following or Multiple: proxy communication rate, proxy channel quality, and number of stages.
  • the PLC module 830 may be further configured to: receive third information sent by the central coordination device, where the third information is used to indicate a second wireless quality parameter type for determining a link cost, and the second wireless quality parameter type includes Any one or more of the following: ETX, LQL, and hop count.
  • FIG. 9 is a schematic structural diagram of a proxy coordination device 900 provided by an embodiment of the present application.
  • the agent coordination device 900 as shown in FIG. 9 may include a processor 910, a memory 920, and a communication interface 930.
  • Communication interface 930 is used to communicate with other devices in the hybrid network.
  • Communication interface 930 includes a wired communication interface and a wireless communication interface.
  • the wired communication interface includes a PLC interface and may also include an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless communication interface includes an RF interface.
  • the computer 920 stores the computer instructions, and when the processor 910 executes the computer instructions, causes the agent coordination device 900 to perform: calculating the network access parameters according to the link quality parameters of the agent coordination device 900 in the PLC network, and the network access parameters include link overhead, The link overhead is used to indicate that the site device is in the network to coordinate the device 900 based on the RF communication.
  • the DIO packet is sent.
  • the DIO packet includes the link cost.
  • the proxy coordination device 900 is specifically configured to: calculate a radio quality parameter according to the link quality parameter, where the radio quality parameter includes any one or more of the following: ETX, LQL, and hop count, The ETX is calculated according to the proxy communication rate, and the LQL is calculated according to the proxy channel quality, and the hop count is calculated according to the number of stages; according to the radio quality parameter, the link overhead is calculated. .
  • the network access parameter further includes a constraint parameter, where the constraint parameter includes any one or more of the following: ETX, LQL, and hop count, where the ETX is calculated according to the proxy communication rate, and the LQL is calculated according to the proxy channel quality, and the hop count is according to the level.
  • the number calculation is performed; when the processor 910 executes the computer instruction, the agent coordination device 900 is specifically executed: after determining that the constraint parameter meets the threshold requirement, the DIO message is sent.
  • the DIO message further includes first information, where the first information is used to indicate a constraint parameter type as a constraint parameter, and the constraint parameter type includes any one or more of the following: ETX, LQL, and hop count.
  • the processor 910 is further configured to execute the computer instruction, so that the proxy coordination device 900 performs the following steps: receiving second information sent by the central coordination device, where the second information is used to indicate the first link quality used to determine the constraint parameter.
  • the parameter type, the first link quality parameter type includes any one or more of the following: proxy communication rate, proxy channel quality, and number of stages.
  • the processor 910 is further configured to execute computer instructions, such that the proxy coordination device 900 performs the steps of: receiving second information sent by the central coordination device, the second information being used to indicate the first wireless quality parameter as a constraint parameter Type, the first wireless quality parameter type includes any one or more of the following: ETX, LQL, and hop count.
  • the ETX is inversely related to the proxy communication rate.
  • the LQL is inversely related to the proxy channel quality.
  • the number of stages is positively related to the number of hops.
  • the computer 920 stores the computer instructions, and when the processor 910 executes the computer instructions, causes the proxy coordination device 900 to perform: calculating the link overhead according to at least one of the proxy communication rate, the proxy channel quality, and the number of stages.
  • the processor 910 is further configured to execute computer instructions, so that the proxy coordination device 900 performs the following steps: sending a function announcement message to the central coordination device, where the function notification message is used to indicate that the agent coordination device 900 has a PLC and an RF dual mode
  • the function receives the function confirmation message sent by the central coordination device, and the function confirmation message is used to instruct the agent coordination device 900 to enable the RF function.
  • the processor 910 is further configured to execute computer instructions, so that the proxy coordination device 900 performs the following steps: receiving third information sent by the central coordination device, where the third information is used to indicate a second link used to determine link overhead.
  • the quality parameter type, the second link quality parameter type includes any one or more of the following: proxy communication rate, proxy channel quality, and number of stages.
  • the third information sent by the central coordination device is received, where the third information is used to indicate a second wireless quality parameter type for determining a link cost, and the second wireless quality parameter type includes any one or more of the following: ETX, LQL and hop count.
  • agent coordination device 800 shown in FIG. 8 or the agent coordination device 900 shown in FIG. 9 can be used to perform the operations or processes of the above method embodiments, and the agent coordination device 800 or the agent coordinates the various modules and devices in the device 900.
  • the operations and/or functions are respectively implemented in order to implement the corresponding processes in the foregoing method embodiments, and are not described herein for brevity.
  • FIG. 10 is a schematic block diagram of a site device 1000 provided by an embodiment of the present application.
  • the site device 1000 includes an RF module 1010 and a determination module 1020.
  • the RF module 1010 is configured to receive a DIO packet sent by the proxy coordination device, where the DIO packet includes a link cost, and the link cost is determined by the proxy coordination device according to the link quality parameter of the proxy coordination device in the PLC network, and the link cost is used.
  • the determining module 1020 is configured to determine, according to the link overhead, whether to coordinate the device to access the network through the proxy based on the RF communication.
  • the site device of the embodiment of the present application receives the DIO packet, where the link cost is calculated by the proxy coordination device according to the link quality parameter in the PLC network, and is used to indicate that the site device passes the proxy based on the RF communication. Coordinating the link cost of the device to access the network, the site device can select a better network access path based on the link cost, which is beneficial to improve the working efficiency of the hybrid network.
  • the link cost is determined by the proxy coordination device according to the radio quality parameter, and the radio quality parameter includes any one or more of the following: ETX, LQL, and hop count, where the ETX is calculated according to the proxy communication rate of the proxy coordination device, The LQL is calculated based on the proxy channel quality of the proxy coordination device, and the hop count is calculated according to the number of stages of the proxy coordination device.
  • the DIO message further includes first information, where the first information is used to indicate a constraint parameter type as a constraint parameter, and the constraint parameter type includes any one or more of the following: ETX, LQL, and hop count.
  • the determining module 1020 is specifically configured to determine, according to the first information, a value of the constraint parameter; and determine, according to the value of the constraint parameter and the value of the link cost, whether to access the network through the proxy coordination device based on the RF communication.
  • the ETX is inversely related to the proxy communication rate.
  • the LQL is inversely related to the proxy channel quality.
  • the number of stages is positively related to the number of hops.
  • the link overhead is calculated by the proxy coordination device according to at least one of a proxy communication rate, a proxy channel quality, and a number of levels.
  • FIG. 11 is a schematic structural diagram of a site device 1100 according to an embodiment of the present application.
  • the site device 1100 as shown in FIG. 11 may include a processor 1110, a memory 1120, and a communication interface 1130.
  • Communication interface 1130 is used to communicate with other devices in the hybrid network.
  • Communication interface 1130 includes a wireless communication interface.
  • the wireless communication interface includes an RF interface.
  • the communication interface 1130 may also include a wired communication interface, the wired communication interface including a PLC interface, and may also include an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the memory 1120 stores a computer instruction, and when the processor 1110 executes the computer instruction, the site device 1100 performs: receiving the DIO message sent by the proxy coordination device, the DIO message includes a link cost, and the link cost is coordinated by the agent coordination device according to the agent.
  • the link quality parameter determined by the link quality parameter of the device in the PLC network is used to indicate that the site device coordinates the access of the device through the proxy based on the RF communication. According to the link cost, it is determined whether the device is coordinated to access the network through the proxy based on the RF communication.
  • the link cost is determined by the proxy coordination device according to the radio quality parameter, and the radio quality parameter includes any one or more of the following: ETX, LQL, and hop count, where the ETX is calculated according to the proxy communication rate of the proxy coordination device, The LQL is calculated based on the proxy channel quality of the proxy coordination device, and the hop count is calculated according to the number of stages of the proxy coordination device.
  • the DIO message further includes first information, where the first information is used to indicate a constraint parameter type as a constraint parameter, and the constraint parameter type includes any one or more of the following: ETX, LQL, and hop count.
  • the site device 1100 is specifically configured to: determine, according to the first information, a value of the constraint parameter; determine, according to the value of the constraint parameter and the value of the link cost, whether to coordinate through the proxy based on the RF communication.
  • the device is connected to the network.
  • the ETX is inversely related to the proxy communication rate.
  • the LQL is inversely related to the proxy channel quality.
  • the number of stages is positively related to the number of hops.
  • the link overhead is calculated by the proxy coordination device according to at least one of a proxy communication rate, a proxy channel quality, and a number of levels.
  • site device 1000 shown in FIG. 10 or the site device 1100 shown in FIG. 11 can be used to perform the operations or processes of the foregoing method embodiments, and the operations of the various devices and devices in the site device 1000 or the site device 1100 and/or The functions are respectively implemented in order to implement the corresponding processes in the foregoing method embodiments, and are not described herein for brevity.
  • FIG. 12 is a schematic block diagram of a central coordination device 1200 provided by an embodiment of the present application.
  • the central coordination device 1200 includes a receiving module 1210 and a transmitting module 1220.
  • the receiving module 1210 is configured to receive a function announcement message sent by the agent coordination device, where the function notification message is used to indicate that the agent coordination device has a power line communication PLC and a radio frequency RF dual mode function.
  • the sending module 1220 is configured to send a function confirmation message to the agent coordination device, where the function confirmation message is used to instruct the agent coordination device to enable the RF function.
  • the central coordination device of the embodiment of the present application interacts with the agent coordination device through the function notification message and the function confirmation message, so that the agent coordination device enables the RF function, thereby implementing the hybrid network of the PLC network as the backbone and the RF network as the terminal.
  • the sending module 1220 is further configured to send the second information to the proxy coordination device, where the second information is used to indicate a first link quality parameter type used to determine the constraint parameter, where the first link quality parameter type includes any one of the following Or multiple: proxy communication rate, proxy channel quality, and number of stages.
  • the sending module 1220 is further configured to send, to the proxy coordinating device, second information, where the second information is used to indicate a first radio quality parameter type, where the first radio quality parameter type includes any one or more of the following: One: ETX, LQL and hop count.
  • the sending module 1220 is further configured to send third information to the proxy coordinating device, where the third information is used to indicate a second link quality parameter type used to determine a link cost, where the second link quality parameter type includes any of the following One or more: proxy communication rate, proxy channel quality, and number of stages.
  • the sending module 1220 is further configured to send, to the proxy coordinating device, third information, where the third information is used to indicate a second radio quality parameter type used to determine a link cost, where the second radio quality parameter type includes any of the following One or more: ETX, LQL, and hop count.
  • FIG. 13 is a schematic structural diagram of a central coordination device 1300 provided by an embodiment of the present application.
  • the central coordination device 1300 as shown in FIG. 13 may include a processor 1310, a memory 1320, and a communication interface 1330.
  • Communication interface 1330 is used to communicate with other devices in the hybrid network.
  • the communication interface 1330 includes a wired communication interface, the wired communication interface includes a PLC interface, and may also include an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • Communication interface 1130 may also include a wireless communication interface.
  • the wireless communication interface includes an RF interface, a WLAN interface, a cellular network communication interface, or a combination thereof.
  • the computer 1310 stores the computer instructions, and when the processor 1310 executes the computer instructions, the central coordination device 1300 performs: receiving the function notification message sent by the agent coordination device, where the function notification message is used to indicate that the agent coordination device has the power line communication PLC and RF RF dual mode function.
  • a function confirmation message is sent to the agent coordination device, and the function confirmation message is used to instruct the agent coordination device to enable the RF function.
  • the central coordination device 1300 further performs: sending, to the proxy coordination device, second information, where the second information is used to indicate a first link quality parameter type used to determine the constraint parameter,
  • a link quality parameter type includes any one or more of the following: proxy communication rate, proxy channel quality, and number of stages.
  • the central coordination device 1300 further performs: transmitting, to the proxy coordination device, second information, the second information indicating the first wireless quality parameter type as the constraint parameter, the first The wireless quality parameter type includes any one or more of the following: ETX, LQL, and hop count.
  • the central coordination device 1300 further performs: sending, to the proxy coordination device, third information, where the third information is used to indicate a second link quality parameter type used to determine a link cost,
  • the second link quality parameter type includes any one or more of the following: proxy communication rate, proxy channel quality, and number of stages.
  • the central coordination device 1300 further performs: transmitting third information to the proxy coordination device, the third information indicating the second wireless quality parameter type for determining the link overhead.
  • the second wireless quality parameter type includes any one or more of the following: ETX, LQL, and hop count.
  • central coordination device 1200 shown in FIG. 12 or the central coordination device 1300 shown in FIG. 13 can be used to perform the operations or processes of the foregoing method embodiments, and the various modules and devices in the central coordination device 1200 or the central coordination device 1300.
  • the operations and/or functions are respectively implemented in order to implement the corresponding processes in the foregoing method embodiments, and are not described herein for brevity.
  • the processor mentioned in the embodiments of the present application may include a Central Processing Unit (CPU), a Network Processor (NP), or a combination of a CPU and an NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an Application-Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), or a combination thereof.
  • the PLD may be a Complex Programmable Logic Device (CPLD), a Field-Programmable Gate Array (FPGA), a Generic Array Logic (GAL), or any combination thereof.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erasable programmable read only memory (EEPROM), flash memory, hard disk drive (HDD) or solid state drive (SSD).
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • Synchronous DRAM synchronous dynamic random access memory
  • SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, the memory (storage module) is integrated in the processor.
  • memories described herein are intended to comprise, without being limited to, these and any other suitable types of memory.
  • the embodiment of the present application further provides a computer readable storage medium, where instructions are stored, when the instruction is run on a computer, causing the computer to execute the proxy in the network access method for hybrid networking in the foregoing method embodiment. Coordinate the steps that the device performs.
  • the embodiment of the present application further provides a computer program product including instructions, wherein when the computer runs the finger of the computer program product, the computer performs a network access method for hybrid networking in the foregoing method embodiment.
  • the agent coordinates the steps performed by the device.
  • the embodiment of the present application further provides a computer chip, which causes a computer to perform the steps performed by the agent coordination device in the network access method for hybrid networking in the foregoing method embodiment.
  • the embodiment of the present application further provides a computer readable storage medium, where instructions are stored, when the instruction is run on a computer, causing the computer to execute a site in a network method for hybrid networking in the foregoing method embodiment. The steps performed by the device.
  • the embodiment of the present application further provides a computer program product including instructions, wherein when the computer runs the finger of the computer program product, the computer performs a network access method for hybrid networking in the foregoing method embodiment. The steps performed by the site device.
  • the embodiment of the present application further provides a computer chip, which causes a computer to perform the steps performed by the site device in the network access method for hybrid networking in the foregoing method embodiment.
  • the embodiment of the present application further provides a computer readable storage medium, where instructions are stored, when the instruction is run on a computer, causing the computer to execute a central method in a network for hybrid networking in the foregoing method embodiment. Coordinate the steps that the device performs.
  • the embodiment of the present application further provides a computer program product including instructions, wherein when the computer runs the finger of the computer program product, the computer performs a network access method for hybrid networking in the foregoing method embodiment.
  • the central central coordination device performs the steps.
  • the embodiment of the present application further provides a computer chip, which causes a computer to perform the steps performed by the central coordination device in the network access method for hybrid networking in the foregoing method embodiment.
  • the device provided by the embodiment of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer instructions When the computer instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (DVD)), or a semiconductor medium (for example, an SSD) or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD semiconductor medium
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented in the embodiment of the present application. Form any limit.
  • Those of ordinary skill in the art will appreciate that the elements and algorithm steps of the various examples described in connection with the embodiments disclosed herein can be implemented in electronic hardware or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the devices, devices, and methods disclosed in the embodiments of the present application may be implemented in other manners.
  • the device described above is merely illustrative.
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in the embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本申请提供了一种用于混合组网的入网方法、代理协调设备和站点设备,该方法包括:代理协调设备根据代理协调设备在PLC网络中的链路质量参数,计算得到入网参数,入网参数包括链路开销,链路开销用于指示站点设备基于射频RF通信通过代理协调设备入网的开销;代理协调设备发送DIO报文,DIO报文中包括链路开销。本申请提供的方法中,代理协调设备根据在PLC网络中的链路质量参数,计算得到用于指示站点设备基于RF通信通过代理协调设备入网的链路开销,并将链路开销携带在DIO报文中发送给站点设备,使得站点设备可以基于链路开销选择更优的入网路径,有利于提高混合网络的工作效率。

