WO2019179263A1 - 信号发送方法及网络设备 - Google Patents

信号发送方法及网络设备 Download PDF

Info

Publication number
WO2019179263A1
WO2019179263A1 PCT/CN2019/075189 CN2019075189W WO2019179263A1 WO 2019179263 A1 WO2019179263 A1 WO 2019179263A1 CN 2019075189 W CN2019075189 W CN 2019075189W WO 2019179263 A1 WO2019179263 A1 WO 2019179263A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
channel
time domain
interception
transmission unit
Prior art date
Application number
PCT/CN2019/075189
Other languages
English (en)
French (fr)
Inventor
姜蕾
吴凯
鲁智
潘学明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to US17/040,826 priority Critical patent/US20210022095A1/en
Priority to EP19772111.1A priority patent/EP3771128A4/en
Publication of WO2019179263A1 publication Critical patent/WO2019179263A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a signal transmitting method and a network device.
  • the unlicensed band can be used as a supplement to the licensed band to help operators expand the service.
  • unlicensed bands can operate in the 5 GHz, 37 GHz, and 60 GHz bands.
  • the large bandwidth (80 MHz or 100 MHz) of the unlicensed band can reduce the implementation complexity of the base station and User Equipment (UE) (also called terminal).
  • UE User Equipment
  • unlicensed frequency band is shared by multiple radio access technologies (RATs), such as WiFi, radar, Long Term Evolution Licensed-Assisted Access (LTE-LAA), etc.
  • RATs radio access technologies
  • LBT listen before talk
  • MCOT maximum channel occupancy time
  • the base station ie, gNB
  • SSB Synchronization Signal Block
  • NR-PSS New Radio Primary Synchronization Signal
  • NR-SSS New Radio Secondary Synchronization Signal
  • NR-PBCH New Radio Physical Broadcast Channel
  • the SSB period can be configured to ⁇ 5, 10, 20, 40, 80, 160 ⁇ ms. Regardless of the period, the SSB in the SS burst set is sent within a 5 ms time window.
  • the above SSB transmission mechanism is applicable to the licensed band, and the base station can periodically send the SSB.
  • the SSB transmission can no longer be guaranteed due to channel uncertainty.
  • CCA Clear Channel Assessment
  • a Clear Channel Assessment (CCA) LBT can reasonably improve the SSB transmission opportunity.
  • different SSBs may be transmitted in different spatial directions, so the related technical solution cannot solve the problem of the transmission of the NR SSB in the unlicensed band.
  • Other communication systems will have similar problems as above.
  • the embodiments of the present disclosure provide a signaling method and a network device to solve the problem that different SSBs may be transmitted in different spatial directions.
  • the related art does not have a solution for how the SSB is transmitted in an unlicensed frequency band, so that the terminal is affected. RRM measurement and initial access issues.
  • an embodiment of the present disclosure provides a signaling method, which is applied to a network device, and includes:
  • the time domain transmission unit includes at least one SSB.
  • an embodiment of the present disclosure further provides a network device, including:
  • a listening module configured to perform channel interception on a time domain transmission unit on an unlicensed frequency band
  • a sending module configured to send a synchronization signal block SSB according to a listening result of channel listening
  • the time domain transmission unit includes at least one SSB.
  • an embodiment of the present disclosure further provides a network device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, where the computer program is implemented by the processor to implement the foregoing The steps of the signal transmission method.
  • an embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the steps of the signal sending method.
  • the beneficial effects of the embodiments of the present disclosure are to perform channel interception on the time domain transmission unit on the unlicensed frequency band, and send the synchronization signal block SSB according to the interception result of the channel interception, thereby perfecting the network communication process and ensuring The RRM measurement of the terminal and the normal operation of the initial access improve the reliability of the network communication.
  • Figure 1 shows a schematic diagram of an SSB pattern with a subcarrier spacing of 15 kHz
  • FIG. 2 shows a first pattern diagram of an SSB with a subcarrier spacing of 30 kHz
  • FIG. 3 shows a second pattern diagram of an SSB with a subcarrier spacing of 30 kHz
  • FIG. 4 is a schematic diagram showing a pattern of an SSB with a subcarrier spacing of 120 kHz;
  • Figure 5 is a diagram showing a pattern of an SSB with a subcarrier spacing of 240 kHz;
  • FIG. 6 is a schematic flow chart showing a signal transmitting method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram showing a listening mode of a network device when the time domain transmission unit only includes one SSB;
  • FIG. 8 is a schematic diagram showing a manner of intercepting and SSB transmission of an SSB with a subcarrier spacing of 30 kHz when the time domain transmission unit includes two consecutive SSBs;
  • FIG. 9 is a schematic diagram showing the interception mode and SSB transmission of an SSB with a subcarrier spacing of 30 kHz when the time domain transmission unit includes two discontinuous SSBs;
  • FIG. 10 is a schematic diagram showing the manner of listening to the SSB and the SSB transmission when the time domain transmission unit includes four SSBs;
  • FIG. 11 is a schematic diagram showing the interception mode and SSB transmission of the SSB in the high frequency band
  • FIG. 12 is a schematic diagram showing the interception mode and SSB transmission of the network device when the time domain transmission unit includes the PDCCH and the SSB;
  • FIG. 13 is a schematic diagram of a listening mode and SSB transmission when a network device performs omnidirectional channel sensing or sector channel sensing;
  • FIG. 14 is a block diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 15 is a structural block diagram of a network device according to an embodiment of the present disclosure.
  • the words “exemplary” or “such as” are used to mean an example, illustration, or illustration. Any embodiment or design described as “exemplary” or “such as” in the embodiments of the disclosure should not be construed as an advantage over other embodiments or designs. Rather, the use of the words “exemplary” or “such as” is intended to present the concepts in a particular manner.
  • the signal transmitting method and network device provided by the embodiments of the present disclosure may be applied to a wireless communication system.
  • the wireless communication system may be a system using a fifth generation (5th generation, 5G) mobile communication technology (hereinafter referred to as a 5G system for short), and those skilled in the art may understand that the 5G NR system is merely an example and is not limited.
  • 5G fifth generation
  • the SSB subcarrier spacing in the low frequency band may be 15 kHz/30 kHz, at least one or two initial symbol reservations in 14 symbols of the slot ( Preserve) for Downlink (DL) control. At least 2 trailing symbols are reserved for guard period (GP) and uplink (UL) control. There are at most two possible SSB time locations in a 14-symbol time slot.
  • the subcarrier spacing of the SSB is 120 kHz / 240 kHz.
  • the subcarrier spacing of the SSB is 120 kHz, at least 2 of the starting symbols of the 14 symbol slots are reserved for DL control.
  • At least 2 ending symbols are reserved for protection periods and UL control.
  • the subcarrier spacing of the SSB is 240 kHz
  • the SSB will be mapped onto two consecutive 14 symbol time slots.
  • At least 4 initial symbols in the first time slot are reserved for DL control.
  • At least 4 ending symbols of the second time slot are reserved for protection period and UL control.
  • the transmission pattern of the SSB in the related art is shown in FIG. 1 to FIG. 5 , wherein FIG. 1 is a schematic diagram of an SSB pattern with a subcarrier spacing of 15 kHz, and FIG.
  • FIG. 2 is a first pattern of an SSB with a subcarrier spacing of 30 kHz.
  • FIG. 3 is a schematic diagram of a second pattern of an SSB with a subcarrier spacing of 30 kHz
  • FIG. 4 is a schematic diagram of a SSB with a subcarrier spacing of 120 kHz
  • FIG. 5 is a schematic diagram of a SSB with a subcarrier spacing of 240 kHz.
  • Different SSBs can be transmitted by beamforming in different directions. Each SSB corresponds to one beam. The beam can also be called a spatial domain transmission filter.
  • An LBT based on the evasive mechanism is applicable to a physical downlink control channel (PDCCH)/physical downlink shared channel (PDSCH)/enhanced physical downlink control channel (Enhance Physical Downlink Control Channel, EPDCCH), when the channel is detected to be empty at the defer duration, and the counter N is zero, the base station can start transmitting.
  • Another type of access mechanism is for discovery signals (excluding data transmission) that can begin transmissions of no more than 1 ms immediately when the channel is detected as null in a Clear Channel Assessment (CCA).
  • CCA Clear Channel Assessment
  • the base station needs to perform channel sensing before transmitting the SSB. At least one of the two channel access mechanisms is required.
  • the parameters of the channel access mechanism may be adjusted according to the frequency band in which the SSB is located or the subcarrier spacing of the SSB.
  • the embodiment of the present disclosure performs channel sensing on the transmission direction of each SSB in the time domain transmission unit before a time domain transmission unit, and sequentially transmits the corresponding SSB in the transmission direction in which the channel is detected to be empty in the time domain transmission unit; A channel reservation signal is transmitted in the transmission direction of all SSBs in which the untransmitted channel is empty.