Description

用于混合组网的入网方法、代理协调设备和站点设备 技术领域
本申请涉及通信领域,具体涉及一种用于混合组网的入网方法、代理协调设备和站点设备。
背景技术
电力线通信(Power Line Communication,PLC)技术是以输电线路作为载波信号的传输媒介的电力系统通信技术。我国的PLC技术基于电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)1901.1标准,也称为电力线通信-物联网(Power Line Communication-Internet of Things,PLC-IoT)技术,是采用二层转发的通信技术。
射频(Radio Frequency,RF)通信技术是当前最具影响力的物联网技术之一,广泛应用于智能电网和智能家庭网络等领域。业界通常采用互联网协议版本6(Internet Protocol Version 6,IPv6),和基于IPv6的低速无线个人局域网(IPv6over Low Wireless Personal Area Network Communication Technologies,6LoWPAN),以及低速无线个域网(Low-Rate Wireless Personal Area Networks,LR-WPANs)规范的技术框架来构建RF网络。RF网络是采用三层转发的通信技术。
PLC网络拥有较高的带宽,并且不受物理障碍的约束,可以实现穿墙、地下以及隧道等场景的通信,但是PLC网络在跨越变压器上依然存在技术障碍。RF网络具有较高的设备部署灵活性,应用在智能电表场景中不受变压器的束缚,但是无线信号强度容易受物理障碍的影响,尤其在地下和隧道内通信质量明显下降。PLC网络和RF网络两种网路结合刚好可以互相弥补各自的缺点,凸显双方的优势。PLC网络和RF网络两种网络在物理层和链路层都存在很大的差异,两种网络在报文格式、设备入网流程和路由方式上都不同,这使得PLC网络和RF网络的混合组网在实现上有很大的难度。
发明内容
本申请提供一种用于混合组网的入网方法、代理协调设备和站点设备,能够使得站点设备基于链路开销选择更优的入网路径,有利于提高混合网络的工作效率。
第一方面,提供了一种用于混合组网的入网方法,该入网方法包括:代理协调设备根据该代理协调设备在PLC网络中的链路质量参数,计算得到入网参数,该入网参数包括链路开销,该链路开销用于指示站点设备基于RF通信通过该代理协调设备入网的开销;该代理协调设备发送DIO报文,该DIO报文中包括该链路开销。
第一方面的用于混合组网的入网方法中,代理协调设备根据在PLC网络中的链路质量参数,计算得到用于指示站点设备基于RF通信通过代理协调设备入网的链路开销,并将链路开销通过DIO报文发送给站点设备,使得站点设备可以基于链路开销选择更优的入网路径,有利于提高混合网络的工作效率。
在第一方面的一种可能的实现方式中,该代理协调设备根据该代理协调设备在PLC网络中的链路质量参数,计算得到入网参数,可以包括:该代理协调设备根据该链路质量参数,计算得到无线质量参数,该无线质量参数包括如下任意一个或多个:ETX、LQL和跳数,其中,该ETX根据代理通信速率计算得到,该LQL根据代理信道质量计算得到, 该跳数根据级数计算得到;该代理协调设备根据该无线质量参数,计算得到该链路开销。本可能的实现方式先由PLC网络的链路质量参数计算得到RF网络的无线质量参数,再由无线质量参数计算得到链路开销,使得计算得到的链路开销更准确,有利于站点设备根据链路开销选择入网路径时,找到最佳的路径。
在第一方面的一种可能的实现方式中,该入网参数还包括约束参数,该约束参数可以包括如下任意一个或多个:ETX、LQL和跳数,其中,该ETX根据代理通信速率计算得到,该LQL根据代理信道质量计算得到,该跳数根据级数计算得到;该代理协调设备发送DIO报文,包括:该代理协调设备判断该约束参数满足门限要求之后,发送该DIO报文。本可能的实现方式设置约束参数,使得代理协调设备可以在该约束参数不满足门限要求时,不接受站点设备入网,对该代理协调设备的工作效率加以保护,使得混合组网的工作效率整体更高。
在第一方面的一种可能的实现方式中,该DIO报文还可以包括第一信息,该第一信息用于指示作为约束参数的约束参数类型,该约束参数类型包括如下任意一个或多个:ETX、LQL和跳数。本可能的实现方式,代理协调设备通过DIO报文告知站点设备哪些参数类型是作为约束参数的,以便于站点设备自己测量作为约束参数的参数数值,根据自己测量的参数数值决定接入哪个代理协调设备。
在第一方面的一种可能的实现方式中,该方法还可以包括:该代理协调设备接收中央协调设备发送的第二信息,该第二信息用于指示用于确定该约束参数的第一链路质量参数类型,该第一链路质量参数类型包括如下任意一个或多个:代理通信速率、代理信道质量和级数。或者,该方法还可以包括:该代理协调设备接收该中央协调设备发送的第二信息,该第二信息用于指示作为该约束参数的第一无线质量参数类型,该第一无线质量参数类型包括如下任意一个或多个:ETX、LQL和跳数。本可能的实现方式,计算约束参数所需的PLC网络的链路质量参数类型由中央协调设备确定,中央协调设备将该链路质量参数类型告知代理协调设备。
在第一方面的一种可能的实现方式中,该ETX可以与该代理通信速率负相关。
在第一方面的一种可能的实现方式中,该LQL可以与该代理信道质量负相关。
在第一方面的一种可能的实现方式中,该级数可以与该跳数正相关。
在第一方面的一种可能的实现方式中,该代理协调设备根据该代理协调设备在PLC网络中的链路质量参数,计算得到入网参数,可以包括:该代理协调设备根据代理通信速率、代理信道质量和级数中的至少一个,计算得到该链路开销。本可能的实现方式中,代理协调设备直接根据链路质量参数计算得到链路开销
在第一方面的一种可能的实现方式中,该方法还可以包括:该代理协调设备向中央协调设备发送功能通告报文,该功能通告报文用于指示该代理协调设备具有PLC和RF双模功能;该代理协调设备接收该中央协调设备发送的功能确认报文,该功能确认报文用于指示该代理协调设备启用RF功能。本可能的实现方式中,中央协调设备通过功能通告报文和功能确认报文与代理协调设备进行交互,使得代理协调设备启用RF功能,从而实现PLC网络做主干,RF网络做末梢的混合组网。
在第一方面的一种可能的实现方式中,该方法还可以包括:该代理协调设备接收该中央协调设备发送的第三信息,该第三信息用于指示用于确定该链路开销的第二链路质量参数类型,该第二链路质量参数类型包括如下任意一个或多个:代理通信速率、代理信道质 量和级数。或者,该方法还可以包括:该代理协调设备接收该中央协调设备发送的第三信息,该第三信息用于指示用于确定该链路开销的第二无线质量参数类型,该第二无线质量参数类型包括如下任意一个或多个:ETX、LQL和跳数。本可能的实现方式,计算链路开销所需的PLC网络的链路质量参数类型由中央协调设备确定,中央协调设备将该链路质量参数类型告知代理协调设备。
第二方面,提供了一种用于混合组网的入网方法,该入网方法可以包括:站点设备接收代理协调设备发送的DIO报文,该DIO报文包括链路开销,该链路开销是该代理协调设备根据该代理协调设备在PLC网络中的链路质量参数确定的,该链路开销用于指示该站点设备基于RF通信通过该代理协调设备入网的开销;该站点设备根据该链路开销,确定是否基于RF通信通过该代理协调设备入网。
第二方面的用于混合组网的入网方法中,站点设备接收DIO报文,其中包括链路开销,该链路开销是代理协调设备根据在PLC网络中的链路质量参数计算得到的,用于指示站点设备基于RF通信通过代理协调设备入网的链路开销,站点设备可以基于链路开销选择更优的入网路径,有利于提高混合网络的工作效率。
在第二方面的一种可能的实现方式中,该链路开销可以是该代理协调设备根据该无线质量参数确定的,该无线质量参数可以包括如下任意一个或多个:ETX、LQL和跳数,其中,该ETX根据该代理协调设备的代理通信速率计算得到,该LQL根据该代理协调设备的代理信道质量计算得到,该跳数根据该代理协调设备的级数计算得到。
在第二方面的一种可能的实现方式中,该DIO报文还可以包括第一信息,该第一信息用于指示作为约束参数的约束参数类型,该约束参数类型包括如下任意一个或多个:ETX、LQL和跳数。
在第二方面的一种可能的实现方式中,该站点设备根据该链路开销,确定是否基于RF通信通过该代理协调设备入网,可以包括:该站点设备根据该第一信息,确定该约束参数的数值;该站点设备根据该约束参数的数值和该链路开销的数值,确定是否基于RF通信通过该代理协调设备入网。
在第二方面的一种可能的实现方式中,该链路开销是该代理协调设备根据代理通信速率、代理信道质量和级数中的至少一个计算得到的。
第三方面,提供了一种用于混合组网的入网方法,该入网方法可以包括:中央协调设备接收代理协调设备发送的功能通告报文,该功能通告报文用于指示该代理协调设备具有电力线通信PLC和射频RF双模功能;该中央协调设备向该代理协调设备发送功能确认报文,该功能确认报文用于指示该代理协调设备启用RF功能。
第三方面的用于混合组网的入网方法中,中央协调设备通过功能通告报文和功能确认报文与代理协调设备进行交互,使得代理协调设备启用RF功能,从而实现PLC网络做主干,RF网络做末梢的混合组网。
在第三方面的一种可能的实现方式中,该方法还可以包括:该中央协调设备向该代理协调设备发送第三信息,该第三信息用于指示用于确定该链路开销的第二链路质量参数类型,该第二链路质量参数类型包括如下任意一个或多个:代理通信速率、代理信道质量和级数。
在第三方面的一种可能的实现方式中,该方法还可以包括:该中央协调设备向该代理协调设备发送第三信息,该第三信息用于指示用于确定该链路开销的第二无线质量参数类 型,该第二无线质量参数类型包括如下任意一个或多个:ETX、LQL和跳数。
在第三方面的一种可能的实现方式中,该方法还可以包括:该中央协调设备向该代理协调设备发送第二信息,该第二信息用于指示用于确定约束参数的第一链路质量参数类型,该第一链路质量参数类型包括如下任意一个或多个:代理通信速率、代理信道质量和级数。
在第三方面的一种可能的实现方式中,该方法还可以包括:该中央协调设备向该代理协调设备发送第二信息,该第二信息用于指示作为约束参数的第一无线质量参数类型,该第一无线质量参数类型包括如下任意一个或多个:ETX、LQL和跳数。
第四方面,本申请提供了一种代理协调设备,用于执行上述第一方面或其任一可能的实现方式中的方法。具体地,该代理协调设备可以包括用于执行第一方面或其任一可能的实现方式中的方法的模块。
第五方面,本申请提供了一种代理协调设备,该代理协调设备包括处理器、存储器和通信接口,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,使得该代理协调设备执行第一方面或其任一可能的实现方式中的方法。
第六方面,本申请提供了一种站点设备,用于执行上述第二方面或其任一可能的实现方式中的方法。具体地,该站点设备可以包括用于执行第二方面或其任一可能的实现方式中的方法的模块。
第七方面,本申请提供了一种站点设备,该站点设备包括处理器、存储器和通信接口,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,使得该站点设备执行第二方面或其任一可能的实现方式中的方法。
第八方面,本申请提供了一种中央协调设备,用于执行上述第三方面或其任一可能的实现方式中的方法。具体地,该中央协调设备可以包括用于执行第三方面或其任一可能的实现方式中的方法的模块。
第九方面,本申请提供了一种中央协调设备,该中央协调设备包括处理器、存储器和通信接口,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,使得该中央协调设备执行第三方面或其任一可能的实现方式中的方法。