  • FIG. 6 is a schematic flowchart of a signal sending method according to an embodiment of the present disclosure.
  • the signal sending method is applied to a network device, and includes:
  • Step 601 Perform channel interception on the time domain transmission unit on the unlicensed frequency band.
  • the channel sensing here refers to LBT for the time domain transmission unit
  • the time domain transmission unit includes at least one synchronization signal block (SSB)
  • the minimum unit of the real-time domain transmission unit may be an SSB transmission.
  • Time that is, 4 Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • Step 602 according to the interception result of channel listening, send a synchronization signal block SSB;
  • the target in the OFDM symbol of the target SSB is detected when the channel in the transmission direction of the target SSB is idle according to the interception result of the time domain transmission unit.
  • the target SSB is transmitted, thereby realizing the transmission of the SSB in the unlicensed frequency band.
  • the specific manner in which the network device performs channel sensing is: performing channel sensing on the transmission direction of the at least one SSB included in the time domain transmission unit.
  • the network device needs to listen to the transmission direction of the SSB when performing channel interception on these SSBs, because the time domain transmission unit may have only one SSB, and may also contain two or more SSBs.
  • the domain transmission unit has only one SSB, the network device only needs to perform channel interception on the transmission direction of the SSB before the SSB transmission; when the domain transmission unit includes two or more SSBs, the network device needs to Channel sensing is performed in the transmission direction of each SSB. How many SSBs are included in the real-time domain transmission unit, and channel sensing is required for the transmission directions of all SSBs included in the time domain transmission unit.
  • the signal transmission method in the embodiment of the present disclosure may be different in specific implementation.
  • the specific implementation of the embodiment of the present disclosure is respectively taken from the perspective of the specific content included in the time domain transmission unit. described as follows.
  • the time domain transmission unit only includes one SSB
  • the network device needs to perform channel sounding before each SSB is sent.
  • the time domain transmission unit may be 4 OFDM symbols, and the network device listens in the transmission direction of the SSB before each SSB transmission. Specifically, as shown in Figure 7.
  • the network device performs channel interception in one OFDM symbol before each SSB.
  • a time domain transmission unit is shown, the time domain transmission unit contains only one SSB, and the oblique line filling box indicates time domain transmission.
  • the transmission time of the SSB is very short, a channel audition (for example, one shot LBT) of one clear channel estimation (CCA) can be used, and no backoff is required.
  • the channel listening time can be 25us or less, such as 16us, or 9us.
  • the time domain transmission unit includes at least two SSBs
  • step 601 when the time domain transmission unit includes at least two SSBs, an implementation manner of the step 601 is:
  • Channel sensing is simultaneously performed on the transmission directions of the at least two SSBs.
  • the at least two SSBs may be continuous SSBs or discontinuous SSBs.
  • the at least two SSBs all adopt digital beamforming, that is, only the SSB in the low frequency band can perform channel sensing simultaneously in the transmission direction of multiple SSBs.
  • step 602 is:
  • the time domain transmission unit may be selected as a plurality of consecutive SSBs.
  • the network device simultaneously performs channel sounding on the transmission direction of the plurality of SSBs before the time domain transmission unit, and transmits the SSB in a direction in which the channel is empty.
  • FIG. 8 indicates a pattern of SSBs with subcarrier spacing of 30 kHz. Since frequency bands below 6 GHz can be shaped by digital beams, network devices can transmit and receive in different directions. Channel sensing is simultaneously performed on the transmission direction of the SSB before every two consecutive SSBs.
  • any channel occupancy signal may be transmitted in the SSB2 transmission direction within the OFDM symbol of the SSB1.
  • RAT Radio Access Technology
  • the previous SSB is normally transmitted, and the latter SSB is not sent, as in SSB3 and SSB4 in FIG. 8, wherein the slash fill box in the figure is performed.
  • the time domain transmission unit may also be selected as a plurality of discontinuously transmitted SSBs, as shown in FIG. In FIG. 9, two non-contiguous SSBs are selected as one time domain transmission unit for listening, and the duration of the real-time domain transmission unit is from the start symbol of SSB1 to the end symbol of SSB2. If the channels in the transmission direction of SSB1 and SSB2 are all idle, SSB1 is transmitted in the transmission direction of SSB1 in the OFDM symbol of SSB1, and the channel occupation signal is transmitted in the transmission direction of SSB2.
  • the channel occupancy signal is transmitted in the transmission direction of SSB2, and SSB2 is transmitted in the OFDM symbol of SSB2, wherein the slanted padding frame in the figure is an OFDM symbol for performing time domain transmission unit interception.
  • the time domain transmission unit selects the starting OFDM symbol of SSB1 to the ending OFDM symbol of SSB4. If all the transmission directions detect that the channel is empty, the network device sends the channel occupancy signal in the transmission direction of all unsent SSBs simultaneously when transmitting the SSB. The channel occupancy signal is also transmitted on the DL symbol between the SSBs. No transmission or channel occupancy signal is transmitted within the reserved gap or UL OFDM symbol.
  • the SSB of the transmission direction may not be transmitted, and only the channel occupancy signal in the transmission direction of the SSB whose channel is detected as idle is transmitted, where
  • the slash fill box is an OFDM symbol that is listened to by the time domain transmission unit.
  • step 601 when the time domain transmission unit includes at least two SSBs, another implementation manner of the step 601 is:
  • Channel sensing is sequentially performed on the transmission directions of the at least two SSBs.
  • the at least two SSBs may be continuous SSBs or discontinuous SSBs.
  • the at least two SSBs may both use digital beamforming or analog beamforming.
  • the network device needs to perform channel interception for each SSB transmission direction.
  • the network device can simultaneously perform channel interception for each SSB transmission direction, or for each SSB. The transmission direction is followed by channel sensing.
  • the specific implementation manner of the step 602 is:
  • the channel occupancy signal of the fourth SSB is transmitted in the transmission direction of the SSB.
  • channel sensing may be sequentially performed on the transmission direction of each SSB before the time domain transmission unit, and then the SSB is transmitted in the transmission direction where the channel is idle, as shown in FIG. If the transmission direction of the SSB1 is busy, the channel occupancy signal may be transmitted in the transmission direction of the SSB2 in the OFDM symbol of the SSB1, where the slanted padding frame in the figure is an OFDM symbol for performing the time domain transmission unit to listen.
  • time domain transmission unit includes the SSB and the physical downlink control channel (PDCCH)
  • step 601 the specific implementation manner of step 601 is:
  • Channel sensing is performed on the PDCCH and the transmission direction of the SSB in the time domain transmission unit.
  • the time domain transmission unit may include a PDCCH and an SSB, as shown in FIG. 12, a pattern of SSBs with a subcarrier spacing of 15 kHz or a second type of SSB with a subcarrier spacing of 30 kHz.
  • a pattern of SSBs with a subcarrier spacing of 15 kHz or a second type of SSB with a subcarrier spacing of 30 kHz As an example, for the first SSB of each slot, channel sensing is performed on the transmission direction of the PDCCH and the transmission direction of the SSB in the last OFDM symbol of the last slot. The second SSB in one slot is intercepted in the OFDM symbol before the SSB.
  • the vertical line padding frame in FIG. 12 is represented as a PDCCH transmission symbol, the dotted line frame represents an interval and a PUCCH transmission symbol, and the oblique line padding frame is an OFDM symbol that is performed by the time domain transmission unit.
  • the PDCCH transmission direction is consistent with the transmission direction of the first SSB in the slot, only one direction of channel sensing is required.
  • the listening method is similar and will not be described here.
  • time domain transmission unit includes the PDCCH of the SSB and the target information and the physical downlink shared channel (PDSCH)
  • step 601 the specific implementation manner of step 601 is:
  • the target information includes: residual minimum system information (RMSI), other system information (OSI), and At least one of paging signaling.
  • RMSI residual minimum system information
  • OSI system information
  • At least one of paging signaling At least one of paging signaling.
  • time division multiplexing TDM
  • frequency division multiplexing FDM
  • step 601 in the embodiment of the present disclosure may also be implemented in the following manner:
  • the omnidirectional channel interception uses an omnidirectional antenna for interception