第十方面,本申请提供了一种计算机可读存储介质,其上存储有指令,当该指令在计算机上运行时,使得该计算机执行第一方面及其任一可能的实现方式的方法。
第十一方面,本申请提供了一种包括指令的计算机程序产品,其特征在于,当计算机运行该计算机程序产品的该指时,该计算机执行第一方面及其任一可能的实现方式的方法。
第十二方面,本申请提供了一种计算机芯片,该计算机芯片使得计算机执行第一方面及其任一可能的实现方式的方法。
第十三方面,本申请提供了一种计算机可读存储介质,其上存储有指令,当该指令在计算机上运行时,使得该计算机执行第二方面及其任一可能的实现方式的方法。
第十四方面,本申请提供了一种包括指令的计算机程序产品,其特征在于,当计算机运行该计算机程序产品的该指时,该计算机执行第二方面及其任一可能的实现方式的方法。
第十五方面,本申请提供了一种计算机芯片,该计算机芯片使得计算机执行第二方面及其任一可能的实现方式的方法。
第十六方面,本申请提供了一种计算机可读存储介质,其上存储有指令,当该指令在计算机上运行时,使得该计算机执行第三方面及其任一可能的实现方式的方法。
第十七方面,本申请提供了一种包括指令的计算机程序产品,其特征在于,当计算机运行该计算机程序产品的该指时,该计算机执行第三方面及其任一可能的实现方式的方法。
第十八方面,本申请提供了一种计算机芯片,该计算机芯片使得计算机执行第三方面及其任一可能的实现方式的方法。
第二至第十八方面及相应的可能的实现方式所能达到的有益效果,与第一方面及其可能的实现方式所能达到的有益效果相对应,此处不再一一赘述。
应理解,本申请中无线质量参数是RF网络中用于衡量通信质量好坏的参数。
附图说明
图1是本申请实施例提供的一种典型的PLC-IoT网络的拓扑结构示意图。
图2是本申请实施例提供的一种典型的RF网络的拓扑结构示意图。
图3是本申请实施例的PLC-IoT网络和RF网络的混合组网示意图。
图4是本申请实施例提供的一种用于混合组网的入网方法的示意性流程图。
图5是本申请实施例提供的另一用于混合组网的入网方法的示意性流程图。
图6是本申请实施例提供的又一用于混合组网的入网方法的示意性流程图。
图7是本申请实施例提供的又一用于混合组网的入网方法的示意性流程图。
图8是本申请实施例提供的代理协调设备的示意性框图。
图9是本申请实施例提供的代理协调设备的示意性结构图。
图10是本申请实施例提供的站点设备的示意性框图。
图11是本申请实施例提供的站点设备的示意性结构图。
图12是本申请实施例提供的中央协调设备的示意性框图。
图13是本申请实施例提供的中央协调设备的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
PLC技术在智能电网和智能家庭网络等领域有着广泛的部署。PLC技术基于现存的电网基础设施,部署成本低。PLC网络通过调制与解调,在220伏(V)/50赫兹(Hz)的家庭低压电力线上承载高频低压(一般小于10V)的模拟/数字信号来实现智能家庭网络的覆盖。电力猫就是一个基于PLC技术的例子。
PLC技术使公用事业公司和家庭用户能够方便地进行双向通信,以监视和控制诸如电表和路灯之类的插电装置。PLC网络的通信频率范围较大,PLC网络通常分为窄带PLC(Narrow Band PLC,NBPLC)网络和宽带PLC(Broad Band PLC,BBPLC)两类,其中传统宽带PLC多工作在12兆赫兹(MHz)以上。目前国际上已经出现了PLC技术的多个标准。
其中,IEEE 1901.1PLC(PLC-IoT)正在针对2MHz至12MHz的频带进行标准化。该PLC-IoT技术采用2-12MHz频带,其带宽和传输距离都介于窄带PLC和传统宽带PLC之间,目前已经被应用在智能电表的部署中。PLC-IoT网络能够提供双向、实时、高速和 安全的通信通道,点对点通信达到1兆比特每秒(megabit per second,Mbps)速率,远远高于窄带PLC网络所能提供的有效速率(<10千比特每秒(kilobit per second,kbps))。
PLC-IoT网络定义了三种设备角色,中央协调器(Central Coordinator,CCO)、代理协调器(Proxy Coordinator,PCO)和站点(Station,STA)。图1是本申请实施例提供的一种典型的PLC-IoT网络的拓扑结构示意图。如图1所示,PLC-IoT网络一般会形成以CCO为中心,PCO(例如PCO1~PCO3)连接CCO作为中继代理,STA(例如STA1~STA9)连接PCO的多层级树形网络。CCO负责完成组网控制和网络维护管理等功能,其可作为网关。STA可以同时实现PCO和STA两种角色功能。STA的设备实体可以为安装在电能表或采集器的通信单元。
RF网络也称为低速射频网格(RF Mesh)网络,其通常采用IPv6+6LoWPAN+IEEE802.15.4的技术框架。IEEE 802.15.4定义了物理层和数据链路层的规范,使得IPv6能够无缝运行在IEEE802.15.4的低速网络之上。RF网络支持组建Mesh网络并实现IPv6报文的路由转发。用于低功耗有损网络的IPv6路由协议(IPv6Routing Protocol for Low-Power and Lossy Networks,RPL)是RF网络的常用路由协议。基于RPL组建的RF网络采用三层转发。图2是本申请实施例提供的一种典型的RF网络的拓扑结构示意图。如图2所示,RF网络的拓扑结构是一种有向无环图(Destination Oriented Directed Acyclic Graph,DODAG)。其中,节点1为中心节点,可以是网关。节点2、3、4、5和6是代理节点。节点7、8和9为末梢节点。
RF网络中的代理节点入网完成后,代理节点会周期性下发有向无环图信息对象(DAG Information Object,DIO)报文以通告自身的信息,等待新节点加入。DIO报文中可以包括代理节点自身的RANK值,该RANK值反映了通过该代理节点入网的开销。换而言之,RANK值越小的代理节点与网关通信的代价最小。RPL定义了RANK值的多种计算方式,例如使用期望传输次数(Expected Transmission count,ETX)、跳数(HopCount)(这里跳数是指距离网关的跳数)、链路质量等级(Link Quality Level,LQL)等单独计算RANK值,或者混合使用上述参数计算RANK值。RF网络中新节点在入网时通过向代理节点或网关发送目的地通告对象(Destination Advertisement Object,DAO)报文请求入网。如果代理节点或网关同意新节点入网,则代理节点或网关向新节点回复DAO确认(DAO Acknowledgement,DAO ACK)报文。
PLC网络和RF网络混合组网可以实现两种物联网通信技术的优势互补。然而我国的PLC-IoT网络和RF网络两种网络在物理层和链路层都存在很大的差异,两种网络在报文格式、设备入网流程和路由方式上都不同,这使得PLC网络和RF网络的混合组网在实现上有很大的难度。
考虑到PLC-IoT网络是宽带PLC网络,有足够的带宽来承载RF网络的报文,因此本申请实施例提供了一种PLC-IoT网络做主干,RF网络做末梢的混合组网方法。这种混合组网方法需要解决的技术难点是具有PLC和RF双模功能的代理协调设备的链路度量如何在两种网络中统一。具体而言,具有PLC和RF双模功能的代理协调设备到中央协调设备(网关)是通过PLC链路连接的,混合组网后各代理协调设备目前从RF网络看到的RANK值(RF网络的重要参数)均为0。如果组网时存在多个代理协调设备都可以接收新的站点设备(RF节点)入网,由于RANK值均为0,那么该新的站点设备会随机选择一个代理协调设备关联,结果很可能不是最优的连接方案。
图3是本申请实施例的PLC-IoT网络和RF网络的混合组网的示意图。如图3所示,混合网络中,代理协调设备320和代理协调设备330通过PLC链路与中央协调设备310连接。代理协调设备340通过PLC链路与代理协调设备320连接。站点设备350通过PLC链路与代理协调设备340连接。代理协调设备360通过RF链路与代理协调设备340连接。站点370设备和站点380设备通过RF链路与代理协调设备360连接。代理协调设备320、代理协调设备330和代理协调设备340具有PLC和RF双模功能,它们从RF网络的角度来看,RANK值均为0。由于代理协调设备360已经通过RF链路连接了较多的站点设备,新入网的站点设备(RF节点)390可以从代理协调设备320、代理协调设备330和代理协调设备340这三个设备中选择任何一个连接入网,其结果可能不是最优的连接方案。
为了优化站点设备入网时的路径选择,本申请实施例重新定义具有PLC和RF双模功能的代理协调设备的类似RANK值的参数的计算方法,以区分混合网络中各代理协调设备接收新的站点设备的开销。
应理解,本申请实施例的用于混合组网的方法可以应用于PLC-IoT网络和RF网络的混合组网方案中,也可以应用于IEEE 1901PLC网络和RF网络的混合组网方案中。即,本文的PLC网络可以是指IEEE 1901.1PLC网络,也可以是指IEEE 1901PLC网络。
还应理解,图3中的中央协调设备310可以对应于PLC网络的CCO,代理协调设备320、代理协调设备330和代理协调设备340可以对应于PLC网络的PCO,站点设备350可以对应于PLC网络的STA,站点设备360可以对应于RF网络的代理节点,站点设备370和站点设备380可以对应于RF网络的末梢节点。站点设备390可以对应于RF网络的待入网的末梢节点。
图4是本申请实施例提供的一种用于混合组网的入网方法400的示意性流程图。如图4所示,入网方法400可以包括以下步骤:
S410,代理协调设备根据该代理协调设备在PLC网络中的链路质量参数,计算得到入网参数。入网参数包括链路开销,链路开销用于指示站点设备基于RF通信通过该代理协调设备入网的开销。
S420,该代理协调设备发送DIO报文。DIO报文中包括链路开销。相对应地,站点设备接收该代理协调设备发送的DIO报文。链路开销可以是该代理协调设备根据该代理协调设备在PLC网络中的链路质量参数确定的。
S430,站点设备根据该链路开销,确定是否基于RF通信通过该代理协调设备入网。
本申请实施例的用于混合组网的入网方法,代理协调设备根据在PLC网络中的链路质量参数,计算得到用于指示站点设备基于RF通信通过代理协调设备入网的链路开销,并将链路开销通过DIO报文发送给站点设备,站点设备可以根据链路开销,确定是否基于RF通信通过该代理协调设备入网,使得站点设备可以基于链路开销选择更优的入网路径,有利于提高混合网络的工作效率。
应理解,在本申请实施例中,链路开销可以类似于RF网络的参数RANK,其表示站点设备基于RF通信通过代理协调设备入网的开销。
具体地,对于PLC网络与RF网络混合组网时PLC链路做主干RF链路做末梢的场景,站点设备可以基于RF链路通过代理协调设备入网。代理协调设备可以通过其在PLC网络的底层的链路质量参数,计算得到入网参数,其中包括链路开销。在确认开启RF功能的情况下,代理协调设备可以单跳广播或组播DIO报文,并在DIO报文中携带自身的链路 开销的数值。这样,等待入网的站点设备可以比较不同代理协调设备的链路开销的数值,根据不同代理协调设备的链路开销的数值选择最优的代理协调设备(即父节点)接入混合网络。站点设备入网之后,通过RF链路将要发送给中央协调设备的IP报文发送给代理协调设备,代理协调设备再通过PLC链路将IP报文中的数据承载在数据报文中发送给中央协调设备。
可选地,链路质量参数可以包括如下任意一个或多个:代理通信速率(Proxy Communication Rate)、代理信道质量(Proxy Channel Quality)和级数(Level)。这些链路质量参数可以是代理协调设备在PLC网络中,与网络的设备通信的过程中获取或测量得到的。在PLC-IoT网络中,上述列举的三个参数出现在代理协调设备(即PCO)在PLC链路上周期性发送的发现列表(MMeDiscoverNodeList)报文中。应理解,PLC网络中存在多个链路质量参数来衡量PLC链路的质量,上述列举的三个参数仅是示例性的,而非对本申请实施例的限定。