  • the sector channel sensing uses sector antennas for interception.
  • omnidirectional channel interception or sector channel interception is performed on the DL symbol before the time domain transmission unit, and when the channel is detected to be empty, the SSBs in the time domain transmission unit are both You can send.
  • the direction of the sector needs to cover the transmission direction of all SSBs in the time domain transmission unit, wherein the slanted padding frame in the figure is an OFDM symbol for performing time domain transmission unit interception.
  • ED is a power detection threshold based on the gain setting of the spatial transmission filter.
  • omnidirectional channel interception or sector channel interception since the gain of the omnidirectional antenna or the sector antenna is different from the gain based on the spatial domain transmission filter, it is necessary to adjust the power detection threshold or the power detection method so that the channel is intercepted and The transmitted power can be matched.
  • the interception time of the omnidirectional channel interception or the sector channel interception is obtained by changing the power detection threshold: according to the gain of the target antenna and the airspace based on the SSB.
  • the difference in gain of the transmission filter obtains the listening time of the omnichannel channel listening or sector channel sensing, wherein the target antenna is: an omnidirectional antenna or a sector antenna.
  • the antenna gain of the spatial transmission filter is 3 dB larger than the gain of the sector antenna.
  • the time of the CCA slot can be adjusted to 50us.
  • the channel sensing may not only adopt the channel sensing of the primary CCA, but also when the domain transmission unit is long, the channel detection based on the back-off mechanism may also be adopted. listen.
  • the foregoing embodiments of the present disclosure can solve the problem of SSB transmission in an unlicensed frequency band, thereby perfecting the network communication process, ensuring the RRM measurement of the terminal and the normal access of the initial access, thereby improving network communication. Reliability.
  • the embodiment of the present disclosure further provides a network device 1400, including:
  • the intercepting module 1401 is configured to perform channel sensing on the time domain transmission unit on the unlicensed frequency band
  • the sending module 1402 is configured to send the synchronization signal block SSB according to the interception result of the channel listening;
  • the time domain transmission unit includes at least one SSB.
  • the listening module 1401 is configured to:
  • Channel sensing is performed for a transmission direction of at least one SSB included in the time domain transmission unit.
  • the listening module 1401 is configured to:
  • Channel sensing is simultaneously performed on the transmission directions of the at least two SSBs.
  • the at least two SSBs are all digitally beamformed.
  • the sending module 1402 is configured to:
  • the listening module 1401 is configured to:
  • Channel sensing is sequentially performed on the transmission directions of the at least two SSBs.
  • the sending module 1402 is configured to:
  • the channel occupancy signal of the fourth SSB is transmitted in the transmission direction of the SSB.
  • the intercepting module 1401 is configured to:
  • Channel sensing is performed on the PDCCH and the transmission direction of the SSB in the time domain transmission unit.
  • the listening module 1401 is configured to:
  • the target information includes: remaining minimum system information RMSI, other system information OSI, and paging signaling At least one of them.
  • the listening module 1401 is configured to:
  • the omnidirectional channel interception uses an omnidirectional antenna for interception
  • the sector channel sensing uses sector antennas for interception.
  • the listening time of the omnidirectional channel sensing or the sector channel listening is obtained by acquiring the omnidirectional channel Detecting according to a difference between a gain of the target antenna and a gain of the SSB based on the spatial domain transmission filter. Listening time of listening or sector channel listening;
  • the target antenna is: an omnidirectional antenna or a sector antenna.
  • the channel sensing uses one of the idle channel to evaluate one of channel sensing of the CCA and channel sensing based on the avoidance mechanism.
  • the sending module 1402 is configured to:
  • the target SSB is transmitted in the transmission direction of the target SSB in the OFDM symbol of the target SSB.
  • the network device embodiment is a network device corresponding to the foregoing signal transmission method applied to the network device side, and all implementation manners of the foregoing embodiments are applicable to the network device embodiment, and can also be the same. Technical effect.
  • Embodiments of the present disclosure also provide a network device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being implemented by the processor to implement the foregoing application to the network
  • a network device including: a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being implemented by the processor to implement the foregoing application to the network
  • the embodiment of the present disclosure further provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program, and when the computer program is executed by a processor, implementing the signal transmission method applied to the network device
  • a computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • FIG. 15 is a structural diagram of a network device according to an embodiment of the present disclosure, which can implement the above-described details of a signal transmission method applied to a network device side, and achieve the same effect.
  • the network device 1500 includes: a processor 1501, a transceiver 1502, a memory 1503, and a bus interface, wherein:
  • the processor 1501 is configured to read a program in the memory 1503 and perform the following process:
  • the time domain transmission unit includes at least one SSB.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1501 and various circuits of memory represented by memory 1503.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1502 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1501 is responsible for managing the bus architecture and general processing, and the memory 1503 can store data used by the processor 1501 when performing operations.
  • the processor 1501 reads the program in the memory 1503, and is further configured to:
  • Channel sensing is performed for a transmission direction of at least one SSB included in the time domain transmission unit.
  • the processor 1501 reads a program in the memory 1503, and is further configured to:
  • Channel sensing is simultaneously performed on the transmission directions of the at least two SSBs.
  • the at least two SSBs all adopt digital beamforming.
  • the processor 1501 reads the program in the memory 1503, and is further configured to:
  • the processor 1501 reads a program in the memory 1503, and is further configured to:
  • Channel sensing is sequentially performed on the transmission directions of the at least two SSBs.
  • the processor 1501 reads the program in the memory 1503, and is further configured to:
  • the channel occupancy signal of the fourth SSB is transmitted in the transmission direction of the SSB.
  • the processor 1501 reads the program in the memory 1503, and is further configured to:
  • Channel sensing is performed on the PDCCH and the transmission direction of the SSB in the time domain transmission unit.
  • the processor 1501 reads the program in the memory 1503, and is further configured to:
  • the target information includes: remaining minimum system information RMSI, other system information OSI, and paging signaling At least one of them.
  • the processor 1501 reads the program in the memory 1503, and is further configured to:
  • the omnidirectional channel interception uses an omnidirectional antenna for interception
  • the sector channel interception uses a sector antenna for interception.
  • the obtaining time of the omnidirectional channel sensing or the sector channel listening is obtained by acquiring the omnidirectional channel sensing according to the difference between the gain of the target antenna and the gain of the SSB based on the spatial domain transmission filter. Or the listening time of the sector channel listening; wherein the target antenna is: an omnidirectional antenna or a sector antenna.
  • the channel sensing uses one of the idle channel to evaluate one of channel sensing of the CCA and channel sensing based on the avoidance mechanism.
  • the processor 1501 reads the program in the memory 1503, and is further configured to:
  • the target SSB is transmitted by the transceiver 1502 in the transmission direction of the target SSB in the OFDM symbol of the target SSB.
  • the network device may be a Global System of Mobile communication (GSM) or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or may be a wideband code division multiple access.
  • GSM Global System of Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • a base station (NodeB, NB) in the (Wideband Code Division Multiple Access, WCDMA) may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or an access point, or in a future 5G network.
  • the base station or the like is not limited herein.
  • the foregoing embodiment method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is better.
  • Implementation Based on such understanding, the technical solution of the present disclosure, which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal (which may be a cell phone, computer, server, air conditioner, or network device, etc.) to perform the methods described in various embodiments of the present disclosure.

Abstract

本公开提供了一种信号发送方法及网络设备,该信号发送方法,包括:在非授权频段上,对时域传输单元进行信道侦听;根据信道侦听的侦听结果,发送同步信号块SSB,其中,所述时域传输单元包括至少一个SSB。

Description

信号发送方法及网络设备
相关申请的交叉引用
本申请主张在2018年3月23日在中国提交的中国专利申请号No.201810247834.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别涉及一种信号发送方法及网络设备。
背景技术
在未来通信系统中,非授权频段(unlicensed band)可以作为授权频段(licensed band)的补充帮助运营商对服务进行扩容。为了与新空口(New Radio,NR)部署保持一致并尽可能的最大化基于NR的非授权接入,非授权频段可以工作在5GHz、37GHz和60GHz频段。非授权频段的大带宽(80MHz或者100MHz)能够减小基站和用户设备(User Equipment,UE)(也称终端)的实施复杂度。由于非授权频段由多种无线接入技术(Radio Access Technology,RAT)共用,例如WiFi、雷达、长期演进授权辅助接入(Long Term Evolution Licensed-Assisted Access,LTE-LAA)等,因此在某些国家或者区域,非授权频段在使用时必须符合规则(regulation)以保证所有设备可以公平的使用该资源,例如在传输前要先进行信道侦听,即先听后说(listen before talk,LBT),最大信道占用时间(maximum channel occupancy time,MCOT)等规则。
在NR通信系统中,为了初始接入,无线资源管理(Radio Resource Management,RRM)测量等,基站(即gNB)需要发送同步信号块(Synchronization Signal Block,即SSB)以供UE进行测量评估等。SSB由新空口主同步信号(New radio Primary Synchronization Signal,NR-PSS,NR-PSS)/新空口辅同步信号(New radio Secondary Synchronization Signal,NR-SSS)和新空口物理广播信道(New radio Physical Broadcast channel,NR-PBCH)组成,由基站周期性地发送。对连接(CONNECTED)/空闲(IDLE) 和非独立(non-standalone)的情况(case),SSB的周期可配置为{5,10,20,40,80,160}ms。无论周期为多少,同步信号碰撞集(SS burst set)中的SSB都要在5ms的时间窗口内完成发送。
上述SSB的传输机制适用于licensed band,基站可以周期性地发送SSB。在unlicensed band,由于信道的不确定性,SSB的发送不再能被保证。考虑到SSB的传输实际时间比较短,一次空闲信道评估(Clear Channel Assessment,CCA)的LBT可以合理的提高SSB的发送机会。但是在NR中,不同的SSB可能在不同的空间方向传输,因此相关技术方案无法解决NR SSB在非授权频段的发送问题。其他通信系统也会有类似上面的问题。
发明内容
本公开实施例提供一种信号发送方法及网络设备,以解决因不同的SSB可能在不同的空间方向传输,但是相关技术中并没有针对SSB在非授权频段如何传输的方案,从而存在影响终端的RRM测量以及初始接入的问题。
第一方面,本公开实施例提供一种信号发送方法,应用于网络设备,包括:
在非授权频段上,对时域传输单元进行信道侦听;
根据信道侦听的侦听结果,发送同步信号块SSB;
其中,所述时域传输单元包括至少一个SSB。
第二方面,本公开实施例还提供一种网络设备,包括:
侦听模块,用于在非授权频段上,对时域传输单元进行信道侦听;
发送模块,用于根据信道侦听的侦听结果,发送同步信号块SSB;
其中,所述时域传输单元包括至少一个SSB。
第三方面,本公开实施例还提供一种网络设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述的信号发送方法的步骤。
第四方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述的信号发送方法的步骤。
本公开实施例的有益效果是通过在非授权频段上,对时域传输单元进行信道侦听,并根据信道侦听的侦听结果,发送同步信号块SSB,以此完善了网络通信流程,保证了终端的RRM测量以及初始接入的正常进行,进而提高了网络通信的可靠性。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示子载波间隔为15kHz的SSB图样示意图;
图2表示子载波间隔为30kHz的SSB的第一种图样示意图;
图3表示子载波间隔为30kHz的SSB的第二种图样示意图;
图4表示子载波间隔为120kHz的SSB的图样示意图;
图5表示子载波间隔为240kHz的SSB的图样示意图;
图6表示本公开实施例的信号发送方法的流程示意图;
图7表示当时域传输单元只包含一个SSB时,网络设备的侦听方式示意图;
图8表示当时域传输单元包含两个连续SSB时,对子载波间隔为30kHz的SSB的侦听方式及SSB传输示意图;
图9表示当时域传输单元包含两个不连续SSB时,对子载波间隔为30kHz的SSB的侦听方式及SSB传输示意图;
图10表示当时域传输单元包含四个SSB时,对SSB的侦听方式及SSB传输示意图;
图11表示对高频频段的SSB的侦听方式及SSB传输示意图;
图12表示当时域传输单元包含PDCCH和SSB时,网络设备的侦听方式及SSB传输示意图;
图13表示网络设备进行全向信道侦听或扇区信道侦听时的侦听方式及 SSB传输示意图;
图14为根据本公开实施例的网络设备的模块示意图;
图15为根据本公开实施例的网络设备的结构框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本公开的实施例。本公开实施例提供的信号发送方法及网络设备可以应用于无线通信系统中。该无线通信系统可以为采用第五代(5th Generation,5G)移动通信技术的系统(以下均简称为5G系统),所述领域技术人员可以了解,5G NR系统仅为示例,不为限制。
在进行本公开实施例的说明时,首先对下面描述中所用到的一些概念进行解释说明。
SSB的子载波间隔在低频频段(指的是低于6GHz的频段)可以是为15kHz/30kHz,14个符号(symbol)的时隙(slot)中至少一个或者两个起始的符号预留(preserve)给下行链路(Downlink,DL)控制。至少2个结尾的符号预留给保护间隔(guard period,GP)和上行链路(Uplink,UL)控制。一个14个符号的时隙里至多有两个可能的SSB时间位置(time location)。在高频频段(指的是高于6GHz的频段)SSB的子载波间隔为120kHz/240kHz。当SSB的子载波间隔为120kHz时,14个符号的时隙中至少2个起始的符号预留给DL控制。至少2个结尾的符号预留给保护期间和UL控制。一个14个符号的时隙里至多有两个可能的SSB时间位置。当SSB的子载波间隔为240kHz时,SSB将映射到两个连续的14个符号的时隙上。第一个时隙中至少4个起始的符号预留给DL控制。第二个时隙的至少4个结尾的符号预留给保护期间和UL控制。两个连续的14个符号的时隙里至多有4个可能的SSB时间位置。相关技术中的SSB的传输图样(pattern)如图1至图5所示,其中,图1为子载波间隔为15kHz的SSB图样示意图,图2为子载波间隔为30kHz的SSB的第一种图样示意图,图3为子载波间隔为30kHz的SSB的第二种图样示意图,图4为子载波间隔为120kHz的SSB的图样示意图,图5为子载波间隔为240kHz的SSB的图样示意图。其中,不同的SSB可以在不同的方向上使用波束赋形(beamforming)进行传输,每个SSB对应一个波束(beam),波束也可以被称为空域传输滤波器(spatial domain transmission filter)。
在unlicensed band上,下行信道接入过程(channel access procedure)分两种。一种是基于避让机制的LBT,适用于物理下行控制信道(Physical Downlink Control Channel,PDCCH)/物理下行共享信道(Physical Downlink Shared Channel,PDSCH)/增强型物理下行控制信道(Enhance Physical Downlink Control Channel,EPDCCH),当信道在延迟时间(defer duration)被检测为空,且counter N为零时,基站可以开始进行传输。另外一种接入机制是针对发现信号(discovery signal)(不包含数据传输),当信道在一次空闲信道评估(CCA)内被检测为空时可以立即开始不超过1ms的传输。基站在传输SSB之前也需要进行信道侦听,要至少满足两种信道接入机制的一种, 信道接入机制的参数可以根据SSB所在的频段或者SSB的子载波间隔等进行调整。