其中,Proxy Communication Rate字段的长度为1字节,值域为0-100。Proxy Communication Rate字段用于指示发送MMeDiscoverNodeList数据包的STA与其PCO之间的上行链路和下行链路通信成功率的乘积。Proxy Channel Quality字段用于指示发送MMeDiscoverNodeList数据包的STA评估的,该STA到其PCO的信道质量。Proxy Channel Quality字段是由物理层的信噪比(Signal-to-Noise Ratio,SNR)映射而来的,SNR表示用于通信的载波信道的信噪比。Proxy Channel Quality字段的长度为2字节,值域为0-255。Level字段用于指示STA将MMeDiscoverNodeList数据包发送到CCO所需的级数。
根据链路质量参数确定链路开销具体实现方式有多种,将在下文中详细展开说明。
可选地,除链路开销外,入网参数还可以包括约束参数。约束参数的数值用来衡量代理协调设备是否可以接收站点设备入网。约束参数的数值也可以用来约束代理协调设备是否发送DIO报文。相对应地,S420代理协调设备发送DIO报文,可以包括:代理协调设备判断约束参数满足门限要求之后,发送DIO报文。
可选地,DIO报文还可以包括第一信息,第一信息用于指示作为约束参数的参数类型,作为约束参数的参数类型可以包括如下任意一个或多个:ETX、LQL和跳数。具体地,代理协调设备可以通过DIO报文告知站点设备哪些参数类型是作为约束参数的,以便于站点设备自己测量作为约束参数的参数数值,根据自己测量的参数数值决定接入哪个代理协调设备。相应地,S430站点设备根据链路开销,确定是否基于RF通信通过代理协调设备入网,可以包括:站点设备根据第一信息,确定约束参数的数值;站点设备根据约束参数的数值和链路开销的数值,确定是否基于RF通信通过代理协调设备入网。
根据链路质量参数确定约束参数的具体实现方式也将在下文中详细展开说明。
应理解,链路开销和约束参数由PLC网络的哪些类型的链路质量参数来确定,或者由对应的RF网络的哪些类型的无线质量参数来确定,可以是协议规定的,也可以是由中央协调设备确定的。
在入网参数包括约束参数,并且计算约束参数所需的PLC网络的链路质量参数类型由中央协调设备确定的情况下,入网方法400还可以包括:代理协调设备接收中央协调设备发送的第二信息,第二信息用于指示用于确定约束参数的第一链路质量参数类型,第一链路质量参数类型包括如下任意一个或多个:代理通信速率、代理信道质量和级数。或者,可替换地,在入网参数包括约束参数,并且约束参数对应的RF网络的无线质量参数类型 是由中央协调设备确定的情况下,入网方法400还可以包括:代理协调设备接收中央协调设备发送的第二信息,第二信息用于指示作为约束参数的第一链路质量参数类型,第一链路质量参数类型包括如下任意一个或多个:ETX、LQL和跳数。
当计算链路开销所需的PLC网络的链路质量参数类型由中央协调设备确定,入网方法400还可以包括:代理协调设备接收中央协调设备发送的第三信息,第三信息用于指示用于确定链路开销的第二链路质量参数类型,第二链路质量参数类型包括如下任意一个或多个:代理通信速率、代理信道质量和级数。或者,可替换地,当计算链路开销所需的RF网络的无线质量参数类型由中央协调设备确定,入网方法400还可以包括:代理协调设备接收中央协调设备发送的第三信息,第三信息用于指示用于确定链路开销的第二无线质量参数类型,第二无线质量参数类型包括如下任意一个或多个:ETX、LQL和跳数。
下面来详细的说明如何计算得到链路开销以及约束参数。
可选地,S410,代理协调设备根据代理协调设备在PLC网络中的链路质量参数,计算得到入网参数,可以包括:该代理协调设备根据该链路质量参数,计算得到无线质量参数,该无线质量参数包括如下任意一个或多个:ETX、LQL和跳数,其中,该ETX根据代理通信速率计算得到,该LQL根据代理信道质量计算得到,该跳数根据级数计算得到;该代理协调设备根据该无线质量参数,计算得到链路开销。换而言之,链路开销是根据无线质量参数确定的,无线质量参数是RF网络中用于衡量通信质量好坏的参数。无线质量参数可以包括如下任意一个或多个:ETX、LQL和跳数。其中,ETX是根据代理通信速率计算得到的,LQL是根据代理信道质量计算得到的,跳数是根据级数计算得到的。
具体地,代理协调设备根据PLC网络中链路质量参数可以计算得到对应的RF网络的无线质量参数。
根据PLC网络的Proxy Communication Rate可以计算得到ETX。换句话说,本申请实施例的方法可以将Proxy Communication Rate映射到ETX。ETX与Proxy Communication Rate可以是负相关的。计算得到ETX的数值不应该超出ETX应在的范围。例如,ETX可以通过如下公式计算得到:
ETX=m*f1(Proxy Communication Rate),
其中,m为正整数,f1()为第一映射函数,其为负相关函数。
一个具体的例子中,m=100,f1(x)=1/x,则有ETX=100/Rate Proxy Communication Rate。另一个具体的例子中,m=200,f1(x)=1/x 2,则有ETX=200/(Rate Proxy Communication Rate) 2。又一个具体的例子中,m=150,f1(x)=1/(x+20),则有ETX=150/(Rate Proxy Communication Rate+20)。应理解,以上列举的公式是示例性的,而非对本申请实施例的限定。
根据PLC网络的Proxy Channel Quality可以计算得到LQL。换句话说,本申请实施例的方法可以将Proxy Channel Quality映射到LQL。LQL与Proxy Channel Quality可以是负相关的。计算得到LQL的数值不应该超出LQL应在的范围。例如,LQL可以通过如下公式计算得到:
Figure PCTCN2019078752-appb-000001
其中,f2()为第二映射函数,f2()使得LQL与Proxy Channel Quality负相关。
一个具体的例子中,
Figure PCTCN2019078752-appb-000002
则有
Figure PCTCN2019078752-appb-000003
另一个具体的例子中,
Figure PCTCN2019078752-appb-000004
又一个具体的例子中,Proxy Channel Quality到LQL的映射关系可以由表1给出。
表1 Proxy Channel Quality到LQL的映射关系
Figure PCTCN2019078752-appb-000005
应理解,以上列举的公式或表格均是示例性的,而非对本申请实施例的限定。
根据PLC网络的Level可以计算得到HopCount。换句话说,本申请实施例的方法可以将Level映射到HopCount。HopCount与Level可以是正相关的。计算得到HopCount的数值不应该超出HopCount应在的范围。例如,HopCount可以通过如下公式计算得到:
HopCount=a*Level+b
其中,a为正整数,b为整数。
例如,a=1,b=0,则有HopCount=Level。另一个具体的例子中,a=2,b=1,则有HopCount=2Level+1。应理解,上述公式是示例性的,而非对本申请实施例的限定。
上文中给出了无线质量参数的获得方式,例如可以将Proxy Communication Rate映射到ETX、将Proxy Channel Quality映射到LQL、将Level映射到HopCount。无线质量参数可以包括如下任意一个或多个:期望传输次数ETX、链路质量等级LQL和跳数。下面以几个具体的例子说明如何根据无线质量参数,计算得到链路开销。
无线质量参数可以包括ETX,链路开销的计算方法中ETX为主要参数,在路径选择时必须考虑ETX。例如,链路开销=c*ETX,其中c为正常数。
对于DIO报文不能在PLC链路上逐跳传递并被解读的情况,HopCount也可以作为链路开销计算的选项之一。在该情况下,无线质量参数可以包括ETX和HopCount。例如,链路开销=d*ETX*HopCount,其中d为正常数,即通过ETX和HopCount相乘得到链路开销。
对于代理协调设备可以生成DIO报文,并且DIO报文可以在PLC链路上逐跳传递并被解读的情况,链路开销的数值的计算可以结合上一跳节点的链路开销的数值。例如,链路开销=上一跳节点的链路开销的数值+e*ETX,其中e为正常数。即链路开销的数值为上一跳的链路开销的数值和到上一跳的ETX相加得到。
应理解,以上列举仅是是示例性的,而非对本申请实施例的限定。
可选地,S410,代理协调设备根据代理协调设备在PLC网络中的链路质量参数,计算得到入网参数,可以包括:代理协调设备根据代理通信速率、代理信道质量和级数中的至少一个,计算得到链路开销。即,代理协调设备直接根据链路质量参数计算得到链路开销。
代理协调设备可以根据Proxy Communication Rate计算得到链路开销。例如,链路开 销=f/Proxy Communication Rate,其中f为正常数。
对于DIO报文不能在PLC链路上逐跳传递并被解读的情况,Level也可以作为链路开销计算的选项之一。即,代理协调设备可以根据Proxy Communication Rate和Level计算得到链路开销。例如,链路开销=g*Level/Proxy Communication Rate,其中g为正常数。
代理协调设备可以直接根据PLC网络的链路质量参数计算得到链路开销。具体地,可以根据Proxy Communication Rate、Proxy Channel Quality和Level中至少一项计算得到链路开销。例如,链路开销=h*Level/Proxy Communication Rate+k/Proxy Channel Quality,其中h和k为正常数。
应理解,先由PLC网络的链路质量参数计算得到RF网络的无线质量参数,再由无线质量参数计算得到链路开销的方案,与直接根据PLC网络的链路质量参数计算得到链路开销的方案的结果是等效的。对于前者,将ETX、LQL和HopCount的计算公式带入链路开销计算公式,即可得到由链路质量参数和链路开销的运算关系。对于后者,将链路质量参数计算得到链路开销的公式进行拆分,也可以得到无线质量参数和链路开销的运算关系。
前文中还提到,入网参数中还可以包括约束参数。作为约束参数的参数类型可以包括如下任意一个或多个:期望传输次数ETX、链路质量等级LQL和跳数。上文中又给出了可以将Proxy Communication Rate映射到ETX、将Proxy Channel Quality映射到LQL、将Level映射到HopCount。相应地,用于确定约束参数的链路质量参数的参数类型可以包括如下任意一个或多个:代理通信速率、代理信道质量和级数。
在一个具体的例子中,可以将LQL作为约束参数。协议或者系统可以规定门限值,例如门限值为5。代理协调设备判断约束参数的数值是否满足门限要求,如果约束参数的数值不满足门限要求,则代理协调设备不发送DIO报文。例如,LQL高于门限值(LQL为6或7)的代理协调设备不接收站点设备,即代理协调设备不发送DIO报文。如果约束参数的数值满足门限要求,则代理协调设备发送DIO报文。例如,LQL小于或等于门限值(LQL为1至5)的代理协调设备发送DIO报文,DIO报文中包括链路开销的数值,还包括用于指示作为约束参数的参数类型的第一信息。在该例子中,第一信息所指示的作为约束参数的参数类型为LQL。站点设备根据第一信息,确定约束参数的数值。站点设备根据约束参数的数值和链路开销的数值,确定是否基于RF通信通过代理协调设备入网。具体地,站点设备测量或从RF网络获取LQL的数值。例如,站点设备得到的LQL的数值为6,不满足门限要求,则站点设备不通过该代理协调设备入网,而是通过其他代理协调设备入网或者不入网。例如,站点设备得到的LQL的数值为4,满足门限要求,则在这之后站点设备再比较链路开销的数值,选择链路开销的数值较小的代理协调设备入网。