本公开实施例在一个时域传输单元前对时域传输单元内的各个SSB的传输方向做信道侦听,在时域传输单元内在侦听到信道为空的传输方向上依次发送相应的SSB;在所有未传输的信道为空的SSB的传输方向上发送信道占位信号(channel reservation signal)。
具体地,如图6所示,图6为本公开实施例的信号发送方法的流程示意图,所述信号发送方法,应用于网络设备,包括:
步骤601,在非授权频段上,对时域传输单元进行信道侦听;
需要说明的是,此处的信道侦听指的是对时域传输单元进行LBT,该时域传输单元包括至少一个同步信号块(SSB),即时域传输单元的最小单位可以是一个SSB的传输时间,也就是4个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。
步骤602,根据信道侦听的侦听结果,发送同步信号块SSB;
需要说明的是,在非授权频段上,通过根据时域传输单元的侦听结果,在侦听到目标SSB的传输方向的信道为空闲时,在所述目标SSB的OFDM符号内的所述目标SSB的传输方向上,发送所述目标SSB,以此实现了SSB在非授权频段的传输。
进一步地,网络设备进行信道侦听的具体方式为:针对所述时域传输单元包含的至少一个SSB的传输方向进行信道侦听。
这里需要说明的是,网络设备在对这些SSB进行信道侦听时,需要对SSB的传输方向进行侦听,因时域传输单元可能只有一个SSB,也可能包含两个或多于两个的SSB,当时域传输单元只有一个SSB时,网络设备只需在SSB传输之前,对这个SSB的传输方向进行信道侦听;当时域传输单元包含两个或多于两个的SSB时,网络设备需要对每一个SSB的传输方向进行信道侦听,即时域传输单元包含多少SSB,便需要对时域传输单元包含的所有SSB的传输方向进行信道侦听。
因时域传输单元所包含的内容不同,本公开实施例的信号发送方法在具体实现是也会有所不同,下面分别从时域传输单元所包含的具体内容角度, 对本公开实施例的具体实现说明如下。
一、时域传输单元只包括一个SSB
在此种情况下,网络设备在每个SSB发送之前均需要进行信道侦听。
例如,对于15kHz的SSB传输图样或者30kHz的SSB的第二种传输图样,时域传输单元可以为4个OFDM符号,网络设备在每个SSB传输之前,在该SSB的传输方向上进行侦听,具体,如图7所示。网络设备在每个SSB前的一个OFDM符号内做信道侦听,图7中虚线框内表示一个时域传输单元,该时域传输单元内只包含一个SSB,斜线填充框表示进行时域传输单元侦听的OFDM符号。
在此处需要说明的是,因为SSB的传输时间非常短,因此可以采用一次空闲信道评估(CCA)的信道侦听(例如,one shot LBT),不需要做避让(backoff)。信道侦听的时间可以是25us或者更少,例如16us,或者9us。
二、时域传输单元包括至少两个SSB
需要说明的是,当所述时域传输单元包括至少两个SSB,所述步骤601的一种实现方式为:
对所述至少两个SSB的传输方向同时进行信道侦听。
在此种情况下,所述至少两个SSB可以为连续的SSB,也可以为不连续的SSB。所述至少两个SSB均采用数字波束赋形,即只有处于低频频段的SSB可以实现在多个SSB的传输方向同时进行信道侦听。
具体地,在此种情况下,步骤602的具体实现方式为:
在侦听到所述至少两个SSB中的位于第一SSB后的至少一个第二SSB的传输方向的信道为空闲时,在所述第一SSB的正交频分复用OFDM符号内的所述至少一个第二SSB的传输方向上,发送所述至少一个第二SSB的信道占位信号。
例如,对于图1至图3所示的SSB图样,时域传输单元可以选择为多个连续的SSB。网络设备在时域传输单元之前对多个SSB的传输方向同时进行信道侦听,在信道为空的方向上传输SSB。具体如图8所示,图8指示的是子载波间隔为30kHz的SSB的图样,由于低于6GHz的频段可以用数字波束赋形,因此网络设备可以在不同的方向上发送和接收。在每两个连续的SSB 之前对SSB的传输方向同时进行信道侦听。图8中在SSB1和SSB2传输之前,对SSB1和SSB2的传输方向进行侦听,当SSB1的传输方向的信道侦听结果为忙,SSB2的传输方向的信道侦听结果为空闲时,则SSB1不能传输,SSB2可以传输。但是为了在SSB1的传输时间内SSB2的信道不被其他无线接入技术(Radio Access Technology,RAT)或者其他传输节点占用,可以在SSB1的OFDM符号内在发送SSB2传输方向发送任意信道占位信号。如果检测到信道为忙的SSB是两个连续SSB中的后一个,则前一个SSB正常发送,后一个SSB不发送,如图8中的SSB3和SSB4,其中,图中斜线填充框为进行时域传输单元侦听的OFDM符号。
还需要说明的是,对于低频的SSB,也可以选择时域传输单元为多个不连续传输的SSB,如图9所示。图9中选择两个不连续的SSB作为一个时域传输单元进行侦听,即时域传输单元的持续时间从SSB1的起始符号到SSB2的结束符号。若SSB1和SSB2的传输方向的信道均为空闲,则在SSB1的OFDM符号内,在SSB1的传输方向发送SSB1,在SSB2的传输方向发送信道占位信号。在SSB1和SSB2之间的符号内,在SSB2的传输方向发送信道占位信号,在SSB2的OFDM符号内发送SSB2,其中,图中斜线填充框为进行时域传输单元侦听的OFDM符号。
若时域传输单元长度大于一个时隙,例如跨越两个时隙,如图10所示,时域传输单元选择为SSB1的起始OFDM符号到SSB4的结束OFDM符号。若所有的传输方向都检测到信道为空,则网络设备在发送SSB的时候要同时在所有未发送的SSB的传输方向上发送信道占位信号。在SSB之间的DL符号上同样发送信道占位信号。在预留的间隔(gap)或者UL OFDM符号内不做传输或者发送信道占位信号。需要说明的是,当某些SSB的传输方向的信道检测为忙时,可以不发送该传输方向的SSB,只发送信道检测为空闲的SSB的传输方向上的信道占位信号,其中,图中斜线填充框为进行时域传输单元侦听的OFDM符号。
需要说明的是,当所述时域传输单元包括至少两个SSB,所述步骤601的另一种实现方式为:
对所述至少两个SSB的传输方向依次进行信道侦听。
需要说明的是,才此种情况下,所述至少两个SSB可以为连续的SSB,也可以为不连续的SSB。所述至少两个SSB既可以均采用数字波束赋形,也可以均采用模拟波束赋形。但是这里需要注意的是,由于高频频段的SSB,采用模拟波束赋形,因此同一时刻只能发送一个方向的波束,网络设备无法一次做各个方向的信道侦听,所以对于高频频段的至少两个SSB,网络设备需要对每个SSB的传输方向依次进行信道侦听;而对于低频频段的SSB,网络设备既可以对每个SSB的传输方向同时进行信道侦听,也可以对每个SSB的传输方向依次进行信道侦听。
具体地,当所述至少两个SSB均采用模拟波束赋形时,所述步骤602的具体实现方式为:
在侦听到所述至少两个SSB中的第三SSB的传输方向的信道为忙、且在第三SSB后有第四SSB时,在所述第三SSB的OFDM符号内的所述第四SSB的传输方向上,发送所述第四SSB的信道占位信号。
例如,对于高频频段的SSB,可以在时域传输单元前对各个SSB的传输方向依次进行信道侦听,然后在信道为空闲的传输方向上发送SSB,如图11所示。SSB1的传输方向为忙,则可以在SSB1的OFDM符号内在SSB2的传输方向上发送信道占位信号,其中,图中斜线填充框为进行时域传输单元侦听的OFDM符号。
三、时域传输单元包括SSB和物理下行控制信道(PDCCH)时
需要说明的是,在此种情况下,步骤601的具体实现方式为:
对PDCCH和所述时域传输单元中的SSB的传输方向进行信道侦听。
例如,当网络设备有PDCCH需要发送时,时域传输单元便可以包含PDCCH和SSB,如图12所示,以子载波间隔为15kHz的SSB的图样或者子载波间隔为30kHz的SSB的第二种图样为例,对于每个时隙的第一个SSB,在上一个时隙的最后一个OFDM符号内对PDCCH的传输方向和SSB的传输方向做信道侦听。对于一个时隙内的第二个SSB在SSB之前的OFDM符号内做侦听。其中,图12中的竖线填充框表示为PDCCH传输符号,点划线框表示间隔和PUCCH传输符号,斜线填充框为进行时域传输单元侦听的OFDM符号。
这里需要注意的是,若PDCCH传输方向和时隙内第一个SSB的传输方向一致,则只需要做一个方向的信道侦听。而对于子载波间隔为30kHz的SSB的第一种图样,侦听方法类似,在此不再赘述。
四、时域传输单元包括SSB和目标信息的PDCCH和物理下行共享信道(PDSCH)时
需要说明的是,在此种情况下,步骤601的具体实现方式为:
对所述目标信息的PDCCH、PDSCH和所述时域传输单元中的SSB的传输方向进行信道侦听,其中,所述目标信息包括:剩余最小系统信息(RMSI)、其他系统信息(OSI)和寻呼信令中的至少一项。
需要说明的是,针对此种格式的时域传输单元,侦听的时候针对这些信号的传输方向同时进行信道侦听或者依次进行信道侦听,然后采用时分复用(TDM)或者频分复用(FDM)的方式发送这些信号。
还需要说明的是,本公开实施例中步骤601还可以采用如下的方式实现:
对所述时域传输单元进行全向信道侦听或扇区信道侦听;
其中,所述全向信道侦听采用全向天线进行侦听;
所述扇区信道侦听采用扇区天线进行侦听。
例如,如图13所示,在时域传输单元之前的DL符号上做全向信道侦听或者扇区(sector)信道侦听,当侦听到信道为空,时域传输单元内的SSB均可以发送。需要说明的是,当进行扇区信道侦听时,扇区的方向需要覆盖时域传输单元内所有SSB的传输方向,其中,图中斜线填充框为进行时域传输单元侦听的OFDM符号。
需要说明的是,对于方向性的传输,假设ED是基于空域传输滤波器的增益设定的功率检测门限。当使用全向信道侦听或者扇区信道侦听时,由于全向天线或者扇区天线的增益和基于空域传输滤波器的增益不一样,需要调整功率检测门限或者功率检测方法使得信道侦听和传输的功率能够匹配。
为了便于实现,本公开实施例中,在不改变功率检测门限的情况下,全向信道侦听或扇区信道侦听的侦听时间的获取方式为:根据目标天线的增益和SSB的基于空域传输滤波器的增益的差值获取所述全向信道侦听或扇区信道侦听的侦听时间,其中,该目标天线为:全向天线或扇区天线。
例如,假设基于空域传输滤波器的CCA时隙是25us,空域传输滤波器的天线增益比扇区天线的增益大3dB。为了补偿3dB的天线增益差,可以将CCA时隙的时间调整为50us。
另外还需要说明的是,本公开实施例中,所述信道侦听不仅可以采用一次CCA的信道侦听,当时域传输单元较长时,也可以采用基于避让(back-off)机制的信道侦听。
需要说明的是,本公开上述实施例,可以解决在非授权频段上SSB的发送问题,以此完善了网络通信流程,保证了终端的RRM测量以及初始接入的正常进行,进而提高了网络通信的可靠性。
如图14所示,本公开实施例还提供一种网络设备1400,包括:
侦听模块1401,用于在非授权频段上,对时域传输单元进行信道侦听;
发送模块1402,用于根据信道侦听的侦听结果,发送同步信号块SSB;
其中,所述时域传输单元包括至少一个SSB。
可选地,所述侦听模块1401,用于:
针对所述时域传输单元包含的至少一个SSB的传输方向进行信道侦听。
可选地,当所述时域传输单元包括至少两个SSB,所述侦听模块1401,用于:
对所述至少两个SSB的传输方向同时进行信道侦听。
具体地,所述至少两个SSB均采用数字波束赋形。
进一步地,所述发送模块1402,用于:
在侦听到所述至少两个SSB中的位于第一SSB后的至少一个第二SSB的传输方向的信道为空闲时,在所述第一SSB的正交频分复用OFDM符号内的所述至少一个第二SSB的传输方向上,发送所述至少一个第二SSB的信道占位信号。
可选地,当所述时域传输单元包括至少两个SSB,所述侦听模块1401,用于:
对所述至少两个SSB的传输方向依次进行信道侦听。
进一步地,在所述至少两个SSB均采用模拟波束赋形时,所述发送模块1402,用于:
在侦听到所述至少两个SSB中的第三SSB的传输方向的信道为忙、且在第三SSB后有第四SSB时,在所述第三SSB的OFDM符号内的所述第四SSB的传输方向上,发送所述第四SSB的信道占位信号。
可选地,在所述时域传输单元还包括物理下行控制信道PDCCH时,所述侦听模块1401,用于:
对PDCCH和所述时域传输单元中的SSB的传输方向进行信道侦听。
可选地,在所述时域传输单元还包括目标信息的PDCCH和物理下行共享信道PDSCH时,所述侦听模块1401,用于:
对所述目标信息的PDCCH、PDSCH和所述时域传输单元中的SSB的传输方向进行信道侦听,其中,所述目标信息包括:剩余最小系统信息RMSI、其他系统信息OSI和寻呼信令中的至少一项。
可选地,所述侦听模块1401,用于:
对所述时域传输单元进行全向信道侦听或扇区信道侦听;
其中,所述全向信道侦听采用全向天线进行侦听;
所述扇区信道侦听采用扇区天线进行侦听。
进一步地,所述全向信道侦听或扇区信道侦听的侦听时间的获取方式为:根据目标天线的增益和SSB的基于空域传输滤波器的增益的差值获取所述全向信道侦听或扇区信道侦听的侦听时间;
其中,所述目标天线为:全向天线或扇区天线。
进一步地,所述信道侦听采用一次空闲信道评估CCA的信道侦听和基于避让机制的信道侦听中的一种。
进一步地,所述发送模块1402,用于:
在侦听到目标SSB的传输方向的信道为空闲时,在所述目标SSB的OFDM符号内的所述目标SSB的传输方向上,发送所述目标SSB。
需要说明的是,该网络设备实施例是与上述应用于网络设备侧的信号发送方法相对应的网络设备,上述实施例的所有实现方式均适用于该网络设备实施例中,也能达到与其相同的技术效果。
本公开实施例还提供一种网络设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执 行时实现上述的应用于网络设备的信号发送方法实施例中的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述的应用于网络设备的信号发送方法实施例中的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
图15是本公开一实施例的网络设备的结构图,能够实现上述应用于网络设备侧的信号发送方法的细节,并达到相同的效果。如图15所示,网络设备1500包括:处理器1501、收发机1502、存储器1503和总线接口,其中:
处理器1501,用于读取存储器1503中的程序,执行下列过程:
在非授权频段上,对时域传输单元进行信道侦听;
根据信道侦听的侦听结果,通过收发机1502发送同步信号块SSB;
其中,所述时域传输单元包括至少一个SSB。
在图15中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1501代表的一个或多个处理器和存储器1503代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1502可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1501负责管理总线架构和通常的处理,存储器1503可以存储处理器1501在执行操作时所使用的数据。
可选地,所述处理器1501读取存储器1503中的程序,还用于执行:
针对所述时域传输单元包含的至少一个SSB的传输方向进行信道侦听。
可选地,当所述时域传输单元包括至少两个SSB,所述处理器1501读取存储器1503中的程序,还用于执行:
对所述至少两个SSB的传输方向同时进行信道侦听。
其中,所述至少两个SSB均采用数字波束赋形。
可选地,所述处理器1501读取存储器1503中的程序,还用于执行:
在侦听到所述至少两个SSB中的位于第一SSB后的至少一个第二SSB的传输方向的信道为空闲时,在所述第一SSB的正交频分复用OFDM符号内的所述至少一个第二SSB的传输方向上,发送所述至少一个第二SSB的信道占位信号。
可选地,当所述时域传输单元包括至少两个SSB,所述处理器1501读取存储器1503中的程序,还用于执行:
对所述至少两个SSB的传输方向依次进行信道侦听。
可选地,在所述至少两个SSB均采用模拟波束赋形时,所述处理器1501读取存储器1503中的程序,还用于执行:
在侦听到所述至少两个SSB中的第三SSB的传输方向的信道为忙、且在第三SSB后有第四SSB时,在所述第三SSB的OFDM符号内的所述第四SSB的传输方向上,发送所述第四SSB的信道占位信号。
可选地,所述处理器1501读取存储器1503中的程序,还用于执行:
对PDCCH和所述时域传输单元中的SSB的传输方向进行信道侦听。
可选地,在所述时域传输单元还包括目标信息的PDCCH和物理下行共享信道PDSCH时,所述处理器1501读取存储器1503中的程序,还用于执行:
对所述目标信息的PDCCH、PDSCH和所述时域传输单元中的SSB的传输方向进行信道侦听,其中,所述目标信息包括:剩余最小系统信息RMSI、其他系统信息OSI和寻呼信令中的至少一项。
可选地,所述处理器1501读取存储器1503中的程序,还用于执行:
对所述时域传输单元进行全向信道侦听或扇区信道侦听;
其中,所述全向信道侦听采用全向天线进行侦听,所述扇区信道侦听采用扇区天线进行侦听。
其中,所述全向信道侦听或扇区信道侦听的侦听时间的获取方式为:根据目标天线的增益和SSB的基于空域传输滤波器的增益的差值获取所述全向信道侦听或扇区信道侦听的侦听时间;其中,所述目标天线为:全向天线或扇区天线。
具体地,所述信道侦听采用一次空闲信道评估CCA的信道侦听和基于避让机制的信道侦听中的一种。
可选地,所述处理器1501读取存储器1503中的程序,还用于执行:
在侦听到目标SSB的传输方向的信道为空闲时,通过收发机1502在所述目标SSB的OFDM符号内的所述目标SSB的传输方向上,发送所述目标SSB。
其中,网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (28)