应理解,RF网络的其他参数也可以作为约束参数。约束参数不仅仅可以包括一个参数,还可以包括多个参数,此处不再一一列举。
图5是本申请实施例提供的另一用于混合组网的入网方法500的示意性流程图。如图5所示,所述入网方法500由代理协调设备执行,可以包括以下步骤:
S510,代理协调设备完成入网。具体地,代理协调设备在入网时通过PLC接口,按照PLC网络的协议规定的流程向中央协调设备完成PLC链路入网。
S520,代理协调设备向中央协调设备发送功能通告报文。相应地,中央协调设备接收代理协调设备发送的功能通告报文。功能通告报文用于指示代理协调设备具有PLC和RF 双模功能。具体地,代理协调设备向中央协调设备发送IP报文以通告自身具有PLC和RF双模功能。
S530,代理协调设备接收中央协调设备发送的功能反馈报文。
中央协调设备向代理协调设备发送功能反馈报文。功能反馈报文可能用于指示代理协调设备启用RF功能,此时功能反馈报文也可称作功能确认报文。功能确认报文中可以包括前文提到的用于指示用于确定链路开销的第二链路质量参数类型的第三信息。功能确认报文中可以包括前文提到的用于指示用于确定约束参数的第一链路质量参数类型的第二信息。功能反馈报文也可能用于指示代理协调设备暂不启用RF功能而是处于待命状态。当确定启用RF功能的情况下,直接执行S560;当确定待命的情况下,执行S540。
S540,代理协调设备暂不启用RF功能,等待启用通知。
S550,代理协调设备接收中央协调设备发送的功能确认报文,启用RF功能。
S560,代理协调设备根据代理协调设备在PLC网络中的链路质量参数,计算得到入网参数,之后执行S570。入网参数包括链路开销。
S570,代理协调设备发送DIO报文。DIO报文中包括链路开销的数值。具体地,代理协调设备单跳广播或组播DIO报文,以准备接受站点设备。
图5所示的入网方法500的示意性流程图给出了代理协调设备和站点设备同时入网以及站点设备比代理协调设备延迟入网的两个例子。图6是本申请实施例提供的又一用于混合组网的入网方法600的示意性流程图。图6所示的入网方法600是针对代理协调设备和站点设备同时入网的情况的。入网方法600可以包括以下步骤:
S610,代理协调设备与中央协调设备通过PLC接口关联完毕。
S620,代理协调设备向中央协调设备发送功能通告报文。相应地,中央协调设备接收代理协调设备发送的功能通告报文。
S630,中央协调设备向代理协调设备发送的功能反馈报文。
功能反馈报文(即功能确认报文)用于指示代理协调设备启用RF功能。功能确认报文中包括用于指示用于确定链路开销的第二链路质量参数类型的第三信息。图6所示的例子中功能确认报文不包括用于指示用于确定约束参数的第一链路质量参数类型的第二信息。在其他例子中,功能确认报文中可以包括第二信息。应理解,第二信息和第三信息可以承载在功能确认报文中,也可以单独发送。
S640,代理协调设备计算得到入网参数。具体地,代理协调设备根据代理协调设备在PLC网络中的链路质量参数,计算得到入网参数,入网参数包括链路开销。
S650,代理协调设备发送DIO报文。图6所示的例子中功能确认报文不包括第二信息,因此,代理协调设备不考虑约束参数,直接发送DIO报文。DIO报文中包括链路开销的数值。在其他例子中,代理协调设备可以考虑约束参数,在约束条件不满足门限要求时不发送DIO报文,在约束条件满足门限要求时发送DIO报文。发送DIO报文可以是单跳广播或组播DIO报文。
S660,站点设备向代理协调设备发送DAO报文。图6所示的例子中站点设备根据链路开销选择通过该代理协调设备入网。当然,在其他例子中,站点设备可以不通过代理协调设备入网,那么站点设备不必向代理协调设备发送DAO报文。
图7是本申请实施例提供的又一用于混合组网的入网方法700的示意性流程图。图7所示的入网方法700是针对站点设备比代理协调设备延迟入网的情况的。入网方法700可 以包括以下步骤:
S710,代理协调设备与中央协调设备通过PLC接口关联完毕。
S720,代理协调设备向中央协调设备发送功能通告报文。相应地,中央协调设备接收代理协调设备发送的功能通告报文。
S730,中央协调设备向代理协调设备发送的功能反馈报文。功能反馈报文用于指示代理协调设备暂不启用RF功能而是处于待命状态。
S740,代理协调设备的RF接口待命。
S750,中央协调设备向代理协调设备发送功能确认报文。功能确认报文中包括用于指示用于确定链路开销的第二链路质量参数类型的第三信息。图7所示的例子中功能确认报文不包括用于指示用于确定约束参数的第一链路质量参数类型的第二信息。在其他例子中,功能确认报文中可以包括第二信息。应理解,第二信息和第三信息可以承载在功能确认报文中,也可以单独发送。
S760,代理协调设备计算得到入网参数。具体地,代理协调设备根据代理协调设备在PLC网络中的链路质量参数,计算得到入网参数,入网参数包括链路开销。
S770,代理协调设备发送DIO报文。图7所示的例子中功能确认报文不包括第二信息,因此,代理协调设备不考虑约束参数,直接发送DIO报文。DIO报文中包括链路开销的数值。在其他例子中,代理协调设备可以考虑约束参数,在约束条件不满足门限要求时不发送DIO报文,在约束条件满足门限要求时发送DIO报文。发送DIO报文可以是单跳广播或组播DIO报文。
S780,站点设备向代理协调设备发送DAO报文。图7所示的例子中站点设备根据链路开销选择通过该代理协调设备入网。当然,在其他例子中,站点设备可以不通过代理协调设备入网,那么站点设备不必向代理协调设备发送DAO报文。
上文描述了本申请实施例提供的用于混合组网的入网方法,下文将描述本申请实施例提供的代理协调设备、站点设备和中央协调设备。
图8是本申请实施例提供的代理协调设备800的示意性框图。该代理协调设备800包括计算模块810和RF模块820。计算模块810用于根据代理协调设备800在PLC网络中的链路质量参数,计算得到入网参数,入网参数包括链路开销,链路开销用于指示站点设备基于RF通信通过代理协调设备800入网的开销。RF模块820用于发送DIO报文,DIO报文中包括链路开销。
本申请实施例的代理协调设备根据在PLC网络中的链路质量参数,计算得到用于指示站点设备基于RF通信通过代理协调设备入网的链路开销,并将链路开销通过DIO报文发送给站点设备,使得站点设备可以基于链路开销选择更优的入网路径,有利于提高混合网络的工作效率。
可选地,计算模块810具体可以用于:根据链路质量参数,计算得到无线质量参数,无线质量参数包括如下任意一个或多个:ETX、LQL和跳数,其中,ETX根据代理通信速率计算得到,LQL根据代理信道质量计算得到,跳数根据级数计算得到;根据无线质量参数,计算得到链路开销。
可选地,入网参数还可以包括约束参数,约束参数可以包括如下任意一个或多个:ETX、LQL和跳数,其中,ETX根据代理通信速率计算得到,LQL根据代理信道质量计算得到,跳数根据级数计算得到;RF模块820具体可以用于:判断约束参数满足门限要 求之后,发送DIO报文。
可选地,DIO报文还可以包括第一信息,第一信息用于指示作为约束参数的约束参数类型,约束参数类型包括如下任意一个或多个:ETX、LQL和跳数。
可选地,代理协调设备800还可以包括PLC模块830,PLC模块830可用于接收中央协调设备发送的第二信息,第二信息用于指示用于确定约束参数的第一链路质量参数类型,第一链路质量参数类型包括如下任意一个或多个:代理通信速率、代理信道质量和级数。或者,可替换地,PLC模块830可用于:接收中央协调设备发送的第二信息,第二信息用于指示作为约束参数的第一无线质量参数类型,第一无线质量参数类型包括如下任意一个或多个:ETX、LQL和跳数。
可选地,ETX与代理通信速率负相关。
可选地,LQL与代理信道质量负相关。
可选地,级数与跳数正相关。
可选地,计算模块810具体可以用于:根据代理通信速率、代理信道质量和级数中的至少一个,计算得到链路开销。
可选地,PLC模块830还用于:向中央协调设备发送功能通告报文,功能通告报文用于指示代理协调设备800具有PLC和RF双模功能;接收中央协调设备发送的功能确认报文,功能确认报文用于指示代理协调设备800启用RF功能。
PLC模块830还可用于:接收中央协调设备发送的第三信息,第三信息用于指示用于确定链路开销的第二链路质量参数类型,第二链路质量参数类型包括如下任意一个或多个:代理通信速率、代理信道质量和级数。或者,可替换地,PLC模块830还可用于:接收中央协调设备发送的第三信息,第三信息用于指示用于确定链路开销的第二无线质量参数类型,第二无线质量参数类型包括如下任意一个或多个:ETX、LQL和跳数。
图9是本申请实施例提供的代理协调设备900的示意性结构图。如图9所示的代理协调设备900可以包括处理器910,存储器920和通信接口930。
通信接口930用于与混合组网中的其他设备通信。通信接口930包括有线通信接口和无线通信接口。有线通信接口包括PLC接口,还可以包括以太网接口。以太网接口可以是光接口,电接口或其组合。无线通信接口包括RF接口。
存储器920中存储有计算机指令,处理器910执行计算机指令时,使得代理协调设备900执行:根据代理协调设备900在PLC网络中的链路质量参数,计算得到入网参数,入网参数包括链路开销,链路开销用于指示站点设备基于RF通信通过代理协调设备900入网的开销;发送DIO报文,DIO报文中包括链路开销。
可选地,处理器910执行计算机指令时,使得代理协调设备900具体执行:根据链路质量参数,计算得到无线质量参数,无线质量参数包括如下任意一个或多个:ETX、LQL和跳数,其中,ETX根据代理通信速率计算得到,LQL根据代理信道质量计算得到,跳数根据级数计算得到;根据无线质量参数,计算得到链路开销。。
可选地,入网参数还包括约束参数,约束参数包括如下任意一个或多个:ETX、LQL和跳数,其中,ETX根据代理通信速率计算得到,LQL根据代理信道质量计算得到,跳数根据级数计算得到;处理器910执行计算机指令时,使得代理协调设备900具体执行:判断约束参数满足门限要求之后,发送DIO报文。
可选地,DIO报文还包括第一信息,第一信息用于指示作为约束参数的约束参数类型, 约束参数类型包括如下任意一个或多个:ETX、LQL和跳数。
可选地,处理器910还用于执行计算机指令,使得代理协调设备900执行以下步骤:接收中央协调设备发送的第二信息,第二信息用于指示用于确定约束参数的第一链路质量参数类型,第一链路质量参数类型包括如下任意一个或多个:代理通信速率、代理信道质量和级数。或者,可替换地,处理器910还用于执行计算机指令,使得代理协调设备900执行以下步骤:接收中央协调设备发送的第二信息,第二信息用于指示作为约束参数的第一无线质量参数类型,第一无线质量参数类型包括如下任意一个或多个:ETX、LQL和跳数。
可选地,ETX与代理通信速率负相关。
可选地,LQL与代理信道质量负相关。
可选地,级数与跳数正相关。
可选地,存储器920中存储有计算机指令,处理器910执行计算机指令时,使得代理协调设备900执行:根据代理通信速率、代理信道质量和级数中的至少一个,计算得到链路开销。
可选地,处理器910还用于执行计算机指令,使得代理协调设备900执行以下步骤:向中央协调设备发送功能通告报文,功能通告报文用于指示代理协调设备900具有PLC和RF双模功能;接收中央协调设备发送的功能确认报文,功能确认报文用于指示代理协调设备900启用RF功能。
可选地,处理器910还用于执行计算机指令,使得代理协调设备900执行以下步骤:接收中央协调设备发送的第三信息,第三信息用于指示用于确定链路开销的第二链路质量参数类型,第二链路质量参数类型包括如下任意一个或多个:代理通信速率、代理信道质量和级数。或者,可替换地,接收中央协调设备发送的第三信息,第三信息用于指示用于确定链路开销的第二无线质量参数类型,第二无线质量参数类型包括如下任意一个或多个:ETX、LQL和跳数。
应理解,图8所示的代理协调设备800或图9所示的代理协调设备900可用于执行上述方法实施例的操作或流程,并且代理协调设备800或代理协调设备900中的各个模块和器件的操作和/或功能分别为了实现上述方法实施例中的相应流程,为了简洁,在此不再赘述。
图10是本申请实施例提供的站点设备1000的示意性框图。该站点设备1000包括RF模块1010和确定模块1020。RF模块1010用于接收代理协调设备发送的DIO报文,DIO报文包括链路开销,链路开销是代理协调设备根据代理协调设备在PLC网络中的链路质量参数确定的,链路开销用于指示站点设备1000基于RF通信通过代理协调设备入网的开销。确定模块1020用于根据链路开销,确定是否基于RF通信通过代理协调设备入网。
本申请实施例的站点设备接收DIO报文,其中包括链路开销,该链路开销是代理协调设备根据在PLC网络中的链路质量参数计算得到的,用于指示站点设备基于RF通信通过代理协调设备入网的链路开销,站点设备可以基于链路开销选择更优的入网路径,有利于提高混合网络的工作效率。
可选地,链路开销是代理协调设备根据无线质量参数确定的,无线质量参数包括如下任意一个或多个:ETX、LQL和跳数,其中,ETX根据代理协调设备的代理通信速率计算得到,LQL根据代理协调设备的代理信道质量计算得到,跳数根据代理协调设备的级数 计算得到。
可选地,DIO报文还包括第一信息,第一信息用于指示作为约束参数的约束参数类型,约束参数类型包括如下任意一个或多个:ETX、LQL和跳数。
可选地,确定模块1020具体用于根据第一信息,确定约束参数的数值;根据约束参数的数值和链路开销的数值,确定是否基于RF通信通过代理协调设备入网。
可选地,ETX与代理通信速率负相关。
可选地,LQL与代理信道质量负相关。
可选地,级数与跳数正相关。
可选地,链路开销是代理协调设备根据代理通信速率、代理信道质量和级数中的至少一个计算得到的。
图11是本申请实施例提供的站点设备1100的示意性结构图。如图11所示的站点设备1100可以包括处理器1110、存储器1120和通信接口1130。
通信接口1130用于与混合组网中的其他设备通信。通信接口1130包括无线通信接口。无线通信接口包括RF接口。通信接口1130还可以包括有线通信接口,有线通信接口包括PLC接口,还可以包括以太网接口。以太网接口可以是光接口,电接口或其组合。
存储器1120中存储有计算机指令,处理器1110执行计算机指令时,使得站点设备1100执行:接收代理协调设备发送的DIO报文,DIO报文包括链路开销,链路开销是代理协调设备根据代理协调设备在PLC网络中的链路质量参数确定的,链路开销用于指示站点设备基于RF通信通过代理协调设备入网的开销;根据链路开销,确定是否基于RF通信通过代理协调设备入网。
可选地,链路开销是代理协调设备根据无线质量参数确定的,无线质量参数包括如下任意一个或多个:ETX、LQL和跳数,其中,ETX根据代理协调设备的代理通信速率计算得到,LQL根据代理协调设备的代理信道质量计算得到,跳数根据代理协调设备的级数计算得到。
可选地,DIO报文还包括第一信息,第一信息用于指示作为约束参数的约束参数类型,约束参数类型包括如下任意一个或多个:ETX、LQL和跳数。
可选地,处理器1110执行计算机指令时,使得站点设备1100具体执行:根据第一信息,确定约束参数的数值;根据约束参数的数值和链路开销的数值,确定是否基于RF通信通过代理协调设备入网。
可选地,ETX与代理通信速率负相关。
可选地,LQL与代理信道质量负相关。
可选地,级数与跳数正相关。
可选地,链路开销是代理协调设备根据代理通信速率、代理信道质量和级数中的至少一个计算得到的。
应理解,图10所示的站点设备1000或图11所示的站点设备1100可用于执行上述方法实施例的操作或流程,并且站点设备1000或站点设备1100中的各个模块和器件的操作和/或功能分别为了实现上述方法实施例中的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例提供的中央协调设备1200的示意性框图。该中央协调设备1200包括接收模块1210和发送模块1220。接收模块1210用于接收代理协调设备发送的功能通告报文,功能通告报文用于指示代理协调设备具有电力线通信PLC和射频RF双模功能。 发送模块1220用于向代理协调设备发送功能确认报文,功能确认报文用于指示代理协调设备启用RF功能。
本申请实施例的中央协调设备通过功能通告报文和功能确认报文与代理协调设备进行交互,使得代理协调设备启用RF功能,从而实现PLC网络做主干,RF网络做末梢的混合组网。
可选地,发送模块1220还可用于向代理协调设备发送第二信息,第二信息用于指示用于确定约束参数的第一链路质量参数类型,第一链路质量参数类型包括如下任意一个或多个:代理通信速率、代理信道质量和级数。或者,可替换地,发送模块1220还可用于向代理协调设备发送第二信息,第二信息用于指示作为约束参数的第一无线质量参数类型,第一无线质量参数类型包括如下任意一个或多个:ETX、LQL和跳数。
可选地,发送模块1220还可用于向代理协调设备发送第三信息,第三信息用于指示用于确定链路开销的第二链路质量参数类型,第二链路质量参数类型包括如下任意一个或多个:代理通信速率、代理信道质量和级数。或者,可替换地,发送模块1220还可用于向代理协调设备发送第三信息,第三信息用于指示用于确定链路开销的第二无线质量参数类型,第二无线质量参数类型包括如下任意一个或多个:ETX、LQL和跳数。
图13是本申请实施例提供的中央协调设备1300的示意性结构图。如图13所示的中央协调设备1300可以包括处理器1310、存储器1320和通信接口1330。
通信接口1330用于与混合组网中的其他设备通信。通信接口1330包括有线通信接口,有线通信接口包括PLC接口,还可以包括以太网接口。以太网接口可以是光接口,电接口或其组合。通信接口1130还可以包括无线通信接口。无线通信接口包括RF接口,WLAN接口,蜂窝网络通信接口或其组合等。
存储器1320中存储有计算机指令,处理器1310执行计算机指令时,使得中央协调设备1300执行以:接收代理协调设备发送的功能通告报文,功能通告报文用于指示代理协调设备具有电力线通信PLC和射频RF双模功能。向代理协调设备发送功能确认报文,功能确认报文用于指示代理协调设备启用RF功能。
可选地,处理器1310执行计算机指令时,还使得中央协调设备1300执行:向代理协调设备发送第二信息,第二信息用于指示用于确定约束参数的第一链路质量参数类型,第一链路质量参数类型包括如下任意一个或多个:代理通信速率、代理信道质量和级数。或者,可替换地,处理器1310执行计算机指令时,还使得中央协调设备1300执行:向代理协调设备发送第二信息,第二信息用于指示作为约束参数的第一无线质量参数类型,第一无线质量参数类型包括如下任意一个或多个:ETX、LQL和跳数。
可选地,处理器1310执行计算机指令时,还使得中央协调设备1300执行:向代理协调设备发送第三信息,第三信息用于指示用于确定链路开销的第二链路质量参数类型,第二链路质量参数类型包括如下任意一个或多个:代理通信速率、代理信道质量和级数。或者,可替换地,处理器1310执行计算机指令时,还使得中央协调设备1300执行:向代理协调设备发送第三信息,第三信息用于指示用于确定链路开销的第二无线质量参数类型,第二无线质量参数类型包括如下任意一个或多个:ETX、LQL和跳数。
应理解,图12所示的中央协调设备1200或图13所示的中央协调设备1300可用于执行上述方法实施例的操作或流程,并且中央协调设备1200或中央协调设备1300中的各个模块和器件的操作和/或功能分别为了实现上述方法实施例中的相应流程,为了简洁,在 此不再赘述。
应理解,本申请实施例中提及的处理器可以包括中央处理器(Central Processing Unit,CPU),网络处理器(Network Processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(Application-Specific Integrated Circuit,ASIC),可编程逻辑器件(Programmable Logic Device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),现场可编程逻辑门阵列(Field-Programmable Gate Array,FPGA),通用阵列逻辑(Generic Array Logic,GAL)或其任意组合。
还应理解,本申请实施例中提及的存储器可以是易失性存储器(volatile memory)或非易失性存储器(non-volatile memory),或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、快闪存储器(flash memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD)。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种计算机可读存储介质,其上存储有指令,当所述指令在计算机上运行时,使得所述计算机执行上述方法实施例的用于混合组网的入网方法中代理协调设备执行的步骤。
本申请实施例还提供一种包括指令的计算机程序产品,其特征在于,当计算机运行所述计算机程序产品的所述指时,所述计算机执行上述方法实施例的用于混合组网的入网方法中代理协调设备执行的步骤。
本申请实施例还提供一种计算机芯片,该计算机芯片使得计算机执行上述方法实施例的用于混合组网的入网方法中代理协调设备执行的步骤。
本申请实施例还提供一种计算机可读存储介质,其上存储有指令,当所述指令在计算机上运行时,使得所述计算机执行上述方法实施例的用于混合组网的入网方法中站点设备执行的步骤。
本申请实施例还提供一种包括指令的计算机程序产品,其特征在于,当计算机运行所述计算机程序产品的所述指时,所述计算机执行上述方法实施例的用于混合组网的入网方法中站点设备执行的步骤。
本申请实施例还提供一种计算机芯片,该计算机芯片使得计算机执行上述方法实施例的用于混合组网的入网方法中站点设备执行的步骤。
本申请实施例还提供一种计算机可读存储介质,其上存储有指令,当所述指令在计算机上运行时,使得所述计算机执行上述方法实施例的用于混合组网的入网方法中中央协调设备执行的步骤。
本申请实施例还提供一种包括指令的计算机程序产品,其特征在于,当计算机运行所述计算机程序产品的所述指时,所述计算机执行上述方法实施例的用于混合组网的入网方法中中央协调设备执行的步骤。
本申请实施例还提供一种计算机芯片,该计算机芯片使得计算机执行上述方法实施例的用于混合组网的入网方法中中央协调设备执行的步骤。
本申请实施例提供给的设备,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,SSD)等。
应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例中所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机 械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (20)