  1. 一种信号发送方法,应用于网络设备,包括:
    在非授权频段上,对时域传输单元进行信道侦听;
    根据信道侦听的侦听结果,发送同步信号块SSB,其中,所述时域传输单元包括至少一个SSB。
  2. 根据权利要求1所述的信号发送方法,其中,所述对时域传输单元进行信道侦听,包括:
    针对所述时域传输单元包含的至少一个SSB的传输方向进行信道侦听。
  3. 根据权利要求1所述的信号发送方法,其中,当所述时域传输单元包括至少两个SSB,所述对时域传输单元进行信道侦听,包括:
    对所述至少两个SSB的传输方向同时进行信道侦听。
  4. 根据权利要求3所述的信号发送方法,其中,所述至少两个SSB均采用数字波束赋形。
  5. 根据权利要求3所述的信号发送方法,其中,所述根据信道侦听的侦听结果,发送同步信号块SSB,包括:
    在侦听到所述至少两个SSB中的位于第一SSB后的至少一个第二SSB的传输方向的信道为空闲时,在所述第一SSB的正交频分复用OFDM符号内的所述至少一个第二SSB的传输方向上,发送所述至少一个第二SSB的信道占位信号。
  6. 根据权利要求1所述的信号发送方法,其中,当所述时域传输单元包括至少两个SSB,所述对时域传输单元进行信道侦听,包括:
    对所述至少两个SSB的传输方向依次进行信道侦听。
  7. 根据权利要求6所述的信号发送方法,其中,在所述至少两个SSB均采用模拟波束赋形时,所述根据信道侦听的侦听结果,发送同步信号块SSB,包括:
    在侦听到所述至少两个SSB中的第三SSB的传输方向的信道为忙、且在第三SSB后有第四SSB时,在所述第三SSB的OFDM符号内的所述第四SSB的传输方向上,发送所述第四SSB的信道占位信号。
  8. 根据权利要求1所述的信号发送方法,其中,在所述时域传输单元还包括物理下行控制信道PDCCH时,所述对时域传输单元进行信道侦听,包括:
    对PDCCH和所述时域传输单元中的SSB的传输方向进行信道侦听。
  9. 根据权利要求1所述的信号发送方法,其中,在所述时域传输单元还包括目标信息的PDCCH和物理下行共享信道PDSCH时,所述对时域传输单元进行信道侦听,包括:
    对所述目标信息的PDCCH、PDSCH和所述时域传输单元中的SSB的传输方向进行信道侦听,其中,所述目标信息包括:剩余最小系统信息RMSI、其他系统信息OSI和寻呼信令中的至少一项。
  10. 根据权利要求1所述的信号发送方法,其中,所述对时域传输单元进行信道侦听,包括:
    对所述时域传输单元进行全向信道侦听或扇区信道侦听;
    其中,所述全向信道侦听采用全向天线进行侦听,所述扇区信道侦听采用扇区天线进行侦听。
  11. 根据权利要求10所述的信号发送方法,其中,所述全向信道侦听或扇区信道侦听的侦听时间的获取方式为:根据目标天线的增益和SSB的基于空域传输滤波器的增益的差值获取所述全向信道侦听或扇区信道侦听的侦听时间;
    其中,所述目标天线为:全向天线或扇区天线。
  12. 根据权利要求1所述的信号发送方法,其中,所述信道侦听采用一次空闲信道评估CCA的信道侦听或基于避让机制的信道侦听。
  13. 根据权利要求1-12任一项所述的信号发送方法,其中,所述根据信道侦听的侦听结果,发送同步信号块SSB,包括:
    在侦听到目标SSB的传输方向的信道为空闲时,在所述目标SSB的OFDM符号内的所述目标SSB的传输方向上,发送所述目标SSB。
  14. 一种网络设备,包括:
    侦听模块,用于在非授权频段上,对时域传输单元进行信道侦听;
    发送模块,用于根据信道侦听的侦听结果,发送同步信号块SSB,其中, 所述时域传输单元包括至少一个SSB。
  15. 根据权利要求14所述的网络设备,其中,所述侦听模块,用于:
    针对所述时域传输单元包含的至少一个SSB的传输方向进行信道侦听。
  16. 根据权利要求14所述的网络设备,其中,当所述时域传输单元包括至少两个SSB,所述侦听模块,用于:
    对所述至少两个SSB的传输方向同时进行信道侦听。
  17. 根据权利要求16所述的网络设备,其中,所述至少两个SSB均采用数字波束赋形。
  18. 根据权利要求16所述的网络设备,其中,所述发送模块,用于:
    在侦听到所述至少两个SSB中的位于第一SSB后的至少一个第二SSB的传输方向的信道为空闲时,在所述第一SSB的正交频分复用OFDM符号内的所述至少一个第二SSB的传输方向上,发送所述至少一个第二SSB的信道占位信号。
  19. 根据权利要求14所述的网络设备,其中,当所述时域传输单元包括至少两个SSB,所述侦听模块,用于:
    对所述至少两个SSB的传输方向依次进行信道侦听。
  20. 根据权利要求19所述的网络设备,其中,在所述至少两个SSB均采用模拟波束赋形时,所述发送模块,用于:
    在侦听到所述至少两个SSB中的第三SSB的传输方向的信道为忙、且在第三SSB后有第四SSB时,在所述第三SSB的OFDM符号内的所述第四SSB的传输方向上,发送所述第四SSB的信道占位信号。
  21. 根据权利要求14所述的网络设备,其中,在所述时域传输单元还包括物理下行控制信道PDCCH时,所述侦听模块,用于:
    对PDCCH和所述时域传输单元中的SSB的传输方向进行信道侦听。
  22. 根据权利要求14所述的网络设备,其中,在所述时域传输单元还包括目标信息的PDCCH和物理下行共享信道PDSCH时,所述侦听模块,用于:
    对所述目标信息的PDCCH、PDSCH和所述时域传输单元中的SSB的传输方向进行信道侦听,其中,所述目标信息包括:剩余最小系统信息RMSI、其他系统信息OSI和寻呼信令中的至少一项。
  23. 根据权利要求14所述的网络设备,其中,所述侦听模块,用于:
    对所述时域传输单元进行全向信道侦听或扇区信道侦听;
    其中,所述全向信道侦听采用全向天线进行侦听,所述扇区信道侦听采用扇区天线进行侦听。
  24. 根据权利要求23所述的网络设备,其中,所述全向信道侦听或扇区信道侦听的侦听时间的获取方式为:根据目标天线的增益和SSB的基于空域传输滤波器的增益的差值获取所述全向信道侦听或扇区信道侦听的侦听时间;
    其中,所述目标天线为:全向天线或扇区天线。
  25. 根据权利要求14所述的网络设备,其中,所述信道侦听采用一次空闲信道评估CCA的信道侦听或基于避让机制的信道侦听。
  26. 根据权利要求14-25任一项所述的网络设备,其中,所述发送模块,用于:
    在侦听到目标SSB的传输方向的信道为空闲时,在所述目标SSB的OFDM符号内的所述目标SSB的传输方向上,发送所述目标SSB。
  27. 一种网络设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至13中任一项所述的信号发送方法的步骤。
  28. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至13中任一项所述的信号发送方法的步骤。
PCT/CN2019/075189 2018-03-23 2019-02-15 信号发送方法及网络设备 WO2019179263A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/040,826 US20210022095A1 (en) 2018-03-23 2019-02-15 Signal transmitting method and network equipment
EP19772111.1A EP3771128A4 (en) 2018-03-23 2019-02-15 SIGNAL SENDING PROCESS AND NETWORK DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810247834.0A CN110300442B (zh) 2018-03-23 2018-03-23 一种信号发送方法及网络设备
CN201810247834.0 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019179263A1 true WO2019179263A1 (zh) 2019-09-26