  1. 一种用于混合组网的入网方法,其特征在于,包括:
    代理协调设备根据所述代理协调设备在电力线通信PLC网络中的链路质量参数的数值,计算得到所述代理协调设备的无线质量参数的数值;所述代理协调设备的链路质量参数包括如下任意一个或多个:所述代理协调设备的通信速率、所述代理协调设备的信道质量和所述代理协调设备的级数;所述代理协调设备的无线质量参数包括如下任意一个或多个:所述代理协调设备的期望传输次数ETX、所述代理协调设备的链路质量等级LQL和所述代理协调设备的跳数;
    所述代理协调设备根据所述代理协调设备的无线质量参数的数值计算得到所述代理协调设备的链路开销,所述代理协调设备的链路开销用于指示站点设备基于射频RF通信通过所述代理协调设备入网的开销;
    所述代理协调设备发送有向无环图信息对象DIO报文,所述DIO报文中包括所述代理协调设备的链路开销。
  2. 根据权利要求1所述的方法,其特征在于,
    所述代理协调设备发送DIO报文,包括:
    所述代理协调设备判断所述代理协调设备的约束参数的数值满足门限要求之后,发送所述DIO报文,所述约束参数包括如下任意一个或多个:期望传输次数ETX、链路质量等级LQL和跳数。
  3. 根据权利要求2所述的方法,其特征在于,所述DIO报文还包括第一信息,所述第一信息用于指示所述约束参数,以使站点设备。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,
    ETX与代理通信速率负相关;
    LQL与代理信道质量负相关;
    级数与跳数正相关。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述代理协调设备向中央协调设备发送功能通告报文,所述功能通告报文用于指示所述代理协调设备具有PLC和RF双模功能;
    所述代理协调设备接收所述中央协调设备发送的功能确认报文,所述功能确认报文用于指示所述代理协调设备启用RF功能。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述代理协调设备接收中央协调设备发送的第二信息,所述第二信息用于指示用于确定所述约束参数的第一链路质量参数类型。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述代理协调设备接收中央协调设备发送的第三信息,所述第三信息用于指示用于确定所述链路开销的第二链路质量参数类型。
  8. 一种用于混合组网的入网方法,其特征在于,包括:
    站点设备接收代理协调设备发送的有向无环图信息对象DIO报文,所述DIO报文包括所述代理协调设备的链路开销,所述代理协调设备的链路开销是所述代理协调设备根据所述代理协调设备在电力线通信PLC网络中的链路质量参数确定的,所述代理协调设备 的链路开销用于指示所述站点设备基于射频RF通信通过所述代理协调设备入网的开销;所述代理协调设备的链路质量参数包括如下任意一个或多个:所述代理协调设备的通信速率、所述代理协调设备的信道质量和所述代理协调设备的级数;
    所述站点设备根据所述代理协调设备的链路开销,确定是否基于RF通信通过所述代理协调设备入网。
  9. 根据权利要求8所述的方法,其特征在于,所述链路开销是所述代理协调设备根据所述代理协调设备的无线质量参数的数值计算得到,所述代理协调设备的无线质量参数的数值是所述代理协调设备根据所述代理协调设备的链路质量参数的数值计算得到;所述无线质量参数包括如下任意一个或多个:期望传输次数ETX、链路质量等级LQL和跳数。
  10. 根据权利要求8或9所述的方法,其特征在于,所述DIO报文还包括第一信息,所述第一信息用于指示约束参数,所述约束参数包括如下任意一个或多个:期望传输次数ETX、链路质量等级LQL和跳数;
    所述站点设备根据所述链路开销,确定是否基于RF通信通过所述代理协调设备入网,包括:
    所述站点设备根据所述第一信息,确定所述站点设备的约束参数的数值;
    所述站点设备根据所述站点设备的约束参数的数值和所述代理协调设备的链路开销的数值,确定是否基于RF通信通过所述代理协调设备入网。
  11. 一种代理协调设备,其特征在于,包括:
    计算模块,用于根据所述代理协调设备在电力线通信PLC网络中的链路质量参数的数值,计算得到所述代理协调设备的无线质量参数的数值,并根据所述代理协调设备的无线质量参数的数值计算得到所述代理协调设备的链路开销,所述代理协调设备的链路开销用于指示站点设备基于射频RF通信通过所述代理协调设备入网的开销;所述代理协调设备的链路质量参数包括如下任意一个或多个:所述代理协调设备的通信速率、所述代理协调设备的信道质量和所述代理协调设备的级数;所述代理协调设备的无线质量参数包括如下任意一个或多个:所述代理协调设备的期望传输次数ETX、所述代理协调设备的链路质量等级LQL和所述代理协调设备的跳数;
    射频RF模块,用于发送有向无环图信息对象DIO报文,所述DIO报文中包括所述代理协调设备的链路开销。
  12. 根据权利要求11所述的代理协调设备,其特征在于,所述RF模块具体用于:
    判断所述代理协调设备的约束参数的数值满足门限要求之后,发送所述DIO报文,所述约束参数包括如下任意一个或多个:期望传输次数ETX、链路质量等级LQL和跳数。
  13. 根据权利要求12所述的代理协调设备,其特征在于,所述DIO报文还包括第一信息,所述第一信息用于指示所述约束参数。
  14. 根据权利要求11至13中任一项所述的代理协调设备,其特征在于,所述代理协调设备还包括PLC模块,用于与中央协调设备通信。
  15. 根据权利要求14所述的代理协调设备,其特征在于,所述PLC模块用于接收所述中央协调设备发送的第二信息,所述第二信息用于指示用于确定所述约束参数的第一链路质量参数类型。
  16. 根据权利要求14或15所述的代理协调设备,其特征在于,所述PLC模块还用于:
    向所述中央协调设备发送功能通告报文,所述功能通告报文用于指示所述代理协调设 备具有PLC和RF双模功能;
    接收所述中央协调设备发送的功能确认报文,所述功能确认报文用于指示所述代理协调设备启用RF功能。
  17. 根据权利要求14至16中任一项所述的代理协调设备,其特征在于,所述PLC模块还用于:
    接收所述中央协调设备发送的第三信息,所述第三信息用于指示用于确定所述链路开销的第二链路质量参数类型。
  18. 一种站点设备,其特征在于,包括:
    射频RF模块,用于接收代理协调设备发送的有向无环图信息对象DIO报文,所述DIO报文包括所述代理协调设备的链路开销,所述代理协调设备的链路开销是所述代理协调设备根据所述代理协调设备在电力线通信PLC网络中的链路质量参数确定的,所述代理协调设备的链路开销用于指示所述站点设备基于射频RF通信通过所述代理协调设备入网的开销;
    确定模块,用于根据所述代理协调设备的链路开销,确定是否基于RF通信通过所述代理协调设备入网。
  19. 根据权利要求18所述的站点设备,其特征在于,所述链路开销是所述代理协调设备根据所述代理协调设备的无线质量参数的数值计算得到,所述代理协调设备的无线质量参数的数值是所述代理协调设备根据所述代理协调设备的链路质量参数的数值计算得到;所述无线质量参数包括如下任意一个或多个:期望传输次数ETX、链路质量等级LQL和跳数。
  20. 根据权利要求18或19所述的站点设备,其特征在于,所述DIO报文还包括第一信息,所述第一信息用于指示约束参数,所述约束参数包括如下任意一个或多个:期望传输次数ETX、链路质量等级LQL和跳数;
    所述确定模块具体用于:
    根据所述第一信息,确定所述站点设备的约束参数的数值;
    根据所述站点设备的约束参数的数值和所述代理协调设备的链路开销的数值,确定是否基于RF通信通过所述代理协调设备入网。
PCT/CN2019/078752 2018-03-23 2019-03-19 用于混合组网的入网方法、代理协调设备和站点设备 WO2019179444A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19771369.6A EP3764593B1 (en) 2018-03-23 2019-03-19 Network access method for hybrid network, proxy coordination device, site device
CA3094555A CA3094555C (en) 2018-03-23 2019-03-19 Network access method for hybrid networking, proxy coordination device, and station device
AU2019236841A AU2019236841B2 (en) 2018-03-23 2019-03-19 Network access method for hybrid networking, proxy coordination device, and station device
BR112020019155-8A BR112020019155A2 (pt) 2018-03-23 2019-03-19 Método de acesso de rede para rede híbrida, dispositivo de coordenação proxy, e dispositivo de estação
US17/028,399 US11432368B2 (en) 2018-03-23 2020-09-22 Network access method for hybrid networking, proxy coordination device, and station device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810245583.2A CN110300039B (zh) 2018-03-23 2018-03-23 用于混合组网的入网方法、代理协调设备和站点设备
CN201810245583.2 2018-03-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/028,399 Continuation US11432368B2 (en) 2018-03-23 2020-09-22 Network access method for hybrid networking, proxy coordination device, and station device

Publications (1)

Publication Number Publication Date
WO2019179444A1 true WO2019179444A1 (zh) 2019-09-26

Family

ID=67986694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078752 WO2019179444A1 (zh) 2018-03-23 2019-03-19 用于混合组网的入网方法、代理协调设备和站点设备

Country Status (7)

Country Link
US (1) US11432368B2 (zh)
EP (1) EP3764593B1 (zh)
CN (1) CN110300039B (zh)
AU (1) AU2019236841B2 (zh)
BR (1) BR112020019155A2 (zh)
CA (1) CA3094555C (zh)
WO (1) WO2019179444A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583688A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 混合网络的通信方法和设备
CN112583705A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 混合网络的通信方法、设备和系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110912584B (zh) * 2019-12-03 2021-08-27 南京协胜智能科技有限公司 电力载波通讯系统的通讯方法
CN110930676A (zh) * 2019-12-10 2020-03-27 国网湖南省电力有限公司 一种基于双模通信的用电信息采集系统及方法
IT202000000892A1 (it) * 2020-01-17 2021-07-17 St Microelectronics Srl Procedimento per fare funzionare una rete di comunicazione, rete di comunicazione e dispositivi corrispondenti
CN111885680A (zh) * 2020-09-11 2020-11-03 普联技术有限公司 一种建立网络连接的方法、系统及核心设备
CN113260047A (zh) * 2021-06-23 2021-08-13 国网信息通信产业集团有限公司 结合hplc和无线通信的双模系统、站点及中央协调器
US11924077B2 (en) 2021-08-13 2024-03-05 Itron, Inc. Determining network reliability using message success rates
US11483224B1 (en) * 2021-08-13 2022-10-25 Itron, Inc. Determining network reliability using message success rates
US20230045907A1 (en) * 2021-08-13 2023-02-16 Itron, Inc. Determining network reliability using message success rates
CN113949412B (zh) * 2021-09-08 2023-06-09 国网宁夏电力有限公司营销服务中心(国网宁夏电力有限公司计量中心) 高速电力线载波通信网络的优化方法
CN115065632B (zh) * 2022-03-31 2023-11-17 重庆金美通信有限责任公司 一种轻量化的树形网络数据转发方法
CN116054977B (zh) * 2023-01-29 2024-05-07 浙江万胜智能科技股份有限公司 一种基于双模模块的无线通信质量评估分析方法及系统
CN116743541B (zh) * 2023-08-09 2023-10-10 北京智芯微电子科技有限公司 多模通信的混合组网方法及系统、通信设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070189182A1 (en) * 2006-02-14 2007-08-16 Berkman William H Method for establishing power line communication link
CN103718534A (zh) * 2011-07-22 2014-04-09 德克萨斯仪器股份有限公司 共位置的plc和rf网络中的动态媒介切换
US20150043384A1 (en) * 2013-08-06 2015-02-12 Cisco Technology, Inc. Multiple topology routing architecture in computer networks
US20150180772A1 (en) * 2013-12-20 2015-06-25 Cisco Technology, Inc. Dynamic Source Route Computation to Avoid Self-Interference

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345998B2 (en) * 2004-12-15 2008-03-18 Smart Labs, Inc. Mesh network of intelligent devices communicating via powerline and radio frequency
WO2010128576A1 (ja) 2009-05-08 2010-11-11 日本電気株式会社 網管理システム、無線カバレッジ調節方法および無線カバレッジ調節用プログラム
US20120155463A1 (en) * 2010-12-17 2012-06-21 Cisco Technology Inc. Increased Communication Opportunities with Low-Contact Nodes in a Computer Network
US8861390B2 (en) * 2011-07-27 2014-10-14 Cisco Technology, Inc. Estimated transmission overhead (ETO) metrics for variable data rate communication links
JP5756908B2 (ja) * 2012-03-09 2015-07-29 パナソニックIpマネジメント株式会社 マルチホップ通信システム、子機
ES2541527T3 (es) * 2012-08-06 2015-07-21 Itron, Inc. Modulación múltiple multimedia y red mallada con múltiples tasas de datos
EP2704378B1 (en) * 2012-08-27 2016-07-20 Itron, Inc. Bandwidth Management in an Advanced Metering Infrastructure
CN107483080B (zh) * 2017-07-19 2021-08-20 宁夏隆基宁光仪表股份有限公司 基于宽带电力载波信道的多重度量动态路由决策方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070189182A1 (en) * 2006-02-14 2007-08-16 Berkman William H Method for establishing power line communication link
CN103718534A (zh) * 2011-07-22 2014-04-09 德克萨斯仪器股份有限公司 共位置的plc和rf网络中的动态媒介切换
US20150043384A1 (en) * 2013-08-06 2015-02-12 Cisco Technology, Inc. Multiple topology routing architecture in computer networks
US20150180772A1 (en) * 2013-12-20 2015-06-25 Cisco Technology, Inc. Dynamic Source Route Computation to Avoid Self-Interference

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583688A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 混合网络的通信方法和设备
CN112583705A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 混合网络的通信方法、设备和系统
WO2021063244A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 混合网络的通信方法、设备和系统
US11706324B2 (en) 2019-09-30 2023-07-18 Huawei Technologies Co., Ltd. Hybrid network communication method, device, and system
CN112583688B (zh) * 2019-09-30 2023-08-22 华为技术有限公司 混合网络的通信方法和设备

Also Published As

Publication number Publication date
BR112020019155A2 (pt) 2021-01-05
CA3094555A1 (en) 2019-09-26
AU2019236841B2 (en) 2023-04-20
CA3094555C (en) 2023-09-26
EP3764593A4 (en) 2021-04-07
EP3764593A1 (en) 2021-01-13
US11432368B2 (en) 2022-08-30
AU2019236841A1 (en) 2020-10-22
CN110300039B (zh) 2020-12-15
EP3764593B1 (en) 2023-05-24
CN110300039A (zh) 2019-10-01
US20210007180A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
WO2019179444A1 (zh) 用于混合组网的入网方法、代理协调设备和站点设备
US9432990B2 (en) Hybrid mesh network
US10470082B2 (en) Data gathering to enable the optimization of distributed Wi-Fi networks
JP5819542B2 (ja) マルチアクセス通知システムにおける動的チャネル再利用
TWI487320B (zh) 一種網路通信方法、機器可讀記憶體和系統
US20090122755A1 (en) Data transmission method in wireless mesh network and a-msdu format
EP3430833A2 (en) Cloud-based control of a wi-fi network
JP2016537921A (ja) WiFi用のスタッガードプライマリチャネル
Maldonado Wireless sensor network for smart home services using optimal communications
WO2023197671A1 (zh) 多跳组网方法、装置、设备、介质及程序产品
Usman et al. Towards energy efficient multi-hop d2d networks using wifi direct
Manzoor et al. Understanding traffic load in software defined WiFi networks for healthcare
Chen et al. Performance analysis of a distributed 6LoWPAN network for the Smart Grid applications
Munene et al. A throughput drop estimation model and its application to joint optimization of transmission power, frequency channel, and channel bonding in IEEE 802.11 n WLAN for large-scale IoT environments
WO2016161761A1 (zh) 数据传输方法及装置
Alsharbaty et al. An enhanced industrial wireless communication network for hard real time performance substation automation purposes
Mohamad Mezher et al. Optimization of Key Devices Positions in Large-Scale RF Mesh Networks
Ye et al. An Adaptive Communication Routing Algorithm in Dual-mode Heterogeneous Field Network of Power Distribution Grid Based on RPL Protocol
US20230362698A1 (en) Methods and systems for efficient wireless channel scanning
Tang et al. Extending access point service coverage area through opportunistic forwarding in multi-hop collaborative relay WLANs
Liton et al. An Efficient Networking Approach for Broadband PLC Networks
Maudet et al. Practical evaluation of Wi-Fi HaLow performance
Kwon et al. A centralized spectrum sharing scheme for access points in ieee 802.11 networks
Zhu et al. Efficient power control scheme in IEEE 802.11-based wireless mesh networks
Huang et al. An interference-aware power control scheme in wireless mesh networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3094555

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019771369

Country of ref document: EP

Effective date: 20201006

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020019155

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019236841

Country of ref document: AU

Date of ref document: 20190319

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112020019155

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200923