Family

ID=67986640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075189 WO2019179263A1 (zh) 2018-03-23 2019-02-15 信号发送方法及网络设备

Country Status (4)

Country Link
US (1) US20210022095A1 (zh)
EP (1) EP3771128A4 (zh)
CN (1) CN110300442B (zh)
WO (1) WO2019179263A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI842326B (zh) 2022-01-06 2024-05-11 新加坡商聯發科技(新加坡)私人有限公司 資料輔助ssb訊號處理

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111937455A (zh) * 2018-04-03 2020-11-13 Oppo广东移动通信有限公司 空闲信道侦听方法、装置及设备
CN113383589B (zh) * 2019-12-25 2023-04-11 北京小米移动软件有限公司 数据传输方法、装置及计算机存储介质
CN111669239B (zh) * 2020-05-15 2022-09-09 中国信息通信研究院 一种支持方向性先听后发传输方法、设备和系统
CN111669238B (zh) * 2020-05-15 2022-03-29 中国信息通信研究院 一种高频发现信号传输方法、设备和系统
CN114501610B (zh) * 2022-04-02 2022-07-15 北京云智软通信息技术有限公司 小区同步方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104301273A (zh) * 2014-08-25 2015-01-21 中兴通讯股份有限公司 使用非授权载波发送及接收信号的方法、基站及用户设备
US20160301556A1 (en) * 2015-04-10 2016-10-13 Motorola Mobility Llc Method and apparatus for reception of control signaling

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10917913B2 (en) * 2015-10-26 2021-02-09 Intel IP Corporation Apparatus, system and method of communication based on clear channel assessment (CCA) in one or more directions
CN106992804A (zh) * 2016-01-20 2017-07-28 中兴通讯股份有限公司 一种探测参考信号的发送方法和装置
ES2910850T3 (es) * 2016-04-25 2022-05-13 Electronics & Telecommunications Res Inst Método para transmitir señales de descubrimiento y método para recibir señales de descubrimiento
WO2018016864A1 (ko) * 2016-07-19 2018-01-25 엘지전자 주식회사 무선랜 시스템에서 프레임을 송신하는 방법 및 이를 이용한 무선 단말
US11722960B2 (en) * 2016-08-10 2023-08-08 Interdigital Patent Holdings, Inc. Methods and apparatus for efficient power saving in wireless networks
CN110024338B (zh) * 2016-09-30 2021-06-25 中兴通讯股份有限公司 改进空间复用中的edca机制的技术
EP3504926A4 (en) * 2016-09-30 2019-07-17 Samsung Electronics Co., Ltd. METHOD AND DEVICES FOR TRANSMITTING AND RECEIVING SIGNALS
US10257848B2 (en) * 2016-10-04 2019-04-09 Qualcomm Incorporated Directional channel reservation for time-division multiplexing downlink and uplink data burst transmission
US11115983B2 (en) * 2016-11-11 2021-09-07 Qualcomm Incorporated Data and control channels in synchronization bursts for millimeter wave new radio
US10368301B2 (en) * 2017-02-21 2019-07-30 Qualcomm Incorporated Multi-beam and single-beam discovery reference signals for shared spectrum
EP3576481B1 (en) * 2017-02-27 2021-05-26 Huawei Technologies Co., Ltd. Data transmission method and user equipment
US10462761B2 (en) * 2017-07-25 2019-10-29 Samsung Electronics Co., Ltd. Method and SS block time locations and SS burst set composition for NR unlicensed spectrum
US10687356B2 (en) * 2017-08-08 2020-06-16 Qualcomm Incorporated Channel reservation signal in NR shared spectrum
US10925091B2 (en) * 2017-08-16 2021-02-16 Qualcomm Incorporated Listen-before-talk (LBT) with new radio-spectrum sharing (NR-SS) discovery signal transmission
CN107528682B (zh) * 2017-09-20 2020-12-22 宇龙计算机通信科技(深圳)有限公司 参考信号的发送方法及装置
US10959105B2 (en) * 2017-09-29 2021-03-23 Qualcomm Incorporated Methods, apparatuses and systems for configuring bandwidth parts in shared spectrum
US10764896B2 (en) * 2017-11-08 2020-09-01 Samsung Electronics Co., Ltd. Method and apparatus for beam management in the unlicensed spectrum
CN107820259B (zh) * 2017-11-09 2021-06-18 宇龙计算机通信科技(深圳)有限公司 一种基于波束的信道空闲的确定方法和设备
US11324047B2 (en) * 2017-11-10 2022-05-03 Qualcomm Incorporated NR-unlicensed transmission opportunity structure with flexible starting point

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104301273A (zh) * 2014-08-25 2015-01-21 中兴通讯股份有限公司 使用非授权载波发送及接收信号的方法、基站及用户设备
US20160301556A1 (en) * 2015-04-10 2016-10-13 Motorola Mobility Llc Method and apparatus for reception of control signaling

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CATR: "Considerations on LBT in NR-based access to unlicensed spectrum", 3GPP TSG RAN WG1 MEETING #92 R1-1801903,, 2 March 2018 (2018-03-02), XP051396719 *
INTERDIGITAL INC: "Considerations on Synchronization Signal for NR Unlicensed Spectrum", 3GPP TSG RAN WG1 MEETING 92 R1-1802647,, 2 March 2018 (2018-03-02), XP051398085 *
LG ELECTRONICS: "Potential solutions for NR unlicensed operation", 3GPP TSG RAN WG1 MEETING #92 RL-1802239,, 2 March 2018 (2018-03-02), XP051397245 *
NOKIA: "Potential solutions and techniques for NR unlicensed", 3GPP TSG RAN WG1 MEETING #92 RL-1802526,, 2 March 2018 (2018-03-02), XP051397470 *
See also references of EP3771128A4 *
SPREADTRUM COMMUNICATIONS: "Discussion on SS/PBCH block in NR unlicensed", 3GPP TSG RAN WG1 MEETING #92 RL-1801839,, 2 March 2018 (2018-03-02), XP051396890 *
VIVO: "Discussion on physical DL channel design in NR unlicensed spectrum", 3GPP TSG RAN WG1 MEETING #93 R1-1806084, 25 May 2018 (2018-05-25), XP051441298 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI842326B (zh) 2022-01-06 2024-05-11 新加坡商聯發科技(新加坡)私人有限公司 資料輔助ssb訊號處理

Also Published As

Publication number Publication date
CN110300442A (zh) 2019-10-01
EP3771128A4 (en) 2021-05-19
CN110300442B (zh) 2020-07-28
US20210022095A1 (en) 2021-01-21
EP3771128A1 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
US11876744B2 (en) Secondary cell activation method, access network device, and communications apparatus and system
US11950280B2 (en) Channelization and BWP
KR102421374B1 (ko) 신호 구성 방법 및 관련 장치
WO2019179263A1 (zh) 信号发送方法及网络设备
US11849485B2 (en) Flexible time masks for listen-before-talk based channel access
EP3065427B1 (en) Radio base station, user terminal, and radio communication method
US20240107585A1 (en) CONTROLLING AUL TRANSMISSIONS WHEN COEXISTING WITH SCHEDULED UEs
JP2020503803A (ja) 通信方法、ネットワークデバイス、および端末デバイス
US10292092B2 (en) Device and method that uses base station frequency band as a secondary component carrier of carrier aggregation
WO2019031190A1 (ja) 通信装置、通信制御方法及びコンピュータプログラム
WO2020248287A1 (zh) 随机接入的方法和设备
WO2021016967A1 (zh) 随机接入方法、接收方法、装置、设备及介质
WO2019179262A1 (zh) 信号传输方法及网络设备
US20220232580A1 (en) User Device and Method with Beam Management Enhancements
KR102547003B1 (ko) 이동 통신 시스템에서의 랜덤 액세스 방법 및 장치
US20240015845A1 (en) Resource selection for power-saving users in nr sidelink
WO2019033971A1 (zh) 非授权频段下的信息传输方法及网络设备
KR20160094079A (ko) Laa를 지원하는 무선 통신 시스템에서 경로 손실 추정 방법 및 장치
US20190215865A1 (en) Self-contained communication with coordination signaling for listen-after-talk scheme
EP4280712A1 (en) Method for determining synchronization signal block parameter and related apparatus
WO2023208912A1 (en) Sl unlicensed frame strucutre
CN116939823A (zh) 用于网络控制的中继器的同步信号生成和发射的过程
WO2015162974A1 (ja) 装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019772111

Country of ref document: EP